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Abstract 

Almost all practical systems are nonlinear, which are subject to disturbances and 

contain uncertainties. In most cases, disturbances and uncertainties can be modeled as 

stochastic processes, which make it necessary to develop controllers for nonlinear 

stochastic systems. 

Due to the disturbances and uncertainties, it is difficult to get the exact model of the 

nonlinear stochastic systems. Neural network techniques are found to have advantages in 

system identification. Any unknown function can be approximated to any degree of 

accuracy by a multiple-layer neural network. 

In addition, time delay occurs in many real systems. One of the most effective 

control methods to reduce the impact of delay on the closed-loop systems is predictive 

control, which is obtained by predicting the future control to minimize the errors. 

A RBF Neural Network based Generalized Predictive Controller (NNGPC) is 

introduced to control nonlinear stochastic systems. The input-output relationship of a 

nonlinear stochastic system is approximated by an RBF neural network. A learning 

algorithm is developed to train the RBF neural network by updating the neural network 

parameters, such as centers, widths, and weights, either on-line or off-line. The 

parameters are updated using the modified gradient decent method to minimize a cost 



xiii 
 

function, which is a quadratic function of errors between the real system output and the 

output from the neural network. Based on the model obtained from the neural network 

learning algorithm, a multistep-ahead generalized predictive control algorithm is 

designed to minimize a cost function, which is constructed using future control signals 

and errors between future references and future outputs estimated from the model. The 

optimization problem involved in the predictive control is solved using Nelder-Mead 

method and Quasi-Newton method. The comparison between these two methods is made 

using simulation results. 
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Chapter 1 

Introduction 

1.1  Generalized Predictive Control 

Model Predictive Control (MPC) has established itself over the past several decades 

as an industrially important form of advanced control. Since the publication presented by 

Richalet et al. in 1976 [27] and the paper published in 1978 [28], Model Predictive 

Heuristic Control (MPHC) was the first description of MPC control applications. Later in 

1980 and 1982 Cutler and Ramaker presented Dynamic Matrix Control (DMC) [11] [26], 

which was an unconstrained multivariable control algorithm. The MPC technology has 

gained widespread acceptance in academia and in industry. MPC displays improved 

performance because the process model allows current computations to consider future 

dynamic events. This provides benefit when controlling processes with large dead times 

or non-minimum phase behavior. MPC allows for the incorporation of hard and soft 

constraints directly in the objective function. In addition, the algorithm provides a 

convenient architecture for handling multivariable control due to the superposition of 

linear models within the controller. 

Another form of MPC that has rapidly gained acceptance in the control community is 

Generalized Predictive Control (GPC) [10], which was introduced in 1987 by Clarke, 
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Mohtadi, and Tuffs. GPC is a time-domain multi-input-multi-output (MIMO) predictive 

control algorithm. It employs a Controlled Auto-Regressive and Integrated Moving 

Average model (CARIMA) of the process which allows a rigorous mathematical 

treatment of the predictive control paradigm. The GPC performance objective is 

minimized via recursion on the Diophantine identity. 

1.2  RBF Neural Network 

A Neural Network (NN) is composed of interconnecting artificial neurons, which 

uses a mathematical or computational model for information processing [32]. One 

classical type of NN is the recurrent Hopfield net. Radial Basis Function Neural Network 

(RBF-NN) is a single hidden layer NN with radial basis functions as activation functions. 

RBF-NN was first proposed by Moody and Darken in 1988 [22]. The original RBF 

required that there be as many RBF centers as data points, which is rarely practical 

because the number of data points is usually very large. Broomhead and Lowe [4] 

removed the strict interpolation restriction. Their interpretation of the RBF-NN allows the 

use of only several connections that can affect output of network in some local range of 

input space. Thus, RBF-NN has faster rates of convergence than other feed forward NNs. 

Fig. 1.1 shows the architecture of RBF-NN, which has an input layer, a hidden layer 

and an output layer. The neurons in the hidden layer contain Gaussian transfer functions 

whose outputs are inversely proportional to the distance from the center of the neuron. 

The input into an RBF-NN is nonlinear while the output is linear. Due to their nonlinear 
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values from the input layer, a hidden neuron computes the Euclidean distance of the test 

case from the neuron’s center point and then applies the RBF kernel function to this 

distance using the width values. The resulting value is passed to the output layer. 

3. Output layer - The value coming out of a neuron in the hidden layer is multiplied by 

a weight associated with the neuron and passed to the summation which adds up the 

weighted values and presents this sum as the output of the network. 

In order to use a RBF-NN, it is necessary to specify the hidden unit activation function, 

the number of processing units, a criterion for modeling a given task, and a training 

algorithm for finding the parameters of the network. Finding the RBF weights is called 

network training. The proposed training algorithm is aimed at finding a least mean square 

estimator from the models defined. The following parameters are determined by the 

training process: 

1. The number of neurons in the hidden layer. 

2. The coordinates of the center of each hidden-layer RBF function. 

3. The width (radius) of each RBF function in each dimension. 

4. The weights applied to the RBF function outputs as they are passed to the output 

layer. 

For a set of input-output pairs, called training data, the network parameters are 

optimized in order to fit the network outputs to the given inputs. The fit is evaluated by 

means of a cost function, usually assumed to be the mean square error. After training, the 

RBF-NN can be used with data whose underlying statistics is similar to that of the 
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training set. On-line training algorithms adapt the network parameters to the changing 

data statistics. RBF-NNs have been successfully applied to a large diversity of 

applications including interpolation, chaotic time-series modeling, system identification, 

control engineering, electronic device parameter modeling, channel equalization, speech 

recognition, image restoration, shape-from-shading, 3-D object modeling, motion 

estimation and moving object segmentation, data fusion, etc. [12] [31]. 

1.3  Literature Review 

Since NNs work successfully as model identifiers, they can be used to model complex 

nonlinear systems [23]. Thus, nonlinear predictive control can be applied for controlling 

real process [18]. 

Lazar and Pastravanu [19] used a recurrent NN with a single hidden layer as plant 

model and predictor for nonlinear systems. For the minimization of the cost function, the 

Matlab’s Optimal Toolbox functions fminunc and fmincon were used to handle 

unconstrained and constrained optimization problems, respectively. 

Lu and Tsai [21] developed NN predictive control for a class of MIMO nonlinear 

systems with unknown time-delay, in which the neural network was trained by the 

gradient descent method. The NN nonlinear predictive control law was introduced to 

minimize the cost function of the error between the reference signal and predicted signal. 

In [14] a predictive control algorithm based on Tanaka-Sugeno fuzzy cerebellar model 

articulation controller (T-S-FCMAC) NN is presented. T-S-FCMAC was used to build the 
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predictive model for the system, and the golden section method was adopted for 

searching the solution for a quadratic cost function. 

In [35] Wang and Xu used a recurrent NN to approximate nonlinear time-delay system 

as parallel model, which is used to estimate future model predictive output by using input 

at current time, input before current time, model output at current time and before. Real 

time recurrent learning algorithm was used to adjust parameters of parallel NN model. 

Gradient decent algorithm was applied to minimize the quadratic cost function of the 

predictive controller.  

Chidrawar and Patre [9] introduced a neural generalized predictive control with 

Newton-Raphson as minimization algorithm. Newton-Raphson method required Jacobian 

and Hessian matrix computation. 

In [15] Hu used a Modified Elman Neural Network (MENN) based generalized 

predictive control to improve the predictive and control precision. MENN is a kind of 

dynamical recurrent NNs, which is a three-layer network with the addition of a set of 

"context units" connecting from the hidden layer. The context units always maintain a 

copy of the previous values of the hidden units at each time step, allowing the network to 

improve the predictive and control precision. The dynamical back propagation algorithm 

was used to adjust the MENN parameters. The cost function was minimized by using 

gradient descent optimization algorithm. 

In [36], a hybrid controller blended the neural predictive and fuzzy logic controllers 

was designed. The neural predictive controller worked in parallel with fuzzy logic 
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controller adjusting the output of the predictive controller. In this approach, the control 

output of the hybrid controller was the average output of neural predictive and fuzzy 

control. 

However, the multi-layered structure and slow convergence via the use of the gradient 

descent algorithm with fixed learning rates made it difficult to guarantee a good 

performance for controlling the real process. On the other hand, as justified by the high 

convergence rate, Newton-Raphson method is computationally costly, making NGPC 

inefficient for complex nonlinear systems. 

1.4  Thesis Overview 

The research objectives are to study the design of GPC based on RBF-NNs for 

nonlinear stochastic systems. Several optimization methods are used to improve the 

performance of the GPC design. The efficiency and performance of the proposed GPC 

was tested by simulations on two different nonlinear stochastic systems. Particularly, the 

proposed design method is applied to the system of Heating, Ventilating, and Air 

Conditioning (HVAC). The thesis consists of six chapters. A general background on 

NNGPC is discussed in the first chapter. The second chapter focuses on solving the 

optimization problems. In this chapter, several different methods are discussed. Chapter 3 

presents one modeling method for the nonlinear stochastic system by using RBF-NN. 

Design of RBF-NNGPC for multi-input multi-output (MIMO) nonlinear stochastic 

system is given in Chapter 4. Chapter 5 provides the simulation results to illustrate 
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control performance of the designed controller. Different optimization algorithms are 

used to minimize the cost function. Chapter 6 concludes the thesis by comparing the 

simulation results based on different plants and different optimization algorithms and 

presents some proposals for future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

9 
 

 

Chapter 2 

Optimization Problem 

The optimization problem is the main concept for RBF-NN training and predictive 

controller. Many algorithms are used for solving optimization problems [25]. The 

gradient-based method is one of them. 

We define a multivariable function𝐸(𝜃), which has the input 𝜃 = [𝜃1, 𝜃2,⋯ ,𝜃𝑛]𝑇. 

An algorithm is applied to explore the input space efficiently, so that the optimal 

parameter 𝜃∗ can be found by minimizing 𝐸(𝜃). Let 𝜃𝑘  denote parameters in 𝑘th 

iteration, the parameters 𝜃𝑘+1 in the next iteration can be formulated as 

𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑝𝑘,      𝑘 = 1,2,3,⋯       (2.1) 

where 𝑝𝑘 is the search direction, α is some positive step size regulating to what extent to 

proceed in that direction, 𝑘 denotes the current iteration number. The 𝜃𝑘 is intended to 

converge to the optimal value 𝜃∗. 

First, we determine the direction 𝑝𝑘, then we calculate the step size α. The next 

step parameter 𝜃𝑘+1 should satisfy Equation (2.2). 

𝐸(𝜃𝑘+1) = 𝐸(𝜃𝑘 + 𝛼𝑝𝑘) < 𝐸(𝜃𝑘)       (2.2) 

The optimization problems can be solved by using gradient-based methods, such 

as Newton method, Quasi-Newton method, gradient descent method, which require to 
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compute gradient. They can be solved by using gradient-free method, such as Nelder- 

Mead method. 

2.1  Gradient Descent Method 

The gradient descent method, also called steepest descent method, is one of the 

oldest methods for finding the local minima in multidimensional input functions [25]. If 

the function 𝐸(𝜃) is defined and differentiable in a neighborhood of a point 𝜃, the local 

minima can be found from 𝛼 in a direction of the negative gradient of 𝐸(𝜃) at 𝛼. This 

method is most frequently used. 

