
Semi-supervised Framework for Clustering and
Semantic Segmentation

by

Yik Lun Chow

Lakehead University

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTERS

in the Department of Computer Science

Lakehead University

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Semi-supervised Framework for Clustering and
Semantic Segmentation

by

Yik Lun Chow

Lakehead University

Supervisory Committee

Dr. Yimin Yang, Supervisor

(Department of Computer Science, Lakehead University, Canada)

Dr. Shan Du, Co-Supervisor

(Department of Computer Science, Lakehead University, Canada)

Dr. Thiago Oliveira, Internal Examiner

(Department of Computer Science, Lakehead University, Canada)

Dr. Thangarajah Akilan, External Examiner

(Department of Software Engineering, Lakehead University, Canada)

iii

ABSTRACT

During the past couple of decades, machine learning and deep learning methods have

achieved remarkable results in many real-world applications. However, it is difficult

to develop and train these artificial intelligence algorithms without a labeled dataset.

Under this circumstance, it is desirable to leverage a large number of unlabeled data

into the training process with fewer or even without labels. To this end, a non-

supervised learning strategy (e.g., unsupervised, semi-supervised, weakly-supervised,

or self-supervised) has recently been studied in different domains.

In chapter 3, a novel semi-supervised framework is proposed to solve a cluster-

ing problem fundamentally by involving only few numbers of labeled data. In this

proposed framework, a non-iterative autoencoder is proposed for learning a represen-

tation of each data in an unsupervised way. The experimental results theoretically

demonstrate the effectiveness of this proposed framework, where the obtained clus-

tering accuracy for thirteen tabular and image datasets are impressive. It has also

shown that the proposed autoencoder is able to capture important features of each

data.

In chapter 4, the above framework is extended to a weakly-supervised seman-

tic segmentation task for demonstrating its practical ability. Before applying the

modified proposed framework to this task, computer vision methods are presented

as preliminary work to generate the initial labeled data and clustering space. We

achieve the current state-of-the-art performance on PASCAL VOC 2012 dataset.

This thesis shows that the proposed framework is capable not only for the tradi-

tional machine learning problem but also for the widely used real-world applications.

iv

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my principal supervisor, Dr. Yimin

Yang for his invaluable advice and continuous support, and patience during my mas-

ter’s study. His immense knowledge and plentiful experience have encouraged me in

all the time of my academic research and daily life. I would also like to thank to my

co-supervisor, Dr. Shan Du for her constructive suggestions for my work in Chapter

4. Thanks to Dr. Thiago Oliveira and Dr. Thangarajah Akilan for their treasured

comments and feedback. My appreciation also goes out to my family and friends for

their encouragement and support all through my studies.

v

Contents

Supervisory Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables viii

List of Figures x

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 3

1.3 Organization of Thesis . 5

2 Literature Review 8

2.1 Unsupervised Representation Learning 8

2.1.1 Autoencoder . 9

2.1.2 Non-iterative Autoencoder . 11

2.1.3 Summary . 14

2.2 Semi-supervised Clustering . 14

2.2.1 k-means Clustering . 14

2.2.2 Constrained k-means Clustering 16

2.2.3 Seeded k-means Clustering . 16

2.2.4 COP-k-means Clustering . 16

2.2.5 Self-supervised Learning based Clustering 17

2.2.6 Summary . 17

2.3 Weakly-supervised Semantic Segmentation 18

vi

2.3.1 Seed, Expand and Constrain 19

2.3.2 Deep Seeded Region Growing 20

2.3.3 Cross-Image Affinity Net . 22

2.3.4 Summary . 22

3 Progressive Framework for Semi-supervised Clustering via Repre-

sentation Learning 25

3.0 Lead-in Section of Chapter 3 and Chapter 4 26

3.1 Overview . 28

3.2 Introduction . 29

3.3 Progressive Framework . 32

3.3.1 Problem Formulation . 34

3.3.2 Cyclic Structure . 36

3.3.3 Phase 1: Local-clustering Phase 36

3.3.4 Phase 2: Re-clustering Phase 40

3.4 Minimalism in Representation Learning 42

3.5 Comparison with k-means clustering: 45

3.6 Experiment Verification . 45

3.6.1 Experimental Setting . 46

3.6.2 Tabular Datasets . 47

3.6.3 Image Datasets . 50

3.7 Analysis of Progressive Framework 55

3.7.1 Reconstruction Performance of WAE 55

3.7.2 Sensitivity of Parameter ω & λ 60

3.7.3 Restrictiveness of Parameter ε & σ 62

3.8 Discussion and Conclusion . 64

4 Seeded Progressive Framework for Weakly-supervised Semantic

Segmentation 66

4.1 Overview . 67

4.2 Introduction . 67

4.3 Problem Analysis and Preliminaries 71

4.3.1 Seed as labeled samples, convolutional feature map as clustering

space . 72

4.3.2 Single layer feedforward network based autoencoder 72

vii

4.3.3 Summary of the seeded progressive framework 73

4.4 Seeded Progressive Framework . 74

4.4.1 Information minimization on weak autoencoder 74

4.4.2 Self-similarity learning . 74

4.4.3 Composition of the mini-cluster 75

4.4.4 Composition and decomposition phase 76

4.4.5 The complete workflow of seeded progressive framework for

weakly-supervised segmentation 79

4.5 Experiment on weakly-supervised segmentation 79

4.5.1 Experimental setup . 79

4.5.2 Hypothesis validation . 80

4.5.3 Baseline performance . 81

4.5.4 Comparison with clustering spaces from feature maps 83

4.5.5 Comparison with state-of-the-art methods 83

4.5.6 Qualitative results . 87

4.5.7 Step-by-step analysis on semi-supervised clustering 87

4.6 Conclusions . 91

5 Conclusion & Future Work 92

Bibliography 96

viii

List of Tables

Table 2.1 Unsupervised autoencoder methods 23

Table 2.2 Weakly-supervised semantic segmentation methods . 23

Table 3.1 Comparison of terminology between Chapter 3 and

Chapter 4 . 28

Table 3.2 Notations of Progressive Framework 34

Table 3.3 Dataset Descriptions 46

Table 3.4 Generalization Performances (Clustering Accuracy) on

6 Datasets . 48

Table 3.4 (continued) Generalization Performances (Rand Index)

on 6 Datasets . 49

Table 3.5 Comparison on USPS1K, COIL20, MNIST1K 51

Table 3.6 Comparison on Caltech101, Caltech256 and Scene15

using DCNN with semi-supervised manner 52

Table 3.7 Comparision on Caltech101, Caltech256 and Scene15

using DCNN with full-supervised manner 54

Table 3.8 Dataset Properties 55

Table 3.9 Average Performance of σ to varied ε 64

Table 3.10 Average Performance of ε to varied σ 64

Table 3.11 Best Performances on 8 Datasets 65

Table 4.1 Network settings of segmentation models 80

Table 4.2 Hypothesis validation on VOC-2012 validation dataset

using SEC [1] with varying number of simulated real-

seeds (Nr) and fake-seeds (Nf). 81

Table 4.3 Baseline performances on VOC-2012 validation dataset.

The first row is cited from published papers while sec-

ond row is our reproduction. The best results are in

bold while the second bests are underlined 82

ix

Table 4.4 Comparison of weakly-supervised semantic segmenta-

tion methods on VOC-2012 validation and test dataset.

The supervision (Sup.) includes: image-level (I), im-

plicitly use pixel-level (P), bounding box (B) or addi-

tional data (A). The methods listed here use VGG16

as backbone model. Values in bold are for SEC while

the results for DSRG are underlined 84

Table 4.5 Comparison of weakly-supervised semantic segmenta-

tion methods on VOC-2012 validation and test dataset.

The methods listed here use ResNet-based model. Val-

ues in bold are for CIAN. 85

Table 4.6 Performance comparison of mIoU on VOC-2012 vali-

dation dataset, compared to related counterparts (our

reproduction of SEC, DSRG and CIAN). The best re-

sults are in bold while the second bests are underlined

for each semantic objects. (classes 1 to 11) 86

Table 4.6 (continued) Performance comparison of mIoU on VOC-

2012 validation dataset. (classes 12 to 21) 86

Table 4.7 Comparison of mAcc, mCr, and processing time on

Mini-VOC-2012 without and with Random Sampling

(RS). Values in bold are corresponding results of the

select λ. 88

Table 4.8 Comparison of mAcc and mCr on Mini-VOC-2012 us-

ing different combination of ω1 and ε1. Values in bold

are corresponding results of the select (ω1, ε1). 89

Table 4.9 Comparison of mAcc and mCr on Mini-VOC-2012 us-

ing different combination of ωr and εr. Values in bold

are corresponding results of the select (ωr εr). 90

x

List of Figures

Figure 1.1 Different forms of supervision on classification 2

Figure 1.2 Reconstructed faces of AE with different number of

hidden neurons on (a) Yale-Face, (b) Olivetti-Face and

(c) Yale-Face-B datasets. From top to bottom, the

used hidden neurons for each dataset are: (a): {1000,

400, 100, 10, 1}; (b): {1000, 400, 100, 10, 1} and (c):

{500, 200, 50, 10, 1} (Extracted from [2]) 4

Figure 1.3 Overview of Chapter 3 and 4 6

Figure 2.1 Learning layer-by-layer of a stack of RBMs for DBN

(Step 1 to 3) . 10

Figure 2.2 Finetuning the unrolled RBN-AE with input and out-

put (Step 4 to 5) . 10

Figure 2.3 A Structure of ELM-AE 11

Figure 2.4 Four steps learning algorithm for ELM-AE-IF. Note

that subnetwork nodes are used in encoder and decoder

layers. 13

Figure 2.5 Example of the learning process of S4L where the pre-

text task is to predict the rotation angle and the down-

stream is classification. 18

Figure 2.6 Different forms of weak supervision on image semantic

segmentation . 19

Figure 2.7 An example of performing region growing of two initial

seeds by setting θc′ = 0.60. Note that there should be

more than one probability at each position for multi-

class classification, but only c′ is shown for brevity . . 21

Figure 3.1 Extended Overview of Figure 1.3. Details are high-

lighted in red. 26

xi

Figure 3.2 Motivation of the cluster growing with reconstructed

samples; The key is to design a fast but “weak” au-

toencoder; Ideally samples B could be reconstructed

completely since it shares the same label with sample

A while sample C could be reconstructed incompletely. 30

Figure 3.3 Overview: framework iterates τ cycles to perform

semi-supervised clustering in which phase 1 and 2 are

processed alternatively in each cycle; Phase 1: Pick

cores to perform individual clustering sequentially. The

relatively confident member data are added into the

coreset; Phase 2: Interchange cores & members as t-

mems & t-cores. Repeat Phase 1 to either accept or

filter the unqualified t-cores. 32

Figure 3.4 Progressive Search: Blue labeled data xi will search the

“nearest” unlabeled data xi1 to form the local cluster;

They train WAE and search other, and so on. 39

Figure 3.5 Procedure of Phase 1 (ω=3.): Three primary colors

(red, blue & green) with similar colors (magenta, cyan

& teal) & gray-color represent cores, associated mem-

bers & unseen data. e.g., cyan-data are members clus-

tered from blue-data. 40

(a) ground truth . 40

(b) Phase 1 initialization . 40

(c) Phase 1 result . 40

(d) Phase 2 initialization . 40

Figure 3.6 Two Scenarios in Phase 2 (ε=1 & σ=1): Following Fig.

3.5, we present success & failure cases. For success, i-

th t-core finds ε t-mem(s) m-rate > σ. For failure,

t-core xj finds t-mem(s) but with wrong label. 42

(a) Success: Starting . 42

(b) Success: Result . 42

(c) Failure: Starting . 42

(d) Failure: Result . 42

Figure 3.7 Comparison with k-means clustering 44

Figure 3.8 Comparison on CIFAR10 using DSSEC 52

xii

Figure 3.9 Reconstruction performances of WAE trained by two

separated samples. Corresponding self-similarity are

shown under each image. Note that IMG1 to IMG4 are

from one class while IMG5 to IMG8 are from another

class. 56

(a) Yale-Face . 56

(b) Olivetti-Faces . 56

Figure 3.9 (continued) Reconstruction performances of WAE trained

by two separated samples 57

(a) MNIST . 57

(b) COIL20 . 57

Figure 3.10 Reconstruction performances of WAE trained by con-

tinuously samples. Images that are marked as “core”

represent the training data for each WAE in each it-

eration. Note that IMG1 to IMG5 are from one class

while IMG6 to IMG10 are from another class. 58

(c) Yale-Face . 58

(d) Olivetti-Faces . 58

Figure 3.10 (continued) Reconstruction performances of WAE trained

by continuously samples 59

(a) MNIST . 59

(b) COIL20 . 59

Figure 3.11 Batch Numbers Analysis 60

(c) Clustering Accuracy . 60

(d) Running Time . 60

Figure 3.12 Impact of of ω and λ (τ=3, ε=9, σ=0.8 with 5% la-

belled data) . 62

(a) Hill-Valley . 62

(b) German . 62

(c) Satimage . 62

(d) USPS . 62

Figure 3.13 Impact of ε and σ (τ=3 with 5% labelled data used) . 63

(a) Hill-Valley (λ=1 & ω=9) . 63

(b) German (λ=15 & ω=14) . 63

(c) Satimage (λ=10 & ω=6) . 63

xiii

(d) USPS (λ=10 & ω=4) . 63

Figure 4.1 Overview of the chapter: The initial seeds is obtained

by CAM and feature map extraction (left). By us-

ing seeded progressive framework, the explored seeds

is generated and can be used to trained segmentation

models ([3–5]). Here, we show the process of grouping

one unlabeled sample with the labeled sample (Section

4.4.3). 71

Figure 4.2 A simplified example of the composition and decompo-

sition phase shows six labeled samples from two classes

are used to form six mini-clusters from (a) to (c). Clus-

tered samples are re-evaluated while two cases are il-

lustrated in (d). The acceptable samples from (e) will

be used in the rest of the proposed framework. 76

Figure 4.3 Visualization examples on VOC-2012 validation dataset. 87

Figure 4.4 Comparison of mAcc and mCr on Mini-VOC-2012 dataset

using different combination of ω1 and ε1. 90

Figure 4.5 Comparison of mAcc and mCr on Mini-VOC-2012 dataset

using different combination of ωr and εr. 91

Chapter 1

Introduction

1.1 Overview . 1

1.2 Motivation . 3

1.3 Organization of Thesis . 5

1.1 Overview

The machine learning (ML) has revolutionized the world in past few decades, it is

the technology of making intelligence machines to solve daily problems as human

performs. Traditionally, the core of ML is to train machines by many pairs of labeled

data and target class, which is called supervised learning. When the number of

labeled data increases, classification performances of ML algorithms are naturally

improved. The ML models can be well-trained to learn pattern of each data and

predict its corresponding class. Furthermore, classification capacities of models also

depend on the representation of data. To this end, the representation learning (or

called feature learning) is proposed to study how to extract useful features from data.

The neural network is one of the widely used feature extractors, it aims at encoding

raw information of each data into multiple neurons. With constructing the multi-

layers network, a high-dimensional input space can be projected to a low-dimensional

feature space. However, an enormous number of labeled data is required to train and

fine-tune the weights connecting each neuron in such complicated network.

2

a) Supervised d) Weakly-supervised
(inaccuracte)

c) Semi-supervisedb) Unsupervised

Figure 1.1: Different forms of supervision on classification

Nevertheless, it is not possible to create a dataset consisting of more than millions

of labeled data because of the high annotation cost. For example, it takes 10.1 min-

utes to annotate each image pixel-by-pixel for instance segmentation [6]. Therefore, a

common strategy to resolve the problem of lack of labeled data is to utilize unlabeled

data in unsupervised, semi-supervised or weakly-supervised manners (Fig. 1.1). In

general, unsupervised learning (UL) methods allow algorithms to learn internal rep-

resentation or hiddens pattern among data without providing any label information.

Similar to the classification tasks, the target of the clustering problem is to gather

“similar” objects into one set and distribute “dissimlar” objects into different sets.

As the labels are completely inaccessible, the clustering problem has been considered

as the hallmark problem in ML.

However, in many real-world applications, a small number of labeled data is often

attainable which can be regarded as prior knowledge to clustering tasks. To take ad-

vantage of this situation, semi-supervised learning (SSL) methods have been proposed

and become a research hotspot since the early 2000s [7, 8]. The SSL falls between

supervised and unsupervised learning, in which a small number of labeled data and

a large number of unlabeled data can be utilized in the training process. By extend-

ing a clustering method, the semi-supervised algorithm can be easily derived. As

some labeled samples are given, the semi-supervised algorithm is also known as the

constrained clustering in which prior knowledge can be converted as regularization

or constrained terms of an objective function [9]. Last but not least, the weakly-

supervised learning (WSL) methods can be generally regarded as the special form of

SSL methods, which contains three types of weak supervision [10] in the following:

1. Incomplete supervision: It gives only a small subset of labeled data, while the

3

rest is unlabeled, i.e., semi-supervised learning.

2. Inexact supervision: It provides a full set of labeled data, but not as exact as

desired. It can be seen as the indirect supervised information. For example,

the main task of semantic segmentation is to annotate every pixel of an image,

i.e., pixel-level classification. Image-level annotation is the example of weak

supervision, which indicates the presence of each object, but does not provide

any precise spatial information about the image.

3. Inaccurate supervision: As its name implies, some data are wrongly labeled.

The weakly-supervised learning approach reduces significant human efforts for anno-

tating samples. Therefore, it has attracted much research attention on several tasks

of computer vision area, such as image classification, semantic segmentation, object

detection and so on.

On the other hand, it is hard to train the complicated neural network contain-

ing multiple hidden layers when a number of labeled data is limited in reality. For

this reason, the unsupervised autoencoder [11] has been proposed to learn a use-

ful representation from a raw input space. A convention autoencoder consists of

two symmetric components, i.e., an encoder and a decoder. The encoder is used to

compress the data from higher dimensional input space to lower dimensional feature

space, while the decoder is to map that feature space to output space which has the

same dimension as input. By minimizing a discrepancy between input and output

representation of the data, AE can learn its latent representation by using few hidden

neurons.

1.2 Motivation

The performances of supervised Deep Convolutional Neural Network (DCNN) exceed

human performances on image classification, for example, a human-level top-5 clas-

sification error rate on ImageNet dataset [12] is 5.1% [13], while the corresponding

result obtained by the state-of-the-art (SOTA) of DCNN is 1.2% [14]. However, the

performances of DCNN strongly rely on an extremely large number of labeled data.

For instance, 1.28 and 300 million images from ImageNet and JFT-300M datasets

are required respectively to train the EfficientNet-L2 network for obtaining the afore-

mentioned performance [14]. In other words, Artificial Intelligence (AI) could only

4

Figure 1.2: Reconstructed faces of AE with different number of hidden neurons on (a)
Yale-Face, (b) Olivetti-Face and (c) Yale-Face-B datasets. From top to bottom, the
used hidden neurons for each dataset are: (a): {1000, 400, 100, 10, 1}; (b): {1000,
400, 100, 10, 1} and (c): {500, 200, 50, 10, 1} (Extracted from [2])

surpass human intelligence when an extremely large number of labeled data is pro-

vided. Moreover, even a well-trained AI may fail to perform a simple task that humans

can complete readily. In 2017, the 3D printed masks is made by researchers from a

Vietnamese security company to directly unlock an Iphone which was encrypted by

Apple’s face ID. In 2018, the study [15] showed that synthesized adversarial images

could consistently fool the classifier which was well-trained to classify tuples with

almost 100% accuracy.

In contrast, humans can be self-trained to solve any problems easily. The newborns

could even recognize their mothers immediately after birth and could visually identify

their parent’s faces after a few weeks. In fact, the human brains recognize faces (and

even objects) by just comparing a similarity to exemplars of previously perceived

5

faces [16]. In Ref. [2], the very insightful phenomenon has been demonstrated that the

most “strong” and “common” feature of each human face can be reconstructed when

a fewer number of hidden neurons is used in the hidden layer of the autoencoder.

(Fig. 1.2). Inspired by this observation, the motivation naturally comes: Could

we design the autoencoder (AE) to perform clustering without involving

any label information? To be specific, if we could extract “strong” features from

one sample (e.g, xi) using this AE, we could use these features to well-reconstruct

homogeneous samples, i.e., samples also belong to the same class with xi.

Therefore, the primary focus of this thesis is to develop the unsupervised AE with

the semi-supervised mechanism to resolve the semi-supervised clustering task. As

mentioned previously, it is difficult to train the multi-layer network when the number

of labeled data is limited. Therefore, we would develop the unsupervised AE with a

extremely simple architecture as a feature extractor to learn “strong” and “common”

feature. Next, we would develop the semi-supervised mechanism to incorporate this

AE for guiding the clustering process, where only a few numbers of labeled data is

involved. After that, the secondary focus is to apply the proposed algorithms to han-

dle the real-word problem. We select the weakly-supervised semantic segmentation

problem because it is the one of the most important task in computer vision.

1.3 Organization of Thesis

In order to alleviate the problem of lack of labeled data, the main goal of this thesis

is to propose non-fully-supervised learning algorithms for clustering and semantic

segmentation. In this section, an overall organization including several core problems

of chapters 3 and 4 of will be presented as follows (See Fig. 1.3 also):

• Chapter 2 gives reviews of the fundamental concepts and theories to three as-

pects: i) unsupervised representation learning methods, such as Deep Belief

Network (DBN) [11], Extreme Learning Machine Autoencoder (ELM-AE) [17]

and ELM-AE with invertible functions (ELM-AE-IF) [2]; ii) semi-supervised

clustering algorithm, i.e., k-means [18] and its variants [19, 20]; iii) weakly-

supervised semantic segmentation methods, such as SEC [3], DSRG [4] and

CIAN [5].

• Chapter 3 describes and gives detailed procedures of the proposed unsupervised

AE and semi-supervised clustering mechanism. To verify performances of the

6

Semi-supervised Clustering

Chapter 3: Progressive Framework

Semi-supervised Clustering Mechanism

Unsupervised AE-based Classi�er

Chapter 4: Seeded Progressive Framework

Computer Vision Techniques

Modi�ed Progressive Framework

so
lve

improve

solve

Weakly-supervised Semantic Segmentation

WSSS Method

solve

extend

Figure 1.3: Overview of Chapter 3 and 4

proposed algorithms theoretically, extensive comparison experiments with more

than 35 methods on 13 benchmark datasets are conducted. In this section, we

focus on the following questions:

– Can we design a simple AE to extract “strong” but not “generalize” fea-

tures of one given labeled sample xi ?

– How can we use these extracted features to perform clustering. In other

word, if two samples from the same class have the “common” feature, we

can group them together because they are “similar”.

– From above, what is an evaluation metric to define the term “similar”?

– Can we propose a mechanism to cluster an entire dataset progressively,

rather than only two samples?

– How to evaluate the proposed clustering algorithms? And how to compare

with other methods under a same condition?

• Chapter 4 applies the above methods to weakly-supervised semantic segmen-

tation (WSSS). The original problem can be formulated as semi-supervised

clustering (SSC) task, our approach can be considered as a knowledge aug-

mentation method for boosting any WSSS methods. We show experimentally

that the proposed method can improve the segmentation performance of three

well-known methods. Similarly, we ask the following questions:

– How to formulate the WSSS problem as SSC task? The main goal of WSSS

is to assign labels to each pixel within an image by given only the weak

7

supervision (in our case, image-level labels are given), which is different

from SSC task.

– From above, as weak supervised labels are the only given information, how

to convert this information to labeled data for our proposed SSC method?

– Our method can bring more labeled data, how does these labeled data im-

prove the performance of WSSS methods? In other words, how to integrate

our method with those methods?

– As the knowledge augmentation method for boosting any WSSS methods,

is there any conditions to select the target methods?

– How to evaluate the performance improvements? What is the evaluation

metric used for segmentation?

• Chapter 5 is our last chapter to conclude the entire work and to further provide

some insights to continue this research.

8

Chapter 2

Literature Review

2.1 Unsupervised Representation Learning 8

2.1.1 Autoencoder . 9

2.1.2 Non-iterative Autoencoder . 11

2.1.3 Summary . 14

2.2 Semi-supervised Clustering . 14

2.2.1 k-means Clustering . 14

2.2.2 Constrained k-means Clustering 16

2.2.3 Seeded k-means Clustering . 16

2.2.4 COP-k-means Clustering . 16

2.2.5 Self-supervised Learning based Clustering 17

2.2.6 Summary . 17

2.3 Weakly-supervised Semantic Segmentation 18

2.3.1 Seed, Expand and Constrain 19

2.3.2 Deep Seeded Region Growing 20

2.3.3 Cross-Image Affinity Net . 22

2.3.4 Summary . 22

2.1 Unsupervised Representation Learning

Unsupervised representation learning (also known as feature learning) has been re-

searched for many decades since it can capture underlying useful information of data

9

without using any human-annotated labels. The autoencoder (AE) is one of the

widely used representation learning models. It was traditionally developed for di-

mensionality reduction and representation learning. With the leading success of deep

learning, many variants of AE have been proposed with abundant applications in

computer vision, data mining, and natural language processing (See Table 2.1). In

the rest of this section, the concepts and equations of three selected methods that are

highly related to this thesis will be explained.

2.1.1 Autoencoder

Perhaps Ballard [21] was the first one to introduce the concept of AE in the late

80s. The AE, however, has become the mainstream representation learning method

since Hinton and Salakhutdinov [11] proposed Deep Belief Network (DBN). It can be

viewed as the multilayer AE which was constructed by a stack of Restricted Boltz-

mann Machines (RBM). Ref. [11] also proposed the new learning strategy to train

the multilayer network layer-by-layer by solving two general situations about initial

weights as follows,

• If the weights are too large, AE gets stuck into the local minima easily.

