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Abstract 

Hart, S.A. 2013. Charcoal in North American boreal forests: Implications for carbon storage and 
management. 102 pp. 
 

Charcoal plays an important role in boreal soil function and carbon storage, and is present in 
most boreal forest soils as a result of naturally recurring wildfires.  Charcoal management has 
been proposed as a potentially valuable tool for addressing long term issues of global carbon 
cycles and sustainability of forest management. However, a proper understanding of boreal 
charcoal stocks and their effect on boreal soil carbon balance is imperative for successful 
application. The objectives of this thesis were to 1) review the role of boreal charcoal carbon 
stocks on boreal soil carbon balance; 2) determine naturally occurring wildfire derived charcoal 
stocks in North American boreal forests and compare these to laboratory produced charcoal; and 
3) determine the risk of charcoal additions priming the decomposition of boreal soil organic 
matter.  

A review of the literature of boreal soil charcoal studies found wildfires convert 0.7-2% 
of biomass to charcoal, with charcoal in boreal soils accounting for 1 Pg of carbon globally. 
Charcoal is highly aromatized and represents a form recalcitrant carbon, with half-lives one to 
two orders of magnitude greater than other soil organic matter, being able to remain onsite for 
millennia. However, due to a lack of soil mixing processes, charcoal in boreal soils is vulnerable 
to re-combustion in recurring fires, inhibiting the accumulation of charcoal over time, unlike in 
other fire prone ecosystems. Boreal charcoal stocks appear to be highly variable, depending on 
the intensity of fire. Increased fire intensity results in greater charcoal formation. Charcoal stocks 
in this thesis were 2-3 times greater than those reported for other boreal ecosystems where non-
stand replacing fires are the predominant disturbance; suggesting global estimates of boreal 
charcoal carbon stocks may need to be revised upwards to account for greater wildfire intensity 
in North American boreal forests. Within boreal forests, charcoal is an important driver of soil 
function, stimulating microbial activity and nitrogen mineralization and decreasing phenolic 
concentrations. High productivity in post-fire stands has been attributed in part to the presence of 
active, newly produced charcoal that helps to reverse long term declines in productivity with 
increasing time since fire. Changes in carbon content and chemical composition, however, occur 
over time, especially in the first ~100 years.  

The charcoal content of 75 soil cores 10 cm in diameter was measured to a depth of 10 
cm along a chronosequence of five post-fire ages from boreal forests ~ 150 km north of Thunder 
Bay, Ontario. Charcoal particles > 0.25 mm were counted manually from each soil core. 
Charcoal stocks ranged from 2.30 to 5.20 Mg ha-1, with an average carbon content of 53%. 
Charcoal carbon stocks ranged between 1.11 and 2.80 Mg C ha-1 with a mean of 2.19 Mg C ha-1 

Young wildfire charcoal was found to be primarily aryl carbon with smaller amounts of alkyl-C, 
O-Alkyl, and methoxyl groups. Over the course of a 208 year chronosequence carbon density 
declined from 56 to 46%, with charcoal greater than 140 years old almost entirely aryl carbon. In 
the absence of fire, charcoal may lose many important properties and carbon content, 
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contributing to declining productivity with increasing time since fire. Laboratory produced 
charcoal between 300 and 350 °C was comparable to wildfire charcoal, suggesting that it may be 
possible to replicate wildfire charcoal properties. In the absence of fire, management of boreal 
charcoal stocks may be required to maintain ecosystem function and carbon balance. 

Boreal forests soils are a globally significant carbon stock. By increasing soil microbial 
activity, charcoal additions to boreal soils may increase mineralization of soil organic matter, 
potentially releasing large amounts of CO2, and offsetting soil carbon additions from charcoal. A 
soil microcosm experiment was used to investigate the effects of soluble and non-soluble 
charcoal components on soil respiration for soils with high and low organic matter. Charcoal was 
not found to increase the decomposition of soil organic matter. Increases in soil respiration were 
short lived and detected at only the highest amendment levels, likely the result of the breakdown 
of labile charcoal components and not organic matter. Application rates similar to those resulting 
from wildfires were not found to result in increased respiration. Soluble components of charcoal 
increased soil respiration in the presence of organic matter, but the effect was mitigated by the 
presence of charcoal in the soil.  

Charcoal in boreal soils contributes significantly to soil carbon balance, acting as an 
important carbon stock. Charcoal stocks in this thesis were found to be sufficient to have a 
meaningful effect on soil and ecosystem processes. At these levels charcoal does not appear to 
present a risk to increased mineralization of existing soil organic matter. As a result charcoal 
additions similar to those occurring from wildfires are recommended as a starting point in boreal 
charcoal management. Incorporation of charcoal into ecosystem management using prescribed 
burns may contribute to sustainable management of boreal forests and maintaining global carbon 
cycles.    

Keywords: charcoal, boreal forest, climate change, forest management, prescribed 
burn, soil carbon, wildfire 
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1 General introduction 
Fire is a major driver of ecosystem processes, initiating stand succession and driving carbon and 

nutrient cycling through the mineralization of living and dead organic matter (Brais et al. 2000; 

Weir et al. 2000; Stocks et al. 2003). Between 0.7-2% of consumed biomass, however, is 

converted to charcoal (Czimczik et al. 2003; Lynch et al. 2004). Charcoal is carbon rich, 

composed primarily of aromatic carbon (Figure 1.1), with a high C:N ratio, and is highly 

resistant to decay. Charcoal, also known as biochar, is part of the black C continuum, which 

includes all carbon rich residues from fire or heat, including carbonaceous residues and 

condensates such as soot (Figure 1.2). Charcoal generally refers to particulate carbonaceous 

residues, while more soluble components are referred to as black carbon (Figure 1.2). Like most 

forms of black carbon charcoal is highly recalcitrant with mean residence times of thousands of 

years (Kuhlbusch & Crutzen 1995; Lehmann et al. 2008). Because of this, charcoal production 

and sequestration in soils has been promoted as an important management tool for carbon 

sequestration and ecosystem sustainability (Read & Lermit 2005; Lehmann 2007; DeLuca & 

Aplet 2008).  
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Figure 1.1 Basic structural units of charcoal (Schmidt & Noack 2000).  

 

 

Figure 1.2  Black carbon combustion continuum (Masiello 2004).  
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Charcoal is present in all soils where fire is a common feature of the landscape 

(Kuhlbusch et al. 1996; Fearnside et al. 2001; Ohlson et al. 2009). Use of charcoal as a soil 

amendment in Amazonian dark earth dates back thousands of years (Lima et al. 2002). 

Nevertheless, despite its ubiquity, the role of charcoal in soil and ecosystem processes has only 

recently received increased attention with a number of studies finding increases in nutrient 

availability and productivity, reduced nutrient leaching, increased soil carbon content, and 

increased organic matter stability from charcoal additions (Liang et al. 2006; Chan et al. 2007; 

Van Zwieten et al. 2010).  

Within the boreal forest charcoal represents an important carbon stock making up 1PG of 

soil carbon globally, equivalent to 8-10% of soil carbon, in the forest floor and upper mineral 

horizons (Ohlson et al. 2009). Charcoal also plays an important role in soil function by 

stimulating microbial activity and nitrogen mineralization and decreasing phenolic 

concentrations (Zackrisson et al. 1996; Wardle et al. 1998; Pietkäinen et al. 2000). Increased 

nutrient availability in post-fire stands compared to post-logged stands has been attributed to the 

presence of active charcoal stocks adsorbing base cations, inhibiting leaching from the forest 

floor (Thiffault et al. 2008). High productivity in post-fire stands has been attributed in part to 

the presence of active, newly produced charcoal, helping to reverse long term declines in 

productivity with increasing time since fire (DeLuca et al. 2002; Wardle et al. 2004). Charcoal 

also likely affects species composition as species differ in their response to charcoal, with some 

species exhibiting greater growth responses (Wardle et al. 1998; Thiffault et al. 2007). 

Boreal carbon stocks are globally significant, accounting for roughly 50% of global 

carbon stocks, the majority of which is found in the soil (Bradshaw et al. 2009; Malhi et al. 

1999). Increased temperatures resulting from climate change are expected to increase 
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decomposition of boreal soil carbon. As a result,  boreal soils may become net carbon sources as 

decomposition of labile carbon stocks increases due to warmer soil temperatures, potentially 

releasing 30-60 PG of carbon by 2040 (Goulden et al. 1998; DeLuca & Boisvenue 2012). By 

maintaining a recalcitrant carbon stock in the form of charcoal, some soil carbon may be less 

vulnerable to increased decomposition with increased soil warming. In Australia, soil carbon 

models have been found to overestimate the response to soil warming by up to 15% when 

charcoal stocks were not included (Lehmann et al. 2008).  

Fire frequency in managed boreal forests has decreased due to fire suppression and forest 

fragmentation (Weir et al. 2000; Bergeron et al. 2004; Lefort et al. 2004; Senici et al. 2010) 

leading to declining productivity in many forest stands, and preventing the renewal of active 

charcoal stocks (Wardle et al. 1998; DeLuca et al. 2002). Increased interest in biofuels has 

further increased the risk of excessive nutrient removals from boreal forests (Thiffault et al. 

2010). Charcoal management has been proposed as a measure to mitigate negative effects of fire 

suppression, biomass removal and climate change on ecosystem productivity. Maintenance or 

addition of active charcoal to the forest soils could potentially increase the resistance of soil 

organic matter to soil warming, while decreasing the risk of nutrient removal (Zackrisson et al. 

1996; Thiffault et al. 2008). Hence, charcoal management could be used to improve the 

sustainability of boreal forest management, while also potentially sequestering carbon in a highly 

stable form. 

Nevertheless, concerns have been raised over risks to boreal SOC from the stimulating 

effects of charcoal additions. Wardle et al. (2008) found charcoal additions to Scandinavian 

boreal soils enhanced soil organic matter decomposition by improving nutrient availability, 

increasing pH and promoting microbial activity. However, humus loss may be the result of short 
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lived labile-carbon and soluble mineral fractions present in charcoal that may prime the 

decomposition of neighbouring organic matter as well as contribute to mass loss themselves 

(Lehmann & Sohi 2008). A number of studies actually report negative priming of soil organic 

matter by charcoal (Liang et al. 2010; Kimetu & Lehmann 2010), with  increases in respiration 

attributed to short term mineralization of labile charcoal fractions (Liang et al. 2010, 

Zimmerman et al. 2011). Glucose additions are a known cause of substrate induced priming of 

organic matter decomposition, as well as that of charcoal (Hamer et al. 2004; Blagodatskaya & 

Kuzyakov 2008). As well, newly produced charcoal undergoes short term mass loss as labile 

compounds are mineralized; removal of these soluble components, by leaching charcoal, has 

been found to result in a 50% reduction of CO2 evolution from soils amended with the leached 

charcoal (Jones et al. 2011), suggesting that these effects may be very short lived. As a result, a 

better understanding of interactions of soluble and insoluble charcoal components with boreal 

soil organic matter is imperative in order to minimize risks to other soil organic matter stocks. 

Maintaining productivity and carbon balance is critical to sustainable management of 

boreal forests. Boreal charcoal management is a potentially valuable tool for addressing long 

term issues of global carbon cycles and sustainability of forest management. However, a proper 

understanding of boreal charcoal stocks is imperative for successful application.  The objectives 

of this thesis were to 1) review the state of knowledge of charcoal in boreal ecosystems with an 

emphasis on charcoal stocks across all boreal ecosystems, and charcoal stability over time; 2) 

determine wildfire charcoal stocks in North American boreal forests in order to estimate 

landscape charcoal stocks, how charcoal properties and carbon content change with increasing 

time since fire, and how wildfire charcoal compares to laboratory produced charcoal; and 3) 
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examine the interactions of charcoal with boreal soil to determine if charcoal additions present a 

risk of priming the decomposition of boreal soil organic matter.  
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2 Charcoal function and management in boreal ecosystems  
 

2.1 Introduction 
Fire is the dominant disturbance force in most boreal forests. Fire return intervals of 100-700 

years drive successional processes and nutrient cycling through rapid mineralization of living 

and dead organic matter (Bergeron et al. 2001; Stocks et al. 2003; Weir et al. 2000; Zackrisson 

1977). Although most carbon is mineralized as CO2, a small portion is pyrolized into charcoal 

(Lynch et al. 2004).   

Charcoal in boreal forest soils has long been used as evidence of stand origin and historical 

disturbance patterns (Carcaillet & Talon 2001; Cyr et al. 2005). High recalcitrance of charcoal 

allows carbon dating of stand disturbances over millennia (Couillard et al. 2013; Cyr et al. 2005; 

Gavin 2003). Despite the ubiquity of charcoal in boreal soils, however, it has rarely been 

included as a meaningful component of soil function and carbon storage, leading to questionable 

assessments of the susceptibility of boreal carbon stocks to climate change (Kuhlbusch & 

Crutzen 1995; Lehmann et al. 2008), and omitting a meaningful component of boreal soil 

function (Wardle et al. 1998).    

Charcoal production via pyrolysis of waste biomass has been promoted as a carbon 

negative biofuel based on its origin, soil amendment properties, and resistance to decay 

(Lehmann 2007b; Read & Lermit 2005). Increased interest in biofuels, maintaining stand 

productivity and natural ecosystem processes make management of boreal charcoal stocks a 

potentially valuable component of boreal ecosystem management.  

The role of charcoal in boreal soils has received increased attention in recent years with 

studies showing charcoal increases microbial biomass (Pietkäinen et al. 2000; Zackrisson et al. 



8 

1996), nitrification (DeLuca et al. 2006; DeLuca, Nilsson and Zackrisson 2002), phenolic 

adsorption (Berglund, DeLuca & Zackrisson 2004), and tree growth (Wardle, Zackrisson & 

Nilsson 1998). While charcoal quantity varies across boreal landscapes, it remains a meaningful 

fraction of the carbon pool (Ohlson et al. 2009).  In this paper we review the role of wildfire 

charcoal in boreal ecosystems with an emphasis on boreal carbon budgets, ecosystem 

productivity, and implications for forest management.  

2.2 Properties and role of charcoal in boreal soil function  
Charcoal has a high initial carbon density (70-85%) relative to typical woody biomass (<50%), 

and is primarily made up of irregularly arranged aromatic rings, with a highly porous structure 

(Amonette & Joseph 2009; Boateng 2007). Aromatic structures are very stable and are 

responsible for the recalcitrance of charcoal (Glaser & Haumaier 2001; Schmidt & Noack 2000). 