The gradient of a differentiable function 𝐸:𝑅𝑛 → 𝑅 at 𝜃 is the vector of first 

derivatives of 𝐸, denoted as 𝑔 

𝑔(𝜃) = 𝛻𝛻(𝜃) ≜ �𝜕𝜕(𝜃)
𝜕𝜃1

, 𝜕𝜕(𝜃)
𝜕𝜃2

,⋯ , 𝜕𝜕(𝜃)
𝜕𝜃𝑛

�
𝑇
     (2.3) 

Equation (2.1) can be changed into Equation (2.4) if we chose the search direction 

𝑝𝑘 as −g(θ), 

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛼(𝜃𝑘)          (2.4) 

The negative steepest descent direction –𝑔, which is computed from 𝜃𝑘, points to 

the locally steepest downhill direction. However, it may not point to the global minimum 

point 𝜃∗, as shown in Fig. 2.1. 

The basic idea of gradient descent method is to find a value of 𝜃𝑘+1 that satisfies 

the following: 

𝑔(𝜃𝑘+1) = 𝜕𝜕(𝜃)
𝜕𝜕

|𝜃=𝜃𝑘+1 = 0        (2.5) 
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Equation (2.5) is a necessary condition for a given objective function 𝐸(𝜃) to 

reach its stationary point. In practice, however, it is difficult to solve Equation (2.5) 

analytically. For minimizing the objective function, the descent procedures are typically 

repeated until one of the following stopping criteria is satisfied: 

 

 

Figure 2.1: Gradient descent direction 

 

1. The objective function value is sufficiently small; 

2. The length of the gradient vector 𝑔 is smaller than a specified value; 

3. The specified computing time is exceeded. 

In the gradient descent method, if we use a small fixed step size 𝛼, the magnitude 
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of the step 𝛼𝛼 in Equation (2.4) automatically changes at each iteration due to different 

gradients of 𝑔. The convergence rate will be slow if 𝑔 tends to be infinitesimally small. 

In this case, the minimization process is inefficient. On the other hand, if we chose a large 

step size, the gradient descent has a zigzag trajectory, and oscillatory behavior makes the 

search unstable when step size is too large. The effects of different fixed step sizes for 

gradient descent method are shown in Fig. 2.2. 

 

Figure 2.2: The effects of different fixed step size for gradient descent method 

 

A different version of gradient descent method can be obtained by a small change of 

Equation (2.4), 

𝜃𝑘+1 = 𝜃𝑘 − 𝜅 𝑔(𝜃𝑘)
||𝑔(𝜃𝑘)||

          (2.6) 

where 𝜅 is called the actual step size, which indicates the Euclidean distance of the 

transition from 𝜃𝑘 to 𝜃𝑘+1. This modified gradient descent method with a fixed 𝜅 

always makes the same strides nomatter how steep the slope is, which is more efficient 

than the original method [16]. 
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2.2  Quasi-Newton Method 

The descent direction can also be determined by using second derivatives of 

function 𝐸 if available, as in Newton method, which consumes more computation power. 

However, Quasi-Newton methods require only the gradient of the objective function, as 

in gradient descent method. By measuring the changes in gradients, the inverse of 

Hessian matrix is approximated. Since second derivatives are not required, Quasi-Newton 

methods are more efficient than Newton’s method. Since introduced in 1970, Broyden- 

Fletcher-Goldfarb-Shanno(BFGS) method becomes one of the most popular methods of 

this class [16]. 

The approximated quadratic form of function 𝐸 can be expressed by second order 

Taylor series expansion 

𝐸(𝜃𝑘+1) ≈ 𝐸(𝜃𝑘) + 𝑔𝑇(𝜃𝑘+1 − 𝜃𝑘) + 1
2

(𝜃𝑘+1 − 𝜃𝑘)𝑇𝐻𝑘(𝜃𝑘+1 − 𝜃𝑘)   (2.7) 

𝐻 is the Hessian matrix, which is a square matrix of second derivatives of function 

𝐸. 

Differentiating Equation (2.7) with respect to (𝜃𝑘+1 − 𝜃𝑘), 

𝐻𝑘(𝜃𝑘+1 − 𝜃𝑘) = 𝑔𝑘+1 − 𝑔𝑘        (2.8) 

This equation indicates that the Hessian matrix 𝐻 can be approximated by 

(𝜃𝑘+1 − 𝜃𝑘) and 𝑔𝑘+1 − 𝑔𝑘, 

(𝜃𝑘+1 − 𝜃𝑘) = 𝐻𝑘−1(𝑔𝑘+1 − 𝑔𝑘)       (2.9) 

Define ∆𝜃𝑘 = 𝜃𝑘+1 − 𝜃𝑘, and ∆𝑔𝑘 = 𝑔𝑘+1 − 𝑔𝑘. Then, Equation (2.9) can be 
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rewritten as, 

∆𝜃𝑘 = 𝐻𝑘−1∆𝑔𝑘         (2.10) 

Let us now suppose that the search direction has the form, 

𝑝𝑘 = 𝐻𝑘−1𝑔𝑘          (2.11) 

Then, in the new iteration, Equation (2.1) becomes 

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝑝𝑘          

where the initial 𝐻0 is chosen as 𝐼, 𝐻𝑘 is an approximation to the Hessian. Instead of 

computing 𝐻𝑘 at every iteration, the inverse of 𝐻𝑘 is updated at every iteration by a 

Quasi-Newton updating formula defined by Equation (2.12), which is called BFGS 

formula. 

𝐻𝑘+1−1 = 𝐻𝑘−1 +
�(𝛼𝑘𝑝𝑘)𝑇∆𝑔𝑘+∆𝑔𝑘

𝑇𝐻𝑘
−1∆𝑔𝑘��(𝛼𝑘𝑝𝑘)(𝛼𝑘𝑝𝑘)𝑇�

((𝛼𝑘𝑝𝑘)𝑇∆𝑔𝑘)2 −    

𝐻𝑘
−1∆𝑔𝑘(𝛼𝑘𝑝𝑘)𝑇+(𝛼𝑘𝑝𝑘)𝐻𝑘

−1∆𝑔𝑘
𝑇𝐻𝑘

−1

(𝛼𝑘𝑝𝑘)𝑇∆𝑔𝑘
     (2.12) 

When 𝑝𝑘 is defined by Equation (2.10) and 𝐻𝑘 is positive definite, we have 

−𝑔𝑘𝑇𝑝𝑘 = −𝑔𝑘𝑇𝐻𝑘−1𝑔𝑘 < 0         (2.13) 

2.3  Line Search 

For a general function 𝐸, the ideal choice would be the global minimizer of the 

univariate function 𝜙, which is defined by 

𝜙(𝛼) = 𝐸(𝜃𝑘 + 𝛼𝛼)          (2.14) 

Analytically solving 𝜙′(𝛼) = 0 will find the local minima, but in general, it is 

often impossible to identify this point. To find even a local minimizer to moderate 
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precision generally requires too many evaluations of the objective function 𝐸 and 

possibly the gradient 𝑔. That is, the univariate function 𝜙(𝛼) should be minimized on 

the line determined by the current point 𝜃𝑘 and the direction 𝑝. This is accomplished by 

line search methods. 

The line search algorithms try out a sequence of candidate values for 𝛼, stopping to 

accept one of these values when certain conditions are satisfied. The line search is done in 

two stages: A bracketing phase finds an interval containing desirable step lengths, and a 

bisection or interpolation phase computes a good step length within this interval. 

In order to satisfy Equation (2.2), suitable step length 𝛼𝑘 will be chosen by an 

inexact line search. 

The process of determining 𝛼∗ that minimizes 𝜙(𝛼) is achieved by searching on 

the line for the minimum. 

If 𝜙(𝛼) and 𝜙′(𝛼) are available, then the second derivative can be approximated 

by  

𝜙"(𝛼𝑘) = 𝜙′(𝛼𝑘)−𝜙′(𝛼𝑘−1)
𝛼𝑘−𝛼𝑘−1

         (2.15) 

The Newton method is used to determine 𝛼𝑘+1 

𝛼𝑘+1 = 𝛼𝑘 −
𝜙′(𝛼𝑘)

𝜙′�𝛼𝑘�−𝜙′�𝛼𝑘−1�
𝛼𝑘−𝛼𝑘−1

         (2.16) 

A popular inexact line search condition stipulates that 𝛼𝑘 should first of all give 

sufficient decrease in the objective function 𝐸, as measured by 

𝐸(𝜃𝑘 + 𝛼𝑝𝑘) ≤ 𝐸(𝜃𝑘) + 𝑐1𝛼𝑔𝑘𝑇𝑝𝑘       (2.17) 



 

16 
 

For some constant 𝑐1 ∈ (0,1), the reduction in E should be proportional to both the 

step length 𝛼 and the directional derivative 𝑔𝑘𝑇𝑝𝑘.  

The sufficient decrease condition is not enough by itself to ensure that the algorithm 

makes reasonable progress. To rule out unacceptably short steps, a second requirement, 

called the curvature condition, is introduced, which requires 𝛼 satisfying 

𝑔(𝜃𝑘 + 𝛼𝑝𝑘)𝑇𝑝𝑘 ≥ 𝑐2𝑔𝑘𝑇𝑝𝑘         (2.18) 

For some constant 𝑐2 ∈ (0,1), the inequality (2.18) ensures that the slope has been 

reduced sufficiently. In practice, 𝑐1 is usually chosen to be quite small while 𝑐2 is much 

larger; for quasi-Newton methods, Nocedal [25] gives example values of 𝑐1 = 10−4 and 

𝑐2 = 0.9. 

The sufficient decrease condition (2.17) and curvature condition (2.18) are known 

collectively as the Wolfe conditions [25]. 

However, a step length may satisfy the Wolfe conditions without being particularly 

close to a minimizer of 𝜙. We can modify the curvature condition to force 𝛼 to lie in at 

least a broad neighborhood of a local minimizer or stationary point of 𝜙. The strong 

Wolfe conditions require 𝛼𝑘 satisfying 

|𝑔(𝜃𝑘 + 𝛼𝑝𝑘)𝑇𝑝𝑘| ≤ |𝑐2𝑔𝑘𝑇𝑝𝑘|        (2.19) 

(2.17) and (2.19) together form the so-called strong Wolfe conditions [25], and 

force 𝛼 to lie close to a critical point of 𝜙. 

In practice, it is nearly impossible to obtain the exact minimum point of the 

function 𝜙 by the aforementioned methods of line searches. A reasonable stopping 
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criterion must be established to terminate the search procedures before they have 

converged. 

The only difference between the Wolfe and strong Wolfe conditions is that the 

strong Wolfe conditions no longer allow the derivative 𝜙′(𝛼𝑘) to be too large. Hence, 

we exclude points that are far from stationary points of 𝜙. 

It is not difficult to prove that there exists a step length 𝛼 that satisfies the Wolfe 

conditions (2.17) and (2.18) for every function 𝐸 which is smooth and bounded below 

[25]. Since 𝜙(𝛼) = 𝐸(𝜃𝑘 + 𝛼𝑝𝑘) is bounded below for all 𝛼 > 0 and since 𝑐1 ∈ (0,1), 

the line 𝑙(𝛼) = 𝐸(𝜃𝑘) + 𝑐1𝛼𝑔𝑘𝑇𝑝𝑘 must intersect the graph of 𝜙(∙) at least once. Let 

𝛼𝑠 > 0 be the smallest intersecting value of 𝛼, we have, 

𝐸(𝜃𝑘 + 𝛼𝑠𝑝𝑘) = 𝐸(𝜃𝑘) + 𝛼𝑠𝑐1𝑔𝑘𝑇𝑝𝑘       (2.20) 

The sufficient decrease condition (2.18) clearly holds for all step lengths less than 

𝛼𝑠. 

