
RBF NEURAL NETWORK BASED GENERALIZED
PREDICTIVE CONTROL FOR NONLINEAR

STOCHASTIC SYSTEMS

by

Qi Xin

Supervised by: Dr. Xiaoping Liu

Co-supervised by: Dr. Deli Li

A thesis submitted to the faculty of graduate studies

Lakehead University

in partial fulfillment of the requirements for the degree of

Masters of Science in Control Engineering

Department of Electrical Engineering

Lakehead University

March 2013

Lakehead
U N I V E R S I T Y

OFFICE OF GRADUATE STUDIES

NAME OF STUDENT:

DEGREE AWARDED:

ACADEMIC UNIT:

TITLE OF THESIS:

This thesis has been prepared

under my supervision

and the candidate has complied

with the Master's regulations.

Signature of Supervisor

Date

Qi Xin

MScEng

Faculty of Engineering

RBF Neural Network Based Generalized Predictive
Control for Nonlinear Stochastic Systems

iii

Acknowledgements

This thesis is a result of two year work. It would be impossible without the people who

accompanied and supported me.

I would like to express my sincere thanks and deepest gratitude to my supervisor Dr.

Xiaoping Liu for his guidance. His encouragement, suggestion and patience inspired me a

lot during the past two years. I am glad to work under his supervision. I am grateful to my

co-supervisor Dr. Deli Li for his help.

I am thankful to Dr. Tayebi and Dr. Uddin for providing a solid background for my

studies. I would like to thank Dr. Kefu Liu, Dr. Krishnamoorthy Natarajan and Dr. Wilson

Wang for their valuable suggestions.

Finally, I would like to thank Dr. Jian Wang and my parents for many reasons, which

allow me to complete this work.

iv

Contests

List of Tables vii

List of Figures ix

Abstract xii

1 Introduction ...1

1.1 Generalized Predictive Control ..1

1.2 RBF Neural Network ...2

1.3 Literature Review...5

1.4 Thesis Overview ..7

2 Optimization Problem ..9

2.1 Gradient Descent Method ..10

2.2 Quasi-Newton Method ...13

2.3 Line Search ..14

2.4 Nelder-Mead Method ...18

3 Modeling ..23

3.1 NARMAX Model ..23

v

3.2 Modeling by RBF Neural Networks ..24

3.3 Multistep-Ahead Predictive Model ..27

4 Design of Generalized Predictive Control ..29

4.1 Cost Function ...29

4.2 Cost Function Minimization ..32

4.2.1 Nelder-Mead Algorithm ..32

4.2.2 Quasi-Newton Algorithm ..33

5 Simulation Results ..38

5.1 SISO Benchmark Simulation ...38

5.1.1 The NN Model Training for SISO Plant ...38

5.1.2 The NN Model Validation for SISO Plant ..43

5.1.3 The Predictive Control for SISO Plant ...46

5.2 HVAC System Simulation ...55

5.2.1 The NN Model Training for HVAC System ...59

5.2.2 The NN Model Validation for HVAC System ...64

5.2.3 The Predictive Control for HVAC System ...67

6 Conclusions and Future Work ...82

5.1 Conclusions ..82

vi

5.2 Future Work ...83

References 85

vii

List of Tables

5.1 Control results for SISO benchmark plant with cutoff frequency 3 Hz 52

5.2 Control results for SISO plant with cutoff frequency 0.5 Hz 53

5.3 Control results for SISO plant with cutoff frequency 8 Hz 53

5.4 Control results for SISO plant with cutoff frequency 15 Hz 53

5.5 Control results for plant with noise amplitude between [-0.15, 0.15]54

5.6 Control results for plant with noise amplitude between [-0.25, 0.25]54

5.7 Control results for plant with noise amplitude between [-0.40, 0.40]55

5.8 HVAC system variables and parameters ...57

5.9 Simulation conditions of HVAC plant ...58

5.10 The results of neural network model for validation signal 67

5.11 The control results for HVAC system with normalized noise amplitude between

[-0.02, 0.02] for the first output and [-0.08, 0.08] for the second output 74

5.12 The control results for HVAC system with normalized noise amplitude between

[-0.05, 0.05]..75

viii

5.13 The control results for HVAC system with normalized noise amplitude between

[-0.15, 0.15]..75

5.14 The control results for HVAC system with normalized noise amplitude between

[-0.25, 0.25]..76

5.15 The control results for HVAC system with normalized noise amplitude between

[-0.45, 0.45]..76

ix

List of Figures

1.1 The RBF neural network architecture ..3

2.1 Gradient descent direction ...11

2.2 The effects of different fixed step size for gradient descent method 12

2.3 Reflection ...19

2.4 Expansion ...20

2.5 Contraction ...21

2.6 Reduction ...21

3.1 Block diagram of nonlinear stochastic system ...23

3.2 The architecture of d-step-ahead predictive model ..28

4.1 The block diagram of RBF-NN based GPC ..30

5.1 The random input signal applied to the plant ...40

5.2 Plant response and filtered response to random input signal 40

5.3 The training result after 10000 iterations ...41

5.4 The error between outputs and the plant and model ..41

x

5.5 The centers of the first neuron in input layer ...42

5.6 The widths of the first neuron in input layer ..42

5.7 The weights of output layer ...43

5.8 Plant response and filtered response to sinusoidal input signal 44

5.9 Outputs of the plant and the NN model ...45

5.10 The error between the outputs of the plant and NN model 45

5.11 The feedback and filtered feedback ...47

5.12 The control signal ..48

5.13 The tracking performance ..49

5.14 The tracking errors ...50

5.15 The calculation time ...51

5.16 Model of The HVAC System ..56

5.17 The input signal for neural network training ...59

5.18 The HVAC system responses and filtered responses for training 60

5.19 The training results for HVAC system ..62

5.20 The centers of the first neuron in the input layer for HVAC training 63

5.21 The widths of the first neuron in the input layer for HVAC training 63

5.22 The weights of the first neuron in output layer for HVAC training 64

xi

5.23 The HVAC system response and filtered response for validation 65

5.24 The NN model response and error for validation ..66

5.25 The HVAC system feedback and the filtered feedback of Quasi-Newton method

..68

5.26 The HVAC system feedback and the filtered feedback of Nelder-Mead method

..69

5.27 The control signal of HVAC system ..70

5.28 The tracking performance and tracking error of HVAC system for Quasi-Newton

method ..71

5.29 The tracking performance and tracking error of HVAC system for Nelder-Mead

method ..72

5.30 The calculating time of predictive control for HVAC system 73

5.31 The HVAC system feedback and the filtered feedback of Quasi-Newton method

with normalized noise amplitude between [-0.45, 0.45] 77

5.32 The tracking performance and tracking error of HVAC system for Quasi-Newton

method with noise amplitude between [-0.45, 0.45] ..78

5.33 The close-loop HVAC system control signal for Quasi-Newton method with

normalized noise amplitude between [-0.45, 0.45] ..79

5.34 The performance of the GPC with non-design thermal loads 80

xii

Abstract

Almost all practical systems are nonlinear, which are subject to disturbances and

contain uncertainties. In most cases, disturbances and uncertainties can be modeled as

stochastic processes, which make it necessary to develop controllers for nonlinear

stochastic systems.

Due to the disturbances and uncertainties, it is difficult to get the exact model of the

nonlinear stochastic systems. Neural network techniques are found to have advantages in

system identification. Any unknown function can be approximated to any degree of

accuracy by a multiple-layer neural network.

In addition, time delay occurs in many real systems. One of the most effective

control methods to reduce the impact of delay on the closed-loop systems is predictive

control, which is obtained by predicting the future control to minimize the errors.

A RBF Neural Network based Generalized Predictive Controller (NNGPC) is

introduced to control nonlinear stochastic systems. The input-output relationship of a

nonlinear stochastic system is approximated by an RBF neural network. A learning

algorithm is developed to train the RBF neural network by updating the neural network

parameters, such as centers, widths, and weights, either on-line or off-line. The

parameters are updated using the modified gradient decent method to minimize a cost

xiii

function, which is a quadratic function of errors between the real system output and the

output from the neural network. Based on the model obtained from the neural network

learning algorithm, a multistep-ahead generalized predictive control algorithm is

designed to minimize a cost function, which is constructed using future control signals

and errors between future references and future outputs estimated from the model. The

optimization problem involved in the predictive control is solved using Nelder-Mead

method and Quasi-Newton method. The comparison between these two methods is made

using simulation results.

1

Chapter 1

Introduction

1.1 Generalized Predictive Control

Model Predictive Control (MPC) has established itself over the past several decades

as an industrially important form of advanced control. Since the publication presented by

Richalet et al. in 1976 [27] and the paper published in 1978 [28], Model Predictive

Heuristic Control (MPHC) was the first description of MPC control applications. Later in

1980 and 1982 Cutler and Ramaker presented Dynamic Matrix Control (DMC) [11] [26],

which was an unconstrained multivariable control algorithm. The MPC technology has

gained widespread acceptance in academia and in industry. MPC displays improved

performance because the process model allows current computations to consider future

dynamic events. This provides benefit when controlling processes with large dead times

or non-minimum phase behavior. MPC allows for the incorporation of hard and soft

constraints directly in the objective function. In addition, the algorithm provides a

convenient architecture for handling multivariable control due to the superposition of

linear models within the controller.

Another form of MPC that has rapidly gained acceptance in the control community is

Generalized Predictive Control (GPC) [10], which was introduced in 1987 by Clarke,

2

Mohtadi, and Tuffs. GPC is a time-domain multi-input-multi-output (MIMO) predictive

control algorithm. It employs a Controlled Auto-Regressive and Integrated Moving

Average model (CARIMA) of the process which allows a rigorous mathematical

treatment of the predictive control paradigm. The GPC performance objective is

minimized via recursion on the Diophantine identity.

1.2 RBF Neural Network

A Neural Network (NN) is composed of interconnecting artificial neurons, which

uses a mathematical or computational model for information processing [32]. One

classical type of NN is the recurrent Hopfield net. Radial Basis Function Neural Network

(RBF-NN) is a single hidden layer NN with radial basis functions as activation functions.

RBF-NN was first proposed by Moody and Darken in 1988 [22]. The original RBF

required that there be as many RBF centers as data points, which is rarely practical

because the number of data points is usually very large. Broomhead and Lowe [4]

removed the strict interpolation restriction. Their interpretation of the RBF-NN allows the

use of only several connections that can affect output of network in some local range of

input space. Thus, RBF-NN has faster rates of convergence than other feed forward NNs.

Fig. 1.1 shows the architecture of RBF-NN, which has an input layer, a hidden layer

and an output layer. The neurons in the hidden layer contain Gaussian transfer functions

whose outputs are inversely proportional to the distance from the center of the neuron.

The input into an RBF-NN is nonlinear while the output is linear. Due to their nonlinear

4

values from the input layer, a hidden neuron computes the Euclidean distance of the test

case from the neuron’s center point and then applies the RBF kernel function to this

distance using the width values. The resulting value is passed to the output layer.

3. Output layer - The value coming out of a neuron in the hidden layer is multiplied by

a weight associated with the neuron and passed to the summation which adds up the

weighted values and presents this sum as the output of the network.

In order to use a RBF-NN, it is necessary to specify the hidden unit activation function,

the number of processing units, a criterion for modeling a given task, and a training

algorithm for finding the parameters of the network. Finding the RBF weights is called

network training. The proposed training algorithm is aimed at finding a least mean square

estimator from the models defined. The following parameters are determined by the

training process:

1. The number of neurons in the hidden layer.

2. The coordinates of the center of each hidden-layer RBF function.

3. The width (radius) of each RBF function in each dimension.

4. The weights applied to the RBF function outputs as they are passed to the output

layer.

For a set of input-output pairs, called training data, the network parameters are

optimized in order to fit the network outputs to the given inputs. The fit is evaluated by

means of a cost function, usually assumed to be the mean square error. After training, the

RBF-NN can be used with data whose underlying statistics is similar to that of the

5

training set. On-line training algorithms adapt the network parameters to the changing

data statistics. RBF-NNs have been successfully applied to a large diversity of

applications including interpolation, chaotic time-series modeling, system identification,

control engineering, electronic device parameter modeling, channel equalization, speech

recognition, image restoration, shape-from-shading, 3-D object modeling, motion

estimation and moving object segmentation, data fusion, etc. [12] [31].

1.3 Literature Review

Since NNs work successfully as model identifiers, they can be used to model complex

nonlinear systems [23]. Thus, nonlinear predictive control can be applied for controlling

real process [18].

Lazar and Pastravanu [19] used a recurrent NN with a single hidden layer as plant

model and predictor for nonlinear systems. For the minimization of the cost function, the

Matlab’s Optimal Toolbox functions fminunc and fmincon were used to handle

unconstrained and constrained optimization problems, respectively.

Lu and Tsai [21] developed NN predictive control for a class of MIMO nonlinear

systems with unknown time-delay, in which the neural network was trained by the

gradient descent method. The NN nonlinear predictive control law was introduced to

minimize the cost function of the error between the reference signal and predicted signal.

