
Multi-Advisor Deep Reinforcement Learning for Smart Home Energy

Control

Andrew Tittaferrante

April 2021

Abstract

Effective automated smart home control is essential for smart-grid enabled approaches to demand re-

sponse, named in the literature as automated demand response. At it’s heart, this is a multi-objective

adaptive control problem because it requires balancing an appliance’s primary objective with demand-

response motivated objectives. This control problem is difficult due to the scale and heterogeneity of

appliances as well as the time-varying nature of both dynamics and consumer preferences. Compu-

tational considerations further limit the types of acceptable algorithms to apply to the problem. We

propose approaching the problem under the multi-objective reinforcement learning framework. We sug-

gest a multi-agent multi-advisor reinforcement learning system to handle the consumer’s time-varying

preferences across objectives. We design some simulations to produce preliminary results on the na-

ture of user preferences and the feasibility of multi-advisor reinforcement learning. Further smarthome

simulations are designed to demonstrate the linear scalability of the algorithm with respect to both

number of agents and number of objectives. We demonstrate the algorithms performance in simula-

tion against a comparable centrallized and decentrallized controller. Finally, we identify the need for

stronger performance measures for a system of this type by considering the effect on agents of newly

selected preferences.

1

Acknowledgements

I am grateful for the support and guidance provided by my supervisor, Dr. Abdulsalam Yassine. His

continuing guidance provided clear direction for this work, while simultaneously allowing me the freedom

to research and innovate to my heart’s desire. His unique perspectives always provided clarity on where

to best channel my efforts. His unwavering faith in me enabled me to continually be looking forward in

some of the most difficult times I’ve experienced and for this I am truly grateful.

For financial support, I’d like to thank Lakehead University and the department of Engineering for

providing a graduate assistanceship position and entrance scholarship. I also am grateful for being given

lab-space to complete my work, this provided immeasurable improvements to productivity in my time

spent there. Finally, I’m thankful for being given the opportunity to teach, which provided extremely

valuable experience and insight into the perspective of my own professors.

I’d like to thank my friends and lab-mates in ATAC4013. My kindhearted lab-mates were all

extremely welcoming when I arrived, and continued to be throughout my time in the lab. The general

advice, support, assistance, inspiration and distraction from my colleagues was always welcome. The

technical ideas discussed on the whiteboard have greatly helped shape both this work and my future

trajectory, and have greatly helped sharpen my own technical prowess. I miss those of you who have

left and hope to return soon.

Contents

1 Introduction 4

1.1 Introduction . 4

1.2 Motivation . 5

1.3 Technical Challenges . 6

1.4 Research Approach . 8

1.5 Contributions . 9

1.6 Organization . 11

2 Background 13

2.1 Demand Response . 13

2.2 Optimization . 13

2.2.1 Common Problem Classes . 14

2.3 Reinforcement learning . 15

2.3.1 Markvov Decision Processes . 16

2.3.2 Q-learning . 17

2.3.3 Deep Reinforcement Learning . 19

2.3.4 Multi-Agent Reinforcement Learning . 19

3 Related Work 21

3.1 Smarthome Control Approaches . 21

3.2 Reinforcement Learning Algorithms . 26

3.2.1 Multi-Advisor Reinforcement Learning . 28

3.3 Discussion . 28

1

4 Importance Scaling of Elastic Appliance Utility Functions for Automated Power

Management in Smart Homes 31

4.1 Introduction . 31

4.2 Problem Formulation . 32

4.2.1 System Representation . 32

4.2.2 System Constraints . 33

4.2.3 Appliance Performance . 33

4.2.4 Objective Function . 34

4.2.5 Appliance Constraints . 35

4.2.6 Overall Formulation . 37

4.3 Simulation Results . 37

4.3.1 Experimental Parameter Settings . 37

4.3.2 Solution Algorithm . 39

4.3.3 Results . 39

4.4 Conclusion and Future Work . 42

5 Multi-Advisor Reinforcement Learning for Residential Heating 45

5.1 Introduction . 45

5.2 System Model . 46

5.2.1 Environment Description . 46

5.2.2 Agent Description . 48

5.3 Simulation Results . 49

5.4 Conclusion and Future Work . 52

6 Multi-Advisor Reinforcement Learning for Multi-Agent Multi-Objective Smart Home

Control 54

6.1 Introduction . 54

6.2 Environment Model . 55

6.2.1 State-Space . 55

6.2.2 Action-Space . 56

6.2.3 Dynamics . 56

6.2.4 Dynamics Summary . 60

2

6.2.5 Reward Function Specification . 60

6.3 Proposed Architecture . 63

6.3.1 Outer Loop . 64

6.3.2 Multi-Agent Interactions . 65

6.3.3 Advisor Model . 65

6.3.4 Aggregation Function . 66

6.4 Complexity Analysis . 68

6.5 Experimental Results . 69

6.5.1 Execution Time . 69

6.5.2 Environment Parameters . 69

6.5.3 Training . 72

6.5.4 Simulation . 73

6.5.5 Simulation - Different Importance Weights . 76

6.6 Conclusions and Future Work . 83

7 Conclusions and Future Work 86

7.1 Conclusions . 86

7.2 Future Work . 87

3

Chapter 1

Introduction

1.1 Introduction

Electricity companies face an operational inefficiency due to consumer energy consumption patterns

[45]. Consumption trends exist for consumers in relation to time of day, which leads to energy demand

peaks. This causes a problem for electricity generation companies, which are required to generate more

energy during these peaks. Due to this increased demand for electricity, some operational efficiencies of

power production are decreased, leading to a higher cost per. unit of energy. To curb this inefficiency,

utility companies are adopting the concept of Demand Response. In Ontario, the current demand

response scheme divides a day into three different pricing periods, On-peak, Mid-peak, and Off-peak.

This is a simple scheme, where prices are higher On-peak, and lower Off-peak and Mid-peak. In this

scheme, the prices are adjusted twice yearly[18] [36].

Two possible improvements to Ontario’s scheme, or those like it, could be to a) Divide the day

into more than three time-slots, and b) Adjust the prices more frequently than twice yearly. The main

scheme considered in this work is one where electricity has a price which is specified for every hour. The

hourly pricing for a day is known before the day starts. The scheme may be ineffective, because while

it more precisely motivates the consumer to control their energy consumption, it is also inconvenient to

them; the consumer would need to adjust their appliance settings by the hour to effectively account for

the varying price [63].

One approach to increase the feasibility of precise consumer motivation signals such as hourly time-

of-use pricing (TOU) for residential consumers is that of Automated Demand Response [43] (ADR),

where the consumers smart-home appliances automatically adjust their control policy to balance the

4

compensation from the utility company with the appliance’s primary objective. The ADR problem is

thus a control problem, where the controlled devices have some primary objective (the original purpose

of the appliance) they are trying to achieve, which then must be augmented by a secondary demand

response objective. A concrete and prevalent example of this is assigning a thermostat to automatically

adjust a heater’s energy consumption to balance its primary objective of set-point tracking (maintaining

user’s desired indoor temperature) with the secondary objective of reducing energy consumption.

The previously described example hints at what we believe is the inherent multi-objective nature

of the problem. The thermostat in a DR setting clearly has at least 2 objectives, set-point control and

consumption minimization. Therefore, we assume that an effective ADR control scheme must be able

to handle multiple objectives. Furthermore, it seems necessary that a device be capable of adapting to

previously unspecified objectives, as capabilities of devices may evolve. It seems reasonable that issues

of cooperation may occur unexpectedly when a new device is added. It may be possible to inspire

cooperation by considering cooperation as an objective for the agent to pursue.

In this work we make use of the recent advances in reinforcement learning (RL)[47]. The standard

RL problem deals with training an agent to act optimally in a Markov Decision Process (MDP). The

trained agent can be viewed as implementing a learned policy, a function assigning actions for any

given state the agent finds itself in. The desired policy should chose actions as to maximize expected

return. A common approach to learn a policy is through the use of action-value functions, with recent

implementations such as neural-network based deep Q-networks (DQN) [26]. Specifically, we utilize

Multi-Advisor Reinforcement Learning (MAd-RL) [20], which is an approach to solving a single-objective

RL problem by decomposing the reward signal into multiple separate rewards and separately learning

an action value function for each reward. Actions are then selected by aggregating these action-value

functions into a specific action.

1.2 Motivation

Recently, there was been a growth in smart-home technologies available for purchase by consumers.

When considering that smarthome appliances can be purchased individually, it becomes apparent that a

system composed of these appliances must be capable of growth; a thermostat might need to cooperate

with a dishwasher purchased at some future date. This is currently notable when it comes to energy

scheduling in demand response; two devices will have to coordinate in some way to avoid overtaking a

smart-contract’s consumption threshold.

In terms of growth capabilities, along with the previously described decentralized/cooperation as-

5

pect, a further complication is the time-varying nature of the user’s opinions and objectives. For

example, a consumer may decide to take a more active role in the battle against climate change and

request that their smarthome devices adjust their behaviour to reduce energy consumption. After two

weeks, the consumer decides that they dislike the cold indoor temperatures, and requests a more mod-

erate reduction in energy consumption. In essence, this requires that the device may seamlessly begin

making decisions based on a brand-new objective that wasn’t previously considered, and make appro-

priate trade-offs between these objectives. This capability would also encompass new/unpredictable

objectives which may arise in the future, a powerful capability to offer in a smart device. Furthermore,

it seems possible to mend cooperation issues between devices by explicitly defining clear cooperative

objectives for the appliances.

Associated with nearly every control task is the notion of feedback, where some sensor provides

information about the environment to help the controller estimate the state of the system. In a home

that gradually becomes ’smart’, appliances will be added over time, and these may require sensors be

added. This is clear in the task of temperature control; a user may desire a temperature sensor be added

to different rooms to control different temperatures. Commercial products are available with similar

capabilities, for example [31].

These ideas motivate the work in this thesis. The motivation comes from a desire for a smart-home

control system which is capable of seamless growth while incorporating newly included appliances,

objectives, and sensors. This is a non-trivial task which requires algorithms that perform effectively

and are scalable in terms of objectives, appliances and sensors.

1.3 Technical Challenges

A first basic challenge is the that of versatility. Essentially, the conditions in each smart home will

be vastly different. A small house in Thunder Bay interacts with the environment that is drastically

different than a large house in Dubai. Another challenging aspect is the typical seasonal changes in

the environment, the controller must be adaptable to handle these. Furthermore, it is near essential

that a controller be capable of generalization, as the space of observations is much to wide to explore

effectively. There is also difficulties with the user’s preferences, which generally change over time. This

represents a change in objective structure and control algorithms need to be selected that can adapt to

these changes too.

Some main technical challenges of this work revolves around the heterogenenous nature of appli-

ances and objectives. Normally, each appliance is designed to achieve some primary objective such as

6

maintaining indoor temperature, charging an electric vehicle, or cleaning laundry. Each of these has a

fundamentally heterogeneous nature, which makes comparing performance of each task difficult. This

is further exasperated by the inclusion of new objectives, eg. consumption reduction or consumption

thresholds. In this setting each device will need to make trade-offs between these objectives, and an

algorithm for achieving such is required.

A further challenge results from the heterogeneous nature of appliances. Each device faces a unique

task; the problem of indoor heating requires the controller minimize the temperature’s distance from

ideal, while lighting needs to keep consistent visibility in the residence. Mathematical models of these

two situations would be unique, the first could use differential equations, the second would use relatively

high-dimensional presence and lighting variables utilizing discrete logic-based reasoning 1. Control

across a variety of tasks using a uniform standard requires extremely versatile control algorithms.

While standard linear controllers (eg. Proportional Integral Derivative (PID) controllers) are fantastic

in situations that can be modelled with linear systems, they could not easily be applied to automated

lighting.

The high-dimensional action and observation space of a futuristic smart-home comes with a high

degree of computational complexity. In theory of dynamic programming for MDPs, this is referred

to as the ”curse of dimensionality”, referring to the exponential growth of a Q-table size w.r.t. the

dimensionality of both action and observation spaces. This nearly necessitates the controlling agent be

organized in a decentralized fashion, which requires efficient algorithms to be applied in the multi-agent

case.

Finally, scalability is of fundamental concern in design of computationally expensive systems. This

is noted previously as concern with the ”curse of dimensionality” but also includes consideration for the

control algorithm itself. For example, model-predictive control approaches reference a model to plan

the next step of their actions, but these simulations can take time to perform with complex models. In

a neural-net based controller, performing the forwards and backwards passes through the network take

considerable time, requiring matrix multiplications which take polynomial time to complete. Further

complexity in this system includes the number of agents considered, as well as the number of objectives

considered by each agent.

1For example, the XOR operation would be noted, as the user is exclusively in one room at a time

7

1.4 Research Approach

This research aims to tackle the technical challenges as described previously. This begins with a

look at optimization methods, as they provide an abstract view of the smart home problem, complete

with models of the environment and the devices. Under these schemes, abstract models of appliance

classes are available in the literature. Given a reliable model of the appliance/environment interaction,

these approaches can be extremely effective, and form a major branch of control approaches in smart-

homes, commonly named ”model predictive control”. Under this framework, the literature demonstrated

that user preferences are normally accounted for taking a linear combination of the basic objectives.

