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ABSTRACT 

Steinberg, T. 2022. Assessment of hazard tree/snag detection using drone- 
based, multi-spectral sensors. Natural Resources Management. 
Lakehead University. 42 pp. 

Keywords: drone, hazard tree, multi-spectral, sensor, snag, vegetation indices 

Snags are an integral component of forest ecosystems as they provide 

habitat for a number of different species and add complexity to vertical forest 

structure. However, snags also may pose as potential hazards to people and 

property. Efficient and effective methods to locate and assess snags/hazard 

trees holds value to resource and conservation managers. This study aimed to 

assess the feasibility of using drone-based, multi-spectral sensors for detecting 

snags/hazard trees. The methods used in the study included an autonomous 

drone flight over the study areas, orthomosaic processing, object-based image 

analysis (OBIA), an accuracy assessment, and a field ground truth. The results 

provided sufficient evidence of drone-based, multi-spectral sensors being 

effective at detecting snags/hazard trees. However, the methods used in this 

study were found to only be accurate at detecting high quality/hazard snags. 

Segmentation parameters had a significant impact on the degree of 

quality/hazard of snag that the algorithm could detect. The orthomosaic 

classification was considered as highly accurate with an overall accuracy of 

93.4%. Resource and conservation managers can effectively use the methods 

from this study for a variety of applications that aim to promote biodiversity 

and/or minimize public hazards. 



 vi 

CONTENTS 

Abstract                 v 

Tables               viii 

Figures                ix 

ACKNOLEDGEMENTS               x 

1.0 INTRODUCTION               1 

 1.1 OBJECTIVE                2 

 1.2 HYPOTHESIS                3 

2.0 LITERATURE REVIEW              4 

 2.1 DRONES IN FORESTRY             4 

2.1.1 APPLICATIONS              4 

2.2 MICASENSE DUAL, 10-BAND MULTISPECTRAL SENSOR        8 

  2.2.1 BANDS               9 

  2.2.2 VEGETATION INDICES           10 

2.2.3 APPLICATIONS           11 

 2.3 ECOLOGICAL IMPORTANCE OF SNAGS          12 

2.4 SNAGS AS HAZARD TREES           13 

3.0 MATERIALS AND METHODS              14 

 3.1 MATERIALS              14 

 3.2 AREA OF STUDY             14 

3.3 DATA COLLECTION            16 

3.4 PROCESSING MICASENSE IMAGES ON AGISOFT        18 

3.5 OBIA IN QGIS              20 

3.6 ACCURACY ASSESSMENT IN ARCGIS PRO         21 



 vii 

3.7 FIELD GROUND TRUTH            22 

4.0 RESULTS               23 

 4.1 SEGMENTATION            23 

 4.2 CLASSIFICATION            24 

4.3 ACCURACY ASSESSMENT           26 

4.4 FIELD GROUND TRUTH           27 

5.0 DISCUSSION              28 

 5.1 SEGMENTATION            28 

 5.2 CLASSIFICATION & ACCURACY ASSESSMENT        29 

 5.3 FIELD GROUND TRUTH           31 

5.4 UNSUCCESSFUL APPLICATION OF VEGETATION INDICES       34 

5.5 POTENTIAL USE CASES FOR RESULTS          34 

5.6 ADDITIONAL FACTORS TO CONSIDER IN FUTURE STUDIES    35 

5.7 RECOMMENDATIONS TO THE LRCA          37 

6.0 CONCLUSION              37 

7.0 LITERATURE CITED              39 

  



 viii 

TABLES 

Table 
 

 Page 

1. Flight parameters used in previous successful drone studies   7 
 

2. Corresponding center wavelengths and bandwidths for each 
MicaSense Dual sensor band 

 
9 

 
3. Practical vegetation indexes for examining vegetation health 

attributes 
 
11 

 
4. Flight parameters for both study areas 17 

 
5. Parameters used for the Align Photos dialog 18 

 
6. Settings used for building the DEM 19 

 
7. Settings used for building the orthomosaic 19 

 
8. Changed values in the segmentation tool 20 

 
9. Confusion matrix for snag classification results 26 

 
10. Ground truth field sampling results for both study areas 27 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ix 

FIGURES 
 

Figure 
 

 Page 

1. Selected study sites in the Cascades Conservation Area 16 

2. DJI Matrice 200 equipped with the MicaSense dual sensor, 
accompanied by the CRP 2 
 

 
17 

3. Segmentation results using default segmentation parameters 23 

4. Segmentation results from the selected trial 24 

5. Snag classification at full scale 25 

6. Snag classification at a scale of 1:200 in study area 1 25 

7. Snag classification at a scale of 1:200 in study area 2 26 

8. Orthomosaic imperfection resulting in misclassified snag 30 

9. Examples of undetected snags in study area 2 33 

10. Tree #3 in study area 2  33 

 
  



 x 

ACKNOWLEDGEMENTS 
 

 
I thank Lakehead University for supplying the necessary tools and 

equipment, Ryan Wilkie for assisting me as my thesis supervisor, Colin Filliter 

for being my second reader, and Ryan Mackett from the Lakehead Region 

Conservation Authority (LRCA) for providing permission to fly over and study the 

Cascades Conservation Area.



 1 

1.0 INTRODUCTION 
 

As land management strategies become progressively more innovated, 

the use of drones or Remotely Piloted Aircraft Systems (RPAS) is becoming 

significantly more popular for a plethora of applications. An area of land 

management that has not been extensively tested for drone applicability is 

snag/hazard tree detection. With the high ecological significance of snags, and 

their accompanying potential hazards to people or property, improving known 

detection methods is important. This thesis aims to test the accuracy of snag 

tree detection using a MicaSense dual, 10-band multispectral sensor attached to 

a drone. The results of this study can potentially open up a new opportunity for 

land managers to detect snags/hazard trees more efficiently and accurately, 

allowing for more effective management decisions to be made.  

Trees designated as snags or hazard trees will inevitably exist in any 

aging forest as some trees get sick and/or die off over time (Angers et al. 2010). 

