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ABSTRACT

Mobile robots have a promising application prospect as they can assist or replace

humans to perform laborious, repetitive or dangerous tasks in various scenarios. There

has been a large number of studies for mobile robot navigation since 1980s, while

terrain traversability estimation is an important topic in this field — estimating if

an area is traversable and how long will it take to drive through is necessary for

navigating the robot and planning paths.

However, most existing terrain traversability estimation methods are designed

based on simple fixed rules and manually tuned parameters, suffering low accuracy

and poor generalization due to their simplicity of structure and biases to the environ-

ment where they are tuned. To address this problem, we proposed a set of data-driven

traversability estimation methods based on Convolutional Neural Networks (CNN),

which are trained and tested them in different simulation environments.

There are 3 main goals for our methods:

1. High accuracy. Accuracy of the result is the core of an traversability estimation

method.

2. Low computational cost. Since most mobile robots are equiped with very lim-

ited computing power and energy, a practical traversability estimation method

should be able to work with a low computational cost.

3. Good generalization. A good traversability estimation method should generalize

to different type of environments or provide a function to automatically fit to a

new environment instead of manual tuning.

In this thesis, we first reviewed some representative conventional terrain

traversability estimation methods and introduced several related fields including mo-

bile robot path planning, localization and map building. Then we proposed our

CNN-based methods, demonstrated how to build the simulation framework and col-

lect terrain samples with driving data. Finally we compared the performance of our

work with benchmark methods in both classification and regression traversability es-

timation tasks on the collected datasets and proved the improvements made by our

methods.
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Chapter 1

Introduction

Mobile robot navigation has been a research topic in high prominence since the 1980s

[1–4]. The main goal of it is to guide a robot in its working environment in an efficient

way to reach a destination, follow a path and/or perform any other tasks given by

the user.

The application of mobile robot navigation ranges from indoor services [5], search

and rescue missions [6] to extraterrestrial exploration [7]. Deploying mobile robots

with autonomous navigation is an solution for handling tasks in those environments

that are too dangerous or far away for deploying manned vehicles.

1.1 Mobile robot navigation

There are four main steps in mobile robot navigation: localizing the robot, building

a map, planning the path and finally following the path towards the destination.

Knowing its location is essential for a robot to perform all types of tasks. Popular

robot localizing methods include Simultaneous Localization And Mapping (SLAM)

and Wireless Localization based on Received Signal Strength Indicator (WL-RSSI).

SLAM methods estimate the robot location by fusing the motion model of robot

and observations from the environment in a probability estimator. There are two

key solutions for SLAM problem: Extended Kalman Filter SLAM (EKF-SLAM)

assumes the noise in motion estimation is Gaussian additive. While Rao-Blackwellised

based Filter SLAM (FastSLAM) directly represents the non-linear process model and

non-Gaussian pose distribution through recursive Monte Carlo sampling or particle

filtering. By applying Rao-Blackwellised particle filtering, the sample space is reduced
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and thus having a relatively lower computational complexity.

Being able to localize itself without requiring external information and build a map

simultaneously is the main advantage of SLAM. However, it usually performs poorly

when applied to environments where same landmarks can not be easily observed again

or over long distance driving in large areas due to its high computation cost and long

term accuracy loss, and not all SLAM methods generate a map can be used for robot

path planning (e.g. Visual Fast SLAM).

On the other hand, WL-RSSI methods provide a more accurate way for localizing

the robot at a cost of deploying wireless emitters and pre-calibration of their signal

strength pattern — before performing tasks, robot travels in the target area and col-

lect wireless signal strength of each emitter coupled with ground truth coordinates

provided by high-precision localizing methods such as triangulation. Then these col-

lected data points will help to build a function (usually by training a machine learning

model, e.g. a neural network) from RSSI to robot pose.

The next step is building a map of the environment in a structure upon which

path planning can be done efficiently. Nowadays the most widely used map formats

for mobile robot navigation planar are grid maps and maps based on point clouds

— a set of points with coordinates and other supplementary information (e.g. color)

representing the surface of ground and objects of the environment, and grid/elevation

maps derived from it. Individual local point clouds are captured by a depth camera

mounted on the robot. Then, by virtue of the robot pose information obtained in the

previous localizing step, these local point clouds can be merged into a global map,

outlier and redundant points can be filtered out while fitting methods are applied to

align them to minimize map error. Depending on the specific application scenario,

such point cloud maps may be transformed into octrees or elevation maps for further

use.

Finally, in the path planning step — to perform tasks given by the user, a mobile

robot usually needs to arrive at a series of designated locations with its limited ca-

pability of overcoming obstacles and battery capacity, therefore planning an optimal

path to the destination is necessary. Various methods are used to find that opti-

mal path, heuristic searching methods such as A* are common for searching in grid

maps while Rapidly-exploring Random Tree (RRT) and its heuristic version RRT*

are widely used in non-grid maps.

As the time, energy and other costs for driving on different type of terrain varies

greatly, especially in unstructured outdoor environments, estimating the traversability
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of terrain becomes essential for robot navigation, especially for path planning —

the estimated traversability for terrains plays the role of the “distance” between

grids/nodes in those aforementioned planning methods which is the key for finding

an optimal path with lowest cost.

1.2 Traversability estimation

An intuitive way to estimate traversability is building a map for the target terrain and

analysing geographic factors within it. Popular map types include elevation maps [8],

2.5D grid maps [9] and maps based on point clouds [27].

In this type of methods, traversability is usually computed as a weighted sum of

map features like roughness and slope of the area where the mobile robot drives on.

Such estimation methods are highly interpretable since the data and functions used

in the computation are given explicitly, and thus parameters must be tuned manually

when they are applied to a new environment.

Another option for traversability estimation is directly generating an index for

traversability — in either a classification or regression way — from images of the target

terrain. In [24], geographic features including rocks, slopes and horizon are extracted

from the images captured by a robot and used to compute the traversability through

a set of fuzzy rules, without the need to build any map. Kim et al. [25] proposed a

way to learn the image-traversability mapping through unsupervised on-line learning

to reduce the work of collecting training data before deployment.

There is also a set of researches like [7] focusing on estimating the motion and

trajectory of robot on given terrains rather than a simple class or index of traversabil-

ity. These methods can provide much more detailed estimation for better control of

mobile robot driving at a cost of being highly dependent on training environment and

robot kinematic information.

However, there are flaws in these methods: Manually selected features and func-

tions combining them will inevitably introduce bias into the estimation and prone to

be too simple to fit complex traversability pattern on terrains; Using raw map data

(e.g. raw point clouds in [27]) leads to high computation cost; Estimation directly

made on highly detailed information (e.g. photos in [25] and the robot trajectories

in [7]) usually pay with inferiority on accuracy because the training data may be bi-

ased to their own experiment environments thus hard to generalize to other scenarios,

and the estimating rule is also interpretable.
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To address these issues, this thesis investigates several elements of mobile robot

navigation, such as robot localization, map building and path planning with the

objective of developing a data-driven framework for estimating terrain traversability

using Convolutional Neural Network (CNN) models, as well as a training dataset of

terrain samples and traversability indicators.

There are 3 main goals for our traversability estimation framework:

1. High accuracy. The traversability estimation accuracy of most conventional

methods are fundamentally limited by their simplicity in structure. On the

contrary, by virtue of their universal approximating ability, methods based on

neural networks can achieve high level accuracy through selecting appropri-

ate networks and enough training no matter what the underlying pattern of

traversability is.

2. Low computation cost. Mobile robots usually have very limited energy, thus

reducing the computation cost for traversability estimation can help to extend

their working time between each recharge. This improvement can also increase

the robot task performing efficiency as it shortens the time used in path plan-

ning.

3. Low bias and better generalization. Manually designed hyperparameters are

the key to conventional traversability estimation methods. However, they will

be inevitably biased to the environments where they are originally tuned and

tested. Tuning such parameters whenever the method is applied to a new type

of environment is laborious. We plan to design a data-driven traversability

estimation framework based on CNN which can automatically fit unseen envi-

ronments by training on new data, therefore improving its generalization while

saving human labor.

More discussions of existing traversability estimating methods will be made in

chapter 2, following by reviews of robot localizing, map building and path planning

in chapter 3-5. Chapter 6 is our approach and experiment deign, while chapter 7

shows experiment results which justify the improvements made by our method. At

the end, a conclusion is given in chapter 8.
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Chapter 2

Path planning

To perform tasks at user-specified locations, an autonomous mobile robot should be

equiped with path planning algorithms to find a valid path from its current location to

the goal point. Furthermore, the driving cost, such as time and energy consumption,

should also be taken into consideration to find an optimal path, where traversability

estimation plays an essential role.

In this chapter, we will introduce several path planning methods for mobile robots

and show how they optimize the resulting path based on the length of straight edges,

which must be obtained by traversability estimation in real-world applications.

2.1 Dynamic Visibility Graph (DVG)

In vanilla visibility graph algorithm, a shortest path is obtained by connecting tan-

gent lines between vertices of obstacles that cross the S-G line — the straight line

connecting start point and goal point, as shown in Fig 2.1:

To reduce the number of vertices involved in computation, an active region is

defined here by vertices with maximum distance from the S-G line, denoted as M P

in Fig 2.1, which belong to the obstacles crossed by the S-G line. Only vertices within

this region will be considered in the shortest path computation.

However, there may exist a shorter path outside the active region as Fig 2.2a

shows. To address this problem, Huang and Chung [10] proposed Dynamic Visibility

Graph (DVG), which ensures the shortest path is located in the active region by

iteratively expanding it if shorter outer path is found.

When terrain traversability are taken in to consideration, the actual robot driving
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Figure 2.1: Active region in visibility graph (from [10])

(a) A case that shortest path is out of the
active region (b) Expanding active region

Figure 2.2: Active region expansion (from [10])

cost for each path may no longer be proportional to its Euclidean length. Therefore,

when computing the shortest path and determining whether to expand the active

region, the traversability indicator of straight edges will be used as their length.

2.2 Randomized Roadmap

A computationally efficient way to find a path between arbitrary start and goal point

in an area is building a roadmap — a graph with valid robot configurations as ver-

tices and straight path without obstacles as edges. Amato and Wu [11] proposed

a randomized roadmap method which can obtain high quality roadmaps even in a

configuration space (C-space) full of obstacles.

The first step of this method is evenly generating nodes at the surface of every
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obstacle. As shown in Fig 2.3a, multiple uniformly distributed rays are draw from

the center of an obstacle (e.g. an average of the coordinates of its vertices), then use

binary search to locate points where the obstacle boundary intersects with these rays.

The resulting point distribution may not close to uniform when the shape of obstacle

is irregular. To remedy this problem, new rays and points (such as transparent nodes

in Fig 2.3a) will be added when the Euclidean distance between two neighbor points

or the difference between their surface normal orientation is too high.

(a) generating nodes (b) connecting nodes

Figure 2.3: Randomized roadmap building process (from [11])

The second step is attempting to connect these surface nodes to their k-nearest

neighbors as Fig 2.3b shows, thus a roadmap is built. When planning a new path, this

method will first try to connect the start and goal point to their k-nearest neighbor

nodes in the roadmap. If failed, it will make a random walk and try to connect the

end node. This procedure will be repeated until both the start point and the goal

point are connected to the roadmap or a threshold of attempt is reached. Finally, a

valid path could be found through a breadth-first search or shortest path computation

(e.g. Dijkstra algorithm).

Similar to the situation in the aforementioned DVG method, traversability indi-

cators can be computed for each edge in the roadmap and used for searching the

shortest path. This can help to find path with lower robot driving cost in real-world

applications rather than paths with shorter Euclidean length.
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2.3 Windowed Hierarchical Cooperative A*

(WHCA*)

In some scenarios, only the local map of the robot’s vicinity and the orientation of the

goal point are provided instead of a prior global map. Silver [13] proposed a heuristic

method based on grid map — Windowed Hierarchical Cooperative A* (WHCA*) for

path planning in such scenarios.

This algorithm generates the distance to every goal for all grids in a grid map as

the heuristic for path searching. Then it finds the path for the robot through a Reverse

Resumable A* (RRA*) search based on a reservation table. In each time window, all

available paths are searched in order. At every time step, visited grids of previously

determined paths will be ”reserved” in a table, no longer available for following paths

in the current time window. This hierarchical search makes it possible to plan paths

for multiple robots at the same time. Windowing the search also limits the searching

depth, which improves the computational efficiency by avoiding calculating long-term

contingencies which may not actually occur.