In [14] a predictive control algorithm based on Tanaka-Sugeno fuzzy cerebellar model

articulation controller (T-S-FCMAC) NN is presented. T-S-FCMAC was used to build the

6

predictive model for the system, and the golden section method was adopted for

searching the solution for a quadratic cost function.

In [35] Wang and Xu used a recurrent NN to approximate nonlinear time-delay system

as parallel model, which is used to estimate future model predictive output by using input

at current time, input before current time, model output at current time and before. Real

time recurrent learning algorithm was used to adjust parameters of parallel NN model.

Gradient decent algorithm was applied to minimize the quadratic cost function of the

predictive controller.

Chidrawar and Patre [9] introduced a neural generalized predictive control with

Newton-Raphson as minimization algorithm. Newton-Raphson method required Jacobian

and Hessian matrix computation.

In [15] Hu used a Modified Elman Neural Network (MENN) based generalized

predictive control to improve the predictive and control precision. MENN is a kind of

dynamical recurrent NNs, which is a three-layer network with the addition of a set of

"context units" connecting from the hidden layer. The context units always maintain a

copy of the previous values of the hidden units at each time step, allowing the network to

improve the predictive and control precision. The dynamical back propagation algorithm

was used to adjust the MENN parameters. The cost function was minimized by using

gradient descent optimization algorithm.

In [36], a hybrid controller blended the neural predictive and fuzzy logic controllers

was designed. The neural predictive controller worked in parallel with fuzzy logic

7

controller adjusting the output of the predictive controller. In this approach, the control

output of the hybrid controller was the average output of neural predictive and fuzzy

control.

However, the multi-layered structure and slow convergence via the use of the gradient

descent algorithm with fixed learning rates made it difficult to guarantee a good

performance for controlling the real process. On the other hand, as justified by the high

convergence rate, Newton-Raphson method is computationally costly, making NGPC

inefficient for complex nonlinear systems.

1.4 Thesis Overview

The research objectives are to study the design of GPC based on RBF-NNs for

nonlinear stochastic systems. Several optimization methods are used to improve the

performance of the GPC design. The efficiency and performance of the proposed GPC

was tested by simulations on two different nonlinear stochastic systems. Particularly, the

proposed design method is applied to the system of Heating, Ventilating, and Air

Conditioning (HVAC). The thesis consists of six chapters. A general background on

NNGPC is discussed in the first chapter. The second chapter focuses on solving the

optimization problems. In this chapter, several different methods are discussed. Chapter 3

presents one modeling method for the nonlinear stochastic system by using RBF-NN.

Design of RBF-NNGPC for multi-input multi-output (MIMO) nonlinear stochastic

system is given in Chapter 4. Chapter 5 provides the simulation results to illustrate

8

control performance of the designed controller. Different optimization algorithms are

used to minimize the cost function. Chapter 6 concludes the thesis by comparing the

simulation results based on different plants and different optimization algorithms and

presents some proposals for future work.

9

Chapter 2

Optimization Problem

The optimization problem is the main concept for RBF-NN training and predictive

controller. Many algorithms are used for solving optimization problems [25]. The

gradient-based method is one of them.

We define a multivariable function𝐸(𝜃), which has the input 𝜃 = [𝜃1, 𝜃2,⋯ ,𝜃𝑛]𝑇.

An algorithm is applied to explore the input space efficiently, so that the optimal

parameter 𝜃∗ can be found by minimizing 𝐸(𝜃). Let 𝜃𝑘 denote parameters in 𝑘th

iteration, the parameters 𝜃𝑘+1 in the next iteration can be formulated as

𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑝𝑘, 𝑘 = 1,2,3,⋯ (2.1)

where 𝑝𝑘 is the search direction, α is some positive step size regulating to what extent to

proceed in that direction, 𝑘 denotes the current iteration number. The 𝜃𝑘 is intended to

converge to the optimal value 𝜃∗.

First, we determine the direction 𝑝𝑘, then we calculate the step size α. The next

step parameter 𝜃𝑘+1 should satisfy Equation (2.2).

𝐸(𝜃𝑘+1) = 𝐸(𝜃𝑘 + 𝛼𝑝𝑘) < 𝐸(𝜃𝑘) (2.2)

The optimization problems can be solved by using gradient-based methods, such

as Newton method, Quasi-Newton method, gradient descent method, which require to

10

compute gradient. They can be solved by using gradient-free method, such as Nelder-

Mead method.

2.1 Gradient Descent Method

The gradient descent method, also called steepest descent method, is one of the

oldest methods for finding the local minima in multidimensional input functions [25]. If

the function 𝐸(𝜃) is defined and differentiable in a neighborhood of a point 𝜃, the local

minima can be found from 𝛼 in a direction of the negative gradient of 𝐸(𝜃) at 𝛼. This

method is most frequently used.

The gradient of a differentiable function 𝐸:𝑅𝑛 → 𝑅 at 𝜃 is the vector of first

derivatives of 𝐸, denoted as 𝑔

𝑔(𝜃) = 𝛻𝛻(𝜃) ≜ �𝜕𝜕(𝜃)
𝜕𝜃1

, 𝜕𝜕(𝜃)
𝜕𝜃2

,⋯ , 𝜕𝜕(𝜃)
𝜕𝜃𝑛

�
𝑇
 (2.3)

Equation (2.1) can be changed into Equation (2.4) if we chose the search direction

𝑝𝑘 as −g(θ),

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛼(𝜃𝑘) (2.4)

The negative steepest descent direction –𝑔, which is computed from 𝜃𝑘, points to

the locally steepest downhill direction. However, it may not point to the global minimum

point 𝜃∗, as shown in Fig. 2.1.

The basic idea of gradient descent method is to find a value of 𝜃𝑘+1 that satisfies

the following:

𝑔(𝜃𝑘+1) = 𝜕𝜕(𝜃)
𝜕𝜕

|𝜃=𝜃𝑘+1 = 0 (2.5)

11

Equation (2.5) is a necessary condition for a given objective function 𝐸(𝜃) to

reach its stationary point. In practice, however, it is difficult to solve Equation (2.5)

analytically. For minimizing the objective function, the descent procedures are typically

repeated until one of the following stopping criteria is satisfied:

Figure 2.1: Gradient descent direction

1. The objective function value is sufficiently small;

2. The length of the gradient vector 𝑔 is smaller than a specified value;

3. The specified computing time is exceeded.

In the gradient descent method, if we use a small fixed step size 𝛼, the magnitude

12

of the step 𝛼𝛼 in Equation (2.4) automatically changes at each iteration due to different

gradients of 𝑔. The convergence rate will be slow if 𝑔 tends to be infinitesimally small.

In this case, the minimization process is inefficient. On the other hand, if we chose a large

step size, the gradient descent has a zigzag trajectory, and oscillatory behavior makes the

search unstable when step size is too large. The effects of different fixed step sizes for

gradient descent method are shown in Fig. 2.2.

Figure 2.2: The effects of different fixed step size for gradient descent method

A different version of gradient descent method can be obtained by a small change of

Equation (2.4),

𝜃𝑘+1 = 𝜃𝑘 − 𝜅 𝑔(𝜃𝑘)
||𝑔(𝜃𝑘)||

 (2.6)

where 𝜅 is called the actual step size, which indicates the Euclidean distance of the

transition from 𝜃𝑘 to 𝜃𝑘+1. This modified gradient descent method with a fixed 𝜅

always makes the same strides nomatter how steep the slope is, which is more efficient

than the original method [16].

13

2.2 Quasi-Newton Method

The descent direction can also be determined by using second derivatives of

function 𝐸 if available, as in Newton method, which consumes more computation power.

However, Quasi-Newton methods require only the gradient of the objective function, as

in gradient descent method. By measuring the changes in gradients, the inverse of

Hessian matrix is approximated. Since second derivatives are not required, Quasi-Newton

methods are more efficient than Newton’s method. Since introduced in 1970, Broyden-

Fletcher-Goldfarb-Shanno(BFGS) method becomes one of the most popular methods of

this class [16].

The approximated quadratic form of function 𝐸 can be expressed by second order

Taylor series expansion

𝐸(𝜃𝑘+1) ≈ 𝐸(𝜃𝑘) + 𝑔𝑇(𝜃𝑘+1 − 𝜃𝑘) + 1
2

(𝜃𝑘+1 − 𝜃𝑘)𝑇𝐻𝑘(𝜃𝑘+1 − 𝜃𝑘) (2.7)

𝐻 is the Hessian matrix, which is a square matrix of second derivatives of function

𝐸.

Differentiating Equation (2.7) with respect to (𝜃𝑘+1 − 𝜃𝑘),

𝐻𝑘(𝜃𝑘+1 − 𝜃𝑘) = 𝑔𝑘+1 − 𝑔𝑘 (2.8)

This equation indicates that the Hessian matrix 𝐻 can be approximated by

(𝜃𝑘+1 − 𝜃𝑘) and 𝑔𝑘+1 − 𝑔𝑘,

(𝜃𝑘+1 − 𝜃𝑘) = 𝐻𝑘−1(𝑔𝑘+1 − 𝑔𝑘) (2.9)

Define ∆𝜃𝑘 = 𝜃𝑘+1 − 𝜃𝑘, and ∆𝑔𝑘 = 𝑔𝑘+1 − 𝑔𝑘. Then, Equation (2.9) can be

14

rewritten as,

∆𝜃𝑘 = 𝐻𝑘−1∆𝑔𝑘 (2.10)

Let us now suppose that the search direction has the form,

𝑝𝑘 = 𝐻𝑘−1𝑔𝑘 (2.11)

Then, in the new iteration, Equation (2.1) becomes

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝑝𝑘

where the initial 𝐻0 is chosen as 𝐼, 𝐻𝑘 is an approximation to the Hessian. Instead of

computing 𝐻𝑘 at every iteration, the inverse of 𝐻𝑘 is updated at every iteration by a

Quasi-Newton updating formula defined by Equation (2.12), which is called BFGS

formula.

𝐻𝑘+1−1 = 𝐻𝑘−1 +
�(𝛼𝑘𝑝𝑘)𝑇∆𝑔𝑘+∆𝑔𝑘

𝑇𝐻𝑘
−1∆𝑔𝑘��(𝛼𝑘𝑝𝑘)(𝛼𝑘𝑝𝑘)𝑇�

((𝛼𝑘𝑝𝑘)𝑇∆𝑔𝑘)2 −

𝐻𝑘
−1∆𝑔𝑘(𝛼𝑘𝑝𝑘)𝑇+(𝛼𝑘𝑝𝑘)𝐻𝑘

−1∆𝑔𝑘
𝑇𝐻𝑘

−1

(𝛼𝑘𝑝𝑘)𝑇∆𝑔𝑘
 (2.12)

When 𝑝𝑘 is defined by Equation (2.10) and 𝐻𝑘 is positive definite, we have

−𝑔𝑘𝑇𝑝𝑘 = −𝑔𝑘𝑇𝐻𝑘−1𝑔𝑘 < 0 (2.13)

2.3 Line Search

For a general function 𝐸, the ideal choice would be the global minimizer of the

univariate function 𝜙, which is defined by

𝜙(𝛼) = 𝐸(𝜃𝑘 + 𝛼𝛼) (2.14)

Analytically solving 𝜙′(𝛼) = 0 will find the local minima, but in general, it is

often impossible to identify this point. To find even a local minimizer to moderate

15

precision generally requires too many evaluations of the objective function 𝐸 and

possibly the gradient 𝑔. That is, the univariate function 𝜙(𝛼) should be minimized on

the line determined by the current point 𝜃𝑘 and the direction 𝑝. This is accomplished by

line search methods.

The line search algorithms try out a sequence of candidate values for 𝛼, stopping to

accept one of these values when certain conditions are satisfied. The line search is done in

two stages: A bracketing phase finds an interval containing desirable step lengths, and a

bisection or interpolation phase computes a good step length within this interval.

In order to satisfy Equation (2.2), suitable step length 𝛼𝑘 will be chosen by an

inexact line search.

The process of determining 𝛼∗ that minimizes 𝜙(𝛼) is achieved by searching on

the line for the minimum.

If 𝜙(𝛼) and 𝜙′(𝛼) are available, then the second derivative can be approximated

by

𝜙"(𝛼𝑘) = 𝜙′(𝛼𝑘)−𝜙′(𝛼𝑘−1)
𝛼𝑘−𝛼𝑘−1

 (2.15)

The Newton method is used to determine 𝛼𝑘+1

𝛼𝑘+1 = 𝛼𝑘 −
𝜙′(𝛼𝑘)

𝜙′�𝛼𝑘�−𝜙′�𝛼𝑘−1�
𝛼𝑘−𝛼𝑘−1

 (2.16)

A popular inexact line search condition stipulates that 𝛼𝑘 should first of all give

sufficient decrease in the objective function 𝐸, as measured by

𝐸(𝜃𝑘 + 𝛼𝑝𝑘) ≤ 𝐸(𝜃𝑘) + 𝑐1𝛼𝑔𝑘𝑇𝑝𝑘 (2.17)

16

For some constant 𝑐1 ∈ (0,1), the reduction in E should be proportional to both the

step length 𝛼 and the directional derivative 𝑔𝑘𝑇𝑝𝑘.