However, when the proximity of these hazardous trees become close to frequent 

human activity or property, they must be assessed for management decisions 

that mitigate all possibilities of injury or property damage (Smiley et al. 2000). 

The method used most frequently for hazard tree detection and assessment is 

currently visual inspection, which can involve an expensive and laborious 

process when looking at large areas or long trail networks (Fink 2009). Using 

drones to detect these hazard trees more efficiently could reduce costs of 

detection and allow for management decisions to be made quickly, lowering 

potential risks. 
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 Knowledge of snag locations in harvest blocks is also very beneficial to 

forest resource managers. Snags are an integral component of forests with 

great significance to animal habitats, as they increase vertical, structural 

complexity (Thomas et al. 1979). A variety of small mammals, birds, 

invertebrates, fungi, mosses, and lichens have several uses for snags (Thomas 

et al. 1979). Many of these species require accessibility to dead standing timber 

for their general or specialized habitat niches (Thomas et al. 1979). To ensure 

these habitat standards are maintained, a minimum number of snags per 

hectare must remain in a cutblock proceeding harvest (Thomas et al. 1979). 

Thus, forest resource managers must effectively determine whether a sufficient 

number of snags are present in a block or not prior to harvest to maintain the 

previous habitat niche. Applying remote imagery pre-harvest would allow for a 

manager to get a general view of the stand for visual assessment. However, the 

addition of multispectral sensors to the remote imagery can provide more 

detailed results to allow for more effective management decisions (Minařík and 

Langhammer 2016). 

 

1.1 OBJECTIVE 

 The selected study area was the Cascades Conservation Area, which is a 

popular outdoor recreational area in Thunder Bay owned by the Lakehead 

Region Conservation Authority (LRCA). The LRCA is responsible for the 

sustainable management of watershed resources, with jurisdiction over ~2,719 

km2 around the Thunder Bay region, and 8 conservation areas including the 

Cascades (LRCA n.d.). Due to the frequent use of these conservation areas for 
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recreational purposes, it is crucial to ensure the trees do not pose a risk to 

visitors. Thus, hazard tree assessments must be conducted relatively often. 

Being able to use multispectral imagery from the MicaSense dual 10-band 

sensor would potentially allow for more of the conservation area to be assessed 

quicker and hazardous trees that are difficult to assess from the ground would 

be detected easier. Using the several spectral bands provided by the sensor for 

calculating zonal statistics, vegetation indices, and classification using QGIS are 

expected to effectively detect these dead standing trees. The objective of this 

study is to see if these methods are feasible.  

 

1.2 HYPOTHESIS 

Based on the success of similar drone-based multispectral applications 

(Minařík and Langhammer 2016; Dash et al. 2018), it is hypothesized that the 

drone-based MicaSense dual 10-band sensor can feasibly be applied to 

snag/hazard tree detection. The alternative hypothesis is that the application of 

drone-based MicaSense dual 10-band sensors is not a feasible method for 

snag/hazard tree detection. These hypotheses are also dependent on all 

classifications being performed using QGIS. 
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2.0 LITERATURE REVIEW 
 

2.1 DRONES IN FORESTRY 

 Remote sensing techniques provide forest managers with competitive 

advantages that allow for an increased detail of sustainable management factors 

such as forest structure, composition, volumes, or growth to be assessed (Banu 

et al. 2016). Due to the technological innovations and advancements of sensors 

and computers, the main data collection method has shifted from being aerial 

photography to satellite imagery, as several forest indices could then be 

calculated to more accurately estimate data (Banu et al. 2016). However, 

acknowledgment of the imagery scale that is necessary for the type of data 

collection is important, as aerial photographs will be more suitable for smaller 

scale details, and vice versa (Sedykh 1995). Drones have a great potential of 

providing the optimal remote sensing data for high spatial resolution applications 

where aerial photography and satellite imagery would not be suitable (Banu et 

al. 2016). The broad applicability, low-costs, and high-resolution outputs of 

drone data collection are key factors to its success in filling in the remote 

sensing gap between manned aerial photography and satellite imagery (Tang 

and Shao 2015). 

 

2.1.1 APPLICATIONS 

 Koh and Wich (2012) demonstrated the applicability of inexpensive drone 

technology for surveying and mapping forests and biodiversity. A low-cost drone 

(<$2,000) was developed with capabilities of a ~25-minute flight time with over a 

~15 km maximum travel distance. The drone also had the ability to capture 
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video with a 1080p resolution and acquire aerial images with a pixel resolution of 

<10cm. Several test flights over various study sites in tropical landscapes (Aras 

Napal, Sumatra, Indonesia), revealed that the prototype drone was an effective 

tool for collecting remote sensing data on land mapping, detection of human 

activities, and biodiversity. The data recorded in this study is significant evidence 

that drones can be a highly valuable, inexpensive tool for data collection where 

high-resolution is required. 

 Satellite imagery has been a sufficient remote sensing tool for collecting 

data on forest gap dynamics, however it lacks the ability of obtaining accurate 

results for small, localized disturbances such as blow-down (Frolking et al. 2009; 

Getzin et al. 2012). Especially in forest management, knowledge of small forest 

gaps can be evidential of key diversity and productivity factors (Tang and Shao 

2015). Getzin et al. (2012) deployed an autonomous Carolo P200 drone to test 

whether or not drones could accurately detect small forest gaps in temperate 

forests. The drone was flown at an altitude of 250 m, capturing 1 m spatial 

resolution images (Getzin et al. 2012). The results of Getzin et al. (2012) 

concluded that high-resolution imagery obtained from drone’s can be 

successfully utilized for assessing biodiversity using gap dynamics. 

 Forest canopy height measurements were historically all estimated using 

photogrammetric methodology and ground surveys (Tang and Shao 2015). The 

use of these methods for canopy height data collection has become sparse in 

recent years, as more advanced remote sensing technology, such as Light 

Detection and Ranging (LiDAR), has been recognized as a superior 

measurement tool (Lefsky et al. 2002). With the major innovations made to 
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LiDAR equipment to make it lighter and require less power, the adaptability with 

drone technology has become apparent (Risbøl and Gustavsen 2018). Although 

LiDAR is not yet globally accessible, studies by Lisein et al. (2013), Zarco-

Tejada et al. (2014), and Dandois and Ellis (2013) have displayed that lower-

cost, alternative methods such as measuring canopy heights using drones 

without LiDAR can be successfully accomplished. 