Surface oxidation of aromatic rings results in carboxylation, creating large numbers of negative 

charged sites (Hockaday et al. 2006; Liang et al. 2006). Negative surface charges increase cation 

exchange capacity (Liang et al. 2006; Qiu et al. 2008); increasing adsorption of cations and 

phosphorus, and reduces nutrient leaching from the forest floor (Laird et al. 2010).  Retention of 

nutrients by weak adsorption to charcoal surfaces and high fungal penetration of charcoal pores 

readily allows subsequent uptake by plants and fungi (Prendergast-Miller et al. 2011), increasing 

biomass production and ecosystem nutrient retention (Kolb et al. 2009).  Organic compounds are 

also readily adsorbed by charcoal (Yu et al. 2006), creating ideal sites for fungi and bacteria to 

access desired substrates (Pietkäinen et al. 2000).  

High porosity results in large surface areas up to 2500 m2·g-1 (Cherimisinoff & Ellerbusch 

1978) or 3.6 x 109 m2·ha-1 (Zackrisson et al. 1996), large numbers of reactive sites and high 

penetration by fungal hyphae (Figure 2.1). High porosity also helps to increase water retention in 
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coarse soils while decreasing bulk density in fine textured and compacted soils (Busscher et al. 

2009).  

In boreal soils, charcoal helps to maintain stand productivity and nutrient cycling. 

Increased retention of Ca and Mg in post-fire stands has been attributed to adsorption by 

charcoal (Brais et al.  2000). Schulze et al. (1999) observed tree roots growing in a solid mat in 

charcoal layers in Siberian boreal forests. Experimental additions of charcoal to boreal soils have 

found increased rates of nitrogen mineralization and nitrification (DeLuca et al. 2006; DeLuca, 

et al. 2002), adsorption of phenolic compounds (Wardle et al. 1998), and increased rates of 

microbial activity, leading to greater dissolved carbon uptake (Pietkäinen et al. 2000).  

Increases in phenolic compounds and decreases in nitrogen mineralization in older forest 

stands are associated with decreased stand productivity and lower growth rates in forests 

regenerating after harvest than those after fire (Zackrisson et al. 1996). Charcoal additions to 

boreal soils can also have pronounced effects on vegetation communities and tree growth. In an 

experimental addition of charcoal to ericaceous dominated boreal soils Wardle et al. (1998) 

found little response in the growth of Pinus sylvestris, but growth and nitrogen uptake in birch 

were significantly greater. Changes in understory plant populations were also noted, with many 

species absent from ericaceous sites establishing and growing well following charcoal addition. 

Changes in vegetation communities owing to absence of fire derived charcoal may have long 

term consequences for species composition and ecosystem productivity as well as carbon 

cycling, by shifting vegetation communities to late successional communities lower in 

productivity and nutrient cycling (Wardle et al. 2004; Wardle et al. 1998).  
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Figure 2.1. Wildfire charcoal originating from fires in 1987 (A + C), 1966 (B), and 1647 (B). 
Note high level of fungal hyphae colonisation in oldest charcoal (B). Scale bars 10 µg 
(Zackrisson, Nilsson & Wardle 1996). 

2.3 Charcoal formation 

In boreal forest fires, the majority of burned organic matter is consumed, with only 0.7-2.0% of 

initial organic matter converted to charcoal. Similar conversion rates are reported in other 

ecosystems (0.6 – 2.7%) (Table 2.1). Variation in charcoal conversion rates is influenced by fire 

temperature, burn time, and the type and size of fuels (Czimczik et al. 2005; Demirbas 2004; 
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Demirbas 2006). Charcoal is formed by the incomplete oxidation of organic matter heated to 

temperatures that drive off volatile elements such as N, S, and O, resulting in increased carbon 

density of the remaining organic matter (Demirbas 2008). Comparison of laboratory produced 

charcoal with charcoal from vegetation fires in Australia found similar properties for charcoal 

produced at 450 °C (Fernandes et al. 2003) lower than typical wildfire temperatures, reflecting 

pyrolysis temperature, not actual wildfire temperatures. 

Heating organic matter under limited oxygen exposure increases rates of charcoal 

formation. Therefore, it is possible that rapidly moving, high temperature fires may increase 

charcoal formation rates by reducing the overall time during which organic matter can fully 

combust (Butler et al. 2004).  This is especially true for large tree limbs, boles, and downed 

woody debris, which have large volumes with less exposure to oxygen. Tinker and Knight 

(2000) found 8% of coarse woody debris (diameter > 7.5cm) was converted into charcoal, 

compared to typical rates of 0.6-2.7% for all organic matter (Table 2.1).  Fuel stocks with higher 

carbon densities and complex carbon structures will result in greater charcoal conversion rates. 

For example, conifer wood, which has high lignin content, would have greater charcoal 

conversion rates than other forms of organic matter such as grasses (Demirbas 2001a; Demirbas 

2001b). High lignin composition also increases the aromaticity of charcoal, potentially 

increasing long term stability of boreal charcoal (Bruun et al. 2008).  
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Table 2.1. Charcoal (char) or black carbon (BC) formation and storage in different fire prone ecosystems.  
                  Numbers in bold denote calculated stocks using a carbon density of 53% (Ohlson et al. 2009). 

Ecosystem 
 

Method   
% Char 
or BC of 

fuel 

Char or BC 
from fire 

(Mg∙C·ha-1) 

Char or BC 
from fire 
(Mg∙ha-1) 

Reference  
 

Boreal  2 0.58 1.10 Lynch et al. 2004 

Boreal 
Charcoal 

- 0.77 1.45 Ohlson et al. 2009  (0 – 2.22) 4.19 
Boreal BC  0.7 - - Czimczik et al. 2003 
Boreal BC  - ≤0.72 ≤1.36 Czimczik et al. 2005 
Boreal Charcoal - 0.13 0.24 Ohlson & Tryterud 2000 

Boreal 
 

- 1.32 2.49 Rosengren 2000 Charcoal 0.45-2.86 (0.85-5.40) 
Boreal BC - 1.70-3.40 3.21-6.42 Kane et al. 2010 
Boreal Charcoal - 0.52-1.10 0.98-2.07 Zackrisson et al. 1996 
Tropical savannah BC 0.6-1.5 0.28 - Kuhlbusch 1996 
Tropical slash and burn BC - 2.57 - Rumpel et al. 2006 
Tropical slash and burn BC 1.8 4.30 - Fearnside et al. 2001 
Tropical slash and burn BC 2.7 3.50 - Fearnside et al. 1993 
Temperate savannah BC - 1.0-15.0 - Glaser & Amelung 2003 

*All charcoal quantified visually from particles > 0.5mm; BC quantified using a variety of oxidation and NMR techniques. 
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2.4 Charcoal stability 
Fire acts as a driver of long-term carbon sequestration in forest ecosystems (DeLuca & Aplet 

2008). Stand replacing fires, acting on large amounts of biomass, increase charcoal formation, 

though, not necessarily conversion rates (Rosengren 2000). However, non-stand replacing fires, 

often occurring at shorter intervals and combusting less material, may result in similar amounts 

of charcoal accumulation over long time periods due to short fire return intervals (DeLuca & 

Aplet 2008).  Evidence of the interaction of time, repeated fires and relatively small amounts of 

combustible material resulting in significant charcoal accumulations can be found in grasslands 

where charcoal amounts are similar to those reported for forest ecosystems, despite much smaller 

above ground biomass (Table 2.1).  A similar tendency to accumulate charcoal over time, 

however, does not appear to occur in boreal forests, where charcoal levels are less than expected, 

given fire frequency and fuel loads (Ohlson & Tryterud 2000; Preston & Schmidt 2006).   

Anthropogenic charcoal in Amazonian black earths has been found to be thousands of 

years old; also true of charcoal in European chernozemic soils (1160-5040 years) (Schmidt 2002) 

and coastal temperate rain forests (up to 12 000 years) (Gavin 2003). Most charcoal in boreal 

soils, however, has been dated to only a few hundred years, suggesting it may be less stable than 

in other ecosystems (Ohlson et al. 2009; Preston & Schmidt 2006). Charcoal conversion rates 

reported for boreal forests are similar to those of other ecosystems (Table 2.1). Despite very 

different fuels (wood, grass, mosses, lichens, herbs, etc.), the proportion of biomass converted to 

charcoal appears to be independent of the ecosystem. Given the relative frequency of fire in the 

boreal forest and reported conversion rates of 0.7-2.0% of biomass consumed (Lynch et al. 

2004), large amounts of charcoal would be expected.    
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Boreal soils contain comparable amounts of charcoal to other fire prone ecosystems.  

Charcoal amounts of 0.13-3.40 Mg C·ha-1 are reported for boreal ecosystems compared to 0.28-

4.30 for other ecosystems (Table 2.1). One possible exception may be temperate grasslands 

where levels can be as high as 15.0 Mg C·ha-1, possibly owing to high fire frequency and high 

rates of soil turnover from burrowing mammals, protecting charcoal for combustion in 

subsequent fires (Glaser & Amelung 2003).   

It has been suggested that boreal fuels may be less suited to charcoal formation, or that 

charcoal produced in boreal forests is inherently less stable or more readily degraded by soil 

micro-organisms (Ohlson & Tryterud 2000; Preston & Schmidt 2006). This implies a lower 

potential for application to boreal forest soils for the purpose of carbon sequestration, since 

charcoal carbon would not remain sequestered as long as in other ecosystems, thereby limiting 

the benefits of improved soil properties, and reducing the impact of charcoal on boreal soil 

carbon stocks. Using charcoal data from natural forest stands provides the opportunity to assess 

the stability of charcoal in boreal soils. Examination of charcoal stocks reported by Zackrisson et 

al. (1996) and Ohlson (2009) in stands ranging from 2 to 347 years since fire in Scandinavia did 

not indicate a decline in charcoal quantities over time, while Gavin et al. (2003) reported only a 

weak relationship between charcoal abundance and time since fire.   

Stand specific factors (fire intensity, vegetation type, and burning efficiency) probably 

play a much larger role in determining charcoal levels than do time since formation. Rosengren 

(2000) found higher charcoal quantities in Scandinavian forest stands subject to more intense 

fires, the result of more biomass on more productive sites, where more biomass was consumed, 

compared with stands of low intensity ground fires, consuming smaller amounts of biomass. 

Similar results have been found in grassland soils where wetter sites have higher charcoal stocks 
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than dry sites owing to greater biomass and therefore more charcoal produced from fire (Glaser 

& Amelung 2003).  

In North American boreal forests, where crown fires predominate (de Groot 2013), 

charcoal levels may be greater than typical values reported for Eurasian boreal forests, potentially 

resulting in underestimates of charcoal carbon from Ohlson et al. (2009), who projected a 

landscape average of 0.77 Mg C·ha-1 from Scandinavian boreal forests, where ground fires 

predominate (de Groot 2013). Rosengren (2000), who sampled areas subject to both high and low 

intensity fires, found average charcoal stocks of 2.49 Mg C·ha-1. If North American boreal 

charcoal stocks are more representative of those resulting from crown fires, global boreal charcoal 

stocks may have to be revised upwards significantly, possibly by as much as a factor of 2-3. 

Discrepancies between these studies suggest large landscape variation and the need for further 

studies of all boreal regions and stand types to properly quantify boreal charcoal stocks.  

 

2.5 Mechanisms for Charcoal Degradation 

2.5.1 Decomposition 

Laboratory studies report a range of charcoal recalcitrance under controlled conditions, with 

half-lives estimated from 102 to 107 years (Zimmermann 2010; Zimmermann et al. 2012).  Such 

studies, however, have not addressed the range of ecosystem properties that may influence rates 

and modes of decomposition (e.g. texture, soil organic matter, moisture regime, seasonality, soil 

chemistry and biology).  Decomposition is highly variable depending on initial feedstock and 

pyrolysis temperature, with recalcitrance increasing with pyrolysis temperature (Bruun et al. 

2008; Nguyen & Lehmann 2009).  
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Abiotic decomposition is primarily caused by surface oxidation, resulting in the formation 

of carboxylic and hydroxyl groups, leading to large numbers of negatively charged surface sites, 

and a decrease in aliphatic groups (Bruun & Luxhøi 2008). This process takes place over the 

lifetime of the charcoal, but is the dominant mechanism initially. It is driven by rapid oxidation 

of carbonate groups (Jones et al. 2011), occurring more rapidly under well aerated conditions 

promoting surface oxidation (Nguyen & Lehmann 2009). 

Biotic decomposition occurs by microbial mineralization, particularly by fungi, over much 

longer time periods, typically centuries (Hockaday et al. 2006). White rot fungi may be capable 

of decomposing charcoal as they utilize lignicolous substrates and are often found to infiltrate 

charcoal particles in soils (Hockaday et al. 2006; Preston & Schmidt 2006). High C:N ratios and 

aromaticity of charcoal, however, make it difficult for microbes to utilize charcoal as a carbon 

source. Incorporation of charcoal particles into stable soil aggregates, particularly in combination 

with clay particles and oxides, inhibits microbial decomposition (Baldock & Skjemstad 2000; 

Brodowski et al. 2006; Vasilyeva et al. 2011). Over time, however, microbial action results in an 

increase in carboxyl groups and declining aromaticity (Hockaday et al. 2007). As with other 

forms of recalcitrant organic matter, charcoal mineralization rates are increased somewhat by 

soil disturbances typical of agriculture and forest harvesting activities, which increase soil 

temperature and oxygen exposure (Glaser & Amelung 2003; Nguyen & Lehmann 2009). 

Due to colder temperatures, degradation rates within boreal regions are likely to be 

somewhat slower than those of more tropical regions. There is also likely to be high landscape 

variation owing to site factors such as lowlands and permafrost. Charcoal buried in sphagnum 

dominated lowlands has been dated to over 5000 years, probably due in part to the anoxic 

environment, inhibiting decomposition, as well as protection from surface fires (Cyr et al. 2005). 
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Also, permafrost soils have been found to contain large black carbon stocks, which are likely to 

be protected from most forms of microbial and oxidative degradation (Guggenberger et al. 2008; 

Kane et al. 2010). While charcoal typically remains at the organic-mineral soil interface in most 

upland boreal forests, the generally less fire prone sphagnum and permafrost dominated stands 

may have much slower degradation rates and better protect charcoal from combustion.  