This provides a means of mathematically modeling user preferences given utility functions of specific

objectives. Furthermore, this work provided a starting point for considering models of specific aspects,

particularly time of use pricing and models of electric heating.

While the optimization techniques are useful and commonly efficient, there are some core reliability

issues. Particularly, when the model isn’t correct, there is a disconnect between what the controller

expects to happen and what actually happens. This can be better accounted for by considering stochas-

tic models, such as Markov Decision Processes. These models are generally more difficult to design

controllers for, but dynamic programming techniques have been known to be effective for relatively

low-dimension observation spaces.

Deep neural networks are capable of generalization and handling of high-dimensional data, and

thus seems a strong candidate for smart home control. The approximation provided by the network

allows the system to reduce the problem complexity. The learning aspect allows the network to adapt

to changes. Furthermore, deep learning is known to be effective in cases with high-dimensional inputs,

enabling strategies like temporal conditioning, where the season / month / day of week are provided

as input to the network. This enables more adaptability with the natural seasonal changes of the

environment. Furthermore, neural networks are known to scale to large data sets, which are prevalent

in smart environments.

A natural concern when considering utility functions is that of their source; defining a utility

function for a task is generally not a simple task. In this sense, we are motivated to approximate the

cumulative utility function using an action-value function, prominent in reinforcement learning. This

motivates the use of reinforcement learning for smart home control, and is supported by the plethora of

research applying reinforcement learning to smart home tasks. Reinforcement learning approaches are

commonly described as model-free, as they do not need to deliberately model the environment dynamics

8

to be able to act, and can therefore be implemented regardless of model accuracy. There is a catch

to this claim, as currently reinforcement learning techniques require many failed interactions with the

environment, and thus take too long to learn. Nonetheless, given a model, a reinforcement learning

algorithm can be run in the model to gain experience. If future algorithms in reinforcement learning

can increase data-efficiency to improve the learning time, then they can be described as truly model-free

algorithms.

The idea of approximating cumulative utility functions as action-value functions falls under the

approach named ”multi-advisor reinforcement learning” [20]. It is a simple strategy that has been

shown to converge when using off-policy action-value based algorithms with a fixed aggregation function.

The hybrid reward architecture [55] appears to be an implementation of multi-advisor reinforcement

learning, and has demonstrated performance in the specific game of Mrs. Pacman, an Atari game of

relative difficulty for DQNs.

To evaluate these techniques, we develop a series of mathematical models designed to be appropriate

to demonstrate the functionality of the algorithms in specific aspects of the smart home environment.

This begins with a simple convex optimization problem model based on the work of [39], which simulates

multiple appliances and considers the objectives for each device as well as energy cost. Explored next

is a simple deterministic single-agent MDP model for an electric heating problem. This model uses

energy reduction as a secondary objective, and tests the behaviour of MAd-RL under scheduled user

preferences. Finally, a more complex MDP which models both electric heating and electric vehicle

charging is developed. This model includes a cooperative objective which subjects the system to concerns

associated with multi-agent coordination. Furthermore, the electric vehicle charging dynamics are

stochastic, providing more robust evaluation of the algorithm. Finally the algorithm is simulated to

determine the scalability of its operation w.r.t. to the number of objectives, as well as the number of

agents.

1.5 Contributions

• Analyzed and identified ”importance scaling”, a weighting mechanism for which a consumer’s pref-

erences between distinct utility functions can be effectively represented. This work can be found

in chapter 4, based on [51], where a convex optimization problem with known utility functions is

used to demonstrate a qualitative performance improvement which arises by considering varying

importance weights for the system.

9

• Formulated the smart-home control problem for the first time2 as a multi-objective reinforcement

learning problem. This is a more-or-less obvious perspective, as the demand response optimization

approaches in the field all inherently consider multiple objectives, and other work in reinforcement

learning for smart homes does as well. Nonetheless, the multi-objective structure had yet to be

harnessed by a dedicated reinforcement learning algorithm.

• Proposed multi-advisor reinforcement learning as an algorithm to grapple the growing multi-

objective nature of the problem. The algorithm allows the inclusion or exclusion of multiple

objectives as seen fit by the aggregation function. This enables the aggregation function to act

as the importance weights for the system. If a new objective is desired another Q-function may

simply be added/learned, followed by adjusting the weights to allow it to affect decision making.

• Demonstrated that state-based importance weighting as an aggregation function can enable the

shifts in behaviour typically desired by smart home owners. This work is presented in chapter 5,

based on [52], and is demonstrated by the behaviour that results from assigning a low importance

during mid-afternoon for the task. This shows that the algorithm will learn to shift between tasks

according to the scheduled weight scheme. These results are based on simulation of a simple

first-order deterministic thermal model.

• Formulated a MDP model for a smart home which considers 2 appliances and 4 unique objectives.

The model continues with the previously used thermal model, and further includes dynamics

and rewards for an electric vehicle charging situation, which are inspired by the work of [57].

Furthermore, this includes a new MDP formulation for a smart contract, which attempts to

resolve the credit assignment problem by providing punishment to the agent proportional to their

contribution to failure.

• Demonstrated the performance of the proposed multi-agent multi-advisor reinforcement learning

agent in the previously described environment. The proposed agent is compared with 2 simi-

lar DQN-based algorithms, one of which is centralized, the other decentralized. The metric for

comparison is that of cumulative weighted reward, in which the 3 agents each exhibit compara-

ble performance. This indicates the potential of the proposed algorithm to achieve competitive

results. The results indicate that the proposed agent takes a unique strategy compared to the

benchmark agents.

2The work of [15] claims this as well, but our publication on [52] predates their claim.

10

• Empirical and theoretical analysis of the algorithm scalability. The measured task is the operations

which must be performed between each discrete time-step. These results can also be found in

chapter 6. It is shown that the algorithm scales linearly with both objectives and agents. The

theoretical results follow from considering the number of forward passes through a neural network

in order to select an action, while the empirical results involve instantiating the agents with

smaller networks, but varying number of agents/objectives. The empirical data measures the

”learn” operation, which encapsulates both action selection and neural network training.

1.6 Organization

This thesis is organized as follows:

• Chapter 1: Introduction - This chapter, provides a high-level description of the thesis and the

various aspects involved.

• Chapter 2: Background - Brief descriptions of fundamental ideas which are essential building

blocks to understanding the work in this thesis. Describes basic aspects of demand response,

optimization, and reinforcement learning.

• Chapter 3: Related Work - Provides brief summaries of related work in the relevant fields. This

primarily includes a look at the smart-home control approaches as prevalent in the literature,

follows up with a brief sample of some recent reinforcement learning algorithms. A brief summary

of the sampled work is provided at the end.

• Chapter 4: Importance Scaling of Elastic Appliance Utility Functions for Automated Power Man-

agement in Smart Homes - This is the work from [51], where a convex optimization problem is

formulated and solved to demonstrate the effect of considering variable objective importance from

a smart-home perspective.

• Chapter 5: Multi-Advisor Reinforcement Learning for Residential heating - This work is from

[52], where a multi-advisor agent is simulated to control an electric heating environment. This

work demonstrates that state-based weighting can achieve desirable performance.

• Chapter 6: Multi-Agent Smarthome Control with Multi-Advisor Reinforcement Learning - This

work describes the MDP formulation for a smarthome with 2 appliances, presents the proof of

scalability, and shows the results from simulation, including comparison against some benchmark

agents.

11

• Chapter 7: Conclusion and Future Work - This chapter describes the overall conclusions to be

made from this work’s results, and presents some aspects which could be interesting to expand on

in future work on this topic.

12

Chapter 2

Background

2.1 Demand Response

Demand response (DR) is motivated by utility distribution companies’ desire to decrease peaks

in energy demand caused by common consumer energy consumption schedules. Demand Response is

defined as ”The changes in electric usage by end-use customers from their normal consumption patterns

in response to changes in the price of electricity over time”[1]. This concept is useful because electricity

companies face operational inefficiencies in their energy consumption patterns [45], and it generally

describes the techniques used by electricity companies to incentivize energy consumers to adjust their

consumption habits, ie. financial incentives. This can include approaches such as Time-of-Use pricing,

where at every time-step during the day, a specific price (eg. in $/kwh) is set by the utility company.

Another scheme is that of ”Direct Load Control”, where the utility company forms an arrangement

with the consumer, whereby the utility company can turn off the consumers devices remotely, and in

return the consumer is financially compensated. A third approach is that of ”smart contracts”, where

the utility company offers the consumer a financial compensation to reduce their energy consumption

below some predefined threshold during a specific time-slot, with some financial penalty associated with

overtaking the threshold [21]. These techniques all provide some mechanism for the utility company

to reduce costly peaks in energy demands, and thereby reduce operational costs. This work will focus

primarily on Time-of-use pricing and smart contracts, as they decentralize the consumption adjustments

away from the utility company, providing more freedom for the consumer.

2.2 Optimization

In mathematical optimization, the standard problem is given in a form similar to:

13

minx f(x)

s.t. gi(x) ≤ 0, ∀i ∈ {1, . . . , n}
(2.1)

which describes selecting a vector of variables x that minimizes the objective function f(x) while

obeying the constraints specified by a set of n inequalities, defined by the functions gi(x). The set

of vectors x that satisfy all of the constraints is called the feasible set. This covers a wide variety of

optimization problems. Notable common classes of optimization include linear, convex, nonlinear, and

multi-objective optimization, each described briefly in the following sections.

2.2.1 Common Problem Classes

Linear Optimization

Linear Optimization [56], also called Linear Programming, has problem structure as shown in equation

2.2. For the problem to be considered a linear optimization problem, the constraint and objective

functions need to be linear w.r.t. the decision variable x. Linear programming problems are usually

considered simple to solve, with fast performing algorithms such as the simplex method [9] used in

practice.

Convex Optimization

Convex Optimization [5] is another category of simple optimization problems. There are polynomial-

time algorithms available to solve many of these problems [5]. These problems again follow the same

form as given in equation 2.2, but restricts that the objective function must be convex w.r.t. x, and all

feasible solutions must belong to a convex set. The feasible set is normally defined using epigraphs of

convex functions along with an affine set. A convex optimization problem can be represented as:

minx f(x)

s.t. gi(x) ≤ 0, ∀i ∈ {1, . . . , n}

Ax = b

(2.2)

Nonlinear Optimization

Nonlinear optimization covers a broad class of optimization problems, including those which have no

guaranteed linear or convex structure on the objectives or constraints. These problems are not easily

14

solved. Often it is acceptable to produce a locally optimal solution to a nonlinear optimization problem,

as globally optimal solutions can be intractable.

Multiobjective Optimization

Multiobjective optimization problems follow the standard optimization problem form, but is fundamen-

tally unique due to the vector nature of the objective function. This is a notably complicating feature,

as comparison between vectors are ill-defined. In single-dimensional objective functions, the comparison

between two feasible solutions has a clear outcome, either one solution is superior, or they tie. In the

multi-objective case, there is only a partial ordering.

For example, consider a maximization problem which has 2 feasible solutions: [1, 0] and [0, 1]. These

2 solutions cannot be generally compared, as each is in some sense both better and worse than the other.

These vectors can be mathematically described as ’incomparable’. Notably, if third and fourth solutions

of [1, 1] and [0, 0] were also available, it becomes clear that [1, 1] is the best, and [0, 0] is the worst. A

fifth point of [2, 0] would again mean that there are 2 optimal solutions, this time [2, 0] and [1, 1]. These

5 points illustrate the idea of partial ordering, where a vector can be greater, less than, equivalent, or

incomparable to any other vector it is compared to.

This property of performing comparisons between vectors leads to a critical aspect of multi-objective

optimization problems; there may be multiple incomparable solutions to the same optimization problem.

This induces the idea of maximal/minimal solutions (different from the commonly used maximum /

minimum), which describe solutions who are either ’incomparable to’ or ’better than’ all other solutions.

2.3 Reinforcement learning

Reinforcement Learning [47] refers to a set of techniques used to train an agent to interact with

an environment. The environment is modelled as a Markov Decision Process. The usual diagram

from [47] can be seen in figure2.1. This standard picture describes the interaction between the agent

and environment. Due to the discrete nature of computers, the interaction generally follows discrete

time-steps, denoted with a subscript t. During a single time-step, the agent sees the reward from the

previous time-step and inputs the current state. The agent next selects an action (which is input to

the environment/actuators). The environment then responds to the action and produces a next state

and reward for the transition 1. The goal of Reinforcement Learning is to determine a policy, usually

1The sequence of events occurs like (St, At, Rt+1, St+1, At+1, . . .)

15

Figure 2.1: Standard Agent/Environment interaction diagram, taken from [47].

denoted π, that prescribes an action for any given state 2, ie:

π(s) : S 7→ A (2.3)

The policy desired is one that maximizes some sense of the reward (eg. average, overall, discounted)

achieved by following it.