When applied to an unknown environment, the heuristic can no longer be calcu-

lated based on the complete map information such as RRA* did in WHCA*. Sar-

toretti et al. [14] designed a heuristic function computed distributively by the robot

which only depends on the information of its field of vision (FOV), as shown in Fig

2.4. As the positions of all goals are known, the robot will be provided with a unit

vector pointing to its goal and a magnitude proportional to its Euclidean distance

to the goal at all times, to help them navigate in the unknown map. This vector

and magnitude, plus with FOV sub-maps of obstacles, robot’s and neighbors’ posi-

tions, neighbors’ goals (mapped to a grid on the edge if outside of the FOV) and its

own goal, would be inputted to a neural network to get a navigation model through

training.

The robot driving cost for crossing a grid can be estimated based on the terrain,

and the length of a path will be computed as the sum of the cost of all grids that make

up it instead of just counting the number of grids. By virtue of this, the heuristic

search can find better paths with lower actual driving cost.
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Figure 2.4: FOV of each robot (here for the one in the light blue grid), neighbour
robots are marked by other color, goals of each robot are marked by star with the
same color (from [14])

2.4 Rapidly exploring Random Trees (RRT)

Rapidly exploring Random Trees (RRT) [15–17] is a simple and efficient random-

ized algorithm for solving single-query path planning problems in high-dimensional

configuration spaces.

A tree rooted from the start point is incrementally built as the RRT algorithm

shown in Algorithm 1 — in each iteration, a new point xrand is randomly sampled

from the free C-space, then its nearest vertex in the current tree xnearest will be found

to execute a ”steer” operation, that is connecting these two points if the distance

between them is no greater than a given threshold. Otherwise an edge from xnearest

to xrand with maximum step length will be created instead, where the end point is

denoted as xnew. Finally, vertex xnew and edge (xnearest, xnew) will be added to the

tree.

The execution of the RRT algorithm will end when the goal point is added into

the tree. By setting the probability of sampling the goal point as xrand, the user can

decide how greedily the tree grows towards the goal.
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Algorithm 1: RRT

1 V ← xinit;
2 E ← ∅;
3 for i = 1 : n do
4 xrand ← SampleFreei;
5 xnearest ← Nearest(G = (V,E), xrand);
6 xnew ← Steer(xnearest, xrand);
7 if ObstacleFree(xnearest, xnew) then
8 V ← V ∪ xnew;
9 E ← E ∪ (xnearest, xnew);

10 return G = (V,E);

The resulting path obtained through vanilla RRT is very likely to be jagged as

shown in Fig 2.5a.

(a) RRT (b) optimal RRT (RRT*)

Figure 2.5: RRT vs. RRT* resulting tree and path (from [18])

One way to address this problem is rewiring xnew and its nearby tree nodes every

time a new point is added — among the set Xnear consisting of tree nodes within

a specific radius of xnew, the node xmin with the lowest cost to connect to xnew will

be selected to be the parent of xnew. Afterwards, all the other xnear ∈ Xnear will

be rewired as xnew’s child node if the path cost is reduced in this way. Rewiring

operation can help the resulting path of RRT converge to the optimal, therefore, this

variant of RRT is named as optimal RRT (RRT*). Paths obtained by RRT* are much
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less jagged as shown in Fig 2.5b. It is worth noting that standard RRT and RRT*

only consider the Euclidean length of paths. However, in real-world scenarios there

is likely to be paths with longer length but lower driving cost. To find actual optimal

paths in practice, the traversability of terrain must be taken in to consideration in

path planning.

As discussed in this chapter, terrain traversability estimation plays an essential

role in real-world applications of path planning methods — this is because the actual

driving cost of a path may not simply be proportional to its length but highly de-

pendent on features of the terrains it passes. There are three main requirements for

traversability estimation: high accuracy, low computation cost and good generaliza-

tion to different types of terrain. These requirements are the criteria for evaluating

existing traversability estimation methods and also the goals for designing our own

method. More discussions about traversability estimation will be made in the next

chapter.
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Chapter 3

Terrain traversability estimation

Terrain traversability estimation is an essential part of mobile robot navigation since

an accurate estimation can help a robot to know where is non-traversable to avoid

getting stuck there, and it is also helpful in robot motion control, path-planning and

exploration.

Many studies have been made in this field. There are two common types of input

data for terrain traversability estimation methods — raw images/videos and point

clouds captured by depth cameras, laser range finders or other Lidar devices. On the

other hand, based on the final estimation result, these methods can be divided into

3 categories:

1. Classification of terrain traversability — terrains are classified into traversable

and non-traversable classes or several other traversability classes. Such methods

focus on identifying and avoiding non-traversable terrains. Fuzzy logic is often

used to combine multiple fuzzy rules for the estimation.

2. One or several magnitudes for traversability — these magnitudes usually cor-

respond to some robot driving costs, for example: they can be proportional

to the time cost, energy cost or the probability for the robot to pass through.

Properties of the terrain, such as height difference, slope inclination could be

used to calculate the magnitude.

3. Indicators for robot motion control and/or path planning — in this category,

terrain traversability usually is not estimated directly and explicitly. Instead,

some traversability related indicators are calculated and used for predicting/-

controlling the motion of the mobile robot or planning a path for exploring the
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given area in an efficient way.

Several representative traversability estimation methods of these categories will

be introduced in this chapter, in addition with an analysis of their drawbacks to show

how can we make improvements on the estimation performance.

3.1 Terrain traversability classification

A research proposed by Howard and Seraji [24] in 2000 is a representative example

for ordinary terrain traversability classification methods. It focuses on planetary

environments for autonomous rovers, a set of fuzzy rules are applied to assess a

terrain based on roughness — a measurement calculated from the number and size

of rocks and slopes within it.

As shown in Fig 3.1, all terrain features are extracted from raw input images

provided by a pair of cameras mounted on the rover. There cameras are calibrated in

advance to determine the relationship between their input images and therefore locate

real-world object position. A horizon line is extracted to discriminate the background

and the ground with rocks. Inclinations of slopes on the ground are also calculated

accordingly.

1. Original Image 2. Horizon Line Extraction 3. Rock Detection

Figure 3.1: Roughness calculation (from [24])

After these rock and slope features are calculated, fuzzy rules are applied as showed

in Fig 3.2 to generate a roughness level of this terrain. Besides, when the rover is
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turning, roughness of the terrain in front of it, on its left and on its right will all be

taken into consideration to give an overall traversability estimation.

Figure 3.2: Fuzzy rules for the traversability index (from [24])

In 2006, Kim et al. [25] conducted a more comprehensive study and proposed an

unsupervised traversability classification learning framework with autonomous data

collection for robot navigation in more complex outdoor environments.

As shown in Fig 3.3, they deployed a wheeled robot in outdoor environments with

lush vegetation. A local grid map is built for the vicinity of the robot where grids are

divided and corresponded to visual features by a standard stereo rig.

Figure 3.3: Autonomous data collection and labeling (from [25])

The robot keeps imaging the terrain region in front of it, extracting a set of features

from the image and assign them to the corresponding map grid. After that, when the

robot tries to drive on a previously captured grid, the grid is labeled by the driving
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result — traversable or non-traversable, and this label is then paired with the visual

features extracted from the image of this grid before as a training sample.

For the autonomous data collection, coordinates of the goal and the robot itself

are given by GPS, the best cost path avoiding colliding with any obstacle is computed

by a standard path planning algorithm which can work in two modes: conventional

and learning-based. In the conventional mode, the cost map is built only based on

the elevation of terrain computed through stereo camera. While in the learning-based

mode, traversability of terrain in the cost map is given by an on-line classifier, there

are 3 possible outcomes — traversable, non-traversable and unknown.

The traversability estimation method is tested in two test sites with different type

of unstructured outdoor terrain. The trajectories of robot in these tests with different

path planning mode are shown in Fig 3.4 and 3.5:

Figure 3.4: Paths and images of the first test site (from [25])

Here, red trajectories correspond to the conventional path planning mode, while

blue trajectories are planned and executed in learning-based mode. In the images on

the right side, green, red and blue grids represent traversable, non-traversable and

unknown patches respectively. Images on the rightmost column are elevation map got

through the stereo camera mounted on the robot, the color of points ranging from

blue to yellow represents the elevation from lowest to highest.
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Figure 3.5: Paths and images of the second test site (from [25])

Experiment in the first test site demonstrates how the learning-based path plan-

ning can lead the robot to the goal located in tall grass area where is considered

non-traversable and inaccessible by the conventional elevation based planner. This

is because the online learner can find the tall grass area is traversable by trying to

drive on it. On the other hand, the second test shows how the robot learn to avoid

obstacles which is well-suited to the conventional method — by trying to drive on the

obstacle several times from different directions, the the learning-based planner finally

learns how to recognize and avoid it.

The online learner keeps clustering samples based on their coordinate in the hy-

per space of 13 extracted features. When a new sample feature vector is inputted, all

existing clusters whose center is within a given radius from it will be updated accord-

ingly, if there is no such cluster, a new one will be created. Clusters will be labeled by

labeled samples within it. At the same time, new input feature vectors(which have

not been labeled yet) will be classified depending on the ratio of the distance to its

closest non-traversable cluster and the distance to its closest traversable cluster —

if the ratio exceeds a given threshold, the terrain will be predicted as traversable,

otherwise non-traversable.
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3.2 Terrain traversability magnitude estimation

Nowadays, RGB depth cameras are widely used in autonomous mobile robots since

they can generate accurate 3D maps of the vicinity in the form of point clouds. To

more efficiently utilize the map to navigate mobile robot, many researches have been

done for building traversability magnitude or descriptor on the point cloud.

3.2.1 Unevenness Point Descriptor (UPD)

In [26], Bellone et al. proposed Unevenness Point Descriptor (UPD) as a novel indi-

cator for estimating the traversability of a terrain through its 3D point cloud repre-

sentation. UPD is derived from Principal Component Analysis(PCA), for a point pq

in point cloud I, its neighborhood P k
q is defined as:

P k
q = {pki ∈ I : |pki − pq| ≤ dm ∀i = 1, 2, . . . , k} (3.1)

where dm is a given searching radius for neighbor points, k is the number of neighbors

of pq, and | · | is the symbol for Euclidean distance calculation.

Given ~ni is the normal vector of point pi computed through PCA on its neighbor-

hood, define the sum of all ni of neighbors of point pq as:

~r qk = ~n1 + ~n2 + · · ·+ ~nk =
k∑
i=1

~ni (3.2)

Then, compute a local inverse ”unevenness index” ζqk :

ζqk =
||~r qk ||
k

(3.3)

Finally, the UPD of point pq is defined as:

UPD(pq) = {rqx, rqy, rqz, ζ
q
k} (3.4)

here rqx, r
q
y, r

q
z are the scalar components of ~r qk , they provide information about the

orientation of the local surface in the global map frame. On the other hand, ζqk
represents the degree of local roughness, which is determined by the distribution of

the direction of normal vectors in the neighborhood as shown in Fig 3.6.

Besides roughness, orientation is another factor should be taken into consideration
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Figure 3.6: left: Typical distribution of normal vectors found in an irregular region;
right: typical distribution of normal vectors in a regular region (from [26]).

for traversability estimation. A ground reference can be obtained from GPS or IMU

and used to calculate the angle between the r vector of a given point pq and the

z-axis:

αq = arccos

(
rqz
||rq||

)
(3.5)

A threshold αmax can be set according to the mobile robot capability, points with

αq > αmax will be considered as non-traversable. From Fig 3.7 it can be seen that

UPD is able to mark the ramp with an angle less than the threshold as traversable

whereas ordinary roughness index method would misclassify it as non-traversable
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because the roughness index is very low as the ramp is an even and smooth surface.

Figure 3.7: Traversability estimation result for a ramp by ordinary roughness in-
dex(left) and UPD(right), estimated traversable area are marked with green color.

Figure 3.8: UPD-based traversability estimation results in indoor(top) and out-
door(bottom) scenarios (from [26]).

Tests have been done in both indoor and outdoor environments to evaluate the

accuracy of UPD-based estimation. Experiment results prove that UPD makes a

good traversability classification in both scenarios as shown in Fig 3.8.
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3.2.2 Terrain roughness based method

Philipp et al. proposed a more comprehensive pointcloud-based traversability estima-

tion method in their study about mobile robot navigation [27]. Like the UPD, result

of this method is also composed of roughness and orientation factors.

In this method, the neighborhood of a point pi in the point cloud is defined as the

set including all points within a given radius rplane from pi. To access the roughness

of this neighborhood, a plane is determined by applying PCA on these points, its

normal is denoted as ni while the gravity center is pi.