 

2.5.2 Particle size and carbon content 

While decomposition of charcoal in boreal soils occurs over extremely long time periods, 

mechanical degradation of charcoal occurs over much shorter periods. Zackrisson et al. (1996) 

measured particle sizes of samples from 12 Pinus sylvestris sites in northern Sweden.  Over the 

first few hundred years after fire, the proportion of particles > 1.6 mm declined from just over 

40% to approximately 20% while the proportion of particles < 0.5 mm and 0.5-1.6 mm  

increased by almost the same amount (Figure 2.2). Charcoal particle sizes in boreal soils, 

however, remain much larger than in other fire prone ecosystems. Rosengren (2000) found over 

94% of particles were greater than 2 mm in size whereas in other fire prone ecosystems particles 

are typically < 53 um (Glaser et al. 2000; Skjemstad et al. 1996); likely a reflection of the type of 

organic matter undergoing pyrolysis (e.g. Wood vs. grasses) as well as the result of greater 

pedoturbation and residence times, owing to protection from re-combustion.  

Carbon content of charcoal declines somewhat over time as more labile carbon fractions 

are oxidized. This process lasts approximately 100 years until charcoal approaches equilibrium 

with C:H ratios of surrounding organic matter (Ohlson et al. 2009); after this, remaining charcoal 

compounds are likely more recalcitrant and decomposition slows considerably (Bruun, Jensen & 

Jensen 2008).     
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Figure 2.2 Change in proportion of charcoal particle size distribution over time. Developed from 
Zackrisson et al. (1996).  

 

2.6 Location and Transport 

Substantial amounts of aerosol black carbon, from vegetation fires and fossil fuel burning, move 

from terrestrial to aquatic pools (Kuhlbusch 1998).  In the humid tropics, transport of charcoal 

offsite can occur from surface water runoff, especially on steep slopes (Rumpel et al. 2006). In 

many boreal regions, however, precipitation is low and run-off following wildfire is minimal, 

with the possible exception of some steep slopes. Furthermore, rapid development of thick 

vegetation and organic matter cover, typical after disturbances, would inhibit charcoal 

movement, making it unlikely significant quantities of charcoal are transported offsite. 

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400

<0.5mm

0.5-1.6mm

>1.6mm

Time since fire (years) 

Pp
ar

tic
le

 si
ze

 (%
) 



19 

Guggenberger et al. (2008), however, report a yearly export of 0.10 g BPCA-BC m-2 from 

permafrost soils at the forest tundra ecotone in Northern Siberia, most of which occurred during 

spring runoff when surface flow was dominant, equivalent to only 0.455-0.003% of BC. 

Immediately following wildfire, Lynch et al. (2004), found only 1% of charcoal was deposited 

more than 20 m from the fire edge, while Ohlson and Tryterud (2000) reported 45% of all 

charcoal particles found away from an experimental fire were within 1 m of the fire edge.  

Downward movement of Charcoal through the soil column appears to be minimal. 

Charcoal readily aggregates with mineral soil particles, stimulating the formation of soil micro-

aggregates (Brodowski et al. 2006). Major et al. (2009) reported only 1% of charcoal had any 

downward movement in a soil in the humid tropics. This amount is similar to amounts of BC 

(Czimczik et al. 2005) and charcoal (Ohlson et al. 2009) found below the organic/mineral soil 

interface in boreal soils. Gavin (2003) found charcoal (> 0.5 mm in size) in mineral soils to 

depths of 30 cm but the majority of samples were within 10 cm of the organic/mineral soil 

interface, with the downward movement attributed to pedoturbation rather than translocation.  

Boreal forest soils lack appropriate soil fauna, large numbers of burrowing mammals, and 

bio-mechanical properties required for extensive pedoturbation. In north temperate soils, sites 

with earthworms have organic matter incorporated much deeper into the mineral soil (Langmaid 

1964). Soil disturbance by native burrowing mammals, ungulates, and frost heaving is limited 

compared to other ecosystems, where soil mixing is often the result of tree up-rooting (Šamonil 

et al. 2010; Schaetzl 1986). While blow-down events are common in boreal forests, stem 

snapping is more prevalent than tree uprooting due to winter conditions such as snow load, 

reducing the role of uprooting in soil turnover in boreal environments (Bergeron et al. 2009; 

McCarthy 2001; Peltola et al. 2000; Pham et al. 2004).    
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Studies of boreal charcoal and black carbon report 99% occurs at the organic/mineral soil 

interface, with only 1% recovered from within the mineral soil (Czimczik et al. 2005; Ohlson et 

al. 2009) (Figure 2.3). Factors inhibiting mixing of organic matter in the upper soil horizons 

inhibit incorporation of charcoal into mineral soil layers (Carcaillet & Talon 2001), possibly 

leaving charcoal vulnerable to re-combustion in subsequent fires. In all but the least severe and 

fast moving fires, the organic layer is prone to combustion, potentially removing the majority of 

the charcoal legacy, replacing it with charcoal from the most recent fire. This prevents charcoal 

accumulation typical of other fire prone ecosystems with more extensive pedoturbation 

mechanisms (grasslands, temperate forests, and tropical anthrosols), where charcoal is moved to 

deeper soil horizons and protected from combustion (DeLuca & Aplet 2008; Glaser & Amelung 

2003; Lehmann et al. 2003). Soil mixing processes, more prevalent in other fire prone 

ecosystems, result in fire acting as a driver of long-term carbon sequestration (DeLuca & Aplet 

2008). This effect is less prevalent in boreal soils due to reduced soil mixing. Nevertheless, by 

converting a portion of ecosystem carbon into charcoal, of which a portion is highly recalcitrant 

black carbon, fire may influence boreal carbon storage by maintaining a highly recalcitrant 

carbon pool. 
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Figure 2.3 Typical occurrence of charcoal particles at the organic-mineral soil interface. Soil 
core collected 150 km north of Thunder Bay, Ontario, Canada, from a 90 year-old fire origin 
Pinus banksiana dominated forest.  

 

2.7 Interaction with soil organic matter 

Although recalcitrant, charcoal is chemically active and interacts with surrounding soil organic 

matter, influencing cycling of non-black carbon in soils. By increasing nutrient availability, 

nitrogen mineralization, and microbial activity, charcoal may prime organic matter 

decomposition, minimizing soil carbon gains from charcoal additions (Berglund et al. 2004; 

Lehmann et al. 2003; Pietkäinen et al. 2000). While charcoal is primarily carbon, partial 

combustion of some organic matter results in an ash fraction present with the charcoal (Glaser et 

al. 2002). Ash contains soluble macro- and micronutrients and is responsible for most of the pH 
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buffering of newly produced charcoal and the availability of base cations (Thiffault et al. 2008). 

Wardle et al. (2008) reported increased humus loss when charcoal amendments were applied; 

however, this effect may be short-lived, and it is not clear if the observed decomposition was 

driven by inherent charcoal properties or the soluble ash component (Lehmann & Sohi 2008). 

Laboratory studies have found short term increases in soil respiration after charcoal additions; 

but this is attributed to mineralization of labile fractions, with no reported soil organic matter loss 

(Cross & Sohi 2011). These effects are also short lived (Luo et al. 2011), with an overall positive 

interaction between charcoal and soil organic matter, leading to decreased soil organic matter 

losses over time (Zimmerman et al. 2011).  

In many cases, however, charcoal inhibits organic matter decomposition by promoting 

soil aggregate formation (Brodowski et al. 2006). High porosity of charcoal, combined with 

large numbers of negatively charged surface sites, provides protected locations for hydrophobic 

organic matter, while also promoting micro-aggregate formation with positively charged soil 

particles, protecting organic matter from microbial oxidation (Baldock & Skjemstad 2000; Liang 

et al. 2010). Amazonian anthrosols, amended with charcoal, have greater soil organic matter, and 

support more microbial biomass (Liang et al. 2006). Laboratory experiments also report greater 

rates of organic matter integration in soils amended with charcoal (Liang et al. 2010). It has been 

shown that soil respiration in charcoal amended soils is lower, with any increase in respiration 

attributed to short lived mineralization of labile fractions (Zimmerman et al. 2011). Although 

effects vary somewhat over time, as well as with charcoal type, most studies report a slight 

negative priming effect of charcoal on soil organic matter, suggesting that charcoal may stabilize 

other soil organic matter stocks (Cross & Sohi 2011; Zimmerman et al. 2011).  
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2.8 Role in boreal carbon budget 
Although a relatively small component of overall ecosystem carbon (~1%) charcoal can 

comprise up to 8-10% of soil carbon, the largest repository of ecosystem carbon (Ohlson et al. 

2009). Based on boreal forest sites in Scandinavia, Ohlson et al. (2009) have estimated boreal 

forest charcoal to comprise 1 Pg of carbon.  There are concerns over the vulnerability of boreal 

soil carbon stocks to climate change and increased fire frequency and intensity (Balshi et al. 

2009); by acting as a highly stable carbon stock, charcoal plays an important role in maintaining 

boreal carbon stocks (DeLuca & Aplet 2008).  

To date, however, charcoal is not included as a separate pool most soil carbon models. 

Given its recalcitrance over other carbon pools, omissions of soil charcoal may result in an 

overestimation of the vulnerability of forest soil carbon to climate change. Lehmann et al. (2008) 

found soil climate models may over estimate soil carbon climate feedback by up to 15% in 

Australian soils. Interactions with SOM may further decrease soil responses to warming, by 

protecting labile organic matter from microbial decomposition (Brodowski et al. 2006). 

Inclusion of charcoal in soil carbon models is imperative in order to accurately model soil carbon 

responses to changes in climate, fire regimes, and forest composition. 

 

2.9 Charcoal management 
Loss of active charcoal properties may contribute to declining stand productivity with increasing 

time since fire (DeLuca et al. 2002; Wardle et al. 1998).  Wildfire renews charcoal stocks, 

helping to restore soil function (Zackrisson et al. 1996).  Globally, there are over 14.4M km2 of 

wooded boreal forest, of which almost 8.2M km2 have been harvested at least once (Burton et al. 

2003), creating a large area of industrially impacted forest. Within managed boreal forests, fire 
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frequency has been reduced over the past century due to forest fragmentation and fire 

suppression (Bergeron et al. 2004; Berglund et al. 2004; Weir et al. 2000). Replacement of fire 

with forest harvesting in many parts of the boreal forest may prevent the renewal of active 

charcoal stocks, and may increase mineralization of existing stocks through soil disturbance, as 

well as reducing negative priming effects of charcoal on other soil organic matter (Thiffault et al. 

2008). Resulting reductions in forest productivity may further lead to a reduction in carbon 

sequestered in labile stocks (Akselsson et al. 2005). Management of boreal charcoal stocks may 

be required to maintain forest soil carbon, soil function, and stand productivity. 

Increased interest in biomass harvesting for biofuels has raised concerns over excess 

organic matter and nutrient removals, potentially leading to a decline in soil carbon and long-

term productivity (Thiffault et al. 2010). Combining bioenergy with charcoal production and 

application has been proposed as a means of maintaining soil function and carbon stocks while 

producing energy from a renewable source (Lehmann 2007a; Read & Lermit 2005). Charcoal 

management could offset increased losses of more labile organic matter associated with climate 

warming (Davidson & Janssens 2006; Knorr et al. 2005).  The ability to tailor charcoal 

properties offers the potential to manage specifically for phenolic adsorption, carbon 

sequestration or nutrient retention (Novak et al. 2009a). 

Manual charcoal additions have been proposed in agricultural and agroforestry settings as 

a means of increasing productivity while also sequestering large amounts of carbon in soils 

(Lehmann 2007b; Read & Lermit 2005). These approaches, involving incorporation of charcoal 

into soils are unlikely to be practical in most boreal settings. Intense soil disturbances would be 

highly disruptive to other ecosystem processes, negating the benefits of increased charcoal 

function and carbon storage. The vast scale and relative remoteness of most boreal forests are 
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also likely to make intense management practices cost-prohibitive in all but intensively managed 

plantations.  

Incorporation of fire in boreal forest management may help to maintain active charcoal 

stocks. Large amounts of forest residues remain after forest harvesting. Prescribed burning of 

logging residues has the potential to renew charcoal stocks. Peltola et al. (2011) report an 

average of 33.1 Mg·ha-1 of logging residues across a range of Picea dominated sites in Finland. 

Assuming a charcoal conversion rate of 0.7-2% and carbon density of 53% for charcoal, burning 

logging residues would produce 0.12-0.35 Mg C·ha-1, roughly equivalent to levels recorded for 

ground fires in Scandinavian studies, although less than levels recorded for higher intensity 

crown fires (Table 2.1), reflecting lower amounts of consumed biomass in non-stand replacing 

fires. Charcoal from burning slash would nevertheless represent a significant long-term carbon 

stock and is of sufficient levels to contribute meaningfully to soil function.   

In view of the important contribution of wildfire charcoal to carbon balance and 

ecosystem function it is imperative that fire be viewed as playing a critical role in long term 

ecosystem productivity. Incorporating wildfire into large scale boreal forest management may be 

of benefit in addressing the long term sustainability of boreal forest management.  

2.10 Conclusions 
Charcoal is an important component of boreal soils. Charcoal formation rates are similar to those 

of other ecosystems with 0.7-2% of overall biomass converted to charcoal. The vast majority of 

fire-derived charcoal remains onsite at the organic/mineral soil interface where it undergoes a 

series of important changes over the first few hundred years, until a relative equilibrium is 

reached with surrounding organic matter. A lack of soil mixing in boreal ecosystems makes 

charcoal vulnerable to combustion during fire, inhibiting a build-up of charcoal stocks over time. 
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In the absence of re-burning, however, portions of boreal charcoal can remain onsite for 

hundreds to thousands of years, making up a meaningful component of soil organic matter, 

contributing to soil function, and acting as a stable fraction of the soil carbon pool. Nevertheless, 

some important charcoal properties, which contribute to initial post-fire productivity, are 

relatively short lived, resulting in a loss of charcoal function with increasing time since fire—

contributing to declining stand productivity over time. Maintaining active charcoal stocks is 

imperative for long term sustainability of boreal ecosystems.   