2.3.1 Markvov Decision Processes

A Markov Decision Process (MDP) [4] can be described as having 5 elements, (S,A,R, T, γ). The

first element, S, represents the set of all possible states, which can be analogously interpreted as being

the set of situations the agent can find itself in at a moment. The second element, ’A’, is the set of

all actions the agent can take (eg. the voltage applied to a motor). ’R’ is the reward function, which

normally can be described as a function R(s, a, s′)3 which provides a scalar value for every transition

that can occur in the environment. The agent is concerned with acting to maximize the signal ’R’. ’T ’

describes the agent’s (stochastic) transition dynamics, ie. the probability of arriving in a given state,

st+1, when in an arbitrary state st after taking some action at.

State in MDP

The concept of state in a MDP is related to that of state in deterministic control systems. The common

control textbook [33] describes the state as being the minimal set of variables necessary to determine

2Commonly, a stochastic policy is desired instead. In this case, the function mapping is π(a | s) : S ×A× S 7→ R
3Note that s′ denotes the ’next state’, as in the state which occurs after s

16

the new state that occurs at some later time, as long as the inputs are known for the intermediate

period.4 This notion necessitates that prior states are irrelevant, as in the definition only the current

state and an arbitrary length sequence of inputs are required to determine the future state. In his 2019

lectures at Arizona State University, Dr. Bertsekas describes state as ”something that separates the

past from the future” [53]. This idea is clear because generally in sequential decision-making, the state

dynamics are a function of the entire history, Ht, the record of all observation-action sequences since

the beginning:

Ht = {Oτ , Aτ |τ = 1, . . . , t} (2.4)

This is theoretically sound, although often not helpful due to the continual dimensionality increase

of the history. As following Dr. Bertsekas’ intuitive description, the state provides a (normally-fixed

length) representation of the history as it is necessary for determining future states. In the stochastic

case of Markov Chains, upcoming states are unknown but follow some distribution. Therefore the state

need not be sufficient to determine the next state, but rather to determine the distribution over next

states. Mathematically, this describes the Markov Property, ie:

P (St+1|St, At) = P (St+1|Ht) (2.5)

This requirement in the specification of the dynamics is seemingly complex, as it requires the agent

designer to specify a means to represent all the history in a reasonable manner. This difficulty is

commonly resolved by considering the previous set of n observations, which intuitively relates to the

task of approximating a k-order derivative using the previous n observations. Alternatively, recent work

has approached this problem using recurrent neural networks which only input observations [17].

2.3.2 Q-learning

Q-learning [58] was one of the first, and is one of the most popular Reinforcement Learning Al-

gorithms. The algorithm explores the environment, and iteratively learns to estimate the action-value

function of the policy being used to explore. The action value function, denoted Q(s, a) is defined as:

Q(s, a) = Eπ[Gt|St = s,At = a] = Eπ[
∞∑
k=0

γkRt+k+1|St = s,At = a] (2.6)

4Exact wording from text: ”The state of a dynamic system is the smallest set of variables (called state variables) such

that knowledge of these variables at t = t0, together with knowledge of the input for t ≥ t0, completely determines the

behavior of the system for any time t ≥ t0”

17

Figure 2.2: Visualization of a table of Action-value functions, considering n states and m actions

This function is defined to be the average sum of rewards succeeded by the current state, given

that policy π is being followed to select actions in all succeeding states. The coefficient, γ, is called the

discount factor, which provides theoretical convergence guarantees (by bounding the sum), and usually

is explained as accounting for the fact that near rewards are more valuable that distant rewards.

The action value function is represented (stored in computer memory) as a table, see fig 2.2, where

each row represents a single state, and each column represents a single action. As a greedy Q-learning

agent observes a state, it checks the corresponding row for that state, and selects the action (column)

with the highest number (the action-value of that state-action pair), as it is expected to give the largest

return.

The algorithm progresses roughly as follows; the values in the table are all initialized to some

default values (often zero, but initial values could be carefully chosen to guide exploration through the

environment). The agent then selects actions according to some exploration-exploitation scheme, for

example ε-greedy, where the agent selects the highest-value action with probability ε and a uniformly

random action with probability 1 − ε. The actions cause the environment to evolve, and the agent

observes a new state and some reward for the transition. The agent then makes an update on the entry

corresponding to the observed state/action pair using the following update rule:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a′

Q(St+1, a
′)−Q(St, At)] (2.7)

18

or equivalently,

Q(St, At)← (1− α)Q(St, At) + α[Rt+1 + γmax
a′

Q(St+1, a
′)] (2.8)

Here α is called the learning rate, and the factor multiplied by it in 2.7 represents the error between

the value and the sample. The form in 2.8 makes it clear that this brings the estimated Q-value away

from it’s current estimate and towards the new sample estimate.

The total number of elements in this table is the Cartesian Product of the action space and the

state space. This means that the table size is exponential in terms of both the action space and the state

space, and therefore is not suitable for large-scale problems. In the case of fig. 2.2, the total number is

m× n values, where m and n will grow exponentially w.r.t. their own corresponding dimensionality.

2.3.3 Deep Reinforcement Learning

Deep Reinforcement Learning [12] is a recently growing approach to Reinforcement Learning. The

approach can be described as utilizing the generalization power of neural networks to learn to act in

relatively complex environments. This is demonstrated by the DQN in [26] surpassing the performance

of a professional games tester in a wide array of ATARI games. These ATARI games, while not truly

representing a real-world environment, serve as a benchmark for the capabilities of such a system to

learn to act in a complex domain.

There are many deep reinforcement learning algorithms being researched and utilized today. Pri-

marily, these algorithms fall under 2 main categories; policy-gradient methods and value-based methods.

Intuitively, the two methods both use a neural network to approximate some function. In policy-gradient

methods, the network parameterizes the policy directly, while in value-based methods, the network pa-

rameterizes the action-value function. Two of the most popular algorithms of each type are DDPG and

DQN respectively. Notably, these sorts of algorithms can be used together for more efficient actor-critic

algorithms.

2.3.4 Multi-Agent Reinforcement Learning

Multi-agent reinforcement learning considers the case of multi-dimensional actions, each of which is

selected independently by it’s own agent. The commonly used dynamics model for this situation is that

of Stochastic games [44], an extension of MDPs to the case where there are multiple agents, and therefore

multiple reward functions. In the purely cooperative case, all agents share the same reward function

and the problem framework is that of decentrallized partially observable MDPs (Dec-POMDPs)[34].

Two primary concerns of this problem setting are that of optimality (related to that of previously

described multiobjective optimization), and secondly that of credit assignment [6]. Credit assignment

19

is a prevalent problem in fully cooperative environments. In this case, as all agents share a reward

function, it is difficult for any single agent to determine how much it’s own action contributed to the

outcome. This makes it difficult for the agent to learn whether it’s own actions were good or bad. In

some cases, as in this work, individual reward functions can be applied to help aim towards centralized

goals.

Optimality is of concern first due to the vector nature of the performance measure. The performance

measure of a policy is the value of the initial state. In the multi-agent case, this initial value becomes a

vector and indicates that there are multiple joint policies which all provide maximal value. Furthermore,

when policy-selection in this setting is decentralized, the concept of Nash Equilibrium arises [30]. If all

but agent i has a stable policy, then agent i will select it’s best response given the other agent’s policies.

This issue is apparent when considering the prisoner’s dilemma. In the prisoner’s dilemma, the best

response is always to betray your partner. Therefore, each agent should select the betray action, and

this outcome is clearly not optimal in a multi-objective sense.

A simple, suboptimal, and common approach to multi-agent reinforcement learning is that of Inde-

pendent Q-learning [50], where each agent is trained using the single-agent Q-learning algorithm. This

approach has been shown to be surprisingly effective in empirical evaluation performed in [64]. This

approach is used in the work of this thesis.

20

Chapter 3

Related Work

The open literature includes a plethora of work in various research on demand and energy management

for residential appliances. Although the review of these studies in this section is not exhaustive, it

provides a representative view of related work. This chapter begins by describing the work of various

smart-home control approaches considered in modern research. These mainly include optimization and

reinforcement learning based schemes, both of which imply the need of dynamics and reward models

for the system. These are followed by a brief sample of modern reinforcement learning algorithms,

particularly focused on approaches based on neural networks. These are briefly described due to their

relevant nature as possible approaches in regards to this work.

3.1 Smarthome Control Approaches

In [39], the smart-home control problem is given an abstract formulation, relying on known and con-

vex utility functions that represent the primary objective of each appliance. The problem is formulated

as a mixed integer nonlinear programming (MINLP) problem, which are generally difficult to solve.

TheY use a specialized algorithm, Generalized Bender’s decomposition, which involves iteratively solv-

ing (simple) convex subproblems including only decision variables of elastic appliances. This approach

approach is effective and fast, but seems as though it will be impractical in reality, as the restriction of

utility functions as convex may be impractical. Nontheless, the system model as described provides a

good framework to view smarthome control as an optimization problem.

In [65], three types of appliances are considered, fixed loads, regulate-able loads, and deferrable

loads. The fixed loads are not considered in the optimization problem, because they cannot be adjusted.

Secondly, the problem is simplified because it considers that regulate-able loads can be optimized sep-

21

arately than deferrable loads, because their problem formulation contains no constraints which include

decision variables from both types of appliances. Notably, this is a limiting factor as global constraints

such as ”maximum household energy consumption” are used in other work, such as [39]. The work

mainly focuses on regulate-able loads, particularly the heating ventilation and air conditioning (HVAC)

system. They use machine learning methods to learn a mapping from the environment variable, tem-

perature (desired, current, and outdoor), to the corresponding energy consumption.

The work presented in [32] is one of the earliest works applying reinforcement learning to the

automated demand response problem. They present an algorithm, named CAES (Consumer Automated

Energy Management System), which is based on Q-learning [58] to schedule device energy usage. The

problem is treated as an energy consumption scheduling problem, where the system inputs a state-

feature representation that is derived from assigned tasks, previously selected actions, and price signals.

The overall objective of the system is to minimize a weighted sum of energy cost with an abstract

“disutility” of delaying the device operation to the user. The actions in the system represent the

amount of energy provided to each device, and therefore is a multi-dimensional action space. The

results contrast the performance of the Q-learning system with an uncontrolled (easy to beat) system and

demonstrate that the energy usage is reduced during peak cost times. While this approach demonstrates

that reinforcement learning can be used to reduce energy cost while considering user objectives, there

are limitations in that the system only considers cost of waiting, rather than a more general type of

objectives that a user may have. Secondly, standard Q-learning is a tabular approach, and therefore

scales exponentially with the dimensionality of the state and action space. Therefore, this approach in

its given form does not scale to the possibility of having many devices present in a single smart-home.

The work of [59] builds on the work of [32], mainly by decentralizing the control across different

devices. This can be viewed as transforming the system into a multi-agent reinforcement learning

system, as individual Q-functions would be used to determine actions independently for each device.

Some other adjustments to the previous work are also included: 1) Using user feedback instead of

assuming a form for dissatisfaction, 2) allowing requested tasks to be at prespecified times, and 3) tasks

can by assigned by the EMS as well as the user. The first is completed by surveying the user (eg: a

scalar value the user believes represents their satisfaction) on the performance of that device for it’s

episode and rescaling (by user’s believed importance) that number to include it in the reward function.

The second is more-or-less a trivial modification that allows more flexibility for the user. The third

allows the EMS to select actions to complete jobs that are not provided by the user (in a sense, it

22

predicts that a job will occur in the future). The state-space in this problem includes only 3 elements;

the current price of electricity, time since last episode / time to request, and the user’s specified priority

for the task. This work is limited in that it still applies tabular Q-learning, which limits the capacity of

the state-space due to the exponential growth of the table size with respect to the dimensionality of the

state-space. Interestingly, the formulation provided for user feedback may be able to effectively represent

more than just the dissatisfaction with delaying, although the paper assumes that user’s dissatisfaction

only is concerned with the schedule. Furthermore, the action space is strictly on/off, which eliminates

the possibility of considering elastic loads (eg. dimmable lighting, EV charging rates, etc).

In [19], the proposed demand response scheme follows the idea of direct load control, where the

utility company directly adjusts the home’s appliances to suit their needs. The scheme only considers

that devices can be turned off, not continuously variable devices. The scheme presented does consider

a priority list for which appliances to turn off, which is based on a k-means clustering algorithm as well

as the number of times the device has been turned off. This scheme is rather different than the work

presented in this thesis, although it supports our claim that appliances should have variable importance

in terms of trade-offs between cost and comfort.

In [21], the problem of rebound peaks arising from automated demand-response systems is consid-

ered. A rebound peak can occur because every automated energy management system will get the same

energy pricing, so each home is motivated to schedule their energy consumption to the lowest price

period, creating a new peak at that time instead. The first solution considers a flat price overnight,

and suggests that the system should randomly select which part of the solution should be selected. A

second solution proposed is to provide different pricing schedules for different homes overnight, leading

to different optimal schedules for the various homes. The third proposed solution is to signal each

home with a power threshold that must not be exceeded. In this thesis, we don’t directly consider the

effects of rebound peaks, but note that many of these proposed solutions should fit nicely in both the

optimization and reinforcement learning schemes presented in later sections.