The sufficient decrease condition is not enough by itself to ensure that the algorithm

makes reasonable progress. To rule out unacceptably short steps, a second requirement,

called the curvature condition, is introduced, which requires 𝛼 satisfying

𝑔(𝜃𝑘 + 𝛼𝑝𝑘)𝑇𝑝𝑘 ≥ 𝑐2𝑔𝑘𝑇𝑝𝑘 (2.18)

For some constant 𝑐2 ∈ (0,1), the inequality (2.18) ensures that the slope has been

reduced sufficiently. In practice, 𝑐1 is usually chosen to be quite small while 𝑐2 is much

larger; for quasi-Newton methods, Nocedal [25] gives example values of 𝑐1 = 10−4 and

𝑐2 = 0.9.

The sufficient decrease condition (2.17) and curvature condition (2.18) are known

collectively as the Wolfe conditions [25].

However, a step length may satisfy the Wolfe conditions without being particularly

close to a minimizer of 𝜙. We can modify the curvature condition to force 𝛼 to lie in at

least a broad neighborhood of a local minimizer or stationary point of 𝜙. The strong

Wolfe conditions require 𝛼𝑘 satisfying

|𝑔(𝜃𝑘 + 𝛼𝑝𝑘)𝑇𝑝𝑘| ≤ |𝑐2𝑔𝑘𝑇𝑝𝑘| (2.19)

(2.17) and (2.19) together form the so-called strong Wolfe conditions [25], and

force 𝛼 to lie close to a critical point of 𝜙.

In practice, it is nearly impossible to obtain the exact minimum point of the

function 𝜙 by the aforementioned methods of line searches. A reasonable stopping

17

criterion must be established to terminate the search procedures before they have

converged.

The only difference between the Wolfe and strong Wolfe conditions is that the

strong Wolfe conditions no longer allow the derivative 𝜙′(𝛼𝑘) to be too large. Hence,

we exclude points that are far from stationary points of 𝜙.

It is not difficult to prove that there exists a step length 𝛼 that satisfies the Wolfe

conditions (2.17) and (2.18) for every function 𝐸 which is smooth and bounded below

[25]. Since 𝜙(𝛼) = 𝐸(𝜃𝑘 + 𝛼𝑝𝑘) is bounded below for all 𝛼 > 0 and since 𝑐1 ∈ (0,1),

the line 𝑙(𝛼) = 𝐸(𝜃𝑘) + 𝑐1𝛼𝑔𝑘𝑇𝑝𝑘 must intersect the graph of 𝜙(∙) at least once. Let

𝛼𝑠 > 0 be the smallest intersecting value of 𝛼, we have,

𝐸(𝜃𝑘 + 𝛼𝑠𝑝𝑘) = 𝐸(𝜃𝑘) + 𝛼𝑠𝑐1𝑔𝑘𝑇𝑝𝑘 (2.20)

The sufficient decrease condition (2.18) clearly holds for all step lengths less than

𝛼𝑠.

By the mean value theorem, there exists 𝛼𝑚 ∈ (0,𝛼𝑠) such that

𝐸(𝜃𝑘 + 𝛼𝑠𝑝𝑘) − 𝐸(𝜃𝑘) = 𝛼𝑠𝑔((𝜃𝑘 + 𝛼𝑚𝑝𝑘)𝑇)𝑝𝑘 (2.21)

By combining (2.19) and Equation (2.20), we obtain

𝑔(𝜃𝑘 + 𝛼𝑚𝑝𝑘)𝑇𝑝𝑘 = 𝑐1𝑔𝑘𝑇𝑝𝑘 > 𝑐2𝑔𝑘𝑇𝑝𝑘 (2.22)

since 𝑐1 < 𝑐2, and 𝑔𝑘𝑇𝑝𝑘 < 0, 𝛼𝑚 satisfies the Wolfe conditions (2.17) and (2.18), and

the inequalities hold strictly in both of the conditions. Hence function 𝐸 is continuously

differentiable since that we assume 𝐸 is smooth, there is an interval around 𝛼𝑚 for

which the Wolfe conditions hold. Moreover, since the term in the left-hand side of (2.22)

18

is negative due to 𝑝𝑘 < 0, the strong Wolfe conditions (2.19) hold in the same interval.

2.4 Nelder-Mead Method

Since published in 1965, the Nelder–Mead method or downhill simplex method [24]

or amoeba method is commonly used in nonlinear optimization problems. It is a type of

unconstrained nonlinear optimization method. This method is derivative-free for multi-

dimensional function optimization, which means this method does not need any func-

tional derivative information to solve the local minima for a given function. Instead, this

method relies exclusively on repeated evaluations of the objective function, and the sub-

sequent search direction after each evaluation follows certain heuristic guidelines.

The Nelder-Mead method maintains at each step a non-degenerate simplex, a

geometric figure in 𝑛 dimensions of nonzero volume that is the convex hull of 𝑛 + 1

vertices [17].

Considering the same 𝑛-dimensional function 𝐸(𝜃) as gradient descent method,

we use an initial simplex, which has 𝑛 + 1 points 𝜃1,𝜃2,⋯ ,𝜃𝑛, 𝜃𝑛+1 ∈ 𝑅𝑛, and the

corresponding set of function values at 𝐸𝑗 = 𝐸�𝜃𝑗� for 𝑗 = 1,2,⋯ ,𝑛, 𝑛 + 1. Then the

method repeatedly replaces the worst point with the new test point and so the technique

progresses.

Ordering: re-arrange the order of 𝐸𝑗to satisfy 𝐸1 ≤ 𝐸2 ≤ ⋯ ≤ 𝐸𝑛 ≤ 𝐸𝑛+1.

Centroid: let 𝜃𝑚 be the centroid of all points except 𝜃𝑛+1.

19

Figure 2.3: Reflection

Reflection: compute reflected point 𝜃𝑟 and its value 𝐸𝑟 as

𝜃𝑟 = 𝜃𝑚 + 𝛼(𝜃𝑚 − 𝜃𝑛+1)

𝐸𝑟 = 𝐸(𝜃𝑟) (2.23)

where 𝛼 is the reflection. Thus 𝜃𝑟 is on the line joining 𝜃𝑛+1 and 𝜃𝑚 as shown in Fig.

2.3. If 𝐸1 ≤ 𝐸𝑟 < 𝐸𝑛, accept 𝐸𝑟 and terminate the iteration, then obtain a new simplex

by replacing the worst point 𝜃𝑛+1 with the reflected point 𝜃𝑟.

Expansion: If the reflected point is the best point so far 𝐸𝑟 ≤ 𝐸1, define the expansion

point 𝜃𝑒 and its value 𝐸𝑒 as

𝜃𝑒 = 𝜃𝑚 + 𝛾(𝜃𝑚 − 𝜃𝑛+1)

𝐸𝑒 = 𝐸(𝜃𝑒) (2.24)

where 𝛾 is the expansion coefficient which is greater than unity. If 𝐸𝑒 < 𝐸𝑟, accept 𝜃𝑒

and terminate the iteration, then obtain a new simplex by replacing the worst point 𝜃𝑛+1

with the expanded point 𝜃𝑒. Otherwise (if 𝐸𝑒 ≥ 𝐸𝑟), accept 𝜃𝑟, terminate the iteration,

20

and obtain a new simplex by replacing the worst point 𝜃𝑛+1 with the expanded point 𝜃𝑟.

Figure 2.4: Expansion

Contraction: Define the contraction point 𝜃𝑐 and its value 𝐸𝑐 as

𝜃𝑐 = 𝜃𝑚 + 𝜌(𝜃𝑚 − 𝜃𝑛+1)

𝐸𝑐 = 𝐸(𝜃𝑐) (2.25)

where 𝜌 is the contraction coefficient. If the contracted point is better than the worst

point 𝐸𝑐 < 𝐸𝑛+1, accept 𝜃𝑐, terminate the iteration, and obtain a new simplex by

replacing the worst point 𝜃𝑛+1 with the expanded point 𝜃𝑐.

21

Figure 2.5: Contraction

Reduction: For all but the best point, replace the point with,

𝜃𝑗 = 𝜃1 + 𝜎(𝜃𝑗 − 𝜃1) for 𝑗 = 2,3,⋯ ,𝑛 + 1 (2.26)

where 𝜎 is shrink coefficient. Commonly, 𝛼 = 1, 𝛾 = 2, 𝜌 = −0.5 and 𝜎 = 0.5 are

used suggested by Nelder and Mead [24].

Figure 2.6: Reduction

 The iteration is repeated until the stopping criterion is met. The stopping criteria are

often composed of four different parts as follows:

22

Computation time: the process will stop when a specified iteration count is reached.

Optimization goal: the function value 𝐸(𝜃𝑘) is smaller than the desired goal value.

Minimal improvement: |𝐸(𝜃𝑘) − 𝐸(𝜃𝑘−1)| is smaller than a given value.

Minimal relative improvement: |𝐸(𝜃𝑘)−𝐸(𝜃𝑘−1)|
𝐸(𝜃𝑘−1) is smaller than a preset value.

23

Chapter 3

Modeling

3.1 NARMAX Model

In many cases the state variables of nonlinear stochastic systems (Fig. 3.1) are not

measurable. This kind of systems is often characterized by an input-output equation. The

Nonlinear Auto-Regressive Moving Average model with eXogenous input (NARMAX)

[3] [20], is a general representation of a nonlinear system which is described by a set of

nonlinear difference equations. The NARMAX model provides a unified solution for a

finitely realizable nonlinear system [2] [8]. Consider a nonlinear stochastic system

represented by NARMAX model,

Figure 3.1: Block diagram of nonlinear stochastic system

24

𝑦(𝑘) = 𝑓(𝑦(𝑘 − 1),⋯ , 𝑦(𝑘 − 𝑛),𝑢(𝑘 − 1 − 𝑑),⋯ ,𝑢(𝑘 − 1 −𝑚 − 𝑑),

𝑒(𝑘 − 1)⋯ , 𝑒(𝑘 − 𝑝)) + 𝑒(𝑘) (3.1)

where 𝑦(𝑘) ∈ 𝑅𝑛𝑛 𝑢(𝑘) ∈ 𝑅𝑛𝑛 represent the output vector and the input vector of the

Multi-Input Multi-Output (MIMO) nonlinear system at time 𝑘, 𝑒(𝑘) ∈ 𝑅𝑛𝑛 represent

zero mean white noise, 𝑛 𝑚, and 𝑝 are the orders of the output, input, and noise respec-

tively; 𝑑 is the time delay of the process; 𝑓(∙) is a nonlinear function. The input-output

relationship (3.1) is dependent upon the nonlinear function 𝑓(∙), and 𝑓(∙) is usually un-

known. For simplification without loss of generality, a special case of NARMAX model

is considered here which can be written as

𝑦(𝑘) = 𝑓(𝑦(𝑘 − 1),⋯ ,𝑦(𝑘 − 𝑛),𝑢(𝑘 − 1 − 𝑑),⋯ ,𝑢(𝑘 − 1 −𝑚 − 𝑑)) + 𝑒(𝑘)

(3.2)

3.2 Modeling by RBF NNs

The NARMAX represents stochastic system with finite order and can be readily

implemented by NNs [5] [7]. RBF-NNs are artificial NNs that use radial basis functions

as activation functions. Our aim is to use RBF-NNs to model nonlinear stochastic

systems described by (3.2).

Define 𝑝 = 𝑛 ∗ 𝑛𝑛 + (𝑚 + 1) ∗ 𝑛𝑛, and

𝑥(𝑘) = �𝑥1, 𝑥2,⋯ , 𝑥𝑝�
𝑇

= [𝑦(𝑘 − 1)𝑇 ,⋯ , 𝑦(𝑘 − 𝑛)𝑇 ,

𝑢(𝑘 − 1 − 𝑑)𝑇 ,⋯ ,𝑢(𝑘 − 1 − 𝑑 −𝑚)𝑇]𝑇 (3.3)

𝑥(𝑘) ∈ 𝑅𝑝, 𝑘 = 1,2,⋯ , 𝑆 is the kth input to the RBF-NN. S represents the number of

25

samples. The 𝑗th output of the neural network is described by,

𝑦�𝑗 = ∑ 𝑤𝑖𝑖𝜑𝑖�𝑥(𝑘)�ℎ
𝑖=1 𝑗 = 1,2,⋯ , 𝐿 (3.4)

where 𝑤𝑖𝑖 (𝑖 = 1,2,⋯ ,ℎ) is the weights between hidden layer and output layer, ℎ

denotes the number of cells in hidden layer. 𝜑𝑖(∙) is the activation function between

input layer and hidden layer chosen as

𝜑𝑖�𝑥(𝑘)� = 𝑒𝑒𝑒 �∑ �− (𝑥𝑎−𝑐𝑎𝑎)2

𝑠𝑎𝑎
2 �𝑎=𝑝

𝑎=1 � (3.5)

where 𝑐𝑖 ∈ 𝑅𝑝and 𝑠𝑖 ∈ 𝑅𝑝 are the center and width of Gaussian activation functions for

the neurons in the hidden layer.