• If the weights are too small, the gradients in the early layers are getting smaller.

This is also known as the vanishing gradient problem, which makes it infeasible

to train multilayer AE.

Therefore, five steps were developed to train DBN:

step 1: The input layer x is regarded as the visible layer, while the hidden layer h1

is treated as the invisible layer. These two layers are used to build the first

RBM. This RBM is trained to obtain the weights and biases.

step 2: Then, the obtained weights and bias are fixed to train the second RBM

constructed by the hidden layers h1 and h2.

step 3: Repeat the same process until all hidden layers (e.g., 3 hidden layers in Fig.

2.1) are pretrained. the DBN is constructed by stacking multiple RBMs.

step 4: Then, the DBN is unrolled to create the deep AE with multiple layers (Fig.

2.2).

10

x

h1

RBM

Step 1

h1

h2

RBM

Step 2

h2

h3

RBM

Step 3

x x

h1

Figure 2.1: Learning layer-by-layer of a stack of RBMs for DBN (Step 1 to 3)

h1 h2 h3 h3
T h2

T h1
T

x x

Encoder Decoder

Figure 2.2: Finetuning the unrolled RBN-AE with input and output (Step 4 to 5)

step 5: For data reconstruction, the input is used as output. The weights of deep

AE are finetuned through BP by given the corresponding output.

The above steps provided the learning strategy to initialize weights before BP, which

makes the weights close to a good solution. These weights can then be finetuned. By

extending this pioneering work, many variants of autoencoder have been proposed

(Table 2.1). However, the BP-based learning algorithm is generally very slow since it

requires pretraining and finetuning stages while many iterations are involved to obtain

better performance. Unlike the BP approach, a Single-Layer-Feedforward Networks

(SLFN) based learning algorithm can be used to build a fast-speed AE. It is also

known as a Extreme Learning Machine Autoencoder (ELM-AE).

11

...
... ...

...

d

1 1

k

d

k

...

1

m

Input Output

Hidden

x x

(w1, b1) g (w1 x + b1)

βk

Figure 2.3: A Structure of ELM-AE

2.1.2 Non-iterative Autoencoder

In 2013, Kasun et al. [17] proposed the single hidden layer AE based on Extreme

Learning Machine (ELM) [22], called ELM-AE (sometime called SLFN-AE). It can

be seen as the special form of ELM, where the input is used as output, and randomly

generated weights are chosen to be orthogonal. Due to the characteristic of fast

learning, the ELM-AE learns significantly faster than DBN. The basic structure of

ELM-AE is illustrated in Fig. 2.3. First of all, the orthogonal random weights w and

biases b are initialized, then calculate the output h of the encoder:

wTw = I, bT b = 1 (2.1)

h = g(w · x + b) (2.2)

where (w, b) is connecting between input and hidden space, g is an activation function,

such as sin, sigmoid, tanh. Secondly, the output weight matrix β is calculated which is

responsible for transforming a feature space to an output space. It can be calculated

as follows:

β = (
I

C
+ HTH)−1 HTX (2.3)

where C ∈ [2−10, 210] is a regularization term. Given N total training samples,

H = [hT(x1), ...h
T(xN)] is the representation of hidden space. Thirdly, the actual

output matrix X̂ can be calculated by using Eq.2.4

X̂ = Hβ (2.4)

12

As the ELM-AE is used to reconstruct an original data, the formal learning objective

is to minimize the reconstruction loss E(X):

min E(X) =
N∑
i=1

||xi − x̂i||2 (2.5)

Although the experiments showed that the ELM-AE learned useful features and

achieved generalization performance than other AEs for classification, the major

weakness of the ELM-AE is that all input weights are randomly generated. Hence,

the generalization performance of ELM-AE could deteriorated.

Therefore, the ELM-based autoencoder with invertible function (ELM-

AE-IF) [2] is developed. In view of the structure of AE, the ELM-AE-IF is similar

to ELM-AE, which consists of encoder and decoder layers. However, the ELM-AE-IF

is proposed to use to subnetwork nodes [23] rather than regular hidden nodes for

constructing layers. The structure of ELM-AE-IF is depicted in Fig. 2.4. To resolve

the mentioned problem of random generation of input weights, the decoder weights

are calculated in ELM-AE-IF. They are used to update the encoder weights for the

next iteration. Besides, the output weights β are removed for making this learning

system naturally symmetric. Generally speaking, four steps are involved (See Fig.

2.4):

step 1: Initialize the input weights wf and biases bf by using Eq. 2.1

step 2: Given an output X and inverse of activation function g−1 (e.g., sigmoid or

sin), the decoder weights wn and bias bn are calculated as follows:

wn = g−1(X) · H† (2.6)

bn =
√
mse (wn · H− g−1(X)) (2.7)

g−1(·) =

arcsin(·) if g(·) = sin(·)

− log(1
(·) − 1) if g(·) = 1

1+e−1(·)

(2.8)

where H is the representation of hidden space, the same as previous section.

H† is a Moore-Penrose inverse matrix. More details can be found in [2].

13

step 2step 1

DecoderEncoder

...
...

d

1

k

...

Input

x
...

...

1

d

k

Output

x

(wf1, bf1)

...

m(wfm, bfm) (wnd, bnd)

(wn1, bn1)

step 3

DecoderEncoder

...
...

d

1

k
...

Input

x

...
...

1

d

k

Output

x

(wf1, bf1)

...

m(wfm, bfm) (wnd, bnd)

(wn1, bn1)

update encoder weight

DecoderEncoder

...
...

d

1

k

...

Input

x

...
...

1

d

k

Output

x

(wf1, bf1)

...

m(wfm, bfm) (wnd, bnd)

(wn1, bn1)

optimized features

... repeat several times

step 4

Figure 2.4: Four steps learning algorithm for ELM-AE-IF. Note that subnetwork
nodes are used in encoder and decoder layers.

step 3: Update the encoder weights wf and bias wf by using Eq. 2.9, then recalculate

the feature data H by using Eq. 2.2

wf = (wn)T , bf = bn (2.9)

step 4: Repeat steps 2 and 3 several times.

14

By updating the current encoder weight with a preceding decoder weight, ELM-AE-IF

can obtain low-dimensional but useful features with much faster training speeds than

ELM-AE. Similar to the relationship between ELM-AE and ML-ELM in Ref. [17],

stacking a MLELM-SNs [23] on top of ELM-AE-IF can be used for classification task.

2.1.3 Summary

In this thesis, an unsupervised non-iterative autoencoder is proposed which is inspired

by ELM-AE-IF. Although the structure of the proposed AE is the same as ELM-AE-

IF,it focuses on another learning object such that the extracted feature can be applied

on clustering task. The details of our AE can be found in Chapter 3.

2.2 Semi-supervised Clustering

Clustering is the task to partition subsets such that similar samples are gathered

in the same group while dissimilar samples are arranged in different groups. Semi-

supervised clustering (SSC) is the special form of clustering that can make use of

a small number of labeled data. As mentioned, SSC algorithms can be easily be

derived by extending the concepts of clustering, such as CDBSCAN [24] (extended

from DBSCAN [25]), semi-supervised hierarchical clustering [26–28] (extended from

hierarchical clustering) and LCVQE [29] (extended from CVQE [30]). Of these meth-

ods, k-means is the most well-known clustering algorithm. Hence, in this section, the

concepts and related equations of k-means and its three variant of semi-supervised

algorithms will be introduced. On the other hand, self-supervised learning methods

can be incorporated into the semi-supervised methods to improve the performance.

The concept of self-supervised learning methods will be explained in the later part of

this section.

2.2.1 k-means Clustering

In 1967, MacQueen et al. [18] first defined the term “k-means”, although the standard

k-means algorithm was proposed by Lloyd in 1957 [31]. Since then, a variety of k-

means related surveys [32–34] has been published. Due to its simplicity, k-means

is still one of the most popular unsupervised clustering methods, whose goal is to

15

partition a dataset into M clusters based on the Euclidean distance between data:

d(xi, xm) =
d∑
j=1

(xij − xmj)2 (2.10)

where xi, xm are d-dimensional data. xij is the value of j-th feature of data xi. Given

a datset X = {x1, ..., xN}, xn ∈ R d, the M clustering problem aims at minimizing the

within-cluster sum of squares (WCSS) between each data xi and the centroid x̄m of

cluster Ci. The objective function can be written as:

M∑
m=1

nm
∑
Ci=m

d∑
j=1

(xij − x̄mj)2 (2.11)

where nm is the number of data in m-th cluster. Ci represents the cluster to which

data xi is assigned. The conventional k-means clustering can be generally summarized

in the following four steps

step 1: Randomly pick M data as initial centroids of clusters x̄m.

step 2: Assignment: Assign each data xi ∈ R d to a cluster Ci by the following:

Ci = arg min
m

d∑
j=1

(xij − x̄mj)2 (2.12)

step 3: Update: Update each centroid by calculating the mean values within clus-

ters, for which the corresponding mean of j-th feature is computed as:

x̄mj =
1

nm

∑
i∈Ci

(xij) (2.13)

step 4: Repeat steps 2 and 3 until the converges, i.e. either the algorithm process t

iterations, or the assignments no longer change.

Although the convergence of k-means is guaranteed, a large number of iterations is

needed to repeat the above two steps before the convergence. As the small num-

ber of labeled data is often obtainable in real application domains, the variants of

semi-supervised k-means are proposed which utilizes some background knowledge to

improve the clustering performance. Here, three representative variants are showed.

16

2.2.2 Constrained k-means Clustering

In constrained k-means clustering [19], there are two modifications based on k-means

where a small number of labeled data can be used as “seeds” to improve the clustering

processing. First of all, rather than initializing k-means by randomly picking M data

as centroids, the constrained k-means clustering calculates the means of M partitions

SM of the seed set. Secondly, the labeled data are always assigned to their pre-assigned

clusters, even if they are closer to another cluster. In other words, the cluster labels

of the seed data remain unchanged during the assignment step.

2.2.3 Seeded k-means Clustering

Apart from above algorithm, Basu et al. proposed another variant of k-means in the

same paper [19]. The main idea is inspired by the real-life situation that some initially

labeled data may be mislabeled by humans accidentally. To handle such presence of

noisy supervision, the seeded k-means is recommended where the assignments of

labeled data still follow Eq. 2.12. Unlike constrained k-means, the labeled data

will be assigned to the nearest cluster as normal during the assignment step. As

mislabeled seeds may be corrected by the algorithm, seeded k-means is quite robust

against noisy seeding.

2.2.4 COP-k-means Clustering

Unlike using a small number of labeled data, the pairwise constraints can be used.

As another form of prior knowledge, it indicates complex relationships among data.

Two types of constraints are involved as follows:

• Must-link: It is the constraint showing that two data have to be in the same

cluster, i.e., M = {< xi, xj >: xi ∈ Cl, xj ∈ Ch, l = h}

• Cannot-link: This constraint represents that two data should not lie in the same

cluster, i.e., C = {< xi, xj >: xi ∈ Cl, xj ∈ Ch, l 6= h}

By using these prior knowledge to guide a k-means clustering, Wagstaff et al. [20]

proposed the COP-k-means. In COP-k-means, each data xi is assigned to the closest

cluster Ci according to Eq. 2.12 such that no constraints are violated. Given must-

link M , cannot-link constraints C, the violate constraints can be defined as follow:

17

Let consider two data points (with its cloest cluster centroid), i.e., xi ∈ Ci
and xk ∈ Ck. IF < xi, xk >∈ M , but i 6= k, OR < xi, xk >∈ C, but

i = k. THEN, xi cannot be placed in Ci, xk cannot either.

2.2.5 Self-supervised Learning based Clustering

Recently many researchers in the field of semi-supervised learning propose to combine

their methods with self-supervised learning [35, 36]. The concept of self-supervised

learning is to train a deep learning model by pre-designed pretext tasks. The labels

for pretext tasks is known as self-supervised labels (or pseudo label) which are au-

tomatically generated based on the structure of data. The model trained for these

pretext tasks learns higher-level visual features [37]. The learned parameters serve

as a pre-trained model and can be fine-tuned by other downstream tasks, such as

semantic segmentation, object detection and human action recognition. Note that

human-annotated labels are needed for downstream tasks.

Instead of solving other downstream tasks, learned parameters can be directly

fine-tuned by a small amount of labeled samples. This technique of combining semi-

supervised methods with self-supervised methods is called S4L technique [35]. Fig.

2.5 shows the example of the learning process of S4L. As the pretext task is to

predict the rotation angle of an image, the first step of S4L is the generation of

self-supervised labels (i.e., 0°, 90°, 180° and 270°). Then, the deep learning model is

trained by this pretext text. Finally, the pre-trained model can be fine-tuned by a

small number of labeled samples. In other words, the downstream is the regular image

classification task. Inspired by the S4L technique, many semi-supervised models

[36, 38, 39] have been proposed to extend their work into self-supervised methods

which achieve impressive performance on ImgaeNet dataset.

2.2.6 Summary

There is a broad range of semi-supervised variants of k-means, where the prior knowl-

edge is involved. In this thesis, a small number of labeled data is involved to guide

our novel SSC mechanism. To be specific, the non-iterative AE is proposed (Section

2.1.3) which can be viewed as an unsupervised classifier to group one unlabeled data

to one labeled data. As the aims of clustering is to partition an entire dataset into

subsets, but not only for two data. The complete SSC mechanism is required to guide

the entire process. From the prospective of SSC, the proposed algorithm is similar

18

Original Image Rotate 0o Rotate 90o Rotate 180o Rotate 270o

step 1

D
eep Learning M

odel

Rotate 90o

step 2

Input Image

Pretext Task
Prediction

D
eep Learning M

odel

Cat
Downstream

Prediction

Input Image

step 3

Figure 2.5: Example of the learning process of S4L where the pretext task is to predict
the rotation angle and the downstream is classification.

to k-mean clustering. The details of comparison between our approach and k-means

can be found in Section 3.5.

2.3 Weakly-supervised Semantic Segmentation

Image semantic segmentation is one of the essential topics in computer vision. It

is also known as a pixel-level classification [40–42] because it aims to classify every

pixel within an image into a discrete semantic class. It plays a important role in

a broad rang of real-word applications, such as urban scene understanding [43, 44],

medical image processing [45, 46], satellite image analysis [47, 48] and so on. Due

to a promising success of a deep learning model, many research works have been

proposed to utilize different fully supervised deep networks on image segmentation,

such as fully convolutional networks (FCN [49]) and dilated convolutional models (or

known as DeepLab family [50–53]). These works are considered as a milestone in fully-

supervised image semantic segmentation, and have achieved significant breakthroughs

for industries. However, a pixel-by-pixel annotation of each image for fully-supervised

learning is time consuming and burdensome. To reduce the annotation cost, weakly-

19

a) Pixel-level

bottle

dog
cat

b) Bounding boxes

bottle

dog

cat

c) Scribbles d) Points

bottle

dog

cat

d) Image-level

Figure 2.6: Different forms of weak supervision on image semantic segmentation

supervised approach has been proposed to use inexact supervision where only coarse-

grained label information is available. There are different forms of weak supervision,

such as bounding boxes [54,55], scribbles [56–58], and points [59] (Fig. 2.6). Of these

forms, image-level labels are the most cheaper and quicker to obtain which indicting

the presences of objects, but without providing any positional information.

To initially attain little spatial information from image-level labels, the computer

vision technique is used, i.e. Class Activation Map (CAM) method [60]. The CAM

image of each class is thresholded as a collection of weak localization seeds (or called

cues). Although the seeds are sparse and incomplete that are far away a intact

segmentation mask, the seeds highlights most discriminative regions of target ob-

ject. To recover an intact segmentation mask of object, the seeds are implicitly and

explicitly used as an incomplete pixel-level supervision. Table 2.2 summarizes rep-

resentative methods chronologically with brief introduction and their segmentation

performances in PASCAL VOC 2012, which is a benchmark in this field. Among all

these approaches, there are three insightful works that explicitly uses seeds as super-

vision in their proposed loss function. In the rest of this section, brief introductions

and related loss functions for these selected methods will be given.

2.3.1 Seed, Expand and Constrain

In the earlier year, Kolesnikov et al. [3] proposed the pioneering approach by in-

troducing a seeding loss to encourage a segmentation network to match localization

cues, while a global weighted rank pooling and a fully-connected conditional random

fields (CRF) are used for expansion and constrain loss respectively. This is method

20

is known as the SEC method. In practice, SEC is to solve the following optimization

problem

min
θ

∑
(X,T) ∈D

[Lseed(f(X; θ), T) + Lexpand(f(X; θ), T) + Lconstrain(f(X; θ))] (2.14)

where X and T are an input image and a weakly-supervision (i.e., image-level labels)

for training a deep network f(X; θ) using the above three terms. As seeds are gener-

ated by CAM method, a set of locations that are labeled with class c can be denoted

as Sc. Thus, the seeding loss can be formulated as

Lseed(f(X; θ), T, Sc) = − 1∑
c∈T
|Sc|

∑
c∈T

∑
u∈Sc

log fu,c(X) (2.15)

As an explanation of these loss function is outside the scope of this thesis, we refer

readers to the original publication [3] for more details. In a nutshell, producers of SEC

can be concluded in two steps: (i) given image-level labels, seeds are generated by

using CAM method; (ii) the backbone deep learning model (i.e., DeepLabv1 [50]) is

then trained by the above overall loss function. (Eq.(2.14)). Although SEC obtained

SOTA performances at that time, the supervision for backbone model is fixed which

is not capable for providing sufficient supervisions to the network continuously. To

this issues, DSRG is developed as one of the solutions to provide dynamic supervision

by applying a traditional image segmentation algorithm to network.

2.3.2 Deep Seeded Region Growing

Similar to SEC, the CAM method is also employed to locate and generate the seed

cues by giving only image-level labels in Deep Seeded Region Growing model (DSRG)

[4]. Inspired by traditional image segmentation algorithm of seeded region growing

(SRG) [61], DSRG trains a segmentation network with “dynamic supervision” in

which the number of seeds is increasing progressively while training. Rather than

using three different types of loss function, DSRG proposed the balanced seeding loss

to consider foreground and background seeds separately as follows

Lseed(f(X; θ), T, Sc) = − 1∑
c∈T
|Sc|

∑
c∈T

∑
u∈Sc

log fu,c(X)− 1∑
c∈T̂
|Sc|

∑
c∈T̂

∑
u∈Sc

log fu,c(X)

(2.16)

21

1

2

3

4

5

6

1 2 3 4 5 6

a) Initial seeds

1

2

3

4

5

6

1 2 3 4 5 6

0.67

0.32

0.34 0.020.16

0.65

0.06

0.06

0.89 0.64

0.59

0.71

0.020.040.08

0.10

b) Segmentation map of class c’

1

2

3

4

5

6

1 2 3 4 5 6

c) Resulted map

Figure 2.7: An example of performing region growing of two initial seeds by setting
θc′ = 0.60. Note that there should be more than one probability at each position for
multi-class classification, but only c′ is shown for brevity .

where fu,c denotes the probability of class c at position u on segmentation map f of an

image X. T and T̂ are the set of classes of foreground and background respectively.

Together with constrain loss proposed in [3], the overall loss function of DSRG is

written as

L = Lseed + Lconstrain (2.17)

Apart from loss function, there are two improvements of DSRG, (i) seed generation:

CAM method is used for generating foreground seeds while saliency detection tech-

nology [62] is for background; (ii) DeepLabv2 [51] is selected as the backbone model.

The mechanism of deep seeded region growing

As mentioned, SRG is a classical algorithm for image segmentation, it is known

as a region-based method to examine neighboring pixels of initial seed points and

determine whether nearby pixels should be added to the region. As seeds are initially

generated by CAM method, SRG can be integrated into deep segmentation network

and can generate more seeds in an end-to-end setting. Let consider a 8-connectivity

neighborhood of the seed xi on resulted segmentation map f , one decision rule (Fig.

2.7) is used to determine which connected non-seeds should be grouped with xi:

IF the probability value fu,c′ of class c′ at position u is larger than a

threshold value θc′ (i.e., fu,c′ > θc′) where class c′ is an argmax resulted

value at position u (i.e., c′ = arg maxc fu,c), THEN, a label is assigned to

22

that non-seed, the same as the central seed. OTHERWISE, the status

of the non-seeds is remained unchanged.

2.3.3 Cross-Image Affinity Net

In contradiction to train the network by treating images independently, Fan et al. [5]

first proposed to explicitly model a cross-image relationship for weakly-supervised

segmentation such that supplementary information for identifying the pixels can be

gained. In other words, features can be refined and amplified because the knowledge

of seeds are shared across the whole dataset. To model the cross-image semantic,

a cross-image affinity net (CIAN) module was developed to prompt the learning of

pixel-wise relationship between two images. The idea is to select one query image q

and its N reference images {r(h)|h = 1, ...N} where q and r(h) should have at least one

common semantic class. Let xq and xr be the resulted representation from a CIAN

model respectively, the overall loss is computed as:

L = Lce(x
q) + Lce(x

r) + Lcp(x
q) + Lcp(x

r) (2.18)

where Lce and Lcp are a cross-entropy loss and completion loss respectively. As a

discussion about completion loss is beyond the scope of this thesis, only the cross-

entropy loss is considered:

Lce(x) = − 1

|S ′q|
∑
i ∈S′q

yTi log fc(xi) (2.19)

where fc is final softmax classification layer of the segmentation network, xi is a class

probability at position i from the segmentation map x. S ′q is a set of valid pixels

of an image q, i.e., a set of initial seeds generated by using CAM method. yi is an

one-hot image-level labels. In overall loss function, two terms of cross-entropy loss

for the query and reference images are learned at the same time which encourages

the co-learning by sharing seeding knowledge across images.

2.3.4 Summary

The mentioned WSSS methods provide the seeds knowledge to semantic models,

these seeds can been viewed as a set of labeled data. By using the proposed SSC

mechanism, it increases the number of labeled data (i.e., seeds) and uses these newly

23

labeled data to improve semantic performances for the mentioned WSSS models. The

entire process can be found in Chapter 4.

Table 2.1: Unsupervised autoencoder methods

Method* Year Contribution Related

Deep Belief Network

(DBN) [11]

2006 Train RBM [63] based AE w/ BP [64–66]

Denoising Autoencoder

(DAE) [67]

2008 Recover the undistorted AE’s input

by training AE with noisy input

[68]

Sparse Autoencoder

(Sparse AE) [69]

2011 Find k largest units in hidden layer

and set the rest to 0

[70]

Contractive Autoencoder

(CAE) [71]

2011 Introduce the penalty term to

encourage slight variations on

hidden layer

[72]

Variational Autoencoder

(VAE) [73]

2014 Learn global latent code by using

prior distrib. and decoding distrib.

[74,75]

Adversarial Autoencoder

(AAE) [76]

2015 Extended from VAE, but use GAN

for variational inference

[77,78]

ELM Autoencoder

(ELM-AE) [17]

2013 Single-Layer-Feedforward-Network

based AE with fast training speed

[2, 79]

* Although similar concepts may be proposed earlier, here we cite most well-known

publications.

Table 2.2: Weakly-supervised semantic segmentation methods

VOC2012
Method Year Brief description Type val test
MIL-
FCN [80]

2014 Train FCN w/ Multi-instance
learning jointly

U N/A 25.7

EM-
Adapt [55]

2015 Train DeepLabv1 w/
Expectation-Maximization + CRF

U 38.2 39.6

SEC [3] 2016 Train DeepLabv1 w/ static seeding
loss + CRF

E 50.7 51.7

STC [81] 2017 Train DeepLabv1 progressively w/
Saliency detection + CRF

U 49.8 51.2

24

HaS [82] 2017 Train CNN w/ hiding image patches
+ CAM

I N/A N/A

TPL [83] 2017 Train first FCN + CAM for seeding
mask, then second for results

E 53.1 53.8

AE+PSL
[84]

2017 Train DeepLabv1 + CAM w/ erasing
gained regions + PSL

I 55.0 55.7

GAIN [85] 2018 Train DeepLabv1 w/ trainable mask
for erasing + CRF

E 55.3 56.8

DSRG [4] 2018 Train DeepLabv2 w/ dynamic seeding
loss + SRG + CRF

E 59.0 60.4

ACoL [1] 2018 Similar to AE+PSL, but in
end-to-end w/o PSL

I N/A N/A

MDC [86] 2018 Train DeepLabv1 w/ multi-dilated
rates + CAM

I 60.4 60.8

AffinityNet
[87]

2018 Train CNN w/ random walk for
class-agnostic affinity + CAM

I 58.4 60.5

MCOF
[88]

2018 Train two DeepLabv1 w/
Saliency-guided Refinement + CRF

I 60.3 61.2

FickleNet
[89]

2019 Train DeepLabv2 w/ random dropout
in network

I 61.2 61.9

SSNet [90] 2019 Train DeepLabv2 w/ saliency
detection jointly + CRF

U 63.3 64.3

IRNet [91] 2019 Train DeepLabv2 w/ Class boundary
map + Displacement field

U 63.5 64.8

SSDD [92] 2019 Train CNN w/ knowledge & advice
to remove noise

U 64.9 65.5

CIAN [5] 2020 Train DeepLabv2 w/ co-learning
across images + CRF

E 64.3 65.3

MCIS [93] 2020 Train DeepLabv2 w/ co-attention
classifiers

I 66.2 66.9

SEAM
[94]

2020 Train DeepLabv2 w/ equivariant
regularization & PCM + CAM

U 64.5 65.7

SubCat
[95]

2020 Train CNN w/ clustering for parent
& sub-category classifiers + CAM

U 66.1 65.9

E : Explicit seed learning which uses seeds directly in loss function.
I: Implicit seed learning which uses either adversarial erasing or mining of discrimi-
native regions.
U : Undefined which uses CAM methods only with other techniques

25

Chapter 3

Progressive Framework for

Semi-supervised Clustering via

Representation Learning

3.0 Lead-in Section of Chapter 3 and Chapter 4 26

3.1 Overview . 28

3.2 Introduction . 29

3.3 Progressive Framework . 32

3.3.1 Problem Formulation . 34

3.3.2 Cyclic Structure . 36

3.3.3 Phase 1: Local-clustering Phase 36

3.3.4 Phase 2: Re-clustering Phase 40

3.4 Minimalism in Representation Learning 42

3.5 Comparison with k-means clustering: 45

3.6 Experiment Verification . 45

3.6.1 Experimental Setting . 46

3.6.2 Tabular Datasets . 47

3.6.3 Image Datasets . 50

3.7 Analysis of Progressive Framework 55

3.7.1 Reconstruction Performance of WAE 55

3.7.2 Sensitivity of Parameter ω & λ 60

3.7.3 Restrictiveness of Parameter ε & σ 62

26

3.8 Discussion and Conclusion . 64

3.0 Lead-in Section of Chapter 3 and Chapter 4

Semi-supervised Clustering

Chapter 3: Progressive Framework

Chapter 4: Seeded Progressive Framework
so

lve

bring more seeds
(labeled data)

solve

Weakly-supervised Semantic Segmentation

SEC/ DSRG/ CIAN

solve

extend

Self-similarity

Weak Autoencoder

Phase 1: Local-clustering phase

Phase 2: Re-clustering phase

Class Activation Map

Modi�ed Progressive Framework

Feature Map Extraction

Figure 3.1: Extended Overview of Figure 1.3. Details are highlighted in red.