Management of boreal forest charcoal stocks may be necessary and advantageous in the 

absence of fire and decreased organic matter inputs due to forest harvesting. Managing boreal 

soil charcoal stocks has the potential to maintain soil function and the soil carbon pool. 

Incorporating fire into boreal forest management through the use of prescribed burns and 

wildfire is imperative to maintain future carbon stocks, long term productivity, and ecosystem 

function. It is imperative that the role of charcoal in boreal ecosystem function be fully 

understood. Future research needs include quantifying charcoal stocks across all boreal regions, 

positive and negative priming effects of charcoal, effects on forest productivity, phenolic 

adsorption, charcoal formation rates from different biomass stocks, the proportion of charcoal 

that is recalcitrant, and methods to replicate wildfire charcoal properties. Maintaining active 

boreal forest soil carbon stocks is imperative in the face of intense forest harvesting, fire 

suppression and climate change.  
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3 Charcoal carbon pool in North American boreal forests  

3.1 Introduction  

Wildfire is the principal disturbance force in much of the boreal forest. Fire return intervals 

between 100 and 700 years drive boreal ecosystem function by initiating stand succession and 

releasing nutrients through rapid mineralization of organic matter (Brais et al. 2000; Weir et al. 

2000; Bergeron et al. 2001; Stocks et al. 2003). While most organic matter consumed by 

wildfires is completely mineralized, substantial amounts of charcoal are also produced through 

incomplete oxidation (Kuhlbusch and Crutzen 1995; Ohlson & Tryterud 2000). With a high 

carbon to nitrogen ratio and primarily aromatic structure, charcoal is very resistant to decay, 

representing a long-lived carbon stock (Skjemstad et al. 1996). In fire prone ecosystems charcoal 

comprises by far the oldest carbon pool, contributing to long term carbon storage (Krull et al. 

2006).  

Charcoal plays an important role in boreal soil processes, increasing cation exchange 

capacity, nutrient retention and nitrification, while mitigating the effects of phenolic compounds 

(Nilsson & Zackrisson 1992; Zackrisson et al. 1996; Wardle et al. 1998; Pietkäinen et al. 2000; 

DeLuca et al. 2002). In boreal Siberia tree roots have been reported growing within the charcoal 

layer (1999). Charcoal stocks in boreal forests range from 0 to 2.22 Mg·C·ha-1, with a landscape 

average for Scandinavia of 0.77 Mg C·ha-1 (Zackrisson et al. 1996; Ohlson et al. 2009), 

comprising 3-13% of soil organic matter (Dai et al. 2005; Rumpel et al. 2006). Ohlson et al. 

(2009) estimated boreal charcoal stocks globally of 1 Pg, equivalent to as much as 1% of all 

vegetation carbon in boreal forests. The majority of studies of boreal charcoal stocks, however, 

are from European and Eurasian boreal forests where wildfire tends to be non-stand replacing 

(Zackrisson 1977; Wirth et al. 1999). In North American boreal forests, where crown fires 
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predominate (Johnson 1992), charcoal levels may be much greater, as more biomass is consumed 

in stand replacing wildfires, likely producing greater amounts of charcoal, potentially resulting in 

underestimates of soil charcoal carbon to date.   

By acting as a recalcitrant carbon stock, charcoal can impact soil carbon balance. Lehmann 

et al. (2008) found soil climate models overestimated climate feedback in Australian soils by 

15% when failing to include charcoal stocks. Boreal soil carbon stocks are important for global 

carbon balance and there is concern that climatic warming may destabilize these stocks (Goulden 

et al. 1998). Incorporation of accurate charcoal stocks into boreal soil climate models would aid 

in properly modeling boreal soil carbon feedback (Krull et al. 2006; Lehmann et al. 2008, 

DeLuca & Boisvenue 2012).  

Anthropogenic charcoal in Amazonian black earths can be thousands of years old, as can 

charcoal in European chernozemic soils (1160-5040 years) (Schmidt 2002) and coastal temperate 

rain forests (up to 12 000 years) (Gavin 2003). Most charcoal in boreal forests, however, has 

been dated to only a few hundred years, suggesting it may be less stable than in other ecosystems 

potential decreasing the relative impact on soil carbon balance (Preston & Schmidt 2006; Ohlson 

et al. 2009). Boreal forest soils lack appropriate soil fauna, large numbers of burrowing 

mammals, and bio-mechanical properties required for extensive pedoturbation and as a result 

have lower rates of soil turnover (Schaetzl 1986; Šamonil et al. 2010). While blow-down events 

are common in boreal forests, stem snapping is more prevalent than tree uprooting, further 

reducing the role of uprooting in soil turnover in boreal environments (Peltola et al. 2000; 

McCarthy 2001; Pham et al. 2004; Bergeron et al. 2009).    
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Studies of boreal charcoal report 99% of the charcoal occurs at the organic/mineral soil 

interface, with only 1% found within the mineral soil (Czimczik et al. 2005; Ohlson et al. 2009). 

Factors inhibiting mixing of organic matter in the upper soil horizons inhibit incorporation of 

charcoal into mineral soil layers (Carcaillet & Talon 2001), leaving charcoal vulnerable to re-

combustion in the next wildfire (Gavin 2003), replacing it with charcoal from the most recent 

fire; preventing charcoal accumulation typical  of other fire prone ecosystems (grasslands, 

temperate forests, and tropical anthrosols), where charcoal is moved to deeper soil horizons and 

protected from combustion (Lehmann et al. 2003; Glaser & Amelung 2003; DeLuca & Aplet 

2008). Carcaillet (2001) reports similar lack of charcoal incorporation in high elevation soils in 

the Alps where appropriate fauna for pedoturbation are similarly lacking.  

In recent years, charcoal resistance to decay and important soil conditioning properties has 

led to interest in managing soil charcoal content to increase carbon sequestration while 

improving soil properties (Read & Lermit 2005; Lehmann 2007b). In many parts of the boreal 

forest increased fire suppression, forest fragmentation, and timber extraction have lengthened 

fire return intervals (Zackrisson 1977; Weir et al. 2000; Bergeron et al. 2004; Senici et al. 2010), 

inhibiting the creation of new charcoal stocks, while further decreasing carbon sequestration by 

reducing the amount of carbon stored in living biomass as well as reducing organic matter inputs 

from litter-fall (DeLuca et al. 2002; Akselsson et al. 2005). Additions of charcoal to boreal soils 

have been found to reverse retrogressive succession and improve stand productivity (Wardle et 

al. 1998). In the absence of wildfire as a dominant disturbance force, management of boreal soil 

charcoal stocks may be necessary to help maintain ecosystem processes and carbon balance. 

Understanding boreal soil charcoal stocks and how they change over time is critical for 

accurate carbon accounting, climate feedback modeling, and forest management. In this study 
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charcoal stocks from North American boreal forest soils of known post-fire ages were studied to 

determine the role of charcoal in the boreal carbon budget as well as the potential of charcoal 

application. It was hypothesized that North American boreal charcoal stocks would (1) be greater 

than those in Eurasian boreal forests; (2) be relatively stable over time; (3) exhibit changes in 

properties over time; and (4) have similar properties to charcoal produced in the laboratory.   

3.2 Methods 

3.2.1 Soil charcoal stocks  

Charcoal stocks were quantified from sites representing a post-fire gradient of time since fire. A 

chronosequence of sites with similar parent material and topographic conditions was used to 

study charcoal stocks over a period of 14-208 years. This method is suitable for studying 

characteristics more likely to be related in a predictable and temporally linear matter (e.g. 

accumulation of organic matter or species richness versus species abundance or composition) 

(Walker et al. 2010). Charcoal stocks are formed from wildfire events and, as a result, would be 

expected to degrade and decline, however slowly, with increasing time since formation 

(Zackrisson et al. 1996). 

Soils were collected from sites of known fire history (see Hart & Chen 2008), 

approximately 150 km north of Thunder Bay, Ontario (48°22’56” N; 89°14’46” W). This region 

is typified by stand replacing wildfires with a fire frequency of roughly 100 years (Senici et al. 

2010). The area lies within the central boreal shield ecozone. Coarse, glacially derived brunisolic 

soils of varying thickness overlie Precambrian bedrock. Overstory species composition includes 

Pinus banksiana and Populus tremuloides on younger sites and Picea glauca, P. mariana, Abies 

balsamea and Betula papyrifera on older sites. Understory species communities are relatively 

rich with a moderate herbaceous cover including Maianthemum canadense, Cornus canadensis, 
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Clintonia borealis. Acer spicatum is a dominant understory shrub, while feathermosses are 

dominant in conifer stands. 

 Three sites were sampled from each of five post-fire dates of 14, 32, 90, 144, and 208 

years after stand replacing fire. Each site was sampled using a 20 x 20 m plot in which five soil 

cores 10 cm in diameter were taken at random from each site to a mineral soil depth of 10 cm. 

This depth was deemed sufficient, given that very little soil mixing occurs in boreal soils with 

the majority of charcoal reported from the organic-mineral soil interface and the top 1-2cm of 

mineral soil (Czimczik et al. 2003; Ohlson et al. 2009). From 15 sites, a total of 75 soil cores 

were sampled. The presence of charcoal at the mineral soil surface in boreal soils makes it 

vulnerable to combustion in subsequent fires (Rosengren 2000; Preston & Schmidt 2006). As a 

result, charcoal ages were assumed to be the same as a site’s post-fire stand age.  

Soils were air dried and passed through a 1 mm sieve. All macroscopic charcoal (> 1mm) 

was removed, while remaining soil was homogenized and a 2 cm3 sample passed through sieves 

of 0.5 mm and 0.25 mm to determine microscopic charcoal content.  Sub-samples were placed in 

Petri dishes and charcoal removed manually under a dissecting microscope. The relative 

efficiency of this method was tested by adding known amounts of lightly crushed laboratory 

produced charcoal (a range of particle sizes up to 2 mm), to soils that did not contain any 

charcoal. This method yielded a recovery success greater than 90%. As a result, all charcoal 

recovered from study soils is likely to be a slight underestimation of actual charcoal stocks and 

any landscape scale projections can be considered conservative.  

Charcoal samples were oven-dried and weighed. Fixed carbon, the thermally stable, non-

volatile carbon fraction, content of charcoal was determined using a LECO CNS2000 (LECO 
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Corp., St Joseph, MI).  Carbon, hydrogen and nitrogen content were determined using a CHNS 

Elementar vario EL (Elementar Analysensysteme GmbH, Hanau, Germany). Charcoal weights 

were converted to relative carbon weights in order to determine the amount of carbon 

represented by charcoal. The decay rate of charcoal was determined by modelling changes in 

charcoal weights, carbon concentration, H:C ratio and C:N ratio. Constrained nonlinear 

regression was used to fit curvilinear regression models to the empirical data. Model selection 

was based on the estimation of coefficient of determination (R2) and pattern of residuals. If no 

pattern was observed on predicted values versus residuals, the highest R2 model was accepted. 

Given the prevalence of fire across most of the North American boreal forest (Johnson 1992), 

converting charcoal amounts to a landscape scale, while approximate, is likely a reasonable 

estimate.  

3.2.2 Structure of laboratory and wildfire charcoal  

Charcoal was produced in a laboratory at a range of temperatures (300-400 °C) from Larix 

laricina (Du Roi) K. Koch (tamarack) wood chips packed in 500 cm3 metal canisters and heated 

at a rate of 10 °C/min in a muffle furnace to a maximum temperature and held for one hour. 

Although a common component of boreal forests, L. laricina was chosen because of availability. 

Charcoal samples from each post-fire age were analysed to determine changes in charcoal 

properties over time. 

Solid-state 13C nuclear magnetic resonance (NMR) spectroscopy was used to characterise 

the basic chemical structures of charcoal from a range of stand ages, and from laboratory 

produced charcoal. One composite sample was made for each age class by homogenizing all 

samples from each post-fire age. Samples were sent to the University of Manitoba Chemistry 

NMR lab for analyses. Spectra were done using cross polarization (CP) using a Bruker Advance 
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400 spectrometer operated at a 13C frequency of 128.8 MHz for all analyses. 7-9 mg of charcoal 

was packed into a 2.5 mm diameter cylindrical rotor and spun at 5000 Hz in a Doty Scientific 

magic angle spinning (MAS) probe with a contact time of 3 ms, and an acquisition time of 20.48 

mS. Free induction decay was acquired using a sweep width of 50 kHz. Line broadening for FID 

processing was done at 200 Hz. 

3.3 Results 

3.3.1 Charcoal levels and carbon content 

Large quantities of charcoal were present at all sites sampled. Charcoal stocks ranged from 2.30-

5.20 Mg·ha-1 and averaged 4.09 Mg·ha-1 for all sites within the top 10 cm of the mineral horizon. 

Average carbon concentration for all charcoal was 51.9%. Adjusting for carbon concentration, 

mean charcoal carbon stocks were 2.19 Mg·C·ha-1 (Table 3.1).  

The relationship between time since fire and quantities of charcoal and charcoal C was 

described using a sigmoidal decay curve (Table 3.1). Charcoal quantities did not change within 

the first ~100 years, after which time they began to decrease. Carbon content of charcoal was 

found to have an exponential decay with increasing time since fire (Figure 3.1). Carbon 

concentration declined somewhat over time, from a high of 56.4% in 14 year old stands to 46.5% 

in 208 year-old stands (Figure 3.2).  
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Table 3.1 Results of constrained linear regressions. TSF – Time since fire, in years.  

 

 

 

 

 

 

Carbon content in boreal organic matter is typically between 40-45% (Li et al. 2012; Smith et al. 2000). The carbon content in 

charcoal is unlikely to fall below this level since it will be in equilibrium with surrounding organic matter. The model was, therefore, 

parameterised with a minimum value for carbon content of 40%. The resulting model demonstrated that carbon content approaches 

40% approximately 500-600 years after wildfire, after which time it would be expected to decay at a much slower rate (Ohlson et al. 

2009). 