Let 𝑍 = {𝑐𝑖, 𝑠𝑖 , 𝑤𝑖𝑖} = [𝑧1, 𝑧2,⋯ , 𝑧𝑛𝑛] be the parameter vector which is

composed of all the widths, centers and weights of the RBF-NN where 𝑛𝑛 = 𝑝 ∗ ℎ + 𝑝 ∗

ℎ + ℎ ∗ 𝑛𝑛. A three-phase training of RBF-NNs [29] is used by performing an adaptation

of all parameters simultaneously. The neural network is then defined by the model,

𝑦�(𝑘,𝑍) = 𝑓(𝑥(𝑘),𝑍) (3.6)

The RBF-NN model (3.6) is a one-step-ahead predictive model for 𝑦(𝑘) and the

prediction error is given by,

𝜀(𝑘) = 𝑦(𝑘) − 𝑦�(𝑘,𝑍) (3.7)

 The parameter vector 𝑍 can be determined by minimizing the following objective

function

𝐽(𝑍) = 1
2
∑ �𝑦(𝑘) − 𝑦�(𝑘,𝑍)�

𝑇
(𝑦(𝑘) − 𝑦�(𝑘,𝑍))𝑆

𝑘=1 (3.8)

The optimization problem can be solved using modified gradient descent method. Let 𝑍𝐾

denotes the 𝐾th iteration values of the parameters. 𝑍𝐾+1 in the next iteration can be

26

formulated as

𝑍𝐾+1 = 𝑍𝐾 − 𝜅 𝛻𝛻(𝑍𝐾)
||𝛻𝛻(𝑍𝐾)||

 (3.9)

where 𝜅 is the real learning rate vector, 𝐾 denotes iterative epochs, and || ∙ || denotes

the Euclidean norm. 𝛻𝛻(∙) is the gradient search direction defined as

𝛻𝛻(𝑍) = �∑ �𝑦(𝑘) − 𝑦�(𝑘,𝑍)�
𝑇𝑆

𝑘=1
𝜕𝑦�(𝑘,𝑍)
𝜕𝜕

�
𝑇
 (3.10)

where

�𝜕𝑦�
𝜕𝜕
�
𝑇

= ��𝜕𝑦�
𝜕𝜕
�
𝑇

, �𝜕𝑦�
𝜕𝜕
�
𝑇

, �𝜕𝑦�
𝜕𝜕
�
𝑇
�
𝑇

[𝜕𝑦�
𝜕𝜕

]𝑇 =

⎣
⎢
⎢
⎢
⎡
𝜕𝑦�1
𝜕𝑐1

⋯ 𝜕𝑦�𝑛𝑛
𝜕𝑐1

⋮ ⋱ ⋮
𝜕𝑦�1
𝜕𝑐𝑝

⋯ 𝜕𝑦�𝑛𝑛
𝜕𝑐𝑝 ⎦

⎥
⎥
⎥
⎤

𝑛𝑛×𝑝

 [𝜕𝑦�
𝜕𝜕

]𝑇 =

⎣
⎢
⎢
⎢
⎡
𝜕𝑦�1
𝜕𝑠1

⋯ 𝜕𝑦�𝑛𝑛
𝜕𝑠1

⋮ ⋱ ⋮
𝜕𝑦�1
𝜕𝑠𝑝

⋯ 𝜕𝑦�𝑛𝑛
𝜕𝑠𝑝 ⎦

⎥
⎥
⎥
⎤

𝑛𝑛×𝑝

[𝜕𝑦�
𝜕𝜕

]𝑇 =

⎣
⎢
⎢
⎢
⎡
𝜕𝑦�1
𝜕𝑤11

⋯ 𝜕𝑦�𝑛𝑛
𝜕𝑤1𝑛𝑛

⋮ ⋱ ⋮
𝜕𝑦�1
𝜕𝑤𝑝1

⋯ 𝜕𝑦�𝑛𝑛
𝜕𝑤𝑝𝑝𝑝⎦

⎥
⎥
⎥
⎤

𝑛𝑛×𝑝

𝜕𝑦�𝑗
𝜕𝑐𝑎𝑎

= −2𝑤𝑖𝑖𝜑𝑖
𝑥𝑎−𝑐𝑎𝑎
𝑠𝑎𝑎
2

𝜕𝑦�𝑗
𝜕𝑠𝑎𝑎

= −2𝑤𝑖𝑖𝜑𝑖
(𝑥𝑎−𝑐𝑎𝑎)2

𝑠𝑎𝑎
3

𝜕𝑦�𝑗
𝜕𝑤𝑖𝑖

= 𝜑𝑖 (3.11)

The training procedure of the RBF-NN given by Equation (3.4) is presented

below.

1) Select suitable input variables 𝑥(𝑘), 𝑝 and the initial values for 𝑍0.

27

2) Compute 𝐸 = [𝜀(1), 𝜀(2),⋯ , 𝜀(𝑆)]𝑇 using Equation (3.7) for 𝑘 = 1,2,⋯ , 𝑆.

3) Compute 𝛻𝛻(𝑍) by using Equation (3.10) and Equation (3.11).

4) Update the parameter 𝑍 using Equation (3.9).

5) Repeat the step 2) to 4) until termination rule is satisfied. The iteration stops when

�∆𝐽(𝑍)
𝐽(𝑍) � is smaller than a preset value, or 𝐽(𝑍) is smaller than the designed goal value,

or a designed iteration count is reached.

3.3 Multistep-Ahead Predictive Model

From Equation (3.2), the NARMAX one-step-ahead predictive model approximated

from RBF-NN is

𝑦𝑓(𝑘 + 1) = 𝑓(𝑦(𝑘),⋯ ,𝑦(𝑘 − 𝑛 + 1),𝑢(𝑘 − 𝑑),⋯ ,𝑢(𝑘 −𝑚 − 𝑑)) (3.12)

where 𝑦𝑓(𝑘 + 1) is the predictive output of the model. Extending Equation (3.12) one

more step ahead, 𝑦𝑓(𝑘 + 2) can be obtained as

𝑦𝑓(𝑘 + 2) = 𝑓(𝑦𝑓(𝑘 + 1),𝑦(𝑘),⋯ ,𝑦(𝑘 − 𝑛 + 2),𝑢(𝑘 − 𝑑 + 1),⋯ ,𝑢(𝑘 −𝑚 − 𝑑 + 1))

(3.13)

Using a recursive technique, 𝑑-step-ahead predictor [33] can be derived

𝑦𝑓(𝑘 + 𝑑) = 𝑓(𝑦𝑓(𝑘 − 1 + 𝑑),⋯ ,𝑦𝑓(𝑘 + 1),𝑦(𝑘),⋯ ,𝑦(𝑘 − 𝑛 + 𝑑),𝑢(𝑘 −

1),⋯ , 𝑢(𝑘 − 1 −𝑚)) (3.14)

The 𝑑-step-ahead predictive model is given by Fig. 3.2. This predictor has a series

connection architecture. In this architecture only one RBF-NN is used, but 𝑑 iterations

are required for long term prediction. In the first iteration, the RBF-NN is fed with the

28

present process output 𝑦(𝑘) and several past process outputs 𝑦(𝑘 − 1),⋯ ,𝑦(𝑘 − 𝑛 +

1), together with the past inputs 𝑢(𝑘 − 𝑑 + 1),⋯ ,𝑢(𝑘 −𝑚 − 𝑑 + 1). Then, the RBF-

NN is iterated. In the iteration procedure, any error of the model is fed back into the RBF-

NN. The prediction accuracy can be significantly degraded due to an accumulation of

errors if the prediction horizon is large. To offset the error of the predictive model, a

variable 𝑦𝑐(𝑘) is introduced to express the difference between actual output of system

𝑦(𝑘) and predictive output of RBF-NN predictor 𝑦𝑓(𝑘). Let

𝑦𝑐(𝑘) = 𝑦(𝑘) − 𝑦𝑓(𝑘) (3.15)

The estimated output 𝑦𝑒(𝑘) can be described by

𝑦𝑒(𝑘 + 𝑖) = 𝑦𝑓(𝑘 + 𝑖) + 𝑦𝑐(𝑘) 𝑖 = 1,2,⋯ ,𝑑 (3.16)

Figure 3.2: The architecture of d-step-ahead predictive model

29

Chapter 4

Design of Generalized Predictive Control

4.1 Cost Function

A large number of predictive control algorithms have been presented and widely used

in industry. GPC has a precise model which is used to predict the system behavior. It

shows good robustness of adaptive model-based predictive control [10]. The quality of

the system model affects the accuracy of prediction. For a linear system, a number of

techniques are available to make modeling easier; however it is more complicated for

nonlinear systems. Currently there are two techniques used to model nonlinear systems.

One is to linearize the system about a set of operating points. If the plant is highly non-

linear the number of operating points can be very large. The second technique involves

developing a nonlinear model which depends on making assumptions about the dynamics

of the nonlinear system. The accuracy of the model will be reduced if these assumptions

are incorrect.

NNs are powerful tools for identification and modeling of nonlinear systems. The

model estimated using NN can be used to predict the system output. A nonlinear multi-

step-ahead predictive model based on RBF-NN mentioned in Chapter 3 is employed to

30

design GPC for a nonlinear stochastic system.

The block diagram of the designed GPC is shown in Fig. 4.1 [13]. The RBF-NNs

work as a plant model and a predictor. To offset the error of the predictive model, a

variable 𝑦𝑐 is introduced to express the difference between the actual output of system 𝑦

and predictive output of RBF-NN predictor 𝑦𝑓. By assuming 𝑦𝑐 keeps the same for

different time instants, the estimated output 𝑦𝑒 can be obtained from the summation of

𝑦𝑓 and 𝑦𝑐.

Figure 4.1: The block diagram of RBF-NN based GPC

The control objective of GPC is to use the NN predictor for predicting future outputs,

and to minimize the following cost function in order to reduce prediction errors

𝐽 = ∑ [𝑦𝑟(𝑘 + 𝑖) − 𝑦𝑒(𝑘 + 𝑖)]2 + ∑ 𝜆𝑗[∆𝑢(𝑘 − 1 + 𝑗)]2𝑁𝑢
𝑗=1

𝑁1
𝑖=𝑁0 (4.1)

where 𝑦𝑟(𝑘 + 𝑖) (𝑖 = 𝑁0,𝑁0 + 1,⋯ ,𝑁1) denotes the future reference trajectory,

31

𝑦𝑒(𝑘 + 𝑖) is the estimated output, 𝑁0 and 𝑁1 are the minimum and maximum

prediction horizons, 𝑁𝑢 is the control horizon, 𝜆𝑗 (𝑗 = 1,2,⋯ ,𝑁𝑢) is a weighting

coefficient penalizing changes in the control input.

This cost function minimizes not only the mean squared error between the reference

and predicted outputs, but also the weighted squared rate of change of the control input

with its constraints. When this cost function is minimized, a control input that meets the

constraints is generated that allows the plant to track the reference trajectory within some

tolerance.

There are four tuning parameters in the cost function, 𝑁0, 𝑁1, 𝑁𝑢 and 𝜆𝑗. The

predictions of the plant will run from 𝑁0 to 𝑁1 future time steps. The bound on the

control horizon is 𝑁𝑢. The only constraint on the values of 𝑁0, and 𝑁𝑢 is that these

bounds must be less than or equal to 𝑁1 as

1 ≤ 𝑁𝑢 ≤ 𝑁1, 𝑑 + 1 ≤ 𝑁0 ≤ 𝑁1 (4.2)

The second summation contains a weighting factor 𝜆𝑗, which is introduced to control the

balance between the two summations. Obviously, in the GPC algorithm, the different

selection of these four parameters can have important influence in the controlled perfor-

mance of the system. 𝑁0 should be larger than or equal to 𝑑 + 1, otherwise there will

be some outputs that are independent of 𝑢(𝑘). Generally taking 𝑁0 = 1 when 𝑑 is

unknown or varying. 𝑁1 should include all responses that are explicitly dependent on

current control. In order to reduce the online computation time, 𝑁𝑢 is usually chosen

such that 𝑁𝑢 ≤ 𝑁1 − 𝑁0 + 1. 𝜆𝑗 acts as damper on the predicted 𝑢(𝑘), which is

32

generally chosen as 𝜆𝑗 = 0 or a small value unless the change in control is too big.

4.2 Cost Function Minimization

Given 𝑁𝑢, future control inputs can be expressed as a vector

𝑢 = [𝑢(𝑘)𝑇 ,𝑢(𝑘 + 1)𝑇 ,⋯ ,𝑢(𝑘 + 𝑁𝑢 − 1)𝑇]𝑇 (4.3)

The control input 𝑢(𝑘) ∈ 𝑅𝑛𝑛 can be determined by minimizing 𝐽 in Equation (4.1)

with respect to 𝑢. This can be done by using the optimization methods mentioned in

Chapter 2.