In chapter 3, the semi-supervised framework will be proposed for partitioning a

dataset into different subsets by using a small number of labeled data. The framework

is wrapped into the cyclic structure where two phases are repeated iteratively. The

first phase is local-clustering phase which aims at progressively searching unlabeled

data (In this framework, it is known as member) from a small number of labeled data

(namely, core). To initialize this phase, only one core is used to train a weak autoen-

coder (WAE) such that the strong feature of that data can be extracted. Assuming

that the learned feature is shareable among the same class, it means data belonging

to the same class (homogeneous data) should have similar features. Therefore, if any

member can be well-reconstructed by that trained WAE, it is believed that this mem-

ber can be grouped with the used core. In order to evaluate and rank the degree of

reconstruction of each unlabeled data, the self-similarity is calculated by measuring

the correlation coefficient between every pair of original and reconstructed data. To

continue the clustering process, these two data can be used to train the new WAE

27

again and search for another member. In fact, the WAE can learn the strong features

only when the structure of autoencoder is weak such that the extracted information

is minimize. This concept of minimalism in representation learning is completely dif-

ferent with current ML methods where the generalization performance is always the

main objective.

To re-evaluate the clustering performance, the re-clustering phase is implemented

where the procedure of previous phase is repeated but by interchanging the role

of cores and searched members. Terminologically speaking, searched members are

viewed temporarily core (i.e., t-core) while cores are regarded as temporarily member

(t-mem). Similar with previous phase, only one t-core is utilized to train a WAE and

search for t-mem. If t-core and searched t-mem have the same label, it is believed

that this t-core is strongly similar to the t-mem which is originally labeled. Then,

this t-core is accepted and regarded as a regular core in the rest of the proposed

framework. On the other hand, if t-core and searched t-mem have the different label,

this t-core is rejected and released as a member.

To conclude, the WAE is proposed to learn the strong feature of each data which

this learned feature is useful for clustering. In order to systemically partition an entire

dataset, the semi-supervised framework is implemented where two phases are repeated

iteratively. As the number of labeled data is gradually increasing, this framework is

called progressive framework.

In chapter 4, this framework is modified and extend to one of the important

real-world applications in computer vision community, i.e., semantic segmentation.

The modified framework is called seeded progressive framework. In order to reduce

human efforts to prepare pixel-level annotation of each image, image-level labels which

indicates the presences of objects is involved. This research area is defined as weakly-

supervised semantic segmentation. Unlike previous framework, the computer vision

techniques are employed for generating the initialized labeled data. Apart from this,

there are several major modifications which are summarized as follows:

1. Different terminologies are used in Chapter 4. (See Table 3.1)

2. Two computer vision methods are applied to obtain the initial labeled data and

clustering space (high-dimensional convolutional space).

3. To simplify the cyclic structure, we repeat the seeded progressive framework by

two cycles, i.e., τ = 2.

28

Table 3.1: Comparison of terminology between Chapter 3 and Chapter 4

Progressive Framework Seeded Progressive Framework
Phase 1 Local-clustering Phase Composition Phase
Phase 2 Re-clustering Phase Decomposition Phase
labeled data core seed
unlabeled data member non-seed
temporarily
labeled data

t-core -

temporarily
unlabeled data

t-mem -

4. In phase 2 of seeded progressive framework, we simplify two regulations pro-

posed in Section 3.3.4.

5. The objective of previous framework is to partitionan entire dataset while now

the objective is just to increase the number of labeled data. The clustered

labeled data can be used to train some deep learning based segmentation models,

i.e. SEC, DSRG and CIAN.

3.1 Overview

Semi-supervised and unsupervised clustering has brought significant impacts on var-

ious applications, limited prior knowledge are provided to supervise a data partition-

ing. Existing autoencoder (AE) based algorithms typically map high dimensional

data to low dimensional space by preserving informative features. However, these

features is generalized in reconstruction task but may not be appreciate in clustering.

To this end, we propose a new semi-supervised clustering framework, called Pro-

gressive Framework. In the algorithm, we conversely learn discriminative features in

unsupervised manner using AE with only one subnetwork node, called Weak Autoen-

coder (WAE). We adopt progressive approach to enlarge our labeled data through

two phases recursively. Extensive comparison experiments on 13 benchmark datasets

exhibit effectiveness of our framework over more than 35 state-of-the-art methods.

29

3.2 Introduction

Clustering analysis has been a hallmark problem during past decades in the field of

artificial intelligence, it primely aims at actualizing a data compartmentalization in

which similar objects are congregated and dissimilar objects are dispersed.

Without the availability of label information, it is an open question that the learn-

ing performance of any unsupervised models are in general far lower than required.

Performances degrades dramatically on high-dimensional data. To this end, many re-

searchers are mainly using the unsupervised model for feature extraction and dimen-

sion reduction to simplify the complexity of the raw data. Recent years, researchers

expressed their interest into autoencoder (AE) [11], it consists of two symmetric com-

ponents (i.e., encoder and decoder). It aims at minimizing the discrepancy between

original and reconstructed data without any supervisory information. The central

deepest hidden layer preserves highly abstract representation. Researches [96–98] has

applied autoencoders as a feature extractor in clustering problem. Tian et al. [96] de-

veloped two-phases deep network to learn the non-linear embedding by massive layers

of sparse AE, and further performs the k-means clustering on the code space. Liter-

atures [97, 98] proposed the jointly optimized AE to learn deeper representation and

cluster data simultaneously. Nevertheless, little of researchers use such unsupervised

as a pure classifier.

On the other hand, the supervised deep convolutional neural network (DCNN)

has been dominated the pattern recognition area, especially in image based objective

recognition stream. With a big labeled dataset, the generalization performance with

DCNN models has been significant improved during the past ten years. Therefore,

researchers are more willing to use DCNN models, especially pretrained DCNN models

as their classifiers.

Although labeling a large amount of data samples give the learning model a un-

precedent prior knowledge which further improved the generalization performance

of supervised DCNN model, labeling data samples especially a big dataset need a

tremendous effort. In many real-world application, only small quantity of labeled

data could be available which contributes the prior knowledge to the clustering task.

Unlike supervised learning, such semi-supervised/unsupervised learning could defi-

nitely save the big workload. Therefore, plenty of semi-supervised methods have

been proposed [20,29,99,100].

Furthermore, by learning such huge sets of labeled training data, the network

30

m

1

2

... ...

1

2

m m

1

2

... ...

1

2

m

1

2

m

... ...

1

2

m

1) Train the WAE unit
by labeled sample A

2a) Feed a sample B to the trained unit

__

4) Data growing by clustering sample B with
sample A & rejecting dissimilar sample C

Sample A

Sample B

Reconstructed A

Sample CReconstructed B

b) Feed another unlabeled samples C

Reconstructed C

maximum

4

3 3

2

2

Sample A Sample CSample B

3) Compare similaritiy b/w input & reconstructed
samples. And cluster max. sample (e.g., sample B)

Figure 3.2: Motivation of the cluster growing with reconstructed samples; The key is
to design a fast but “weak” autoencoder; Ideally samples B could be reconstructed
completely since it shares the same label with sample A while sample C could be
reconstructed incompletely.

simulates patterns that are consistent with the innate knowledge extracted from the

given samples. But there are many things that people can do quickly that compliant

artificial neural network cannot. For instance, a self-driving car can drive millions of

miles but it will eventually encounter something new in which it has no experience.

Similarly, a robot can learn to pick up a bottle, but if it has to pick up a cup it

has to start from scratch. The way of using a large amount of labeled data samples

with a giant network architecture is undeniable success in the recent transfer learning

area, but the performance improvements through network architecture innovation are

approaching its limitation according to the recent results on the ImageNet Large Scale

Visual Recognition Challenge as mentioned in [12].

A three years old kid could easily recognize their own water bottle. If you ask

them why he/she could, kids will probably tell you because it is different from others.

Human repeatedly recognize items by comparing the difference between the target

and the un-target items. It inspires us to have the motivation: Could we design

a classifier by progressively clustering similar samples without using label

information? Directly calculating similarity rate from the raw samples could be

a most nature way, but it would be difficult to achieve competitive generalization

performance. Therefore, could we cluster the “similar” samples into one class

31

based on the similarity rate of their reconstructed samples which have

been generated by a “weak” auto-encoder? Our basic idea could be indicated

as follow (also illustrated by Fig. 3.2):

1. We randomly select one sample A from the dataset and send it to train a “weak”

autoencoder.

2. Then we randomly pick another sample B from the dataset, and then the trained

“weak” autoencoder could be expected to generate very similar, if not the same,

reconstructed sample B if and only if the sample A and B have the same label/-

class. In other words, if the sample B and its reconstructed sample have a high

similarity rate, we could cluster the sample A and B together and consider the

two samples belong to the same class. (See top-right diagram of Fig. 3.2)

3. Once the clustered samples from one group increase, the more specific knowledge

from the corresponding class could be enhanced as well. Then we could use

one-class classifier to train the clustered samples to speed up the classification

process.

In particular, main contributions of this chapter is listed below:

1. The proposed method uses an autoencoder with only one subnetwork node [101]

to make sure the weakest generalization performance of the autoencoder has

been achieved. Such design is opposite from the current machine learning prin-

ciple that tries to build a complicate network architecture to obtain a powerful

universal generalization performance. With the lightweight architecture of the

autoencoder, it presumes the learned highly distinctive representation are im-

portant for discrimination. We learn such features using an autoencoder in a

complete unsupervised manner.

2. Following the previous publication [102], we design a progressive approach to

navigate the workflow of clustering. In Local-clustering phase, random labeled

data are used to form many local clusters which included labeled and unlabeled

data. In Re-clustering phase, we verify all clustered result that accept qualified

data while reject others. This progressive approach gradually clusters the data

by this two phases. We solve clustering problem by using extreme small amount

of labeled data in a semi-supervised way. (it could be regarded as unsupervised

method if only few labeled samples are used).

32

Figure 3.3: Overview: framework iterates τ cycles to perform semi-supervised clus-
tering in which phase 1 and 2 are processed alternatively in each cycle; Phase 1: Pick
cores to perform individual clustering sequentially. The relatively confident member
data are added into the coreset; Phase 2: Interchange cores & members as t-mems
& t-cores. Repeat Phase 1 to either accept or filter the unqualified t-cores.

3. Experimental results demonstrates that our proposed framework achieves out-

standing performances compared with existing semi-clustering/unsupervised

methods, and even reaches the comparable performance with some supervised

algorithms. It verifies the effectiveness of our novel representation learning

strategy in a semi-supervised/unsupervised task.

The remainder of this Chapter is structured as follows. Chapters 3.3 - 3.4 outline the

progressive framework with detailed procedures. Chapter 3.6 evaluates the experi-

mental performances. Chapter 3.7 investigates the sensitivity of involved parameters.

Chapter 3.8 briefly concludes the Chapter.

3.3 Progressive Framework

As detailed schematic diagram depicted in Fig. 3.3, the proposed framework imple-

ments two phases alternatively by numerous repetitions, which congregates members

33

(unlabeled) around cores (labeled) progressively (top sub-diagram of Fig. 3.3). In

phase 1, the “weak” autoencoder (WAE) is involved to learn “weak” but specific

feature in an unsupervised manner (middle). Step 1-4 demonstrates the symbolic

workflow of how one core sample constitutes the local cluster with its detected mem-

bers. In phase 2, the clustering result of phase 1 are verified (bottom). The accepted

clustered data will be regarded as pseudo-cores while rejected samples will be released

as members.The cyclic searching-checking progressively enlarges the number of cores.

Procedure of two phases are summarized as follows:

Phase 1: Local-clustering phase

step 1: Batch Separation: Ahead of clustering, the dataset X ∈ Rn×d is divided into

λ batches, i.e., X = [X1,X2,...,Xλ]. Clustering will be executed simultaneously.

step 2: Individual Clustering: Train the WAE by a selected i-th core (xi), then

feed the learned WAE unit by an unlabeled data. Derive self-similarities by

measuring correlations between ordinal and reconstructed samples. The most

similar result is clustered.

step 3: Clustering Progression: Repeat step 2 by ω iterations but a new WAE is

trained with clustered member(s) and its core.

step 4: Sequential Process: Assign labels to members clustered by the core within

a local cluster. Then pick another core, and repeat step 2-3 for remaining data

in sequential order.

Phase 2: Re-clustering phase

step 1: Data Interchanging: Gather all members from batches, switch members to

temporary cores (t-cores) and vice versa.

step 2: Results Verifying: Repeating all steps of phase 1 by including ε iterations in

step 3. t-cores (i.e., members from phase 1) are either accepted or eliminated

by examining two rules.

In this section, we present the big picture of the proposed framework phase by phase.

From top to down, Section 3.3.1 formulates the clustering problem and notation

used mathematically. Next, Section 3.3.2 states the wrapped cyclic structure. For

each cycle, two phases are involved. Therefore, Section 3.3.3 and 3.3.4 discusses

the operation of Local-clustering and Re-clustering phase. Note that the underlying

ideology of WAE 3.4 will be interpreted in Section 3.4.

34

Table 3.2: Notations of Progressive Framework

Notations Decription

General
n, d number of instances & features
λ, τ number of batches & cycles
L, U labelled & unabelled Set

X = [X1, X2, ... Xλ] batches (subsets) in phase 1

Phase 1 (P1)

lt,1i,b i-th core in b-th batch of t-th cycle in P1

pt,1i,j,b
j-th found member from i-th core

in b-th batch of t-th cycle in P1

ω number of required member in searching region

Phase 2 (P2)

lt,2i = pt,1i i-th t-core of b-th cycle in P2

pt,2i,j = lt,1i j-th found t-mem from i-th t-core of t-th cycle in P2

ki, kij target label of i-th t-core & its associated major label from t-mems
ε number of required t-mem in checking region
σ qualified rate for checking

WAE
(af , bf) input weight and bias in encoder
β output weight in decoder
g invertible Activation function

g(aX + b) output of encoder (i.e input of decoder)
m number of hidden neurons

3.3.1 Problem Formulation

Let consider the X be a n × d matrix, each row represents an instance of data with

d-dimensional features. Suppose it is composed of a set of l cores and a collection of

n− l members, i.e.,

{L,U} ⊆ X =
{
{(xi, yi)}li=1, {(xj)}n−lj=1

}
⊆ X (3.1)

where xi and xj denote i-th cores and j-th members respectively. In set L, yi ∈
{1, 2, ..., k} represents the associated label of i-th instance, where k is a predefined

number of clusters k. In our proposed framework, the number of k is directly pre-set

35

Algorithm 1 The Proposed Algorithm of Progressive Framework

Initialization: Given X, L, λ, ω, ε, σ, τ & k

1: for t← 1 to τ do
2: if t < τ then
3: Phase 1: Local-clustering
4: Step 1 Batch separation: X= [X1, X2, ... Xλ]
5: Initialize pt,1 = [pt,11 , p

t,1
2 , ..., p

t,1
λ] = ∅

6: parfor j ← 1 to λ do
7: Step 2 to 4
8: end parfor
9: Obtain the clustered set pt,1

10: Phase 2: Re-clustering
11: Step 1: Data Interchange
12: p← # found members of pt,1

13: for i← 1 to p do
14: Step 2: Results Verifying
15: end for
16: Obtain the re-clustered set pt,2

17: Update L ← {L ∩ pt,2}
18: else
19: Repeats phase 1 to 2 without eliminating results
20: end if
21: end for

the same as the number of class of the dataset. Within the cycle, we employ the

progressive clustering in which l local clusters are formed by l cores associated with

ω members as mentioned in Step 3 of phase 1. Therefore, the cycle objective function

is generally formulated as follows:

min
θ
E(θ) =

l∑
i=1

ω∑
j=1

D(xi, xij; θ) (3.2)

where xij are members detected by xi labeled patterns, D(· ; θ) indicates pairwise

dissimilarities in which θ are model parameters in WAE. We will further interpret and

reformulate the above function in the following subsection. To derive our proposed

framework systemically, complex notations with the format Aa,bc,d are defined in Table

3.2. The superscript a and b represent time-related status (e.g.,, the cycle or phase.),

and the subscript c and d indicate another dynamic information (e.g., index of batch,

36

core and member data).

3.3.2 Cyclic Structure

The progressive framework F are wrapped into the cyclic structure such that it iterates

Local-clustering and Re-clustering phase by τ cycle(s) where τ >1 as additional ending

cycle is needed to clustering all remaining data. As mentioned, it rejects and discards

clustered members in regular phase 2. However, all detected members will not be

eliminated in ending cycle. Remaining data are used to form a local cluster with ε

cores, we instead assign label to a member by majority voting among cores.

3.3.3 Phase 1: Local-clustering Phase

In this phase, we utilize the batch separation to shorter complexity and computational

time. We use the Weak Autoencoder (WAE) indicated in Section 3.4 as a unit to

determine similarities between given core and remaining members. We propose the

progressive approach to cluster unlabeled data (members) with labeled data (cores)

sequentially. Hence, it leads us to describe how our algorithm works with the batch

separation. Following by presenting the operation, where the notations and figures

are involved comprehensively.

Step 1: Batch Separations

Unlike other semi-supervised clustering methods where distances between every pair

of connected data are required to measure. The proposed framework estimates only

local linkages between two data. Precisely, the idea is to progressively cluster small

sets of data. An entire dataset could be pre-separated equally into subsets, i.e.,

X = [X1,X2, ...,Xλ], where λ represents the pre-defined number of batch. In each

batch, we process individual clustering for each cores sequentially. Batch process can

be executed simultaneously that highly reduces the computational time. In fact, the

value of λ depends on the size and dimensionality of dataset for which the related

analysis will be conducted in Section 3.7.2.

Step 2: Individual Clustering with Self-similarity

Different from typical algorithms calculates the similarities between labeled and un-

labeled samples, we adopt the self-similarity to estimates between original and

37

Algorithm 2 Locally Clustering Phase

Initialization: Given X, L, b, ω, K
Output: Clustered set p1

1: Let Set P = X ∈ Rn×d

2: Conduct batch separation on P , s.t. P= [P1, ... ,Pb]
3: Initialize p1 = [p11, p

1
2, ..., p

1
b] = ∅

4: parfor j ← 1 to b do
5: lj ← # cores in Pj
6: for i← 1 to lj do
7: Obtain P ij by removing i-th core
8: for m← 1 to ω do
9: ni← #P ij

10: Train WAE by core l1i,j
11: Encode and decode the P ij
12: Compute correlation matrix Φi

13: Find q = argmaxq∈[1,ni] Φi(q)
14: Find member data p1m,i,j = P ij(q)
15: Enlarge the core set, l1i,j ← {l1i,j, p1m,i,j}
16: Update P ij ← {P ij ∪ P ij(q)}
17: end for
18: Consider the member set Q = {p1m,i,j}

ω

m=1

19: Obtain set Q′ ← Q∩ Lj
20: if Q′ /∈ 0 then
21: Q ← {Q ∪Q′}
22: end if
23: Update P ij ← {P ij ∪Q}
24: Update p1j ← {p1j ∩Q}
25: end for
26: end parfor

reconstructed members. By mentioning that, the above objective function can be

formally rewrote as:

min
θ
E(θ) =

l∑
i=1

ω∑
j=1

D(xij, f(xij, xi, θ)) (3.3)

where f(xij, xi, θ) signifies reconstructed members via the WAE learned by xi. The

cycle objective function is oppositely to maximize the similarity S(·), so it is equivalent

38

to redefine Eq. 3.3 as:

min
θ
E(θ)⇔ max

θ
E ′(θ) =

l∑
i=1

ω∑
j=1

S(xij, x̂ij) (3.4)

s.t. ∀ ij, x̂ij = f(xij, xi, θ)

Assume we have an input xi and a hidden code zi, the prior distribution can be

denoted as p(xi) while the encoding and decoding distribution can be represented

as q(zi|xi) and p(xi|zi) respectively. By using WAE, zi retains specialized features

provided by xi which are most characteristic to present the hidden pattern. From our

prospective, these features are highly shareable within the class. That is supposing

the input xi is used to train the WAE, then an unlabeled xij is feed-forward into

that WAE. After encoding, the squashed hidden vector is projected back by applying

the trained decoding mapping p(xi|zi). xij can only be well-reconstructed when the

used decoding function approximates to expected, i.e., a desired decoding distribution

p(xij|zij) ≈ p(xi|zi). Therefore, it implies the self-similarity rate between xi and xij:

S(xij, x̂ij) =⇒ S(xij, xi) (3.5)

Specifically, a statistic similarity metric, correlation, is involved to find out which

member is closest to the particular core, and it is calculated by Eq. 3.6:

φij = corr(xij, x̂ij) =
cov(xij, x̂ij)

σxij · σx̂ij
(3.6)

where cov(·) defines covariance while σxij and σx̂ij mean standard deviation of two

given variables. In practice, members are all propagated into trained WAE, for which

it yields the correlation matrix Φi = {(φim)}n−lm=1. However, we select only individual

xij as a clustered result each time (clustered by xi), for which it has the largest

correlation in reconstruction. This process is called individual clustering.

Step 3-4: Sequential Clustering

The proposed procedure is highly linked with our previous research works [102], the

early developed structure of cluster growing algorithm, PLM, was to approximate any

hybrid system (i.e., linear/non-linear) by using multi-SLFNs which are trained by n

parent clusters (Eq. 3.7), such that each parent cluster can obtain its corresponding

39

Figure 3.4: Progressive Search: Blue labeled data xi will search the “nearest” unla-
beled data xi1 to form the local cluster; They train WAE and search other, and so
on.

offspring clusters (Eq. 3.8).

φ0 = [φ0
1, φ

0
2, ...φ

0
n] (3.7)

φ1 = [φ1
1, φ

1
2, ...φ

1
n] (3.8)

PLM algorithm repeats the (s1− 1) times. It proved that the clustering can be com-

pleted on all unlabeled data for setting positive finite value s1 : s1 −→ ∞. However,

the main problem of PLM is higher computational complexity. Therefore, we propose

the following workflow to reduce the computational time.

As mentioned in Section 3.3.3, our first modification is to add the batch separation

to reduce the computational cost where the related experiments will be conducted in

Section 3.7.2. For brevity, we assume λ=1 in this section. Similar to PLM, we cluster

members by core xi into a local cluster:

pi = {{{xi, xi1}, xi2}, ...} = {{pi1, xi2}, ...}

= {xi, xij}ωj=1 (3.9)

Few top-rank members are normally reconstructed completely from correlation matrix

Φi, it implies they share the same label with its training sample xi. However, we con-

servatively cluster only one member xij with highest self-similarity in each timestep.

It is because our goal is to train “weak” autoencoder with “weak” performance, the

enhanced trained knowledge will “generalize” the autoencoder (See Section 3.4). Fig.

3.4 shows how we form the local cluset pi progressively, we train first WAE by xi to

cluster xi1. Then, we train another WAE by pi1 (with adding xi1) and cluster xi2.

As ”mis-cluster” members possibly destroy the algorithm. Therefore, we only cluster

one sample at a time. And we call it “progressive” search.

40

(a) ground truth

core

core

core

(b) Phase 1 initialization

core

core

core

(c) Phase 1 result

t-mem

t-mem

t-mem

(d) Phase 2 initialization

Figure 3.5: Procedure of Phase 1 (ω=3.): Three primary colors (red, blue & green)
with similar colors (magenta, cyan & teal) & gray-color represent cores, associated
members & unseen data. e.g., cyan-data are members clustered from blue-data.