Variable Type of curve Regression 
MS 

Regression  
df 

Residual  
MS 

Residual  
df 

R2 Function 

Charcoal 
(Mg/ha) Sigmoidal 88.1 3 3.9 12 

0.22 

 
 

 

C density (%) Sigmoidal 25.6 3 1.24 12 
0.25 

 
 

 

C (%) Exponential 13542 3 26 12 
0.32 

 
 

 

H:C Linear 0.034 2 0 13 0.31 
 

C:N Exponential 44884 3 718 12 0.27  

        

Charcoal (
  

  
) 

     

                   

       
  

  
  

     

                 
 

                           

H:C       5.1E-5*TSF 

C:N        165.228*            
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Figure 3.1 Charcoal carbon (Mg·ha-1) in relation to time since fire. Error bars are ±1 SE. Black 
line is a sigmoidal decay curve fitted to the empirical data (see Table 3.1). 

 

The H:C ratio of charcoal (Table 3.2) increased linearly with time since fire (Table 3.1). 

The increase was very moderate over the chronosequence with ratios increasing from 0.73 to 

0.87 (Table 3.2). The C:N ratio, however, dropped significantly during the first few decades, 

more than 50% during the first 30 years, remaining unchanged over the following 200 year 

period, levelling out at a ratio of 86 (Table 3.2); much higher than the 40:1 typical for boreal 

forest organic matter (Smith et al. 2000). 

Laboratory and wildfire charcoal had somewhat different elemental composition (Table 

3.2). Nitrogen content was much lower for laboratory produced charcoal than wildfire charcoal, 

whereas hydrogen content was much greater.  
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Table 2.2. Elemental composition of wildfire and laboratory produced charcoal. Wildfire 
charcoal from five post-fire ages (time since fire - TSF). Numbers in brackets ± 1 SE.  

  N C H S H:C C:N 
Charcoal 
type mg kg-1 mg kg-1 mg kg-1 mg kg-1     

Wildfire 
TSF 

      14 0.46 (0.03) 56.43 (2.27) 3.48 (0.18) 0.08 (0.010) 0.73 (0.01) 143.02 (10.47) 
28 0.63 (0.09) 53.29 (1.99) 3.41 (0.20) 0.10 (0.027) 0.76 (0.02) 102.93 (13.53) 
90 0.57 (0.09) 53.16 (1.73) 3.69 (0.26) 0.07 (0.001) 0.83 (0.07) 113.17 (16.90) 

140 0.68 (0.12) 50.35 (5.41) 3.30 (0.28) 0.10 (0.018) 0.78 (0.04) 98.71 (32.37) 
208 0.63 (0.06) 46.51 (2.90) 3.39 (0.03) 0.10 (0.011) 0.87 (0.05) 88.3 (13.15) 

Laboratory  
      300 °C 0.20 68.22 5.21 0.05 0.91 397.90 

350 °C 0.27 71.43 4.40 0.04 0.73 308.61 
400 °C 0.46 76.57 4.11 0.02 0.64 194.18 

 

  

Figure 3.2 Carbon concentration (%) of charcoal from stands of increasing time since fire. Error 
bars are ±1 SE. 
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3.3.2 Cross polarization 13C NMR  

Solid state CP 13C NMR spectra from charcoal of different post-fire stand ages revealed changes 

in carbon structures over time (Figure 3.3). All charcoal samples had high signal intensities for 

aryl C (129 ppm), revealing a high degree of thermal alteration typical of charcoal.  

Charcoal from 14, 28, and 90 year-old stands was relatively complex. In addition to aryl 

C, charcoal from younger stands had moderate amounts of O-Aryl (143 ppm), O-Alkyl (73 

ppm), methoxyl (55 ppm), and alkyl C (37 ppm), especially in 14 year old stands. In contrast, 

140 and 200 year old stands were almost exclusively aryl C with only small amounts of O-alkyl 

C (Figure 3.3). Changes in charcoal structures between stand ages were characterized by the loss 

of more labile carbon groups, containing more single bonded C as opposed to double bonded aryl 

carbon.  
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 Figure 3.3 Nuclear Magnetic Resonance (NMR) Carbon-13 CPMAS-TOSS spectra of charcoal 
with increasing time since fire. Values above peaks are chemical shift positions (PPM).  

3.3.3 Comparison to laboratory charcoal  

Comparison of CP 13C NMR between charcoal from 14 year-old stands and laboratory produced 

charcoal revealed similarities in charcoal produced between 300 and 350 °C (Figure 3.4). While 

all laboratory produced charcoals were dominated by aryl C (129 PPM), similar to wildfire 

charcoal, charcoals produced at 300 and 350 °C also had relatively large amounts of O-aryl (143 

ppm), O-alkyl (73 ppm), methoxyl (55 ppm), and alkyl C (37 ppm). Charcoals produced at 400 

°C and higher were dominated by aryl carbon, with only minimal contribution by non-aryl 

carbon groups (Figure 3.4).  
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Figure 3.4 Nuclear Magnetic Resonance (NMR) Carbon-13 CPMAS-TOSS spectra of 14y 
wildfire charcoal and laboratory produced charcoal from a range of different temperatures. 
Values above peaks are chemical shift positions in PPM. 

 

Charcoal produced at 300 °C differed somewhat from wildfire charcoal by having greater 

O-aryl (143 ppm) content than aryl (129 ppm) carbon, as well as a much greater contribution of 

O-alkyl (73 ppm) C than in wildfire charcoal, suggesting a temperature lower than that of 

wildfire charcoal, since there had been incomplete formation of aryl carbon and large amounts of 

polysaccharide derived O-alkyl C remained. Charcoal produced at 350 °C, appears to have been 

formed at a slightly higher temperature than wildfire charcoal due to the almost complete loss of 

O-alkyl C and the large reduction in methoxyl (55 ppm) C. As a result, it seems reasonable to 

assume boreal wildfire charcoal is likely formed at temperatures between 300 and 350 °C.  
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Figure 3.5 Fixed carbon concentration of 14 year-old wildfire origin charcoal and charcoal 
produced at 300-400 °C. Error bars for 14 year-old charcoal are ±1 SE.  

 

Fixed carbon amounts for 14 year old wildfire charcoal and laboratory produced (Figure 

3.5) also suggest a formation temperature of 300 to 350 °C (Figure 3.4). Charcoal produced at 

300 °C had somewhat lower fixed carbon content than wildfire charcoal, whereas charcoal 

produced at temperatures greater than 350 °C had much higher levels of fixed carbon.  

3.4 Discussion  

3.4.1 Charcoal carbon stocks 

Charcoal stocks in this study ranged between 2.30 and 5.20 Mg·ha-1 with an average of 4.09 

Mg·ha-1 within the top 10 cm of the mineral horizon. These quantities are considerably higher 

than those reported for many other boreal studies (Table 3.2). In this study, even the lowest 

recorded charcoal stocks were greater than the highest values from most studies conducted in 

Scandinavian boreal forests, suggesting, on average, greater charcoal stocks in North American 

boreal forests.  
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Greater charcoal stocks in North American boreal forests are likely the result of differing 

disturbance regimes. North American boreal forests are dominated by intense stand replacing 

crown fires (Johnson 1992), whereas Eurasian boreal forests are dominated by non-stand 

replacing ground fires. In a range of fire intensities in Scandinavia, Rosengren (2000) reported a 

range of charcoal stocks of 0.85 to 5.40 Mg·ha-1, with the largest values from more productive 

stands subject to more intense fires, and lower quantities associated with lower volume stands 

subject to moderate and low intensity ground fires. Similar results have been reported in 

grassland ecosystems, where wetter sites with greater amounts of biomass have more intense 

fires, resulting in greater levels of soil charcoal than on dryer sites, with much lower biomass 

levels (Glaser & Amelung 2003). In general, charcoal quantities appear to be related to fire 

intensity, since more intense fires consume more biomass, producing greater amounts of charcoal 

(Ito 2005).  

In the only attempt to date, Ohlson et al. (2009) used their findings from Scandinavian 

forests (average of 0.77 Mg C·ha-1 with a range of 0-2.22 Mg C·ha-1) to extrapolate a global 

boreal charcoal estimate of 1Pg of C. As overall charcoal stocks reported in this study are much 

greater than those used by Ohlson et al. (2009), estimates of global boreal charcoal carbon stocks 

may need to be revised upwards to account for larger charcoal quantities in boreal regions prone 

to more intense, stand replacing, wildfires. Charcoal levels recorded in this study represent 

between 2.7 and 3.1% of soil carbon and 2.5 and 5.6% of living biomass carbon (Paré & 

Bergeron 1995; Smith et al. 2000) and are comparable to those of other fire prone ecosystems 

where charcoal is considered to play an important role in carbon storage and ecosystem 

processes (Table 3.2) (Lehmann et al. 2003; DeLuca et al. 2006; Lehmann et al. 2008; Liang et 

al. 2010). 
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Table 3.3 Charcoal stocks from different fire prone ecosystems. Numbers in bold denote calculated stocks using a carbon density of 
53% (Ohlson et al. 2009). 

Ecosystem Region Charcoal from 
fire (Mg∙C·ha-1) 

Charcoal from fire 
(Mg∙ha-1) 

Reference 

Boreal North 
America 

2.19 
(1.11-2.80) 

4.09 
(2.30-5.20) 

This study 

Boreal North 
America 

0.58 1.10 Lynch et al. 2004 

Boreal Scandinavia 0.77 1.45 Ohlson et al. 2009 
 (0 – 2.22) 4.19 

Boreal Siberia ≤0.72 ≤1.36 Czimczik et al. 2005 

Boreal Scandinavia 0.13 0.24 Ohlson & Tryterud 2000 

Boreal Scandinavia 1.32 2.49 Rosengren 2000 
Boreal 
Boreal 

 0.45-2.86 (0.85-5.40)  
Kane et al. 2010 

North 
America 

1.70-3.40 3.21-6.42 

Boreal Scandinavia 0.52-1.10 0.98-2.07 Zackrisson et al. 1996 
Tropical savannah - 0.28 - Kuhlbusch 1996 
Tropical slash and burn - 2.57 - Rumpel et al. 2006 
Tropical slash and burn - 4.30 - Fearnside et al. 2001 
Tropical slash and burn - 3.50 - Fearnside et al. 1993 
Temperate savannah - 1.0-15.0 - Glaser & Amelung 2003 
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Wildfire charcoal carbon concentration reported here (52% ± 1.49SE) is similar to that 

reported by Ohlson et al. (2009). However, carbon concentration of laboratory charcoal was 

considerably higher than that of 14 year-old wildfire charcoal. Carbon concentration for 14 year-

old charcoal was 56% ± 2.27SE, whereas carbon concentration of newly produced charcoal is 

typically about 80% (Boateng 2007; Lehmann 2007; Ohlson et al. 2009).  This study also found 

similar levels in laboratory produced charcoal as values reported for fresh wildfire charcoal. 

Fixed carbon content of 14-year old wildfire charcoal, however, was very similar to laboratory 

produced charcoal (Figure 3.5), suggesting that a portion of carbon in freshly produced charcoal 

is quite labile and can be oxidized fairly rapidly. A number of studies report initially high 

respiration rates in soils amended with charcoal to be the result of short lived breakdown of 

labile carbon compounds in charcoal (Smith et al. 2010; Jones et al. 2011).  

Most studies assume charcoal carbon contents of 70-80% when inferring landscape level 

charcoal carbon stocks (Lynch et al. 2004; DeLuca & Aplet 2008). While these values are 

reflective of freshly produced charcoal, they are not representative of charcoal stocks more than 

a few years old. Based on this study, as well as Ohlson et al. (2009), charcoal carbon contents of 

50-60% are much more likely to reflect actual charcoal carbon stocks. When accounting for long 

term charcoal carbon stocks, fixed carbon content may better represent long term carbon stocks 

of freshly produced charcoal than initial carbon content. As a result, carbon content values of 50-

60% are likely to be better estimates of long term carbon concentration of soil charcoal.  

 

3.4.2 Change in charcoal and carbon over time  

Modelling decay rates of charcoal is important to ensure changes in carbon stocks over time can 

be properly accounted for. Regression models explained only 22% of variation in charcoal stocks 
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over time, 32% of variation in charcoal carbon content, and 25% of the variation of charcoal 

carbon. Relatively weak model performances are likely the result of variation between sites due 

to stand specific factors such as fire intensity and pre-wildfire stand volume, as well as variation 

in charcoal properties due to the wide range of fuels consumed in wildfires. Gavin et al. (2003) 

reported only a weak relationship between charcoal abundance and time since fire.  Variation in 

boreal charcoal stocks has been attributed to landscape position, area burned, fire intensity, 

organic layer depth and soil bulk density (Rosengren 2000; Ohlson et al. 2009, Kane et al. 2010). 

In the short term (a few centuries), local stand level effects likely exert a greater influence over 

charcoal stocks than does decay.  

Zackrisson et al. (1996) found no significant decline in charcoal levels over a 350 year 

post-fire chronosequence, while also recording large variability in charcoal stocks between sites. 

In this study, charcoal levels seemed to decline after 140 years. However, given the likely 

stability of charcoal in boreal soils and the natural variation in charcoal stocks, much longer 

chronosequences, likely >500 or even >1000 years, may be required to project decay rates of 

charcoal accurately in boreal soils. Nevertheless, more than 200 years after wildfire, 1.1 Mg 

C·ha-1 remained in charcoal form, roughly 1.4-1.6% of soil organic carbon and between 1.3 and 

2.8% of living biomass (Paré & Bergeron 1995; Smith et al. 2000), representing a significant 

carbon stock more stable than surrounding soil organic matter.  

 Increase in H:C ratios and declines in C:N ratios are consistent with the preferential loss 

of carbon in charcoal. Carbon content of fresh charcoal is much greater than that of surrounding 

organic matter and is likely to be mineralized preferentially until in relative equilibrium with 

surrounding organic matter. This process appears to be relatively short lived, as the C:N ratio 

appeared to have stabilized after only 30 years following wildfire, despite a decrease of 50% in 
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the first 30 years. It is also likely that much of the nitrogen in the charcoal is held in refractory 

compounds, such as pyridine-like structures, and not readily mineralized (Bagreev et al. 2001; 

Chan and Xu 2009). The relative stability of the C:N ratios after 30 years suggests that 

decomposition rates of charcoal are likely to slow over time as easily mineralized charcoal is lost 

and primarily refractory aryl carbon remains (Krull et al. 2006; Nguyen et al. 2008).  

 

3.4.3 Wildfire charcoal NMR 

Changes in NMR 13C CP carbon groups reveal an overall trend of reduced complexity over time. 