Then the signed distance between points along ni can be computed as:

dik = (pi − pk) · ni, k ∈ Bres(pi) (3.6)

where pi is the gravity center of the neighborhood of point pi, Bres(pi) is a set of

indices of all points within a sphere of radius rres around pi.

The terrain roughness at pi is defined as the absolute value of the difference

between the maximum and minimum dik in (dik)k∈Bres(pi).

However, the result may be polluted by outlier points. To attenuate the influence

of noise, a fixed fraction fη < 1 of points will be filtered out as outliers:

Ni = ceil

(
fη|Bres(pi)|

2

)
(3.7)

here |Bres(pi)| is the number of points within rres from pi. Ni points with highest

dik and Ni points with lowest dik are defined as outliers, the set of them is noted as

Ores(pi).
Then the terrain roughness ρi at point pi can be computed as:

ρi = |max
k

(dik)−min
k

(dik)|, k ∈ Bres(pi) \ Ores(pi) (3.8)

The relationship of rplane, rres, ni, pi and ρi are shown in Fig 3.9.

The overall terrain roughness of the ground under the robot is computed based

on the set of points within a corresponding cuboid of the robot’s size. Given the

pose (including position and orientation) of the robot as T, the overall roughness is

a normalized result from all points:

ρcub =
1

|Crob(T)|
∑

m∈Crob(T)

ρm ∈ [0, ρmax] (3.9)
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Figure 3.9: Computation of the per-point terrain roughness value for a map point pi.
Spheres with radius of rplane, rres are in blue and red color respectively (from [27]).

where ρcub is the overall terrain roughness of the cuboid, |Crob(T)| is the number of

points within the cuboid, ρmax is a fixed threshold of roughness given by the user

— any terrain including a point with roughness higher than ρmax will be directly

classified as non-traversable.

Besides roughness, the roll and pitch angles of the pose of the mobile robot are

also be used to compute the terrain traversability:

τ = 1− wrough
ρcub
ρmax

+ wroll
|ψ|
ψmax

+ wpitch max

(
θ

θmin
,

θ

θmax

)
∈ [0, 1]

(3.10)

here ψ, θ are the roll and pitch angle of robot pose; ψmax is a user-defined bound

of roll angle, and since the robot’s capability of driving on slopes may different for

ascending and descending, there are independent lower bound θmin and upper bound

θmax of pitch angle; wrough, wroll and wpitch are weights for balancing these three

factors about traversability. τ is the final traversability index, ranging from 0 to 1.

This terrain traversability assessment method is applied on a wheeled robot and

tested in various environments as shown in Fig 3.10 — the first row of each sub

figure is photographs of different scenes, the second row is corresponding point clouds

colored according to the resulting per-point terrain roughness, where non-traversable

areas such as trees, walls and obstacles are marked as dark red, while traversable

areas such as roads and flat grounds are marked as light blue to gray based on their

roughness values.
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(a) Terrain traversability assessment results in an unstructured, non-planar environment

(b) Obstacle detection

Figure 3.10: Terrain traversability assessment results, non-traversable areas are marked by
red points (from [27])

3.2.3 Disadvantages of parameterized traversability estima-

tion methods

However, hyperparameters that have a significant impact on the traversability esti-

mation result, such as neighbor radius dm, inclination threshold αmax in UPD [26]

and plane radius rplane, roughness threshold ρmax in the terrain roughness based

method [27] have to be tuned manually. This means it requires a lot of manual la-

bor to find a parameter configuration with accurate results, and this manual tuning

work needs to be done repeatedly when the method is applied in different type of
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environments. Furthermore, there is even no guarantee that such a configuration can

be found within acceptable time cost.

Another main disadvantage of parameterized methods is that they don’t have

enough approximating ability to depict the rules and features determining the

traversability, and thus give inaccurate results because of underfitting and ignoring

important details in the environment.

A pair of simplified UPD and terrain roughness based traversability estimation

method are tested in our experiment as benchmarks. Experiment results show that

there can be a clear difference between hyperparameters learned from the training

dataset and the optimal settings on the testing dataset. Moreover, these benchmark

methods suffer a relatively low accuracy of results even when they are directly opti-

mized on the testing dataset. More details and discussions about it will be given in

the experiment chapter.

3.3 Vehicle configuration prediction

Another way to estimate terrain traversability is directly predicting the pose of mobile

robot — including altitude and configuration angles(roll, pitch, yaw) — during its

driving.

Ho et al. [28] used Gaussian Process (GP) as a continuous representation of the

vehicle pose over terrain and proposed a method to estimate traversability over terrain

by learning vehicle response by experience. GP regression is performed on the input

data which is a combination of elevation map, vehicle kinematics and experience(Kin-

GP-VE) as Fig 3.11 shows.

Figure 3.11: System architecture of Kin-GP-VE (from [28])
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As the kernel function defines the covariance between each pair of variables in GP,

the choice of kernel function will inevitably introduce bias in to the estimation. To

alleviate this problem, Ho et al. choose to learn the kernel function based on vehicle

experience in training.

The training is done by driving a planetary rover in a Mars analogue terrain called

Marsyard as shown in Fig 3.12. The rover makes traversals in a grid pattern to cover

all the three experiment areas while recording vehicle configurations.

Point clouds are also obtained via the RGB-D camera mounted on the rover and

further transformed into an elevation map. By virtue of exploiting the explicit corre-

lation between vehicle configurations in GP, more accurate traversability estimations

can be made over unknown terrains in an incomplete map as the one in Fig 3.13.

Figure 3.12: Rover & experiment environment (from [28])
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(a) elevation map (b) roll estimation

Figure 3.13: Elevation map & roll estimation in area 2. In the left figure darker color
represents lower elevation, while in the right figure darker color means a lower roll
angle of the robot when it drives on the corresponding area. (from [28])

In this chapter, we reviewed several types of traversability estimation methods and

discussed their drawbacks caused by manually set parameters and rules. To improve

the accuracy and generalization of the traversability estimation, we propose a set of

data-driven methods based on pre-trained CNN models and a simulation framework

for collecting training data. Conventional methods introduced in this chapter are also

re-implemented and tested on the same dataset as benchmarks.

Before explaining our work, it is necessary to investigate what is the format of

the environment map on which the traversability is estimated and how the robot is

localized while scanning the environment and collecting driving data.
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Chapter 4

Mobile robot localization

To enable the implementation of the traversability estimation methods proposed in

this thesis and the experiments to validate them, an autonomous robot would need to

employ localization and mapping methods. This is due to the fact the traversability

methods label terrain samples depending on whether a robot is able to traverse them

or how hard/long it was to go from source to destination while traversing the area.

Localization is essential for the labeling process, mapping is crucial for the sample

collection.

In this chapter, we will investigate two widely used categories of localization meth-

ods in mobile robot navigation — Simultaneous Localization And Mapping (SLAM)

and Wireless Localization based on Received signal strength Indicator (WL-RSSI).

A wireless localization method proposed in our previous study [54] is introduced in

Section 4.2.3. Then, discussions about map building and the map format we used in

our experiments are presented in Section 4.3.

4.1 Simultaneous Localization And Mapping

(SLAM)

In many application scenarios of mobile robots, it’s unlikely to get a prior map of the

environment before the navigation task starts. One way to address this problem is

localizing the robot and building the map at the same time. This research topic is

named as Simultaneous Localization and Mapping (SLAM).
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4.1.1 Probabilistic formulations of SLAM

Studies treating SLAM as a probabilistic problem originated in the 1986 IEEE

Robotics and Automation Conference, while the acronym ’SLAM’ was first pre-

sented 9 years later in 1995 [29]. An early study [30] found the correlation between

each estimate of landmarks, and later researches then proved the convergence of

SLAM [31] [32]. These fundamental works formulated the basic form of the proba-

bilistic model of SLAM and paved the way for further studies.

In general, the task of SLAM is to maintain an estimate for the joint probabilistic

distribution of both the vehicle state and landmark locations as shown below:

P (xk,m|Z0:k,U0:k,x0) (4.1)

where xk is a state vector representing the location and orientation of the mobile robot

vehicle at time instant k (k=0 means the beginning); m is a set of location vectors

of landmarks (mi referring the ith landmark); Z0:k and U0:k are lists of observations

and control inputs respectively ranging from time instant 0 to k.

Two transition models — one for the vehicle motion and the other for the obser-

vation — are used alternately to update the joint estimate [33].

The motion model and observation model:

P (xk | xk−1,uk) (4.2a)

P (zk | xk,m) (4.2b)

The prediction (time-update) and correction (measurement-update):

P (xk,m | Z0:k−1,U0:k, x0) =∫
P (xk | xk−1,uk) P (xk−1,m | Z0:k−1,U0:k−1, x0)dxk−1

(4.3a)

P (xk,m | Z0:k,U0:k, x0) =
P (zk | xk,m)P (xk,m | Z0:k−1,U0:k,x0)

P (zk | Z0:k−1,U0:k)
(4.3b)

where zk and uk represent the observation and control input at time instant k respec-

tively.

Model 4.2a represents the probability distribution of xk inferred by xk−1 and uk,
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then it is used in equation 4.3a to calculate the joint estimate of xk and m based on

Z0:k−1, U0:k and x0.

On the other hand, model 4.2b represents the probability distribution of zk inferred

by xk and m, then equation 4.3b uses it to calculate the joint estimate from Z0:k,

U0:k and x0.

In such a recursive process, the joint estimate of robot location and landmarks at

time instant k can be updated from their previous version at time instant k-1 with

new observation and control inputs. It is also worth noting that estimates of each

step are all dependent on the initial estimate of the vehicle state x0, which is a source

of correlated estimate error between landmarks.

Based on this probabilistic frame, two classical solutions dominate the research

field of SLAM problems for decades — Extended Kalman Filter based SLAM (EKF-

SLAM) and Rao-Blackwellised Filter based SLAM (FastSLAM). While new alterna-

tives with great potential are emerging, trying to improve the computational com-

plexity, data association, and environment representation.

4.1.2 Extended Kalman Filter SLAM (EKF-SLAM)

Kalman Filter [35] is an approach used to get the optimal estimation for a linear

system model that cannot be obtained directly but can only be estimated by obser-

vations with noise. To apply filtering to non-linear systems, Extended Kalman Filter

(EKF) [36] [37] was proposed, which estimates the non-linear system by a linear

approximation around the current state at each time step.

EKF-SLAM applies the standard EKF method [38] [39] to calculate the mean and

covariance matrix of locations of landmarks in the map and the motion of the robot.

In EKF-SLAM, the motion and observation transition model are defined as follows:

P (xk | xk−1,uk)⇐⇒ xk = f(xk−1,uk) + wk

P (zk | xk,m)⇐⇒ zk = h(xk,m) + vk
(4.4)

where f is the vehicle motion function; h is the landmark location observation function;

wk and vk are additive, zero mean Gaussian noises, their covariance are Qk and Rk

respectively.

Through EKF, the mean and covariance of the SLAM joint estimate could be
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calculated as: [
x̂k|k

m̂k

]
= E

[
xk

mk

Z0:k

]
(4.5)

Pk|k =

[
Pxx Pxm

P>xm Pmm

]
k|k

= E

[(
xk − x̂k

m− m̂k

)(
xk − x̂k

m− m̂k

)>
Z0:k

]
(4.6)

here x̂p|q = E[xp|Zq] (p ≥ q), where Zq is the sequence of observations taken up until

time q. Assuming the estimate error is denoted as x̃p|q = x̂p|q − xp, the recursive

estimate of covariance can be calculated by Pp|q = E[x̃p|q x̃
T
p|q | Zq].

The EKF estimation proceeds recursively in two steps:

The first step is the time-update. At each time step k, the vehicle motion estimate

will be made based on the vehicle motion function mentioned in equation 4.4 and the

estimate of the previous time step k − 1:

x̂k|k−1 = f(x̂k−1|k−1,uk)

Pxx,k|k−1 = ∇f Pxx,k−1|k−1∇f> + Qk

(4.7)

where ∇f means the Jacobian of motion function f at x̂k−1|k−1 — the robot location

estimate of last time step.

Then, in the second step, this motion function based only estimate will be incor-

porated with landmarks and observations in the observation-update as:[
x̂k|k

m̂k

]
=

[
x̂k|k−1

m̂k−1

]
+ Wk[z(k)− h(x̂k|k−1, m̂k|k−1)] (4.8)

Pk|k = Pk|k−1 −WkSkW
>
k (4.9)

where Sk = ∇hPk|k−1∇h> + Rk, Wk = Pk|k−1∇h>S−1k , ∇h is the Jacobian of h at

x̂k|k−1 and m̂k−1.