In [2], the proposed system takes an alternative approach to optimizing for both comfort (called

satisfaction) and energy cost. The approach is to treat the satisfaction level as a constraint, then

optimizing to get the minimum possible price. If the problem is infeasible, the satisfaction constraint is

decreased, so satisfaction is gradually reduced until a desired minimum daily energy cost is met. This

is an alternative approach to dealing with multi-objective optimization, which seems practical, but also

seems limiting as tradeoffs between satisfaction and cost aren’t apparent. An issue with this paper is

23

that satisfaction only considers curtailable appliances, (ones which can be switched off without needing

to be switched on) and the order which appliances are turned off is from a priority list given by the

user.

The work of [57] approaches the problem of EV charging by utilizing deep reinforcement learning.

They formulate the environment dynamics using a MDP. Their network takes as input electricity price

data, as well as the EV’s current state of charge. Furthermore, the presence of the electric vehicle is

considered, although only used to determine the start / end of an episode. Their network utilizes the

DQN algorithm to train their network to estimate action values, as in standard Q-learning. The neural

network used includes two sections; the first is an LSTM-based representation network, which extracts

relevant features from the past 24h of electricity prices. The second section is fully connected, and

aggregates the previous-price features with the current state of charge to determine actions-values for

the system. The action space is single-dimensional, selecting what amount of energy to charge/discharge

into the EV battery during the next time step, including negative energy (to sell back to the grid at the

current price of electricity, or possibly, reduce the energy consumption of other devices). The system

model for the EV’s arrival, departure, and state of charge on arrival are each modelled using a truncated

normal distribution. We utilize this model for EV charging in later sections. The performance measure

/ reward function uses a linear combination of two separate rewards. The first is cost, which includes

energy cost and battery degradation. The second is called “range anxiety”, which is the squared error

from full charge, calculated and applied at departure time. They demonstrate the validity of their

results using a variety of control techniques, with the best performing benchmarks including a few

modifications of MPC, as well as their deep RL approach, which is surpassed only by a MPC approach

that knows the future energy prices.

The work presented in [62] describes a multi-agent reinforcement learning method for home-energy

management. They use extreme learning machines (a type of neural network) [14] to predict upcoming

values for energy cost and expected energy production from solar panels. These predicted values are

then fed into a Q-learning algorithm, which is responsible for selecting actions for the appliances. This

work is interesting in that the features used for Q-learning are extracted from a supervised learning

procedure, which could be called a transfer learning technique as a separate objective signal is being

used to extract features for the reinforcement learning algorithm. It would be interesting to see the

effect of using the features of the ELM as state for the Q-learning section of the algorithm, rather than

predictions themselves.

24

Furthermore, [24], similarly to [62], proposes a multi-agent reinforcement learning based algorithm

to home energy management. They use a neural network to forecast the prices, which are apparently

input to the Q-learning [58] based agents to determine optimal energy usage. They claim to benchmark

their performance against a MILP solver, Gurobi[16], by limiting the optimizer to not include any

foresight of future rewards (corresponds to a discount factor of 0). Unsurprisingly, the multi-agent

reinforcement learning approach performs better than Gurobi, due to the MILP being short-sighted in

it’s solutions (ie, not considering future reward for each time step). The environment model isn’t clearly

presented in this work, so the implications of the results are unclear.

The work of [40] applies batch reinforcement learning [10] to thermostatically controlled loads

(specifically, an electric water heater, and a heat-pump thermostat for a residential building). Batch

Reinforcement learning is a variant of the standard reinforcement learning problem, which [60] describes

as ”Originally defined as the task of learning the best possible policy from a fixed set of a priori-known

transition samples”. The proposed framework assumes a backup controller, which can override the

action of the agent to guarantee user safety/comfort. Forecasted data is integrated into the algorithm

by replacing some sections of the next-state data with the forecasted values as opposed to the true

values. The action-values are estimated using function approximation via. ”an ensemble of extremely

randomized trees”. An expert policy adjustment mechanism is also included. It leverages expert

knowledge of the monotonicity of the desired policy by treating the expert knowledge as a set of convex

constraints on a fuzzy model. This fuzzy model, which they claim is convex w.r.t. parameters θ, can then

be optimized to match the policy output by the Q-function approximator, subject to the monotonicity

constraints.

The work in [28] compares two deep reinforcement learning schemes, one based on policy gradient

methods [49] and another based on DQN [26]. This paper approaches the problem in a centralized

manner, where the neural networks determine the actions for all devices simultaneously. They assume

3 types of devices, time-shiftable (defferable), time-scalable (curtailable) and a joint time-shift and

time-scalable (electric vehicle charging). The framework assumes that controllable devices can only be

switched on/off, in both cases of curtailable and defferable loads. Device rewards are composed of 3

components, comfort, total energy consumption, and total cost. Comfort is modelled by considering

how many times a device has already been turned on/off/delayed. It is unclear how the rewards are

combined in this setting. The results indicate that the policy gradient approach performs better than

the DQN approach.

25

The work of [15] claims (similar to this thesis) to be the first to describe the problem of smart-home

control as a multi-objective reinforcement learning problem. The state space considered consists of each

device’s previously selected actions, which makes the dynamics deterministic. The dual rewards con-

sidered include a comfort metric, consisting of difference from user’s previously prescribed action, and

secondly an energy saving reward, which is the energy saved by the device compared to the prescribed

action. The primary algorithm presented int his work seems to an unnamed version of multi-advisor

reinforcement learning, although the work doesn’t acknowledge the general sub-optimality of the ap-

proach. The work in this thesis differs in that it considers the multi-agent case, applies neural networks

to learn Q-functions as opposed to a table, and the environment description includes much more detail

in the state-space.

The work of [3] applies RL to HVAC control using Q-learning considering on/off control actions.

They consider the state-space with 3 components; indoor temperature, outdoor temperature, and ex-

pected time to occupancy. The reward function is formulated to reduce heating costs by providing a

negative reward for user discomfort, as well as a negative reward for consuming energy. This approach

demonstrates the feasibility of reinforcement learning applied to thermostatically controlled residential

heating, although savings are questionable when compared with a manually programmed thermostat.

Our work differs in it’s capability of automatically responding to demand response incentives, and

instead of estimating time-to-occupancy, we use importance weights to account for the users schedule.

3.2 Reinforcement Learning Algorithms

Deep Q-networks, described in [27][26], are one of the first great successes of deep reinforcement

learning. They use a neural network to estimate the action-value function, Q(s,a) and achieve human-

level performance on simple atari games. To achieve this performance, they use 2 main tricks. The first

trick is to use an experience replay buffer which is randomly sampled to determine a loss during the

gradient descent step of training the neural network. Sampling from the experience buffer attempts to

un-correlate the samples, as experience at time t is normally more correlated with experience at t+ ∆t

than it is with experience collected at t + 5∆t. The second trick involved the use of a target network,

a previously stored version of the current network. The slower changing target network reduces the

bias caused by the target yt shown in equation 3.1. The issue is caused by the fact that the update for

Q(st, at) will likely affect the output given for Q(st+1, at+1). The update can lead to divergence, but is

26

less likely with the gradually changing target network.

yt = Rt + argmaxaQ(st+1, a) (3.1)

The work of [11] describes a multi-agent algorithm used in the cooperative setting, where each

agent shares the same reward function. This work uses the centralized training and decentralized

execution paradigm common in the multi-agent setting. They propose a policy gradient, which utilizes

a centralized critic to compute the gradients for each agent’s policy. This technique provides an approach

for dealing with the credit assignment problem. They propose a method based on difference rewards [61],

which utilizes a default action to determine the effects of the individual actions. Essentially, each policy

i uses an advantage-based gradient which uses a baseline calculated by assuming only agent i has it’s

own actions changed. This algorithm is tested utilizing the popular game StarCraft, by putting trained

policies into each of the units, and having them battle against a team of the same units controlled by

the internal StarCraft AI. The results demonstrate that the proposed algorithm dominates independent

techniques, and is competitive with fully centralized approaches.

The work in [23] proposes a multi-agent modification of the traditional actor-critic algorithm, appli-

cable to both cooperative and competitive settings. The multi-framework used to model the interaction

is Markov Games. They take the common framework of centralized critics and decentralized policies.

First, they describe a policy gradient that relies on one centralized Q-function for each reward function.

This Q-function requires knowledge of each agent’s actions, as well as knowledge of each agent’s policy

(required to determine the joint action a′ in the target y = ri + γQ(s′, a′)). This fits into the policy

gradient simply as is standard with multi-dimensional actions. Secondly, they propose removing the

necessity of policy knowledge by having each agent instead estimate the others’ policies. Finally, they

propose learning multiple policies for each agent, and randomly selecting which policy to use. This

makes the agents more robust in the sense that opponents cannot easily counter their policy. They

apply the proposed algorithm to some seemingly simple environments, involving both competitive and

cooperative situations. The results demonstrate the the potential of the algorithm to function in in

multi-agent environments.

The work of [29] describes an algorithm for the multi-objective reinforcement learning utilizing

DQNs. The algorithm trains one DQN each with a particular relative importance weight vectors. These

weight vectors are carefully selected using a subroutine, which attempts to select a small set of weights

that well-covers the optimal boundary of the set of policies. After the algorithm has completed, the user

27

need only input the weights for the current episode, and is returned to with a DQN which is optimal

for this set of weights. Each DQN is trained independently (possibly with parameter reuse) in the

environment until convergence. This algorithm is intuitive but has a seemingly devastating requirement

(somewhat resolved by parameter reuse); each neural network has to interact with the environment

from scratch to be trained on a single weight vector. Overall, the algorithm seems to show promise,

provide a theoretically sound approach, but the limited results restrain the perceived capabilities of the

proposed algorithm.

3.2.1 Multi-Advisor Reinforcement Learning

Multi-Advisor Reinforcement Learning (MAd-RL)[20], is an unpublished paper that describes a

general scheme of decomposing a single reward function into a set of reward functions, learning action-

value functions for each decomposed reward signal. These action-value functions are then aggregated

into selected actions, resulting in a control policy. They describe egocentric, agnostic, and empathic

planning for the advisors, which are approaches for selecting at+1 when evaluating Q(st+1, at+1) in the

Bellman equation. The experiments in this work are minimal yet promising, matches the scheme in our

work, and provides good theoretical foundations for the algorithm’s convergence.

The Hybrid-Reward Architecture, presented in [55] can be considered as an implementation of

MAd-RL. This system approaches the game Ms. Pac-Man by learning a General Value Function (GVF)

for each location on the map, and using these GVFs to estimate the action-value for each object on the

screen which include ghosts, pellets, blue ghosts, and fruit. This results in more than 400 objectives.

This demonstrates the capability of a multi-advisor system to achieve strong performance in a complex

environment, and demonstrates scalability of including many objectives.

The work of [42] is some of the earliest work on decomposing reward functions, and notes at least

one possible issue present in decomposing reward functions for RL problems. In particular, the Dollars

vs. Euros example demonstrates that non-optimal behaviour can occur from learning separate action-

value functions using off-policy learning. Nonetheless, we accept the possible sub-optimality of using

MAd-RL in this paper due to the demonstrated successes of such an approach in complex environments.

3.3 Discussion

In the previous sections, various techniques for smart-home control are considered. There is variety

in the types of devices considered, with distinctions among the control signals, the system dynamics,

and the objective structures. Overall, it seems that both reinforcement learning and optimization are

commonly researched and well established approaches for control of smart-homes, especially under the

28

motivations provided by demand response applications. These schemes are related, ”Reinforcement

Learning is Direct Adaptive Optimal Control”[48].

Nature of Objectives

As we describe smart-homes as multi-objective control problems, we can consider how each of the

schemes handles the multi-objective nature of the system, where we observe 2 primary approaches.

Firstly, the individual objectives performance measures are aggregated (often linearly) into a single,

scalar performance measure. Secondly are approaches in which some objective is treated as the opti-

mization objective, and the others are considered as constraints, often of the ”must exceed minimal

value” form. In RL approaches, these objectives are described by a reward function rather than the

optimization objective. These reward functions are normally aggregates of individual objectives. In

the multi-agent case, there are multiple reward functions, but these correspond to the different agent’s

unique objectives, rather than a single-agents joint objectives. The only work which describes a deliber-

ate multi-objective reinforcement learning framework is [15], which postdates our original multi-advisor

work presented in chapter 5.

Translation: Reward, Utility, Action-Value

Generally speaking, a utility function is a function which maps inputs to a scalar value. This scalar

value represents a preference for the inputs, where higher values indicate more preferred inputs. If utility

functions are available during a sequential decision-making, one would expect they could differentiate

between actions, similar to an action-value function. In the optimization approaches seen, some utility

functions are more akin to reward functions, as they are accumulated across time-steps and don’t

represent the future. The accumulated utility functions usually are the objective functions, and match

the action-value function for the initial state. In this sense, utility as used in the literature is more

similar to the reward function, rather than the intuitive consideration that utility functions are akin to

action-value functions. Furthermore, the optimization approaches inherently have a finite horizon, and

thus do not consider the value of the terminal state. This could lead to sub-optimal performance, but

is also neglected when considering episodic reinforcement learning.