By the mean value theorem, there exists 𝛼𝑚 ∈ (0,𝛼𝑠) such that 

𝐸(𝜃𝑘 + 𝛼𝑠𝑝𝑘) − 𝐸(𝜃𝑘) = 𝛼𝑠𝑔((𝜃𝑘 + 𝛼𝑚𝑝𝑘)𝑇)𝑝𝑘    (2.21) 

By combining (2.19) and Equation (2.20), we obtain 

𝑔(𝜃𝑘 + 𝛼𝑚𝑝𝑘)𝑇𝑝𝑘 = 𝑐1𝑔𝑘𝑇𝑝𝑘 > 𝑐2𝑔𝑘𝑇𝑝𝑘     (2.22) 

since 𝑐1 < 𝑐2, and 𝑔𝑘𝑇𝑝𝑘 < 0, 𝛼𝑚 satisfies the Wolfe conditions (2.17) and (2.18), and 

the inequalities hold strictly in both of the conditions. Hence function 𝐸 is continuously 

differentiable since that we assume 𝐸 is smooth, there is an interval around 𝛼𝑚 for 

which the Wolfe conditions hold. Moreover, since the term in the left-hand side of (2.22) 
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is negative due to 𝑝𝑘 < 0, the strong Wolfe conditions (2.19) hold in the same interval. 

2.4  Nelder-Mead Method 

Since published in 1965, the Nelder–Mead method or downhill simplex method [24] 

or amoeba method is commonly used in nonlinear optimization problems. It is a type of 

unconstrained nonlinear optimization method. This method is derivative-free for multi- 

dimensional function optimization, which means this method does not need any func- 

tional derivative information to solve the local minima for a given function. Instead, this 

method relies exclusively on repeated evaluations of the objective function, and the sub- 

sequent search direction after each evaluation follows certain heuristic guidelines.  

The Nelder-Mead method maintains at each step a non-degenerate simplex, a 

geometric figure in 𝑛 dimensions of nonzero volume that is the convex hull of  𝑛 + 1 

vertices [17].  

Considering the same 𝑛-dimensional function 𝐸(𝜃) as gradient descent method, 

we use an initial simplex, which has 𝑛 + 1 points 𝜃1,𝜃2,⋯ ,𝜃𝑛, 𝜃𝑛+1 ∈ 𝑅𝑛, and the 

corresponding set of function values at 𝐸𝑗 = 𝐸�𝜃𝑗� for 𝑗 = 1,2,⋯ ,𝑛, 𝑛 + 1. Then the 

method repeatedly replaces the worst point with the new test point and so the technique 

progresses. 

Ordering: re-arrange the order of 𝐸𝑗to satisfy 𝐸1 ≤ 𝐸2 ≤ ⋯ ≤ 𝐸𝑛 ≤ 𝐸𝑛+1. 

Centroid: let 𝜃𝑚 be the centroid of all points except 𝜃𝑛+1. 
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Figure 2.3: Reflection 

 

Reflection: compute reflected point 𝜃𝑟 and its value 𝐸𝑟 as 

𝜃𝑟 = 𝜃𝑚 + 𝛼(𝜃𝑚 − 𝜃𝑛+1)           

𝐸𝑟 = 𝐸(𝜃𝑟)          (2.23) 

where 𝛼 is the reflection. Thus 𝜃𝑟 is on the line joining 𝜃𝑛+1 and 𝜃𝑚 as shown in Fig. 

2.3. If 𝐸1 ≤ 𝐸𝑟 < 𝐸𝑛, accept 𝐸𝑟 and terminate the iteration, then obtain a new simplex 

by replacing the worst point 𝜃𝑛+1 with the reflected point 𝜃𝑟. 

Expansion: If the reflected point is the best point so far 𝐸𝑟 ≤ 𝐸1, define the expansion 

point 𝜃𝑒 and its value 𝐸𝑒 as 

𝜃𝑒 = 𝜃𝑚 + 𝛾(𝜃𝑚 − 𝜃𝑛+1)           

𝐸𝑒 = 𝐸(𝜃𝑒)           (2.24) 

where 𝛾 is the expansion coefficient which is greater than unity. If 𝐸𝑒 < 𝐸𝑟, accept 𝜃𝑒 

and terminate the iteration, then obtain a new simplex by replacing the worst point 𝜃𝑛+1 

with the expanded point 𝜃𝑒. Otherwise (if 𝐸𝑒 ≥ 𝐸𝑟), accept 𝜃𝑟, terminate the iteration, 



 

20 
 

and obtain a new simplex by replacing the worst point 𝜃𝑛+1 with the expanded point 𝜃𝑟. 

 

Figure 2.4: Expansion 

 

Contraction: Define the contraction point 𝜃𝑐 and its value 𝐸𝑐 as 

𝜃𝑐 = 𝜃𝑚 + 𝜌(𝜃𝑚 − 𝜃𝑛+1)           

𝐸𝑐 = 𝐸(𝜃𝑐)           (2.25) 

where 𝜌 is the contraction coefficient. If the contracted point is better than the worst 

point 𝐸𝑐 < 𝐸𝑛+1, accept 𝜃𝑐, terminate the iteration, and obtain a new simplex by 

replacing the worst point 𝜃𝑛+1 with the expanded point 𝜃𝑐. 
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Figure 2.5: Contraction 

 

Reduction: For all but the best point, replace the point with, 

𝜃𝑗 = 𝜃1 + 𝜎(𝜃𝑗 − 𝜃1)  for 𝑗 = 2,3,⋯ ,𝑛 + 1    (2.26) 

where 𝜎 is shrink coefficient. Commonly, 𝛼 = 1, 𝛾 = 2, 𝜌 = −0.5 and 𝜎 = 0.5 are 

used suggested by Nelder and Mead [24]. 

 

Figure 2.6: Reduction 

 

 The iteration is repeated until the stopping criterion is met. The stopping criteria are 

often composed of four different parts as follows: 
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Computation time: the process will stop when a specified iteration count is reached. 

Optimization goal: the function value 𝐸(𝜃𝑘) is smaller than the desired goal value. 

Minimal improvement: |𝐸(𝜃𝑘) − 𝐸(𝜃𝑘−1)| is smaller than a given value. 

Minimal relative improvement: |𝐸(𝜃𝑘)−𝐸(𝜃𝑘−1)|
𝐸(𝜃𝑘−1)  is smaller than a preset value. 
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Chapter 3 

Modeling 

3.1  NARMAX Model 

In many cases the state variables of nonlinear stochastic systems (Fig. 3.1) are not 

measurable. This kind of systems is often characterized by an input-output equation. The 

Nonlinear Auto-Regressive Moving Average model with eXogenous input (NARMAX) 

[3] [20], is a general representation of a nonlinear system which is described by a set of 

nonlinear difference equations. The NARMAX model provides a unified solution for a 

finitely realizable nonlinear system [2] [8]. Consider a nonlinear stochastic system 

represented by NARMAX model,  

 

Figure 3.1: Block diagram of nonlinear stochastic system 
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𝑦(𝑘) = 𝑓(𝑦(𝑘 − 1),⋯ , 𝑦(𝑘 − 𝑛),𝑢(𝑘 − 1 − 𝑑),⋯ ,𝑢(𝑘 − 1 −𝑚 − 𝑑), 

𝑒(𝑘 − 1)⋯ , 𝑒(𝑘 − 𝑝)) + 𝑒(𝑘)        (3.1) 

where 𝑦(𝑘) ∈ 𝑅𝑛𝑛 𝑢(𝑘) ∈ 𝑅𝑛𝑛 represent the output vector and the input vector of the 

Multi-Input Multi-Output (MIMO) nonlinear system at time 𝑘, 𝑒(𝑘) ∈ 𝑅𝑛𝑛 represent 

zero mean white noise, 𝑛 𝑚, and 𝑝 are the orders of the output, input, and noise respec- 

tively; 𝑑 is the time delay of the process; 𝑓(∙) is a nonlinear function. The input-output 

relationship (3.1) is dependent upon the nonlinear function 𝑓(∙), and 𝑓(∙) is usually un- 

known. For simplification without loss of generality, a special case of NARMAX model 

is considered here which can be written as 

𝑦(𝑘) = 𝑓(𝑦(𝑘 − 1),⋯ ,𝑦(𝑘 − 𝑛),𝑢(𝑘 − 1 − 𝑑),⋯ ,𝑢(𝑘 − 1 −𝑚 − 𝑑)) + 𝑒(𝑘)    

(3.2) 

3.2  Modeling by RBF NNs 

The NARMAX represents stochastic system with finite order and can be readily 

implemented by NNs [5] [7]. RBF-NNs are artificial NNs that use radial basis functions 

as activation functions. Our aim is to use RBF-NNs to model nonlinear stochastic 

systems described by (3.2). 

Define 𝑝 = 𝑛 ∗ 𝑛𝑛 + (𝑚 + 1) ∗ 𝑛𝑛, and  

𝑥(𝑘) = �𝑥1, 𝑥2,⋯ , 𝑥𝑝�
𝑇

= [𝑦(𝑘 − 1)𝑇 ,⋯ , 𝑦(𝑘 − 𝑛)𝑇 , 

𝑢(𝑘 − 1 − 𝑑)𝑇 ,⋯ ,𝑢(𝑘 − 1 − 𝑑 −𝑚)𝑇]𝑇    (3.3) 

𝑥(𝑘) ∈ 𝑅𝑝, 𝑘 = 1,2,⋯ , 𝑆 is the kth input to the RBF-NN. S represents the number of 
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samples. The 𝑗th output of the neural network is described by, 

𝑦�𝑗 = ∑ 𝑤𝑖𝑖𝜑𝑖�𝑥(𝑘)�ℎ
𝑖=1   𝑗 = 1,2,⋯ , 𝐿      (3.4) 

where 𝑤𝑖𝑖 (𝑖 = 1,2,⋯ ,ℎ) is the weights between hidden layer and output layer, ℎ 

denotes the number of cells in hidden layer. 𝜑𝑖(∙) is the activation function between 

input layer and hidden layer chosen as 

𝜑𝑖�𝑥(𝑘)� = 𝑒𝑒𝑒 �∑ �− (𝑥𝑎−𝑐𝑎𝑎)2

𝑠𝑎𝑎
2 �𝑎=𝑝

𝑎=1 �        (3.5) 

where 𝑐𝑖 ∈ 𝑅𝑝and 𝑠𝑖 ∈ 𝑅𝑝 are the center and width of Gaussian activation functions for 

the neurons in the hidden layer. 