As the number of observations made during navigation increases, the error of

estimated relative locations between landmarks will monotonically approach to zero.

However, for absolute locations, the error will only converge to a lower bound which

is inherited from the error of the initial vehicle state estimate x0.

Fig 4.1 shows how the initial vehicle state estimate error affects all the following
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landmark location estimates.

Figure 4.1: In EKF-SLAM, the initial vehicle state estimate error affects all the
following landmark location estimates (from [33])

In EKF-SLAM, all the observations are combined and treated as a consecutive

trajectory while matches are made between each pair of landmarks even for those

not in the current view of the robot. This strategy ensures a monotonic convergence

of the estimate for the correlation of landmarks, but also brings some problems:

Julier and Uhlmann [40] presented the inconsistency problem of EKF-SLAM caused

by implementing a model with linear Gaussian assumptions on non-linear motion

and observations. On the other hand, as demonstrated in the joint estimate update

formula (equation 4.6), the covariance matrix (Pmm) of landmarks which are all corre-

lated with each other needs to be calculated in every time step, which means the time

complexity of EKF-SLAM is quadratic with the number of landmarks, making it very

computationally costing for applying EKF-SLAM on large maps with thousands or

even more landmarks. Many efforts have been made to deal with these problems, and

one of the most important alternative methods devised for this purpose is FastSLAM,

which will be discussed next.
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4.1.3 Rao-Blackwellised based Filter SLAM

(FastSLAM)

The second main class of SLAM methods is Rao-Blackwellised based Filter SLAM,

which is also known as FastSLAM.

Proposed by Montemerlo et al. [41] in 2002, FastSLAM adopts a fundamentally

different way to implement probabilistic SLAM. Instead of building the map relying

on the relative location between landmarks, it computes the estimate of landmark

locations depending on the vehicle position and orientation estimates from which the

landmark can be observed. By using Rao-Blackwellisation filter, the time complexity

for solving SLAM problems is reduced to the linear level.

The first step of FastSLAM is calculating the vehicle state estimate. A particle

filter similar to the Monte Carlo localization (MCL) algorithm [42] is implemented to

do this following the equations shown below [41]:

St = {st,[m]}m = s
[m]
1 , s

[m]
2 , ..., s

[m]
t m

s
[m]
t ∼ p(st | ut, s[m]

t−1)

w
[m]
t =

target distribution

proposal distribution
=

p(st,[m] | zt, ut)
p(st,[m] | zt−1, ut−1)

(4.10)

where St is a particle set including m particles; Particle st,[m] is the m-th random

sample of the vehicle path(state history) until time t; s
[m]
k is the vehicle’s pose state

at time k of this particle; ut and zt are the control input and observation at time

t respectively; w
[m]
t is the importance factor for weighting particles to get the final

vehicle pose estimate.

According to the assumption that the vehicle and landmarks state transition pro-

cess of SLAM is a Markov chain, which means the state at any time step t would

only dependent on its direct predecessor at time step t− 1. The estimate for the k-th

landmark’s location θk at time step t can be computed through Bayes theorem as:

p(θk | st, zt, ut)
Bayes
∝ p(zt | θk, st, zt−1, ut) p(θk | st, zt−1, ut)

Markov
= p(zt | θk, st) p(θk | st−1, zt−1, ut−1)

(4.11)

where θk is the location of the k-th landmark; s is the pose of vehicle, z is the
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observationanduisthecontrolinput;thesubscripttmeansthisvariablecorresponds

tothestateattimesteptonly,whilethesuperscripttrepresentingthevariablerefers

tothewholestatehistoryuntil(andincluding)timestept.

Alandmark’sestimatewouldonlybeupdatedwhenanewobservationofitis

made,otherwise,it wouldbeleftunchanged. Itcanbeseenthatthelandmark

locationupdatingprocessonlydependsonthesampledvehiclepathandalready

knownobservationsandcontrolinputs. Thisisthe mainpropertyofFastSLAM

andalso makesitcomputationallyefficient —sincethelandmarklocationsbecome

independenttoeachother,thetimecomplexityofFastSLAMisonlyO(MK)where

M isthenumberofparticlesandK isthenumberoflandmarks,whereasEKF-SLAM

requirestimequadraticinK.

However,thevarianceofthevehicleposeestimategrowswithtime. Aresampling

stepisnecessarytoretainappropriateweightsforparticles. Thenewweightsare

computedasfollows:

w
[m]
t ∝

p(st,[m]|zt,ut)

p(st,[m]|zt−1,ut)

Bayes
∝ p(zt|st,[m],zt−1,ut)

Markov
= p(zt|θ,st,[m])p(θ|st−1,[m],zt 1,ut 1

)dθ

EKF
≈ p(zt|θ[m],s

[m]
t )p(θ[m])dθ

(4.12)

Althoughresamplingcouldreinstateuniformweightingforparticles,italsocauses

accuracylossinthelongterm.ThisisbecauseapplyingRBparticlefiltersneedsan

assumptionthaterrorsinthepreviousstateoftheestimatedsystemshould”fade

away”exponentially,whileSLAMsystemsdon’thavesuchaproperty,leadingthe

historicalerrorstoaccumulatewithtime.

WhiletheEKFandRBbasedSLAMapproachespresentamathematicallysound

solutiontothelocalizationand mappingproblem,inpracticetheaccuracyofthese

approachesdegradesharplywhenarobotisunabletoobserveandre-observeland-

marksbetweentimesteps.Forthisreason,otherlocalizationmethodsareneededifa

robothastolocalizeitselfinenvironmentsthatarepoorinlandmarks. Oneofthese

alternativesistheuseofwirelesssignalstrengthbasedlocalizationmethods.
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4.2 Wireless Localization based on Received signal

strength Indicator (WL-RSSI)

As demonstrated in the previous section, SLAM is a computationally expensive way

for localizing mobile robots and it requires expensive special devices such as laser

rangefinders and depth cameras. The localization accuracy of SLAM also fluctuates

because it’s highly dependent on the environment it is applied and the particular

choice of SLAM method.

A more affordable and stable alternative way for mobile robot localization is Wire-

less Localization based on Received Signal Strength Indicator (WL-RSSI), that is lo-

calizing a robot by analysing the strength of wireless signals it receives from multiple

wireless emitters deployed in the area with known positions (called ”anchors”).

4.2.1 Conventional WL-RSSI methods

There are two conventional localization ways in WL-RSSI:

1. Estimating position by distances from anchors. The distance di from the i-th

anchor to the robot can be inferred from the signal strength it receives. Iterating

through all anchors we will have the following equation set:

(x1 − x)2 + (y1 − y)2 + (z1 − z)2 = d21
...

(xn − x)2 + (yn − y)2 + (zn − z)2 = d2n

 (4.13)

here (x, y, z) is the coordinate of the robot and (xi, yi, zi) is the coordinate of

the i-th anchor. With this equation set, we can estimate the robot position by

calculating a (x, y, z) with the minimum mean square error (MSE) like Sugano

et al. did in [43].

2. Estimating position by signal fingerprints. Before performing the localizing

task, sensors (called sniffers) are deployed at different locations in the target

area to collect the signal strength of every anchor received in each location (a

signal fingerprint), thus a road map can be built with these fingerprints. When

localizing a robot, we can compare the current signal fingerprint of the robot

to the prerecorded road map and apply an estimation method such as k-NN to
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determine the robot position.

However, In these conventional methods RSSI is usually used as a fixed function

with distance (as shown in Fig 4.2), but in real world applications RSSI will be

affected by path-loss, fading and shadowing effects. The actual distribution of RSSI

is highly dependent on the environment where anchors are deployed. As Heurtefeux

and Valois showed in [44], RSSI of different platform working on different power level

varies a lot in their distribution pattern (Fig 4.3 - 4.5).

Figure 4.2: Expected relationship between RSSI and distance (K = 25, Pr1 =
−55dBm) (from [33])

Figure 4.3: RSSI propagation on Strasbourg Platform (−30, −15 and 0 dBm) (from
[44])

4.2.2 Improved WL-RSSI methods

Many improvements and new methods have been proposed to solve this problem

[45–47]. One efficient way of them is training a neural network with RSSI recorded
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Figure 4.4: RSSI propagation on Grenoble Platform (−30, −15 and 0 dBm) (from
[44])

Figure 4.5: RSSI propagation on Lille Platform (−30, −15 and 0 dBm) (from [44])

by those sniffers to approximate to the actual RSSI distribution function. Based on

whether the mobile robot localization result is required to be a tag of a subarea or an

exact coordinate, a neural network for classification or regression task can be applied.

In [48], Rohra et al. studied wireless localization as a classification problem — 7

routers are placed as wireless anchors in 4 rooms in their laboratory, RSSI received

by a cellphone at different places in the experimental area are recorded as training

data (shown in table 4.1). Then a fuzzy neural network is trained to predict which

room the phone is in currently.

Table 4.1: Wireless Indoor Localization data samples

WS1 WS2 ... WS7 Class

-64 -56 ... -81 1
-42 -53 ... -69 2
-48 -54 ... -84 3
-58 -56 ... -84 4
... ... ... ... ...

Signal strength in numerical form, lower numbers correspond to weaker signals.

On the other hand, Mohammadi and Al-Fuqaha [49] set up their experiment in a
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mixed area of open and indoor areas. As shown in Fig 4.6, 13 Bluetooth Low Energy

(BLE) iBeacons are deployed in a university library and on the square besides it,

while an iPhone 6S is used to measure and record the RSSI from these beacons.

Figure 4.6: iBeacon layout (from [49])

The whole area is divided into 26 columns (marked by A-Z) and 18 rows (1-18)

and the row/column index of a grid are used as its coordinate. In the experiment,

actual locations (grid indices) and RSSI readings from the 13 beacons at different

times and places are recorded in the form shown in table 4.2. A neural network is

trained on this dataset to predict the coordinate of the signal receiver based on RSSI

as a regression problem.

Table 4.2: BLE RSSI data samples

location b1 b2 ... b13

O02 -200 -200 ... -200
P01 -200 -200 ... -200
P02 -200 -200 ... -200
K03 -200 -80 ... -200
... ... ... ... ...
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4.2.3 Our wireless localization method

Further improvements can be made by adjusting network architecture and training

methods. In one of our previous work [54], we applied a hybrid Particle Swarm

Optimization (PSO) and Gravitational Search Algorithm (GSA) method to WL-

RSSI neural network training and enhanced it with pretraining by Extreme Learning

Machine (ELM).

ELM [50] is a type of Feedforward Neural Networks (FNN) and corresponding

training method. The most essential advantage of ELM is that its weights don’t

need to be tuned iteratively. All input weights (from input layer to hidden layer)

are randomly generated at the beginning, and then output weights are calculated at

once.

The training rule for an ELM with a single hidden layer is:

H = δ(P ×WI +B)

WO = H−1 × T
(4.14)

where P is the training sample matrix, T is the desired output matrix. WI and WO

are matrices containing the weights of connections from input layer to hidden layer

and hidden layer to output layer. B is a vector of biases for hidden layer, δ is the

activation function. H−1 is the pseudo inverse (Moore–Penrose inverse) of matrix H.

PSO is an evolutionary optimization method proposed by Kennedy and Eberhart

[51] in 1995. A set of particles which represent candidate solutions to the target

optimization problem are applied, and a fitness function is defined to measure the

quality of a particle.

All particles move around in the search space to find the best solution, their

coordinates are updated iteratively — in each iteration, every particle will gain a

new velocity determined by three factors: 1. its velocity of last step(velocity of the

first iteration is randomly assigned); 2. the vector from itself pointing to the location

of the particle with highest fitness value(global best) of this iteration; 3. the vector

from its current location pointing to the location in its whole trajectory with highest

fitness value(particle best).

The resulting new velocity is a linear combination of these three factors, and the
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the location of each particle will be updated accordingly as shown below:

Xi(t+ 1) = Xi(t) + Vi(t+ 1)

Vi(t+ 1) = w × Vi(t) +

c1 × rand× (pbesti −Xi(t)) +

c2 × rand× (gbest−Xi(t))

(4.15)

where Xi(t) is the coordinate of particle i at iteration t, Vi(t) is its velocity; w, c1 c2

are weights for three factors respectively, rand is a random number between 0 and 1;

pbesti is the coordinate of particle i with the highest fitness value in its trajectory,

while gbest is the global best particle coordinate so far.