 Wildfires are common natural disturbances that promote succession in 

forests (Bergeron et al. 1998), though they also have potential to pose risks to 

human health and safety, property, and ecological variables (Samiappan et al. 

2019). To ensure wildfires are being effectively managed, frequent and reliable 

surveying is required to track the spread and intensity of fires (Allison et al. 

2016). As satellite imagery does not provide high enough resolution images to 

detect small local fires, and manned aircrafts can be costly and present risk to 

crew members, drones provide a solution with higher temporal and spatial 

resolution, at lower costs and risk (Tang and Shao 2015). Drones can also be 

utilized for post-fire analysis, which is evident in the success of the Samiappan 

et al. (2019) study, where recently charred areas were accurately mapped, and 

vegetation recovery and damage analysis was feasible using an autonomous 

drone equipped with a MicaSense RedEdge 5-band multispectral sensor. 

 Drones have also been effectively implemented in the aid of intensive 

forest management strategies with support in estimating key variables such as 

tree/stand vigour, density control, brush control, and more (Tang and Shao 

2015). Since each wavelength range is reflected off of foliage at varying 

proportions, differences in reflectance patterns can be used to determine the 
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health of stands or individual trees (Slaton et al. 2001). Previous studies have 

validated that the reflectance of near-infrared (NIR) is reduced and the 

reflectance of red is increased in stressed vegetation when compared to healthy 

vegetation (Felderhof and Gillieson 2011; Dash et al. 2018). With the addition of 

multispectral sensors to drones, vegetation indices can be utilized to process 

imagery in a manner that detects forest characteristics that cannot be easily 

detected by the human eye (Mahajan and Bundel 2016).  

Table 1 shows the flight parameters used for some of the previously 

mentioned drone application examples. Having reference to the flight 

parameters that were applied in several successful studies will allow for future 

interpretations of whether or not the results were likely to have been impacted 

by the flight parameters used in this study. 

 

Table 1. Flight parameters used in previous successful drone studies. 

Study Platform/Sensor 
Flying Height 

(m) 

Overlap 

(%) 

Koh and Wich (2012) 
RGB Canon Camera and a 

GoPro 
180 >50 

Getzin et al. (2012) High-resolution RGB camera 250 Undefined 

Lisein et al. (2013) 
Ricoh GR3 Camera adapted 

for NIR 
225 75 

Samiappan et al. 

(2019) 
MicaSense RedEdge 305 

X - 60              

Y - 70 

Dash et al. (2018) MicaSense RedEdge 3 90 85 



 8 

2.2 MICASENSE DUAL, 10-BAND MULTISPECTRAL SENSOR 

 While conventional multispectral sensors only provide 5 bands, the 

MicaSense dual sensor doubles the number of bands to 10 by combining the 

technology of the RedEdge-MX and RedEdge-MX Blue sensors (Pranga et al. 

2021). The variety of 10 bands with supplemental green, red, and red-edge 

bands, offers substantially more spectral information on vegetation than that of 

traditional cameras (Pranga et al. 2021). A set range of wavelengths is 

designated for each band, Table 2, that can provide data for computational 

processing of vegetation indices (Assmann 2018). The utilization of vegetation 

indices provides more in-depth information on ecological variables like 

vegetation productivity and leaf area index (LAI), as various combinations of the 

provided spectral bands in Table 2 can be applied to individual applications to 

produce different visual representations of spatial area (Assmann 2018). A wider 

variety of spectral bands opens up opportunity for experimentation with a 

broader range of vegetation indices. However, many of the potential applications 

for the MicaSense dual sensor have yet to be explored due to its relatively new 

introduction to commercial use. 
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2.2.1 BANDS 

Table 2. Corresponding center wavelengths and bandwidths for each 

MicaSense Dual sensor band. 

Band Name Center Wavelength (nm) Bandwidth (nm) 

Coastal Blue 444 28 

Blue 475 32 

Green 531 14 

Green 560 27 

Red 650 16 

Red 668 14 

Red Edge 705 10 

Red Edge 717 12 

Red Edge 740 18 

Near IR 842 57 

 
   Source: MicaSense 2018 

The most critical bands for analyzing the health of trees are the red, red 

edge and NIR bands (Xiao and McPherson 2005). The red edge bands are 

highly valuable, as they can provide details that may not be evident using the 

red bands in combination with the NIR band (Mutanga and Skidmore 2007). Red 

edge has also been found to be less affected by background soil and 

atmospheric affects (Darvishzadeh et al. 2009). Previous studies have shown 

success in applying red edge bands to effectively make estimations of 

chlorophyll concentration, biomass, and LAI (Mutanga and Skidmore 2007). The 



 10 

green bands are also required to be accounted for in remote sensing for tree 

health, though the data from them is not as valuable (Xiao and McPherson 

2005). 

 

2.2.2 VEGETATION INDICES 

 Over the last 30 years, there have been over 40 vegetation indices that 

have been publicly released, each calculating different parameters to generate 

various solution responses that enhance distinct forest aspects while minimizing 

others (Bannari et al. 2009). Traditionally, the Normalized Difference Vegetation 

Index (NDVI) is most commonly utilized for forest management activities, as it 

has successfully shown accuracy at detecting LAI, living biomass, and 

vegetation coverage (Purevdorj et al. 1998). Although there is major success 

behind the NDVI, it still has known limitations like soil background and 

atmospheric sensitivity (Xue and Su 2017). Thus, more vegetation indices were 

developed to remediate these issues, such as the soil-adjusted vegetation index 

(SAVI), transformed soil-adjusted vegetation index (TSAVI), atmospherically 

resistant vegetation index (ARVI), and the modified soil-adjusted vegetation 

index (MSAVI) (Rondeaux et al. 1996). Although the NDVI is the expected 

vegetation index to be used in this study, a review of other potentially effective 

vegetation indices is listed in Table 3. 
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Table 3. Practical vegetation indexes for examining vegetation health attributes. 