Let  𝑍 = {𝑐𝑖, 𝑠𝑖 , 𝑤𝑖𝑖} = [𝑧1, 𝑧2,⋯ , 𝑧𝑛𝑛] be the parameter vector which is 

composed of all the widths, centers and weights of the RBF-NN where 𝑛𝑛 = 𝑝 ∗ ℎ + 𝑝 ∗

ℎ + ℎ ∗ 𝑛𝑛. A three-phase training of RBF-NNs [29] is used by performing an adaptation 

of all parameters simultaneously. The neural network is then defined by the model, 

𝑦�(𝑘,𝑍) = 𝑓(𝑥(𝑘),𝑍)          (3.6) 

The RBF-NN model (3.6) is a one-step-ahead predictive model for 𝑦(𝑘) and the 

prediction error is given by, 

𝜀(𝑘) = 𝑦(𝑘) − 𝑦�(𝑘,𝑍)          (3.7) 

 The parameter vector 𝑍 can be determined by minimizing the following objective 

function 

𝐽(𝑍) = 1
2
∑ �𝑦(𝑘) − 𝑦�(𝑘,𝑍)�

𝑇
(𝑦(𝑘) − 𝑦�(𝑘,𝑍))𝑆

𝑘=1      (3.8) 

The optimization problem can be solved using modified gradient descent method. Let 𝑍𝐾 

denotes the 𝐾th iteration values of the parameters. 𝑍𝐾+1 in the next iteration can be 
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formulated as 

𝑍𝐾+1 = 𝑍𝐾 − 𝜅 𝛻𝛻(𝑍𝐾)
||𝛻𝛻(𝑍𝐾)||

         (3.9) 

where 𝜅 is the real learning rate vector, 𝐾 denotes iterative epochs, and || ∙ || denotes 

the Euclidean norm. 𝛻𝛻(∙) is the gradient search direction defined as 

𝛻𝛻(𝑍) = �∑ �𝑦(𝑘) − 𝑦�(𝑘,𝑍)�
𝑇𝑆

𝑘=1
𝜕𝑦�(𝑘,𝑍)
𝜕𝜕

�
𝑇
    (3.10) 

where 

�𝜕𝑦�
𝜕𝜕
�
𝑇

= ��𝜕𝑦�
𝜕𝜕
�
𝑇

, �𝜕𝑦�
𝜕𝜕
�
𝑇

, �𝜕𝑦�
𝜕𝜕
�
𝑇
�
𝑇
           

[𝜕𝑦�
𝜕𝜕

]𝑇 =

⎣
⎢
⎢
⎢
⎡
𝜕𝑦�1
𝜕𝑐1

⋯ 𝜕𝑦�𝑛𝑛
𝜕𝑐1

⋮ ⋱ ⋮
𝜕𝑦�1
𝜕𝑐𝑝

⋯ 𝜕𝑦�𝑛𝑛
𝜕𝑐𝑝 ⎦

⎥
⎥
⎥
⎤

𝑛𝑛×𝑝

           

   [𝜕𝑦�
𝜕𝜕

]𝑇 =

⎣
⎢
⎢
⎢
⎡
𝜕𝑦�1
𝜕𝑠1

⋯ 𝜕𝑦�𝑛𝑛
𝜕𝑠1

⋮ ⋱ ⋮
𝜕𝑦�1
𝜕𝑠𝑝

⋯ 𝜕𝑦�𝑛𝑛
𝜕𝑠𝑝 ⎦

⎥
⎥
⎥
⎤

𝑛𝑛×𝑝

           

[𝜕𝑦�
𝜕𝜕

]𝑇 =

⎣
⎢
⎢
⎢
⎡
𝜕𝑦�1
𝜕𝑤11

⋯ 𝜕𝑦�𝑛𝑛
𝜕𝑤1𝑛𝑛

⋮ ⋱ ⋮
𝜕𝑦�1
𝜕𝑤𝑝1

⋯ 𝜕𝑦�𝑛𝑛
𝜕𝑤𝑝𝑝𝑝⎦

⎥
⎥
⎥
⎤

𝑛𝑛×𝑝

           

𝜕𝑦�𝑗
𝜕𝑐𝑎𝑎

= −2𝑤𝑖𝑖𝜑𝑖
𝑥𝑎−𝑐𝑎𝑎
𝑠𝑎𝑎
2             

𝜕𝑦�𝑗
𝜕𝑠𝑎𝑎

= −2𝑤𝑖𝑖𝜑𝑖
(𝑥𝑎−𝑐𝑎𝑎)2

𝑠𝑎𝑎
3             

𝜕𝑦�𝑗
𝜕𝑤𝑖𝑖

= 𝜑𝑖           (3.11) 

The training procedure of the RBF-NN given by Equation (3.4) is presented 

below. 

1) Select suitable input variables 𝑥(𝑘), 𝑝 and the initial values for 𝑍0. 
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2) Compute 𝐸 = [𝜀(1), 𝜀(2),⋯ , 𝜀(𝑆)]𝑇 using Equation (3.7) for 𝑘 = 1,2,⋯ , 𝑆. 

3) Compute 𝛻𝛻(𝑍) by using Equation (3.10) and Equation (3.11). 

4) Update the parameter 𝑍 using Equation (3.9). 

5) Repeat the step 2) to 4) until termination rule is satisfied. The iteration stops when 

�∆𝐽(𝑍)
𝐽(𝑍) � is smaller than a preset value, or 𝐽(𝑍) is smaller than the designed goal value, 

or a designed iteration count is reached. 

3.3  Multistep-Ahead Predictive Model 

From Equation (3.2), the NARMAX one-step-ahead predictive model approximated 

from RBF-NN is 

𝑦𝑓(𝑘 + 1) = 𝑓(𝑦(𝑘),⋯ ,𝑦(𝑘 − 𝑛 + 1),𝑢(𝑘 − 𝑑),⋯ ,𝑢(𝑘 −𝑚 − 𝑑)) (3.12) 

where 𝑦𝑓(𝑘 + 1) is the predictive output of the model. Extending Equation (3.12) one 

more step ahead, 𝑦𝑓(𝑘 + 2) can be obtained as 

𝑦𝑓(𝑘 + 2) = 𝑓(𝑦𝑓(𝑘 + 1),𝑦(𝑘),⋯ ,𝑦(𝑘 − 𝑛 + 2),𝑢(𝑘 − 𝑑 + 1),⋯ ,𝑢(𝑘 −𝑚 − 𝑑 + 1)) 

(3.13) 

Using a recursive technique, 𝑑-step-ahead predictor [33] can be derived 

𝑦𝑓(𝑘 + 𝑑) = 𝑓(𝑦𝑓(𝑘 − 1 + 𝑑),⋯ ,𝑦𝑓(𝑘 + 1),𝑦(𝑘),⋯ ,𝑦(𝑘 − 𝑛 + 𝑑),𝑢(𝑘 −

1),⋯ , 𝑢(𝑘 − 1 −𝑚))         (3.14) 

The 𝑑-step-ahead predictive model is given by Fig. 3.2. This predictor has a series 

connection architecture. In this architecture only one RBF-NN is used, but 𝑑 iterations 

are required for long term prediction. In the first iteration, the RBF-NN is fed with the 
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present process output 𝑦(𝑘) and several past process outputs 𝑦(𝑘 − 1),⋯ ,𝑦(𝑘 − 𝑛 +

1), together with the past inputs 𝑢(𝑘 − 𝑑 + 1),⋯ ,𝑢(𝑘 −𝑚 − 𝑑 + 1). Then, the RBF- 

NN is iterated. In the iteration procedure, any error of the model is fed back into the RBF- 

NN. The prediction accuracy can be significantly degraded due to an accumulation of 

errors if the prediction horizon is large. To offset the error of the predictive model, a 

variable 𝑦𝑐(𝑘) is introduced to express the difference between actual output of system 

𝑦(𝑘) and predictive output of RBF-NN predictor 𝑦𝑓(𝑘). Let 

𝑦𝑐(𝑘) = 𝑦(𝑘) − 𝑦𝑓(𝑘)         (3.15) 

The estimated output 𝑦𝑒(𝑘) can be described by 

𝑦𝑒(𝑘 + 𝑖) = 𝑦𝑓(𝑘 + 𝑖) + 𝑦𝑐(𝑘) 𝑖 = 1,2,⋯ ,𝑑    (3.16) 

Figure 3.2: The architecture of d-step-ahead predictive model 

 

 

 

 

 



 

29 
 

 

Chapter 4 

Design of Generalized Predictive Control 

4.1  Cost Function 

A large number of predictive control algorithms have been presented and widely used 

in industry. GPC has a precise model which is used to predict the system behavior. It 

shows good robustness of adaptive model-based predictive control [10]. The quality of 

the system model affects the accuracy of prediction. For a linear system, a number of 

techniques are available to make modeling easier; however it is more complicated for 

nonlinear systems. Currently there are two techniques used to model nonlinear systems. 

One is to linearize the system about a set of operating points. If the plant is highly non- 

linear the number of operating points can be very large. The second technique involves 

developing a nonlinear model which depends on making assumptions about the dynamics 

of the nonlinear system. The accuracy of the model will be reduced if these assumptions 

are incorrect. 

NNs are powerful tools for identification and modeling of nonlinear systems. The 

model estimated using NN can be used to predict the system output. A nonlinear multi- 

step-ahead predictive model based on RBF-NN mentioned in Chapter 3 is employed to 
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design GPC for a nonlinear stochastic system.  

The block diagram of the designed GPC is shown in Fig. 4.1 [13]. The RBF-NNs 

work as a plant model and a predictor. To offset the error of the predictive model, a 

variable 𝑦𝑐 is introduced to express the difference between the actual output of system 𝑦 

and predictive output of RBF-NN predictor 𝑦𝑓. By assuming 𝑦𝑐 keeps the same for 

different time instants, the estimated output 𝑦𝑒 can be obtained from the summation of 

𝑦𝑓 and 𝑦𝑐. 

 

 

Figure 4.1: The block diagram of RBF-NN based GPC 

 

The control objective of GPC is to use the NN predictor for predicting future outputs, 

and to minimize the following cost function in order to reduce prediction errors  

𝐽 = ∑ [𝑦𝑟(𝑘 + 𝑖) − 𝑦𝑒(𝑘 + 𝑖)]2 + ∑ 𝜆𝑗[∆𝑢(𝑘 − 1 + 𝑗)]2𝑁𝑢
𝑗=1

𝑁1
𝑖=𝑁0    (4.1) 

where 𝑦𝑟(𝑘 + 𝑖) (𝑖 = 𝑁0,𝑁0 + 1,⋯ ,𝑁1) denotes the future reference trajectory, 
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𝑦𝑒(𝑘 + 𝑖) is the estimated output, 𝑁0 and 𝑁1 are the minimum and maximum 

prediction horizons, 𝑁𝑢 is the control horizon, 𝜆𝑗 (𝑗 = 1,2,⋯ ,𝑁𝑢) is a weighting 

coefficient penalizing changes in the control input. 

This cost function minimizes not only the mean squared error between the reference 

and predicted outputs, but also the weighted squared rate of change of the control input 

with its constraints. When this cost function is minimized, a control input that meets the 

constraints is generated that allows the plant to track the reference trajectory within some 

tolerance.  

There are four tuning parameters in the cost function, 𝑁0, 𝑁1, 𝑁𝑢 and 𝜆𝑗. The 

predictions of the plant will run from 𝑁0 to 𝑁1 future time steps. The bound on the 

control horizon is 𝑁𝑢. The only constraint on the values of 𝑁0, and 𝑁𝑢 is that these 

bounds must be less than or equal to 𝑁1 as 

1 ≤ 𝑁𝑢 ≤ 𝑁1, 𝑑 + 1 ≤ 𝑁0 ≤ 𝑁1         (4.2) 

The second summation contains a weighting factor 𝜆𝑗, which is introduced to control the 

balance between the two summations. Obviously, in the GPC algorithm, the different 

selection of these four parameters can have important influence in the controlled perfor- 

mance of the system. 𝑁0 should be larger than or equal to 𝑑 + 1, otherwise there will 

be some outputs that are independent of 𝑢(𝑘). Generally taking 𝑁0 = 1 when 𝑑 is 

unknown or varying. 𝑁1 should include all responses that are explicitly dependent on 

current control. In order to reduce the online computation time, 𝑁𝑢 is usually chosen 

such that 𝑁𝑢 ≤ 𝑁1 − 𝑁0 + 1.  𝜆𝑗 acts as damper on the predicted 𝑢(𝑘), which is 
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generally chosen as 𝜆𝑗 = 0 or a small value unless the change in control is too big. 