Gravitational Search Algorithm (GSA) was proposed by Rashedi et al. [52] as

a new heuristic optimization algorithm in 2009. It is designed for finding an opti-

mization solution in the search spaces by emulating physical gravitational rules. GSA

applies a collection of particles (candidate solutions) with masses proportional to their

fitness value. In each update iteration, all particles attract each other by the gravity

forces between them. The greater the mass and the closer the distance, the greater

the gravity. Therefore, particles with greatest masses because of being close to the

a local or global best optimization solution will attract the other particles to cluster

around them.

The gravitational force can be modelled as following equations:

Fij(t) = G(t)× Mi(t)×Mj(t)

Rij(t) + ε
× (Xj(t)−Xi(t))

F d
i (t) =

N∑
j=1,j 6=i

randj × F d
ij(t)

(4.16)

where Mi(t), Mj(t), Xi(t), Xj(t) are masses and coordinate of particle i, j at time step

t respectively; Fij(t), Rij(t) are the attracting force and Euclidean distance between

them; randj is a random number in [0, 1], F d
i (t) is the total force that acts on particle

i in dimension d, it’s a randomly weighted sum of attracting forces from all the other

particles .

Hence, the acceleration of particle i at time step t is calculated by the law of
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motion:

ai(t) =
Fi(t)

Mi(t)
(4.17)

Finally, we get the velocity and coordinate update formulas for particle i at time

step t:

Vi(t) = randi × Vi(t) + ai(t)

Xi(t+ 1) = Xi(t) + vi(t+ 1)
(4.18)

here randi is also a random number in interval [0, 1].

Hybrid PSO-GSA was presented by Mirjalili and Hashim [53] in 2012. As a com-

bination of PSO and GSA, PSO-GSA draws on advantages from both of them — the

better exploration ability for particles from PSO and the ability of clustering parti-

cles to areas with higher fitness values of GSA to search these areas more thoroughly

which helps to improve the possibility of finding the global optimal solution.

The particle velocity and coordinate update formulas of PSO-GSA is shown below:

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (4.19a)

Vi(t+ 1) = w × Vi(t)+

c′1 × rand× aci(t)+

c′2 × rand× (gbest−Xi(t))

(4.19b)

where w is an inertia coefficient, which will decrease as the iteration progresses; c′1
and c′2 are two weighting factors, and rand is a random number in [0, 1].

Equation (4.19b) is a combination of the velocity update equations of PSO and

GSA. It consists of three parts:

1. w × Vi(t), which is common to PSO and GSA, represents the affect of inertia

on the particle. w here is the inertia factor, it will decrease as the iteration

progresses.

2. c′1×rand×aci(t), which comes from GSA. Here aci is the acceleration of particle

i caused by the gravitational force from other particles;

3. c′2 × rand× (gbest−Xi(t)), which comes from PSO. gbest is the coordinate of

the global best particle with the highest fitness value so far.
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In our work [54], we apply PSO-GSA on optimizing the weights of a feedforward

neural network for wireless localization tasks from [48] and [49] to get a more accurate

result in both classification and regression scenarios.

Furthermore, we pretrain the network multiple times with ELM and use the re-

sulting network weights to replace part of the randomly initialized particles in PSO-

GSA as they are more likely to be located in areas with high fitness value in the

searching space. Experimental results prove that our method improves both the ac-

curacy and the convergence speed of the network compared with the ordinary Back-

Propagation(BP) and PSO-GSA. The performance comparison is shown in Fig 4.7

and 4.8.

Figure 4.7: Localization classification accuracy of BP, FPG and EP-FPG on Wireless
Indoor Localization dataset.

While the wireless-based localization method provides a solution for localizing the

robot in the environment, it does not generate a map depicting the terrain that can

be used for traversability estimation. The process of building a map and the map

format employed in our approach is presented in the next section.
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Figure 4.8: Mean squared error of the localization result of BP, FPG and EP-FPG
on the Bluetooth Low energy (BLE) dataset.

4.3 Map building

Traversability estimation are directly made on map information of the environment,

which means the map format and how the map is built will determine the way

traversability estimation is performed.

There are a variety of map formats and map building methods with different ad-

vantages have been proposed for mobile robot navigation [55–57]. In this dissertation

we focus on octree — a memory and computation efficient frame for representing a

terrain map, and introduce how to construct an octree based on point clouds and

finally extract an elevation map from it.

The map building process can be divided into 3 steps: point cloud transformation,

octree construction and elevation map extraction.

4.3.1 Point cloud transformation

For a mobile robot equipped with a depth camera, inputting point clouds are usually

represented in the coordinate frame of the camera rather than the chassis of the robot

or the environment. To build a map on a fixed global frame with these point clouds,

a rigid transformation must be done based on localizing and kinematics information
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of the robot as shown below:

~pnew = R×
(
~pori − ~t

)
(4.20)

here ~pori, ~pnew are the original and transformed location vector of a point in the point

cloud; ~t is the translation vector while R is the rotation matrix from the original

frame to the new one.

When the transformation to the global frame is not provided directly, we need

to perform such transformations from the original camera frame to its parent frames

recursively until reaching the main frame of robot. Then a transformation to the

global frame can be done based on the location information of the robot.

4.3.2 Octree construction

Octree is a memory efficient data structure for storing 3D occupancy grid map —

it merges small grids within a same vicinity into a larger grid node to save storage

space, and also delays the initialization of map volumes until measurements need to

be integrated thus reducing the computational complexity for building it too.

As shown in Fig 4.9, an octree partitions a 3D space by recursively dividing it into

8 octants. Starting from an empty octree with a root node only, every time a point

Figure 4.9: Example of an octree storing free (shaded white) and occupied (black)
cells. The volumetric model is shown on the left and the corresponding tree repre-
sentation on the right. (from [57]).

cloud is captured, corresponding cells for points will be inserted into it. The octree

grows as existing nodes including both occupied and free sub-cells being divided into

8 sub-cells recursively. In some frameworks of octree such as OctoMap [57], the state
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of cells can be represented in the form of probability, and the initial state are assumed

as unknown rather than free.

4.3.3 Elevation map extraction

Assuming the environment is in single-level structure, an elevation map can be ex-

tracted from the octree by traversing all the nodes of the tree as shown in Algorithm

2:

Algorithm 2: Height map extraction

1 for i = 1 : Nrow do
2 for j = 1 : Ncol do
3 Hu[i][j] = −inf
4 Hl[i][j] = inf

5 for n in {OctreeNodes} do
6 x, y, z = n.x, n.y, n.z
7 size = n.size
8 colbeg = (x− size/2)/res
9 colend = (x+ size/2)/res

10 rowbeg = (y − size/2)/res
11 rowend = (y + size/2)/res
12 for i = rowbeg : rowend do
13 for j = colbeg : colend do
14 if n is an occupied node then
15 Hu[i][j] = max ((z + size/2)/res, Hu[i][j])
16 else
17 Hl[i][j] = min ((z − size/2)/res, Hl[i][j])

18 for i = 1 : Nrow do
19 for j = 1 : Ncol do
20 H[i][j] = min (Hl[i][j], Hu[i][j])

Here Nrow, Ncol are the number of rows and columns of the resulting elevation

map. Hl, Hu and H are 2D arrays for recording the lower bound, upper bound and

final result of the height of each grid in the elevation map. n is the tree node in

current iteration of the traverse, n.x, n.y, n.z and n.size are the x, y, z coordinate

of the center of the node and its side length. res is the resolution of the elevation

map. row, col with different subscripts are the row and column number for updating

according elevation map grid.
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In some implementations of octree there may be space overlapped by both occu-

pied and free nodes, so it is necessary to compute the lower bound and upper bound

of the grid height respectively and get the final result depending on them.

With mobile robot localization methods and a full elevation map of the experi-

ment environment, driving samples for terrain traversability estimation training —

as pairs of robot driving odometry (recorded through the localization method) and

corresponding submap (extracted from the full map) — can be collected. More details

about the process of data collection will be demonstrated in the following chapter.
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Chapter 5

Experiment environment &

methodology

In this chapter we will give a comprehensive introduction of our experiment environ-

ment and process.

The experiment process can be divided into 4 main steps:

1. Preparing the simulation environment. This thesis uses an adapted version of

the sophisticated simulation case provided in the NASA Space Robotics Challenge

Phase 2 (NASA-SRCP2).

2. Building a full elevation map. Exploring the simulation environment by driving

the robot manually and scanning the ground by a depth camera mounted on it, then

merge collected point clouds, convert the result to an octree and then a full elevation

map in order.

3. Collecting training samples consisting of robot odometries by driving the robot

following designated paths in different areas of the environment. Then cut corre-

sponding map strips from the full elevation map as a training sample together with

the binary and time cost traversability label.

4. Training CNN models on the collected dataset and compare their estimation

performance with benchmark methods.

Fig 5.1 shows the whole process of the experiment.
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Figure 5.1: Diagram for the whole experiment process

5.1 Simulation Environment

We choose to use a sophisticated simulation environment from NASA-SRCP2 which

is built for testing robot driving and exploring in an open planetary environment.

NASA-SRC is a competition held for encouraging and collecting autonomous con-

trol solutions for robots planned to be used to assist humans in extraterrestrial planet

exploration and colonization. For the phase 2 of the competition, the goal is building

an autonomous navigating system for mobile robots to explore and find useful re-

sources like frozen oxygen and water. The first simulation environment we use comes

from the task 1 of its qualification round.

This simulation is built based on Robot Operating System (ROS) and Gazebo.

ROS is an open-source, meta-operating system for robots [61]. It works in a similar

way with an standard computer operating system — its functionalities includes hard-

ware abstraction, low-level device control, implementation of commonly-used func-

tionality, message-passing between processes, remote procedure call (RPC) services,

and package management. Besides, a large number of user developed ROS packages
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for various functions are also available on the official site for downloading and using.

In our experimental setup, ROS is mainly used for controlling the robot. Among

all of its functions, message handling (for communication between modules), RPC

services (for modules which need request/reply interactions) and hardware driving (for

implementing robot control) are most frequently used. Some user developed packages

are also used for different purpose such as expanding service functions (actionlib),

implementing ackerman wheel control (four wheel steering controller), robot twist

teleoperation via keyboard (teleop twist keyboard) and so on. We will explain their

functions and configurations in following corresponding sections where they are used.

On the other hand, Gazebo is an open-source 3D robotics simulator which is

mainly used for building the planetary surface environment, processing physical inter-

actions between the robot and ground/obstacles, and tracking position/orientation/-

movement properties of all objects in our experiment. The function of getting/setting

object properties plays an important role in the odometry data collection step. Details

about its usage will be introduced section 5.4.

Two planetary environments are tested in the experiment:

The first environment comes from NASA-SRCP2 — as shown in Fig 5.3, it is

designated to replicate lunar geography and conditions, without atmosphere and with

the correct Lunar gravity (1.62m/s2). This area is 126 meters long from north to south

and 145.5 meters wide from west to east, containing a variety of hills, craters, rocks

and other common Lunar environment features. Four invisible “bounding boxes” are

placed along the boundaries which are high enough to prevent the robot driving out.

It is worth noting that, in contrast with the original NASA-SRC setting that

all the rocks are randomly generated every time the simulation is started, we use a

fixed random seed (an integer 1 in particular) to make sure the number, shape, size

and distribution of rocks are always the same. All the other objects in the original

environment except aforementioned lunar surface, rocks and bounding boxes are all

removed in our experiment.

The “world” frame is set at the center of this area with its x-axis pointing to

the east, y-axis pointing to the north and z-axis pointing to the up, consistent with

conventions in ROS REP-103 [62]. It is also used as the “map” frame in following

map building and odometry recording steps. Base on the “world” frame, the altitude

of the lowest place in this map is about -3.2 meters while the highest place (on top

of a rock, bounding box area is not included) is about 6.0 meters high.
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(a) The first experiment environment

(a) Simulated lunar terrain and rocks

Figure 5.3: An overview of the first simulation environment (145.5m × 126.0m)

Since it is infeasible to simulate lunar soil as dust particles in Gazebo, NASA-

SRC team choose to construct the ground as a smooth rigid surface, which enables
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the robot to climb up steep slopes in combination with the low gravity.

All important parameters of this environment related to our experiment are listed

in table 5.1. More details can be found in the appendix and simulation files if needed.

Table 5.1: Simulation parameters of environment 1

Parameter Value

Length 126.0m
Width 145.5m

Highest altitude 6.0m
Lowest altitude -3.2m

Gravity 1.62 m/s2

Friction factor mu 1.0
Friction factor mu2 1.0

World frame orientation x-east, y-north, z-up

The second environment comes from [63]. As shown in Fig 5.4, it depicts the

Delta outcrop of the Jezero crater on mars. The size of the terrain is rescaled to fit

the size of the robot, and no extra rocks are generated here.