 
Index 

 

 
Formula 

 
Reference 

 
Normalized 
Difference 
Vegetation 

Index (NDVI) 
 

 
𝑁𝐼𝑅 − 𝑅𝐸𝐷
𝑁𝐼𝑅 + 𝑅𝐸𝐷 

 
Purevdorj et al. 

1998 

Soil-Adjusted 
Vegetation 

Index (SAVI) 
 

 
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿 (1 + 𝐿) 

 
Purevdorj et al. 

1998 

Transformed 
Soil-Adjusted 
Vegetation 

Index (TSAVI) 
 

 
𝑎(𝑁𝐼𝑅 − 𝑎𝑅𝐸𝐷 − 𝑏)
(𝑅𝐸𝐷 + 𝑎𝑁𝐼𝑅 − 𝑎𝑏) 

 
Purevdorj et al. 

1998 

Modified Soil-
Adjusted 

Vegetation 
Index (MSAVI) 

 

 
2𝑁𝐼𝑅 + 1 −/(2𝑁𝐼𝑅 + 1)0 − 8(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

2  

 
Purevdorj et al. 

1998 

Normalized 
Difference 
Red Edge 

index (NDRE) 
 

 
𝑁𝐼𝑅 − 𝑅𝐸𝐷	𝐸𝐷𝐺𝐸
𝑁𝐼𝑅 + 𝑅𝐸𝐷	𝐸𝐷𝐺𝐸 

 
Delegido et al. 

2013 

    Source: Purevdorj et al. 1998; Delegido et al. 2013 

2.2.3 APPLICATIONS 

 Isgró et al. (2021) successfully demonstrated the use of the MicaSense 

dual, 10-band multispectral sensor for monitoring water quality. To do this, the 

study sampled and analyzed various acidic and non-acidic water bodies. The 

DJI Matrice 210 V2 RTK was equipped with the MicaSense dual sensor for 

sampling of each water body. With a flying height of 120 m, 80% frontal overlap, 

and 75% side overlap, these parameters effectively captured images of each 

site that could be transformed into orthomosaics. The 10 different bands for 
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each image produced by the dual sensor allowed for each chemical element of 

significance to be analyzed for any spectral relationships with certain bands. 

Isgró et al. (2021) concluded that the application of the MicaSense dual sensor 

for modelling water quality was highly valuable, as chemical detection by 

element can be completed efficiently and accurately over large areas of water. 

 Fernández et al. (2020) utilized the Micasense dual sensor for detecting 

potato late blight at both the leaf and canopy level by analyzing the various red 

and red edge bands provided by the sensor. Having access to a variety of bands 

in several spectral regions was important due to the study focusing on the 

effects of the disease that are only visible in the red and NIR spectral regions. 

For detection, the methods included a support vector machine classifier on both 

reflectance values of the MicaSense dual sensor bands and on red-well 

position/red edge inflection point wavelengths. It was discovered that 

classification using the reflectance values of the MicaSense dual sensor was 

more accurate (~89% accuracy) at classifying the disease at both the canopy 

and leaf level. 

 

2.3 ECOLOGICAL IMPORTANCE OF SNAGS 

 Standing dead timber, otherwise known as snags, are critical to animal 

habitat, as a variety of animals and insects utilize or depend on their existence 

for survival (Thomas et al. 1979). The variety of quantity, size, and quality in 

present snags is highly influential on the maximum amount of wildlife that can 

persist in a local habitat (Thomas et al. 1979). Furthermore, the abundance and 

distribution of snags can be used as a key variable for biodiversity and forest 
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health, as nutrient cycling, long-term carbon storage, and fungal and 

invertebrate life strategies are all strongly correlated with standing dead timber 

(Wing et al. 2015). Due to the significance of snags, many forest management 

methods and policies require land managers to ensure minimum densities or 

volumes of standing dead timber is stocked to maintain ecological 

characteristics (Pasher and King 2009). 

 Strong land stewardship is highly valued by the LRCA with their 

strategies including shoreline naturalization, stormwater management, invasive 

species management, and habitat enhancement (LRCA n.d.). Since snags have 

significant ecological importance, ensuring that natural quantities and qualities 

exist is a strategy for protecting and promoting key stewardship values (Thomas 

et al. 1979; LRCA n.d.). However, in the several conservation areas that the 

LRCA manages, snags can pose as risks to recreational visitors (LRCA n.d.). 

Thus, a balance of maintaining natural ecological features and public safety 

must be exhibited. 

 

2.4 SNAGS AS HAZARD TREES 

 Although snags are a critical component of natural forests, they can also 

potentially pose as risks to human safety or property damage (Stereńczak et al. 

2017). In outdoor recreational areas, especially in highly trafficked/touristed 

areas, a relatively high quantity of snags can be of concern for decades 

(Stereńczak et al. 2017). As it is in the best interest of tree owners and land 

managers to avoid all potential liabilities, due diligence is necessary (Fink 2009). 

Thus, understanding the location and condition of snags consistently and 
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systematically is crucial for taking preventative measures in these areas (Fink 

2009). Currently, the LRCA’s hazard tree program relies primarily on a ground-

based professional visually detecting and inspecting potential hazard trees 

throughout each year (LRCA n.d.). Any trees deemed as hazards to the public 

are then removed to ensure safety for all visitors and property (LRCA n.d.)  

 

3.0 MATERIALS AND METHODS 

3.1 MATERIALS 

The equipment used for collecting data included the following: a DJI 

Matrice 200 drone, a MicaSense Dual 10-band multispectral sensor, a 

Calibrated Reflectance Panel 2 (CRP 2), and a Garmin GPSMAP 64 SERIES. 

The software used for image mosaicing, classification, and analysis included the 

following: Agisoft Metashape 1.5.5.9097, QGIS 3.2 with the Orfeo toolbox, and 

ArcGIS Pro 2.9. 