4.2.1 Nelder-Mead Algorithm

The Nelder-Mead algorithm does not need derivatives of the cost function in

Equation (4.1); however, it is very sensitive to the initial points, and is not efficient

when dimension of vector 𝑢 becomes big. This algorithm only uses the basic opera-

tions of reflection, expansion, contraction and reduction to directly find the solution.

Each step replaces at least one vertex, thus changing the shape and the location of the

simplex.

First we generate and evaluate initial 𝑁𝑢 + 1 points {𝑢1,𝑢2,⋯ ,𝑢𝑁𝑢+1} in 𝑅𝑁𝑢.

Set the initial point 𝑢1 to be the initial input of system and form the other 𝑁𝑢 points

using

𝑢𝑖 = 𝑢1 + 𝜎𝑞𝑖 (4.4)

where 𝑞𝑖 is a unit vector, which guarantees that the vector set {𝑢2 − 𝑢1,⋯, 𝑢𝑁𝑢+1 −

33

𝑢1} is linearly independent, so the set of points {𝑢1,𝑢2,⋯ ,𝑢𝑁𝑢+1} makes a convex

hull in 𝑅𝑁𝑢.

 Then the Nelder-Mead method will be applied for minimizing the cost function

defined by Equation (4.1). The algorithm continues in refining the solution by replacing

the worst solution with an improved one in every iteration until reaching the stopping

criteria. The algorithm should be terminated if the value of cost function in Equation

(4.1) is smaller than a defined threshold, or convergence is reached making no further

improvement for further iterations.

4.2.2 Quasi-Newton Algorithm

The objective of the cost function minimization algorithm can also be accomplished

by setting the Jacobian matrix of cost function to zero and solving for 𝑢 in Equation

(4.3). By using Quasi-Newton method, 𝐽 is minimized iteratively to determine the best

𝑢. An iterative process yields intermediate values for 𝐽 denoted 𝐽𝐾.

 Quasi-Newton method is widely used in optimization problem. Applying Equation

(2.10) to Equation (4.1), the update rule for 𝑢 is given by Equation (4.5)

𝑢𝐾+1 = 𝑢𝐾 − 𝛼𝐾𝐻𝐾−1
𝜕𝐽𝐾
𝜕𝑢𝐾

 (4.5)

where

𝜕𝜕
𝜕𝜕

= −𝜕𝑦𝐸
𝜕𝜕

𝑒 + 𝜆∆𝑢 (4.6)

where 𝑦𝐸 , 𝑒, and ∆𝑢 are estimated output , error vector, and increment of control

input, respectively, defined by

34

𝑦𝐸 = [𝑦𝑒(𝑘 + 𝑁0)𝑇 ,𝑦𝑒(𝑘 + 𝑁0 + 1)𝑇 ,⋯ ,𝑦𝑒(𝑘 + 𝑁1)𝑇]𝑇 (4.7)

𝑒 = [[𝑦𝑟(𝑘 + 𝑁0) − 𝑦𝑒(𝑘 + 𝑁0)]𝑇 ,⋯ [𝑦𝑟(𝑘 + 𝑁1) − 𝑦𝑒(𝑘 + 𝑁1)]𝑇]𝑇 (4.8)

∆𝑢 = [[𝑢(𝑘) − 𝑢(𝑘 − 1)]𝑇 ,⋯ [𝑢(𝑘 + 𝑁𝑢 − 1) − 𝑢(𝑘 + 𝑁𝑢 − 2)]𝑇]𝑇 (4.9)

𝜆 = 𝑑𝑑𝑑𝑑[𝜆1, 𝜆2,⋯ , 𝜆𝑁𝑢] (4.10)

𝜕𝑦𝐸
𝜕𝜕

 is denoted as a (𝑁1 − 𝑁0 + 1) × 𝑁𝑢 matrix shown in Equation (4.11)

𝜕𝑦𝐸
𝜕𝜕

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑦𝑒(𝑘+𝑁0)
𝜕𝜕(𝑘)

⋯ 0
⋮ ⋱ ⋮

𝜕𝑦𝑒(𝑘+𝑁𝑢)
𝜕𝜕(𝑘)

⋯ 𝜕𝑦𝑒(𝑘+𝑁𝑢)
𝜕𝜕(𝑘+𝑁𝑢−1)

⋮ ⋯ ⋮
𝜕𝑦𝑒(𝑘+𝑁1)
𝜕𝜕(𝑘)

⋯ 𝜕𝑦𝑒(𝑘+𝑁1)
𝜕𝜕(𝑘+𝑁𝑢−1)⎦

⎥
⎥
⎥
⎥
⎥
⎤

(𝑁1−𝑁0+1)×𝑁𝑢

 (4.11)

The only non-zero element in the first row of the matrix is

𝜕𝑦𝑒𝑒(𝑘+𝑁0)
𝜕𝜕(𝑘)

= ∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �2(𝑢(𝑘)−𝑐𝑢(𝑘))

𝑠𝑢(𝑘)
2 � (4.12)

For the second row, there are two non-zero elements, and the chain rule will be applied

since 𝑦𝑒(𝑘 + 𝑁0 + 1) is a function of 𝑦𝑒(𝑘 + 𝑁0), 𝑢(𝑘) and 𝑢(𝑘 + 1) in the neural

network model,

𝜕𝑦𝑒𝑒(𝑘+𝑁0+1)
𝜕𝜕(𝑘)

= 𝜕𝑦𝑒𝑒(𝑘+𝑁0+1)
𝜕𝑦𝑒𝑒(𝑘+𝑁0)

𝜕𝑦𝑒𝑒(𝑘+𝑁0)
𝜕𝜕(𝑘)

+ ∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �2(𝑢(𝑘)−𝑐𝑢(𝑘))

𝑠𝑢(𝑘)
2 �

𝜕𝑦𝑒𝑒(𝑘+𝑁0+1)
𝜕𝑦𝑒𝑒(𝑘+𝑁0)

= ∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �

2(𝑦𝑒𝑒(𝑘+𝑁0)−𝑐𝑦𝑒𝑒(𝑘+𝑁0))

𝑠𝑦𝑒𝑒(𝑘+𝑁0)
2 �

𝜕𝑦𝑒𝑒(𝑘+𝑁0+1)
𝜕𝜕(𝑘+1)

= ∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �2(𝑢(𝑘+1)−𝑐𝑢(𝑘+1))

𝑠𝑢(𝑘+1)
2 � (4.13)

For the third row, 3 non-zero elements are given by

𝜕𝑦𝑒𝑒(𝑘+𝑁0+2)

𝜕𝜕(𝑘) = 𝜕𝑦𝑒𝑒(𝑘+𝑁0+2)

𝜕𝑦𝑒𝑒(𝑘+𝑁0)
𝜕𝑦𝑒𝑒(𝑘+𝑁0)

𝜕𝜕(𝑘) + 𝜕𝑦𝑒𝑒(𝑘+𝑁0+2)

𝜕𝑦𝑒𝑒(𝑘+𝑁0+1)
𝜕𝑦𝑒𝑒(𝑘+𝑁0+1)

𝜕𝜕(𝑘)

+∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �2(𝑢(𝑘)−𝑐𝑢(𝑘))

𝑠𝑢(𝑘)
2 �

35

𝜕𝑦𝑒𝑒(𝑘+𝑁0+2)
𝜕𝑦𝑒𝑒(𝑘+𝑁0)

= ∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �

2(𝑦𝑒𝑒(𝑘+𝑁0+2)−𝑐𝑦𝑒𝑒(𝑘+𝑁0))

𝑠𝑦𝑒𝑒(𝑘+𝑁0)
2 �

𝜕𝑦𝑒𝑒(𝑘+𝑁0+2)
𝜕𝑦𝑒𝑒(𝑘+𝑁0+1)

= ∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �

2(𝑦𝑒𝑒(𝑘+𝑁0+2)−𝑐𝑦𝑒𝑒(𝑘+𝑁0+1))

𝑠𝑦𝑒𝑒(𝑘+𝑁0+1)
2 �

𝜕𝑦𝑒𝑒(𝑘+𝑁0+2)
𝜕𝜕(𝑘+1)

= 𝜕𝑦𝑒𝑒(𝑘+𝑁0+2)
𝜕𝑦𝑒𝑒(𝑘+𝑁0+1)

𝜕𝑦𝑒𝑒(𝑘+𝑁0+1)
𝜕𝜕(𝑘+1)

+ ∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �2(𝑢(𝑘)−𝑐𝑢(𝑘+1))

𝑠𝑢(𝑘+1)
2 �

𝜕𝑦𝑒𝑒(𝑘+𝑁0+2)
𝜕𝜕(𝑘+2)

= +∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �2(𝑢(𝑘)−𝑐𝑢(𝑘+2))

𝑠𝑢(𝑘+2)
2 � (4.14)

For the (𝑚 + 2)th row 𝑦𝑒(𝑘 + 𝑁0 + 𝑚 + 1) is a function of 𝑦𝑒(𝑘 + 𝑁0 + 𝑚),⋯,

𝑦𝑒(𝑘 + 𝑁0 + 𝑚 − 𝑛), 𝑢(𝑘 + 𝑚 + 1),⋯ ,𝑢(𝑘 + 1), different from previous partial

differential equation, it is given by

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚+1)

𝜕𝜕(𝑘) = 𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚+1)

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚)
𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚)

𝜕𝜕(𝑘) + ⋯+

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚+1)

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚−𝑛)
𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚−𝑛)

𝜕𝜕(𝑘)

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚+1)

𝜕𝜕(𝑘+1) = 𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚+1)

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚)
𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚)

𝜕𝜕(𝑘+1) + ⋯+

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚+1)

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚−𝑛)
𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚−𝑛)

𝜕𝜕(𝑘+1)

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑚+1)

𝜕𝜕(𝑘+𝑚+1) = ∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �2(𝑢(𝑘)−𝑐𝑢(𝑘+𝑚+1))

𝑠𝑢(𝑘+𝑚+1)
2 � (4.15)

Extending 𝑞 steps, the matrix will have 𝑞 non-zero elements, and the 𝑝th element can

be obtained by

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑞−1)

𝜕𝜕(𝑘+𝑝−1) = 𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑞−1)

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑞−2)
𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑞−2)

𝜕𝜕(𝑘+𝑝−1) + ⋯+

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑞−1)

𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑞−1−𝑛)
𝜕𝑦𝑒𝑒(𝑘+𝑁0+𝑞−1−𝑛)

𝜕𝜕(𝑘+𝑝−1) + ∑ 𝑤𝑖𝑖𝜑𝑖ℎ
𝑖=1 �2(𝑢(𝑘+𝑝−1)−𝑐𝑢(𝑘+𝑝−1))

𝑠𝑢(𝑘+𝑝−1)
2 � (4.16)

where 𝑁0 + 𝑞 − 1 − 𝑛 > 𝑝 + 1 ≥ 0, and the last summation term would be zero if

𝑞 − 𝑝 > 𝑚 + 1.

Hessian matrix 𝐻 does not need to be computed. The Hessian is updated by

analyzing successive gradient vectors instead. By choosing 𝐻0 as an 𝑁𝑢 × 𝑁𝑢 identity

36

matrix, for the BFGS update rule, recall Equation (2.10) here

𝐻𝐾+1−1 = 𝐻𝐾−1 +
�(𝛼𝐾𝑝𝐾)𝑇∆𝑔𝐾+∆𝑔𝐾

𝑇𝐻𝐾
−1∆𝑔𝐾��(𝛼𝐾𝑝𝐾)(𝛼𝐾𝑝𝐾)𝑇�

((𝛼𝐾𝑝𝐾)𝑇∆𝑔𝐾)2

−𝐻𝐾
−1∆𝑔𝐾(𝛼𝐾𝑝𝐾)𝑇+(𝛼𝐾𝑝𝐾)𝐻𝐾

−1∆𝑔𝐾
𝑇𝐻𝐾

−1

(𝛼𝐾𝑝𝐾)𝑇∆𝑔𝐾

First we obtain the search direction 𝑝𝐾 by solving

𝑝𝐾 = −𝐻0−1𝛻𝐽𝐾 (4.17)

then perform a line search to find an acceptable step size 𝛼𝐾 in the direction found in

the first step such that

𝐽(𝑢𝐾+𝛼𝐾𝑝𝐾) = min𝛼≥0(𝐽(𝑢𝐾+𝛼𝐾𝑝𝐾)) (4.18)

In the inexact search scheme discussed in Section 2.3, it is selected to satisfy Wolfe

conditions (2.16) and (2.18). Using the search result, the new control input vector is

updated as

𝑢𝐾+1 = 𝑢𝐾+𝛼𝐾𝑝𝐾 (4.19)

and the invers Hessian matrix can be updated from 𝐻𝐾−1 to 𝐻𝐾+1−1 by using the

following

𝐻𝐾+1−1 = 𝐻𝐾−1 + �𝑠𝐾𝑇∆𝑔𝐾+∆𝑔𝐾
𝑇𝐻𝐾

−1∆𝑔𝐾��𝑠𝐾𝑠𝐾𝑇�
(𝑠𝐾𝑇∆𝑔𝐾)2 − 𝐻𝐾

−1∆𝑔𝐾𝑠𝐾𝑇+𝑠𝐾𝐻𝐾
−1∆𝑔𝐾

𝑇𝐻𝐾
−1

𝑠𝐾𝑇∆𝑔𝐾
 (4.20)

where

𝑠𝐾=𝛼𝐾𝑝𝐾

∆𝑔𝐾 = 𝛻𝐽𝐾+1 − 𝛻𝐽𝐾 (4.21)

the stopping criterion is set as the cost function 𝐽 < 𝜀 or 𝐾 exceeding allowed itera-

tion times. Due to the better convergence property of the BFGS method the RBF-NN

will require less hidden neurons to reach the same training error and result in better

37

generalization ability.