Parameters of this environment are listed in table 5.2, all the other settings not

mentioned here are the same as in the first experiment environment.

Table 5.2: Simulation parameters of environment 2

Parameter Value

Length 208.2m
Width 188.6m

Highest altitude 26.0m
Lowest altitude 5.6m

Gravity 1.62 m/s2

As shown in Fig 5.5, the robot used to drive in this environment is a four wheeled

rover. It is composed of a main chassis, four legs, four wheels and some sensors

mounted on the chassis. The small grey cuboid hovering over the chassis is a depth

camera (Intel RealSense R200) looking forward and 45° downward. It is the only

thing we added to the original NASA-SRC scout model. Note that the square cone

expanding from it is just a visualization frame for its field of view (FOV), not a

physical entity.
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(a) The first experiment environment

(b) Mars terrain elevation map in grayscale

Figure 5.4: An overview of the second simulation environment (208.2m × 188.6m)

The robot can move or rotate in the space with 6 Degrees of Freedom (6 DoF),

while controlling is done by applying torques on the wheels, steering arms and the
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brake.

Front Side Top

Figure 5.5: Robot structure

Each wheel can rotate and/or steer independently with a given velocity/steering

angle command message. An effort controller for each wheel and its steering joint will

calculate the actual effort should be applied on the joint with PID control. Besides

the four wheel joints and four steering joints, the joints linking each leg and the chassis

are also rotatable, although uncontrollable. Appropriate torques are applied to these

joints to keep the legs parallel to the ground while still allow some elasticity to the

legs to help the robot keep stable when driving over small rocks and bumps on the

ground.

Important robot parameters are listed in the following table 5.3. More related

details can be found in the official documents.

Table 5.3: Robot parameters

Parameter Value

Total Length 2.2860m
Total Width 2.2098m
Total Height

(depth camera not included)
0.9490m

Wheel Radius 0.275m
Wheel Separation Width 1.87325m
Wheel Separation Length 1.5748m

5.2 Four wheel steering manual control

The scout robot needs to be manually controlled to travel around the environment

and collect point clouds from the attached depth camera. We use a ROS package

“teleop twist keyboard” to publish a command velocity (cmd vel) topic with message
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type as geometry msgs/Twist (consisting of a linear velocity vector (x, y, z) and an

angular velocity vector (roll, pitch, yaw)), where only one pair of linear velocity and

steering angle is included. The values of velocity and angle of this message are

determined by the last pressed plus with current linear velocity and steering angle.

Keys ‘i’ and ‘,’ are mapped to commands ordering the robot to move forward and

backward, while keys ‘u’, ‘o’, ‘m’, ‘.’ are mapped to commands ordering the robot

to move forward/backward and turning left or right at the same time. On the other

hand, keys ‘q’, ‘z’ can increase/decrease the current velocity and keys ‘e’, ‘c’ can

increase/decrease current steering angle, and all the other keys will order the robot

to stop — when such a key are pressed, both linear velocity and steering angle in the

cmd vel will be set to zero, but the current velocity and angle being stored in this

keyboard control node won’t be affected.

After the cmd vel message is published, the linear velocity and steering angle

for each wheel will be calculated and published separately in 8 different topics with

Float64 message type. The conversion of cmd vel follows the conversion rules given

in ROS package “four wheel steering controller”, as shown in Algorithm 3.

Here twist is a message from the cmd vel topic. vel and ang variables with

a suffix are resulting velocity and steering angle for each wheel (f: front, b:

back, l:left, r:right). wheel radius(0.275m in our case) is the radius of wheel;

wheel steering y offset(0m) is the distance between a front wheel and its steer-

ing joint; steering track(1.87325m) is equal to the left/right wheel separation minus

2 times wheel steering y offset; wheel base(1.5748m) is the front/back wheel sep-

aration.

In summary, what this conversion algorithm does is trying to move the left wheels

and right wheels along a cycle respectively, and these two cycles share a same center,

as shown in Fig 5.6.

Each wheel will also be assigned with an appropriate velocity based on the length

of the arc it is moving along. This design can help the wheeled robot steer in a more

flexible way and also reduce friction between wheels and the ground.

5.3 Building full height map

We build the map of the environment by collecting point cloud data from a simu-

lated Intel RealSense R200 depth camera. It has a field of view (FOV) covering a

pyramid-shaped space with a range of 5 meters, and generates a point cloud (in ROS
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Algorithm 3: Converting cmd vel

1 vel fl = vel fr = vel bl = vel br = 0
2 ang fl = ang fr = ang bl = ang br = 0
3 lin x = twist.linear.x
4 yaw = twist.angular.z

/* Compute wheels velocities: */

5 if abs(lin x) > 0.001 then
6 sign = copysign(1.0, lin x)
7 vel steering offset = (yaw × wheel steering y offset)/wheel radius

/* Compute wheels velocities: */

8 vel fl = sign ∗ hypot(
9 (lin x− yaw ∗ steering track/2), (wheel base ∗ yaw/2.0)

)/wheel radius− vel steering offset
10 vel fr = sign ∗ hypot(

(lin x+ yaw ∗ steering track/2), (wheel base ∗ yaw/2.0)
)/wheel radius+ vel steering offset

11 vel bl = vel fl
12 vel br = vel fr

/* Compute steering angles: */

13 if abs(2.0 ∗ lin x) > abs(yaw ∗ steering track) then
14 ang fl = atan(yaw ∗ wheel base/(2.0 ∗ lin x− yaw ∗ steering track))
15 ang fr = atan(yaw ∗ wheel base/(2.0 ∗ lin x+ yaw ∗ steering track))

16 else
17 abs(lin x) > 0.001
18 ang fl = copysign(pi/2, yaw)
19 ang fr = copysign(pi/2, yaw)
20 ang bl = −ang fl
21 ang br = −ang fr

PointCloud2 message type) with 800 × 640 resolution at 60 Hz, which depicts the

contours of the ground and objects on it as shown in Fig 5.7.

Specifically, a depth image is constructed by fusing images from a pair of horizon-

tally separated IR cameras. And then the point cloud is synthesized by combining

images taken by the RGB camera at the center of R200 and the depth images. In our

experiment, this process is done by inputting R200 color and depth image messages

to the point cloud xyz node of a ROS package called depth image proc.

A map frame is automatically assigned to each point cloud obtained in this way

because we are publishing an odometry message topic of the robot with respect to
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Figure 5.6: Four wheel steering schematic diagram, wheels on the same side will move
along a same cycle.

Figure 5.7: Point Cloud got by R200 with obstacles in front of the robot

the world frame of the environment. This map frame will be used to merge these
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Figure 5.8: ROS node graph for map building (the node “depth image proc” is
wrapped in the “standalone nodelet” node)

point clouds into the octree map in the next step. Since in our experiment we are

focusing on traversability estimation rather than robot localization, we choose to get

the exact position and orientation of the robot directly from the simulation software

Gazebo to simplify the whole process and eliminate the influence of localizing errors

incurred by particular localizing methods on the final results. We have proved that

wireless received signal strength indicator (WL-RSSI) based localization methods can

achieve a high accuracy in real-world applications in our previous work [54], and the

accuracy can be further improved by adding more wireless emitters as localization

“anchors” if needed. More discussions about it can be found in the previous chapter.

After filtered to a lower frequency (node “pc2 drop” in Fig 5.8), this point cloud

message is then remapped to octomap server node, which is the map building node

of another ROS package called octomap server based on the octomap library, to build

an octree map. Octree is an efficient data structure for storing occupancy grids in

3D space. In an octree the root node represents the whole space, and each internal

node has exactly eight children, which means it subdivides the space it represents

into eight octants while each leaf node has a property representing if it is occupied or

free.

Outlier and grid filters are integrated in octomap server, converting input point

clouds into an octree, and then it is incrementally merged into the full octree map.

Here we choose to set the grid side length of the octomap as 3cm which is a little

shorter than the grid side length of 5cm we plan to apply for the final grid height
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map. This is because we want to assure that a grid in the sub height map of a sample

we cut from the full height map with any orientation will include at least one center

point of a grid in the octomap. Although we use a 2D Clough-Tocher interpolator to

generate the submap for a sample where the this property is not required, it may still

be necessary if other interpolation methods are applied, therefore we choose to keep

this property. Fig 5.9 shows an octomap example (from experiment environment 1).

Figure 5.9: An octree map of a sub-area of the first experiment environment

We set the octomap grid of row 0 and column 0 at the place where its lower left

vertex is placed on the world frame origin, and make sure the whole environment area

will be covered by the octomap. As the first environment has a size of 145.5m×126m,

this means there are at least 4230(rows) × 5000(columns) ≈ 21 million unit grids

in the full octomap even without considering there may be more than one grid in a

vertical column in the 3D space. Such a large octree exceeds the processing power of

our computer (CPU: AMD Ryzen 7 3700X 8-Core, GPU: Nvidia GeForce RTX 2070

super, memory: 16GB), so we divide the full area into 20 sub areas in the x-y 2D

plane.

The division of the area is shown in table 5.4. Given grid row index increases

from bottom (south) to top (north) of the map, and column index increases from left

(west) to right (east), the first line of each table cell is the row/column coordinate of

the origin grid (at the lower left corner) of each submap, while the second line is the

number of rows and columns that submap includes.

After these submaps are built, they are converted from octomap type to grid

height map type. The process of conversion is:

1. Iterating through all leaf nodes of the octree of occupied grids and free grids in

order.
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Table 5.4: Submap division

submap
row/col index

col 1 col 2 col 3 col 4 col 5

row 1
(1000, -2500)
(1115, 1000)

(1000, -1500)
(1115, 1000)

(1000, -500)
(1115, 1000)

(1000, 500)
(1115, 1000)

(1000, 1500)
(1115, 1000)

row 2
(0, -2500)

(1000, 1000)
(0, -1500)

(1000, 1000)
(0, -500)

(1000, 1000)
(0, 500)

(1000, 1000)
(0, 1500)

(1000, 1000)

row 3
(-1000, -2500)
(1000, 1000)

(-1000, -1500)
(1000, 1000)

(-1000, -500)
(1000, 1000)

(-1000, 500)
(1000, 1000)

(-1000, 1500)
(1000, 1000)

row 4
(-2115, -2500)
(1115, 1000)

(-2115, -1500)
(1115, 1000)

(-2115, -500)
(1115, 1000)

(-2115, 500)
(1115, 1000)

(-2115, 1500)
(1115, 1000)

2. For occupied grids, calculate the ceiling height, while for free grids, calculate the

floor height, and then record these two types of heights in two lists respectively.

3. Iterating through the coordinate of all grids in the final height map, and taking

the lower one of the occupied ceiling height and the free floor height as the final

height. If corresponding heights are missing, then mark this grid with a sentinel

height value.

The reason we use this approach is that the octomap library may merge multiple

small grids into a larger grid and mark the space inside this new large grid but not

occupied as “free” grids. In this way, octomap can reduce the size of the octree at a

cost of requiring users to combine the occupied and free octree data to get the correct

occupancy results.

These sub height maps are then merged into a full height map according to their

location. There may be some “holes” in the height map, that is where the corre-

sponding grid is absent in the octomap. When there is a part of an obstacle too high

to be scanned by the depth camera, or points in the point cloud of that area is too

sparse when it is scanned, such holes would appear. To fill these holes, we assign

them with a valid height value got from their neighbor grids. The filling strategy is

shown in Algorithm 4 in pseudo code.

“Neighbor grids” here refers to grids with a difference of 1 in row and/or column

index with the target grid, which means a grid has 8 neighbors unless it is located on

the edge or corner of the height map.

Fig 5.10a, 5.10b show two types of holes, while Fig 5.11a, 5.11b show the full height

map before and after filling. Note that hole grids are assigned with a sentinel height
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Algorithm 4: Filling holes in height map

1 Build an empty list hole list
2 for row id, col id, height in height map do
3 if height is not valid then
4 hole list.append((row id, col id))

5 while hole list is not empty do
6 for row id, col id in hole list do
7 if at least one neighbor grid of (row id, col id) has a valid height then
8 height map[row id][col id] = mean(valid neighbor grid heights)

value (6m) which is much higher than valid height values, and all height values in

the map is rescaled to integers in range of [0, 255] to be shown as a grayscale picture.

Therefore, the the height map before filling looks brighter than the other one.