29

Devices and Dynamics

Each approach discussed selects some type of devices which it considers. Very commonly, the categories

of devices can be represented by a smaller set of device categories, as described in [39]. Common

appliances include HVAC, electric vehicles, lighting, dishwashers, and vacuum cleaners. Normally,

similar devices have similar dynamics, the first order thermal model used in this thesis is common to

both optimization and reinforcement learning approaches. The main uniqueness in dynamics is whether

stochastic dynamics are considered or not. In the stochastic case, MDPs are used, which generalize

the deterministic case to include stochastic state transitions. The stochastic formulations are generally

more applicable to the real world, but come with more complexity.

30

Chapter 4

Importance Scaling of Elastic Appliance

Utility Functions for Automated Power

Management in Smart Homes

4.1 Introduction

The automatic adjustment of appliance settings is formulated here as an optimization problem,

where the energy consumption of each appliance in each period is selected to balance user comfort

with cost saving. A trade-off ratio is assumed to be defined by the user. Due to the diverse nature of

residential appliances, different models will need to be included for different appliance types. Further-

more, each appliance will have constraints limiting the types of adjustments that can be made. For

the purpose of this work, only appliances which have a continuously variable power output during a

period are considered, which are referred to as elastic appliances. The categories of elastic appliances

are further divided along how their performance depends on previous energy consumption.

In [39], the primary reference for this section, the problem is presented as a mixed-integer non-

linear programming problem, where they include both elastic and inelastic appliances. The inclusion of

the inelastic appliances make the optimization problem more difficult to solve, so Generalized Benders

Decomposition [13] is used to find the optimal solution. This procedure breaks the problem down into a

subproblem and a master problem. In that case, the subproblem is set by fixing the decision variables for

the inelastic appliances, and finding an optimal solution for the decision variables for elastic appliances.

The subproblem of [39] matches the problem in this section with minor modifications.

31

Following the work in [39], we classify appliances into three categories based on their memory

property. The 3 appliance categories are named as memoryless, full memory, and partial memory. A

memoryless appliance’s performance depends only on the current energy consumption, a full memory

appliance’s performance depends on the cumulative energy consumption during the considered horizon,

and a partial memory appliance’s performance is affected more by recent energy consumption than

past energy consumption. An example of each would be a dimmable light bulb, a battery charger with

variable charging rates, and an electric heating system respectively. This chapter does not consider

inelastic appliances as in [39], this exclusion allows us to formulate the problem as convex which is

tractable. The problem is then extended to also consider that in [39], the individual appliance utility

functions are not scaled relative to each other, and therefore the system does not account for which

appliances are more important to the user’s comfort. We make this adjustment is made by including a

weight for each appliance which re-scales the utility function so that user preferences between appliances

are represented.

4.2 Problem Formulation

As mentioned earlier, the model presented in this chapter is based on the work provided by [39]

with the exclusion of the inelastic appliances. Therefore, this section considers a subset of the problem

formulation pertaining to the main problem that we are considering.

4.2.1 System Representation

To model the energy consumption of a single residence, the appliances need to be modelled in terms

of their energy consumption. First we define an appliance as a ∈ A, where A is the set of all appliances

in the household being considered. All appliances considered are divided into one of the 3 mentioned

categories, AEML denotes the set of memoryless appliances, AEFM denotes the set of full memory

appliances, and AEPM denotes the set of partial memory appliances.

This work considers a finite planning horizon, which could be considered to be one day. The horizon

is broken down into T time slots. Each appliance a ∈ A is assigned a vector xa of length T , where each

element of the vector represents the energy consumed in that time slot. That is, each appliance, a has

energy consumption for the given planning horizon given by

xa = [x1a, x
2
a, . . . , x

T
a], ∀a ∈ A (4.1)

where xta acts as a decision variable for the amount of energy consumed by appliance a during time

slot t ∈ [1, 2, . . . , T]. In general, the set of all energy consumption vectors for all appliances will be

32

denoted x, which can be interpreted as a matrix of decision variables, where each row represents the

consumption for a single appliance a ∈ A, and each column represents the energy consumption for a

time slot, t ∈ T

For each time slot, a unit price of electricity is considered, denoted λt, and thus the entire cost of

electricity for the horizon can be represented as

C(x) =
∑
t∈T

[λt
∑
a∈A

xta] (4.2)

4.2.2 System Constraints

The first constraint considered is that each appliance can be assumed to have a schedulable interval

Ta = {Sa, Sa + 1, . . . , Fa − 1, Fa} which is represented as a constraint as

xta = 0, ∀a ∈ A, ∀t ∈ T \ TA (4.3)

Secondly, it is considered that the household energy consumption for a period may be bounded to some

maximum energy threshold, Etth, for each time slot. This can be represented as∑
a∈A

xta ≤ Etth, ∀t ∈ T (4.4)

4.2.3 Appliance Performance

Each appliance is assumed to provide it’s own constraints and utility function. The utility function

for each appliance, denoted Ua(xa), is a measure of appliance performance as a function of energy

consumption, and for this problem utility functions are all assumed to be convex in order to simplify

the solution. The assumed form of the utility function for each type of appliance follows.

Memoryless Appliance Performance

For memoryless appliances, it is assumed that the performance depends only on the current energy

consumption, and is unaffected by previous consumption. This indicates that the utility function will

be defined for individual time slots, U ta(x
t
a), ∀t ∈ T , ∀a ∈ AEML. The total utility for the appliance

in the given horizon is

Ua(xa) =
∑
t∈T

U ta(x
t
a), ∀a ∈ AEML (4.5)

Full Memory Appliance Performance

For appliances with full memory, performance depends only on the cumulative energy consumption

throughout the day. Therefore, the utility function is assumed to be represented as a function of the

33

sum of the total consumed energy, which is represented as

Ua(xa) = Ua(
∑
t∈T

xta), ∀a ∈ AEFM (4.6)

Partial Memory Appliance Performance

Appliances with partial memory provide the most complex utility functions, in that partial memory

appliance are assumed to be in control of some environment variable, denoted θta(x
t
a). It is assumed

that the time-evolution of this variable can be represented as

θta(x
t
a) = εaθ

t−1
a + (1− εa)(W t

a +Kt
ax

t
a),

∀t ∈ Ta, ∀a ∈ AEPM

(4.7)

Where εa represents the time constant for the system, W t
a represents the default value θta will

converge to with no energy input. In the case of an electric heater, W t
a could represent the outdoor

temperature during timeslot t. If no energy is input, then the indoor temperature will eventually reach

the outdoor temperature. Finally, Kt
a represents a conversion rate from input energy to the change in

the environment variable.

The utility function for partial memory appliances is assumed to be a function of the environment

variable, θta as opposed to the energy consumption. Regardless, the environment variable is given as a

function of energy consumption (and previous state) in (4.7). Due to the time varying nature of θta, it is

assumed that the utility function will be defined for the current timeslot being considered. The overall

utility function over the entire planning horizon is considered as

Ua(xa) =
∑
t∈Ta

U ta(θ
t
a(x

t
a)), ∀a ∈ AEPM (4.8)

4.2.4 Objective Function

In [39], the objective function is called the net utility, and is defined as the objective considering

two weights which represents the rate of trade off between appliance performance and total cost. The

net utility in [39] is represented as

NU(x) = wu
∑
a∈A

Ua(xa)− wc
∑
t∈T

[λt
∑
a∈A

xta] (4.9)

where wu ≥ 0 and wc ≥ 0 represent the importance of appliance performance and cost savings respec-

tively. This allows the simultaneous maximization of performance, while minimizing the cost, according

to the user’s preferences.

34

This net utility function accounts for the importance between performance and cost, but doesn’t

consider the differences in importance for the utility functions. When considering the source of these

utility functions, it would be reasonable to assume they are provided by the appliance developers. This

could cause an issue because a greedy developer could try to produce a higher scaled utility function

for their appliance, leading to it being prioritized while optimizing, regardless of the preference of the

consumer. Furthermore, this approach doesn’t account for the importance of any appliance relative to

the others based on the users preferences because all appliances are weighted equally.

A simple modification to reduce these issues is to introduce a new vector of weights, w = (wa)a∈A

where each term represents the importance of one particular appliance relative to the others. This

set of weights could possibly be learned automatically as the user adjusts their appliances from the

policy prescribed by the system. These manual changes could be use to indicate the adjusted appliance

requires a greater importance. The new net utility function including these weights can be represented

as:

NU(x) = wu
∑
a∈A

waUa(xa)− wc
∑
t∈T

[λt
∑
a∈A

xta] (4.10)

Where wa is the new addition which accounts for the relative importance of the various appliances.

This utility function could be simplified while still representing the same problem by removing some

weights. In the work of [39], only 2 weights are considered, wu and wc. This could be reduced to only

be a single weight by only considering the ratio of wu to wc. Furthermore, our proposed inclusion of wa

serves same purpose as wu, so wu can be removed in future work.

In this work, all the weights are considered in the experiments for more control during tuning. In

future work, another resource other than energy could be considered, for example water usage, internet

data usage, or natural gas. In this case it would be worth considering a weight for each resource.

4.2.5 Appliance Constraints

Each appliance is assumed to have it’s own set of constraints. Two main types of constraints on

some appliances are a) bounds on the appliance’s energy consumption in a period, and b) minimum

performance threshold. The only remaining considered constraint is on partial memory appliances,

that the environment variable should remain within some reasonable bounds to guarantee user comfort.

These constraints are articulated in the following.

35

Appliance Energy Consumption Bounds

Every appliance is assumed to have some minimum and some maximum threshold for it’s energy con-

sumption in a period. This could be interpreted as the maximum and minimum settings for the appli-

ance. For example, a computer completing some job could reduce it’s power consumption to the point

where the job is paused, but needs to maintain a minimum power consumption to stay powered on.

This constraint is represented as bounds on the decision variable as

xmina ≤ xta ≤ xmaxa , ∀a ∈ A, ∀t ∈ Ta (4.11)

Minimum Performance Threshold

For memoryless and full memory appliances, we assume there is some minimum performance threshold

denoted Ra that must be met for that appliance’s utility function. The utility function types vary, so

the formulation is different depending on the appliance type.

For a memoryless appliance, the performance doesn’t depend on previous states, so the minimum

performance threshold is assumed to only apply to the current state, which can be represented as

U ta(x
t
a) ≥ Ra, ∀a ∈ AEML, ∀t ∈ Ta (4.12)

where Ra is assumed to be constant across all time slots considered. For full memory appliances, the

performance depends only on the total energy consumption, so the minimum threshold applies to the

overall performance threshold as

Ua(xa) ≥ Ra, ∀a ∈ AEFM (4.13)

Partial Memory Appliance Comfort Constraint

A partial memory appliance controls some environment variable, and the utility function is based

on the state of this environment variable. Instead of setting a minimum performance constraint for

partial memory appliances, bounds are set on the controlled environment variable in order to constrain

performance for user comfort in a more direct way. This is formulated as bounds on the variable as

θmina ≤ θta ≤ θmaxa , ∀a ∈ AEPM , ∀t ∈ Ta (4.14)

where the bounds on the environment variable are assumed to be constant across all time slots. For

example, these bounds could be limitations that the indoor temperature must remain between 20 and

25 degrees Celsius.

36

4.2.6 Overall Formulation

Considering all constraints and the objective function described above, the overall problem can be

formulated as

max
x

wu
∑
a∈A

waUa(xa)− wc
∑
t∈T

[λt
∑
a∈A

xta]

s.t. U ta(x
t
a) ≥ Ra, ∀a ∈ AEML, ∀t ∈ Ta

Ua(xa) ≥ Ra, ∀a ∈ AEFM

θmina ≤ θta ≤ θmaxa , ∀a ∈ AEPM , ∀t ∈ Ta

xmina ≤ xta ≤ xmaxa , ∀a ∈ A, ∀t ∈ Ta

xta = 0, ∀a ∈ A, ∀t ∈ T \ TA∑
a∈A

xta ≤ Etth, ∀t ∈ T

(4.15)

which is the same as the subproblem presented in [39], with the addition of the weights, wa. They

classify this problem as a convex non-linear programming problem, due to the assumption that utility

functions are all convex.

4.3 Simulation Results

For simulation purposes, one of each type of appliance is considered, and the partial memory

appliance considered is an electric heater. T is 24, representing 1 hour time slots in a one day planning

horizon. Hourly electricity prices and other parameters are selected to be similar to values used in [39]

for numerical results. See Fig. 4.1 for hourly specific pricing. The selected settings result in a utility

between 60 and 70 for the day for each individual appliance, and a total cost of approximately 72 for the

day. These values assume all importance weights in the net utility are 1. The goal of the experiments

is to examine if varying importance weights can lead to greater user happiness.

4.3.1 Experimental Parameter Settings

For experiments, generally all parameters other than noted differences are constant. Appliance

weights, wa, are all 1 unless otherwise stated. Following are parameters associated with any specific

section of the problem. Energy consumption thresholds, xmina and xmaxa are selected to be 0 and 1

respectively for all appliances, except for partial memory appliances, where xmaxa is instead selected to

be 4. Temperature thresholds for for the electric heater are selected to be θmina = 20 and θmaxa = 25.