38

Chapter 5

Simulation Results

In order to test the efficiency of the proposed control technique, two sets of

simulations have been done to verify the neural network generalized predictive

controller. Simula- tion studies were carried out in C++.

5.1 SISO Benchmark Simulation

The first part of simulation, a nonlinear SISO plant taken from literature [6] is

considered:

𝑦(𝑘) =
2.5𝑦(𝑘 − 1)𝑦(𝑘 − 2)

1 + 𝑦(𝑘 − 1)2 + 𝑦(𝑘 − 2)2 + 0.3 cos�0.5𝑦(𝑘 − 1) − 𝑦(𝑘 − 2)�

+1.2𝑢(𝑘 − 1) + 𝑒(𝑘) (5.1)

where 𝑦 is the output of the plant, 𝑢 is the plant input, and 𝑒 is the disturbance.

The RBF neural network structure presented in Fig. 1.1 is used. Comparing

Equation (3.3) with Equation (5.1), it is found that 𝑛 = 1 𝑚 = 0 and 𝑑 = 0. Totally 5

neurons in the hidden layer are chosen in simulations.

5.1.1 The NN Model Training for SISO Plant

 A finite sequence of uniform pseudo random noise distributed in the interval

39

[−1.5,1.5] is applied to Equation (5.1) as the input signal, which is shown in Fig. 5.1.

The input signal are holding constant for 100 duration. The plant response to the input

signal and its filtered version are shown in Fig. 5.2. The filtered response was obtained

through a second-order Butterworth low pass filter with cutoff frequency of 3 Hz in

order to remove most of the noise. The Signal-to-Noise Radios (SNR) of the response

and the filtered response are 11.50 dB and 33.60 dB, respectively. The filtered response,

together with the input signal in Fig. 5.1, is used to train the neural network. The

modified gradient method defined in Equation (2.6) is chosen as the training algorithm.

After several trial-and-error test, the step size of 𝜅 = 0.005 is selected. In the training

procedure, the termination rules are chosen as,

1). The value of the objective function 𝐽(𝑍) < 1;

2). The learning iteration 𝐾 > 10000;

3). The change of gradients ||𝑔𝑘 − 𝑔𝑘−1|| < 1 × 10−8.

Fig. 5.3 shows the outputs of the plant and NN model after the identification

procedure was terminated at iteration 𝐾 = 10000. Fig. 5.4 shows the error between the

outputs of the plant and NN model after training. Figs. from 5.5 to 5.7 show the

parameters for the RBF-NN in the training process.

40

Figure 5.1: The random input signal applied to the plant

Figure 5.2: Plant response and filtered response (top) for random input signal (bottom)

41

Figure 5.3: The training result after 10000 iterations (red line: filtered plant output, blue

line: NN model output)

Figure 5.4: The error between the outputs of the plant and model

42

Figure 5.5: The centers of the first neuron in the input layer

Figure 5.6: The widths of the first neuron in the input layer

43

Figure 5.7: The weights of the output layer

5.1.2 The NN Model Validation for SISO Plant

The model is validated using a time validation test for a sinusoidal input signal for

this plant, namely

𝑢(𝑘) = 𝐴 ∗ sin(2𝜋𝜋𝜋𝜋) + 𝐷 (5.2)

with the amplitude 𝐴 = 1. The sampling time 𝑇 is set to 0.01𝑠. The frequency 𝑓 =

1/85 Hz. The bias is 𝐷 = 0.25. The initial condition of the plant is chosen (𝑦(𝑘 − 1),

𝑦(𝑘 − 2)) = (0,0). The plant response is filtered by a second-order Butterworth low

pass filter with cutoff frequency of 3 Hz. The SNRs of the plant response and filtered

response are 31.50 dB and 33.41 dB, respectively. The plant response, the NN model

44

response, and the validation error are shown in Figs. from 5.8 to 5.10, respectively. For

this input signal, the Relative Root Mean Squared Error (rRMSE) over 85 seconds has a

value of 0.0047, Absolute Mean Error (AME) over 85 seconds has a value of 0.0051,

which means that the RBF-NN model is a very good approximation of the nonlinear

system.

Figure 5.8: Plant response (top) and filtered response (bottom) to sinusoidal input signal

45

Figure 5.9: Outputs of the plant and the NN model (red line: filtered plant output, blue

line: NN model output)

Figure 5.10: The error between the outputs of the plant and NN model

46

5.1.3 The Predictive Control for SISO Plant

With respect to the notations introduced in Chapter 4, the parameters of the GPC are

chosen as follows: minimum cost horizon 𝑁0 = 1, maximum cost horizon 𝑁1 = 4, and

control horizon 𝑁𝑢 = 4. The initial condition of the plant is (𝑦(𝑘 − 1),𝑦(𝑘 − 2)) =

(0,0). In order to check the performance of the neural generalized predictive control

algorithm, a sinusoidal signal is used as reference. The goal is to control plant defined in

Equation (5.1) to track the reference defined in Equation (5.2). Both Quasi-Newton

method and Nelder-Mead method are applied for solving the cost function minimization

problem separately. The termination rules of Quasi-Newton method are chosen as,

1). The value of the objective cost function 𝐽 < 1 × 10−6;

2). The maximum iteration 𝐾 > 500;

3). The change of gradients ||𝑔𝑘 − 𝑔𝑘−1|| < 1 × 10−6.

The termination rules of Nelder-Mead method are chosen as,

1). The value of the objective cost function 𝐽 < 1 × 10−6;

2). The maximum iteration 𝐾 > 500;

If the feedback of the plant has a uniform pseudo random noise with an amplitude

in the interval [−0.05,0.05]. The feedback needs to be filtered with a Butterworth filter.

Fig. 5.11 shows the result when the cutoff frequency is 3 Hz. The control signal, the

reference and feedback, the tracking error, and the computation time of both Quasi-

Newton method and Nelder-Mead method are shown in Figs. from 5.12 to 5.15, respect-

47

tively.

(a)

(b)

Figure 5.11: The feedback (top) and filtered feedback (bottom): (a) Quasi-Newton

method; (b) Nelder-Mead method

48

(a)

(b)

Figure 5.12: The control signal: (a) Quasi-Newton method; (b) Nelder-Mead method

49

(a)

(b)

Figure 5.13: The tracking performance (red line: reference trajectory, blue line: filtered

feedback): (a) Quasi-Newton method; (b) Nelder-Mead method

50

(a)

(b)

Figure 5.14: The tracking errors: (a) Quasi-Newton method; (b) Nelder-Mead method

51

 (a)

(b)

Figure 5.15: The calculation time: (a) Quasi-Newton method; (b) Nelder-Mead method

52

The numerical comparison between the two algorithms are given in Table 5.1. It is

seen from Table 5.1 that the SNRs of the feedback (SNRB) and the filtered feedback

(SNRF) are 26.63 dB and 35.47 dB, which implies that most of the noise were filtered

out and the filter worked well. Both optimization methods produce acceptable tracking

performances. The average computing time (AvgT) and Max conputing time (MaxT) are

shown as well.

More results are shown in Tables from 5.2 to 5.4 by using different cutoff

frequencies under the same simulation conditions. If the cutoff frequency is too low, the

filtered feedback will have a time-delay because of the lag of Butterworth filter.

Meanwhile, if the cutoff frequency is too high, most noise components are not removed.

The performance of the controller is poor if the cutoff requency is not well chosen.

Table 5.1: Control results for SISO benchmark plant with cutoff frequency 3 Hz

 rRMSE

tracking

MAE

tracking

AvgT

(ms)

MaxT

(ms)

SNRB

(dB)

SNRF

(dB)

QN 0.02253 0.01317 1.507 33.01 28.63 35.47

NM 0.02252 0.01316 1.548 16.10 28.63 35.47

53

Table 5.2: Control results for SISO plant with cutoff frequency 0.5 Hz

 rRMSE

tracking

MAE

tracking

AvgT

(ms)

MaxT

(ms)

SNRB

(dB)

SNRF

(dB)

QN 0.04530 0.02657 1.608 17.81 28.63 27.86

NM 0.04526 0.02656 1.529 16.53 28.63 27.85

Table 5.3: Control results for SISO plant with cutoff frequency 8 Hz

 rRMSE

tracking

MAE

tracking

AvgT

(ms)

MaxT

(ms)

SNRB

(dB)

SNRF

(dB)

QN 0.02372 0.01448 1.487 19.12 28.63 34.66

NM 0.02489 0.01473 1.542 14.76 28.63 34.51

Table 5.4: Control results for SISO plant with cutoff frequency 15 Hz

 rRMSE

tracking

MAE

tracking

AvgT

(ms)

MaxT

(ms)

SNRB

(dB)

SNRF

(dB)

QN 0.02739 0.01675 1.558 153.9 28.63 32.73

NM 0.02817 0.01687 1.633 27.72 28.63 32.65

54

Another set of simulations have been done by increasing the amplitude of uniform

pseudo random noise with a second order Butterworth filter of 3 Hz. The numerical

results are shown in Tables from 5.5 to 5.7. It is obvious that the performances of the

controller are poorer if the noise amplitude is larger. These results also show that the

control using Quasi-Newton method has a better tracking performance than the one

using Nelder- Mead method. However, the quasi-Newton method takes more computing

time than the Nelder-Mead method.

Table 5.5: Control results for plant noise amplitude between [-0.15, 0.15]

 rRMSE

tracking

MAE

tracking

AvgT

(ms)

MaxT

(ms)

SNRB

(dB)

SNRF

(dB)

QN 0.03988 0.02554 3.552 242.2 19.07 28.52

NM 0.04357 0.02658 1.557 13.14 19.07 27.97

Table 5.6: Control results for plant with noise amplitude between [-0.25, 0.25]

 rRMSE

tracking

MAE

tracking

AvgT

(ms)

MaxT

(ms)

SNRB

(dB)

SNRF

(dB)

QN 0.05906 0.03811 5.455 297.0 14.61 24.76

NM 0.06928 0.04250 4.565 34.92 14.61 24.52

55

Table 5.7: Control results for plant with noise amplitude between [-0.40, 0.40]

 rRMSE

tracking

MAE

tracking

AvgT

(ms)

MaxT

(ms)

SNRB

(dB)

SNRF

(dB)

QN 0.09051 0.05878 5.554 278.8 10.50 20.93

NM 0.1097 0.06739 4.828 41.76 10.50 19.27

5.2 HVAC System Simulation

In this part, the simulation is done by applying the designed controller to the non-

linear MIMO HVAC system. The model of the HVAC system is shown in Fig. 5.16 [1].

It is assumed that the air in the room has a uniform temperature distribution. According

to the energy conservation principle, the model proposed in [1] and [30] which includes

temperature and humidity ratio is as follows:

𝑇̇3(𝑡) =
60𝑓𝑟
𝑉𝑠

�𝑇2(𝑡)−𝑇3(𝑡)� − 60ℎ𝑓𝑓𝑓𝑟
𝑐𝑝𝑉𝑠

�𝑊𝑠 −𝑊3(𝑡)�+
1

𝜇𝜇𝑎𝑐𝑝𝑉𝑠
�𝑄𝑜 − ℎ𝑓𝑓𝑀𝑜�+ 𝑒1(𝑡)

𝑊̇3(𝑡) =
60𝑓𝑟
𝑉𝑠

�𝑊𝑠 −𝑊3(𝑡)�+ 𝑀𝑜
𝜌𝑎𝑉𝑠

+ 𝑒2(𝑡)

𝑇2̇(𝑡) =
60𝑓𝑟
𝑉ℎ𝑒

�𝑇2(𝑡)−𝑇3(𝑡)�+ 60𝜇𝑓𝑟
𝑉ℎ𝑒

�𝑇0 −𝑇3(𝑡)� − 60ℎ𝑤𝑓𝑟
𝑐𝑝𝑉ℎ𝑒

×

�𝜇𝜇0 − (1−𝜇)𝑊3(𝑡)−𝑊𝑠�− 6000 gpm
𝜌𝑎𝑐𝑝𝑉ℎ𝑒

+ 𝑒3(𝑡)

 (5.3)

The desired goal of this system is to control the temperature 𝑇3 and humidity ratio 𝑊3

in thermal space to the desired values. The control inputs of the system are the flow rate

56

gpm of cold water from chiller to the heat exchanger and the air flow rate 𝑓𝑟 using the

variable speed fan. 𝑒(𝑡) = [𝑒1(𝑡), 𝑒2(𝑡), 𝑒3(𝑡)]𝑇 denotes the system noises. 𝑄𝑜and

𝑊0 are disturbances to the system. Table 5.8 gives the notations and parameter values in

the system model [30] [34].