4.2  Cost Function Minimization 

Given 𝑁𝑢, future control inputs can be expressed as a vector 

𝑢 = [𝑢(𝑘)𝑇 ,𝑢(𝑘 + 1)𝑇 ,⋯ ,𝑢(𝑘 + 𝑁𝑢 − 1)𝑇]𝑇    (4.3) 

The control input 𝑢(𝑘) ∈ 𝑅𝑛𝑛 can be determined by minimizing 𝐽 in Equation (4.1) 

with respect to 𝑢. This can be done by using the optimization methods mentioned in 

Chapter 2. 

4.2.1 Nelder-Mead Algorithm 

The Nelder-Mead algorithm does not need derivatives of the cost function in 

Equation (4.1); however, it is very sensitive to the initial points, and is not efficient 

when dimension of vector 𝑢 becomes big. This algorithm only uses the basic opera- 

tions of reflection, expansion, contraction and reduction to directly find the solution. 

Each step replaces at least one vertex, thus changing the shape and the location of the 

simplex. 

First we generate and evaluate initial 𝑁𝑢 + 1 points {𝑢1,𝑢2,⋯ ,𝑢𝑁𝑢+1} in 𝑅𝑁𝑢. 

Set the initial point 𝑢1 to be the initial input of system and form the other 𝑁𝑢 points 

using 

𝑢𝑖 = 𝑢1 + 𝜎𝑞𝑖         (4.4) 

where 𝑞𝑖 is a unit vector, which guarantees that the vector set {𝑢2 − 𝑢1,⋯, 𝑢𝑁𝑢+1 −
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𝑢1} is linearly independent, so the set of points {𝑢1,𝑢2,⋯ ,𝑢𝑁𝑢+1} makes a convex 

hull in 𝑅𝑁𝑢. 

 Then the Nelder-Mead method will be applied for minimizing the cost function 

defined by Equation (4.1). The algorithm continues in refining the solution by replacing 

the worst solution with an improved one in every iteration until reaching the stopping 

criteria. The algorithm should be terminated if the value of cost function in Equation 

(4.1) is smaller than a defined threshold, or convergence is reached making no further 

improvement for further iterations. 

4.2.2 Quasi-Newton Algorithm 

The objective of the cost function minimization algorithm can also be accomplished 

by setting the Jacobian matrix of cost function to zero and solving for 𝑢 in Equation 

(4.3). By using Quasi-Newton method, 𝐽 is minimized iteratively to determine the best 

𝑢. An iterative process yields intermediate values for 𝐽 denoted 𝐽𝐾. 

 Quasi-Newton method is widely used in optimization problem. Applying Equation 

(2.10) to Equation (4.1), the update rule for 𝑢 is given by Equation (4.5) 

𝑢𝐾+1 = 𝑢𝐾 − 𝛼𝐾𝐻𝐾−1
𝜕𝐽𝐾
𝜕𝑢𝐾

       (4.5) 

where 

𝜕𝜕
𝜕𝜕

= −𝜕𝑦𝐸
𝜕𝜕

𝑒 +  𝜆∆𝑢         (4.6) 

where 𝑦𝐸 , 𝑒, and ∆𝑢 are estimated output , error vector, and increment of control 

input, respectively, defined by 
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𝑦𝐸 = [𝑦𝑒(𝑘 + 𝑁0)𝑇 ,𝑦𝑒(𝑘 + 𝑁0 + 1)𝑇 ,⋯ ,𝑦𝑒(𝑘 + 𝑁1)𝑇]𝑇    (4.7) 

𝑒 = [[𝑦𝑟(𝑘 + 𝑁0) − 𝑦𝑒(𝑘 + 𝑁0)]𝑇 ,⋯ [𝑦𝑟(𝑘 + 𝑁1) − 𝑦𝑒(𝑘 + 𝑁1)]𝑇]𝑇  (4.8) 

∆𝑢 = [[𝑢(𝑘) − 𝑢(𝑘 − 1)]𝑇 ,⋯ [𝑢(𝑘 + 𝑁𝑢 − 1) − 𝑢(𝑘 + 𝑁𝑢 − 2)]𝑇]𝑇  (4.9) 

𝜆 = 𝑑𝑑𝑑𝑑[𝜆1, 𝜆2,⋯ , 𝜆𝑁𝑢]        (4.10) 

𝜕𝑦𝐸
𝜕𝜕

 is denoted as a (𝑁1 − 𝑁0 + 1) × 𝑁𝑢 matrix shown in Equation (4.11) 

𝜕𝑦𝐸
𝜕𝜕

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑦𝑒(𝑘+𝑁0)
𝜕𝜕(𝑘)

⋯ 0
⋮ ⋱ ⋮

𝜕𝑦𝑒(𝑘+𝑁𝑢)
𝜕𝜕(𝑘)

⋯ 𝜕𝑦𝑒(𝑘+𝑁𝑢)
𝜕𝜕(𝑘+𝑁𝑢−1)

⋮ ⋯ ⋮
𝜕𝑦𝑒(𝑘+𝑁1)
𝜕𝜕(𝑘)

⋯ 𝜕𝑦𝑒(𝑘+𝑁1)
𝜕𝜕(𝑘+𝑁𝑢−1)⎦

⎥
⎥
⎥
⎥
⎥
⎤

(𝑁1−𝑁0+1)×𝑁𝑢

     (4.11) 

The only non-zero element in the first row of the matrix is 

𝜕𝑦𝑒𝑒(𝑘+𝑁0)
𝜕𝜕(𝑘)

= ∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �2(𝑢(𝑘)−𝑐𝑢(𝑘))

𝑠𝑢(𝑘)
2 �      (4.12) 

For the second row, there are two non-zero elements, and the chain rule will be applied 

since 𝑦𝑒(𝑘 + 𝑁0 + 1) is a function of 𝑦𝑒(𝑘 + 𝑁0), 𝑢(𝑘) and 𝑢(𝑘 + 1) in the neural 

network model, 

𝜕𝑦𝑒𝑒(𝑘+𝑁0+1)
𝜕𝜕(𝑘)

= 𝜕𝑦𝑒𝑒(𝑘+𝑁0+1)
𝜕𝑦𝑒𝑒(𝑘+𝑁0)

𝜕𝑦𝑒𝑒(𝑘+𝑁0)
𝜕𝜕(𝑘)

+ ∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �2(𝑢(𝑘)−𝑐𝑢(𝑘))

𝑠𝑢(𝑘)
2 �  

𝜕𝑦𝑒𝑒(𝑘+𝑁0+1)
𝜕𝑦𝑒𝑒(𝑘+𝑁0)

= ∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �

2(𝑦𝑒𝑒(𝑘+𝑁0)−𝑐𝑦𝑒𝑒(𝑘+𝑁0))

𝑠𝑦𝑒𝑒(𝑘+𝑁0)
2 �     

𝜕𝑦𝑒𝑒(𝑘+𝑁0+1)
𝜕𝜕(𝑘+1)

= ∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �2(𝑢(𝑘+1)−𝑐𝑢(𝑘+1))

𝑠𝑢(𝑘+1)
2 �     (4.13) 

For the third row, 3 non-zero elements are given by 

𝜕𝑦𝑒𝑒(𝑘+𝑁0+2)

𝜕𝜕(𝑘) = 𝜕𝑦𝑒𝑒(𝑘+𝑁0+2)

𝜕𝑦𝑒𝑒(𝑘+𝑁0)
𝜕𝑦𝑒𝑒(𝑘+𝑁0)

𝜕𝜕(𝑘) + 𝜕𝑦𝑒𝑒(𝑘+𝑁0+2)

𝜕𝑦𝑒𝑒(𝑘+𝑁0+1)
𝜕𝑦𝑒𝑒(𝑘+𝑁0+1)

𝜕𝜕(𝑘)   

+∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �2(𝑢(𝑘)−𝑐𝑢(𝑘))

𝑠𝑢(𝑘)
2 �        
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𝜕𝑦𝑒𝑒(𝑘+𝑁0+2)
𝜕𝑦𝑒𝑒(𝑘+𝑁0)

= ∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �

2(𝑦𝑒𝑒(𝑘+𝑁0+2)−𝑐𝑦𝑒𝑒(𝑘+𝑁0))

𝑠𝑦𝑒𝑒(𝑘+𝑁0)
2 �     

𝜕𝑦𝑒𝑒(𝑘+𝑁0+2)
𝜕𝑦𝑒𝑒(𝑘+𝑁0+1)

= ∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �

2(𝑦𝑒𝑒(𝑘+𝑁0+2)−𝑐𝑦𝑒𝑒(𝑘+𝑁0+1))

𝑠𝑦𝑒𝑒(𝑘+𝑁0+1)
2 �    

𝜕𝑦𝑒𝑒(𝑘+𝑁0+2)
𝜕𝜕(𝑘+1)

= 𝜕𝑦𝑒𝑒(𝑘+𝑁0+2)
𝜕𝑦𝑒𝑒(𝑘+𝑁0+1)

𝜕𝑦𝑒𝑒(𝑘+𝑁0+1)
𝜕𝜕(𝑘+1)

+ ∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �2(𝑢(𝑘)−𝑐𝑢(𝑘+1))

𝑠𝑢(𝑘+1)
2 �  

𝜕𝑦𝑒𝑒(𝑘+𝑁0+2)
𝜕𝜕(𝑘+2)

= +∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �2(𝑢(𝑘)−𝑐𝑢(𝑘+2))

𝑠𝑢(𝑘+2)
2 �      (4.14) 

For the (𝑚 + 2)th row 𝑦𝑒(𝑘 + 𝑁0 + 𝑚 + 1) is a function of 𝑦𝑒(𝑘 + 𝑁0 + 𝑚),⋯, 

𝑦𝑒(𝑘 + 𝑁0 + 𝑚 − 𝑛), 𝑢(𝑘 + 𝑚 + 1),⋯ ,𝑢(𝑘 + 1), different from previous partial 

differential equation, it is given by 

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚+1)

𝜕𝜕(𝑘) = 𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚+1)

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚)
𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚)

𝜕𝜕(𝑘) + ⋯+     

 
𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚+1)

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚−𝑛)
𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚−𝑛)

𝜕𝜕(𝑘)       

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚+1)

𝜕𝜕(𝑘+1) = 𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚+1)

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚)
𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚)

𝜕𝜕(𝑘+1) + ⋯+      

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚+1)

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚−𝑛)
𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚−𝑛)

𝜕𝜕(𝑘+1)       

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚+1)

𝜕𝜕(𝑘+𝑚+1) = ∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �2(𝑢(𝑘)−𝑐𝑢(𝑘+𝑚+1))

𝑠𝑢(𝑘+𝑚+1)
2 �      (4.15) 

Extending 𝑞 steps, the matrix will have 𝑞 non-zero elements, and the 𝑝th element can 

be obtained by 

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑞−1)

𝜕𝜕(𝑘+𝑝−1) = 𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑞−1)

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑞−2)
𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑞−2)

𝜕𝜕(𝑘+𝑝−1) + ⋯+     

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑞−1)

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑞−1−𝑛)
𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑞−1−𝑛)

𝜕𝜕(𝑘+𝑝−1) + ∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �2(𝑢(𝑘+𝑝−1)−𝑐𝑢(𝑘+𝑝−1))

𝑠𝑢(𝑘+𝑝−1)
2 � (4.16) 

where 𝑁0 + 𝑞 − 1 − 𝑛 > 𝑝 + 1 ≥ 0, and the last summation term would be zero if 

𝑞 − 𝑝 > 𝑚 + 1.  