(a) a hole corresponding to the higher part
of an obstacle

(b) small holes caused by sparse point cloud
far from the depth camera

Figure 5.10: Examples of different types of holes in map building

For the second environment, the height map is directly obtained by converting the

stl format terrain model file, where a 2D Clough-Tocher interpolation [64] is applied

to get the height value of point.
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(a) full height map before filling holes (b) full height map after filling holes

Figure 5.11: Full height map before/after filling holes (lighter color shows higher
places in both the colored octree and height map

5.4 Data Collection

The traversability of a ground area for a robot can be measured by different indicators

such the time cost or energy consumption for traversing this area. In our research

we choose to use the time cost as the measurement, and to simplify the traversability

estimation problem we only focus on the situation where a robot drives straight ahead

rather than including possible steering.

Before evaluating any traversability estimation method, we need to collect driving

data samples first. In our experiment, a driving sample consists of two parts: a list of

odometry data of the robot starting from a designated point driving straight forward

towards a given direction for a given distance, and a corresponding rectangular sub

height map of the strip area the robot passes.

In detail, we divide the whole map into 4m× 4m “sample grids”, edges of which

are parallel to x-axis and y-axis respectively and aligned to the origin of the world

frame — for instance, the grid with four vertices (0,0), (4,0), (4,4) and (0,4) is a

sample grid — and we set the center of each sample grid as the starting point of a

driving sample. Thus, We have 30(rows) × 36(columns) = 1080 such sample grids

within the first map of 126.0m × 145.5m, and 46(rows) × 52(columns) within the

second map of 188.6m× 208.2m.

Next, to fully utilize all the space of the simulation environment to collect as

many driving samples as possible, we place the robot at each starting point with an
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orientation from 8 choices in different runs, namely (0, 1, . . . , 7) × π/4 (only the 4

orthogonal orientations are used in the second environment) where according to right

hand rule from ROS REP-103 [62] of ROS the orientation value equals 0 when the

robot pointing to the east and increases in the counter-clockwise direction. In this

way, we will have 8 driving samples with every starting point.

Then the robot was commanded to move forward with a given velocity (20m/s)

for a given distance (4.614m) within a time limit (15s). Odometry data of the robot

published in a ROS topic named “/scout 1/true odom” will be recorded during the

driving time. The result whether the robot finally reach the destination and the total

time cost will also be calculated and added to the odometry data. This odometry

recording process is shown in Fig 5.12.

Figure 5.12: ROS node graph for odometry recording

As for the strip height map, it covers the area the robot passes, extending along

the driving direction and a little wider than the width of the robot. Note that in this

strip we also leave some extra spaces for both the area behind the back edge of the

robot when it is located at the starting point and the area ahead the front edge of the

robot when it is located at the designated destination. The reason is that the robot

may starts on an uphill and slides back a little before it goes forward, and also, it may

cross the destination a short distance before the last odometry message is published

and recorded, and we want all the ground the robot may step on are included in the

strip height map.

Parameters of the odometry recording and strip map are listed in table 5.5.

As shown in Fig 5.13, we choose an actual driving length as about 4.6m since it
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Table 5.5: Robot parameters

Parameter Value

Strip size 8.5m× 4.0m
Robot size 2.286m× 2.2098m

Robot velocity 1.5m/s
Actual traveling length 4.614m
Front reserved length 0.6m
Back reserved length 1.0m

is long enough in most cases for the robot to accelerate to the designated velocity

before it arrives at the destination and it is also roughly two times of the robot length

which can make it more convenient to apply some traversability estimation methods

in the next section on collected driving samples.

To implement this data collection procedure, we build two ROS nodes: The first

node “recording odom client” is an action client based on the ROS package “action-

lib”, which is responsible for enumerating all valid starting points and orientations,

sending them to the server node and dumping the received response; The second node

“recording odom server” is the corresponding action server, where the robot’s motion

commands are actually given and the odometry messages are actually recorded.

Figure 5.13: Comparison between the size of the strip (8.5m × 4.0m) map and the
robot (2.286m × 2.2098m)
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The whole robot driving and odometry recording process in one run can be divided

into 5 steps:

Step 1: Planning. At the beginning of one run, the client node generates a pair

of starting orientation and position by iterating through all possible combinations.

Those grids at the end row and/or column of the currently selected orientation won’t

be selected as the starting position since there is not enough space for robot to drive

before hitting the bounding boxes in these starting configurations. For example, when

the orientation is set to east (orientation = 0), grids in the rightmost column will not

be selected, and when the orientation is set to northeast (orientation = π/4), grids

in the top row and rightmost column will not be selected.

Step 2: Teleport. When the starting orientation and position are determined, the

robot will be “teleported” to there with a given height (introduced in step 3), and

then the program will wait for 5 seconds for the robot to fall on the ground.

Step 3: Conditions check. In this step, a check will be done to see if the robot is

ready to start driving. In particular, 5 conditions must be met:

• The linear velocity of the robot along the x, y, z axis must be lower than

0.01m/s.

• The angular velocity of the robot around the x, y, z axis must be lower than

1°/s.

• Roll and pitch of the robot must not be greater than 45°.

• The absolute distance between the planned starting point and the actual landing

point along x and y axis must not be greater than 1m.

• The absolute difference between the planned starting orientation and the actual

orientation must not be greater than 10°.

The conditions are checked every 0.5 seconds for at most 10 seconds. If all of them

are met in 5 consecutive seconds, the robot will be determined as ready for driving

and the process will go to the next step. Otherwise, the robot will be determined as

not in a good condition for driving. This may be because the robot is teleported to a

place too high above the ground and then jumps or slides far away from the planned

position. Therefore, the process will go back to step 2 and try to teleport the robot to

the same place with a lower height. All available heights include 6.5m, 4.0m, 3.0m,



63

2.0m, 1.0m, 0.0m and −1.0m. If the check fails at all heights, this pair of starting

orientation and position will be abandoned.

Step 4: Robot driving and odometry recording. After the robot is determined to

be ready, the client node will send a request to inform the server node to drive the

robot forward and start to record its odometry. Actually, the server node is always

subscribing the odometry message topic of the robot which is published in 20Hz. The

driving and recording will start at the next time it receives a new odometry message

after it receives the request.

The server node publish a ROS geometry msgs/Twist (consisting of a linear ve-

locity vector and an angular velocity vector) message with a linear velocity of 20m/s

and an angular velocity of 0 every time the it receives an odometry message to keep

driving the robot forward until this run is finished.

A run will be finished when one of three terminating conditions is met: 1. the

robot arrives at the destination; 2. the time limit is exceeded; 3. the robot overturned.

4. the robot deviates from the designated path.

The first two conditions are simple and self-explanatory. The third condition

means the roll and pitch of the robot should never exceed the safe threshold(45°),
while the last one is composed of multiple rules:

1. The orientation of the robot should not deviates from the initial orientation by

more than or equal to 90°.

2. left wheels of the robot should not step out of the left boundary of the designated

strip area.

3. right wheels of the robot should not step out of the right boundary of the

designated strip area.

4. back wheels of the robot should not step out of the back boundary of the

designated strip area.

These rules will be checked in order every time a new robot odometry message is

received, and if one of them is violated then the odometry recording will be ended

and this run will be marked as a negative sample in which the robot cannot reach

the destination successfully. This third terminating condition is set since we want

to make sure the robot never step on somewhere not included in the planned strip
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area. By virtue of this, we can guarantee that all the ground the robot may step on

is included in the strip area.

Step 5: Sending response and dumping data. After all the odometry informa-

tion is collected, the server node will send a response back to the client node. The

response message will include the actual starting orientation and position, a success

flag representing if the robot arrives at the destination successfully or not (success

or fail), fail type (timeout, overturned, orientation deviation, cross left/right/back

boundary), beginning and end timestamp, forward velocity from topic cmd vel, and

a list of ROS odometry messages.

The client will dump this response plus with the information about the planned

starting orientation and grid into a data file for extracting training data and labels

later. Interactions between the server and client nodes are also shown in the ROS

node graph (Fig 5.12).

The success flag and time cost of a run will be used as labels in the classification

and regression training in the next section. While the input data of training is the

corresponding strip height map we will cut from the full height map for each driving

sample.

Since the orientation of grids in a strip height map follows its actual driving

orientation, which is very likely different from the cardinal orientation of the full

height map, and the grid size is also different(3cm× 3cm for full map, 5cm× 5cm for

strip map). A 2D Clough-Tocher interpolation [64] is applied to calculate the height

of each grid in the strip map.

In the following interpolation process, we regard the position and height of the

center point of each grid as the position and height of that grid, and we use an integer

to represent the height of a grid, where 1 means 3cm — the octomap grid side length.

To generate a strip map through interpolation, first we will find a minimum car-

dinal rectangle area composed of full map grids which can cover the whole strip area.

Then we expand this area with 5 rows/columns of full map grids in all four directions,

since heights of surrounding full map grids are needed to interpolate the height of

strip grids near the boundary of the strip area. A bounding height of 200 = 6m÷3cm

will be applied for those expanded grids outside the full map, and finally we get a

strip height map. Note that although the grid side length of a strip map is 5cm in

the x-y plane, its height is still represented as an integer where 1 means 3cm.

At the end, we collected 7797 samples in environment 1 — a sample is composed

of a traversable flag, a time cost (if traversable) and a strip height map. These
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samples are collected by positioning the robot to the center of each sample grid in

the environment (with a gird side length of 4.0m) with one of eight driving directions

(4 orthogonal directions and 4 diagonal directions) and then command it to drive

forward with a designated distance (4.6m). Among the first dataset, 7091 samples are

positive(traversable) accounting for 90.9%, 706 samples are negative(untraversable),

accounting for 9.1%. This dataset is divided into a training set(6238 samples in total,

in which 5680 samples are positive, positive rate 91.1%) including 80% samples, and

a testing set(1559 samples in total, in which 1411 samples are positive, positive rate

90.5%) including the rest 20% samples.

For the second environment, 8762 samples are collected in the same way, but

we only use the four orthogonal driving direction this time. Since there are only

95 samples (1.1%) are non-traversable, we just use the traversable samples to train a

time cost estimation model. The dataset is divided into a training set of 7010 samples

(80%) and a testing set of 1657 samples (20%).

These two datasets are then used to train and test benchmark traversability es-

timation methods and our CNN-based models — the strip height maps (height =

170, width = 80, grid side length = 5cm) is the input data, and the binary traversabil-

ity flag and time cost are the output labels. Some strip height maps are shown in

Fig 5.14 as examples. Note that strip maps are aligned with the designated driving

direction, which means in all data samples the robot moves from the bottom of the

strip area to the top of it.
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Figure 5.14: Strip height map samples (all height values are scaled to 0-255 to be presented
as gray scale figures as shown here).
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Chapter 6

Experiment results

This chapter we present the results of the data-driven methods in both classification

and regression traversability estimation tasks and also compare the results against

benchmark traversability estimation methods based on simple map features and man-

ual rules.

This chapter divides the traversability estimation problem into two parts: a clas-

sification problem — whether an area is traversable or not, and a regression problem

— how long does it take for a robot to drive through an area if it is traversable.

The main focus of this thesis is to address these problems by training CNN mod-

els on the height maps and odometry data collected. The performance of different

CNN models on datasets representing different instances of traversability estimation

problems is also compared with traditional non-parametric and parametric methods

that consider simple ground features.

For the classification problem, four CNN models are trained (ResNet50,

ResNet50V2, InceptionResNetV2, InceptionV3), using ImageNet pretrained convo-

lution layer weights. The original top layers are replaced with 2 fully connection

layers of 1000 nodes and sigmoid activation function and an output layer of 2 nodes

with softmax activation function. The prediction is made in one hot format and the

loss function is categorical cross entropy, which can better fit the natural imbalance

of the terrain samples. The CNN model prediction process is shown in Fig 6.1.

On the other hand, several representative benchmark methods are re-implemented

and tested on the same dataset:

1. Two ROS 2D grid map methods. They classify samples based on the maxi-

mum/average grid height of the strip height map — a threshold height is found
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Figure 6.1: CNN-based model training process

on the training set and used to classify testing samples. This method is also

directly applied on the testing dataset to show the upper boundary of the per-

formance of such linear methods based on simple ground features.

2. A UPD-like method. A perceptron with 2 hidden dense layers of 1000 nodes,

sharing the same architecture with the top layers of all the CNN models ap-

plied here. Input data is the overall roll, pitch and roughness of the strip area

obtained from PCA. This benchmark method is heavily inspired by the UPD

method described in section 3.2.1 of chapter 2. Comparison with this method

can show the contribution of the convolutional layers in CNN models to the

final performance.