 

3.2 AREA OF STUDY 

The flights and data collection for this study were executed in a popular 

recreational conservation area that is managed by the LRCA, the Cascades 

Conservation Area. With a very close proximity to the city of Thunder Bay, it 

attracts many recreational users to enjoy its outdoor features. The Cascades 

Conservation Area is 162 ha and offers a variety of trail networks (5.5 km) that 

run through the Boreal forest, while also promoting inclusivity by providing 

wheelchair accessibility for a portion of the trails (LRCA 2016). Furthermore, the 

trails link with a segment of the Current River which gives users the opportunity 
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to enjoy the river and its rapids in addition to its forest trail network (LRCA 

2016). 

The first study area is outlined in red in Figure 1. It is the forested area 

confined by the Forest trail, which is the most accessible trail that spans 775m 

through the conservation area (LRCA 2016). Due to the frequent use and high 

accessibility of this trail, it is critical to ensure that the chance of a hazard tree 

causing an injury or preventing accessibility is minimized. Also, the relatively 

small area within the Forest trail allows for data collection and analysis to be 

completed quicker and more accurately. Thus, the resulting parameterizations to 

effectively detect hazard trees in this smaller area can be attempted to be 

repeated on a larger area. 

The second study area is outlined in dashed blue in Figure 1. It is the 

forested area confined by portions of the Forest, Link, Orange, and Blue trails. 

This area was used as the larger area to test the effective parameterization 

based on sampling in study area 1. 
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Figure 1. Selected study sites in the Cascades Conservation Area. 

 

3.3 DATA COLLECTION 

On October 1st, 2022, the DJI Matrice 200 was flown autonomously to 

prevent any chances of human flying errors. A flight path was set for each study 

area on the proprietary DJI tablet, with corresponding flight parameterizations 

(Table 4). These were then named and saved for any future flights. At the same 

time, the MicaSense dual sensor was equipped to the drone and successfully 

connected. After all of the flight parameters were inputted and the sensor was 

calibrated and connected, the drone was engaged and began its flight path while 

collecting images. It is important to note that an image of the CRP 2 was taken 
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before and after each flight to ensure that the sensors provide an accurate 

representation of the light conditions that existed at the time of flying. The drone, 

sensor, and CRP 2 used in this study can be seen in Figure 2. 

 

    Figure 2. DJI Matrice 200 equipped with the MicaSense dual sensor, 

accompanied by the CRP 2. The stand being studied is visible in the 

background, displaying the stand complexity and species mixtures. 

 

   Table 4. Flight parameters for both study areas. 

Parameter Value 

Flying Height (m) 120 

Frontal Overlap (%) 80 

Side Overlap (%) 80 
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3.4 PROCESSING MICASENSE IMAGES ON AGISOFT METASHAPE 

The images from the MicaSense Dual 10-band multispectral sensor were 

processed in Agisoft Metashape. This procedure began with importing all of the 

photos, including the reflectance calibration images, ensuring that the “Multi-

camera system” data layout was selected. Next, the reflectance panel images 

were located and inputted into Calibrate Reflectance. The reflectance calibration 

was then run with the “use reflectance panels” and “use sun sensor” parameters 

toggled on to normalize any variable light conditions that existed during flight. 

 While the reflectance calibration data was being processing, the photo 

alignment process could take place. The photos were aligned with the 

parameters provided in Table 5. To improve the alignment accuracy, the 

Optimize Cameras option was opened, and the following parameters were 

toggled on: Fit f, Fit cx, cy, Fit k1, Fit k2, Fit k3, Fit b1, Fit b2, Fit p1, Fit p2. 

 

  Table 5. Parameters used for the Align Photos dialog. 

Parameter Value 

Accuracy High 

Generic preselection On 

Reference preselection On 

Reset current alignment Off 

Key point limit 40,000 

Tie point limit 4,000 

Apply masks to None 

Adaptive camera model fitting Off 
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To produce a more accurate surface model a Dense Point Cloud was 

generated using medium quality, aggressive depth filtering, and using the 

calculate point colours parameter. To further create an accurate surface, a 

Digital Elevation Model (DEM) was built using the parameters found in Table 6. 

     

    Table 6. Settings used for building the DEM. 

Settings Value 

Type Geographic 

Reference System WGS 84 (EPSG:4326) 

Source Data Dense cloud 

Interpolation Extrapolated 

Point classes All 

  

The DEM generated in the previous step can then be used in building the 

orthomosaic. The parameters used are seen in Table 7. 

 

    Table 7. Settings used for building the orthomosaic. 

Parameters Value 

Surface DEM 

Blending Mode Mosaic (default) 

Refine Seamlines Off 

Enable Hole Filling On 

Pixel size (X) 1.12226e-06 

Pixel size (Y) 7.73278e-07 
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The resulting orthomosaic image was then exported and utilized for the 

following steps to perform an object-based image analysis (OBIA). All OBIA 

results were achieved using the Orfeo Toolbox (OTB) in QGIS. 

 

3.5 OBIA IN QGIS 

 To begin, a new QGIS file was created with the orthomosaic image 

opened as a raster. The segmentation tool was then applied and involved trial 

and error to determine parameter values that best represented objects in the 

image, most specifically tree crowns. The values that were found to be most 

critical to change were the spatial radius, range radius, and minimum region 

size. The values used for these 3 parameters are shown in Table 8, while all 

other parameters were left as default. 

 

    Table 8. Changed values in the segmentation tool. 

Parameters Value 

Spatial radius 25 

Range radius 75 

Minimum region size 500 

 

The resulting segmentation vector was imported into QGIS and confirmed 

for accuracy of object identification. Once verified, the ground sampling process 

took place. This involved the creation of a new point layer including an integer 

field called “Classified”. Representative integers were associated with two 

different classes, 2 for “SNAG” and 1 for “NOT SNAG”. The “NOT SNAG” class 



 21 

had 265 points distributed across the image while ensuring all surfaces that 

were not snags were encapsulated. The selection of “SNAG” samples was only 

made within study area 1, with 21 snags being selected in total. 

The zonal statistics tool was then applied, while defining the 

segmentation results as the input vector data and using the default parameters. 