After that, pi will be removed from the searching pool. We pick up the other core

xi+1 and form pi+1. l local clusters will be form as follows:

p = [pi, pi+1, ..., pi+l−1] (3.10)

Fig. 3.5 demonstrates procedures of phase 1. We have 18 samples from 3 clusters,

the real labels are shown in (a). Given only 1 core from each cluster (b), local clusters

are formed after phase 1 with ω members (c). It initializes the phase 2 by considering

only cores and members (d). In each batch, we cluster data in sequential. However,

multi-batches can be implemented at the same time. It reduce the higher complexity

issues from PLM.

3.3.4 Phase 2: Re-clustering Phase

To re-evaluate the clustered result from phase 1, the progressive framework imple-

ments the Re-clustering phase. In this phase, we execute individual clustering as

phase 1 does by interchanging cores and members. Consider the core xi labeled as

41

Algorithm 3 Re-clustering Phase

Initialization: Given p1, ε & σ
Output: Re-clustered set p2

1: p← # found members of p1

2: for i← 1 to p do
3: Consider t-core l2i = p1(i)
4: for m← 1 to ε do
5: Repeat procedures of Phase 1 by using l2i
6: end for
7: Consider the t-mem set Q = {p2m,i}

ε

m=1
8: Assume the label kmi is a majority label of Q
9: Count y ← # t-mem assigned kmi

10: N ← # total t-mem in Q
11: if (y / N) > σ then
12: Let kci is the label assigned to t-core l2i
13: if (kci 6= kmi) then
14: Update p1 ← {p1 ∪ p1(i)}
15: end if
16: end if
17: end for
18: Assign p2 ← p1

ki clusters the member xij (also assigned as ki), we treat xij as temporary core, i.e.,

t-core and xi as t-mem. Similar with ω, we use ε in this phase to represent the number

of t-mems are required to cluster. Suppose many t-mems belong to same class kij,

we call it “majority label”. We then calculate the majority rate m-rate by number of

kij/ε.

After that, we apply two regulations to verify whether the t-core xij are accepted:

i) majority rule: m-rate > σ which is qualified rate; ii) equivalence rule: ki = kij.

The t-cores are accepted and regarded as pseudo cores in next cycle if they satisfy

those rules. The unqualified clustered results will be rejected and release as member.

Follow Fig. 3.5, we present schematic success and failure example. For a & b in

Fig. 3.6, the t-core (red) successfully clusters the correct t-mem (pink). However, the

t-core (blue) cluster the wrong t-mem (teal) in c & d.

42

t-core (xi)

(a) Success: Starting

t-mem (xim)

t-core (xi)

(b) Success: Result

t-core (xj)

(c) Failure: Starting

t-core (xj)

t-mem (xjm)

(d) Failure: Result

Figure 3.6: Two Scenarios in Phase 2 (ε=1 & σ=1): Following Fig. 3.5, we present
success & failure cases. For success, i-th t-core finds ε t-mem(s) m-rate > σ. For
failure, t-core xj finds t-mem(s) but with wrong label.

3.4 Minimalism in Representation Learning

Informax approach has been a long held belief in field of representation learning,

for which its underlying ideology is to retain exhaustive information through the pa-

rameterized mapping from input x to a latent code z. With the goal of generalization

capability, most AEs are dedicated to model generative non-linear function, for which

unseen instances are capable to be compressed into and decompressed from the latent

space.

As depicted previously, the key of the proposed method is to design an AE with

weak performance (see Fig. 3.2) but fast training speed because such AE

will be used for thousands to ten thousands of times in the entire clustering process.

Therefore, we have used a two layer network with an non-iterative learning strategy

which we have proposed in [101]. We only use one subnetwork node consisted of

m hidden nodes in order to achieve a fast but limited generalization performance.

Although it drops a universal approximation capability of feature learning, such sim-

plicity approach is workable on clustering task. Two data can be straightly dispersed

43

when they are dissimilar, it implies that an discriminative features is necessitated to

depict the similarities. In contradiction of infomax, we then advocate the naive repre-

sentation learning strategy, infomin approach, which can be regard as information

minimalism.

Weak Autoencoder (WAE) is a SLFN-AE which can be decoupled into encoder

and decoder. The input X is projected to a m-dimensional random feature space

through the encoder. Then, it is mapped to an output space via the decoder. Similar

to [2], the invertible function is used to calculate the decoder weights, but we use only

two steps in our learning system:

step 1: Initialize the orthogonal input weight wf and bias bf :

wTf w = I, bTf bf = 1 (3.11)

step 2: Given an output X which is equivalent with its input, and inverse of activation

function g−1 (e.g.,, sigmoid or sin), the decoder weight wn and bias bn are

calculated as follows:

wn = g−1(X) · H† (3.12)

bn =
√
mse (wn · H− g−1(X)) (3.13)

g−1(·) =

arcsin(·) if g(·) = sin(·)

− log(1
(·) − 1) if g(·) = 1

1+e−1(·)

(3.14)

where H is a representation on hidden space, the same as previous section,

H† is called a Moore Penrose Pseudo-inverse matrix and can be calculated as

follows. {
H† = HT · (C

I
+ HHT)

−1
, HTH is singular

H† = (C
I

+ HHT)
−1 · HT, HTH is non-singular

(3.15)

Note that the positive parameter C ∈ [2−10, 210] is used as a regularization

term to improve the stability.

There are two major modifications made on top of the autoencoder [2] to achieve

information minimization:

1. For model structure, we select single hidden layer with one subnetwork node to

guarantee not only the weakest reconstruction performance but also the fastest

processing speed, i.e., the single hidden unit is merely used as an input weight.

44

3) Global clustering vs Local clustering

cluster 1

cluster 2

K-means Progressive Framework

Legend

d(i,x
)

d(j,x)x
i

j

s(x,x̂)

s(i,x
)

xi

1) K cetroids vs 1 “centroid”
2) Euclidean dist. vs Self-similarity

the reconstructed sample from a trained WAE

does not
considered

4) Centroids updating vs No “centroid”

x̂

they are used
to train a WAE

class 1

class 2 centroid of class 2

centroid of class 1 unlabeled

reconstructed

the only clustered
sample for each time

mini-cluster

Figure 3.7: Comparison with k-means clustering

2. For learning strategy, we adopt the non-iterative learning process takes only

two steps and is quite simple. In other words, we would not update the input

weight and bias (wf , bf) by preceding (wn, bn) iteratively contrary to [2]. It

“learns” only special features while we intentionally weaken the generalized re-

construction ability of such AE. Therefore, we name it as the weak autoencoder

(WAE).

In fact, the WAE could be replaced by other data reconstruction methods such

as low-rank representation [99]. With the low-rank representation, the actual perfor-

mance of the proposed framework could be slightly improved. However, as the WAE

unit need to be used for thousands to ten thousands of times in the entire process,

in this chapter, we have to use the proposed WAE unit, rather than the low-rank

representation method to speed up the entire clustering process.

45

3.5 Comparison with k-means clustering:

In order to help readers to under the proposed clustering algorithm, we compare the

progressive framework with the classical clustering method, k-means clustering. Five

major differences are summarized in the following (See Fig. 3.7 also):

1. The proposed method considers single “centroid” at a time, i.e., k=1 in k-means

since the only one labeled sample is used to train the WAE while all unlabeled

samples are involved.

2. Our method clusters one sample for each time, i.e., the nearest sample to the

training set. Thus, it has a local clustering ability. Instead, the k-means assigns

labels to all unlabeled samples. Hence, it performs the global clustering.

3. We calculate the self-similarity rather than the conventional Euclidean distance.

Therefore, there is no statistical assumption of sample distribution, e.g., normal

distribution.

4. Our method updates the “centroid” by considering only the certain clustered

samples, i.e., add clustered samples into the training set and train another WAE.

In contrast, k-means updates the centroids by summarizing all clustered results

for each class. In other words, there is no statistical centroid in the proposed

algorithm.

5. The update is made in the composition phase (similar to the assign step in

k-means) but not in the decomposition phase (similar to the update step).

3.6 Experiment Verification

In this section, we investigate our proposed progressive framework by comparing with

the existing methods. Our 13 tested datasets will be splitted into two groups and

compared with other methods separately. In Section 3.6.1, we discuss the experimen-

tal setting by specifying the details of datasets, environments and evaluation metrics.

In Section 3.6.2, we conduct an experiment using the 5 present semi-supervised meth-

ods on tabular datasets. In Section 3.6.3, the clustering performance of our proposed

method on image datasets will be evaluated.

46

Table 3.3: Dataset Descriptions

Dataset Dimension Sample Class Remark

Tabular Dataset

Hill-Valley 100 1212 2 UCI
Mushroom 112 8124 2 UCI
IJCNN1# 22 10000 2 LIBSVM
Satimage 36 4435 6 LIBSVM
Protein# 357 10500 3 LIBSVM
German 4 3025 2 LIBSVM

Image Dataset

USPS 256 9298 10 Handwriting
USPS1K 256 1000 10 Handwriting

MNIST1K 784 1000 10 Handwriting

COIL20 1024 1440 20 Object
CIFAR10* 256 60000 10 Object

Caltech101* 256 9144 102 Object
Caltech256* 256 30607 256 Object

Scene15* 256 4485 15 Scene

Yale-Face 4096 165 15 Human Face
Olivertti-Faces 4096 400 40 Human Face

* Convolutional Features: Extracted from Random-VGG16
Original sample size: IJCNN1=141691; Protein=17766

3.6.1 Experimental Setting

Dataset Specification. Our tested datasets typically divided into two groups, i)

6 tabular datasets which are obtained from the UCI Repository and LIBSVM and

ii) 7 well-known image datasets. Table 3.3 shows dataset descriptions of both cat-

egories. Image benchmarks can be specifically separated into three sub-categories

(handwritten, scene and object). Note that the sign * represents that we are using

Convolutional Features (DF) from those dataset rather than raw data, the features

are extracted from DCNN Model (VGG16) with random weights. (See Section 3.6.3)

Environment. Experiments are all carried out in MATLAB 2019b on the Linux

Ubuntu 18.04 platform with 12 cores of Intel Core i9-7920X @ 2.9 GHz and 128 GB

memory.

47

Evaluation Metrics. To measure the clustering performance, we employ Rand

Index (RI) and classical clustering accuracy (ACC). RI is the statistical measurement

score scaled between 0 and 1 for quantifying the similarity between actual and desired

label assignments. We compute RI using the below equation:

RI =
a+ b

nC 2

=
2 · (a+ b)

n · (n− 2)
(3.16)

where (a + b) represents the number of agreement between cluster yi and class yj,

and (nC 2) denotes a total unordered pair of all elements in these sets. The RI ranges

from 0 to 1 in which higher RI means the better clustering performance.

3.6.2 Tabular Datasets

In this subsection, we focus on 6 small datasets, Hill-Valley, Mushroom, IJCNN1,

Satimage and German. We evaluate our proposed method by computing the cluster-

ing ACC and RI on these datasets using progressive framework along with five selected

semi-supervised clustering methods (COP-K-means [20], LCVQE [29], CSP [103],

CEVCLUS [104] & SSELM [100])

For those methods which marks use of pairwise constraints rather than label in-

formation, constraints transformation is needed such that positive label information

is converted to pairwise constraints. For experimental parameters, we basically set

the number of cluster (i.e., k) to the real number of class. To control the performance

of our model, we empirically fix our sensitive parameters in this experiment. The

setting is as follows, τ=3, ω=4, ε=9 and σ=0.8. All definitions of these variables can

be reviewed in Table 3.2. In each scenario, the data are average performances of 3

runs with different sets of random labeling initialization. It is noted that parameter

λ depends on sizes of datasets, we use parentheses to enclose the exact used value

next to the dataset name, e.g., we divide Satimage into 5 subsets. Additionally, the

clustering is completed by using our WAE as the optional clustering algorithm.

Table 3.4 demonstrates the performance (ACC & RI) of various semi-supervised

clustering methods on 6 datasets by providing different portions of labeled data, we

primarily select 5, 10, 20, 30 and 40% as the percentage of the labeled data. It is

obvious that the progressive framework nearly outperforms 5 existing methods expect

only Satimage in which SSELM leads the performance constantly by increasing ration

48

Table 3.4: Generalization Performances (Clustering Accuracy) on 6 Datasets

Datasets(λ) Ratios Ours COP [20] LCVQE [29] CSP [103] CEVCLUS [104] SSELM [100]

Hill Valley(1)

0.05 0.8490 0.5228 0.5184 0.5305 0.5429 0.5206
0.10 0.9860 0.5545 0.5118 0.5212 0.5718 0.5462
0.20 0.9942 0.5982 0.5091 0.5569 0.6130 0.5965
0.30 0.9942 0.6328 0.5113 0.6119 0.6097 0.6469
0.40 0.9917 0.6900 0.5061 0.5864 0.6394 0.6972

Mushroom(5)

0.05 0.9728 0.7953 0.7052 0.5181 0.8966 0.5060
0.10 0.9777 0.7925 0.8024 0.5181 0.5300
0.20 0.9934 0.9142 0.9143 0.5181 0.5854
0.30 0.9986 0.9246 0.9230 0.5181 0.6373
0.40 0.9991 0.9344 0.9346 0.6893

IJCNN1(15)

0.05 0.7845 0.5249 0.5772 0.5003 0.5259 0.5230
0.10 0.8182 0.5505 0.6567 0.5505 0.5230
0.20 0.8266 0.6848 0.7230 0.5998
0.30 0.8642 0.7240 0.5846 0.6500
0.40 0.8882 0.8876 0.5323 0.7000

Satimage(5)

0.05 0.7578 0.6784 0.6749 0.2521 0.7186 0.8428
0.10 0.7910 0.6684 0.6973 0.4767 0.7012 0.8631
0.20 0.8232 0.6646 0.7772 0.5071 0.8764
0.30 0.8573 0.7294 0.7431 0.2832 0.8797
0.40 0.8852 0.7453 0.7154 0.7069 0.8962

Protein(15)

0.05 0.4655 0.3664 0.3727 0.3335 0.5257
0.10 0.4974 0.42806 0.3605 0.3335 0.5601
0.20 0.5539 0.5186 0.3879 0.5437
0.30 0.6162 0.6460 0.3584 0.6357
0.40 0.6709 0.7496 0.3860 0.7179

German(15)

0.05 0.9061 0.8000 0.7996 0.8381 0.8516 0.6281
0.10 0.9269 0.8114 0.8096 0.9083 0.8698 0.5950
0.20 0.9458 0.8450 0.8378 0.9126 0.5289
0.30 0.9481 0.8648 0.8677 0.9166 0.5372
0.40 0.9560 0.8893 0.8731 0.9341 0.6033

: Overtime issues which takes over 6 hours for computing

of labeled data. We conclude the following important observation:

1. In term of stability, the clustering ACC is improved by growing number of labels.

Takes LCVQE as a counter-example, the performance decrease from 51.18 to

50.91% supporting by 10 and 20% labels respectively on Hill-Valley. However,

our accuracy keeps improving when the portion of labeled data increases which

means we could rely on such method in the real application.

49

Table 3.4: (continued) Generalization Performances (Rand Index) on 6 Datasets

Datasets(λ) Ratios Ours COP [20] LCVQE [29] CSP [103] CEVCLUS [104] SSELM [100]

Hill Valley(1)

0.05 0.7434 0.5008 0.5006 0.5017 0.5033 0.5004
0.10 0.9723 0.5058 0.5000 0.5005 0.5099 0.5039
0.20 0.9885 0.5191 0.4998 0.5101 0.5252 0.5182
0.30 0.9885 0.5349 0.4999 0.5319 0.7508 0.5428
0.40 0.9836 0.5719 0.4997 0.5307 0.5385 0.5774

Mushroom(5)

0.05 0.9471 0.6853 0.6299 0.5006 0.8146 0.5001
0.10 0.9564 0.7199 0.6933 0.5006 0.5022
0.20 0.9868 0.8430 0.8433 0.5006 0.5146
0.30 0.9973 0.8606 0.8578 0.5006 0.5377
0.40 0.9983 0.8775 0.8778 0.5716

IJCNN1(15)

0.05 0.6618 0.5012 0.5327 0.5000 0.5013 0.5012
0.10 0.7025 0.5051 0.5719 0.5087 0.5012
0.20 0.7133 0.5971 0.6029 0.5202
0.30 0.7653 0.6236 0.5182 0.5453
0.40 0.8014 0.8008 0.5021 0.5803

Satimage(5)

0.05 0.8570 0.8598 0.8600 0.2193 0.8545 0.9122
0.10 0.8800 0.8523 0.8630 0.5666 0.8560 0.9218
0.20 0.8996 0.8569 0.8805 0.6152 0.9274
0.30 0.9167 0.8672 0.8684 0.2769 0.9277
0.40 0.9324 0.8756 0.8596 0.8386 0.9365

Protein(15)

0.05 0.4795 0.3968 0.45777 0.3334 0.5932
0.10 0.5173 0.5183 0.4988 0.3334 0.6074
0.20 0.5705 0.5732 0.5264 0.5999
0.30 0.6778 0.6462 0.5234 0.6778
0.40 0.7111 0.7294 0.5355 0.7037

German(15)

0.05 0.8298 0.6799 0.6794 0.7541 0.7471 0.5327
0.10 0.8645 0.6938 0.6916 0.8335 0.7734 0.5179
0.20 0.8974 0.7379 0.7281 0.8405 0.5015
0.30 0.9016 0.7661 0.7703 0.8471 0.5026
0.40 0.9159 0.8030 0.7799 0.9341 0.5212

: Overtime issues which takes over 6 hours for computing

2. Our framework is completely advantageous from the large dataset. We use

the label information constraint as a supervisory in clustering task, such larger

dataset constributes more labeled data. However another pairwise constraint

models may consider it as a limitation, the result label assignment is being

rejected due to the violation. Therefore, they can only freely enjoy the supervi-

sion when the amount of labeled data reaches certain levels. For instance, the

50

performances of COP-K-Means jumps hugely from 55% (using 10%) to 89%

(using 40%) on IJCNN1. However, our method keeps regular improves without

inner-jumping.

3. It is significant that our model can effectively cluster the dataset by using the ex-

tremely small amount of labeled data. By using 5% labeled data on Hill-Valley,

performances are between 51.8 to 53.05% for all existing methods. However, the

progressive framework reaches incredible 84.9% by providing the same portion of

supervisory. Despite using more lablled data (40%), other methods only reaches

maximum performance up to 69.72% (SSELM). For extreme small supervision,

our framework could be regarded approximates to unsupervised model.

4. Although SSELM sightly outperforms ours on Satimage and Protein, the pro-

gressive framework obtains higher-level of generalized performance on different

tabular datasets. For Hill-Valley and Mushromm, ours performance are 30+

% higher than SSELM constantly using different rations of labeled data. Also,

we use fix the experimental setting in order to perform baseline performance.

Improved Performances are shown Table 3.11.

3.6.3 Image Datasets

In this subsection, we concentrate on 7 well-known image datasets, they are USPS,

COIL20, MNIST, CIFAR10, Scene15 (S15), Caltech101 (C101) and Caltech256 (C256).

We carry out 4 sub-experiments in the following subsections depending on both the

supervisory level of comparing methods and complexity of datasets. Note that clus-

tering accuracy is the only metrics to access our performance over other approaches.

Classical Semi-Supervised Methods

In this section, less complex datasets will be tested. Apart from COIL20, we also

utilize MNIST1K and USPS1K which are formed by randomly picking 1K samples

from MNIST and USPS. We select total 4 conventional methods from Spectral Clus-

tering family (CSP [103], IRSC [105] and SCSRR [106]) and factorization category

(SNMF [107]). Significantly, our proposed framework is dominant in term of cluster-

ing accuracy over another 4 methods by using same percentage of labeled data. From

Table 3.5, we chose 5, 7.5 and 10% of labeled data as 3 baselines.

51

Table 3.5: Comparison on USPS1K, COIL20, MNIST1K

Methods USPS1K COIL20 MNIST1K

5% 7.5% 10% 5% 7.5% 10% 5% 7.5% 10%

CSP [103] 0.825 0.845 0.857 0.777 0.813 0.815 0.758 0.774 0.790
IRSC [105] 0.765 0.827 0.843 0.772 0.779 0.789 0.664 0.681 0.747

SCSSR [106] 0.823 0.861 0.881 0.806 0.816 0.860 0.700 0.740 0.761
SNMF [107] 0.635 0.641 0.638 0.628 0.632 0.624 0.486 0.490 0.491

Ours (NFPF) 0.836 0.883 0.940 0.824 0.855 0.875 0.759 0.840 0.871

Firstly, the performance of our framework is beneficial with increasing amount

of labeled data stably while another methods only take minor advantages of it. For

example, the accuracy goes up from 83.6 till 94.0% on USPS1K using our method, it

increases over 11%, while the growth of others are far away from ours. Secondly, we

reach the comparable accuracy by using half of labeled data than existing methods.

For COIL20, we obtain 82.4% using only 5% labeled data, it almost outperforms all

other methods even compared with 10% of supervisory. To briefly conclude, it primary

shows that our methods is capable in clustering task on simple image datasets.

Deep Semi-Supervised Embedded Clustering Methods

Deep semi-supervised embedded clustering (DSSEC) is one of the remarkable ap-

proach for such large dataset with partial supervision, plenty of researches are con-

ducts by considering huge CIFAR10 datasets. Few DSSEC methods will be utilized

in this section, they are SDEC [108], ClusterNet [109] and SCDMLGE [110].

Current DSSECs consider latent features instead of raw features, we will therefore

utilize the DCNN structure to obtain the convolutional features as a pre-processing

without involving any pretrained weights. A CNN architecture is replicated

and modified by connecting the 256-dimensional dense layer before the classification.

In this experiment, the architecture of VGG16 is used, we call it Random-VGG

model.

Fig. 3.8 demonstrates the performance of our progressive framework is superior

than 3 DSSEC models. It achieves 60+% accuracy with using only 1% labeled infor-

mation, while other DSSECs reach at most 40% of accuracy (SCDMLGE with 10%

labeled data). It significantly shows the ability our framework in handling the large

dataset (CIFAR10). Most importantly, it proves that the advocated belief which uses

52

1% 5% 10%
0.00

0.20

0.40

0.60

0.80

0.284 0.301 0.303
0.372 0.382 0.3850.388 0.397 0.403

0.633
0.679 0.68

Size of Labels

A
C

C

SDEC ClusterNet SCDMLGE Ours

Figure 3.8: Comparison on CIFAR10 using DSSEC

Table 3.6: Comparison on Caltech101, Caltech256 and Scene15 using DCNN with
semi-supervised manner

Caltech101 Caltech256 Scene15

Method
Img

1 5 9 1 6 12 3 15 30

AlexNet
(Pretrained)

0.069 0.271 0.560 0.016 0.111 0.271 0.328 0.548 0.728

VGG16
(Pretrained)

0.255 0.647 0.742 0.035 0.264 0.365 0.476 0.717 0.775

ResNet50
(Pretrained)

0.443 0.689 0.810 0.227 0.632 0.727 0.431 0.541 0.733

VGG16 (Random
Init.)

0.663 0.713 0.818 0.370 0.654 0.672 0.800 0.861 0.879

critical feature can be the potential approach of feature extraction in clustering task.

Semi-Supervised DCNN Methods

In this subsection, we compare our progressive framework with DCNN models in

semi-supervised manner on more complex image datasets: Scene15 (S15), Caltech101

(C101) and Caltech256 (C256). Due to their outstanding results on the ILSVRC

recognition competition, AlexNet, VGG16 and ResNet50 are selected as our competi-

tors where they are all pretrained by the ImageNet dataset. Similar with previous

experiment, the 256-dim convolutional features will be extracted using the Random-

VGG. We utilize the extreme small amount of labeled data to perform clustering using

DCNN such that these 1%, 5%, 10% labeled data can be considered as “training”

53

dataset in DCNN model, while the rest forms the “testing” dataset.

Our proposed methods outperforms AlexNet and VGG16 models on all tested

datasets. From Table 3.6, the proposed framework reaches 80.0% on S15 by using

1% labeled data, while AlexNet and VGG16 achieve 72.8% and 77.5% respectively

by using 10 times labeled data than us. For the ResNet50, our model obtains compa-

rable accuracies by using 10% labeled data, for example, the progressive framework

achieves 81.8% on C101, and ResNet50 achieves 81.0%. However, the accuracies of

our proposed method are completely higher than 3 DCNNs by using extreme tiny

amount of labeled data, for example, it reaches 66.3% on C101 which is nearly 1.5

time higher than ResNet50 and 10 times than AlexNet. It is essential to highlight

that those models also take the huge advantage from using the pretrained weight

(ImgaeNet) as indirect supervisions to extract the key features on clustering (or clas-

sification) task, but our model use 256 dimensional features by training from scratch

which can be considered as the fully unsupervised features extractor. Therefore, it

shows the capability to handle the highly sophisticated datasets when only few labeled

information is given.

Fully Supervised DCNN Methods

In order to test the supervised fashion of our methods, 3 scene-centric datasets (S15,

C101 and C256) are selected with relative higher amount of labeled data following the

widely accepted standard. We randomly draw 30 and 100 images from each classes

to form the “training” dataset on S15 and C256. For C101, we pick 15 and 30 images

from each classes. As same as other methods, all the remaining images will be the

“testing” images.

From Table 3.7, we evaluate our framework with 20 state-of-the-art methods [23,

111–129] and 3 self-tested methods, these methods can be categorized into 6 major

types, i.e., Traditional, Sparse Coding Based, Dictionaries Based, Feature Coding,

Ensemble Network and DCNN-based. We obtain almost the highest accuracy on C101

and C256, and the comparable performance on S15. It demonstrates the capability

of our method with using natural specific feature.