Increased proportions of aryl carbon are expected as more labile alkyl, O-alkyl and methoxyl 

groups are mineralized, as they can be used as microbial substrate directly. Czimzik et al. (2003) 

found similar NMR results in freshly produced charcoal from Siberian boreal forests, with 

predominantly aryl C structure and moderate amounts of alkyl and O-alkyl carbon. Carboxyl 

signals were very weak in the wildfire charcoal. Czimzik et al. (2003) also reported weak 

carboxyl signals. Studies from other ecosystems have found moderate carboxyl/carbonyl content 

of charcoal (Fernandes et al. 2003), suggesting that fuel type and fire intensities may influence 

charcoal properties in other fire prone ecosystems. 

Loss of more active labile charcoal groups over the first 100 years may explain observed 

reductions in the ability of charcoal to adsorb phenolic compounds after about 100 years. 

Zackrisson et al. (1996) found phenolic adsorption declined significantly after 100 years 

following fire for charcoal collected from Scandinavian boreal forests. Loss of more reactive, 

oxygen containing groups may reduce adsorptive capacity.  

This study is the first to compare boreal charcoal of different ages using NMR. The results 

demonstrate that changes in charcoal carbon groups take place over time. While most carbon in 
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charcoal is highly recalcitrant, portions are more labile, with important changes occurring in the 

first few hundred years. As a result, not all charcoal is entirely passive. Charcoal is made up of a 

number of different components, some of which can undergo significant changes over time and 

are vulnerable to decay.  Remaining charcoal is likely very stable since it is almost entirely aryl 

carbon, which is not readily accessible to microbial decay (Nguyen et al. 2008).  

3.4.4 Comparison of wildfire and lab charcoal  

The youngest wildfire charcoal available was from a 14 year-old fire, which is considerably 

older than the laboratory produced charcoal. Nevertheless, wildfire charcoal had very similar 

NMR 13C CP spectra to charcoal produced between 300 and 350 °C. All charcoals had 

predominantly aryl and O-aryl structures, but also moderate amounts of Alkyl, O-alkyl, and 

methoxyl C structures, as well as similar levels of fixed carbon. As a result, it appears that 

laboratory charcoal produced between 300 and 350 °C can reproduce many of the properties of 

young wildfire charcoal. Our results are similar to those reported by Czimzik et al. (2003), who 

found fresh wildfire charcoal from Siberia to have large amounts of aryl C but also moderate 

amounts of O-alkyl and alkyl carbon.  

In temperate and tropical ecosystems, however, charcoal may be formed at higher 

temperatures. Fernandes et al. (2003) found synthetic charcoal produced at 450 °C to be most 

similar to wildfire charcoals from Australia. Charcoals were almost entirely aryl C, as would be 

expected given the higher pyrolysis temperatures. It appears that boreal charcoal may be 

produced at somewhat lower temperatures than charcoal in other ecosystems. Interestingly, 

formation temperature of boreal charcoal appears to be much lower than actual fire temperature. 

Although highly variable, boreal stand replacing fires reach temperatures of roughly 800 °C with 

peaks recorded as high as 1330 °C (Butler et al. 2004).  
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Greater amounts of more labile carbon groups found in young boreal charcoal samples, 

compared to charcoal from other ecosystems may help to account for some of the perceived 

lower stability of boreal charcoal. Initial rapid reduction in C:N ratios and carbon content suggest 

that a portion of boreal charcoal is relatively labile. Charcoal produced at higher temperatures 

undergoes much greater condensation making it more resistant to decay (Boateng 2007).  

This study is amongst the first to compare boreal wildfire and laboratory charcoal using 

13C NMR. As such, results should be seen as an initial attempt at understanding production of 

charcoal to emulate boreal wildfire charcoal. Nevertheless, boreal charcoal properties can be 

replicated, at least in part, in laboratory conditions, making possible management of a critical 

driver of ecosystem function.  

3.4.5 Management implications  

In fire prone ecosystems, charcoal has a significant impact on ecosystem function and carbon 

balance (Zackrisson et al. 1996; Wardle et al. 1998; Liang et al. 2006; DeLuca and Aplet 2008), 

recently this has led to advocacy for charcoal management where fires are suppressed (DeLuca 

& Aplet 2008). Berglund et al. (2004) reported increased nitrification rates in boreal soils 

following additions of 2 Mg·ha-1 of charcoal, while a number of studies have found decreased 

effects of allelopathy when charcoal has been added to soils in Scandinavia (Nilsson & 

Zackrisson 1992; Nilsson et al. 1993; Zackrisson et al. 1996). For example, Nilsson and 

Zackrisson  (1992) reported reduced allelopathic effects of Empetrum hermaphorditum on seed 

germination and establishment of scots pine with additions of 5 Mg·ha-1 of charcoal, while 

Wardle et al. (1998) found increased growth rates of birch over scots pine following charcoal 

additions of 2 Mg·ha-1. Rates of charcoal additions reported in these studies are equal to or less 

than those reported in this study, suggesting that charcoal levels in North American boreal forest 



48 

soils are sufficient to have pronounced effects on soil function and productivity, as well as 

influence community composition.      

Managing charcoal stocks may also help to buffer decreases in soil carbon levels due to 

climate change. Lehmann et al. (2008) found soil carbon models overestimated the response to 

global warming by 15% when black carbon was not included. With increased climate change 

boreal forests are expected to become net carbon sources, as decomposition rates of labile carbon 

increase due to warmer temperatures (Goulden et al. 1998). By maintaining a recalcitrant carbon 

stock, some soil carbon may be less vulnerable to increased decomposition with increased soil 

warming.  

In the absence of fire, charcoal additions to soils may be required in order to maintain 

active charcoal stocks necessary for stand productivity and ecosystem function (Wardle et al. 

1998; Wardle et al. 2004; DeLuca & Aplet 2008). Charcoal produced at 300-350 °C appears 

most likely to replicate boreal charcoal properties providing both active and recalcitrant black 

carbon components. Incorporation of charcoal into boreal forest management will help to 

emulate natural disturbance dynamics while increasing the sustainability of resource extraction 

and soil carbon stocks.   

3.5 Conclusions 

Charcoal stocks in North American boreal forests were found to be much greater than those 

reported in other boreal studies, most of which are from Scandinavia. As a result, estimates of 

global boreal charcoal carbon stocks may need to be revised upwards to account for larger 

charcoal quantities in boreal regions prone to stand replacing wildfires. Boreal charcoal stocks 

undergo important changes over time resulting in a loss of complexity and likely a reduction in 
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reactivity with surrounding soils, but nevertheless represent a refractory carbon stock equivalent 

to 3-5% of soil organic carbon. Significantly, laboratory produced charcoal can replicate many 

properties of wildfire charcoal. Most importantly, charcoal stocks quantified in this study are 

equal to or in excess of quantities identified in other ecosystems where charcoal has been found 

to have a significant impact on ecosystem processes including soil development, productivity, 

and carbon storage.  

This study is the first to compare changes in boreal charcoal carbon structures over time as 

well as the first to compare boreal wildfire charcoal chemical structure to that produced in a 

laboratory. Future research needs include fuel characterization, the response of charcoal to soil 

warming, longer chronosequence studies, and broader landscape quantification of charcoal in 

North American boreal forests in order to properly account for differences in fire frequency and 

intensity across the boreal landscape. Inclusion of charcoal stocks into boreal carbon models is 

imperative for accurate carbon accounting. Incorporating charcoal into forest management may 

be an important tool in addressing natural disturbance emulation and maintaining ecosystem 

function and carbon balance, particularly in light of climate change and resource extraction.  
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4 Influence of charcoal on boreal soil carbon balance: does charcoal 

prime the decomposition of soil organic matter?  
 

4.1 Introduction 
 

Wildfire is the predominant natural disturbance in boreal forests influencing stand succession, 

and carbon and nutrient cycling (Brais et al. 2000; Weir et al. 2000; Bergeron et al. 2001; Stocks 

et al. 2003). Wildfires result in the formation of significant quantities of charcoal, converting 

0.7-2% of biomass to charcoal (Zackrisson et al. 1996; Lynch et al. 2004; Ohlson et al. 2009). 

Charcoal is increasingly recognized as an important driver of boreal soil function by stimulating 

microbial activity and nitrogen mineralization and decreasing phenolic concentrations 

(Zackrisson et al. 1996; Wardle et al. 1998; Pietkäinen et al. 2000). High productivity in post-

fire stands has been attributed in part to the presence of active, newly produced charcoal that  

helps to reverse long term declines in productivity with increasing time since fire (DeLuca et al. 

2002; Wardle et al. 2004).  

Increased interest in biofuels has increased the risk of excessive nutrient removals from 

boreal forests (Thiffault et al. 2010). At the same time, fire suppression and forest fragmentation 

in managed boreal forests has decreased fire frequency (Weir et al. 2000; Bergeron et al. 2004; 

Lefort et al. 2004; Senici et al. 2010) leading to declining productivity in many forest stands, and 

preventing the renewal of active charcoal stocks (Wardle et al. 1998; DeLuca et al. 2002). 

Charcoal is primarily composed of aromatic carbon, with a high C:N ratio, and as a result it is 

highly resistant to mineralization, with mean residence times of thousands of years, representing 

a recalcitrant carbon pool (Kuhlbusch & Crutzen 1995; Lehmann et al. 2008). Because of this 

charcoal production and sequestration in soils has been promoted as a carbon negative biofuel 
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(Read & Lermit 2005; Lehmann 2007), while also increasing soil sustainability, stand 

productivity, and emulation of natural ecosystem processes through addition of active charcoal. 

According to Woolf et al. (2010), global emission of greenhouse gases could be reduced by up to 

12% if charcoal from pyrolysis were sequestered in soils.  

 In contrast, Wardle et al. (2008) suggested that by increasing soil microbial activity, 

charcoal additions to boreal soils may increase mineralization of soil organic matter, potentially 

releasing large amounts of CO2, and offsetting soil carbon additions from charcoal. In a 10-year 

litter bag study, Wardle et al. (2008) reported that freshly produced charcoal stimulated the 

decomposition of humus. These effects, however, appeared to be relatively short lived, with 

humus loss occurring in the first two years of the study with very little differences in later years. 

While charcoal has primarily a carbon dense, recalcitrant structure, a small ash fraction is also 

present (Glaser et al. 2002; Deenik et al. 2008). Ash contains soluble macro- and micronutrients, 

which increase pH and the availability of base cations such as Ca, K, and Mg (Thiffault et al. 

2008). Increased nutrient availability, as well as reduced acidity, may prime the decomposition 

of soil organic matter by stimulating microbial activity (Hamer et al. 2004). Lehmann and Sohi 

(2008) suggested that the humus loss found by Wardle et al. (2008) might have happened in part 

due to short lived labile-carbon and soluble mineral fractions present in charcoal that may prime 

the decomposition of neighbouring organic matter as well as contribute to mass loss themselves. 

Laboratory experiments have found glucose additions to cause some substrate induced priming 

of organic matter decomposition, as well as that of charcoal (Hamer et al. 2004; Blagodatskaya 

& Kuzyakov 2008). Freshly produced charcoal has also been found to undergo some short term 

initial mass loss as labile compounds are mineralized, with observed effects declining quickly 
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over time (Jones et al. 2011). For example, Jones et al. (2011) reported a 50% reduction in CO2 

evolution from soils where charcoal had been washed of soluble components prior to addition.  

Charcoal may actually inhibit organic matter decomposition by promoting soil aggregate 

formation and regulating nutrient availability (Brodowski et al. 2006). High internal pore spaces 

in charcoal, combined with a large number of negatively charged surface sites provide protected 

locations for hydrophobic organic matter, inhibiting exposure to oxygen and fungal enzymes 

(Baldock & Skjemstad 2000; Liang et al. 2008; Liang et al. 2010). Amazonian anthrosols 

amended with charcoal have been shown to have higher levels of organic matter, suggesting a 

positive interaction between charcoal and SOM (Steiner et al. 2007). This has been supported by 

studies reporting negative priming of SOM by charcoal  (Liang et al. 2010; Kimetu & Lehmann 

2010), with any increase in respiration attributed to short term mineralization of labile charcoal 

fractions (Liang et al. 2010; Zimmerman et al. 2011).  

Understanding the interaction between charcoal and soil carbon dynamics is imperative 

in order to maximize the benefits of soil charcoal additions while avoiding the destabilization of 

soil carbon stocks. The objectives of this study were to test whether laboratory produced 

charcoal additions increase boreal soil respiration. It was hypothesized that soluble components 

of charcoal would increase soil respiration and that any increase in soil respiration from charcoal 

additions would be short lived.  By separating charcoal components, it is hoped that a clearer 

understanding of short and longer term effects of charcoal additions on boreal soil carbon stocks 

will be gained.  
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4.2 Methods 

4.2.1 Charcoal samples 

Charcoal was produced in a laboratory from Larix laricina (Du Roi) K. Koch (tamarack) wood 

chips packed in 500 cm3 metal canisters and heated at a rate of 10 °C/min in a muffle furnace to 

a maximum temperature of 550 °C and held for one hour. This temperature was chosen based on 

other studies of charcoal production from woody biomass between 500-600 °C (Brown et al. 

2006; Singh et al. 2010; van Zwieten et al. 2010). Volatile carbon, fixed carbon (the thermally 

stable, non-volatile carbon fraction, content of charcoal) and ash content were determined using 

a LECO TGA (LECO Corp., St Joseph, MI).  Carbon, hydrogen and nitrogen content were 

determined using a CHNS Elementar vario EL (Elementar Analysensysteme GmbH, Hanau, 

Germany). Cation exchange capacity was determined using ammonium acetate at pH 7.0 

(Hendershot et al. 2008a). A 2 to 1 slurry of double deionized water to charcoal was used to 

determine pH using a Corning pH meter (Acton, MA) (Hendershot et al. 2008b).  

Solid-state 13C nuclear magnetic resonance (NMR) spectroscopy was used to characterise 

the basic chemical structures of the laboratory produced charcoal. Samples were sent to the 

University of Manitoba Chemistry NMR lab for analyses. Spectra were done using cross 

polarization (CP) using a Bruker Advance 400 spectrometer operated at a 13C frequency of 128.8 

MHz for all analyses. 7-9 mg of charcoal was packed into a 2.5 mm diameter cylindrical rotor 

and spun at 5000 Hz in a Doty Scientific magic angle spinning (MAS) probe with a contact time 

of 3 ms, and an acquisition time of 20.48 mS. Free induction decay was acquired using a sweep 

width of 50 kHz. Line broadening for FID processing was done at 200 Hz. 