The minimum utility threshold, Ra is selected to be 2 for memoryless appliances, and 60 for full

memory appliances. All appliances have a schedulable interval for the entire day, except for full memory

37

Figure 4.1: Cost of Electricity by hour of day

38

appliances, where Sa is considered as 9 and Fa is 24, ie. it won’t run for the first 8 hours of the day.

The limit for total energy expenditure was set to 4 for every hour of the day. The utility functions for

each appliance are shown below:

U ta(x
t
a) = 5log(1 + xta), ∀a ∈ AEML, ∀t ∈ T (4.16)

Ua(xa) = 30log(1 +
∑
t∈Ta

xta), ∀a ∈ AEFM (4.17)

U ta(θ
t
a) = log(1 + 0.8θta), ∀a ∈ AEPM , ∀t ∈ T (4.18)

The initial indoor temperature is selected as 22.5 in order to see initial changes. The model for the

time-evolution of the temperature as a function of input power is given below.

θta(x
t
a) = 0.7θt−1a + 0.3(19 + 1.5xta),

∀t ∈ Ta, ∀a ∈ AEPM

(4.19)

4.3.2 Solution Algorithm

This optimization problem is a convex programming problem, [39] indicates they are easy to solve.

The problem solution was implemented in MATLAB using the optimization toolbox. The algorithm

used by the solver is an interior point algorithm [7].

4.3.3 Results

Unweighted

In Fig. 4.2, all weights are set to 1. This is considered as the default case, with no priority between

cost and the net utility. It is noted that the average energy consumption in an hour is below half

of the maximum hourly energy consumption, and the temperature remains near the threshold early

on, indicating that the utility for temperature is rather low compared to the cost of generating that

temperature.

Cost Independent

In Fig. 4.3, the weight for cost is set to 0. This is the maximization of the utility functions, each is equally

important for overall performance. Fig. 4.3 indicates both full memory and memoryless appliances take

priority to improve the utility, as both maintain their maximum hourly energy consumption in a time

period. In this case, the temperature doesn’t stay near the maximum of 25, which indicates that the

constraints for power consumption are too stringent to effectively maximize the performance.

39

Figure 4.2: Appliance Energy Settings with all weights equal

40

Figure 4.3: Appliance Energy Settings, wc = 0

41

Performance Independent

In Fig. 4.4, the appliance performance component of the net utility is neglected by setting wu = 0.

This results in minimal energy consumption for all periods while maintaining the minimum thresholds

for performance.

Heater Dominant

In Fig. 4.5, the utility function for partial memory appliances is scaled up by a factor of 100, which

indicates a much greater reward from keeping the temperature higher. A factor of 100 is rather large,

and could be reduced by first normalizing the utility functions for each appliance type. This factor

results in a higher average temperature compared to cost independent results, indicating that a relative

scaling factor may result in greater comfort with constraints on household energy consumption in a

period.

4.4 Conclusion and Future Work

In this paper, it is shown that adding a scaling factor to the performance measure of various

appliances can possibly better represent the users comfort preferences. This is indicated by the fact

that average temperature is greater when scaling the importance factor for the electric heater than when

the optimization is independent of cost, indicating that a user who prioritizes indoor temperature when

considering indoor comfort is getting a greater overall satisfaction. This indicates that a more tunable

system can result in greater user comfort, although this would require the user to manually indicate

which appliances are important, and at which relative scale. This seems infeasible to expect a general

consumer to provide directly. Future work could include methods of normalizing individual appliance

utility functions so that weights are more individually meaningful, and to possibly learn the optimal

value of the performance weights from user interactions.

42

Figure 4.4: Appliance Energy Settings, wu = 0

43

v

Figure 4.5: Appliance Energy Settings, wEPM = 100

44

Chapter 5

Multi-Advisor Reinforcement Learning

for Residential Heating

5.1 Introduction

In the previous chapter, the effect of the weighting on the cumulative utility functions is considered,

and it was demonstrated that performance can be improved by carefully selecting the weights to account

for varying user preferences. In this chapter, we consider the single-appliance task of electric heating

under a MDP formulation to determine the effectiveness of multi-advisor reinforcement learning to

achieve trade-offs between objectives. In this setting, we consider state-based weighting, where the

user’s preferences for achieving objectives is a function of the state.

This work uses multi-advisor reinforcement learning (MAd-RL) [20], which learns an action-value

function for each each of a set of reward functions. In the original context, the reward function is

described as being decomposed, and each element used as a distinct learning signal for a Q-function. In

this setting, we consider that rewards are naturally independent learning signals, and use MAd-RL to

learn representations from these signals separately as well as aggregate the resulting representations.

The formulation utilizes a simple discrete first-order heating dynamics model, with realistic values

noted from [8]. This task considers two objectives, indoor heating (set-point tracking) and energy

consumption reduction. The reward functions for these 2 tasks are negative squared error and energy

consumed respectively. To control the indoor temperature, a state space is selected which provides all

the relevant information used by the dynamics, reward function, and aggregator.

45

5.2 System Model

The standard RL problem involves an agent interacting with an environment. At each time step, t,

the agent receives reward Rt and observes state St. It then selects an action, At, and the cycle repeats

forever (or until the end of the episode). In the MAd-RL setting, we consider that each agent sees the

same state-space, and provides an action-value for each action in the action space.

Parameter and variable notation for this section is as follows:

• S represents the set of all states

• t is an index for time

• qt represents the energy used by the heater during time-step t

• qmax is the maximum energy input to the heater in a single time-slot

• T int represents the indoor temperature at time t

• T outt represents the outdoor temperature at time t

• ε represents the system inertia

• η represents the efficiency of the heater

• A represents the thermal conductivity

• wi,t represents the importance of objective i at time t

• K is the number of discrete action steps

• k indexes action steps

5.2.1 Environment Description

The environment that the agent interacts with receives an action at every time step t. It uses

this action with the current state to determine the next state, and the reward. Due to the reward

decomposition approach, rewards are returned as a vector, where each element corresponds to a single

objective.

46

Reward Functions

We consider two objectives in this work: Thermal Set-point Tracking, and Energy Consumption Mini-

mization. Each has it’s own associated reward function, which are defined subsequently. The thermal

set-point tracking reward is selected as squared error from set-point, given as:

R1,t = −(T int − T sett)2 (5.1)

The reward selected for the energy consumption minimization objective is as follows:

R2,t = −qt (5.2)

The overall reward received by the agent is defined as follows:

Rt = w1,tR1,t + w2,tR2,t (5.3)

where wi,t is the importance of objective i during time slot t.

Thermal Model

For the purposes of this paper, we assume that a residential thermal control environment can be approx-

imated using a first-order equivalent thermal parameter model which is commonly used in the literature

[39], [65], [8], and can be expressed as follows:

T int+1 = εT int + (1− ε)(T outt + ηqt/A) (5.4)

State Space

In order to apply RL, the state-space needs to be defined such that it effectively approximates the

Markov property, that is, the distribution of the next state only depends on the current state and

action, not on previous state and actions:

P (St+1|St, At) = P (St+1|St, At, · · · , S0, A0) (5.5)

We interpret this as state requiring any information necessary to accurately predict the next state.

Therefore, we select state to include all variables deemed necessary to accurately predict the next

temperature, as well as rewards received by each agent. Therefore, the state space for each time St is

defined as

St = {T int , T outt , t, T sett } (5.6)

47

In future work, performance may possibly be improved by further increasing the dimensionality of

the state-space to include other variables.

Action Space

For a heater, the action space can be considered as the amount of energy that the heater uses in a

time-slot. The action selected at every time slot is denoted qt. Due to selection of DQN to estimate

the Q-values for each state, it is required to use a discrete action-space. Therefore, the action space

is discretized. This discretization is done by considering that the energy consumed by the heater is

bounded between 0 and some maximum value, qmax, and assuming a fixed number of discrete actions,

K. In other words, the agent selects qt, which can be expressed as

qt =
qmaxk

K
, k ∈ [0,K − 1] (5.7)

5.2.2 Agent Description

The agent is a MAd-RL based agent, which estimates Q-values for each objective. Each advisor

provides it’s action values to the aggregation function, which then aggregates all opinions into a final

selected action. Each advisor uses a DQN to estimate the action values for the current state.

Advisor Description

The neural network used for each advisor consists of 4 fully connected layers, using Rectified Linear

Units (ReLU) as activation functions. Each layer uses 32 neurons, which provided enough capacity to

achieve reasonable performance in this environment model.

Aggregation Function

At every time-step, each advisor provides it’s estimate for Q(s, a) for each agent. Every Q(s,a) is

normalized to allow more freedom in the scale of reward definitions. The normalized action values,

Qnorm(s, a) are calculated as follows:

Qnorm(s, a) =
Q(s, a)−minaQ(s, a)

maxaQ(s, a)−minaQ(s, a)
(5.8)

This normalization technique reduces the range of Q(s, a) for any action to be between 0 and 1, while

still expressing the advisor’s relative preference between actions. The normalized action-values are then

used to select an action as follows:

48

At = arg max
a

[w1,tQ1(St, a) + w2,tQ2(St, a)] (5.9)

where Qi(St, a) is the action value provided by advisor i to the aggregation function during time

period t.

5.3 Simulation Results

The MAd-RL approach is assessed by selecting reasonable parameters and observing the agent’s

performance using single day episodes with hour-long time-steps. Action space is defined to include 50

steps (K=50). During training, the importance schedule of each objective is kept to a fixed vector. This

vector indicates the importance of each objective for a select time-slot. Selected values are shown in fig.

5.1.

Thermal parameters were selected based on [8] for the heater’s operation. The major difference is

that the heater’s capacity is reduced in order to achieve more effective performance with a relatively

smaller action-space. These selected parameters are as follows:

• Inertia: ε = e−
1
25

• Thermal Conductivity: A = 0.0778 kW/◦C

• Max Heater Output: qmax = 5 kW

• Heater Efficiency: η = 1

In all cases set-point temperature is 20◦C to to improve interpretation. Outdoor temperature is a

constant value through each episode, selected randomly at the start of the episode to be between 5◦C

and 15◦C. The initial indoor temperature is selected randomly to be between 18◦C and 22◦C.

For analysis, episodes are run using different types of importance vectors to illustrate adaptability.

For each importance vector, 7 episodes are plotted to show the system’s variance in performance.

The first case is shown in fig. 5.2, where the importance vector is the same as in training, ie.

fig. 5.1. The mid-day decrease in temperature in all cases demonstrates that the switch in priority is

achieved through the importance vector.

The second case is shown in fig 5.3, where the importance vector for set-point tracking objective is

set to 1 for the entirety of the episode, indicating that only the set-point tracking advisor is considered.

In this case, the temperature tracks 20◦C with reasonable accuracy for all 7 episodes.

49

Figure 5.1: Importance of each objective during training

50

Figure 5.2: Same Importance as during training

Figure 5.3: Only Temperature Importance

51

Figure 5.4: Only Energy Saving Importance

The third case is shown in fig 5.4, where the importance vector for energy saving is set to 1 for

the entirety of each episode. As expected, the temperature constantly decreases in all cases from the

beginning. In this case, the heater uses no energy, as should be expected when only energy consumption

minimization is considered as an objective.

Finally, results for equal importance for both consumption minimization and set-point tracking

is shown in fig. 5.5. In this case the performance shows more variation during early time-periods.

Nonetheless, the temperature seems to stick between 19◦C and 20◦C, where the average clearly decreases

from the set-point of 20◦C, indicating some compromise between the multiple objectives is achieved.

5.4 Conclusion and Future Work

The numerical results indicate that a MAd-RL agent utilizing a DQN to act as the advisor for each

objective is capable of balancing multiple objectives, evidenced by the adaptation to different weight

schemes. In the TOU pricing setting, the importance vector could be determined based on the hourly

energy pricing, enabling the smart-home to automatically adjust to pricing signals.

Future work should include a standardized approach to determining ideal importance vectors. Ex-

perimentation using real data / environments should also be considered to better demonstrate feasibility.

It may be possible to improve performance by including more information in the state-space. An ex-

52

Figure 5.5: Same Importance throughout

ample could be to include the objective’s current and possibly future importance to allow the advisor

to better consider the intents of the aggregation function when advising actions.

53

Chapter 6

Multi-Advisor Reinforcement Learning

for Multi-Agent Multi-Objective Smart

Home Control

6.1 Introduction

In the previous chapter, the feasibility of Multi-Advisor Reinforcement Learning was demonstrated

by applying the algorithm to a simple multi-objective control task, that of thermostatically controlling

an electric heater. The two objectives considered included temperature set-point tracking and energy

consumption minimization. This work demonstrated that MAd-RL allows switching between objectives

according to a schedule of weights in the aggregation function. Multiple objectives were achievable

simultaneously, and the results demonstrates that the algorithm can easily switch between objectives

effectively.

The results presented in the previous chapter are limited by the lack of complexity in the environ-

ment model. We increase the complexity of the environment in multiple aspects for the experiments in

this chapter, which further demonstrates the feasibility of MAd-RL for control in smart homes.