3. A roughness indicator based method. A simplified version of the traversability

estimation method in [27], which is discussed in section 3.2.2 of chapter 2. It

calculates roll, pitch and roughness for every point in the point cloud based on
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its neighbor points, and then estimate the overall traversability of an area by

these features of each point within. Since this method is originally designed for

sparse point cloud, the computing burden will be too high if we directly apply

it on our grid height map. Therefore, we sample only some grids from the strip

map to calculate these features — assuming the row index of a grid starting

with 0 increases from top to bottom of the strip map while the column index

increases from left to right, only grids whose row index and column index are

both multiples of 10 will be sampled to calculate its roughness, but grids within

1m (i.e. 20 strip map grids) of strip boundary will be excluded since part of

their neighbors are outside the strip area. In addition, only grids with both even

row and column index will be used to determine the plane cycle. Parameters

used in this method are shown in table 6.1.

Table 6.1: Parameters for the roughness indicator based method

Parameter Value

sample step length 0.5m (i.e. 10 grids)
rplane 1.0m (i.e. 20 grids)
rres 0.3m (i.e. 6 grids)

number of grids for
determining the plane cycle

407

number of grids
in the result cycle

113

fη 0
roll/pitch threshold 90°
roughnessmax 1.0m

Here we set rplane and rres as 1.0m and 0.3m since we can get roughly 100 grids in

the result cycle which is close to the number of nearest-neighbor points in the original

version of this method while keeping a ratio of 0.3 between rres and rplane. There are

16 (rows)× 5 (columns) = 80 pairs of plane cycle and result cycle evenly distributed

with a step length of 0.5m (i.e. 10 grids), which can guarantee every grid in the

center area of the strip is covered. fη = 0 because noise points in point clouds are

already filtered in the map building step, there is no need to exclude outliers here.

roughnessmax is a parameter depicting the level of roughness within the result cycle.

roughnessmax = 1.0m is the optimal value for time cost estimation we got in the

regression training task which will be discussed later in this section.
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This method is also tested by both the ordinary training & testing process (the

ordinary version) and directly training on testing data (the optimal version). Results

of the second way can show the upper boundary of the performance of this method.

In both ways, we sort the samples in the training/testing dataset by their rough-

ness except those ones exceeding the roll/pitch threshold (which will be marked as

untraversable), and then we find an optimal roughness threshold dividing the dataset

into positive (traversable) and negative (untraversable) samples with the highest ac-

curacy. Finally we will apply this threshold to the testing dataset.

The classification accuracy of all methods are shown in Fig 6.2.

Figure 6.2: Traversability classification accuracy comparison in environment 1 (per-
formance of our CNN-based methods are shown in green color)

We can see all CNN methods have an accuracy higher than all the benchmark

methods, including their optimal version. Furthermore, considering there are 90.51%

positive samples in the testing dataset, which means even a classification method al-

ways giving positive result would have a testing accuracy of 90.51%. Comparing with
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this baseline, even the benchmark method with best performance can only improve

the accuracy by 2.56%, leaving an inaccuracy of at least 6.93% (roughness indicator

method), whereas our CNN-based methods can improve the accuracy by at least 5%

and leave an inaccuracy of at most 3.85% (Res v2), which is about 50% lower than the

lowest inaccuracy of benchmark methods. This comparison shows the improvement

on traversability classification accuracy made by CNN-based methods.

Then, our CNN-based methods are compared with benchmark methods on the

regression problem — predicting the exact time cost of the robot for driving through

a given strip. The architecture of all neuron network models are the same except

their output layer is replaced with a one neuron layer with a linear activation function

for outputting a real scalar value as the estimated time cost of driving in seconds.

Meanwhile, results of benchmark methods being directly optimized on testing dataset

(optimal version) are given in this regression performance comparison too.

Fig 6.3 and 6.4 display the time cost distribution of samples in the training and

testing dataset of the two experiment environments. In these figures, the number of

samples of each time span (the y-axis) is shown in log scale.

Figure 6.3: Time cost distribution of samples in environment 1 (in log scale)
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Figure 6.4: Time cost distribution of samples in environment 2 (in log scale)

It can be seen that more than 99.9% cases are in the range of 3s to 10s, which

proves the choice for timeout threshold — 15s, is long enough. It is worth noting

that the time cost is not only dependent on the terrain but also affected by the

structure and motion controller of the robot. New driving data can be collected in

our simulation framework for training the models with a different robot.

Furthermore, as the original output of some benchmark methods cannot match

the range of time cost in our dataset well (e.g. the original output of the roughness

indicator method ranges in [0, 1]), translation and scaling are necessary to get an

optimal prediction. We apply a linear transformation for the original result of all

benchmark methods except the UPD (section 3.2.1) based one (scaling is done in

its MLP part), optimizing their parameters on the training/testing dataset for the

ordinary/optimal version method respectively to get a minimum root mean square

error (RMSE).

This transformation and its optimization is shown below:
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ŷ′i = a× ŷi + b

ei = yi − ŷ′i = yi − a× ŷi − b

mse =

n∑
i=1

e2i

n
= c1 × a2 + c2 × b2 + c3 × ab+ c4 × a+ c5 × b+ c6

set

∂mse
∂a

= 2c1 × a+ c3 × b+ c4 = 0

∂mse
∂b

= 2c2 × b+ c3 × a+ c5 = 0

=⇒ a =
c3c5 − 2c2c4
4c1c2 − c23

, b =
c3c4 − 2c1c5
4c1c2 − c23

here a, b are parameters of the liner transformation; yi is the true time cost of the

i-th sample; ŷi and ŷ′i are the original and transformed predicted time cost; ei is the

predicting error of the transformed result; n is the number of samples; mse is the

mean square predicting error; c1 . . . c6 are constants which can be calculated from the

sample data. The MSE gets its minimum value when the partial derivatives of it with

respect to a and b are both 0. Finally we get the values of a and b by solving these

two equations.

The root mean square error (RMSE) of the time cost prediction of all methods

are shown in Fig 6.5.

Here RMSE of all the CNN-based methods is lower than their counterpart of

benchmark methods in both environments. The best RMSE of benchmark methods

is 70% longer than the best RMSE of CNN-based methods in environment 1 and 88%

longer in environment 2. Moreover, compared with their ordinary version, not much

improvement is made by those optimal benchmark methods, which are directly trained

on the testing dataset. It implies that the estimation performance of parameterized

methods is limited by its simple structure — the estimation error is high even with

the optimal parameter configuration.

These two comparisons show the performance improvement made by CNN-based

methods on traversability estimation as a regression problem (time cost prediction).
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(a) experiment environment 1

(b) experiment environment 2

Figure 6.5: Comparison of time cost estimation RMSE
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Through the experiment results, we justify that our approach as applying CNN on

height map can make more accurate traversability estimations for both classification

and regression tasks compared with conventional methods with manually designed

features. More discussion about the reasons of this improvement are made in the

next chapter.
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Chapter 7

Conclusion

The goal of this thesis is proposing data-driven CNN-based terrain traversability es-

timation methods for mobile robots, in addition with a terrain traversability dataset.

Firstly we introduced the usage of traversability estimation in mobile robot path

planning and some representative conventional traversability estimation methods,

then mobile robot localization and terrain map building are reviewed as they are

the fundamental of traversability estimation. Finally, we proposed our data-driven

CNN-based methods and showed that they perform better in both classification and

regression estimation tasks in different testing environments than all the benchmark

method.

There are two sources for the performance improvement made by our methods:

First, CNN can extract more and better features from the raw map information.

From experimental results, we can see all CNN models get a higher classification accu-

racy and a lower regression RMSE than the conventional methods based on manually

designed features even when they are directly optimized on the testing dataset. This

means the performance of CNNs exceeds the upper limit of the performance of those

benchmark methods on their chosen features.

Examples in Fig 7.1 demonstrate that our CNN-based models generate better

features from the map: There are 4 height maps with obstacles of the same number

and size but with different angle or location to the robot. The map in Fig 7.1a is

intuitively highly traversable since obstacles in it will not hinder the robot moving

forward, whereas obstacles in Fig 7.1b are likely to stop the robot from moving

forward and make the map less traversable or completely non-traversable. Thus, it

is reasonable to infer that obstacles with different angles to the driving direction will

lead to different traversability levels.
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The relative location of obstacles to the robot is another factor affecting the

traversability. As shown in Fig 7.1c, 7.1d, although the robot may be slowed down by

an obstacle in front of one of its wheels, it can climb up and then pass the obstacle.

But if the obstacle is right in front of the robot’s chassis, the result varies according

to the height of the obstacle — if it is lower than the gap between the ground and

the robot’s chassis, the robot will not be hindered. Otherwise, the robot is very likely

to be completely blocked.

However, maps on the same row in Fig 7.1 will generate similar results if they

are estimated by conventional methods with manually designed features like PCA

roughness, which ignore the detailed difference between these maps.

(a) a map with obstacles along the robot
driving direction

(b) a map with obstacles perpendicular to
the robot driving direction

(c) a map with an obstacle near the left map
boundary

(d) a map with an obstacle in the middle of
the path

Figure 7.1: Examples of detailed features which are essential to traversability estima-
tion but difficult to capture with conventional methods

On the contrary, CNNs can capture such details — obstacles with various sizes,

shapes, directions, locations can be captured by convolution layers and transformed

to high-level features, and then fully connection layers will make the classification or

regression prediction based on them.
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Moreover, the pretrained CNN models we used here can help to accelerate the

training. This is because convolution layers of these models are pretrained by huge

image datasets such as ImageNet and therefore gain the ability to accurately extract

image features like lines, angles, squares and cycles. Although those features are

usually used to perform object recognition tasks, they are also helpful to traversability

estimation on height grid maps as demonstrated in the experiment.

The second factor is the fully connected layers on the top of CNN models, namely a

perceptron if we take them as an independent network. The better performance of this

structure at fitting the latent function of traversability based on given features is due

to its nonlinearity. As we demonstrated in the experiment and the discussed above,

there are usually multiple essential features determining the overall traversability of

an area together, but the final result may not change linearly with any one or any

weighted combination of them. For example, an obstacle right in front of the robot

(such as the one in Fig 7.1c) will stop the robot from moving forward if it is higher

than the gap between the ground and the bottom of the robot’s chassis. In opposite,

it won’t even slow down the robot a bit if it is not high enough. Therefore, the height

change of such an obstacle matters the result most when its value is around the

height of the gap. This relationship is naturally not suitable to be fitted with linear

approximators. While by virtue of the universal approximation ability of neuron

networks the perceptron on the top of a CNN model can fit any latent function

accurately as long as it has enough width, depth and training epochs.

Besides the advantage at result accuracy, CNNs methods can also save human

labor work for tuning estimation function parameters like those ones manually con-

figured for the estimation method in [27], since all such parameters are automatically

learned by training.

Future work

We proposed CNN-based methods on the height map, which are used to estimate the

traversability in the outdoor environment of automatic robot driving, and showed

their performance improvement in both classification and regression tasks. Starting

from this result, there are various research topics can be further explored:

1. Creating a larger terrain traversability dataset. More terrain samples can be

collected in various environments with different type of mobile robots. Such a
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dataset can be used for fast training and testing of new traversability estimation

methods without laborious data collection work.

2. Generalizing the traversability estimation to more situations. To simplify the

data collection and network training task, we choose to estimate the traversabil-

ity only in the condition that the robot starts from a static status and goes

straight forward with a fixed velocity for a given distance. The next step is to

include different driving direction, initial velocity, and traveling distance. The

ultimate goal is getting an estimation model which can be applied on arbitrary

robot status and paths.

3. Predicting the robot’s trajectory. To get more precise control of a robot, we need

to be able to predict its trajectory when it travels through an area rather than

only the time and energy cost. One way to achieve this is to train a sequential

model such as LSTM on the odometry of the robot with input motion commands

and map information. However, as stated above, the motion commands can be

highly sparse and the number of possible ground situations is enormous. It is

a challenge to get a general trajectory predicting model as special simplifying

and training designs are necessary.

4. Implementing CNN-based traversability estimation methods in autonomous

robot driving and exploration. One of the most important application sce-

nario of traversability estimation is autonomous robot exploration. Although

many path planning algorithms such as RRT* have been applied to find an op-

timal or sub optimal path for the robot, in most cases these algorithms work on

traversability estimations based on simple features and rules tuned manually,

which are very inaccurate compared with estimations made by CNNs as we

showed in the experiment. If CNN-based traversability estimation methods can

be incorporated with autonomous robot driving and exploration algorithms,

better and more accurate path plans can be made and therefore help robots

to achieve a better performance in their real-world exploration tasks such as

geographical surveying, resource finding and rescuing.
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