Our proposed framework achieve the highest performance on both C101 (86.4%)

and C256 (70.1%). From Table 3.7, it is obvious that our method consistently leads

the performance on two complex datasets when comparing with other methods except

feature coding method. Hierarchical Matching [123] as a feature coding methods

54

Table 3.7: Comparision on Caltech101, Caltech256 and Scene15 using DCNN with
full-supervised manner

Caltech101 Caltech256 Scene15

Method
Img/Class

15 30 30 100

Traditional Methods
NBNN [111] 0.650 0.704 0.268 -
Kernel Codebooks [112] - 0.642 - 0.767
O2C Kernel [113] - 0.655 - 0.888
LC-KSVD [114] 0.677 0.736 0.357 0.929
Sparse Coding Based Methods
Linear SPM [115] 0.670 0.732 0.277 0.803
LLC [116] 0.654 0.734 0.412 0.892
SRC [117] 0.649 0.707 - 0.918
Dictionaries Based Methods
K-SVD [118] 0.652 0.732 - 0.867
D-KSVD [119] 0.651 0.730 - 0.891
DLSI [120] 0.609 0.703 - 0.925
COPAR [121] 0.623 0.718 - 0.955
Features Coding Methods
Local Pyramidal [122] 0.715 0.801 0.447 -
Hierarchical Matching [123] - 0.825 0.480 -
Visual Word Ambiguity [124] - 0.641 0.272 0.767
Feature Pooling [125] - 0.718 - 0.806
SPF [126] 0.564 0.646 - 0.814
Soft Assignment [127] - 0.765 - 0.822
Ensemble Network Methods
Multi-layer ELM [23] 0.717 0.776 0.382 0.824
Mid Level Feature Coding [128] - 0.757 - 0.843
DHVF Coding [129] 0.721 0.797 0.417 0.854
DCNN
AlexNet Training from scratch - 0.603 0.242 0.472
VGG16 Training from scratch - 0.344 0.095 0.448
ResNet50 Training from scratch - 0.454 0.147 0.421
Progressive Framework with

0.730 0.864 0.701 0.910
Random-VGG features

achieves relative close performance (82.5%) to ours on C101. However, our approach

(70.1%) extremely outperforms all others when handling the 257 classes (C256) while

the second best is only 48.0% [123]. Although our performance slightly behinds

55

others on S15, it still obtains the acceptable accuracy. The reasons is that the task

complexity of S15 is relatively uncomplicated and straightforward than other two

datasets. State-off-the-art methods, like SRC [117] and LC-KSVD [114], can simply

scores 91.8% to 92.9%, it proves that the feature learning task is probably direct.

Therefore, our proposed method may not be the best solution in such situation. In

short, our methods reaches the reasonable accuracy on S15, while we are completely

the best solution on C101 and C256. It further proves the strong capability and

effectiveness of using our approach that learn specific features rather that informative

features.

3.7 Analysis of Progressive Framework

The purpose of this section is to analysis the proposed progressive framework. First of

all, 4 image datasets (i.e., MNIST1K, COIL20, Yale-Face, Olivetti-face) are involved

to show the reconstruction performance of WAE. Secondly, 4 tubular datasets (i.e.,

Hill-Valley, German, Satimage and USPS) are used to test the sensitivity of involved

hyperparameter of our proposed framework. Table 3.8 generally defines the categories

of above datasets depends on data dimensions and sizes.

Table 3.8: Dataset Properties

Dataset Dimension Category Size Category

Hill-Valley High: 100 Small: 1212
German Low: 4 Large: 3025
Satimage Low: 36 Large: 4435

USPS High: 256 Large: 9298

3.7.1 Reconstruction Performance of WAE

In order to show the reconstruction performace of WAE, we conducted two experi-

ments by using 4 image datasets in this section. We first train the WAE by only one

randomly selected training image, then reconstruct all images. Fig. 3.9 shows original

images (first row), reconstructed images generated by two WAE which are trained

by IMG1 (second row) and IMG5 (third row). It can be observed that the training

image can yield the highest self-similarity. The image that is similar with the training

56

(a) Yale-Face

(b) Olivetti-Faces

Figure 3.9: Reconstruction performances of WAE trained by two separated samples.
Corresponding self-similarity are shown under each image. Note that IMG1 to IMG4
are from one class while IMG5 to IMG8 are from another class.

image can produce the second best self-similarity. For example, IMG1 and IMG2 of

Fig. 3.9(b) are similar with each other since they have opened eyes. Therefore, the

trained WAE can well-reconstruct both IMG1 and IMG2. On the other hand, the

images which are dissimilar with IMG1 cannot be well-reconstructed by that trained

WAE. For example, the IMG6 are extremely dissimilar with IMG1 such that the the

self-similarity is −0.365. Therefore, the reconstruction performance of WAE is not

generalized to all images but only specific to few images.

57

(a) MNIST

(b) COIL20

Figure 3.9: (continued) Reconstruction performances of WAE trained by two sepa-
rated samples

After showing the performance of WAE trained by two separated samples, We now

visualize the reconstruction performance of WAE trained by continuous samples. We

first train the WAE by using only one training image (i.e., IMG1 in Fig. 3.10), then

we reconstruct all images (second row). The reconstructed image that has the highest

self-similarity (i.e., IMG2) is grouped with previous training image. Then, we train

the WAE by using these two images and reconstruct all images again (third row). This

58

(c) Yale-Face

(d) Olivetti-Faces

Figure 3.10: Reconstruction performances of WAE trained by continuously samples.
Images that are marked as “core” represent the training data for each WAE in each
iteration. Note that IMG1 to IMG5 are from one class while IMG6 to IMG10 are
from another class.

59

(a) MNIST

(b) COIL20

Figure 3.10: (continued) Reconstruction performances of WAE trained by continu-
ously samples

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

λ

A
C

C

Hill-Valley
German
Satimage
USPS

(c) Clustering Accuracy

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
·104

λ

R
u
n
n
in

g
T

im
e

Hill-Valley
German
Satimage
USPS

(d) Running Time

Figure 3.11: Batch Numbers Analysis

process is repeated for ω times (3.7.2). The reconstruction performance is generalizing

when the number of labeled images increases. For example, the average self-similaity

of second row of Fig. 3.11(a) is −0.405 while that of final row is 0.479. It reals that

the learned feature is no longer weak and specific when more training samples is used.

To ensure the weak reconstruction performance, we set hyperparameter ω to control

the number of iterations for adding the labeled samples.

3.7.2 Sensitivity of Parameter ω & λ

Ahead of jointly testing λ and ω, we first conduct an independent experiment on

parameter λ. Experiment is conducted by using different values of λ with fixed ω=4 in

order to primitively conclude the rules for adjusting λ. We conclude two observations

from Fig. 3.11. Firstly, λ partly depends on data size. For the larger dataset, the

proposed framework still performs reasonable performance. For instance, USPS and

German keeps achieving 90+% clustering accuracy when λ=10. It obtains stable

performance on low-dimensional dataset, Satimage by achieving around 76% with

various λ. Secondly, batch separation reduces computational cost while still offers

the acceptable result. It decreases only around 5% from 95.79% (λ=1) to 90.86%

(λ=10), but computational time reduces by 12 times. Therefore, the principle of

adjusting of λ is summarized below:

61

Rule 1. Larger λ can be selected on large and low-dimensional datasets, but it cer-

tainly deteriorates the clustering performance on small datasets (no matter the di-

mension):

We then further study impacts of using various combinations of ω and λ. ω is

represents how many members are required to be searched by cores in phase 1. (See

Section 3.3.3). Firstly, ω is implicitly regulated by used label rations (i.e., r ∈ [0, 1]).

Since one core will search ω data, it yield the following:

Rule 2. Given that label rations r, the ω is regulated as

(ω + 1) · r ≤ 1

From Section 3.3.3, the core set is incremented sequentially. Our mechanism works

perfectly when data from the same class are clustered gradually. Thus, small ω could

maintain stable performance conservatively. In other words, the high amount of ω

will destruct the entire belief of the proposed framework.

Rule 3. ω is controlled to be limited number in order to maintain the conservative

mechanism by narrowing down the search area.

According to our study, λ and ω can generally be chosen from [1, 5, 7, 10, 15] and

[4, 6, 9, 12, 14] respectively. Other parameters are kept as same as early experiments.

5% labeled data is used. Two observations can be stated from Fig. 3.12:

1. For higher λ, the performance is degraded when ω increases gradually. For

example, the accuracy decreases with increasing ω on Satimage when λ=10.

Similar trends can be observed on USPS λ=10 and 15.

2. For smaller λ, ω can be selected openly. Interestingly, the performance is im-

proved by applying increasing number of ω on Hill-Valley when λ=1. Also, it

impressively achieves the highest accuracy, 92.86% by using ω = 14 on German

when λ=15.

Rule 4. For higher λ, ω is strictly be a limited number. For lower λ, ω can be selected

openly not smaller value is suggested.

Although the selection of λ and ω is not generalized, the above 4 rules offer a clean

guidance to adjust optimal combination pair. Therefore, the computational time can

be hugely reduced on particularly handling larger datasets while the performance is

kept.

62

4 5 6 7 8 9 10 11 12 13 14
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ω

A
C

C

Batch-1
Batch-5
Batch-7
Batch-15

(a) Hill-Valley

4 5 6 7 8 9 10 11 12 13 14
0.88

0.89

0.90

0.91

0.92

0.93

0.94

ω

A
C

C

Batch-5
Batch-7
Batch-10
Batch-15

(b) German

4 5 6 7 8 9 10 11 12 13 14
0.75

0.75

0.76

0.76

0.77

0.77

0.78

ω

A
C

C

Batch-5
Batch-7
Batch-10
Batch-15

(c) Satimage

4 5 6 7 8 9 10 11 12 13 14
0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

ω

A
C

C

Batch-5
Batch-7
Batch-10
Batch-15

(d) USPS

Figure 3.12: Impact of of ω and λ (τ=3, ε=9, σ=0.8 with 5% labelled data)

3.7.3 Restrictiveness of Parameter ε & σ

We evaluate the impact on different combinations of ε & σ. Similar to ω, ε indicates

how many t-mem are required to be searched by t-core in phase 2 (See Section 3.3.4).

ε could be regarded as an indicator showing how far the searching space is while σ

could be treated as a cut-off factor. The higher the value of ε and σ, the stricter the

algorithm which ideally leads lower mis-clustering rates. Conversely, over-conservative

will eliminates all found data. Thus, we investigate how the restrictiveness affect the

final performances. 4 datasets are continually utilized while we select the optimal

pairs of λ and ω from Section 3.7.2. For example, we use λ=10 with ω=9 on USPS.

63

4 5 6 7 8 9 10 11 12 13 14
0.70

0.75

0.80

0.85

0.90

0.95

1.00

ε

A
C

C

Sigma-0.7
Sigma-0.8
Sigma-0.9
Sigma-1

(a) Hill-Valley (λ=1 & ω=9)

4 5 6 7 8 9 10 11 12 13 14
0.83

0.84

0.86

0.88

0.90

0.92

0.94

ε

A
C

C

Sigma-0.7
Sigma-0.8
Sigma-0.9
Sigma-1

(b) German (λ=15 & ω=14)

4 5 6 7 8 9 10 11 12 13 14
0.753
0.755

0.760

0.765

0.770

0.775

0.780

0.785

0.790

0.795

ε

A
C

C

Sigma-0.7
Sigma-0.8
Sigma-0.9
Sigma-1

(c) Satimage (λ=10 & ω=6)

4 5 6 7 8 9 10 11 12 13 14
0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

ε

A
C

C

Sigma-0.7
Sigma-0.8
Sigma-0.9
Sigma-1

(d) USPS (λ=10 & ω=4)

Figure 3.13: Impact of ε and σ (τ=3 with 5% labelled data used)

We conclude experimental result below:

1. Horizontal Comparison: In Fig. 3.13, curves generally goes down by increasing ε

on every datasets apparently. Precisely, ε=4 gives highest accuracy consistently

in Table 3.9

2. Vertical Observation: Four curves of σ on every dataset are in the consist order,

that is, the accuracy of σ=0.7>0.8>0.9>1. We can see that setting σ=0.7

is not a bad choice. The greater value may over-regulates the framework, it

eliminates found data such that labeled (or p-labeled) data are insufficient to

cluster remaining data.

64

Table 3.9: Average Performance of σ to varied ε

ε Hill-Valley German Satimage USPS

4 0.972 0.925 0.783 0.909
6 0.952 0.919 0.771 0.908
9 0.879 0.916 0.763 0.904
12 0.858 0.917 0.761 0.888
14 0.741 0.898 0.761 0.888

Table 3.10: Average Performance of ε to varied σ

σ Hill-Valley German Satimage USPS

0.7 0.918 0.923 0.773 0.905
0.8 0.884 0.922 0.767 0.905
0.9 0.822 0.921 0.767 0.900
1.0 0.897 0.893 0.766 0.888

3. Exceptional Cases: However, we observe that higher ε sometimes may offers

better result from Fig. 3.13. It reaches the highest accuracy (90.63%) on USPS

when ε=14 and σ=0.8. That is to say, smaller ε limits the searching space. Few

new unlabeled data could be clustered in each cycle, resulting in inadequate

labeled samples in final phase.

In summary, the average accuracy performance of using smaller value of ε and σ is

stably superior than using larger. However, ε can be set higher on large datasets.

3.8 Discussion and Conclusion

In Table 3.11, we present our best performances over 8 datasets comparing with 3

supervised methods: ELM [22], SVM [130] and SNN [101]. We randomly select 1

sample per class, 1 and 5% as labeled data for our progressive framework while 70%

data are picked as training data for supervised methods. By using only extreme

small amount of labeled data, our method even obtains higher performance than

supervised methods (eg. Hill-Valley & USPS). More importantly, our framework

achieves acceptable results by using only 1 sample per class which could be regarded

as “unsupervised learning”. To conclude, we propose a new clustering framework

65

Table 3.11: Best Performances on 8 Datasets

1 / class 1% 5% 70%

Ours (NFPF) ELM SVM SNN

Hill-Valley 0.8358 0.8457 0.9810 0.6640 0.5130 0.9091
Mushroom 0.9175 0.9839 0.9941 0.9993 0.9998 0.9977

IJCNN 0.7037 0.8036 0.8763 0.9848 0.9453 0.9095
Satimage 0.7639 0.7619 0.7982 0.8855 0.8670 0.8465
Protein 0.4170 0.5213 0.5474 0.6647 0.6325 0.6685
German 0.7841 0.8456 0.9322 0.9558 0.9404 0.9535
USPS 0.8079 0.9126 0.9305 0.9229 0.9495 0.8618

COIL20 0.6986 0.7055 0.8236 0.9602 0.9827 0.5133

that learns discriminative features of high-dimensional data using WAE. We employ

the WAE to perform clustering by comparing the reconstructed and original data.

As a consequence, we gradually enlarge the labeled dataset by adding the confident

unlabeled data via two phases. Experimental result shows the progressive framework

is capable to solve the clustering problem.

66

Chapter 4

Seeded Progressive Framework for

Weakly-supervised Semantic

Segmentation

4.1 Overview . 67

4.2 Introduction . 67

4.3 Problem Analysis and Preliminaries 71

4.3.1 Seed as labeled samples, convolutional feature map as clustering

space . 72

4.3.2 Single layer feedforward network based autoencoder 72

4.3.3 Summary of the seeded progressive framework 73

4.4 Seeded Progressive Framework . 74

4.4.1 Information minimization on weak autoencoder 74

4.4.2 Self-similarity learning . 74

4.4.3 Composition of the mini-cluster 75

4.4.4 Composition and decomposition phase 76

4.4.5 The complete workflow of seeded progressive framework for

weakly-supervised segmentation 79

4.5 Experiment on weakly-supervised segmentation 79

4.5.1 Experimental setup . 79

4.5.2 Hypothesis validation . 80

4.5.3 Baseline performance . 81

67

4.5.4 Comparison with clustering spaces from feature maps 83

4.5.5 Comparison with state-of-the-art methods 83

4.5.6 Qualitative results . 87

4.5.7 Step-by-step analysis on semi-supervised clustering 87

4.6 Conclusions . 91

4.1 Overview

Weakly-supervised semantic segmentation with only image-level labels is an essen-

tial application since it reduces considerable human efforts to fully annotate images.

Most of the recent state-of-the-art methods consider discriminative regions or seeds

which are generated by using the Classification Activation Maps (CAM) method.

As seeds could be considered as segmentation knowledge, increasing the number of

seeds will naturally improve the performance of segmentation methods. Therefore,

we formulate the weakly-supervised segmentation challenge as a seed exploration task

using clustering learning. In this chapter, we propose a seeded progressive framework

including autoencoders to explore numerous and accurate seeds to further improve

the performance of segmentation methods. Our explored seeds can replace the ini-

tial seeds, and thus they can be integrated into current weakly-supervised semantic

segmentation methods for performance improvement. We show experimentally that

the explored seeds lead to better model training. As a result, we obtain performance

improvement from corresponding counterparts to reach 68.1% and 69.2% mIoU on

PASCAL VOC 2012 validation and test dataset respectively, which are the current

state-of-the-art performances.

4.2 Introduction

Image semantic segmentation is a task of pixel-level classification for a given im-

age and has attracted much attention in the field of computer vision. With the

development of Deep Convolutional Neural Network (DCNN), the performance of

semantic segmentation has been considerably improved in a fully supervised man-

ner [49, 51, 131–136]. Nevertheless, these DCNN models require a large-scale dataset

consisting of large amount of accurate pixel-level annotations, which are laborious

68

and burdensome to obtain. To this end, the weakly-supervised semantic segmen-

tation (WSSS) is proposed which intuitively makes use of different forms of weak

supervision for training the segmentation model, such as bounding boxes [54, 55],

scribbles [56–58], and points [59]. Among these different forms of weak supervision,

the image-level labels is the most appealing and readily obtainable.

Image-level labels only indicate the presence of objects, but it does not pro-

vide precise spatial information. To primarily explore few sparse location cues, the

Classification Activation Maps (CAM) [60] method can be seen as a cornerstone

in this particular area of the weakly-supervised segmentation using image-level la-

bels [1,3–5,82,84,85,87,137–139]. In general, related methods can be roughly divided

into two streams, namely implicit and explicit seed learning methods. The former

usually treats seeds as a whole, which is called the discriminative regions (i.e., a

collection of seeds). With an adversarial erasing strategy, it iteratively hides and

erases the regions that have been found. Existing works [82, 84, 85] commonly use a

single classification network to explore the sub-discriminative regions by image-level

erasing mechanism. For example, HaS [82] randomly hid a region from the given

training image, as it encouraged a network to search for other discriminative regions

via CAM method. Besides, research works [1, 137, 138] generally use two classifiers.

One of them will be designed to identify the most discriminative region, while the

other is proposed to find complementary parts. These methods attempt to explore

and expand the discriminative region on a feature map using a network.

In contrast, the seeds is regarded as a single unit which will be utilized in a model

loss function in the explicit seed learning. With the involved stimulated pixels being

termed as “seeds” above, recent methods have been proposed to utilize these seeds in

the loss functions of deep convolutional neural networks for improving the pixel-level

classification performance. Kolesnikov et al [3] regard seeds as a static supervision to

propose their seeding loss to train a segmentation network. They named this process

as seed, expand and constrain (SEC) [3]. Ref. [4] proposes a strategy of deep seeded

region growing (DSRG) by dynamic seed supervision. On top of [3], it integrated

a classical Seeded Region Growing (SRG) into the deep segmentation network that

generated accurate and complete pixel-level labels given original seeds. With the

help of co-segmentation, CIAN [5] defines the model loss function considering cross

image learning. It shared supplementary information among related images to jointly

train the seeding loss or completion loss as in [5]. Similarly, seeds are explicitly

used in [87, 139]. These methods gradually push the state-of-the-art performance on

69

semantic segmentation in recent years with limited prior knowledge.

However, seeds are always sparse and incomplete, which are far away from the in-

tact segmentation mask. In other words, if more prior knowledge (accurate seeds) are

provided at the initial stage, the performance of these methods could be improved.

Therefore, a motivation naturally comes: Can we design a clustering algorithm to

explore more accurate seeds to enhance the initial conditions for performance im-

provement of these semantic segmentation methods? In detail, could we cluster the

unlabeled “similar” pixel-level samples into one class based on the similarity rate of

their reconstructed samples that have been generated by a “weak” autoencoder?

Autoencoder has been an important research topic for a long time. Consisting of

encoder and decoder, the conventional autoencoder [11,65,140] projects raw samples

to latent feature space using the encoder. Then, the sample is decompressed and

reconstructed to original representation space via the decoder. As an unsupervised

model, the autoencoder learns the low dimensional data representation with hidden

neurons, and aims at minimizing the reconstruction discrepancy. For the reconstruc-

tion capability’s improvement, more layers have been added to the deep autoencoder

to achieve the maximum representation learning. However, here we would like to

compare the similarity rate between the input sample and its reconstructed samples.

We try to use an autoencoder with minimum representation learning capability only

extract common shared features among samples. Rather than achieving the general-

ization reconstruction performance, our proposed autoencoder can be trained to only

reconstruct the input data itself.

In this chapter, we formulate the weakly-supervised semantic segmentation task

as a semi-supervised seed clustering problem. We propose to first collect the most

confident initial seeds using the CAM method. In semi-supervised learning perspec-

tive, such initial seeds can then be chosen as labeled samples and the remaining as

unlabeled samples. The aim of the proposed approach is to increase the number of

labeled samples, the resulted seeds is called explored seeds. These seeds includes both

initial and newly clustered seeds, and are used to train the segmentation models in

the same way as the initial seeds do to improve the segmentation performance.

As illustrated in the schematic diagram (Fig. 4.1), the proposed method firstly

obtain the initial seeds on deep convolutional space. Then, the single layer feedforward

network (SLFN) based autoencoder (AE) is utilized to group one unlabeled sample

with one labeled sample. To perform clustering, the seeded progressive framework is

proposed to guide the clustering mechanism while mentioned AEs are involved. These

70

labeled samples can be used to replace the initial seeds to improve the performance

of the weakly-supervised semantic networks (i.e., [3–5]).

We conduct thorough experiments on PASCAL VOC 2012 benchmark [141] to

demonstrate the explored seeds can boost the segmentation performance from existing

weakly-supervised semantic segmentation methods using the original seeds only. In

summary, we make three main contributions in the following:

• Feasible for any weakly-supervised segmentation methods. The seeded progres-

sive framework is proposed to explore additional accurate seeds from the initial

seeds without any additional knowledge. In other words, our approach is used

as the knowledge augmentation method for boosting any weakly-supervised se-

mantic segmentation methods, without any additional knowledge involved in

the learning process.

• Simplest autoencoder. We propose to use the simplest autoencoder to group one

unlabeled sample with one labeled sample, called weak autoencoder (WAE). Un-

like the current machine learning principle, it is designed to ensure the weakest

but not universal generalization performance. With numerous but weak au-

toencoders for clustering learning, we provide another way of thinking to the

semi-supervised/unsupervised learning problems.

• High performance. The explored seeds are adoptable for current weakly-supervised

semantic segmentation networks, i.e., SEC [3], DSRG [4] and CIAN [5]. We ob-

tain around 1.5% to 3.9% performance improvement of mIoU on PASCAL VOC

2012 validation and test dataset. The mIoU of our framework are 68.1% and

69.2% respectively, which are the state-of-the-art performance. 1

The remainder of this chapter is structured as follows. Preliminaries are briefly

introduced in Section 4.3. In Sections 4.4, detailed procedures of our proposed frame-

work are described. Section 4.5 provides experimental performances and analysis of

our algorithm. Section 4.6 presents our conclusion and future work.

1The source code is available for reviewers and will be made public after publication
http://www.yiminyang.com/weakly supervised.html

http://www.yiminyang.com/weakly_supervised.html

71

1 1

Input Output

Weak Autoencoder (WAE)

Training Set Reconstruction

...

m

2

3 1

...

m

2

3

Trained Weak Autoencoder

...

1

m

2

3 1

...

m

1

2

3

Input Output
unlabeled

sample

unlabeled
sample

unlabeled
sample

...

Test Set

labeled
sample

recon.
sample

recon.
sample

recon.
sample

...

Reconstruction

Adding

labeled
sample

Step 1-2: Train WAE by training set which has one labeled sample initially.
Step 3: Unlabeled samples are fed into trained WAE, and reconstructed.
Step 4: Self-similarity is computed over test set (See �gure on the right).
Step 5: The clustered sample is added to training set to train WAE again.

Legend

_ 0.47

0.56

_

_

0.41

_

0.32

0.61 _

0.63
_

_

0.91... ...

...

... ...

...

labeled sample

clusterd sample

_ correlation

reconstructed samples

unlabeled samples

Self-simlarity: By compare the 2D correlation b/w
reconstructed & original unlabeled samples. These

re�ect the simlarity b/w unlabeled & labeled samples.
The most “similar” one is regarded as a clustered sample

feature map extraction

Classi�cation Activation Maps

initial seeds (labeled) non-seeds (unlabeled)

seeded progressive framework

explored seeds non-explored seeds

Section 4.3.1

SEC/DSRG/CIAN

Section 4.4.3

Section 4.4.2

Figure 4.1: Overview of the chapter: The initial seeds is obtained by CAM and feature
map extraction (left). By using seeded progressive framework, the explored seeds is
generated and can be used to trained segmentation models ([3–5]). Here, we show
the process of grouping one unlabeled sample with the labeled sample (Section 4.4.3).