Figure 5.16: Model of the HVAC system

57

Table 5.8: HVAC system variables and parameters

Parameters Parameter meanings and values

𝑐𝑝 Specific heat of air 0.24 (btu/lb ∙ ℉)

𝜌𝑎 Air mass density 0.074 (lb/ft3)

𝑉ℎ𝑒 Volume of heat exchanger 60.75 (ft3)

𝑉𝑠 Volume of thermal space 58464 (ft3)

𝑊0 Humidity ratio of outdoor air 0.018 (lb/lb)

𝑊𝑠 Humidity ratio of supply air 0.0070 (lb/lb)

𝑊3 Humidity ratio of thermal space (lb/lb)

𝑇0 Temperature of outdoor air 85 (℉)

𝑇2 Temperature of supply air (℉)

𝑇3 Temperature of thermal space (℉)

𝑀𝑜 Moisture load 166.06 (lb/hr)

𝑄𝑜 Sensible heat load 289897.52 (btu/hr)

ℎ𝑤 Enthalpy of liquid water 340 (btu/lb)

ℎ𝑓𝑓 Enthalpy of water vapor 1078.25 (btu/lb)

𝑓𝑟 Volumetric flow rate of air (cfm = ft3/min)

gpm Flow rate of chilled water (gal/min)

𝜇 Ventilation rate of air in system (25%)

58

Redefine the variables and parameters as follows:

𝑢1 = 𝑓𝑟 ,𝑢2 = gpm, 𝑥1 = 𝑇3, 𝑥2 = 𝑊3, 𝑥3 = 𝑇2

𝛼1 = 60
𝑉𝑠

,𝛼2 = 60𝑓𝑟
𝑐𝑝𝑉𝑠

,𝛼3 = 1
𝜇𝜇𝑎𝑐𝑝𝑉𝑠

,𝛼4 = 1
𝜌𝑎𝑉𝑠

𝛽1 = 60
𝑉ℎ𝑒

,𝛽2 = 1
𝜌𝑎𝑐𝑝𝑉ℎ𝑒

,𝛽3 = 60ℎ𝑤
𝑐𝑝𝑉ℎ𝑒

with 𝑢(𝑡) = [𝑢1(𝑡), 𝑢2(𝑡)]𝑇 being the control signal applied to the plant, 𝑦(𝑡) =

[𝑥1(𝑡), 𝑥2(𝑡)]𝑇 being the output of the plant. The 2-input, 2-output system can be

described as

𝑥̇1(𝑡) = �𝛼1�𝑥3(𝑡)− 𝑥1(𝑡)� − 𝛼2�𝑊𝑠 − 𝑥2(𝑡)��𝑢1(𝑡) + 𝛼3 �𝑄𝑜 − ℎ𝑓𝑓𝑀𝑜�+𝑒1(𝑡)
𝑥̇2(𝑡) = 𝛼1�𝑊𝑠 − 𝑥2(𝑡)�𝑢1(𝑡) + 𝛼4𝑀𝑜 + 𝑒2(𝑡)
𝑥̇3(𝑡) = �𝛽1�𝑥1(𝑡)− 𝑥3(𝑡)�+ 𝛽1𝜇�𝑇0 − 𝑥1(𝑡)��𝑢1(𝑡)−𝑢1(𝑡) ×

�𝛽3�𝜇𝜇0 − (1−𝜇)𝑥2(𝑡)−𝑊𝑠�� − 6000𝛽2𝑢2(𝑡) + 𝑒3(𝑡)

 (5.4)

The objective is to apply the designed controller to control the HVAC system so that

the output 𝑦(𝑡) tracks the desired temperature and humidity ratio. The simulation

conditions are given in Table 5.9.

Table 5.9: Simulation conditions of HVAC plant

Parameters Values

Neurons of network p=12, h=5, L=2

Plant delay n=3, m=2, d=0

Parameters of controller 𝑁0 = 1 , 𝑁1 = 4 , 𝑁𝑢 = 4

Sampling time 0.01 hr

59

5.2.1 The NN Model Training for HVAC System

The RBF-NN is used to estimate the HVAC system given by Equation (5.4). Since

the order of magnitude of values in HVAC system are not the same, scaling factors are

used to normalize the system inputs and outputs within the interval [−1.0,1.0]. Fig.

5.17 shows the normalized input signal applied to the neural network for offline training.

The corresponding normalized filtered response, which is shown in Fig. 5.18, will be

used to train the neural network. The SNR of the HVAC system responses are 25.53 dB

and 23.43 dB, and the SNR of filtered responses are 36.16 dB and 34.07 dB when the

cutoff frequency is 0.0022 Hz.

Figure 5.17: The input signals for neural network training: (a) Channel 1; (b) Channel 2

60

(a)

(b)

Figure 5.18: The HVAC system responses (top) and filtered responses (bottom) for

training: (a) Channel 1; (b) Channel 2

61

The modified gradient method defined in Equation (2.6) is adapted to minimize the

objective function defined in Equation (3.8). The actual step size 𝜅 = 0.005 is used.

The termination rules are chosen as,

1). The value of the objective function 𝐽(𝑍) < 1;

2). The learning iteration 𝐾 > 10000;

3). The changing of gradients ||𝑔𝑘 − 𝑔𝑘−1|| < 1 × 10−8.

The training results after 10000 iterations are provided. Fig. 5.19 (a) displays the

outputs of the NN model and HVAC system. Fig. 5.19 (b) shows the error between the

outputs of the HVAC and the NN model. The responses of the neural network

parameters are plotted in Figs. from 5.20 to 5.22. It can be seen that the parameters of

the neural network change fast during the first 1000 iterations, which means that the

values of cost function is large and the norms of the gradients are large. After the first

1000 iterations, the parameters slowly converge to the vicinity of some values, which

can be considered as the near-optimal parameters.

62

(a)

(b)

Figure 5.19: The training results for HVAC system: (a) The responses (red line: filtered

system response, blue line: NN model response); (b) The training error

63

Figure 5.20: The centers of the first neuron in the input layer for HVAC training

Figure 5.21: The widths of the first neuron in the input layer for HVAC training

64

Figure 5.22: The weights of the first neuron in output layer for HVAC training

5.2.2 The NN Model Validation for HVAC System

The NN model is validated using a sinusoidal input signal defined in Equation (5.2)

for this plant, with the amplitude 𝐴 = 1, the sampling time 𝑇 = 0.01 hr, the

frequency 𝑓 = 1/36000 Hz, and the bias D=0. The HVAC system response is filtered

by a second-order Butterworth low pass filter with cutoff frequency 0.0022 Hz. The

SNR of filtered system response for two output channels are 31.92 dB and 30.89 dB.

The HVAC system response, the NN model response and the validation error are

shown in Fig. 5.23 and Fig. 5.24, respectively. The numerical results are given in Table

5.10 which shows that the RBF neural network model is a very good approximation of

the HVAC system.

65

(a)

(b)

Figure 5.23: The HVAC system response (top) and filtered response (bottom) for

validation: (a) Channel 1; (b) Channel 2

66

(a)

(b)

Figure 5.24: The NN model response (top) and error (bottom) for validation (red line:

filtered system response, blue line: NN model response): (a) Channel 1; (b) Channel 2

67

Table 5.10: The results of neural network model for validation signal

 rRMSE MAE Filtered feedback

SNR (dB)

Feedback

SNR (dB)

Channel 1 0.01896 0.01196 31.92 29.16

Channel 2 0.02756 0.01383 30.89 26.92

5.2.3 The Predictive Control for HVAC System

The objective is to track the desired temperature and humidity ratio in thermal space.

Suppose that the designed thermal loads are constant, and all the parameter values are

given as in Table 5.8. The initial values of the state variables are set to 𝑇3 = 84, 𝑇2 =

55, 𝑊3 = 0.0092.

Quasi-Newton method and Nelder-Mead method are applied for solving the cost

function minimization problem separately. The termination rules are chosen as same as

the rules for SISO benchmark plant.

A normalized uniform pseudo random noise with amplitude in the interval

[−0.02,0.02] for the first output and [−0.08,0.08] for the second output is added to

the feedback of the plant. The feedback needs to be filtered by a Butterworth filter

before applied to the controller. Fig. 5.25 and Fig. 5.26 show the results when the cutoff

frequency is 0.0022 Hz for Quasi-Newton method and Nelder-Mead method. The

control signal, the tracking performance, the tracking error, and the computation time of

both Quasi-Newton method and Nelder-Mead method are shown in Figs. from 5.27 to

68

5.30, respectively.

(a)

(b)

Figure 5.25: The HVAC system feedback (top) and the filtered feedback (bottom) of

Quasi-Newton method: (a) The temperature of thermal space; (b) The humidity ratio

69

(a)

(b)

Figure 5.26: The HVAC system feedback (top) and the filtered feedback (bottom) of

Nelder-Mead method: (a) The temperature of thermal space; (b) The humidity ratio

70

(a)

(b)

Figure 5.27: The control signal of HVAC system: (a) using Quasi-Newton method; (b)

Nelder-Mead method

71

(a)

(b)

Figure 5.28: The tracking performance (top) and tracking error (bottom) of HVAC

system for Quasi-Newton method (red line: filtered feedback, blue line: reference

trajectory): (a) The temperature of thermal space; (b) The humidity ratio

72

(a)

(b)

Figure 5.29: The tracking performance (top) and tracking error (bottom) of HVAC

system for Nelder-Mead method (red line: filtered feedback, blue line: reference

trajectory): (a) The temperature of thermal space; (b) The humidity ratio

73

(a)

(b)

Figure 5.30: The calculating time of predictive control for HVAC system: (a)

Quasi-Newton Method; (b) Nelder-Mead Method

74

The comparsion between the two algorithms are given in Table 5.11. Like previous

work on SISO benchmark plant, two different methods were applied to solve the cost

function minimization problem. The results show that both methods can solve the

problem in a short time periord. The system outputs are able to track the desired

reference trajectories with very small tracking error.

Table 5.11: The control results for HVAC system with normalized noise amplitude

between [-0.02, 0.02] for the first output and [-0.08, 0.08] for the second output

 CH rRMSE

tracking

MAE tracking SNRB

(dB)

SNRF

(dB)

AvgT

(ms)

MaxT

(ms)

QN 1 0.001702 0.1029 ℉ 29.26 30.54 5.978 81.96

2 0.004348 0.000033 lb/lb 15.53 20.72

NM 1 0.001689 0.1023 ℉ 29.31 30.54 5.552 69.79

2 0.004864 0.000036 lb/lb 15.61 20.24

Both Quasi-Newton method and Nelder-Mead method have almost the same control

results for the HVAC system with small noise. Further simulations are done by changing

the amplitude of random noise. The other conditions for simulations stay the same. The

numerical results are given in Tables from 5.12 to 5.15. The HVAC system cannot be

stabilized if the amplitude of normalized noise is larger than 0.5. By using Quasi-

75

Newton method with normalized noise amplitude between [-0.45, 0.45], the feedback of

the system, tracking performance, and control signal are shown in Figs. from 5.31 to

5.33.

Table 5.12: The control results for HVAC system with normalized noise amplitude

between [-0.05, 0.05]

 CH rRMSE

tracking

MAE tracking SNRB

(dB)

SNRF

(dB)

AvgT

(ms)

MaxT

(ms)

QN 1 0.001881 0.1255 ℉ 21.33 26.41 3.394 31.72

2 0.003504 0.000026 lb/lb 19.60 24.67

NM 1 0.002092 0.144 ℉ 21. 10 25.73 3.733 41.18

2 0.003259 0.000025 lb/lb 20.91 24.86

Table 5.13: The control results for HVAC system with normalized noise amplitude

between [-0.15, 0.15]

 CH rRMSE

tracking

MAE tracking SNRB

(dB)

SNRF

(dB)

AvgT

(ms)

MaxT

(ms)

QN 1 0.005425 0.3654 ℉ 11.89 16.96 3.479 505.1

2 0.007734 0.000057 lb/lb 10.25 15.30

NM 1 0.005963 0.4162 ℉ 11.88 16.42 3.872 523.6

2 0.008805 0.000067 lb/lb 11.70 15.53

76

Table 5.14: The control results for HVAC system with normalized noise amplitude

between [-0.25, 0.25]

 CH rRMSE

tracking

MAE tracking SNRN

(dB)

SNRF

(dB)

AvgT

(ms)

MaxT

(ms)

QN 1 0.009087 0.6124 ℉ 7.596 12.64 5.401 695.0

2 0.01269 0.000094 lb/lb 6.062 11.07

NM 1 0.009959 0.6961 ℉ 7.556 12.30 3.872 523.6

2 0.01461 0.000111 lb/lb 7.531 11.37

Table 5.15: The control results for HVAC system with normalized noise amplitude

between [-0.45, 0.45]

 CH rRMSE

tracking

MAE tracking SNRN

(dB)

SNRF

(dB)

AvgT

(ms)

MaxT

(ms)

QN 1 0.01653 1.115 ℉ 2.943 7.894 29.25 696.2

2 0.02404 0.000181 lb/lb 1.661 6.548

NM 1 0.01801 1.264 ℉ 3.467 7.986 33.59 694.4

2 0.02650 0.000203 lb/lb 3.357 7.118

77

(a)

(b)

Figure 5.31: The HVAC system feedback (top) and the filtered feedback (bottom) of

Quasi-Newton method with normalized noise amplitude between [-0.45, 0.45]: (a) The

temperature of thermal space; (b) The humidity ratio

78

(a)

(b)

Figure 5.32: The tracking performance (top) and tracking error (bottom) of HVAC

system for Quasi-Newton method with noise amplitude between [-0.45, 0.45] (red line:

filtered feedback, blue line: reference trajectory): (a) The temperature of thermal space;

(b) The humidity ratio

79

Figure 5.33: The close-loop HVAC system control signal for Quasi-Newton method

with normalized noise amplitude between [-0.45, 0.45]

 From Tables 5.11 to 5.15, it can be seen that the performance of the controller is

influenced by the amplitude of noise. The control effect becomes worse if the noise is

larger. The control using Quasi-Newton method usually has a better tracking perfor-

mance than the one using Nelder-Mead method.