Once completed, the sample points were joined with the zonal statistics results 

using the Join Attributes by Location tool, while applying “Take attributes of the 

first matching feature only (one-to-one)” as the join type and discarding records 

that could not be joined.  

Next, the train vector classifier tool was used with the joined layer as the 

input vector data. The field names for training features parameter was populated 

with the field names of the mean and standard deviation for each band, and the 

field containing the class data was defined. All other parameters were left as 

default. 

The final tool used was the vector classifier tool with the zonal statistics 

results as the input vector data and the train vector classifier results as the 

model file. The same fields that were inputted in the previous step were also 

defined in the field names to be calculated parameter. The resulting vector was 

effectively classified and could be visualized. 

 

3.6 ACCURACY ASSESSMENT IN ARCGIS PRO 

 The classified vector and original orthomosaic raster were both imported 

into a new ArcGIS Pro project. The create accuracy assessment points tool was 

then applied, defining the classified vector as the feature class data, “Classified” 
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as the target field, and using an equalized stratified random sampling strategy 

with 1000 total points. Once the randomized points had completed generating, 

the attribute table for the accuracy assessment points was opened. Each point 

was then individually viewed, and their respective ground truth field values were 

populated. During this process, the classified field was hidden to minimize any 

potential biases. 

 Finally, the compute confusion matrix tool was used with the accuracy 

points as the input data. The resulting confusion matrix table was generated 

within ArcGIS Pro, and then exported as an excel file using the table to excel 

tool. 

 

3.7 FIELD GROUND TRUTH 

 To assess the accuracy of the drone-based snag detection, a field ground 

truth method was selected. On November 21, 2022, five healthy trees and five 

snags were randomly selected in each study area and their coordinates were 

recorded using a Garmin GPSMAP 64. For each individual stem’s GPS data 

collection, the GPS was placed near the base of the tree while ensuring the 

antenna was positioned upright and not obstructed by vegetation.  

 After the data for all of the ground samples had been collected, the snag 

vector data was overlaid on the classified images to compare whether or not the 

snags found on the ground were detected by the classification method, or if 

healthy trees were misclassified. A comparative analysis could then be executed 

using the respective results. 
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4.0 RESULTS 
 

4.1 SEGMENTATION 

For the segmentation to be considered sufficient for the purposes of this 

study, it had to generate segments that best fit the shape and overall size of tree 

crowns. Figures 3 and 4 show the results of using the default segmentation 

parameters compared with the results of the selected segmentation trial 

respectively. It is evident that with the changed parameterization, the total 

number of segments significantly decreased, while segment sizes significantly 

increased. This produced segments that were more representative of the overall 

crowns rather than several segments making up each crown.  

 

   Figure 3. Segmentation results using default segmentation parameters. The 

segments can be seen as small in size and large in quantity.  
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   Figure 4. Segmentation results from the selected trial (refer to Table 8). 

Relative to the default segmentation, the segments are larger in size, 

better shaped to tree crowns, and fewer quantities exist. 

 

4.2 CLASSIFICATION 

Figure 5 shows the results of the snag classification at full scale, 

depicting that the algorithm has identified various snags throughout each study 

area (identified snags outlined in red). It can also be noticed there are some 

small clusters of snags that exist. Figures 6 and 7 shows the snag classification 

at a scale of 1:200 within study area 1 and study area 2 respectively. At this 

scale, the classification of individual standing dead stems can be viewed with 

more detail. 
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Figure 5. Snag classification at full scale. 

 

Figure 6. Snag classification at a scale of 1:200 in study area 1. 
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Figure 7. Snag classification at a scale of 1:200 in study area 2. 

 

4.3 ACCURACY ASSESSMENT 

 As seen in Table 9, the minimum accuracy for all classes was 89% or 

more, with an overall accuracy of 93.4%. There was also a relatively high level 

of agreement in the data (Cohen 1960) with a kappa value of 0.87. In the “Not 

Snag” class, 11 objects were errors of commission and 55 were errors of 

omission. In the snag class, 55 objects were errors of commission and 11 were 

errors of omission. 

 

Table 9. Confusion matrix for snag classification results. 

ClassValue Not Snag Snag Total User Accuracy Kappa 
Not Snag 489 11 500 97.8%  

Snag 55 445 500 89.0%  
Total 544 456 1000   

Producer Accuracy 89.9% 97.6%  93.4%  
Kappa         0.87 
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4.4 FIELD GROUND TRUTH 

 Table 10 shows the results of the ground truth field sampling for study 

area 1 and study area 2 compared. In both study areas, healthy trees were 

never classified as snags. However, there were snags in the field that were 

misclassified by the algorithm. Snag misclassification was minor in study area 1 

and more significant in study area 2. 

 

Table 10. Ground truth field sampling results for both study areas. 

Study Area 1 Study Area 2 
Tree 

# Species 
Ground 
Truth Classification 

Tree 
# Species 

Ground 
Truth Classification 

1 Bw Snag Healthy Tree 1 Pj Snag Healthy Tree 
2 Pj Snag Snag 2 Pj Snag Snag 
3 Pj Snag Snag 3 Bw Snag Healthy Tree 
4 Po Snag Snag 4 Pj Snag Snag 
5 Pj Snag Snag 5 Bw Snag Healthy Tree 

6 Bf 
Healthy 

Tree Healthy Tree 6 Pj 
Healthy 

Tree Healthy Tree 

7 Pj 
Healthy 

Tree Healthy Tree 7 Bf 
Healthy 

Tree Healthy Tree 

8 Pj 
Healthy 

Tree Healthy Tree 8 Po 
Healthy 

Tree Healthy Tree 

9 Po 
Healthy 

Tree Healthy Tree 9 Bw 
Healthy 

Tree Healthy Tree 

10 Po 
Healthy 

Tree Healthy Tree 10 Pj 
Healthy 

Tree Healthy Tree 
Snag Accuracy: 80% Snag Accuracy: 40% 

Healthy Tree Accuracy: 100% Healthy Tree Accuracy: 100% 
Total Accuracy: 90% Total Accuracy: 70% 

 

 

 

 

 



 28 

5.0 DISCUSSION 
 

5.1 SEGMENTATION 

 Using an optimal set of segmentation parameters is critical for achieving 

an effective OBIA, as the segmentation is the basis of the process. Each 

segment is considered an object, so refining them to best fit tree crowns was 

thought to be necessary. Based on the results in Figures 3 and 4, using the 

default segmentation parameters provides smaller segmentations that can better 

capture smaller objects such as delimbed snags. Based on trial and error with 

qualitative judgement, the parameters used for the OBIA in this study provided 

larger segmentations that better fit the size and shape of individual tree crowns. 