4.3 Problem Analysis and Preliminaries

Given an arbitrary image-level label (tag) for a certain training image, we discover

discriminative regions through the CAM method [60]. In spite of the insufficient

number of seeds, we can use them as labeled samples for the semi-supervised seed

clustering (SSSC) task. Hence, in this chapter, we formulate the weakly-supervised

semantic segmentation as a SSSC problem. As mentioned previously, we aim at

increasing the number of labeled samples. The explored seeds can be used to replace

the initial seeds in the related methods (e.g., [3–5]) to improve the segmentation

performances. As the generated explored seeds only requires knowledge of the initial

seeds, no additional strong supervision are needed in the chapter. In other words,

with the provided initial seeds of an image, the explored seeds are obtained under

a purely unsupervised learning condition. Therefore, the proposed method could be

feasible to strengthen the knowledge of initial seeds used in any semantic segmentation

methods. We briefly describe how to obtain the initial seeds through CAM, and

then illustrate the clustering preparation, specifically on how to construct searching

space by convolutional feature map (Section 4.3.1). Since SLFN based autoencoder

will be implemented for the SSSC task, we discuss related concepts and definitions

mathematically in Section 4.3.2.

72

4.3.1 Seed as labeled samples, convolutional feature map as

clustering space

To obtain seed samples, we follow [3–5] to use the CAM method. In particular, a

global average pooling (GAP) layer is added right after the final convolutional layer

from a CNN model, named as Conv7 (e.g., VGG16 [142]). Through backpropagation,

such model is iteratively trained in an end-to-end manner. The classification layer is

added on top of Conv7 to obtain 2-D heatmap, where a k-classes probability vector

can be found in every single position. After that, thresholding is employed on the

heatmap to obtain the 20% most significant confident units as the initial seeds. We

refer readers to [3–5] for details. Now, we need to establish a clustering space. Given

a raw feature representation (RGB channel of a colored image), we encounter two

main difficulties, i) high inner-class variance on background object and, ii) weak

feature representation for classification, e.g., two pure white pixels (255, 255, 255)

may come from class “person” (sweater) or “dog” (doghair) respectively. Since the

convolution model extracts semantic and spatial information, we employ the DeepLab

model [50] to extract convolutional features. In practice, after the model training,

the classification layer is replaced by three fully-connected layers, named fc7, fc8 and

fc9. The clustering space used in the proposed method is formed by extracting the

feature map on the fc7 layer.

4.3.2 Single layer feedforward network based autoencoder

As aforementioned, let X be an n×d matrix, where each row represents an instance of

data with d-dimensional convolutional features. In a general semi-supervised learn-

ing, XL = {(xi, yi)} li=1 consists of l labeled data, XU = {(xi)} n−li=1 be an unlabeled

data. The set of class labels is represented as c = {y1, y2, · · · , yk} for k classes.

As a promising representation learning method, autoencoder is often used for semi-

supervised clustering. As a small number of labeled samples can be regarded as

an additional regularized term, they are utilized to train autoencoder jointly on the

representation learning and clustering. Specifically, the generic cost function can be

denoted by the following simplified equation:

minJ = Jrecon + αJsemi (4.1)

73

where Jrecon is a common reconstruction term, whereas α is a hyperparameter for

controlling the weights of semi-supervised clustering loss Jsemi. In particular, Jrecon

can be computed as

Jrecon =
1

2

n∑
i=1

‖ x̂i − g(xi, w, b) · β ‖2 (4.2)

where ‖ ·‖ is a L2 norm, xi is reconstructed as x̂i by single-layer-feedforward network,

(w, b) are encoder parameters connecting a input to a hidden layer. β is an output

weight, and g(·) is an activation function, such as sigmoid, sine, tanh and so on.

Besides, the cross-entropy loss is often applied on Jsemi:

Jsemi =
1

l

l∑
i=1

k∑
j=1

yij · log(ŷij) (4.3)

where ŷij is a class probability on the j-th label of data xi and yij is a corresponding

desired output. Given l label samples and k classes, ŷij can be either calculated on

the bottleneck or the output layer of autoencoder.

4.3.3 Summary of the seeded progressive framework

In this chapter, the proposed seeded progressive framework is used to resolve a semi-

supervised clustering problem. Given the initial seeds and clustering space, our frame-

work aims at increasing the number of seeds, in other words, more labeled samples

are explored. The entire process can be summarized as follows:

1. The seeded progressive framework includes two main phases: composition phase

and decomposition phase.

2. In the composition phase, numerous mini-clusters are formed by numerous la-

beled samples where one labeled sample and several unlabeled samples are com-

prised inside the mini-cluster. The weak autoencoder (WAE) is proposed and

used for clustering one unlabeled sample to one labeled sample.

3. In the decomposition phase, all mini-clusters are decomposed. The aim of this

phase is to refine the clustered samples. Therefore the most confident unlabeled

samples are accepted and regarded as labeled samples, while the rest are rejected

and treated as unlabeled samples.

74

4. Labels are assigned to accepted samples (the same as the corresponding labeled

samples from the same mini-cluster). Then, the above two phases are repeated

by using all labeled samples to initialize the composition phase.

5. Consequentially, the number of labeled samples is increased via the above seeded

progressive framework.

To better understand the proposed framework, the bottom-up approach is em-

ployed in this chapter. In Section 4.4.1, we will introduce the structure of the weak

autoencoder. The process of clustering one unlabeled sample with one labeled sam-

ple will be explained in Section 4.4.2. In Section 4.4.3, the procedure of forming the

mini-clusters will be described. Then, we will illustrate the composition and decom-

position phases in Section 4.4.4. Finally, we will conclude the entire framework in

Section 4.4.5.

4.4 Seeded Progressive Framework

The information maximization approach has been applied in a representation learning

of autoencoder, the underlying ideology is to retain exhaustive information from raw

to latent feature spaces. To achieve this goal, most autoencoders are designed with

the complicate network architecture. In other words, more layers are added to the

autoencoder to obtain the powerful universal generalization performance for recon-

struction. In contrast, the information minimization approach is proposed to extract

only the “strong” and “common” feature, for which it can be applied on clustering.

4.4.1 Information minimization on weak autoencoder

We utilize a single hidden layer feedforward network based autoencoder, where the

invertible function is applied in a decoder. The refer readers to Chapter 3.4 to more

details about the structure of the weak autoencoder.

4.4.2 Self-similarity learning

The reconstructed samples obtained from the WAE are severely corrupted since there

is only one hidden neuron on a single hidden layer. Therefore, only the “strong” and

“common” feature could be learned by such extremely simple network structure. The

WAE is firstly trained by one labeled sample {(xi, yi)}, and then we feed an unlabeled

75

sample xj to such trained WAE. Assuming that x̂j is the reconstructed sample of xj,

and yj is the class label for the sample xj, we set the following rule:

1. If x̂j is similar to xj, we believe xj and xi belong to the same category (yj = yi).

2. If x̂j is dissimilar to xj, we believe xj and xi belong to different categories

(yj 6= yi).

Given that the WAE is trained only by xi, it retains the strong common feature

that is shared among samples in the same class. Thus, the WAE is capable of re-

constructing homogeneous samples (i.e., samples that belong to the same class with

xi) while incapable of rebuilding heterogeneous samples. By measuring the similarity

between x̂j and xj, it reflects the reconstruction ability of WAE. Thereby, it implies

the similarity between test sample xj and training sample xi (See Eq.(4.4)). The 2-D

correlation coefficient is used as the statistical similarity measure, which is simply

termed as self-similarity (See Eq.(4.5)).

S(xj, x̂j) =⇒ S(xj, xi) (4.4)

S(xj, x̂j) =
(xj − x̄j)(x̂j − ¯̂xj)√
(xj − x̄j)2(x̂j − ¯̂xj)

2
(4.5)

4.4.3 Composition of the mini-cluster

The most similar unlabeled sample xk which has the highest self-similarity score, is

grouped with the labeled sample xi. Hence, a first mini-cluster is formed. We train

the WAE again by a collection of labeled samples (xi, xk), and search another homo-

geneous sample by repeating the same procedure. Therefore, with i iterations, the

WAE clusters i samples which belongs to the same class. As we use non-iterative WAE

with only one neuron, the training speed could be extremely fast, usually less than

0.1 millisecond. However, when the number of training samples increase significantly,

the reconstructed ability of the WAE is aggregately strengthen since more features

will be learned by the WAE. Therefore, it is hard to make sure all the samples of the

mini-cluster belong to the same category. To maintain the weakest performance of

the WAE, we denote ω ∈ R+ as a maximum number of samples of the mini-cluster,

i.e., the capacity of mini-cluster. The process of the composition of the mini-cluster

is summarized by following steps (See Fig. 4.1 also):

76

Section 4.4.4: Initialization

a) Select one labeled sample randomly to train
the WAE for each time while all unlabeled

samples are regarded as test samples.
Other labeled samples are neglected.

selected

neglected

neglected

...

b) Forming the mini-cluster (Section 4.4.3): Each mini-
cluster consists of the selected labeled sample

and ω unlabeled samples (e.g., ω=3). All samples
in the mini-cluster are removed from the test set.

removed

neglected

selected

neglected

Composition

c) Six mini-clusters are formed sequentially.
Temporary labels are assigned to clustered

samples. They will be re-evaluated next.
All unlabeled samples are neglected.

class 1

class 1

class 1

class 2

class 2

class 2

d) Repeat composition by
interchanging temporary
and real labeled samples.
Above are two examples.

yk : class 1
ym: class 2

b) Failure: yk ≠ ym

Section 4.4.4: Result

rejected

e) Reliable clustered samples are accepted and
regarded as regular labeled samples. The rest are

rejected and treated as unlabeled samples.
Sixteen samples are labeled after each iteration.

Legend: 3rd result1 conceptual path to search for 1st clustered result path for 2nd resultclass 1 class 2 unlabeled temporary class 1 temporary class 2

a) Success: yk = ym

yk (temporary label): class 1
ym(majority label): class 1

Decomposition

Figure 4.2: A simplified example of the composition and decomposition phase shows
six labeled samples from two classes are used to form six mini-clusters from (a) to
(c). Clustered samples are re-evaluated while two cases are illustrated in (d). The
acceptable samples from (e) will be used in the rest of the proposed framework.

step 1: The training set {xi} is initialized by a single training sample (xi, yi), while

the test set {xj} is composed of all unlabeled samples {xj}n−lj=1. Note that we

assume there are l labeled samples and (n− l) unlabeled samples.

step 2: The WAE (Section 4.4.1) is trained by the training set.

step 3: All unlabeled samples from the test set are fed to the trained WAE, and

reconstructed as {x̂j}n−lj=1 by a decoder of WAE.

step 4: The self-similarity is calculated and ranked (Section 4.4.2). The top-ranked

sample xk is selected as the clustered sample.

step 5: The label yi of the initial labeled sample is assigned to xk. The clustered

sample is eliminated from {xj}n−lj=1 and added to the training set, i.e., {xi, xk}.

step 6: If the number of samples of mini-cluster reaches the upper limit ω, the process

is terminated. Otherwise, we repeat steps 2 to 5.

4.4.4 Composition and decomposition phase

Since we directly add the clustered sample into the training set to train WAE, our

proposed algorithm highly relies on the accurate clustering performance for every

round. It is necessary to refine the clustering results, and hence a two phases frame-

work is proposed. By repeating the composition (Section 4.4.4) and decomposition

(Section 4.4.4) phases, more labeled samples are discovered.

77

Composition phase for explored seeds

In this phase, l mini-clusters are formed by l labeled samples, {(x1, y1), ..., (xl, yl), } ∈
XL. Our method forms mini-clusters sequentially, in which every mini-set consists

of ω samples. The details can be found in Section 4.4.3. In the t-th composition,

we assign temporary labels yi ∈ c to all clustered samples from the mini-cluster

xti = {(xi, xi1, xi2, ..., xiω)}. Sequentially, we form multiple mini-clusters until all

labeled samples are processed.

Decomposition phase for refinedly explored seeds

In order to improve the accuracy of the proposed clustering mechanism, we intro-

duce the decomposition phase to re-evaluate the samples. It basically repeats the

composition phase but by interchanging the role of labeled samples and clustered

samples, called temporarily-labeled samples. Assume {(xij, yi)l, ωi=1, j=1 ∈ Xt} be the

t-th temporarily-labeled sample set. We take xk from Xt as an example to explain

the decomposition phase as follows:

step 1: The training set {xk} is initialized by the single temporary-labeled sample

(xk, yk), while the test set {xj} is composed of all labeled samples {xj}lj=1.

Note that there are l labeled samples.

step 2: A single mini-cluster is formed after repeating the process of composition

phase, i.e., {(xk, xk1, ..., xkε), (yk, yk1, ...ykε)}. Since the clustered samples are

primarily labeled, there are ε labels, (ε can be different from ω)

step 3: All samples from the above mini-cluster carry labels (both temporary and real

labels). Assuming that yk is a temporary label for xk, we denote ym as the

majority label among clustered (labeled) samples via majority voting. We then

consider the following two conditions to decide whether to keep the temporary-

labeled samples:

(a) If yk = ym, we believe xk is strongly similar to the labeled sample from

one class since it finds the correct label reversely. We assign yk to xk as

a regular label and include it into the labeled sample set.

(b) If yk 6= ym, we believe xk is not strongly similar to the labeled sample

from one class since it finds the incorrect label reversely. We release xk

to the unlabeled sample set.

78

step 4: We repeat steps 1 to 3 until all samples are verified.

In short, the reliable temporarily-labeled samples are accepted, while the rest are

rejected. Similar to composition phase, the capacity of the mini-cluster can be denoted

as ε, which can be different from ω. Note that the accepted samples are regarded as

regular labeled samples in the rest of the proposed framework.

Method improvement using random sampling

As the above two phases involves thousands times of self-similarity calculation, the

proposed approach requires a lengthy running time for completing the composition

and decomposition phases. Therefore, the random sampling is proposed to make our

algorithm much faster. As depicted in Fig. 4.2 (b), the proposed method considers

only local relationship between one labeled sample and all unlabeled samples for

each time. When deciding whether the unlabeled is closest to the selected labeled

sample, the remaining labeled sample is neglected. In other words, the proposed

clustering mechanism has the local clustering ability, different from other clustering

methods (See Section 4.4.5). Thus, the random sampling can be employed prior to

the composition phase to randomly separate the entire dataset X into λ subsets.

X = [X1, X2, ..., Xλ]

XL
k = {(xi, yi)} lki=1, XU

k = {(xi)} nk−lki=1 , k = 1, 2, ..., λ

where n is a number of samples of entire dataset, nk and lk are the number of total

and labeled samples of k-th subsets respectively. XL
k and XU

k are the labeled and

unlabeled sample sets from the k-th subset. We equally separate the dataset, in

which lk is the number of labeled samples in the k-th subset. We apply sampling

without replacement. Therefore the composition phase can be processed with parallel

computing. As the number of unlabeled samples is reduced for the k-th batch, we

reduce the calculation of self-similarity from (n− l) to approximately (nk − lk) at a

time. Hence, it speeds up our algorithm. Note that as the random sampling probably

degrades clustering performance, the fair test on selection of λ is conducted in Section

4.5.7.

79

4.4.5 The complete workflow of seeded progressive frame-

work for weakly-supervised segmentation

Complete workflow: Prior to the weakly-supervised semantic segmentation (WSSS)

challenge, the seeded progressive framework is proposed to search for the accurate ex-

plored seeds. In practice, the initial seeds is generated by CAM method while the

clustering space is established by extracting the convolutional feature map from fc7

layer of DeepLab model. In the composition phase of seeded progressive framework,

unlabeled samples are grouped to labeled samples in corresponding mini-clusters. In

the decomposition phase, the clustered samples are re-evaluated such that the reliable

samples are acceptable and regarded as the regular labeled samples while the rest are

rejected. The proposed framework is wrapped into a cyclic structure such that it

iterates the above phases by τ cycles. To make sure only the most reliable seeds are

obtained, we suggest to set τ = 2. Eventually, the explored seeds will fully replace

the initial seeds, being used to train any WSSS methods (e.g., [3–5]), for boosting the

segmentation performance.

The proposed method will be applied to one of the semantic segmentation dataset,

i.e., PASCAL VOC 2012. We will briefly introduce the experimental setup in 4.5.1.

In Sections 4.5.2, 4.5.3 and 4.5.4, the hypothesis validation, the baseline performance

and the comparison experiment on clustering space will be presented respectively.

We will compare our method with current state-of-the-art methods in Section 4.5.5.

The qualitative results can be found in Section 4.5.6. Eventually, we will provide the

step-by-step analysis on the proposed framework in Section 4.5.7.

4.5 Experiment on weakly-supervised segmenta-

tion

4.5.1 Experimental setup

Dataset: For conducting fair comparisons, we evaluate our proposed method on

the PASCAL VOC 2012 (VOC-2012) segmentation benchmark dataset [141, 143].

Including the background, it contains 21 semantic classes. Following the common

practice [50], we augment the training dataset by adding additional images which

are provided from [144]. The resulting augmented training set consists of 10,582

images while validation and test dataset are formed by 1,449 and 1,456 images re-

80

Table 4.1: Network settings of segmentation models

Hyper-parameters SEC [1] DSRG [3] CIAN [4]

Selected backbone VGG16 VGG16 ResNet101
Optimizer SGD SGD SGD

Momentum 0.9 0.9 0.9
Weight decay 5e-4 5e-4 5e-4

Batch size 32 64 16
Learning rate 1e-3 1e-3 1e-3

Learning rate drop factor 0.1 0.1
Poly: 0.9

Learning rate drop period 2000 2000

spectively. As per the weakly-supervised method, only image-level-labels are adopted

for supervision. We use standard mean intersection over union (mIoU) to assess the

segmentation performance.

Reproducibility: For semi-supervised clustering, experiments are all carried out

in MATLAB 2019b on the Linux Ubuntu 18.04 platform with 12 cores of Intel Core

i9-7920X @ 2.9 GHz and 128 GB memory. The codes are available for reviewers at

http://www.yiminyang.com/weakly supervised.html. For weakly-supervised segmen-

tation, we use published Python codes for CIAN2 and reproduced codes for SEC3 and

DSRG4.

4.5.2 Hypothesis validation

In this experiment, we validate the core hypothesis, explored seeds generated by the

proposed method could bring more prior knowledge to the segmentation model. To

this end, we randomly select Nr unseen real-seeds from each ground-truth image,

and add into the corresponding initial seeds as simulation of the explored seeds.

Qualitatively, we add Nf fake-seeds to test how does the segmentation performance

of the weakly supervised model is affected by incorrect labels. The SEC is used as the

segmentation model in this experiment. All used network settings are summarized in

Table 4.1 which are recommended from [3].

Table 4.2 shows segmentation results on the validation dataset of VOC-2012, it

reaches to the expectation that additional real-seeds bring positive impacts on seg-

2https://github.com/js-fan/CIANl
3https://github.com/halbielee/SEC pytorchl
4https://github.com/xtudbxk/DSRG-tensorflow

http://www.yiminyang.com/weakly_supervised.html
https://github.com/js-fan/CIAN
https://github.com/halbielee/SEC_pytorch
https://github.com/xtudbxk/DSRG-tensorflow

81

Table 4.2: Hypothesis validation on VOC-2012 validation dataset using SEC [1] with
varying number of simulated real-seeds (Nr) and fake-seeds (Nf).

Nr

Nf 0 100 300 500 full

0 49.44 53.74 56.43 57.35 58.37
100 40.33 46.20 51.51 53.86 −
300 32.16 37.17 43.91 − −
500 27.11 31.37 − − −

mentation while fake-seeds severely hurt the performances. It is remarked that the

replicated SEC result with initial seeds (49.44%) somewhat inferior to its originally

reported (50.70%). We suspect there is minor differences between Caffe and PyTorch

implementation. Furthermore, we denote “full” to simulate all real-seeds are used to

train the model, i.e. fully-supervised training. The obtained result is 58.37%, which

can be regarded as the theoretical “upper-bound” [42] of the selected model.

4.5.3 Baseline performance

Preparation of initial seeds and clustering space: The proposed method re-

lies on the initial seeds. To the best of our knowledge, only [3, 4] research on ini-

tial seed generation while their seeds can be represented as Ssec and Sdsrg respec-

tively. Regarding the essential clustering space, we utilize the well-known semantic

model, DeepLab [50], since it provides larger receptive fields during the convolution

process. We initialize the model by ImageNet, and directly extract feature map

F ∈ R 41×41×4096 from the fc7 convolutional layer as the baseline clustering space.

Setting: Since there are different hardware settings, we run related source codes

to provide our replicated segmentation performances of three models in order to con-

duct fair comparisons. For references, we also show the benchmark results which are

obtained directly from the published chapters. These results can be found in the

first two rows of Table 4.3. For semi-supervised clustering, three hyperparameters

are involved including both the capacities of the mini-cluster in two phases (ω, ε) and

the number of subsets (λ). In this entire section, we use (3, 2, 20) for (ω, ε, λ) unless

otherwise specified.

82

Table 4.3: Baseline performances on VOC-2012 validation dataset. The first row is
cited from published papers while second row is our reproduction. The best results
are in bold while the second bests are underlined

SEC [3] DSRG [4] CIAN [5]

Benchmark from published papers 50.70 57.60 64.30
Our replicated performances 49.44 57.11 63.71

(a) Baseline Performances

Init. seed Ssec on clustering space F 51.81 53.98 66.34
Init. seed Sdsrg on clustering space F 53.60 58.63 64.21

(b) Feature Map Comparison

Init. seed Ssec on clustering space Fsec 52.19 57.80 66.79
Init. seed Ssec on clustering space Fdsrg 53.51 59.10 68.14
Init. seed Sdsrg on clustering space Fsec 53.56 59.00 63.51
Init. seed Sdsrg on clustering space Fdsrg 54.51 59.19 65.58

Results: The Ssec and F are selected as the initial seeds and clustering space

as setups for the proposed method. The explored seeds generated by the proposed

method is denoted as S ′sec (similarly S ′dsrg for DSRG). Then, we substitute S ′sec to the

original seeds and train the segmentation model, while fixing all networking setting.

Table 4.3 (a) shows that 1.11% of performance gain is obtained when using our

S ′sec instead of Ssec. On the other hand, we repeat above procedure by using S ′dsrg
on the DSRG and CIAN since they both employ Sdsrg rather that Ssec. By directly

referring to replicated results, the result demonstrates our methods explores numerous

and accurate seeds which achieve better performances compared with corresponding

competitors in term of mIoU.

As the number of seeds of Sdsrg is larger than that of Ssec, the S ′dsrg contributes

more informative supervision to the segmentation model such that higher mIoU re-

sults are achieved on both SEC and DSRG. Nevertheless, the counterexample is

observed on CIAN in which S ′sec provides the better result. We suspect that more

false-positive seeds are discovered in S ′dsrg. Due to the cross-image learning, the false-

positive seeds offers an imprecise attention information which severely deteriorates the

co-segmentation. In general, the performances on CIAN achieved by the proposed

83

seeded progressive framework are still higher than that in the original chapter [5].

Therefore, our semi-supervised clustering method explores sufficient and accurate

seeds that contribute to the improved segmentation performance of [3–5]. Note that

the results demonstrated in Table 4.3 (a) can be regarded as the baseline performance.

4.5.4 Comparison with clustering spaces from feature maps

As the proposed method also depends on the initial clustering space, the experiments

to test how our method is affected by different clustering spaces is conducted. We

extract feature maps from the last convolutional layer of the trained SEC and DSRG

models respectively, namely Fsec and Fdsrg. To compare fairly, the Ssec is selected

as the initial seeds. The results from upper part of Table 4.3 (b) generally indicates

that better convolutional spaces further enhance segmentation results. For instance,

we obtain 5.12% improvement on DSRG from 53.98% (Fdsrg) to 59.10% (F).

In order to jointly evaluate the effectiveness on the initial seeds and clustering

spaces, we repeat the above experiment but by using Sdsrg (lower part of Table 4.3

(b)). Similar to previous section, Sdsrg with trained clustering spaces (both Fsec and

Fdsrg) mostly provide better segmentation results. However, the counterexample is

still observed on the CIAN. For example, by using clustering space Fsec, 66.79% is

obtained when Ssec is used while 63.51% is collected when Sdsrg is applied.

4.5.5 Comparison with state-of-the-art methods

Regardless of different initial seeds and clustering spaces, the proposed method sur-

passes three original method in terms of mIoU [3–5]. Besides, we also compare our

method with previous relate works. With different annotation settings and backbone

model architectures, we emphasize that these comparison results can only be refer-

enced and should not be straightly compared. Tables 4.4 and 4.5 summarize state-

of-the-art results using VGG16 and ResNet-based backbone models respectively. We

provide our best performances with the corresponding initial seeds and clustering

space listed in parentheses. All the segmentation results on both validation and test

dataset are uploaded to the official PASCAL VOC evaluation server.5

5http://www.yiminyang.com/weakly supervised.html

http://www.yiminyang.com/weakly_supervised.html

84

Table 4.4: Comparison of weakly-supervised semantic
segmentation methods on VOC-2012 validation and test
dataset. The supervision (Sup.) includes: image-level (I),
implicitly use pixel-level (P), bounding box (B) or addi-
tional data (A). The methods listed here use VGG16 as
backbone model. Values in bold are for SEC while the re-
sults for DSRG are underlined

Method (VGG16) Sup Val. Test

With additional supervision
MIL-seg [145] I + P 42.0 40.6
CrawlSeg [146] I + A 58.1 58.7
GuidedSeg [139] I + S 55.7 56.7
STC [81] I + A 49.8 51.2

EM-Adapt [55] I 38.2 39.6
AE PSL [84] I 55.0 55.7
GAIN [85] I 55.3 56.8
MCOF [88] I 56.2 57.6
AFFNet [87] I 58.4 60.5
SeeNet [138] I 61.1 60.7
FickleNet [89] I 61.2 61.9
LSISU [147] I 61.2 62.5
MCIS [93] I 63.5 63.6
ACFN [148] I 63.6 64.2

SEC [3] I 50.7 51.7
DSRG [4] I 57.6 (59.0*) 60.4

Ours SEC (Sdsrg + Fdsrg) I 54.5 55.0
Ours DSRG (Sdsrg + Fdsrg) I 59.2 60.0

* Applying retraining technique

VGG16-based models

Apart from SEC, DSRG and CIAN, several well-known methods using the adversarial

erasing approach are listed in Table 4.4, such as GAIN [85], SeeNet [138], AFFNet

[139] and so on. Compared directly with SEC, the proposed approach achieves mIoU

scores of 54.5% and 55.0% on VOC-2012 validation and test dataset respectively.