The previously presented model is deterministic in non-starting states. While this still acceptably

falls under the Markov Decision Process formulation, it is limited in it’s implications. Generally speak-

ing, stochastic environments are more difficult to solve, as multiple trials must be undertaken by the

agent to allow it to consider the variety of outcomes than can occur from an individual action. In

this chapter, we include an electric vehicle charging formulation, which includes more stochasticity,

54

particularly in the state of charge on arrival, the arrival time, and departure time from the home.

Furthermore, this work considers multiple appliances. At minimum, this extends the action-space

to include a second dimension. This is the heart of the issue of including multiple appliances at once, the

amount of possible joint-actions grows exponentially w.r.t. the action-dimensionality, which limits the

scalability of centralized control approaches to such a system. The environment is modelled by including

an electric vehicle (EV) charging problem (inspired by [57] which utilizes DQNs for EV charging) as

well as the previously described electric heating formulation.

We consider heating and EV charging as two of the most critical devices to control for residential

demand response applications. Notably, including another appliance induces a new primary objective

for the appliance. The term for this objective is ”range anxiety” [57].

Finally, this work improves on the previous formulation by also considering a global objective. This

fourth objective corresponds to the common demand-response objective of smart-contracts; a penalty

associated with overtaking a contracted threshold [21]. This objective allows potential demonstration

of coordination, as the household requires that overall consumption is determined jointly by the actions

of all agents. This is of fundamental concern in designing multi-agent learning systems, as the results

cannot be achieved by a single agent, both must act in a particular manner to achieve the objective.

6.2 Environment Model

The description of an environment in the reinforcement learning context includes 2 main compo-

nents; the environment dynamics, ie. the mathematical model that describes how the state (stochasti-

cally) evolves according to the given actions. The second main component is the reward structure, which

is more notable in the multi-objective setting as it requires a different function for each objective being

considered. The reward structure is described as having 6 components, of which 4 represent unique

objectives; namely, temperature set-point tracking, range anxiety, energy consumption reduction, and

smart contract success. Other primary components necessary to describe the environment include the

state-space specification and action-space specification.

6.2.1 State-Space

The state-space used in this environment considers 12 dimensions, each relevant to modelling the

dynamics of some smart-home appliance control objective. A clear description of each dimension is

elaborated in the following sections on dynamics and rewards, but a quick summary of the 12 elements

of the state-space is denoted as follows:

55

S = {Tin, Tout, Tset, P resence, SOC, contract, Eth, qc,1, qc,2, Ec, tend, t} (6.1)

6.2.2 Action-Space

The action space considered in this environment consists of one dimension for each appliance. These

single-dimensional actions correspond to the amount of energy used by each of the 2 appliances noted

previously. As we utilize a DQN [26] for each of the advisors in the controller, we therefore assume

a discrete action-space. This is accomplished by selecting each appliance to have some predefined

maximum power output, and then evenly diving that maximum power output into a set of ”power

modes”. Essentially, each action corresponds to a percentage of the maximum allowed power output

for it’s associated appliance. Under the notation used in this work, the action space is described as:

A = {Pheater, PEV } (6.2)

6.2.3 Dynamics

The dynamics describe the state evolution as a function of the previous state and action taken. In

this work, the dynamics considered are of the abstract form:

st+1 = f(st, at, σt) (6.3)

where st and at represent the state and action taken at timestep t, while σt represents some stochas-

tically generated variable that determines the next state. σt is generally hidden from the agent.

In this section the dynamics related to each objective in the system are described. These dynamics

are described using a sample-based model, ie. the dynamics function (stochastically) returns a next-

state for a given state/action pair. This is opposed to a distribution model, which returns a distribution

over next-states instead. Sample based models are used because of their simplicity in implementation.

Consumption Reduction Dynamics

The objective corresponding to this section is designed to reduce energy consumption of each device.

There are arguably no dynamics induced by the energy consumption objective, as dynamics relate

to the evolution of state, and this objective has no associated state variables. This section is noted

for completeness, as it seems the dynamics for the environment are most easily described from the

perspective of the objective associated with them.

56

Electric Heating Dynamics

The electric heating dynamics follow the standard first-order model as presented in previous sections

[51][52], and is common in other work [39][65][8]. The dynamics related to the electric heating are

governed by the following equation (note that superscript ’t’ denotes the time-step that the reading was

observed):

T t+1
in = εT tin + (1− ε)(T tout + η

P theat
A

) (6.4)

The state variables {Tin, Tout} are included in this equation, and it describes how Tin evolves. The

parameters listed1 include η (unit-less), the efficiency of the heater (generally taken to be 100%). The

parameter A is the the overall thermal conductivity, measured in kW/◦C. The last parameter, ε (unit-

less) is the inertia of the system, and can be calculated for a system depending on the system’s time

constant, usually denoted τ , and the amount of time between two states, the time-step, ∆t. Epsilon is

calculated as2:

ε = e−
∆t
τ (6.5)

The relevant state variables for these dynamics includes the first 3 elements, namely; {Tin, Tout, Tset}.

These variables represent the current indoor, outdoor, and set-point temperature. The set-point tem-

perature is required to calculate the reward. The outdoor and set-point temperature are treated as

exogenous variables, those which are unaffected by the agent’s control actions. In our experiments,

these variables are treated as a constant. In real systems, these would be derived from sensor read-

ings/user input/weather data.

Electric Vehicle Charging Dynamics

The electric vehicle charging formulation is adapted primarily from the work of [57], which demonstrates

DQN performance on the task of charging / discharging an electric vehicle’s battery. The model assumes

that the user’s interactions can be modelled considering three hidden stochastic variables: arrival time,

(ta), departure time (td), and state of charge on the battery at arrival time (SOCa). These three

hidden variables are each sampled from their own truncated normal distribution3 at the beginning

of each day. These distributions are specified in this work using 4 parameters; mean, variance, and

1These parameters, η, ε, A are treated as constants for a given environment implementation.
2A source for these calculations can be found in [8]
3A truncated normal distribution is a normal distribution where the probabilities of outcomes above or below specific

thresholds cannot occur

57

upper/lower threshholds. Some notable effects of using a truncated distribution are to guarantee arrival

and departure occur once daily, and preventing overlap between the two.

The elements of the state-space most relevant to the EV charging dynamics include {Presence, SOC, t}.

Presence is a binary flag denoting whether the user is at home. SOC is a continuous variable (measured

in kWh) denoting the current charge on the EV battery. Unsurprisingly, t denotes the current time of

day. The variable t is a discrete variable, ie., we consider fixed time-step length, ∆t. The variable t

evolves as 4:

t← t+ ∆t (6.6)

The environment determines the variable Presence by checking whether the current time period

lies between the stochastically selected arrival time ta and departure time td. Mathematically, this can

be represented as follows5:

Presencet = ¬((td ≤ t) ∧ (t ≤ ta)) (6.7)

The third state variable of note is SOC, the current charge on the battery. On arrival, it is set

to SOCa, the stochastically selected value representing charge on the battery when the EV arrives at

home. The value is limited to not exceed the battery’s maximum energy storage (denoted SOCmax),

and otherwise it increases according to how much energy is put into the battery (assuming no losses).

These conditions can be described mathematically as:

SOCt =


SOCa t ≤ ta ≤ t+ ∆t

SOCmax SOCt−1 + PEV ∆t ≥ SOCmax

SOCt−1 + PEV ∆t otherwise

(6.8)

Note that the variable SOC continues to evolve when the vehicle isn’t present. This is a more-or-

less arbitrary decision, as the variable becomes meaningless when the user isn’t home. Other options

could be to set SOC to zero on departure, and/or enforce that PEV remains zero when the vehicle isn’t

home. To ease implementation, we allow the variable to continue evolving meaninglessly when the user

isn’t present.

4t is reset to 0 when it reaches 24 (midnight).
5Note: ¬ and ∧ denote the logical operations ’NOT’ and ’AND’ respectively

58

Smart Contract Dynamics

A smart contract in this work is considered as a daily short-term contract between the consumer and

the utility company. The user agrees to reduce their energy consumption for a period specified in the

contract to below a fixed threshold, assuming some penalty associated with overtaking the threshold.

This objective is global, because the sum of each agent’s energy consumption determines whether the

contract was a success or a failure. Essentially, this model keeps track of the energy consumed while

a smart contract is active, and provides a negative reward if the global energy consumption exceeds a

maximum threshold.

As this work utilizes reinforcement learning, we must model a smart contract as a MDP. The dy-

namics follow an abstract logical system dependant on both the utility company’s contract specifications

and the smarthome’s energy consumption. The contract specifications can be modelled considering 3

state variables 6, start time (tstart), end time (tend,p), and energy threshold (Eth,p)
7. The most relevant

state-variables in this model are as follows:

{contract, Eth, qc,1, qc,2, Ec, tend, t} (6.9)

contract is a binary flag that designates whether a contract is currently active or not. It effectively

indicates to the agent when a contract has begun. It can be represented mathematically as8:

contract = (tstart ≤ t+ ∆t ≤ tend) (6.10)

Eth represents the energy threshold that the smarthome must not exceed when the contract is

active. It is considered unspecified when the contract isn’t active, and therefore set to zero. When the

contract is active, it’s set to the threshold for the contract. Mathematically:

Etth =


Eth,p contractt = 1

0 otherwise

(6.11)

The variables {qc,1, qc,2, Ec } each denote a running sum of the energy consumed since the beginning

of the contract. qc,i denotes the energy consumed by device ’i’ since the beginning of the contract, where

qc,1 and qc,2 refer to the consumption of the heater and the EV charger respectively. Ec denotes the

6Contract success is the objective, the aggregation function can account for the magnitude of the financial incentive.
7Subscript p denotes environment parameter rather than state variable.
8Note that t is the last variable updated, ie. t+ ∆t represents the current time.

59

total energy consumed by the heater and EV charger since the beginning of the contract. The first can

be expressed mathematically as:

qt+1
c,1 = contractt(qtc,1 + Pheater∆t) (6.12)

Secondly, noting that P ∗EV denotes the true power consumption9 of the EV charger, then qc,2 can be

described as:

qt+1
c,2 =


contractt(qtc,2 + P ∗EV ∆t) presencet = 1

contracttqtc,2 otherwise

(6.13)

Ec, the total consumed energy, sums each appliance’s consumed energy:

Etc =
∑
∀i
qtc,i = qtc,1 + qtc,2 (6.14)

The last state variable to describe, tend denotes when the contract will end. It is assumed zero when

no contract is active. Mathematically:

ttend =


tend,p contractt = 1

0 otherwise

(6.15)

6.2.4 Dynamics Summary

Overall there are 12 state variables considered. Excluding time t, these can be categorized by their

purpose of inclusion. The first 3, {Tin, Tout, Tset} are included for their relevance in temperature control,

followed by {Presence, SOC} which are included for EV charging, and {contract, Eth, qc,1, qc,2, Ec, tend}

which are all included to model the smart contract. These state variables are selected to make the

environment obey the markov property, ie, the best predictions can be made based on the state variables

given.

6.2.5 Reward Function Specification

The reward functions are selected to represent the objectives as previously described. We consider

4 types of objectives in this work; the inherent goals for the considered appliances supply the first 2,

namely, temperature set-point tracking and range anxiety. The remaining 2 objectives are demand-

response motivated, they relate to reducing energy consumption. These two objectives represent energy

consumption reduction and threshholds for energy consumption.

9Correcting for possibility that the prescribed action would overfill the EV. Usually P ∗EV is the same as PEV .

60

These objectives can be organized in various ways, for example, a centralized controller could

represent these as just 4 terms in a scalar reward function. A non-joint action selection (multi-agent /

decentralized) approach could be represented as 2 scalar reward functions, each with 3 components. In

the multi-advisor approach we consider in this work, each advisor is associated with one reward function,

for a total of 6 advisors and reward functions. Therefore, we consider the importance-weighted sum of

the 6 considered reward functions as the global objective for the system.

Formulations of each of the 6 reward functions are provided in the following sections, organized

by the 4 objectives they represent. Range anxiety and set-point tracking each provide a single reward

function, while consumption reduction & consumption thresholds provide 2 reward functions each.

These reward functions will follow a double-subscript notation, where the first digit represents the

appliance/agent, and the second digit represents the objective. The objectives are ordered as: inherent,

reduction, threshold, given indices 1, 2, and 3 respectively. For example, R2,1 represents the EV charger’s

range anxiety objective, and R1,2 represents the heater’s consumption reduction objective.

Temperature Set-Point Tracking

Set-point tracking refers to the problem of keeping some aspect of the state as close to a pre-specified

set-point value as possible. Set-point tracking assumes the preferred temperature is specified by the

user. The associated reward function is represented by the squared error from the indoor temperature,

which is a common metric for performance in set-point tracking, and is used in the previous chapter.

This objective is to be minimized, so a negative coefficient is used. Mathematically, this function is

described as:

Rt1,1 = −(T tin − T tset)2 (6.16)

Range Anxiety

The range anxiety objective is to have the vehicle fully charged as possible when it’s needed by the user.