By refining these parameters, it reduces the likelihood of non-snag surfaces 

such as small defoliated portions of healthy trees being identified as a snag. 

 The parameters used for the segmentation process are evidently both 

landscape and application dependent. The landscape being assessed is a 

leading factor in how the parameters should be set, as the shape and size of the 

average tree crown must be considered. Additionally, it must be considered 

whether the goal of the application is to identify all snags, or only high 

hazard/quality snags. The selected segmentation parameters for OBIA in this 

study were discovered to be best suited for high hazard/quality snag detection. 

This is due to several small, delimbed snags being too small to be considered 

their own objects. However, these particular snags pose relatively little risk to 

the public based on the hazard tree identification guidelines from Fink (2009), so 

excluding them allows for the classification to be focused on exclusively snags 

that have higher potential of posing a public hazard; ie. larger, heavier trees with 
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weakened branches that would cause significant damage or harm. The default 

segmentation parameters are likely to be sufficient for classifying all snag 

qualities, though they are subject to errors such as misclassifying fallen timber 

as snags due to a lack of crown shape definition. Ultimately, the segmentation 

parameters should be set to meet the goals of the particular application but 

increasing the number of segmentations and decreasing their sizes may result in 

increasing the potential for classification errors, which would reduce the overall 

accuracy. 

 

5.2 CLASSIFICATION & ACCURACY ASSESSMENT 

 Figures 5-7 evidently show that snags in each study area could be 

identified using the provided methods. Visually, it is apparent that the density of 

large snags is greater in study area 1, as there are fewer and more dispersion in 

study area 2. It can also be noticed that the identification of some snags is not 

perfect largely due to the segmentation, where some snags only have small 

portions detected or the detection exceeds the bounds of the snag. Although this 

is not perfect, it still achieves the goal of locating the position of the snag without 

considering shape.  

It is worth mentioning that the classification algorithm was successful in 

differentiating fallen timber on the ground from a dead standing tree. Figure 7 

makes this apparent, with several downed trees being dispersed and none being 

classified as a snag. Differentiation between fallen trees and snags was 

considered as a potential limitation due to reflectance of the surfaces being 

similar. The effective differentiation was likely achieved by the adjusted 
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segmentation parameters that produced relatively large segments over downed 

trees, allowing these objects to blend in as forest ground. 

 Evidence of misclassifications can be seen in Figures 5 and 7. When 

looking at the parking lot in Figure 5, it can be noticed that a small portion of a 

white car has been misclassified as a snag. This is likely the result of the 

reflectance on that portion of the car being similar to that of the sampled snags. 

In the upper right portion of Figure 7, it can be noticed that there is a snag that 

was not classified as one. Although it is a relatively smaller snag, it is still large 

enough that it was expected to be detected by the algorithm. These instances of 

misclassification could be results of segmentation, fuzziness, and/or 

orthomosaic imperfections. Figure 8 shows a particular instance where 

orthomosaic imperfections was the major contributing factor for misclassification. 

Although a relatively high frontal and side overlap of 80% was used in flight, 

further increasing the overlap would help reduce orthomosaic imperfections. 

 

    Figure 8. Orthomosaic imperfection resulting in misclassified snag. 
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The classification results are verified as being accurate in Table 9, with 

an overall accuracy of 93.4% and a kappa statistic of agreement of 0.87. The 

user accuracy and producer accuracy of each class are essentially inverses of 

one another which can be explained by only 2 classes existing, causing every 

misclassification in one class to affect the accuracy of itself and the other class. 

Overall, 89.9% being the lowest producer accuracy and 89.0% being the lowest 

user accuracy proves that high hazard/quality snags can be distinguished in 

forests with a relatively high degree of accuracy by using these methods.  

 

5.3 FIELD GROUND TRUTH 

 The results of the field ground truth show that there was a significant 

difference in accuracy of detecting snags between the two study areas, with 

study area 1 being 40% more accurate. A major contributing factor to the low 

accuracy in study area 2 was a poor selection of sample snag trees for the 

selected classification algorithm. This can only be attributed to human error, as 

at the time of in-field ground truth sampling, random selection was based on all 

snags but not necessarily high hazard/quality snags. Figure 9 shows examples 

of the snags that were not detected by the algorithm in study area 2. It can be 

seen that these individuals are delimbed and lack any crown, making them low 

risk snags. Furthermore, between both study areas, white birch was the only 

snag species that was never successfully classified. This can also be explained 

by the selection of all white birch snag field samples being individuals that 

lacked crowns and limbs. 
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 Another potential reason for error in results was the difference in time of 

when the flight occurred and when the field sampling occurred. There was about 

a 2-month gap between these tasks, with the flight being around the start of fall 

and the field sampling being around mid-late fall. This resulted in deciduous 

foliage being present at the time of flight, but absent at the time of field 

sampling. An example of where this error may have occurred would be tree #3 

in study area 2, which can be seen in Figure 10. The main stem of the tree can 

be seen as recently snapped but still containing all its foliage, making it unclear 

whether it is dead or not to the algorithm. By the time the field sampling 

occurred, this tree was randomly selected as it was visually an obvious snag. 

 One issue that arose during this process was that some GPS points were 

not 100% accurate and had deviations by up to a few metres. Low positional 

accuracy of the GPS unit could have been caused by there being overcast in the 

sky and/or the antenna being overly obstructed by brush or branches, as the 

issue mainly occurred for healthy trees. The issue was easily reconciled by 

using photos and field notes of each individual taken at the time of field sampling 

and memory of their approximate locations. 