For DSRG, 59.2% are obtained on validation dataset by using the explored seeds

S ′dsrg. These investigation results reveal that the explored seeds provides significantly

85

Table 4.5: Comparison of weakly-supervised semantic segmentation methods on
VOC-2012 validation and test dataset. The methods listed here use ResNet-based
model. Values in bold are for CIAN.

Method (ResNet) Backbone Val. Test

MCOF [88] ResNet101 60.3 61.2
AFFNet [87] ResNet38 61.7 63.7
DSRG [4] ResNet101 61.4 63.2
SeeNet [138] ResNet101 63.1 62.8
FickleNet [89] ResNet101 64.9 65.3
CSENet [149] ResNet101 62.3 63.4
WSIF [150] ResNet101 63.8 64.7
SEAM [94] ResNet38 64.5 65.7
SubCat [95] ResNet101 66.1 65.9
MCIS [93] ResNet101 66.2 66.9
ACFN [148] ResNet101 66.0 66.6
LSISU (DRFI) [147] ResNet101 62.5 62.7
LSISU (DeepSaliency) [147] ResNet101 68.4 68.9

CIAN [5] ResNet50 62.4 63.8
CIAN [5] ResNet101 64.3 65.3

Ours CIAN (Ssec + Fdsrg) ResNet101 68.1 69.2

better supervision. Additionally, a predicted segmentation masks can be used as

the pseudo-labels to train the network for another round, i.e., retraining strategy.

As listed in the parentheses of DSRG, the retraining can improve the segmentation

performance since the pseudo-labels can provide finer details to further fine-tune

the model. Nevertheless, the explored seeds generated by the seeded progressive

framework is already at a fine level. Therefore, without applying retraining, the

proposed method still surpasses these two variation of DSRGs.

Compared with most recent models (SeeNet [138], FickleNet [89], MCIS [93] and

ACFN [148]), they achieve superior performance to ours. However, high compu-

tational resources are required for these models. MCIS uses the co-segmentation

learning approach which demands multi-GPUs to train the network iteratively. Even

though the Map Expansion Technique is proposed, FickleNet still requires intensive

GPUs memory usage when training the newtwork. In contrast, our framework is sim-

ple yet efficient since we adopt the non-iterative learning strategy for our proposed

weak autoencoder. Hence, it requires extremely little computing resources.

86

Table 4.6: Performance comparison of mIoU on VOC-2012 validation dataset, com-
pared to related counterparts (our reproduction of SEC, DSRG and CIAN). The best
results are in bold while the second bests are underlined for each semantic objects.
(classes 1 to 11)

Method bkg aero bike bird boat bottle bus car cat chair cow
SEC [3] 81.0 51.0 24.8 55.4 24.0 43.9 69.0 57.9 73.8 21.1 55.7

DSRG [4] 85.7 68.7 31.0 60.9 35.4 64.6 70.5 66.4 79.2 24.9 65.5
CIAN [5] 88.1 79.0 33.6 74.6 55.0 70.9 84.2 72.4 79.0 23.9 74.8
Ours SEC 85.7 65.9 27.3 68.1 34.8 49.6 70.6 66.3 77.0 21.2 54.2

Ours DSRG 88.0 77.7 32.6 75.4 49.8 55.8 73.3 68.6 80.6 22.9 58.4
Ours CIAN 90.2 81.7 33.1 83.8 48.9 70.9 86.3 78.1 90.9 33.2 84.3

Table 4.6: (continued) Performance comparison of mIoU on VOC-2012 validation
dataset. (classes 12 to 21)

Method table dog horse mbk person plant sheep sofa train tv mean
SEC [3] 29.7 65.5 54.1 62.1 55.2 37.0 57.9 33.0 44.8 41.5 49.4

DSRG [4] 25.5 76.3 67.5 66.2 65.2 36.3 70.2 35.1 54.1 49.9 57.1
CIAN [5] 41.1 75.7 78.9 75.0 64.3 44.1 78.2 29.2 61.7 54.2 63.7
Ours SEC 31.0 68.3 58.1 61.3 67.2 37.7 65.1 30.9 52.9 51.3 54.5

Ours DSRG 23.3 73.0 65.6 64.5 68.9 39.5 69.0 33.1 64.1 58.7 59.2
Ours CIAN 33.2 83.3 79.7 74.9 77.6 49.5 85.2 37.1 64.0 65.2 68.1

Furthermore, it is surprising that our method surpasses some early weakly-supervised

semantic methods with additional supervision. By using VGG16 as backbone model

fairly, STC [81] and CrawlSeg [146] (upper part of Table 4.4) use additional images

while only 10K images are involved in our method.

ResNet-based models

In Table 4.5, all methods use ResNet-based backbone model. Integrating with our

seeds, we improve CIAN performances and achieve mIoU of 68.1% and 69.2% from

original 64.3% and 65.3% on validation and test dataset of VOC-2012 respectively.

Note that saliency methods are employed in LSISU to obtain an additional knowledge

to train the segmentation model. As the proposed method builds on top of CIAN,

we take huge advantages from their cross-image affinity module and currently achieve

state-of-the-art performance at the time of writing this chapter by using only image-

level supervision.

87

Figure 4.3: Visualization examples on VOC-2012 validation dataset.

4.5.6 Qualitative results

Fig. 4.3 and Table 4.6 present numerical and visual qualitative results of the final seg-

mentation mask. By comparing our methods (f to h) to corresponding counterparts (c

to e), it shows that our methods can recover fine details of the boundary, and discover

more accurate mask in a larger area of a target object. The first row demonstrates

the simplest example, which can be segmented among different methods. The next

three rows exhibit that our methods can produce more precise result by inhibiting

false positive prediction since the explored seeds offer stronger location information

than that of the deep segmentation model. On the other hand, larger area can be

explored in the last two rows. Since our methods give more accurate initialize seeds,

it allows the segmentation network to consider a wider range of target objects.

4.5.7 Step-by-step analysis on semi-supervised clustering

From semi-supervised learning standpoint, we analyse how the proposed seeded pro-

gressive framework is affected using different hyperparameters thoughtfully. To this

end, we conduct fair tests on a small-scale VOC-2012 dataset, namely Mini-VOC-

2012 which consists of 500 randomly selected images from VOC-2012. Since we

target at increasing the number of seed samples, there are two evaluation metrics

in this experiments. Given an initial seed Ssec and feature map F for each image on

88

Table 4.7: Comparison of mAcc, mCr, and processing time on Mini-VOC-2012 with-
out and with Random Sampling (RS). Values in bold are corresponding results of the
select λ.

λ mAcc(%) mCr(%) time(s)

0 (Without RS) 91.36 66.40 229.4688

5 89.72 65.51 28.9852
10 89.37 65.68 19.7908
15 89.00 65.83 17.9757
20 88.78 65.85 17.3673

Mini-VOC-2012, the mean accuracy (mAcc) is calculated to evaluate the quality of

the explored seeds. Similarly, the mean cover rate (mCr) is computed for assessing

how many seeds are explored by the proposed approach including both the initial and

newly clustered seeds. These metrics are utilized to analyse three hyperparameters

as follows:

1. Number of subsets λ: We apply random sampling to separate the the dataset

into λ subsets (Section 4.4.4).

2. The capacity of mini-cluster in the composition phase ω: We start with single

labeled samples, and form the mini-cluster which contains ω samples (Section

4.4.4).

3. The capacity of mini-cluster in the decomposition phase ε: The same as above.

(Section 4.4.4).

Trade-off between efficiency and effectiveness using random sampling

As discussed in Section 4.4.4, we speed up the proposed approach by using a random

sampling. The larger the number of subsets (λ), the shorter the processing time.

However, this technique probably degrades the clustering performance because the

dataset is pre-separated into subsets. Therefore, the comparative test on λ is required

while ω and ε are fixed as 3 and 2. Table 4.7 demonstrates the mAcc, mCr and the

time obtained by the proposed method using various λ. When larger λ is used, the

total clustering time is reduced, i.e., approximately 13 times faster when comparing

λ=20 with λ=0. Although the mAcc are slightly decreasing constantly, the mCr

89

Table 4.8: Comparison of mAcc and mCr on Mini-VOC-2012 using different com-
bination of ω1 and ε1. Values in bold are corresponding results of the select (ω1,
ε1).

mAcc(%) mCr(%)

ω1 ε1 = 1 ε1 = 2 ε1 = 3 ε1 = 1 ε1 = 2 ε1 = 3

1 90.65 90.94 90.28 51.94 50.53 50.77
2 89.31 89.90 88.61 61.24 58.84 59.37
3 88.10 88.78 87.26 69.08 65.89 66.72
4 87.27 88.02 86.30 74.60 71.31 72.13
5 86.67 87.59 85.55 77.97 74.85 75.73

performances are stably maintained in the range of 65.5% to 65.8%. Hence, the

random sampling improves the efficiency of semi-supervised clustering, and maintains

the effectiveness at the same time. In the remaining experiments, we use λ=20 unless

otherwise specified.

Comparison on capacity of the mini-cluster

Due to the characteristics of the proposed weak autoencoder, we need to set a max-

imum number of samples of the mini-cluster (i.e., ω and ε) to maintain a weakest

performance of WAE. In other words, we need to control the number of iterations

for adding clustered samples to the mini-cluster. As the labeled samples is increased

progressively, we can design a dynamic capacity of the mini-cluster involved three

cycles (Section 4.4.5 of the proposed framework. That is, we can use (ω1, ε1) for the

first cycle while (ωr, εr) for the rest. In general, we can select a smaller number for

(ω1, ε1) to ensure only the reliable samples is explored by few initial labeled samples

in an early stage. As the number of labeled samples increases, a larger number for

(ωr, εr) can be applied.

Comparison on ω1 and ε1 To jointly conduct the test on (ω1, ε1), the grid search

is employed by using ω1 = {1, 2, 3, 4, 5} and ε1 = {1, 2, 3} while (ωr, εr) is fixed as

(2, 2). As the incorrect seeds servery hurts the segmentation, mAcc is prioritized over

mCr. Fig. 4.4 shows the corresponding performances of mAcc and mCr on Mini-

VOC-2012. By using ε1=2, the best mAcc constantly is obtained regardless the value

of ω1 (Fig. 4.4 (a)). To consider mCr at the same time, the combination of (3, 2) for

90

Table 4.9: Comparison of mAcc and mCr on Mini-VOC-2012 using different com-
bination of ωr and εr. Values in bold are corresponding results of the select (ωr
εr).

mAcc(%) mCr(%)

ωr εr = 1 εr = 2 εr = 3 εr = 1 εr = 2 εr = 3

1 89.25 89.67 88.68 58.20 56.76 57.76
2 88.34 88.74 87.28 68.45 66.04 67.61
3 87.81 88.28 86.62 75.48 72.36 74.41

1 2 3 4 5
85.00

86.00

87.00

88.00

89.00

90.00

91.00

92.00

90.65

89.31

88.10

87.27

86.67

90.94

89.90

88.78

88.02

87.59

90.28

88.61

87.26

86.30

85.55

ω1

m
A
cc

(%
)

ε1 = 1
ε1 = 2
ε1 = 3

(a)

1 2 3 4 5
45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

51.94

61.24

69.08

74.60

77.97

50.53

58.84

65.89

71.31

74.85

50.77

59.37

66.72

72.13

75.73

ω1

m
C
r
(%

)

ε1 = 1
ε1 = 2
ε1 = 3

(b)

Figure 4.4: Comparison of mAcc and mCr on Mini-VOC-2012 dataset using different
combination of ω1 and ε1.

(ω1, ε1) is recommended since it strikes a better balance between mAcc (88.78%) and

mCr (65.89%).

Comparison on ωr and εr By using the best hyperparameters for (ω1, ε1), we

conduct the final comparative test for (ωr, εr). Similarly, the grid search is applied

such that ωr = {1, 2, 3} and εr = {1, 2, 3}. It is discovered that εr=2 contributes

the best mAcclong with various ωr. To reach reasonable compromise between two

mentioned metrics, (2, 2) for (ωr, εr) is preferable to use such that 88.34% and 66.04%

are reached for mAcc and mCr respectively.

Summary In general, mAcc is consistently decreased when ω is increasing with the

fixed ε. That is to say, the reconstruction performance of WAE is generalized when

91

1 2 3
86.00

87.00

88.00

89.00

90.00

89.25

88.34

87.81

89.67

88.74

88.28

88.68

87.28

86.62

ωr

m
A
cc

(%
)

εr = 1
εr = 2
εr = 3

(a)

1 2 3
50.00

55.00

60.00

65.00

70.00

75.00

80.00

58.20

68.45

75.48

56.76

66.04

72.36

57.76

67.61

74.41

ωr

m
C
r
(%

)

εr = 1
εr = 2
εr = 3

(b)

Figure 4.5: Comparison of mAcc and mCr on Mini-VOC-2012 dataset using different
combination of ωr and εr.

more labeled samples are used to train such WAE. The learned features of WAE is

no longer “strong” and “common” among the same class. Therefore, the clustering

process may not work well when it is repeated too many times, e.g., more than 5

times. In addition, the proposed seeded progressive framework is not sensitive to

dynamic setting for (ω, ε). Therefore, for simplicity, it is suggested to use uniform

setting, i.e., (ωr, εr) = (ω1, ε1).

4.6 Conclusions

In this chapter, we formulate the weakly-supervised semantic segmentation task us-

ing only image-level labels as a semi-supervised seed clustering problem where initial

seeds generated by CAM method can be regarded as labeled samples while the rest

are unlabeled samples. In such perspective, the non iterative weak autoencoder, WAE

is proposed to group one unlabeled sample with one labeled sample. We propose the

seeded progressive framework to search for numerous and accurate seeds to further

improve the segmentation performance of [3–5]. We demonstrate the effectiveness of

the seeded progressive framework on PASCAL VOC 2012 dataset, while thorough

analyses have been conducted to suggest the proper choices of involved hyperparam-

eters.

92

Chapter 5

Conclusion & Future Work

Most of the machine learning or deep learning algorithms require a very large

number of labeled data as prior knowledge. However, it is difficult and expensive to

obtain a large number of labeled data. By contrast, the unlabeled data is usually

accessible and can be easily to collect. Therefore, the primary research focus

is to develop machine learning algorithms for solving the semi-supervised

clustering task.

As shown in previous research [2], “strong” and “common” features of each data

could be extracted by using deeper dimensional compression. Inspired by this obser-

vation, the weak autoencoder (WAE) is proposed as an unsupervised representation

learning method to learn the “common” feature of each data. Assuming that the

learned feature is shareable among the same class, it means data belonging to the

same class should have similar features. Therefore, if any unlabeled data can be well-

reconstructed by the WAE that is trained by only one labeled data, those unlabeled

data should be similar with the labeled data. The most well-reconstructed unlabeled

data can be grouped with that labeled data. In order to evaluate and rank the degree

of reconstruction of each unlabeled data, the self-similarity is calculated by measuring

the correlation coefficient between every pair of original and reconstructed data.

The progressive framework is proposed to continue the clustering process. This

framework is wrapped into the cyclic structure where two phases are repeated itera-

tively. The aim of first phase is to search for the unlabeled data starting from a small

number of labeled data. The target of second phase is to re-evaluate the clustered

93

results such the most confident data are accepted and regarded as labeled samples

while the rest are rejected and treated as unlabeled samples. By repeating the first

and second phase alternatively, the number of labeled data increases.

The experimental results on thirteen datasets show the effectiveness of the progres-

sive framework. In fact, these works are important to researchers in many domains

of computer science as these works fundamentally provided another way of approach

to extract useful feature using a weak autoencoder instead of a complicated network.

After verifying the effectiveness of the above algorithms on thirteen tubular and

image datasets, the second focus of this thesis is to extend these algorithms

to the application in real-world scenario, i.e., semantic segmentation. Two

preliminary concerns have to be handled when formulating such task as the semi-

supervised clustering problem: how to obtain the initial labeled data and how to

construct clustering space.

The solution for first concern is to generate initial seeds using computer vision-

based method. Given only the image-level labels to the deep learning model, the

Class Activation Map method is used to back propagate the activated weights to the

final convolutional heat map such that some units will be heated up. These units

are usually the significant regions of image which indicates the most representative

region of each object. By thresholding the top 20% units of this heatmap, the initially

labeled data are generated. Unlike using the raw data representation to construct the

clustering space, the mentioned 2-D heatmap is extracted from a deep learning model.

In fact, each data in the heatmap is a 4096-dimensional feature vector rather than

just RGB data.

After initialization, the original semantic segmentation problem is transferred to

a semi-supervised clustering problem which can be solved by the modified progressive

framework. Terminologically, labeled data can be viewed as seeds while unlabeled

data can be treated as non-seeds. As seed is the important concept of this applica-

tion, the modified framework is termed as “Seeded Progressive Framework”. This

framework can be used as a knowledge augmentation method to increase the number

of labeled data. In other words, more seeds can be generated by using this framework.

Then, the initially and newly clustered seeds can be used to train few current weakly-

supervised segmentation methods. As these seeds are better than initial seeds, they

can be used for boosting the segmentation performances.

By experiments, around 1.5% to 3.9% mIoU of performance improvements are ob-

tained, and achieve the current state-of-the-art performance 69.2% on PASCAL VOC

94

2012 test dataset. To conclude, this work suggests a way to improve performances

of any weakly-supervised segmentation models by using our proposed framework. In

fact, other existing semi-supervised methods can be also used to increase the number

of seeds and capable for enhancing the segmentation performances.

This thesis handles different tasks and problems in the field of ML, and it can be

summarized as follows:

• Weak Autoencoder (WAE). It is an unsupervised classifier which is used to

learn strong and common feature of each data. As this autoencoder is repeatedly

used for clustering task, the non-iterative autoencoder is used such that there

are only one encoder layer and one decoder layer.

• Self-similarity. Most semi-supervised clustering methods calculate the simi-

larity among data by measuring distances between labeled data and unlabeled

in the same data space. In our framework, the self-similarity is used, i.e., a

correlation coefficient of every pair of original and reconstructed data. This

similarity reflects the reconstruction performance of WAE, and further reflects

the similarity between labeled data and unlabeled data.

• Progressive Framework. The progressive framework is proposed to perform

the clustering on an entire dataset in a systematic way. This framework is

wrapped into the cyclic structure where two phases are involved. The first phase

is called local-clustering phase while the second phase is called re-clustering

phase.

• Seeded Progressive Framework. To apply this work on weakly-supervised

semantic segmentation, the seeded progressive framework is proposed where the

initial labeled data and clustering space are generated by using the computer

vision techniques. Apart from above, there are five modifications to simplify

the previous framework.

• Using any semi-supervised clustering method to improve segmenta-

tion performances. As our work can be viewed as a knowledge augmentation

method to increase a number of labeled data, any other related methods can

replacement ours framework.

This thesis proposes many novel methods for different tasks in ML and CV in-

cluding representation learning, clustering and segmentation. There are room for

95

improvement in respect of model architecture, similarity computing and clustering

framework. Therefore, this thesis can be concluded by suggesting several possible

research directions in the future:

• Utilizing self-supervised learning methods for visual feature extrac-

tion. In our experiment for image data, deep convolutional features are ex-

tracted from the DCNN model without involving any pretrained weights. In-

stead, deep self-supervised neural network can be utilized to extract visual fea-

ture of images. Self supervised learning method is to train the neural network

with supervisory signals that are generated from the data itself (self-supervision)

by leveraging its structure [37]. There are no labeled data involved in the leaning

process. In our future work, any trained self-supervised models can be applied

as visual feature extractor for any image datasets.

• Extending to fully-unsupervised clustering task. During this thesis, a

small number of labeled data was utilized to guide the clustering process. As

the weak autoencoder can be viewed as a local classifier to group one data to

another, it is not naturally necessary to use any label information. Therefore,

an existing unsupervised clustering method can be combined with our weak

autoencoder. Besides, this modification can make our framework more robust,

structural and systematic.

• Integrating the proposed framework into weakly-supervised segmen-

tation models in an end-to-end way. Currently, the proposed framework

can only be used as a pre-processing method before training segmentation mod-

els. In the future, the framework can be simplified as a module, and integrate

it into segmentation models for shorting a total processing time.

96

Bibliography

[1] X. Zhang, Y. Wei, J. Feng, Y. Yang, and T. S. Huang, “Adversarial complemen-

tary learning for weakly supervised object localization,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pp. 1325–1334,

2018.

[2] Y. Yang, Q. J. Wu, and Y. Wang, “Autoencoder with invertible functions for di-

mension reduction and image reconstruction,” IEEE Transactions on Systems,

Man, and Cybernetics: Systems, vol. 48, no. 7, pp. 1065–1079, 2016.

[3] A. Kolesnikov and C. H. Lampert, “Seed, expand and constrain: Three prin-

ciples for weakly-supervised image segmentation,” in European conference on

computer vision, pp. 695–711, Springer, 2016.

[4] Z. Huang, X. Wang, J. Wang, W. Liu, and J. Wang, “Weakly-supervised seman-

tic segmentation network with deep seeded region growing,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7014–

7023, 2018.

[5] J. Fan, Z. Zhang, T. Tan, C. Song, and J. Xiao, “Cian: Cross-image affinity

net for weakly supervised semantic segmentation,” in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 34, pp. 10762–10769, 2020.

[6] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,

and C. L. Zitnick, “Microsoft coco: Common objects in context,” in European

conference on computer vision, pp. 740–755, Springer, 2014.

[7] O. Chapelle, B. Schölkopf, and A. Zien, “Introduction to semi-supervised learn-

ing,” 2006.

97

[8] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,” Synthe-

sis lectures on artificial intelligence and machine learning, vol. 3, no. 1, pp. 1–

130, 2009.

[9] X. Yang, Z. Song, I. King, and Z. Xu, “A survey on deep semi-supervised

learning,” arXiv preprint arXiv:2103.00550, 2021.

[10] Z.-H. Zhou, “A brief introduction to weakly supervised learning,” National

science review, vol. 5, no. 1, pp. 44–53, 2018.

[11] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data

with neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

[12] Y. Yang, Q. M. J. Wu, X. Feng, and T. Akilan, “Recomputation of the dense

layers for performance improvement of dcnn,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 42, no. 11, pp. 2912–2925, 2020.

[13] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual

recognition challenge,” International journal of computer vision, vol. 115, no. 3,

pp. 211–252, 2015.

[14] H. Pham, Z. Dai, Q. Xie, and Q. V. Le, “Meta pseudo labels,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pp. 11557–11568, 2021.

[15] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing robust adver-

sarial examples,” in International conference on machine learning, pp. 284–293,

PMLR, 2018.

[16] D. A. Ross, M. Deroche, and T. J. Palmeri, “Not just the norm: Exemplar-

based models also predict face aftereffects,” Psychonomic bulletin & review,

vol. 21, no. 1, pp. 47–70, 2014.

[17] L. L. C. Kasun, H. Zhou, G.-B. Huang, and C. M. Vong, “Representational

learning with elms for big data,” 2013.

[18] J. MacQueen et al., “Some methods for classification and analysis of multivari-

ate observations,” in Proceedings of the fifth Berkeley symposium on mathemat-

ical statistics and probability, vol. 1, pp. 281–297, Oakland, CA, USA, 1967.

98

[19] S. Basu, A. Banerjee, and R. Mooney, “Semi-supervised clustering by seed-

ing,” in In Proceedings of 19th International Conference on Machine Learning

(ICML-2002, Citeseer, 2002.

[20] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl, et al., “Constrained k-means

clustering with background knowledge,” in Icml, vol. 1, pp. 577–584, 2001.

[21] D. H. Ballard, “Modular learning in neural networks.,” in AAAI, vol. 647,

pp. 279–284, 1987.

[22] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: theory

and applications,” Neurocomputing, vol. 70, no. 1-3, pp. 489–501, 2006.

[23] Y. Yang and Q. J. Wu, “Multilayer extreme learning machine with subnetwork

nodes for representation learning,” IEEE transactions on cybernetics, vol. 46,

no. 11, pp. 2570–2583, 2015.

[24] C. Ruiz, M. Spiliopoulou, and E. Menasalvas, “C-dbscan: Density-based clus-

tering with constraints,” in International workshop on rough sets, fuzzy sets,

data mining, and granular-soft computing, pp. 216–223, Springer, 2007.

[25] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm

for discovering clusters in large spatial databases with noise.,” in kdd, vol. 96,

pp. 226–231, 1996.

[26] L. Zheng and T. Li, “Semi-supervised hierarchical clustering,” in 2011 IEEE

11th International Conference on Data Mining, pp. 982–991, IEEE, 2011.

[27] S. Miyamoto and A. Terami, “Semi-supervised agglomerative hierarchical clus-

tering algorithms with pairwise constraints,” in International Conference on

Fuzzy Systems, pp. 1–6, IEEE, 2010.