Hessian matrix 𝐻 does not need to be computed. The Hessian is updated by 

analyzing successive gradient vectors instead. By choosing 𝐻0 as an 𝑁𝑢 × 𝑁𝑢 identity 
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matrix, for the BFGS update rule, recall Equation (2.10) here 

𝐻𝐾+1−1 = 𝐻𝐾−1 +
�(𝛼𝐾𝑝𝐾)𝑇∆𝑔𝐾+∆𝑔𝐾

𝑇𝐻𝐾
−1∆𝑔𝐾��(𝛼𝐾𝑝𝐾)(𝛼𝐾𝑝𝐾)𝑇�

((𝛼𝐾𝑝𝐾)𝑇∆𝑔𝐾)2       

−𝐻𝐾
−1∆𝑔𝐾(𝛼𝐾𝑝𝐾)𝑇+(𝛼𝐾𝑝𝐾)𝐻𝐾

−1∆𝑔𝐾
𝑇𝐻𝐾

−1

(𝛼𝐾𝑝𝐾)𝑇∆𝑔𝐾
        

First we obtain the search direction 𝑝𝐾 by solving 

𝑝𝐾 = −𝐻0−1𝛻𝐽𝐾          (4.17) 

then perform a line search to find an acceptable step size 𝛼𝐾 in the direction found in 

the first step such that 

𝐽(𝑢𝐾+𝛼𝐾𝑝𝐾) = min𝛼≥0(𝐽(𝑢𝐾+𝛼𝐾𝑝𝐾))     (4.18) 

In the inexact search scheme discussed in Section 2.3, it is selected to satisfy Wolfe 

conditions (2.16) and (2.18). Using the search result, the new control input vector is 

updated as 

𝑢𝐾+1 = 𝑢𝐾+𝛼𝐾𝑝𝐾          (4.19) 

and the invers Hessian matrix can be updated from 𝐻𝐾−1 to 𝐻𝐾+1−1  by using the 

following 

𝐻𝐾+1−1 = 𝐻𝐾−1 + �𝑠𝐾𝑇∆𝑔𝐾+∆𝑔𝐾
𝑇𝐻𝐾

−1∆𝑔𝐾��𝑠𝐾𝑠𝐾𝑇�
(𝑠𝐾𝑇∆𝑔𝐾)2 − 𝐻𝐾

−1∆𝑔𝐾𝑠𝐾𝑇+𝑠𝐾𝐻𝐾
−1∆𝑔𝐾

𝑇𝐻𝐾
−1

𝑠𝐾𝑇∆𝑔𝐾
  (4.20) 

where 

𝑠𝐾=𝛼𝐾𝑝𝐾 

∆𝑔𝐾 = 𝛻𝐽𝐾+1 − 𝛻𝐽𝐾       (4.21) 

the stopping criterion is set as the cost function 𝐽 < 𝜀 or 𝐾 exceeding allowed itera- 

tion times. Due to the better convergence property of the BFGS method the RBF-NN 

will require less hidden neurons to reach the same training error and result in better 
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generalization ability. 
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Chapter 5 

Simulation Results 

In order to test the efficiency of the proposed control technique, two sets of 

simulations have been done to verify the neural network generalized predictive 

controller. Simula- tion studies were carried out in C++. 

5.1  SISO Benchmark Simulation 

The first part of simulation, a nonlinear SISO plant taken from literature [6] is 

considered: 

𝑦(𝑘) =
2.5𝑦(𝑘 − 1)𝑦(𝑘 − 2)

1 + 𝑦(𝑘 − 1)2 + 𝑦(𝑘 − 2)2 + 0.3 cos�0.5𝑦(𝑘 − 1) − 𝑦(𝑘 − 2)� 

+1.2𝑢(𝑘 − 1) + 𝑒(𝑘)         (5.1) 

where 𝑦 is the output of the plant, 𝑢 is the plant input, and 𝑒 is the disturbance. 

The RBF neural network structure presented in Fig. 1.1 is used. Comparing 

Equation (3.3) with Equation (5.1), it is found that 𝑛 = 1 𝑚 = 0 and 𝑑 = 0. Totally 5 

neurons in the hidden layer are chosen in simulations. 

5.1.1 The NN Model Training for SISO Plant 

 A finite sequence of uniform pseudo random noise distributed in the interval 
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[−1.5,1.5] is applied to Equation (5.1) as the input signal, which is shown in Fig. 5.1. 

The input signal are holding constant for 100 duration. The plant response to the input 

signal and its filtered version are shown in Fig. 5.2. The filtered response was obtained 

through a second-order Butterworth low pass filter with cutoff frequency of 3 Hz in 

order to remove most of the noise. The Signal-to-Noise Radios (SNR) of the response 

and the filtered response are 11.50 dB and 33.60 dB, respectively. The filtered response, 

together with the input signal in Fig. 5.1, is used to train the neural network. The 

modified gradient method defined in Equation (2.6) is chosen as the training algorithm. 

After several trial-and-error test, the step size of 𝜅 = 0.005 is selected. In the training 

procedure, the termination rules are chosen as, 

1). The value of the objective function 𝐽(𝑍) < 1; 

2). The learning iteration 𝐾 > 10000; 

3). The change of gradients ||𝑔𝑘 − 𝑔𝑘−1|| < 1 × 10−8.  

Fig. 5.3 shows the outputs of the plant and NN model after the identification 

procedure was terminated at iteration 𝐾 = 10000. Fig. 5.4 shows the error between the 

outputs of the plant and NN model after training. Figs. from 5.5 to 5.7 show the 

parameters for the RBF-NN in the training process. 
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Figure 5.1: The random input signal applied to the plant 

 

Figure 5.2: Plant response and filtered response (top) for random input signal (bottom) 
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Figure 5.3: The training result after 10000 iterations (red line: filtered plant output, blue 

line: NN model output) 

 

Figure 5.4: The error between the outputs of the plant and model
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Figure 5.5: The centers of the first neuron in the input layer 

 

Figure 5.6: The widths of the first neuron in the input layer 
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Figure 5.7: The weights of the output layer 

 

5.1.2 The NN Model Validation for SISO Plant 

The model is validated using a time validation test for a sinusoidal input signal for 

this plant, namely  

𝑢(𝑘) = 𝐴 ∗ sin(2𝜋𝜋𝜋𝜋) + 𝐷         (5.2) 

with the amplitude 𝐴 = 1. The sampling time 𝑇 is set to 0.01𝑠. The frequency 𝑓 = 

1/85 Hz. The bias is 𝐷 = 0.25. The initial condition of the plant is chosen (𝑦(𝑘 − 1),  

𝑦(𝑘 − 2)) = (0,0). The plant response is filtered by a second-order Butterworth low 

pass filter with cutoff frequency of 3 Hz. The SNRs of the plant response and filtered 

response are 31.50 dB and 33.41 dB, respectively. The plant response, the NN model 
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response, and the validation error are shown in Figs. from 5.8 to 5.10, respectively. For 

this input signal, the Relative Root Mean Squared Error (rRMSE) over 85 seconds has a 

value of 0.0047, Absolute Mean Error (AME) over 85 seconds has a value of 0.0051, 

which means that the RBF-NN model is a very good approximation of the nonlinear 

system.  

 

 

Figure 5.8: Plant response (top) and filtered response (bottom) to sinusoidal input signal 
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Figure 5.9: Outputs of the plant and the NN model (red line: filtered plant output, blue 

line: NN model output) 

 

Figure 5.10: The error between the outputs of the plant and NN model 
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5.1.3 The Predictive Control for SISO Plant 

With respect to the notations introduced in Chapter 4, the parameters of the GPC are 

chosen as follows: minimum cost horizon 𝑁0 = 1, maximum cost horizon 𝑁1 = 4, and 

control horizon 𝑁𝑢 = 4. The initial condition of the plant is (𝑦(𝑘 − 1),𝑦(𝑘 − 2)) =

(0,0). In order to check the performance of the neural generalized predictive control 

algorithm, a sinusoidal signal is used as reference. The goal is to control plant defined in 

Equation (5.1) to track the reference defined in Equation (5.2). Both Quasi-Newton 

method and Nelder-Mead method are applied for solving the cost function minimization 

problem separately. The termination rules of Quasi-Newton method are chosen as, 

1). The value of the objective cost function 𝐽 < 1 × 10−6; 

2). The maximum iteration 𝐾 > 500; 

3). The change of gradients ||𝑔𝑘 − 𝑔𝑘−1|| < 1 × 10−6.  

The termination rules of Nelder-Mead method are chosen as, 

1). The value of the objective cost function 𝐽 < 1 × 10−6; 

2). The maximum iteration 𝐾 > 500; 

If the feedback of the plant has a uniform pseudo random noise with an amplitude 

in the interval [−0.05,0.05]. The feedback needs to be filtered with a Butterworth filter. 

Fig. 5.11 shows the result when the cutoff frequency is 3 Hz. The control signal, the 

reference and feedback, the tracking error, and the computation time of both Quasi- 

Newton method and Nelder-Mead method are shown in Figs. from 5.12 to 5.15, respect- 
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tively.  

(a) 

(b) 

Figure 5.11: The feedback (top) and filtered feedback (bottom): (a) Quasi-Newton 

method; (b) Nelder-Mead method 
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(a) 

(b) 

Figure 5.12: The control signal: (a) Quasi-Newton method; (b) Nelder-Mead method 
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(a) 

(b) 

Figure 5.13: The tracking performance (red line: reference trajectory, blue line: filtered 

feedback): (a) Quasi-Newton method; (b) Nelder-Mead method 
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(a) 

(b) 

Figure 5.14: The tracking errors: (a) Quasi-Newton method; (b) Nelder-Mead method 
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 (a) 

(b) 

Figure 5.15: The calculation time: (a) Quasi-Newton method; (b) Nelder-Mead method 
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The numerical comparison between the two algorithms are given in Table 5.1. It is 

seen from Table 5.1 that the SNRs of the feedback (SNRB) and the filtered feedback 

(SNRF) are 26.63 dB and 35.47 dB, which implies that most of the noise were filtered 

out and the filter worked well. Both optimization methods produce acceptable tracking 

performances. The average computing time (AvgT) and Max conputing time (MaxT) are 

shown as well.  

More results are shown in Tables from 5.2 to 5.4 by using different cutoff 

frequencies under the same simulation conditions. If the cutoff frequency is too low, the 

filtered feedback will have a time-delay because of the lag of Butterworth filter. 

Meanwhile, if the cutoff frequency is too high, most noise components are not removed. 

The performance of the controller is poor if the cutoff requency is not well chosen. 