 33 

 

Figure 9. Examples of undetected snags in study area 2 (A: Tree #1, B: Tree 

#5). 

 

Figure 10. Tree #3 in study area 2 (A: orthomosaic view, B: field ground truth 

view). 
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5.4 UNSUCCESSFUL APPLICATION OF VEGETATION INDICES 

As stated in the objective, it was expected that the application of 

vegetation indices would be necessary for achieving an accurate detection 

method. However, this process was excluded from the methods section due to 

the classification results of the vegetation index rasters being significantly 

inaccurate and proven unnecessary.  

The calculated NDRE index provided a raster that made it difficult to 

distinguish many trees from forest ground and made healthy trees closer 

resemble unhealthy trees. The calculated NDVI provided results with healthy 

trees, unhealthy/snag trees, and forest ground better distinguished. However, 

due to the season being early autumn at the time of flight, many deciduous trees 

had already undergone colour changing processes within their leaves. Since the 

NDVI results were based on the health of foliage it provided inaccurate results, 

as healthy trees with yellow to red foliage would be detected as a snag. It is 

possible that a calculated NDVI raster could increase the accuracy of snag 

detection, so long as the season of flight is when the average tree is foliated with 

healthy leaves.  

 

5.5 POTENTIAL USE CASES FOR RESULTS 

The methods used in this study should only be replicated with the 

purpose of detecting potentially high hazard snags or high-quality snags. If the 

goal is to detect all snags then the methods can be followed for reference, 

although more orthomosaic and OBIA parameter refining will be necessary. 
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It is clear that these methods would be useful for efficiently detecting 

potential hazard trees within outdoor recreational/conservation areas. However, 

detected hazard trees still require in-field visual assessments to verify severity of 

hazards and make management decisions. This is due to the visuals provided 

by the orthomosaic not being sufficient enough to accurately verify all aspects of 

hazard, especially in comparison with what can be assessed in the field. 

Nonetheless, having access to a digitized spatial reference for hazard trees 

expedites the detection process and aids in the confirmation of all hazard trees 

being assessed. 

The methods used can also hold value to forest resource managers 

during operational planning. Operational planners can efficiently spatially assess 

a harvest block for high quality snags that are valuable to a variety of wildlife and 

insect species. Managers can then acquire information on the quantity and 

quality of snags along with their relative coordinates. This snag information 

could be utilized for making management decisions such as the selection of 

specific residual snags for the harvested block that would promote biodiversity. 

 

5.6 ADDITIONAL FACTORS TO CONSIDER IN FUTURE STUDIES 

 The first factor to consider in future studies related to this topic is whether 

or not the results are dependent on the utilization of a 10-band multispectral 

sensor. The mean and standard deviation data from all 10 bands were utilized in 

this study, but it could be possible that the data from a 5-band or even an RGB 

sensor could be sufficient for classification. Understanding the limitations of the 

sensors that can be applied to these methods is important, as it could allow 
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these detection methods to be applied in scenarios where only inexpensive 

equipment is available. 

 Another factor to consider is how the classification results would be 

affected if the data collection flight occurred in the winter season. During the 

winter, the hardwood trees captured by the sensor would lack foliage. This 

would effectively make the classification of hardwood snags more difficult than 

that of coniferous snags. To detect differences between defoliated healthy 

hardwoods and dead standing hardwoods, the use of vegetation indices would 

be necessary. Since live trees would have significantly higher water content 

frozen within their stems in comparison to snags, it is possible that a vegetation 

index related to water content would be applicable. 

 Finally, the possibility of an additional classification for unhealthy trees 

would add significant value to the results found in this study. Although high-

quality snags are typical to be considered hazards, individual trees in poor 

health or structural condition can also potentially be hazardous. Furthermore, 

the additional class would provide land managers with the ability to spatially 

assess for individual trees or stands that are experiencing signs of pathogen or 

insect disturbance, which can be vital for proactive management that is efficient 

and effective. However, implementation of an unhealthy tree class would require 

vegetation indices to be applied since more complex spectral signatures must 

be analyzed, and simple assumptions such as leaf-on versus leaf-off would not 

be a sufficient basis of health status. High variability within the class may also 

exist as a result of large quantities of different pathogens and insects existing 

with varying effects on tree health.  
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5.7 RECOMMENDATIONS TO THE LRCA 

 The results from this study could be valuable to the LRCA for hazard tree 

management in the Cascades Conservation Area. The methods utilized could 

be applied to more portions of the trail network to expand the spatial data of 

potentially hazardous trees in the area. However, the classification results 

without any additional data would be sufficient for managing the Forest Trail with 

more intensive hazard tree strategies, as it is the most accessible and 

commonly travelled trail. 

 Recommended next steps for the LRCA include developing a GIS buffer 

layer around selected paths. The width of buffers should be determined based 

on the average height of tall trees within the area. Then, all of the detected 

hazard trees that intersect with the buffer should be visually assessed in the field 

and have necessary risk management strategies recorded. Although there are 

financial limitations that exist, a relatively frequent inspection would be 

beneficial. In the long term, it may be cheaper to allocate resources towards 

proactive hazard tree management than dealing with a potential lawsuit due to 

property damage, injury, or death. 

 

6.0 CONCLUSION 
 

In conclusion, the drone-based MicaSense dual 10-band sensor can be 

feasibly applied to hazard or high-quality snag detection, but not necessarily 

snag detection at a full scale using the provided methods. It is evident that the 

methods used can provide accurate detection results in an efficient manner. 

Resource and conservation managers can effectively apply these methods for a 
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variety of purposes where records of the location of hazard trees and/or high-

quality snags is important.  

During the OBIA process, segmentation has major influences on the 

degree of hazard and quality of snags that the classification can detect. Trial and 

error is necessary to generate segments that accurately cover the extent of the 

desired snags, but segments should be limited to reduce the potential of downed 

trees being misclassified as snags. Additionally, when performing field ground 

truth sampling, the random selection of snags should be based on the degree of 

hazard or quality that is expected to be classified. These steps can be 

anticipated to ensure the desired snags are detected with high accuracy and 

increase the accuracy of the field ground truth results.  
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