4.2.2 Charcoal leaching  

To isolate short term soluble components of charcoal from more long-lived effects of non-

soluble, recalcitrant components, half the charcoal was leached of soluble components. Leached 
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determined using loss on ignition. Soil was dried and sieved to 2 mm and homogenized to ensure 

uniform conditions. Forty-eight PVC tubes (10 cm diameter x 30 cm tall) were used for soil 

incubation. Columns were sealed at the base using nylon mesh fabric and fiberglass filters. 

Columns were attached to funnels at their base, which were supported by wooden frames. 

Columns were packed to a depth of 20 cm with soil mixtures containing leached and unleached 

laboratory created charcoal contents of 0, 1, 10, 100 Mg·ha-1 equivalents (0, 0.81, 8.1, 81 

g/column, respectively). Treatment rates were chosen to reflect potential applications rates. 

Boreal wildfire charcoal stocks typically range from 1-10 Mg·ha-1 (Rosengren 2000; Lynch et al. 

2004; Ohlson et al. 2009; Hart & Luckai 2013), while studies of charcoal applications to soils 

typically use treatments between 10-100 Mg·ha-1(Chan et al. 2007; Van Zwieten et al. 2010), 

with 100 Mg·ha-1 representing the extreme high end of any potential treatment. Commercially 

obtained peat was used as a surrogate for soil organic matter and was added at a rate of 10 

Mg·ha-1 (8.1 g/column) to half the columns. All treatments were replicated in triplicate. To 

ensure uniform conditions, all treatments were homogenized in batches prior to packing in 

columns. 

Columns were held at approximately 25  C for the 10 week duration of the study. Columns 

were watered weekly with 200 ml of distilled water, with the exception of six tubes, three each 

of control and control with peat, which were watered with leachate. Soil respiration was 

measured weekly, prior to watering, using a Li-Cor 6400XT (LICOR Biosciences, Lincoln, NE).   

Starting soil pH and electrical conductivity was determined by 2 to 1 slurry of distilled 

deionized water to soil using a Corning pH meter (Acton, MA) (Hendershot et al. 2008b). Soil 

nutrient content was determined by Mehlich 3-extratable elements (Ziadi &Tran 2008). Nitrate 

and exchangeable ammonium was measured using a 10:1 2.0M KCl solution to soil extraction 
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(Maynard et al. 2008) on a Technicon Autoanalyzer (SEAL Analytical, ltd.). Cation exchange 

capacity of soils was measured ammonium acetate extraction at pH 7.0 (Hendershot et al. 

2008b).  

 

4.2.4 Statistical analyses  

Starting soil pH, nutrient content, cation exchange capacity and electrical conductivity were 

examined with using a general linear model (GLM). Two models were created for each 

dependent variable: 1) fixed effects of charcoal and peat and their 2-way interaction, and 2) fixed 

effects of leached charcoal and peat and their 2-way interaction. Pairwise comparisons between 

control and treatment levels were made with independent samples T-tests. Bonferroni corrections 

were used to adjust the significance level (alpha).  

Repeated measures data were analysed using a general linear mixed model (MIXED, 

IBM SPSS Statistics 20). Compared to conventional repeated measures analysis methods (e.g. 

univariate or multivariate General Linear Modelling (GLM)), MIXED is a more robust and 

flexible procedure (Cnaan et al. 1997; SAS Institute, Inc.1999; Littell et al. 1998). For the 

current dataset MIXED had a number of advantages compared to GLM. MIXED uses 

generalized least squares to test fixed effects resulting in more powerful tests; assumptions of 

sphericity and compound symmetry can be relaxed and more appropriate covariance patterns can 

be adjusted. Akaike’s Information Criterion was used to select covariance structure (Burnham 

and Anderson 1998). MIXED is also better at handling missing data. In GLM the deletion is 

done listwise, deleting a subject with a missing time point from the analysis, whereas in MIXED 

only the missing time point is dropped. Time can also be treated as a continuous variable making 

it possible to model regression for time points (as opposed to comparing means in GLM).  
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Three models were used to test changes in soil respiration rate compared to control soils: 

1) fixed effects of charcoal, peat, time and their 2- and 3-way interactions; 2) fixed effects of 

leached charcoal, peat and time and their 2- and 3-way interactions, and 3) fixed effects of 

leachate, peat and time and their 2- and 3-way interactions. Measurement time was treated as a 

continuous variable and included to the fixed effects as a covariate. Different models with and 

without random effects intercept and/or slope and with different covariance structures were 

tested. The best fit was achieved by including random effect intercept and slope and by using 

heterogeneous first order autoregressive covariance structure.  

To compare single treatments with control soils, or with each other, mixed model with time 

as covariate and treatment as fixed effect was created. Comparisons of treatment pairs including 

time effect were made using TEST subcommand.  

 

4.3 Results 

4.3.1 Charcoal and soil properties 

Solid state CP 13C NMR spectra of the charcoal showed high signal intensities for aryl C (129 

ppm) as well as some O-Aryl C (143 ppm) (Figure 4.2).  The predominantly aryl C content and 

small O-aryl C content are typical of a high degree of thermal alteration. Charcoal had 

significantly different physical and chemical properties to that of the forest soil. Electrical 

conductivity was a full order of magnitude greater for charcoal and peat. Study soils and peat 

were moderately acidic, while charcoal was relatively alkaline with a pH of 8.7 (Table 4.1).   
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Charcoal had no effect on electrical conductivity or cation exchange capacity. 

Availability of Ca, K, and Zn increased with increasing additions of unleached charcoal (p < 

0.0001 for Ca and K, and p = 0.008 for Zn), whereas increasing leached charcoal additions only 

resulted in increased availability of K and Zn (p = 0.003 and 0.017, respectively). Availability of 

Mg decreased somewhat with increasing addition of unleached charcoal (p = 0.002). Availability 

of NH4 and NO3 increased for both unleached and leached charcoal additions, regardless of the 

quantity of charcoal added (p < 0.0001 and p = 0.001, and p = 0.007 and p = 0.049, respectively). 

Peat did not have an effect on nutrient availability, with the exception of Mg which increased 

somewhat (p < 0.0001). Leachate was a source of Ca and K, but was not a significant source of 

other nutrients (Table 4.3).  

Table 4.2 Charcoal effects on soil available nutrients (mg·kg-1) and soil pH. ± 1 SE in brackets.  

Treatment pH K Mg Ca Zn NH4 NO3 
Control 6.01 (0.01) 51.7 (2.6) 78.6 (1.2) 401.9 (4.3) 0.45 (0.02) 14.9 (3.4) 0.3 (0.33) 
C1 6.05 (0.03) 52.2 (3.6) 79.4 (6.0) 420.8 (2.8) 0.46 (0.03) 34.7 (5.1) 0.6 (0.15) 
C10 6.13 (0.02) 61.2 (6.8) 80.0 (1.0) 428.3 (5.4) 0.49 (0.02) 38.3 (4.1) 1.0 (0.31) 
C100 6.67 (0.02) 74.8 (4.3) 76.7 (9.0) 442.0 (6.3) 0.66 (0.04) 33.4 (2.0) 0.1 (0.20) 
L1 6.03 (0.03) 58.0 (4.9) 81.0 (1.1) 428.4 (5.5) 0.50 (0.02) 32.1 (1.6) 1.2 (0.13) 
L10 6.10 (0.03) 60.5 (1.8) 80.3 (1.0) 425.6 (6.1) 0.51 (0.02) 33.9 (1.7) 1.4 (0.60) 
L100 6.53 (0.02) 70.0 (4.1) 77.6 (1.9) 426.3 (10.6) 0.57 (0.01) 29.9 (1.7) 1.0 (0.10) 
P 5.59 (0.08) 64.8 (2.7) 85.8 (1.1) 416.3 (0.9) 0.50 (0.02) 13.1 (0.7) 0.2 (0.13) 
C1+P 5.56 (0.03) 64.0 (6.1) 85.3 (8.0) 420.3 (4.1) 0.59 (0.08) 29.9 (1.0) 1.1 (0.16) 
C10+P 5.71 (0.04) 50.7 (2.3) 84.9 (7.0) 428.2 (2.6) 0.51 (0.03) 30.6 (1.1) 1.0 (0.04) 
C100+P 6.25 (0.02) 82.9 (1.8) 80.9 (9.0) 428.1 (1.7) 0.62 (0.06) 28.7 (1.1) 1.0 (0.09) 
L1+P 5.67 (0.03) 47.9 (1.6) 83.6 (3.0) 417.5 (12.3) 0.45 (0.05) 11.2 (0.4) 0.02 (0.02) 
L10+P 5.71 (0.01) 61.7 (4.6) 85.7 (2.7) 434.6 (15.3) 0.52 (0.04) 20.0 (7.0) 0.1 (0.09) 
L100+P 6.09 (0.03) 65.7 (2.9) 80.8 (1.4) 426.9 (10.9) 0.56 (0.02) 26.4 (1.9) 1.1 (0.11) 
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Table 4.3 Nutrient content of leachate. 

Nutrient Concentration (mg·L-1) ± 1SE 
Ca 1.32    ± 0.0098 
K 10.57  ± 0.0176 
Mg 0.16    ± 0.00058 
Mn 0.01    ± 0.00012 
Na 0.14    ± 0.00038 
P  0.25    ± 0.0062 
S  0.19    ± 0.0024 
Zn  0.006  ± 0.00033 
 

 

4.3.2 Effects of charcoal on soil respiration  

Charcoal increased soil respiration, however, the effect was relatively short-lived and limited to 

the highest rate of application (Table 4.4, Figure 4.3). Although initially high, the respiration rate 

of the C100 treated soils decreased substantially by week five, remaining somewhat higher than 

other treatments for the remainder of the experiment. Soils high in organic matter (peat) did not 

have higher respiration rates than those with low organic matter content. For all treatments, 

respiration rate decreased somewhat over time.   

Table 4.4 Results of three mixed models studying the main effects and interactions of a) 
charcoal (C), peat (P) and time; b) leached charcoal (L), peat (P) and time; and c) leachate 
(Leach), peat (P) and time. Time was included as a covariate.  

Model I Model II Model III 
Effects F Sig. Effects F Sig. Effects F Sig. 
C 12.393 <.0001 L 2.085 0.119 L 169.33 <.0001 
P 1.745 0.192 P 0.076 0.785 P 36.469 <.0001 
C x P 0.058 0.981 L x P 2.005 0.131 L x P 11.28 0.005 

Time 143.532 <.0001 Time 14.805 0.001 Time 163.67 <.0001 
C x Time 5.735 0.002 L x Time 1.942 0.154 L x Time 57.603 <.0001 

P x Time 0.848 0.362 P x Time 0.292 0.595 P x Time 5.392 0.04 
C x P x 
Time 

0.433 0.73 L x P x  
Time 

0.922 0.447 L x P x 
Time 2.025 0.182 
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Figure 4.3 Respiration rates for soil columns containing organic matter (P) and/or treated with 
unleached charcoal (C) in amounts equivalent to 1, 10 and 100 Mg·ha-1.  

 
Respiration of soils treated with leached charcoal did not have greater respiration rates 

than control soils (Table 4). Similarly to unleached charcoal, there was no interaction with 

organic matter treatments, with respiration decreasing somewhat over time for all treatments. 

Respiration rates were highest in soils with high organic matter content (peat) receiving leachate 

treatment compared to soils receiving only distilled water both with and without peat treatments 

(Table 4.4, Figure 4.4). Respiration rates were approximately 3.6 times greater for leachate 

treated soils containing organic matter compared to control soils, 2.9 times greater than peat only 

treated soils, and 1.6 times greater than leachate only treated soils. Time also had a significant 

effect on respiration, with respiration rates decreasing somewhat over the course of the 

experiment for soils treated with leachate and peat.  
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Figure 4.4 Respiration rates for soils treated with organic matter (P) and leachate (Leach).  

 

4.4 Discussion 
 

4.4.1 Charcoal and soil properties  

The high Aryl carbon content of the charcoal is typical of most charcoals especially those 

produced at temperatures above 400 °C (Baldock & Smernik 2002; Novak et al. 2009a). The 

high aryl C content as well as very high fixed carbon content, suggest the charcoal is highly 

resistant to decay. High carbon density of the charcoal produced in this study (84.9%) is 

comparable to most freshly produced charcoals. Luo et al. (2011) reported 83. 9% for charcoal 

produced at 700 °C, while Taghizadeh-Toodi et al. (2012) reported 82.6% C in charcoal 

produced at 500 °C from Pinus radiata wood. The carbon content also compares well with 

freshly produced boreal charcoal with Ohlsson et al. (2009) reporting a carbon content of ~80% 

from charcoal produced from an open fire of a mixture of Scandinavian boreal tress species.  
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Ash and nitrogen (N) content of charcoal in this study, however, was much lower than 

that in many other studies. This is likely the result of precursor material. Wood is a carbon dense 

material with low ash and nitrogen content, compared to other forms of vegetation. Studies using 

less carbon dense material such as agricultural by-products report ash contents of 5-9%, and 

nitrogen contents of 0.5-2.7 % (Novak et al. 2009a). The ash and nitrogen content, however is 

very typical of woody biomass, with charcoal derived from Pinus resinosa reported to be 0.8% 

ash and 0.25% N (Baldock & Smernik 2002). As a result, the charcoal used in this study can be 

considered to have low ash content and likely supplied fewer nutrients than charcoal derived 

from more nutrient rich precursor materials.     

 Addition of unleached charcoal had important effects on soil properties increasing pH 

and availability of Ca, K, and Mg in accordance with added charcoal quantity. The changes in 

pH and nutrient availability are consistent with properties that might be expected to facilitate 

microbial activity and possibly prime the decomposition of OM. Additions of leached charcoal 

increased pH somewhat less than unleached charcoal, as expected after the removal of base 

cations through leaching.  