 

Table 5.1: Control results for SISO benchmark plant with cutoff frequency 3 Hz 

 rRMSE 

tracking 

MAE 

tracking 

AvgT 

(ms) 

MaxT 

(ms) 

SNRB 

(dB) 

SNRF 

(dB) 

QN  0.02253 0.01317 1.507 33.01 28.63 35.47 

NM 0.02252 0.01316 1.548 16.10 28.63 35.47 
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Table 5.2: Control results for SISO plant with cutoff frequency 0.5 Hz 

 rRMSE 

tracking 

MAE 

tracking 

AvgT 

(ms) 

MaxT 

(ms) 

SNRB 

(dB) 

SNRF 

(dB) 

QN  0.04530 0.02657 1.608 17.81 28.63 27.86 

NM 0.04526 0.02656 1.529 16.53 28.63 27.85 

 

Table 5.3: Control results for SISO plant with cutoff frequency 8 Hz 

 rRMSE 

tracking 

MAE 

tracking 

AvgT 

(ms) 

MaxT 

(ms) 

SNRB 

(dB) 

SNRF 

(dB) 

QN  0.02372 0.01448 1.487 19.12 28.63 34.66 

NM 0.02489 0.01473 1.542 14.76 28.63 34.51 

 

Table 5.4: Control results for SISO plant with cutoff frequency 15 Hz 

 rRMSE 

tracking 

MAE 

tracking 

AvgT 

(ms) 

MaxT 

(ms) 

SNRB 

(dB) 

SNRF 

(dB) 

QN  0.02739 0.01675 1.558 153.9 28.63 32.73 

NM 0.02817 0.01687 1.633 27.72 28.63 32.65 
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Another set of simulations have been done by increasing the amplitude of uniform 

pseudo random noise with a second order Butterworth filter of 3 Hz. The numerical 

results are shown in Tables from 5.5 to 5.7. It is obvious that the performances of the 

controller are poorer if the noise amplitude is larger. These results also show that the 

control using Quasi-Newton method has a better tracking performance than the one 

using Nelder- Mead method. However, the quasi-Newton method takes more computing 

time than the Nelder-Mead method. 

 

Table 5.5: Control results for plant noise amplitude between [-0.15, 0.15] 

 rRMSE 

tracking 

MAE 

tracking 

AvgT 

(ms) 

MaxT 

(ms) 

SNRB 

(dB) 

SNRF 

(dB) 

QN  0.03988 0.02554 3.552 242.2 19.07 28.52 

NM 0.04357 0.02658 1.557 13.14 19.07 27.97 

 

Table 5.6: Control results for plant with noise amplitude between [-0.25, 0.25] 

 rRMSE 

tracking 

MAE 

tracking 

AvgT 

(ms) 

MaxT 

(ms) 

SNRB 

(dB) 

SNRF 

(dB) 

QN  0.05906 0.03811 5.455 297.0 14.61 24.76 

NM 0.06928 0.04250 4.565 34.92 14.61 24.52 
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Table 5.7: Control results for plant with noise amplitude between [-0.40, 0.40] 

 rRMSE 

tracking 

MAE 

tracking 

AvgT 

(ms) 

MaxT 

(ms) 

SNRB 

(dB) 

SNRF 

(dB) 

QN  0.09051 0.05878 5.554 278.8 10.50 20.93 

NM 0.1097 0.06739 4.828 41.76 10.50 19.27 

 

5.2  HVAC System Simulation 

In this part, the simulation is done by applying the designed controller to the non- 

linear MIMO HVAC system. The model of the HVAC system is shown in Fig. 5.16 [1]. 

It is assumed that the air in the room has a uniform temperature distribution. According 

to the energy conservation principle, the model proposed in [1] and [30] which includes 

temperature and humidity ratio is as follows: 

𝑇̇3(𝑡) =
60𝑓𝑟
𝑉𝑠

�𝑇2(𝑡)−𝑇3(𝑡)� − 60ℎ𝑓𝑓𝑓𝑟
𝑐𝑝𝑉𝑠

�𝑊𝑠 −𝑊3(𝑡)�+
1

𝜇𝜇𝑎𝑐𝑝𝑉𝑠
�𝑄𝑜 − ℎ𝑓𝑓𝑀𝑜�+ 𝑒1(𝑡)

𝑊̇3(𝑡) =
60𝑓𝑟
𝑉𝑠

�𝑊𝑠 −𝑊3(𝑡)�+ 𝑀𝑜
𝜌𝑎𝑉𝑠

+ 𝑒2(𝑡)

𝑇2̇(𝑡) =
60𝑓𝑟
𝑉ℎ𝑒

�𝑇2(𝑡)−𝑇3(𝑡)�+ 60𝜇𝑓𝑟
𝑉ℎ𝑒

�𝑇0 −𝑇3(𝑡)� − 60ℎ𝑤𝑓𝑟
𝑐𝑝𝑉ℎ𝑒

×

�𝜇𝜇0 − (1−𝜇)𝑊3(𝑡)−𝑊𝑠�− 6000 gpm
𝜌𝑎𝑐𝑝𝑉ℎ𝑒

+ 𝑒3(𝑡)

  

  (5.3) 

The desired goal of this system is to control the temperature 𝑇3 and humidity ratio 𝑊3 

in thermal space to the desired values. The control inputs of the system are the flow rate 
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gpm of cold water from chiller to the heat exchanger and the air flow rate 𝑓𝑟 using the 

variable speed fan. 𝑒(𝑡) = [𝑒1(𝑡), 𝑒2(𝑡), 𝑒3(𝑡)]𝑇 denotes the system noises. 𝑄𝑜and 

𝑊0 are disturbances to the system. Table 5.8 gives the notations and parameter values in 

the system model [30] [34]. 

 

 

Figure 5.16: Model of the HVAC system 
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Table 5.8: HVAC system variables and parameters 

Parameters Parameter meanings and values 

𝑐𝑝 Specific heat of air 0.24 (btu/lb ∙ ℉) 

𝜌𝑎 Air mass density 0.074 (lb/ft3) 

𝑉ℎ𝑒 Volume of heat exchanger 60.75 (ft3) 

𝑉𝑠 Volume of thermal space 58464 (ft3) 

𝑊0 Humidity ratio of outdoor air 0.018 (lb/lb) 

𝑊𝑠 Humidity ratio of supply air 0.0070 (lb/lb) 

𝑊3 Humidity ratio of thermal space (lb/lb) 

𝑇0 Temperature of outdoor air 85 (℉) 

𝑇2 Temperature of supply air (℉) 

𝑇3 Temperature of thermal space (℉) 

𝑀𝑜 Moisture load 166.06 (lb/hr) 

𝑄𝑜 Sensible heat load 289897.52 (btu/hr) 

ℎ𝑤 Enthalpy of liquid water 340 (btu/lb) 

ℎ𝑓𝑓 Enthalpy of water vapor 1078.25 (btu/lb) 

𝑓𝑟 Volumetric flow rate of air (cfm = ft3/min) 

gpm Flow rate of chilled water (gal/min) 

𝜇 Ventilation rate of air in system (25%) 
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Redefine the variables and parameters as follows: 

𝑢1 = 𝑓𝑟 ,𝑢2 = gpm, 𝑥1 = 𝑇3, 𝑥2 = 𝑊3, 𝑥3 = 𝑇2      

𝛼1 = 60
𝑉𝑠

,𝛼2 = 60𝑓𝑟
𝑐𝑝𝑉𝑠

,𝛼3 = 1
𝜇𝜇𝑎𝑐𝑝𝑉𝑠

,𝛼4 = 1
𝜌𝑎𝑉𝑠

           

𝛽1 = 60
𝑉ℎ𝑒

,𝛽2 = 1
𝜌𝑎𝑐𝑝𝑉ℎ𝑒

,𝛽3 = 60ℎ𝑤
𝑐𝑝𝑉ℎ𝑒

         

with 𝑢(𝑡) = [𝑢1(𝑡), 𝑢2(𝑡)]𝑇 being the control signal applied to the plant, 𝑦(𝑡) =

[𝑥1(𝑡), 𝑥2(𝑡)]𝑇 being the output of the plant. The 2-input, 2-output system can be 

described as 

𝑥̇1(𝑡) = �𝛼1�𝑥3(𝑡)− 𝑥1(𝑡)� − 𝛼2�𝑊𝑠 − 𝑥2(𝑡)��𝑢1(𝑡) + 𝛼3 �𝑄𝑜 − ℎ𝑓𝑓𝑀𝑜�+𝑒1(𝑡)
𝑥̇2(𝑡) = 𝛼1�𝑊𝑠 − 𝑥2(𝑡)�𝑢1(𝑡) + 𝛼4𝑀𝑜 + 𝑒2(𝑡)
𝑥̇3(𝑡) = �𝛽1�𝑥1(𝑡)− 𝑥3(𝑡)�+ 𝛽1𝜇�𝑇0 − 𝑥1(𝑡)��𝑢1(𝑡)−𝑢1(𝑡) ×

�𝛽3�𝜇𝜇0 − (1−𝜇)𝑥2(𝑡)−𝑊𝑠�� − 6000𝛽2𝑢2(𝑡) + 𝑒3(𝑡)

 

   (5.4) 

The objective is to apply the designed controller to control the HVAC system so that 

the output 𝑦(𝑡) tracks the desired temperature and humidity ratio. The simulation 

conditions are given in Table 5.9. 

 

Table 5.9: Simulation conditions of HVAC plant 

Parameters Values 

Neurons of network p=12, h=5, L=2 

Plant delay n=3, m=2, d=0 

Parameters of controller 𝑁0 = 1 , 𝑁1 = 4 , 𝑁𝑢 = 4 

Sampling time 0.01 hr 
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5.2.1 The NN Model Training for HVAC System 

The RBF-NN is used to estimate the HVAC system given by Equation (5.4). Since 

the order of magnitude of values in HVAC system are not the same, scaling factors are 

used to normalize the system inputs and outputs within the interval [−1.0,1.0]. Fig. 

5.17 shows the normalized input signal applied to the neural network for offline training. 

The corresponding normalized filtered response, which is shown in Fig. 5.18, will be 

used to train the neural network. The SNR of the HVAC system responses are 25.53 dB 

and 23.43 dB, and the SNR of filtered responses are 36.16 dB and 34.07 dB when the 

cutoff frequency is 0.0022 Hz. 

 

Figure 5.17: The input signals for neural network training: (a) Channel 1; (b) Channel 2 
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(a) 

(b) 

Figure 5.18: The HVAC system responses (top) and filtered responses (bottom) for 

training: (a) Channel 1; (b) Channel 2 
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The modified gradient method defined in Equation (2.6) is adapted to minimize the 

objective function defined in Equation (3.8). The actual step size 𝜅 = 0.005 is used. 

The termination rules are chosen as, 

1). The value of the objective function 𝐽(𝑍) < 1; 

2). The learning iteration 𝐾 > 10000; 

3). The changing of gradients ||𝑔𝑘 − 𝑔𝑘−1|| < 1 × 10−8.  

The training results after 10000 iterations are provided. Fig. 5.19 (a) displays the 

outputs of the NN model and HVAC system. Fig. 5.19 (b) shows the error between the 

outputs of the HVAC and the NN model. The responses of the neural network 

parameters are plotted in Figs. from 5.20 to 5.22. It can be seen that the parameters of 

the neural network change fast during the first 1000 iterations, which means that the 

values of cost function is large and the norms of the gradients are large. After the first 

1000 iterations, the parameters slowly converge to the vicinity of some values, which 

can be considered as the near-optimal parameters. 
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(a) 

(b) 

Figure 5.19: The training results for HVAC system: (a) The responses (red line: filtered 

system response, blue line: NN model response); (b) The training error 
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Figure 5.20: The centers of the first neuron in the input layer for HVAC training 

 

Figure 5.21: The widths of the first neuron in the input layer for HVAC training 
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Figure 5.22: The weights of the first neuron in output layer for HVAC training 

5.2.2 The NN Model Validation for HVAC System 

The NN model is validated using a sinusoidal input signal defined in Equation (5.2) 

for this plant, with the amplitude 𝐴 = 1, the sampling time 𝑇 = 0.01 hr, the 

frequency 𝑓 = 1/36000 Hz, and the bias D=0. The HVAC system response is filtered 

by a second-order Butterworth low pass filter with cutoff frequency 0.0022 Hz. The 

SNR of filtered system response for two output channels are 31.92 dB and 30.89 dB.  