 If the HVAC system is acted upon by non-design thermal loads, the performance of

the GPC is compared with the controller in [1]. The value of the loads for this simula-

tion are 𝑄𝑜 = 350000 btu/hr and 𝑀𝑜 = 196 lb/lb. The initial values of the state

variables are set to 𝑇3 = 75, 𝑇2 = 55, 𝑊3 = 0.0092

80

(a)

(b)

Figure 5.34: The performance of the GPC with non-design thermal loads (red line:

feedback, blue line: reference trajectory): (a) The temperature of thermal space; (b) The

humidity ratio

81

The time responses shown Fig. 5.34 indicate that the GPC minimizes the effect of

the disturbances. The offsets present at the outputs are about 1.15℉ for the room

temperature and −1.6 × 10−5 lb/lb for room humidity. These offsets are about three

times smaller than the controller without disturbance rejection [1] and similar to the

disturbance rejection controller [1].

82

Chapter 6

Conclusions and Future Work

6.1 Conclusions

A GPC based on RBF-NN is designed to control multi-input multi-output nonlinear

stochastic systems. The fundamental issues are cost function minimization and system

modeling, identification. Three different methods of solving the optimization problems

are used. The modified gradient descent method is the simplest method, which is a

normalized original gradient descent method. This modified gradient descent method

converges faster than the original one. It can be used for solving a simple optimization

problem. However, in a complex problem, it requires long calculation time before the

problem is solved, which is inefficient.

 The Quasi-Newton method is based on Newton’s method, but the Hessian matrix

does not need to be calculated. The approximation of the inverse Hessian matrix is

updated by certain updating rules, which usually is the BFGS method. This Quasi-

Newton method has a better convergence rate, and is used for multi-dimensional opti-

mization problems.

 Another method introduced is Nelder-Mead method. Unlike gradient descent

83

method and Quasi-Newton method, Nelder-Mead method is a gradient free method. The

biggest advantage of this method is that it can be easily implemented. Instead of finding

the functional derivatives, the optimization problems are solved by repeating some

simplex searches. This method is commonly used for minimizing problems with

non-differentiable functions. However, this method is inefficient for high-dimensional

problems.

 An RBF-NN has been presented by using gradient descent for learning algorithm,

and a generalized predictive controller is presented by using Quasi-Newton method and

Nelder-Mead method for cost function minimization algorithms.

 The simulations for tracking control of a SISO benchmark plant and a MIMO

HVAC system have been conducted. Different amplitude noise is applied to test the

stability of the closed-loop systems.

 The results have shown that the designed controller based on both algorithms

perform similarly when the noise is small. However, when the larger noise is added to

the system, the controller based on Nelder-Mead method has a worse tracking per-

formance than the other one.

6.2 Future work

The simulation results are satisfactory based on given functional nonlinear

stochastic systems. However, the designed generalized predictive controller based on

RBF-NN has not been implemented on experimental system yet, the following work

84

should be done in the future: (1) Test the controller on a one-DC-motor system for

tracking control. (2) Implement the controller on a parallel robot system. (3) Apply other

predictive control methods to further improve the control performances.

85

References

[1] B. Arguello-Serrano and M. Vélez-Reyes, "Nonlinear control of a heating,

ventilating, and air conditioning system with thermal load estimation," Control

Systems Technology, IEEE Transactions on, vol. 7, pp. 56-63, 1999.

[2] L. Bai and D. Coca, "Nonlinear predictive control based on NARMAX models,"

in Optimization of Electrical and Electronic Equipment, 2008. 11th International

Conference on, pp. 3-10.

[3] S. Billings and I. Leontaritis, "Parameter estimation techniques for nonlinear

systems," 6th IFAC Symp. Ident. Syst. Param. Est., Washington, D.C. pp.

427-432, 1982.

[4] D. S. Broomhead and D. Lowe, "Radial basis functions, multi-variable functional

interpolation and adaptive networks," Complex Syst., vol. 2, pp. 321-355, 1988.

[5] W. Chan, C. Chan, K. Cheung, and Y. Wang, "Modeling of nonlinear stochastic

dynamical systems using neurofuzzy networks," in Decision and Control, 1999.

Proceedings of the 38th IEEE Conference on, 1999, pp. 2643-2648.

[6] F. C. Chen and H. K. Khalil, "Adaptive control of a class of nonlinear discrete-

time systems using neural networks," Automatic Control, IEEE Transactions on,

vol. 40, pp. 791-801, 1995.

86

[7] S. Chen, S. Billings, and P. Grant, "Non-linear system identification using neural

networks," International Journal of Control, vol. 51, pp. 1191-1214, 1990.

[8] S. Chen and S. A. Billings, "Representations of non-linear systems: the

NARMAX model," International Journal of Control, vol. 49, pp. 1013-1032,

1989.

[9] S. Chidrawar and B. Patre, "Generalized Predictive Control and Neural

Generalized Predictive Control," Leonardo Journal of Sciences, vol. 7, pp.

133-152, 2008.

[10] D. W. Clarke, C. Mohtadi, and P. Tuffs, "Generalized predictive control—Part I.

The basic algorithm," Automatica, vol. 23, pp. 137-148, 1987.

[11] C. R. Cutler and B. Ramaker, "Dynamic matrix control-a computer control

algorithm," in Proceedings of the joint automatic control conference, 1980.

[12] V. Elanayar and Y. C. Shin, "Radial basis function neural network for

approximation and estimation of nonlinear stochastic dynamic systems," Neural

Networks, IEEE Transactions on, vol. 5, pp. 594-603, 1994.

[13] W. Guo and M. Han, "Generalized predictive controller based on RBF neural

network for a class of nonlinear system," in American Control Conference, 2006,

pp. 1569-1574.

[14] L. Haichuan, D. Wenzhan, and L. Meizhen, "A novel ACI motor vector method

based on TS-FCMAC neural network predictive control algorithm," in

Information and Automation, 2008. International Conference on, pp. 232-237.

87

[15] S. F. Hu, S. J. Zhu, M. J. Zhong, and Q. W. He, "Neural network modeling and

generalized predictive control for Giant Magnetostrictive actuators," in Control

and Decision Conference, 2009. CCDC'09. Chinese, 2009, pp. 2981-2985.

[16] J-S. R. Jang, C, Sun, Neuro-Fuzzy and Soft Computing, Prentice Hall, 1997.

[17] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence

Properties of the Nelder--Mead Simplex Method in Low Dimensions," SIAM

Journal on Optimization, vol. 9, pp. 112-147, 1998.

[18] M. ŁAwryńCzuk, "A family of model predictive control algorithms with

artificial neural networks," International Journal of Applied Mathematics and

Computer Science, vol. 17, pp. 217-232, 2007.

[19] M. Lazar and O. Pastravanu, "A neural predictive controller for non-linear

systems," Mathematics and Computers in Simulation, vol. 60, pp. 315-324,

2002.

[20] I. Leontaritis and S. A. Billings, "Input-output parametric models for non-linear

systems part I: deterministic non-linear systems," International journal of

control, vol. 41, pp. 303-328, 1985.

[21] C. H. Lu and C. C. Tsai, "MIMO neural-network predictive controller design," in

Industrial Electronics Society, 2004. IECON 2004. 30th Annual Conference of

IEEE, 2004, pp. 1733-1738.

[22] J. Moody and C. Darken, Learning with localized receptive fields: Yale Univ.,

Department of Computer Science, 1988.

88

[23] K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical

systems using neural networks," Neural Networks, IEEE Transactions on, vol. 1,

pp. 4-27, 1990.

[24] J. A. Nelder and R. Mead, "A simplex method for function minimization," The

computer journal, vol. 7, pp. 308-313, 1965.

[25] J. Nocedal and S. J. Wright, Numerical optimization: Springer verlag, 1999.

[26] D. M. Prett, B. L. Ramaker, and C. R. Cutler, Dynamic matrix control method,

U.S. Patent, 1982.

[27] J. Richalet, A. Rault, J. Testud, and J. Papon, "Algorithmic control of industrial

processes," in Proceedings of the 4th IFAC symposium on identification and

system parameter estimation, 1976, pp. 1119-1167.

[28] J. Richalet, A. Rault, J. Testud, and J. Papon, "Model predictive heuristic control:

Applications to industrial processes," Automatica, vol. 14, pp. 413-428, 1978.

[29] F. Schwenker, H. A. Kestler, and G. Palm, "Three learning phases for

radial-basis-function networks," Neural Networks, vol. 14, pp. 439-458, 2001.

[30] E. Semsar, M. J. Yazdanpanah, and C. Lucas, "Nonlinear control and disturbance

decoupling of an HVAC system via feedback linearization and back-stepping,"

in Control Applications, 2003. CCA 2003. Proceedings of 2003 IEEE

Conference on, 2003, pp. 646-650.

[31] J. C. Spall and J. A. Cristion, "Direct adaptive control of nonlinear systems using

neural networks and stochastic approximation," in Decision and Control, 1992.,

89

Proceedings of the 31st IEEE Conference on, 1992, pp. 878-883.

[32] J. C. Spall and J. A. Cristion, "Model-free control of nonlinear stochastic

systems in discrete time," in Neural Networks, 1996., IEEE International

Conference on, 1996, pp. 1859-1864.

[33] Y. Tan and A. Van Cauwenberghe, "Neural-network-based d-step-ahead

predictors for nonlinear systems with time delay," Engineering applications of

artificial intelligence, vol. 12, pp. 21-35, 1999.

[34] B. T. Thumati, M. A. Feinstein, J. W. Fonda, A. Turnbull, F. J. Weaver, M. E.

Calkins, et al., "An online model-based fault diagnosis scheme for HVAC

systems," in Control Applications (CCA), 2011 IEEE International Conference

on, 2011, pp. 70-75.

[35] D. Wang and S. Xu, "Parallel model predictive control of nonlinear time-delay

systems based on recurrent neural network," in Networking, Sensing and Control,

2008. ICNSC 2008. IEEE International Conference on, 2008, pp. 677-680.

[36] F. Zada, S. K. Guirguis, and W. M. Sead, "Hybrid Neural Predictive-Fuzzy

Controller for Motorized Robot Arm," in Computer Science and Society (ISCCS),

2011 International Symposium on, 2011, pp. 157-160.

	Coverpage
	RBF NEURAL NETWORK BASED GENERALIZED PREDICTIVE CONTROL FOR NONLINEAR STOCHASTIC SYSTEMS

	TopSheet
	Contests
	Acknowledgements
	Contests
	1 Introduction01
	1.1 Generalized Predictive Control01
	1.2 RBF Neural Network02
	1.3 Literature Review05

	List of Tables
	List of Figures
	Abstract

	Predictive
	Introduction
	1.1 Generalized Predictive Control
	1.2 RBF Neural Network
	1.3 Literature Review
	1.4 Thesis Overview

	Chapter 2
	Optimization Problem
	2.1 Gradient Descent Method
	2.2 Quasi-Newton Method
	2.3 Line Search
	2.4 Nelder-Mead Method

	Chapter 3
	Modeling
	3.1 NARMAX Model
	3.2 Modeling by RBF NNs
	3.3 Multistep-Ahead Predictive Model

	Chapter 4
	Design of Generalized Predictive Control
	4.1 Cost Function
	4.2 Cost Function Minimization
	4.2.1 Nelder-Mead Algorithm
	4.2.2 Quasi-Newton Algorithm

	Chapter 5
	Simulation Results
	5.1 SISO Benchmark Simulation
	5.1.1 The NN Model Training for SISO Plant
	5.1.2 The NN Model Validation for SISO Plant
	5.1.3 The Predictive Control for SISO Plant

	5.2 HVAC System Simulation
	5.2.1 The NN Model Training for HVAC System
	5.2.2 The NN Model Validation for HVAC System
	5.2.3 The Predictive Control for HVAC System

	Chapter 6
	Conclusions and Future Work
	6.1 Conclusions
	6.2 Future work

	References