Leaching charcoal had the desired effect of reducing the soluble nutrient contribution of 

charcoal. No increase in availability of Ca occurred after additions of leached charcoal. Although 

availability of K and Zn were increased by increasing additions of leached charcoal, the effect 

was much lower than for additions of unleached charcoal. The small decrease in availability of 

Mg may be the result of adsorption by leached charcoal. As expected, the leachate contained 

important quantities of soluble nutrients consistent with those found in the unleached charcoal 

(Ca, K, and Mg). Only Zn was not found in meaningful quantities in the leachate. This is likely 

the result of a high affinity for charcoal, inhibiting leaching with distilled water.  
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As discussed above, charcoal nitrogen content was extremely low. Hence, the increased 

availability of NH4 and NO3 is not the direct result of charcoal additions. Charcoal has been 

found to increase availability of NH4 and NO3 by increasing nitrification rates and ammonia 

oxidizing bacteria in soils (Ball et al. 2010). Ammonia adsorbed to charcoal has also been found 

to be bioavailable (Taghizadeh-Toosi et al. 2012). Interestingly, the availability of NH4 and NO3 

increased for all charcoal treatments, regardless of charcoal type or the amount added, with no 

significant different between charcoal treatments. The lowest charcoal treatment in this study (1 

Mg·ha-1) is comparable to levels of wildfire derived charcoal in boreal soils which have been 

found to increase nitrification rates (Berglund et al. 2004). As a result, it appears that charcoal 

additions roughly comparable to those resulting from boreal wildfires are enough to increase the 

availability of nitrate and ammonia, with further additions offering no further benefit.  

 Despite the high cation exchange capacity (CEC) of the charcoal, charcoal additions did 

not increase cation exchange capacity of soils. This is consistent with a number of short term 

studies examining fresh charcoal additions to soils (Novak et al. 2009b). Steiner et al. (2007) 

suggested that this is due to reactions with Al and Fe, which can block exchange sites, inhibiting 

access to positively charged sites on the charcoal surface. Tars resulting from pyrolization can 

also block charcoal pores, preventing access to cation exchange sites (Pietkäinen et al. 2000). 

However, microbial degradation of tars has been found to increase charcoal CEC by increasing 

access to cation exchange sites. Singh et al. (2010) reported increased ability of biochar amended 

soils to reduce NH4 leaching over time, attributing it to increased CEC. Amazonian anthrosols, 

where charcoal additions are hundreds to thousands of years old, have much higher CEC than 

surrounding soils, supporting the idea that CEC develops in situ over time (Liang et al. 2006).   
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4.4.2 Effects of charcoal on soil respiration  

This study is the first to fully separate soluble and non-soluble components of charcoal. Jones et 

al. (2011) found a 50% reduction in respiration when charcoal was leached of soluble 

components. However, the leachate was not used to test the effects of soluble charcoal nutrients 

in the absence of charcoal.  

The respiration rate was highest for the highest charcoal additions. However, the 

respiration rate decreased significantly over the study period. Higher respiration rates for high 

charcoal additions may be due to decomposition of labile charcoal components, and not due to 

increased decomposition of organic matter as a result of charcoal addition. For C100, the 

respiration rate decreased to the level of control soils by the end of the experiment. The peak 

increase in respiration rate of C100 in the beginning of experiment was likely caused by the 

decomposition of labile fractions in the charcoal, as it was not observed for leached charcoal, 

where soluble fractions were likely removed by leaching. Although in the case of the leached 

charcoal treatments, variability of respiration rates was very high. The gradual decrease in 

respiration found in all treatments over time may represent the absence of organic inputs during 

the experiment. As a result, easily mineralized substrate would be consumed leaving increasingly 

larger proportions of less easily mineralized substrate.  

Increased respiration in leachate treated soils, as well as the positive interaction with 

SOM suggests soluble components of charcoal are capable of priming organic matter 

mineralization. However, in the presence of the black carbon fraction of charcoal, no positive 

interaction with SOM was found, with respiration rates of C100 and C100+P behaving roughly 

the same. These results suggest that charcoal can have a negative priming effect on SOM. A 

number of studies report moderate negative priming effects of charcoal. Particularly for charcoal 
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produced at higher temperatures, with lower labile fractions and ash content (Zimmerman et al. 

2011). Negative priming is attributed to the formation of stable soil aggregates, protecting SOM 

from microbial attack, as well as moderation of nutrient availability by charcoal’s affinity for 

cations. In contrast, positive priming is reported for charcoals produced at low temperatures 

where greater soluble components are present compared to charcoal produced at much greater 

temperatures, however even these effects are generally short lived (Luo et al. 2011). Given the 

short term nature of this study, it seems more likely that the moderation of a priming effect by 

charcoal is likely the result of moderation of nutrient availability. Over time, as soluble 

components of charcoal are leached out and more labile fractions mineralized, remaining 

recalcitrant charcoal may have a stabilizing effect on surrounding SOM.  

Charcoal is a continuum of labile and refractory components (Zimmerman 2010). A 

number of studies report initially high respiration rates in charcoal amended soils followed by a 

rapid slowdown (Singh et al. 2010; Jones et al. 2011). Bruun et al. (2008) reported rapid 

mineralization of charcoal over the first 20 days, attributing it to abiotic decomposition because 

of the lack of a lag phase typical of biotic decomposition, followed by a rapid decline as labile 

components were consumed. This initial oxidation is responsible for the formation of carboxylic 

groups, resulting in increased CEC (Cheng et al. 2006) leading to a loss of carbon from charcoal. 

Major et al. (2010) reported a 2.2% loss of carbon from charcoal over a two year period while 

Zavalloni et al. (2011) found 2.8% of carbon was respired over the first 84 days from charcoal 

produced at 5000C. Ohlson et al. (2009) reported an average carbon content of boreal charcoal of 

53% but ~80% for fresh wildfire charcoal, implying substantial loss of some carbon from 

charcoal over time.  
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The lower application rates of 1-10 Mg·ha-1 in this study are very similar to levels reported 

for boreal wildfire charcoal stocks. Rosengren (2000) found 2.49 (0.85-5.40) Mg·ha-1 while 

Zackrisson et al. (1996) report 0.98-2.07 Mg·ha-1, and Kane et al. (2010) 3.21-6.42 Mg·ha-1. No 

increase in respiration was observed at these applications levels, suggesting that virtually no risk 

of SOM priming exists for lower treatment levels. As a result, application rates typical of boreal 

wildfire derived stocks likely pose a minimal risk of SOM priming.  

This study used charcoal produced from one species produced at one pyrolysis temperature. 

It is important to note that the charcoal used in this study was produced at a much higher 

temperature, and had a resulting higher aryl C content, than charcoal found to most closely 

resemble wildfire charcoal produced at 300-350 °C (Ch. 3).  Charcoal properties are known to 

vary with pyrolysis conditions and substrate (Demirbas 2001). Porosity, affecting adsorptive 

ability, varies between species, especially between angiosperms and gymnosperms (Keech et al. 

2005), while pyrolosis temperature can affect nutrient availability, with charcoal from lower 

pyrolysis temperatures generally having higher nutrient availability, and less aromatization 

(Makoto et al. 2010). Studies of a full range of charcoals from different substrates and pyrolysis 

conditions in a range of boreal soils types are needed to fully understand the effects of charcoal 

additions to boreal SOM. Long term in situ studies are particularly needed, in order to determine 

the long term effect on boreal soil carbon balance.  

Low ash content of charcoal in this study may help explain the absence of a priming effect. 

Although base cation availability increased, amounts may not have been enough to prime the 

decomposition of organic matter. Adsorption by charcoal may have moderated the availability of 

nutrients, something absent in leachate treated columns. Soil pH was circumneutral and the 

liming effect of the charcoal may have been moderated, with pH only increasing from 6.0 to 6.7 
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for even the highest treatment. Sites used by Wardle et al. (2008), where some priming of SOM 

by charcoal additions was reported, were very acidic (pH 3.5-4.3 vs. 6.0 in this study), and 

possibly benefitted more by an liming from charcoal additions.   

While charcoal was not found to prime the decomposition of SOM, charcoal does 

nevertheless appear to undergo short term mineralization in soils, contributing to soil respiration. 

This process will inevitably result in a decrease in carbon content of the charcoal over time, until 

labile fractions have been mineralized, after which the rate of carbon loss is likely to slow 

considerably. Carbon added as charcoal is likely to exceed any losses due to SOM 

decomposition, and result in a net increase in carbon sequestered in highly stable soil carbon 

stocks. However, it is nevertheless important that short term carbon losses be taken into account 

when assigning carbon sequestration values.  

4.5 Conclusions 
Charcoal does not appear to prime the decomposition of soil organic matter. Increased soil 

respiration is short lived and most likely the result of mineralization of labile components of the 

charcoal itself. Importantly, effects are only detectable at very high charcoal application rates. 

Application rates comparable to those found following wildfires appear to present very little risk 

of increased soil respiration and SOM loss. Although soluble components of charcoal can 

contribute to increased soil respiration, this effect appears to be mitigated somewhat by the 

presence of charcoal in the soil, suggesting charcoal may increase the stability of other SOM 

stocks by protection from microbial attack or by moderating nutrient availability. Although 

ephemeral, carbon accounting may require that estimates of charcoal carbon amendments be 

downgraded somewhat to account for initially high mineralization of charcoal following 

application.  
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5 Implications for soil carbon modelling 
 

Models are important tools for simulating interactions in complex systems, allowing projections 

of future conditions, as well helping to identify important knowledge gaps in our understanding 

of ecosystem function. Models are especially effective in landscape and temporal projections 

where direct measurements are costly and impractical. Forests play an important role in global 

carbon cycling which occurs over large landscapes and time periods. Increasingly, modelling of 

forest soil carbon is recognized as an important component of effective forest management (Kurz 

et al. 2009). This is especially important in light of climate change. Historically, the boreal forest 

has acted as a carbon sink, continuing to sequester atmospheric carbon (Akselsson et al. 2005). 

Much of the carbon stored in boreal soils, however, is relatively labile. Mineralization of organic 

carbon increases with increasing temperatures (Davidson & Janssens 2006). As a result, soils 

high in soil organic carbon may become CO2 sources, further contributing to climate warming in 

a positive feedback. Given the importance of boreal soils to global carbon balance, it is 

imperative that the response of soil carbon pools to increased temperatures be understood. To 

date, however, charcoal has not been included in most soil carbon models (DeLuca & Aplet 

2008). Given its recalcitrance over other carbon pools, omissions of soil charcoal may result in 

an overestimation of the vulnerability of forest soil carbon to climate change. 

Charcoal is found in most soils that are subjected to periodic burning, and is highly 

resistant to microbial decay (Czimczik et al. 2005, Dai et al. 2005, Cheng et al. 2006, Czimczik 

& Masiello 2007). Mean residence times of black carbon are estimated to be on centennial scales 

(Santos 2012, Singh 2012), with some between 1000-10 000 years (Couillard et al. 2013; 

Schmidt 2002), far longer than other non-black carbon pools. However, quantification of black 

carbon in boreal soils is a relatively recent phenomenon.  Current soil organic matter models do 
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not treat black carbon as a separate soil carbon stock (eg. CENTURY, Roth-C, CBM-CFS3) and 

include it with non-black carbon soil carbon stocks, potentially overestimating the vulnerability 

of boreal soil carbon to climate warming.  

Compared to non-black carbon forms of organic matter, charcoal has a unique 

decomposition pathway and represents a discreet soil carbon stock that is readily distinguished 

from other soil carbon stocks. Most soil carbon models include organic matter in three categories 

based on their rate of cycling (active, passive, slow) (Figure 5.1). However, charcoal behaves 

differently than other soil carbon stocks. Unlike non-charcoal soil organic matter stocks, charcoal 

mineralization increases minimally with increasing soil temperature (Bruun et al. 2008, Cheng et 

al. 2008, Novak et al. 2010). As well, where non-charcoal organic matter stocks typically 

increase with time since fire, charcoal stocks are greatest immediately after fire. Labile fractions 

of charcoal mineralize rapidly over a short period with the decomposition rate declining slowly 

over time (Figure 5.2). Charcoal also interacts with surrounding organic matter and can cause 

short-term priming of organic matter decomposition, but over the long term increasing organic 

matter stability, further contributing to soil carbon stocks (Wardle et al. 2008, Brodowski et al. 

2006). As a result, charcoal needs to be included as a separate soil carbon stock in soil carbon 

models, as well as interactions with surrounding soil organic matter (Krull et al. 2006). In the 

absence of a discreet black carbon model category, incorporation of black carbon into soil carbon 

models could be accomplished by manual adjustment of decomposition rates in the models.  
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Figure 5.1 Carbon pool structure of CBM-CFS3 showing cycling rates of organic (AG) and 
mineral soil (BG) carbon pools (‘very fast’, ‘fast’, ‘slow’, ‘very slow’) (Kurz et al. 2009).  
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6 General conclusions 
Charcoal is an important component of boreal soil carbon stocks. From this limited study or a 

relatively restricted area of North American boreal forest, charcoal quantities in North American 

boreal forest soils appear high enough to have beneficial effects on soil function and carbon 

storage.  Charcoal stocks found in this study suggest that North American boreal charcoal stocks 

may be much greater than those reported in other boreal regions. As a result, estimates of global 

boreal charcoal carbon stocks may need to be revised upwards to account for larger charcoal 

quantities in boreal regions prone to stand replacing wildfires. Although highly recalcitrant, 

boreal charcoal stocks undergo reductions in complexity and carbon content over time.  

Although soluble components of charcoal can contribute to increased soil respiration, this 

effect does not occur in the presence of charcoal in the soil, suggesting that charcoal may 

increase the stability of other SOM stocks through protection from microbial attack or by 

moderating nutrient availability. Although ephemeral, carbon accounting may require that 

estimates of charcoal carbon amendments be downgraded somewhat to account for initially high 

mineralization of charcoal following application. 

Management of boreal forest charcoal stocks may be necessary in the absence of fire and 

decreased organic matter inputs due to forest harvesting. Maintaining active boreal forest soil 

carbon stocks is imperative in the face of intense forest harvesting, fire suppression and climate 

change. Although much more research is needed, managing boreal charcoal stocks is technically 

feasible. Laboratory produced charcoal can replicate many of the properties of wildfire charcoal, 

while logging residues can produce charcoal quantities comparable to those resulting from low to 

moderate intensity fires. Incorporating charcoal into boreal forest management through the use of 
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prescribed burns and wildfire can help to maintain future soil carbon stocks and the long term 

productivity of boreal ecosystems.  
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