The HVAC system response, the NN model response and the validation error are 

shown in Fig. 5.23 and Fig. 5.24, respectively. The numerical results are given in Table 

5.10 which shows that the RBF neural network model is a very good approximation of 

the HVAC system.  
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(a)  

(b)  

Figure 5.23: The HVAC system response (top) and filtered response (bottom) for 

validation: (a) Channel 1; (b) Channel 2 
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(a) 

(b)  

Figure 5.24: The NN model response (top) and error (bottom) for validation (red line: 

filtered system response, blue line: NN model response): (a) Channel 1; (b) Channel 2 
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Table 5.10: The results of neural network model for validation signal 

 rRMSE MAE Filtered feedback 

SNR (dB) 

Feedback 

SNR (dB) 

Channel 1  0.01896 0.01196 31.92 29.16 

Channel 2 0.02756 0.01383 30.89 26.92 

5.2.3 The Predictive Control for HVAC System 

The objective is to track the desired temperature and humidity ratio in thermal space. 

Suppose that the designed thermal loads are constant, and all the parameter values are 

given as in Table 5.8. The initial values of the state variables are set to 𝑇3 = 84, 𝑇2 = 

55,  𝑊3 = 0.0092. 

Quasi-Newton method and Nelder-Mead method are applied for solving the cost 

function minimization problem separately. The termination rules are chosen as same as 

the rules for SISO benchmark plant. 

A normalized uniform pseudo random noise with amplitude in the interval 

[−0.02,0.02] for the first output and [−0.08,0.08] for the second output is added to 

the feedback of the plant. The feedback needs to be filtered by a Butterworth filter 

before applied to the controller. Fig. 5.25 and Fig. 5.26 show the results when the cutoff 

frequency is 0.0022 Hz for Quasi-Newton method and Nelder-Mead method. The 

control signal, the tracking performance, the tracking error, and the computation time of 

both Quasi-Newton method and Nelder-Mead method are shown in Figs. from 5.27 to 
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5.30, respectively.  

(a) 

(b) 

Figure 5.25: The HVAC system feedback (top) and the filtered feedback (bottom) of 

Quasi-Newton method: (a) The temperature of thermal space; (b) The humidity ratio 
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(a)  

(b) 

Figure 5.26: The HVAC system feedback (top) and the filtered feedback (bottom) of 

Nelder-Mead method: (a) The temperature of thermal space; (b) The humidity ratio 
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(a) 

(b) 

Figure 5.27: The control signal of HVAC system: (a) using Quasi-Newton method; (b) 

Nelder-Mead method 
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(a) 

(b) 

Figure 5.28: The tracking performance (top) and tracking error (bottom) of HVAC 

system for Quasi-Newton method (red line: filtered feedback, blue line: reference 

trajectory): (a) The temperature of thermal space; (b) The humidity ratio 



 

72 
 

(a) 

(b) 

Figure 5.29: The tracking performance (top) and tracking error (bottom) of HVAC 

system for Nelder-Mead method (red line: filtered feedback, blue line: reference 

trajectory): (a) The temperature of thermal space; (b) The humidity ratio 
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(a) 

(b) 

Figure 5.30: The calculating time of predictive control for HVAC system: (a) 

Quasi-Newton Method; (b) Nelder-Mead Method 
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The comparsion between the two algorithms are given in Table 5.11. Like previous 

work on SISO benchmark plant, two different methods were applied to solve the cost 

function minimization problem. The results show that both methods can solve the 

problem in a short time periord. The system outputs are able to track the desired 

reference trajectories with very small tracking error.  

 

Table 5.11: The control results for HVAC system with normalized noise amplitude 

between [-0.02, 0.02] for the first output and [-0.08, 0.08] for the second output 

 CH rRMSE 

tracking  

MAE tracking  SNRB 

(dB) 

SNRF 

(dB) 

AvgT 

(ms) 

MaxT 

(ms) 

QN 1 0.001702 0.1029 ℉ 29.26 30.54 5.978 81.96 

2 0.004348 0.000033 lb/lb 15.53 20.72 

NM 1 0.001689 0.1023 ℉ 29.31 30.54 5.552 69.79 

2 0.004864 0.000036 lb/lb 15.61 20.24 

 

Both Quasi-Newton method and Nelder-Mead method have almost the same control 

results for the HVAC system with small noise. Further simulations are done by changing 

the amplitude of random noise. The other conditions for simulations stay the same. The 

numerical results are given in Tables from 5.12 to 5.15. The HVAC system cannot be 

stabilized if the amplitude of normalized noise is larger than 0.5. By using Quasi- 
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Newton method with normalized noise amplitude between [-0.45, 0.45], the feedback of 

the system, tracking performance, and control signal are shown in Figs. from 5.31 to 

5.33.  

Table 5.12: The control results for HVAC system with normalized noise amplitude 

between [-0.05, 0.05] 

 CH rRMSE 

tracking  

MAE tracking  SNRB 

(dB) 

SNRF 

(dB) 

AvgT 

(ms) 

MaxT 

(ms) 

QN 1 0.001881 0.1255 ℉ 21.33 26.41 3.394 31.72 

2 0.003504 0.000026 lb/lb 19.60 24.67 

NM 1 0.002092 0.144 ℉ 21. 10 25.73 3.733 41.18 

2 0.003259 0.000025 lb/lb 20.91 24.86 

 

Table 5.13: The control results for HVAC system with normalized noise amplitude 

between [-0.15, 0.15] 

 CH rRMSE 

tracking  

MAE tracking  SNRB 

(dB) 

SNRF 

(dB) 

AvgT 

(ms) 

MaxT 

(ms) 

QN 1 0.005425 0.3654 ℉ 11.89 16.96 3.479 505.1 

2 0.007734 0.000057 lb/lb 10.25 15.30 

NM 1 0.005963 0.4162 ℉ 11.88 16.42 3.872 523.6 

2 0.008805 0.000067 lb/lb 11.70 15.53 
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Table 5.14: The control results for HVAC system with normalized noise amplitude 

between [-0.25, 0.25] 

 CH rRMSE 

tracking  

MAE tracking  SNRN

(dB) 

SNRF

(dB) 

AvgT 

(ms) 

MaxT 

(ms) 

QN 1 0.009087 0.6124 ℉ 7.596 12.64 5.401 695.0 

2 0.01269 0.000094 lb/lb 6.062 11.07 

NM 1 0.009959 0.6961 ℉ 7.556 12.30 3.872 523.6 

2 0.01461 0.000111 lb/lb 7.531 11.37 

 

Table 5.15: The control results for HVAC system with normalized noise amplitude 

between [-0.45, 0.45] 

 CH rRMSE 

tracking  

MAE tracking  SNRN 

(dB) 

SNRF 

(dB) 

AvgT 

(ms) 

MaxT 

(ms) 

QN 1 0.01653 1.115 ℉ 2.943 7.894 29.25 696.2 

2 0.02404 0.000181 lb/lb 1.661 6.548 

NM 1 0.01801 1.264 ℉ 3.467 7.986 33.59 694.4 

2 0.02650 0.000203 lb/lb 3.357 7.118 
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(a) 

(b) 

Figure 5.31: The HVAC system feedback (top) and the filtered feedback (bottom) of 

Quasi-Newton method with normalized noise amplitude between [-0.45, 0.45]: (a) The 

temperature of thermal space; (b) The humidity ratio 
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(a) 

(b) 

Figure 5.32: The tracking performance (top) and tracking error (bottom) of HVAC 

system for Quasi-Newton method with noise amplitude between [-0.45, 0.45] (red line: 

filtered feedback, blue line: reference trajectory): (a) The temperature of thermal space; 

(b) The humidity ratio 
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Figure 5.33: The close-loop HVAC system control signal for Quasi-Newton method 

with normalized noise amplitude between [-0.45, 0.45] 

 

 From Tables 5.11 to 5.15, it can be seen that the performance of the controller is 

influenced by the amplitude of noise. The control effect becomes worse if the noise is 

larger. The control using Quasi-Newton method usually has a better tracking perfor- 

mance than the one using Nelder-Mead method. 

 If the HVAC system is acted upon by non-design thermal loads, the performance of 

the GPC is compared with the controller in [1]. The value of the loads for this simula- 

tion are 𝑄𝑜 = 350000 btu/hr and 𝑀𝑜 = 196 lb/lb. The initial values of the state 

variables are set to 𝑇3 = 75, 𝑇2 = 55,  𝑊3 = 0.0092 
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(a)  

(b) 

Figure 5.34: The performance of the GPC with non-design thermal loads (red line: 

feedback, blue line: reference trajectory): (a) The temperature of thermal space; (b) The 

humidity ratio 
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The time responses shown Fig. 5.34 indicate that the GPC minimizes the effect of 

the disturbances. The offsets present at the outputs are about 1.15℉ for the room 

temperature and −1.6 × 10−5 lb/lb for room humidity. These offsets are about three 

times smaller than the controller without disturbance rejection [1] and similar to the 

disturbance rejection controller [1].  
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Chapter 6 

Conclusions and Future Work 

6.1  Conclusions 

A GPC based on RBF-NN is designed to control multi-input multi-output nonlinear 

stochastic systems. The fundamental issues are cost function minimization and system 

modeling, identification. Three different methods of solving the optimization problems 

are used. The modified gradient descent method is the simplest method, which is a 

normalized original gradient descent method. This modified gradient descent method 

converges faster than the original one. It can be used for solving a simple optimization 

problem. However, in a complex problem, it requires long calculation time before the 

problem is solved, which is inefficient.  

 The Quasi-Newton method is based on Newton’s method, but the Hessian matrix 

does not need to be calculated. The approximation of the inverse Hessian matrix is 

updated by certain updating rules, which usually is the BFGS method. This Quasi- 

Newton method has a better convergence rate, and is used for multi-dimensional opti- 

mization problems. 

 Another method introduced is Nelder-Mead method. Unlike gradient descent 
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method and Quasi-Newton method, Nelder-Mead method is a gradient free method. The 

biggest advantage of this method is that it can be easily implemented. Instead of finding 

the functional derivatives, the optimization problems are solved by repeating some 

simplex searches. This method is commonly used for minimizing problems with 

non-differentiable functions. However, this method is inefficient for high-dimensional 

problems. 

 An RBF-NN has been presented by using gradient descent for learning algorithm, 

and a generalized predictive controller is presented by using Quasi-Newton method and 

Nelder-Mead method for cost function minimization algorithms. 

 The simulations for tracking control of a SISO benchmark plant and a MIMO 

HVAC system have been conducted. Different amplitude noise is applied to test the 

stability of the closed-loop systems. 

 The results have shown that the designed controller based on both algorithms 

perform similarly when the noise is small. However, when the larger noise is added to 

the system, the controller based on Nelder-Mead method has a worse tracking per- 

formance than the other one. 

6.2  Future work 

The simulation results are satisfactory based on given functional nonlinear 

stochastic systems. However, the designed generalized predictive controller based on 

RBF-NN has not been implemented on experimental system yet, the following work 



 

84 
 

should be done in the future: (1) Test the controller on a one-DC-motor system for 

tracking control. (2) Implement the controller on a parallel robot system. (3) Apply other 

predictive control methods to further improve the control performances. 
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