[28] I. Davidson and S. S. Ravi, “Using instance-level constraints in agglomerative

hierarchical clustering: theoretical and empirical results,” Data mining and

knowledge discovery, vol. 18, no. 2, pp. 257–282, 2009.

[29] D. Pelleg and D. Baras, “K-means with large and noisy constraint sets,” in

European Conference on Machine Learning, pp. 674–682, Springer, 2007.

99

[30] I. Davidson and S. Ravi, “Clustering with constraints: Feasibility issues and the

k-means algorithm,” in Proceedings of the 2005 SIAM international conference

on data mining, pp. 138–149, SIAM, 2005.

[31] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on informa-

tion theory, vol. 28, no. 2, pp. 129–137, 1982.

[32] D. T. Pham, S. S. Dimov, and C. D. Nguyen, “Selection of k in k-means cluster-

ing,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal

of Mechanical Engineering Science, vol. 219, no. 1, pp. 103–119, 2005.

[33] E. Bair, “Semi-supervised clustering methods,” Wiley Interdisciplinary Re-

views: Computational Statistics, vol. 5, no. 5, pp. 349–361, 2013.

[34] X. Mai, J. Cheng, and S. Wang, “Research on semi supervised k-means cluster-

ing algorithm in data mining,” Cluster Computing, vol. 22, no. 2, pp. 3513–3520,

2019.

[35] X. Zhai, A. Oliver, A. Kolesnikov, and L. Beyer, “S4l: Self-supervised semi-

supervised learning,” in Proceedings of the IEEE/CVF International Conference

on Computer Vision, pp. 1476–1485, 2019.

[36] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for

contrastive learning of visual representations,” in International conference on

machine learning, pp. 1597–1607, PMLR, 2020.

[37] L. Jing and Y. Tian, “Self-supervised visual feature learning with deep neu-

ral networks: A survey,” IEEE transactions on pattern analysis and machine

intelligence, 2020.

[38] K. Sohn, D. Berthelot, C.-L. Li, Z. Zhang, N. Carlini, E. D. Cubuk, A. Kurakin,

H. Zhang, and C. Raffel, “Fixmatch: Simplifying semi-supervised learning with

consistency and confidence,” arXiv preprint arXiv:2001.07685, 2020.

[39] O. Henaff, “Data-efficient image recognition with contrastive predictive coding,”

in International Conference on Machine Learning, pp. 4182–4192, PMLR, 2020.

[40] M. Zhang, Y. Zhou, J. Zhao, Y. Man, B. Liu, and R. Yao, “A survey of semi-

and weakly supervised semantic segmentation of images,” Artificial Intelligence

Review, pp. 1–30, 2019.

100

[41] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D. Ter-

zopoulos, “Image segmentation using deep learning: A survey,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 2021.

[42] L. Chan, M. S. Hosseini, and K. N. Plataniotis, “A comprehensive analysis of

weakly-supervised semantic segmentation in different image domains,” Interna-

tional Journal of Computer Vision, vol. 129, no. 2, pp. 361–384, 2021.

[43] X. Huang, P. Wang, X. Cheng, D. Zhou, Q. Geng, and R. Yang, “The apol-

loscape open dataset for autonomous driving and its application,” IEEE trans-

actions on pattern analysis and machine intelligence, vol. 42, no. 10, pp. 2702–

2719, 2019.

[44] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and T. Darrell,

“Bdd100k: A diverse driving video database with scalable annotation tooling,”

arXiv preprint arXiv:1805.04687, vol. 2, no. 5, p. 6, 2018.

[45] G. Aresta, T. Araújo, S. Kwok, S. S. Chennamsetty, M. Safwan, V. Alex,

B. Marami, M. Prastawa, M. Chan, M. Donovan, et al., “Bach: Grand challenge

on breast cancer histology images,” Medical image analysis, vol. 56, pp. 122–

139, 2019.

[46] K. Sirinukunwattana, J. P. Pluim, H. Chen, X. Qi, P.-A. Heng, Y. B. Guo, L. Y.

Wang, B. J. Matuszewski, E. Bruni, U. Sanchez, et al., “Gland segmentation

in colon histology images: The glas challenge contest,” Medical image analysis,

vol. 35, pp. 489–502, 2017.

[47] I. Demir, K. Koperski, D. Lindenbaum, G. Pang, J. Huang, S. Basu, F. Hughes,

D. Tuia, and R. Raskar, “Deepglobe 2018: A challenge to parse the earth

through satellite images,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops, pp. 172–181, 2018.

[48] C. Tian, C. Li, and J. Shi, “Dense fusion classmate network for land cover

classification,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition Workshops, pp. 192–196, 2018.

[49] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-

tic segmentation,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 3431–3440, 2015.

101

[50] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Se-

mantic image segmentation with deep convolutional nets and fully connected

crfs,” arXiv preprint arXiv:1412.7062, 2014.

[51] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,

“Deeplab: Semantic image segmentation with deep convolutional nets, atrous

convolution, and fully connected crfs,” IEEE transactions on pattern analysis

and machine intelligence, vol. 40, no. 4, pp. 834–848, 2017.

[52] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous con-

volution for semantic image segmentation,” arXiv preprint arXiv:1706.05587,

2017.

[53] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-

decoder with atrous separable convolution for semantic image segmentation,” in

Proceedings of the European conference on computer vision (ECCV), pp. 801–

818, 2018.

[54] J. Dai, K. He, and J. Sun, “Boxsup: Exploiting bounding boxes to supervise

convolutional networks for semantic segmentation,” in Proceedings of the IEEE

international conference on computer vision, pp. 1635–1643, 2015.

[55] G. Papandreou, L.-C. Chen, K. P. Murphy, and A. L. Yuille, “Weakly-and

semi-supervised learning of a deep convolutional network for semantic image

segmentation,” in Proceedings of the IEEE international conference on computer

vision, pp. 1742–1750, 2015.

[56] D. Lin, J. Dai, J. Jia, K. He, and J. Sun, “Scribblesup: Scribble-supervised

convolutional networks for semantic segmentation,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 3159–3167, 2016.

[57] P. Vernaza and M. Chandraker, “Learning random-walk label propagation for

weakly-supervised semantic segmentation,” in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pp. 7158–7166, 2017.

[58] W. Lu, D. Gong, K. Fu, X. Sun, W. Diao, and L. Liu, “Boundarymix: Gener-

ating pseudo-training images for improving segmentation with scribble annota-

tions,” Pattern Recognition, vol. 117, p. 107924, 2021.

102

[59] A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei, “What’s the point: Se-

mantic segmentation with point supervision,” in European conference on com-

puter vision, pp. 549–565, Springer, 2016.

[60] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep

features for discriminative localization,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 2921–2929, 2016.

[61] R. Adams and L. Bischof, “Seeded region growing,” IEEE Transactions on

pattern analysis and machine intelligence, vol. 16, no. 6, pp. 641–647, 1994.

[62] H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li, “Salient object detec-

tion: A discriminative regional feature integration approach,” in Proceedings of

the IEEE conference on computer vision and pattern recognition, pp. 2083–2090,

2013.

[63] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm for

boltzmann machines,” Cognitive science, vol. 9, no. 1, pp. 147–169, 1985.

[64] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep

belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[65] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise

training of deep networks,” in Advances in neural information processing sys-

tems, pp. 153–160, 2007.

[66] R. Salakhutdinov and G. Hinton, “Deep boltzmann machines,” in Artificial

intelligence and statistics, pp. 448–455, PMLR, 2009.

[67] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and

composing robust features with denoising autoencoders,” in Proceedings of the

25th international conference on Machine learning, pp. 1096–1103, 2008.

[68] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, and L. Bottou,

“Stacked denoising autoencoders: Learning useful representations in a deep

network with a local denoising criterion.,” Journal of machine learning research,

vol. 11, no. 12, 2010.

[69] A. Ng et al., “Sparse autoencoder,” CS294A Lecture notes, vol. 72, no. 2011,

pp. 1–19, 2011.

103

[70] A. Makhzani and B. Frey, “K-sparse autoencoders,” arXiv preprint

arXiv:1312.5663, 2013.

[71] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive auto-

encoders: Explicit invariance during feature extraction,” in Icml, 2011.

[72] S. Rifai, G. Mesnil, P. Vincent, X. Muller, Y. Bengio, Y. Dauphin, and X. Glo-

rot, “Higher order contractive auto-encoder,” in Joint European conference on

machine learning and knowledge discovery in databases, pp. 645–660, Springer,

2011.

[73] D. P. Kingma and M. Welling, “Auto-encoding variational bayes in 2nd interna-

tional conference on learning representations,” in ICLR 2014-Conference Track

Proceedings, 2014.

[74] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A re-

view for statisticians,” Journal of the American statistical Association, vol. 112,

no. 518, pp. 859–877, 2017.

[75] C. Zhang, J. Bütepage, H. Kjellström, and S. Mandt, “Advances in variational

inference,” IEEE transactions on pattern analysis and machine intelligence,

vol. 41, no. 8, pp. 2008–2026, 2018.

[76] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial

autoencoders,” arXiv preprint arXiv:1511.05644, 2015.

[77] I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf, “Wasserstein auto-

encoders,” arXiv preprint arXiv:1711.01558, 2017.

[78] L. Mescheder, S. Nowozin, and A. Geiger, “Adversarial variational bayes: Uni-

fying variational autoencoders and generative adversarial networks,” in Inter-

national Conference on Machine Learning, pp. 2391–2400, PMLR, 2017.

[79] K. Sun, J. Zhang, C. Zhang, and J. Hu, “Generalized extreme learning ma-

chine autoencoder and a new deep neural network,” Neurocomputing, vol. 230,

pp. 374–381, 2017.

[80] D. Pathak, E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional multi-

class multiple instance learning,” arXiv preprint arXiv:1412.7144, 2014.

104

[81] Y. Wei, X. Liang, Y. Chen, X. Shen, M.-M. Cheng, J. Feng, Y. Zhao, and

S. Yan, “Stc: A simple to complex framework for weakly-supervised semantic

segmentation,” IEEE transactions on pattern analysis and machine intelligence,

vol. 39, no. 11, pp. 2314–2320, 2016.

[82] K. K. Singh and Y. J. Lee, “Hide-and-seek: Forcing a network to be meticulous

for weakly-supervised object and action localization,” in 2017 IEEE interna-

tional conference on computer vision (ICCV), pp. 3544–3553, IEEE, 2017.

[83] D. Kim, D. Cho, D. Yoo, and I. So Kweon, “Two-phase learning for weakly

supervised object localization,” in Proceedings of the IEEE international con-

ference on computer vision, pp. 3534–3543, 2017.

[84] Y. Wei, J. Feng, X. Liang, M.-M. Cheng, Y. Zhao, and S. Yan, “Object region

mining with adversarial erasing: A simple classification to semantic segmenta-

tion approach,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 1568–1576, 2017.

[85] K. Li, Z. Wu, K.-C. Peng, J. Ernst, and Y. Fu, “Tell me where to look: Guided

attention inference network,” in Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pp. 9215–9223, 2018.

[86] Y. Wei, H. Xiao, H. Shi, Z. Jie, J. Feng, and T. S. Huang, “Revisiting dilated

convolution: A simple approach for weakly-and semi-supervised semantic seg-

mentation,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 7268–7277, 2018.

[87] S. J. Oh, R. Benenson, A. Khoreva, Z. Akata, M. Fritz, and B. Schiele, “Ex-

ploiting saliency for object segmentation from image level labels,” in 2017 IEEE

conference on computer vision and pattern recognition (CVPR), pp. 5038–5047,

IEEE, 2017.

[88] X. Wang, S. You, X. Li, and H. Ma, “Weakly-supervised semantic segmentation

by iteratively mining common object features,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 1354–1362, 2018.

[89] J. Lee, E. Kim, S. Lee, J. Lee, and S. Yoon, “Ficklenet: Weakly and semi-

supervised semantic image segmentation using stochastic inference,” in Proceed-

105

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, pp. 5267–5276, 2019.

[90] Y. Zeng, Y. Zhuge, H. Lu, and L. Zhang, “Joint learning of saliency de-

tection and weakly supervised semantic segmentation,” in Proceedings of the

IEEE/CVF International Conference on Computer Vision, pp. 7223–7233,

2019.

[91] J. Ahn, S. Cho, and S. Kwak, “Weakly supervised learning of instance segmen-

tation with inter-pixel relations,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 2209–2218, 2019.

[92] W. Shimoda and K. Yanai, “Self-supervised difference detection for weakly-

supervised semantic segmentation,” in Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, pp. 5208–5217, 2019.

[93] G. Sun, W. Wang, J. Dai, and L. Van Gool, “Mining cross-image semantics for

weakly supervised semantic segmentation,” in European Conference on Com-

puter Vision, pp. 347–365, Springer, 2020.

[94] Y. Wang, J. Zhang, M. Kan, S. Shan, and X. Chen, “Self-supervised equiv-

ariant attention mechanism for weakly supervised semantic segmentation,” in

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 12275–12284, 2020.

[95] Y.-T. Chang, Q. Wang, W.-C. Hung, R. Piramuthu, Y.-H. Tsai, and M.-

H. Yang, “Weakly-supervised semantic segmentation via sub-category explo-

ration,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 8991–9000, 2020.

[96] F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu, “Learning deep represen-

tations for graph clustering,” in Twenty-Eighth AAAI Conference on Artificial

Intelligence, 2014.

[97] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for clus-

tering analysis,” in International conference on machine learning, pp. 478–487,

2016.

106

[98] J. Chang, G. Meng, L. Wang, S. Xiang, and C. Pan, “Deep self-evolution cluster-

ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42,

no. 4, pp. 809–823, 2020.

[99] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery of subspace

structures by low-rank representation,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 35, no. 1, pp. 171–184, 2013.

[100] G. Huang, S. Song, J. N. D. Gupta, and C. Wu, “Semi-supervised and unsuper-

vised extreme learning machines,” IEEE Transactions on Cybernetics, vol. 44,

no. 12, pp. 2405–2417, 2014.

[101] Y. Yang and Q. M. J. Wu, “Extreme learning machine with subnetwork hid-

den nodes for regression and classification,” IEEE Transactions on Cybernetics,

vol. 46, pp. 2885–2898, Dec 2016.

[102] Y. Yang, Y. Wang, Q. M. Jonathan Wu, X. Lin, and M. Liu, “Progressive

learning machine: A new approach for general hybrid system approximation,”

IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 9,

pp. 1855–1874, 2015.

[103] X. Wang, B. Qian, and I. Davidson, “On constrained spectral clustering and its

applications,” Data Mining and Knowledge Discovery, vol. 28, no. 1, pp. 1–30,

2014.

[104] V. Antoine, B. Quost, M.-H. Masson, and T. Denoeux, “Cevclus: evidential

clustering with instance-level constraints for relational data,” Soft Computing,

vol. 18, no. 7, pp. 1321–1335, 2014.

[105] K. Kamvar, S. Sepandar, K. Klein, D. Dan, M. Manning, and C. Christopher,

“Spectral learning,” in International Joint Conference of Artificial Intelligence,

Stanford InfoLab, 2003.

[106] Y. Jia, S. Kwong, and J. Hou, “Semi-supervised spectral clustering with struc-

tured sparsity regularization,” IEEE Signal Processing Letters, vol. 25, no. 3,

pp. 403–407, 2018.

[107] L. Yang, X. Cao, D. Jin, X. Wang, and D. Meng, “A unified semi-supervised

community detection framework using latent space graph regularization,” IEEE

Transactions on Cybernetics, vol. 45, no. 11, pp. 2585–2598, 2015.

107

[108] Y. Ren, K. Hu, X. Dai, L. Pan, S. C. Hoi, and Z. Xu, “Semi-supervised deep

embedded clustering,” Neurocomputing, vol. 325, pp. 121–130, 2019.

[109] A. Shukla, G. S. Cheema, and S. Anand, “Semi-supervised clustering with

neural networks,” arXiv preprint arXiv:1806.01547, 2018.

[110] X. Li, H. Yin, K. Zhou, and X. Zhou, “Semi-supervised clustering with deep

metric learning and graph embedding,” World Wide Web, pp. 1–18, 2019.

[111] O. Boiman, E. Shechtman, and M. Irani, “In defense of nearest-neighbor based

image classification,” in 2008 IEEE Conference on Computer Vision and Pat-

tern Recognition, pp. 1–8, 2008.

[112] J. C. Van Gemert, J.-M. Geusebroek, C. J. Veenman, and A. W. Smeulders,

“Kernel codebooks for scene categorization,” in European conference on com-

puter vision, pp. 696–709, Springer, 2008.

[113] L. Zhang, X. Zhen, and L. Shao, “Learning object-to-class kernels for scene

classification,” IEEE Transactions on Image Processing, vol. 23, no. 8, pp. 3241–

3253, 2014.

[114] Z. Jiang, Z. Lin, and L. S. Davis, “Label consistent k-svd: Learning a discrimi-

native dictionary for recognition,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 35, no. 11, pp. 2651–2664, 2013.

[115] Jianchao Yang, Kai Yu, Yihong Gong, and T. Huang, “Linear spatial pyramid

matching using sparse coding for image classification,” in 2009 IEEE Conference

on Computer Vision and Pattern Recognition, pp. 1794–1801, 2009.

[116] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-constrained

linear coding for image classification,” in 2010 IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition, pp. 3360–3367, 2010.

[117] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face

recognition via sparse representation,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 31, no. 2, pp. 210–227, 2009.

[118] M. Aharon, M. Elad, and A. Bruckstein, “K-svd: An algorithm for design-

ing overcomplete dictionaries for sparse representation,” IEEE Transactions on

Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006.

108

[119] Q. Zhang and B. Li, “Discriminative k-svd for dictionary learning in face recog-

nition,” in 2010 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pp. 2691–2698, 2010.

[120] I. Ramirez, P. Sprechmann, and G. Sapiro, “Classification and clustering via

dictionary learning with structured incoherence and shared features,” in 2010

IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion, pp. 3501–3508, 2010.

[121] D. Wang and S. Kong, “A classification-oriented dictionary learning model: Ex-

plicitly learning the particularity and commonality across categories,” Pattern

Recognition, vol. 47, no. 2, pp. 885–898, 2014.

[122] L. Seidenari, G. Serra, A. D. Bagdanov, and A. Del Bimbo, “Local pyramidal

descriptors for image recognition,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 36, no. 5, pp. 1033–1040, 2014.

[123] L. Bo, X. Ren, and D. Fox, “Multipath sparse coding using hierarchical match-

ing pursuit,” in 2013 IEEE Conference on Computer Vision and Pattern Recog-

nition, pp. 660–667, 2013.

[124] J. C. van Gemert, C. J. Veenman, A. W. M. Smeulders, and J. Geusebroek,

“Visual word ambiguity,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 32, no. 7, pp. 1271–1283, 2010.

[125] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature pool-

ing in visual recognition,” in Proceedings of the 27th international conference

on machine learning (ICML-10), pp. 111–118, 2010.

[126] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyra-

mid matching for recognizing natural scene categories,” in 2006 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR’06),

vol. 2, pp. 2169–2178, 2006.

[127] Lingqiao Liu, Lei Wang, and Xinwang Liu, “In defense of soft-assignment cod-

ing,” in 2011 International Conference on Computer Vision, pp. 2486–2493,

2011.

109

[128] Y. Boureau, F. Bach, Y. LeCun, and J. Ponce, “Learning mid-level features for

recognition,” in 2010 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, pp. 2559–2566, 2010.

[129] H. Goh, N. Thome, M. Cord, and J. Lim, “Learning deep hierarchical visual

feature coding,” IEEE Transactions on Neural Networks and Learning Systems,

vol. 25, no. 12, pp. 2212–2225, 2014.

[130] C. Cortes and V. Vapnik, “Support vector machine,” Machine learning, vol. 20,

no. 3, pp. 273–297, 1995.

[131] S. Borjigin and P. K. Sahoo, “Color image segmentation based on multi-level

tsallis–havrda–charvát entropy and 2d histogram using pso algorithms,” Pattern

Recognition, vol. 92, pp. 107–118, 2019.

[132] J. Fu, J. Liu, Y. Li, Y. Bao, W. Yan, Z. Fang, and H. Lu, “Contextual de-

convolution network for semantic segmentation,” Pattern Recognition, vol. 101,

p. 107152, 2020.

[133] A. López-Cifuentes, M. Escudero-Viñolo, J. Bescós, and Á. Garćıa-Mart́ın,

“Semantic-aware scene recognition,” Pattern Recognition, vol. 102, p. 107256,

2020.

[134] Z. Wang, R. Song, P. Duan, and X. Li, “Efnet: Enhancement-fusion network

for semantic segmentation,” Pattern Recognition, p. 108023, 2021.

[135] Y. Zhang, X. Sun, J. Dong, C. Chen, and Q. Lv, “Gpnet: Gated pyramid

network for semantic segmentation,” Pattern Recognition, vol. 115, p. 107940,

2021.

[136] Z. Wu, C. Shen, and A. Van Den Hengel, “Wider or deeper: Revisiting the

resnet model for visual recognition,” Pattern Recognition, vol. 90, pp. 119–133,

2019.

[137] A. Chaudhry, P. K. Dokania, and P. H. Torr, “Discovering class-

specific pixels for weakly-supervised semantic segmentation,” arXiv preprint

arXiv:1707.05821, 2017.

[138] Q. Hou, P.-T. Jiang, Y. Wei, and M.-M. Cheng, “Self-erasing network for inte-

gral object attention,” arXiv preprint arXiv:1810.09821, 2018.

110

[139] J. Ahn and S. Kwak, “Learning pixel-level semantic affinity with image-level

supervision for weakly supervised semantic segmentation,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pp. 4981–4990,

2018.

[140] G. Huang, L. Kasun, H. Zhou, and C. Vong, “Representational learning with

extreme learning machine for big data,” IEEE Intelligent Systems, vol. 28, no. 6,

pp. 31–34, 2013.

[141] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and

A. Zisserman, “The pascal visual object classes challenge: A retrospective,”

International journal of computer vision, vol. 111, no. 1, pp. 98–136, 2015.

[142] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[143] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The

pascal visual object classes (voc) challenge,” International journal of computer

vision, vol. 88, no. 2, pp. 303–338, 2010.

[144] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik, “Semantic con-

tours from inverse detectors,” in 2011 International Conference on Computer

Vision, pp. 991–998, IEEE, 2011.

[145] P. O. Pinheiro and R. Collobert, “From image-level to pixel-level labeling with

convolutional networks,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 1713–1721, 2015.

[146] S. Hong, D. Yeo, S. Kwak, H. Lee, and B. Han, “Weakly supervised semantic

segmentation using web-crawled videos,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 7322–7330, 2017.

[147] W. Luo, M. Yang, and W. Zheng, “Weakly-supervised semantic segmenta-

tion with saliency and incremental supervision updating,” Pattern Recognition,

vol. 115, p. 107858, 2021.

[148] L. Xu, H. Xue, M. Bennamoun, F. Boussaid, and F. Sohel, “Atrous convolu-

tional feature network for weakly supervised semantic segmentation,” Neuro-

computing, vol. 421, pp. 115–126, 2021.

111

[149] J. Liu, C. Yu, B. Yang, C. Gao, and N. Sang, “Csenet: Cascade semantic erasing

network for weakly-supervised semantic segmentation,” Neurocomputing, 2020.

[150] Y. Li, Y. Liu, G. Liu, and M. Guo, “Weakly supervised semantic segmentation

by iterative superpixel-crf refinement with initial clues guiding,” Neurocomput-

ing, vol. 391, pp. 25–41, 2020.

	Supervisory Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Overview
	Motivation
	Organization of Thesis

	Literature Review
	Unsupervised Representation Learning
	Autoencoder
	Non-iterative Autoencoder
	Summary

	Semi-supervised Clustering
	k-means Clustering
	Constrained k-means Clustering
	Seeded k-means Clustering
	COP-k-means Clustering
	Self-supervised Learning based Clustering
	Summary

	Weakly-supervised Semantic Segmentation
	Seed, Expand and Constrain
	Deep Seeded Region Growing
	Cross-Image Affinity Net
	Summary

	Progressive Framework for Semi-supervised Clustering via Representation Learning
	Lead-in Section of Chapter 3 and Chapter 4
	Overview
	Introduction
	Progressive Framework
	Problem Formulation
	Cyclic Structure
	Phase 1: Local-clustering Phase
	Phase 2: Re-clustering Phase

	Minimalism in Representation Learning
	Comparison with k-means clustering:
	Experiment Verification
	Experimental Setting
	Tabular Datasets
	Image Datasets

	Analysis of Progressive Framework
	Reconstruction Performance of WAE
	Sensitivity of Parameter &
	Restrictiveness of Parameter &

	Discussion and Conclusion

	Seeded Progressive Framework for Weakly-supervised Semantic Segmentation
	Overview
	Introduction
	Problem Analysis and Preliminaries
	Seed as labeled samples, convolutional feature map as clustering space
	Single layer feedforward network based autoencoder
	Summary of the seeded progressive framework

	Seeded Progressive Framework
	Information minimization on weak autoencoder
	Self-similarity learning
	Composition of the mini-cluster
	Composition and decomposition phase
	The complete workflow of seeded progressive framework for weakly-supervised segmentation

	Experiment on weakly-supervised segmentation
	Experimental setup
	Hypothesis validation
	Baseline performance
	Comparison with clustering spaces from feature maps
	Comparison with state-of-the-art methods
	Qualitative results
	Step-by-step analysis on semi-supervised clustering

	Conclusions

	Conclusion & Future Work
	Bibliography