In the simple dynamics model we used, this occurs only once daily (in the morning), and is represented

by the departure time. The objective is represented again with a squared error term, but this reward is

comparatively more sparse. This is due to the fact that the range anxiety reward is non-zero for a single

time-step, the departure time, whereas the set-point tracking objective provides feedback every time-

step, making electric vehicle charging a more difficult problem. Mathematically, this reward function

61

can be described as:

Rt2,1 =


−10(SOCt − SOCmax)2 (Presencet−1 = 1) ∧ (Presencet = 0)

0 otherwise

(6.17)

Consumption Reduction

The consumption reduction objective is to reduce the energy consumption for every time step. The

objective pushes each appliance to consume less energy. It could be increased in importance during

periods of high energy cost to account for time-of-use pricing. The objective is formulated per appliance,

and provides a scaled punishment for every unit of energy consumed. For the electric heating, this is

represented as:

R1,2 = −10Pheater∆t (6.18)

Similarly, the electric vehicle charger represents this as10:

R2,2 = −10P ∗EV ∆t (6.19)

Consumption Threshold

The consumption threshold objective represents the case where the utility company forms a smart

contract with the smart-home. In this contract, the user receives a financial incentive to decrease their

household energy consumption to below a fixed value during for a predetermined interval of time. This

is represented by providing a negative reward at the end of the contract if it results in a failure.

This objective is global in the sense that it requires the contribution of each agent to not fail the

contract. An issue with global objectives is the credit assignment problem [6]. The issue is that each

agent needs to be able to determine whether it’s own or others’ actions were responsible for a high/low

reward. We approach this issue by considering a heuristic for credit assignment. Instead of a simple

scaled binary reward representing success or failure, we multiply this by the agent’s energy consumption

relative to the total consumption. This way, the agents have some idea how their actions affected the

total reward. Therefore, we select the reward function for appliance i to be:

Rti,3 =


−100

qtc,i
Etc

(contractt = 1) ∧ (contractt+1 = 0) ∧ (Et+1
c ≥ Eth,p)

0 otherwise

(6.20)

10P ∗EV is same definition as in the smart-contract dynamics.

62

Figure 6.1: Multi-Agent Multi-Advisor Architecture. State is input on the left from the environment,

is processed through the agent and it’s components, resulting in an action to send to the environment

on the right.

6.3 Proposed Architecture

The architecture proposed in this work is multi-agent, multi-advisor, deep reinforcement learning

based. Each agent in the multi-agent controller is a multi-advisor agent, and selects actions for it’s cor-

responding appliance. There is one agent for each appliance, and one advisor for each of the appliance’s

associated reward functions. All learning in the system is performed by the advisors. The architecture

for the environment used in this work is shown in Fig. 6.1

Multi-advisor reinforcement learning presented in [20]. This architecture is known to be sub-optimal

[42] for ’egocentric’ [20] planners (as used here), but similar approaches have demonstrated to be effective

[55] in relatively difficult problems. In this architecture, the agent is composed of a set of advisors, each

provided with it’s own reward function. The advisor estimates the Q-function, Q(s, a), associated

with it’s own reward signal. The estimated Q-functions are input to the aggregator, which utilizes the

estimates to select an action.

The following sections describe the outer-loop of the system, followed by a clarification of the multi-

agent aspect of the controller. These are followed by a description of the advisor architecture, and the

63

aggregation function used by our multi-advisor agent.

6.3.1 Outer Loop

Each agent observes state s from the environment, and passes this information to each of it’s

advisors. Each advisor uses this to produce it’s estimates of Q(s, a) for each available action11. For

an agents action space of A, there are |A| actions, and given that the agent has K advisors, there

are |A| ×K scalars Q(s, a) produced in total for the agent12 (one for each action-advisor pair). These

|A| ×K values are input to the agent’s aggregation function f to select the action to be taken:

f : R|A|×K 7→ A (6.21)

This is performed for each agent, and the selected actions are then sent to the environment, which then

evolves according to it’s dynamics, and provides a new state s to each agent. The cycle then repeats,

possibly indefinitely in a real system, or until some conditions are met in simulation.

Algorithm 1: Training Loop

Input : Environment, Agent

Output: Trained Agent

while Still Training do

Get initial state s0 from Environment.reset()

Get initial action a0 from Agent.getInitialAction(s0)

t← 0

while Episode Still Running do

{st, at, rt+1, st+1} ← Environment.step(st, at)

trainDQNs(st, at, rt+1, st+1)

if (rand ∈ {0, 1}) ≤ ε then

at+1 ← random action

else

at+1 ← Agent.getAction(st+1)

end

t← t+ 1

end

end

11The advisor’s ”learn” operation may be performed here.
12For N agents, this is N × |A| ×K total estimates produced per step.

64

6.3.2 Multi-Agent Interactions

The smarthome has 2 appliances, and thus there are 2 distinct action components that a centralized

controller would need to select at each time-step. In a multi-agent approach, the action components are

each selected by their own agent. In this sense, each appliance is provided with a multi-advisor agent

which controls it’s actions. The environment evolves according to the actions of both agents, and in this

work, we consider that each appliance has access to the entire state-space of the system. Essentially, the

multi-agent is responsible for concatenating the actions of the individual agents. This is noted because

the software implementation of multi-agent provides an interface for arbitrary agents to select actions.

6.3.3 Advisor Model

The purpose of each advisor is to estimate a Q-function, Q(s, a). This function acts as advice for

the agent’s decision making on the advisor’s objective/reward function. There are many approaches to

learn a Q-function, for example, Q-learning [58], SARSA [41], neural fitted Q-learning [38], or DQN

[27], indicating that appliance designers using multi-advisor reinforcement learning have a variety of

choices for selecting an architecture for an advisor.

In this work, we select DQN [27] as the algorithm to implement each advisor. The performance of

DQN [26] is the primary motivator for this choice, as it demonstrated the potential of the algorithm to

scale to large/high-dimensional state-spaces. We consider DQN to be the first major success of deep

reinforcement learning, and note that many subsequent deep reinforcement learning algorithms [22] [54]

[25] [35] have arisen since.

Implementation of DQN relies on MATLAB’s deep reinforcement learning toolbox [37]. For sim-

plicity, each advisor is given the same neural network architecture. This architecture is composed of

a set of fully connected layers, each with the same number of neurons, followed by an output layer

with a single neuron which predicts the action value. These networks take as input both the state and

action, and output a scalar which estimates Q(s, a) for the advisor’s reward. Each fully-connected layer

is followed by a ReLU activation function.

The basic fully-connected networks are appropriate for the task at hand, as the state vector is

carefully designed as to obey the Markov property. Notable alternative network architectures include

convolutional and recurrent layers. Generally, convolutional architectures are effective for image related

tasks, quite different from our task. Recurrent networks provide memory to the agent, which potentially

equips it to handle partially observable environments. This was notably demonstrated in [17], which

enables the agent to learn to play Atari while only observing a single game-frame at a time.

65

6.3.4 Aggregation Function

The aggregation function is responsible for taking the advice of each advisor, and aggregating that

into a single action. The selected aggregation function is inspired by our previous work on importance

scaling [51], where we demonstrated that individual smarthome performance is dependant on the user’s

selected importance for each objective. We design the aggregator assuming that action-value functions

are similar in nature to utility functions provided.

The aggregation function can be described in 4 steps. First, each advisor’s action-value function is

normalized13 to contain values between 0 and 1. Second, the aggregator then identifies the importance

(weight) of each advisor’s objective. Third, the normalized values are aggregated using the importance

weights into a single scalar for each action. Finally, the action selected is that with the highest aggregated

value.

The normalization approach is linear, similar to our previous work [52]. The worst action will have

value 0 and the best action will have value 1. The normalized values for advisor i, denoted Qinorm(s, a)14,

are calculated as follows:

Qinorm(s, a) =
Qi(s, a)−minaQ

i(s, a)

maxaQi(s, a)−minaQi(s, a)
(6.22)

These Qinorm(s, a) need to be scaled according to their importance. For this section, we can denote

the weights as wj,i, where j ∈ {1, 2} denotes the agent number, and i ∈ {1, 2, 3} denotes the objective

number. Objective i of agent j has an importance wj,i which is considered a function of the state, ie.

wj,i(s). Agent j may call this function to determine the importance of objective i in the given state. This

importance function15 is heuristically based and stationary. We assume this fits the definition of ’any

fixed aggregator’ from theorem 1 in [20]. The following heuristics are used to design the importance-

weight function:

• 1. The importance weights considered for a single agent sum to 1.

• 2. Normally, primary objectives are most important, followed by energy reduction and thresholds

respectively.

• 3. During user absence, temperature set-point tracking is not very important.

• 4. During a smart contract, succeeding in the contract is important.

13This accounts for the fact that reward may have different scales/units.
14Qinorm(s, a) can be considered as a row vector with |A| elements.
15The importance is a hard-coded function of state.

66

The importance weights follow some predefined default values when no special conditions are

present. The default settings assign the weights to be {0.7, 0.2, 0.1} for the primary, energy reduc-

tion, and energy threshold objectives respectively. These elements are individually reassigned based on

the last 2 heuristics, and finally the resulting set of weights for each agent is normalized to sum to 1.

The reassignment for heuristic 3 is as follows:

w1,1(st)← 0.2, presencet = 1 (6.23)

For heuristic 4, the reassignment is:

wj,3(st)← 1, contractt = 1 (6.24)

The normalization is performed as the last step (after reassignment):

wnormj,i =
wj,i∑
iwj,i

(6.25)

A dot-product is performed by the agent for each action. The dot-product is between advisor’s

value Qi(s, a) and the advisor’s importance wnormj,i across index i. This dot-product results in a scalar

for each action, denoted Qsum(s, a). Mathematically this is:

Qsum(s, a) =
∑
i

wnormj,i (s)Qinorm(s, a) (6.26)

Finally, the non-exploratory action selection is greedy with respect to the aggregated action-values:

at = argmaxaQsum(st, a) (6.27)

Overall, the proposed architecture can be viewed as assigning one agent to each appliance. Each

appliance’s policy is determined by aggregating an estimation of each objective’s action-value.

Algorithm 2: Multi Advisor Action Selection

Input : Set of advisors Ad, Set of actions A, Current State s

Output : Selected action, at

Initialize Qi(s, a) = 0 ∀{i, a} ∈ {Ad,A}

foreach i ∈ {0, N} ∈ Z do

foreach a ∈ A do

Qi(s, a)← Adi.evaluate(s, a)

end

at = aggregate(Q)

end

67

Algorithm 3: Aggregation Function

Input : Action values from all advisors Qi(st, a) ∈ RN×|A|

Output : Selected action, at

Parameters: Weights wi for each objective i, W ∈ RN

Qinorm(s, a) = Qi(s,a)−minaQi(s,a)
maxaQi(s,a)−minaQi(s,a)

Qsum(s, a) =
∑

iw
norm
i,j (s)Qinorm(s, a)

at = argmaxaQsum(st, a)

6.4 Complexity Analysis

Computation of concern for this algorithm is that of action-selection. The complexity analysis

therefore considers the question ”How long does it take for an agent to select an action after it observes

state s?”. We assert that the computation time, assuming it takes O(F) to complete a forward pass in

a neural network, for a centrallized, decentrallized, and decentralized multi-advisor agent architecture

follow the results of equations 6.28, 6.29, and 6.30 respectively. We note that action-selection is linear

w.r.t. number of objectives, K, and number of agents, N , in the proposed architecture.

O(action selection - Centralized) = O(|ai|NF) (6.28)

O(action selection - Decentralized) = O(N |ai|F) (6.29)

O(action selection - Multi-Advisor Decentralized) = O(NK|ai|F) (6.30)

Equations 6.28, 6.29, and 6.30 follow from considering that it takes one forward pass of the DQN

for each action being considered. If each action-dimension has |ai| elements, in the centralized case

there are |ai|N actions in total to consider. Therefore, at one forward pass per action, this will take

O(|ai|NF).

In the decentrallized case, there is one DQN-agent selecting each action dimension. Therefore, each

agent requires |ai| forward passes, giving O(|ai|F) computation required per agent, and O(N |ai|F) in

total.

For the multi-advisor case, in each agent there are K DQN-advisors, each of which considers the

actions for it’s agent. Therefore, each advisor requires O(|ai|F) to compute action values, it takes

68

O(K|ai|F) to calculate all the action values for a single agent, and O(NK|ai|F) for computation in

total.

6.5 Experimental Results

We assess the performance of the multi-advisor system by performing a series of experiments on

some representations of the architecture and it’s interactions with the defined environment. This begins

with demonstrating the computational scalability of the agent, followed by training curves of the pro-

posed agent, benchmarked against some alternatives. Next is simulation results, demonstrating typical

behaviour of the agent and benchmarks, at first using the same weight-scheme the agent was trained

on, followed by some analysis of performance under modified weight functions.

6.5.1 Execution Time

To further solidify the theoretical results presented in section 6.4, we measure the computation time

required for ”agent.learn” operation, which includes both the action-selection and learning procedures

for the agent. This extends the theoretical work to include the training step of the agent. This is

performed using smaller DQNs16 as advisors for tractability. Each implementation of the agent performs

the ’learn’ operation with placeholder data, and is repeated for 2000 iterations17. In the two experiments

performed, the number of agents and objectives are individually varied from 2 to 20, and the resulting

execution time is plotted. A line of best fit is included for reference. These results are shown in figures

6.2 and 6.3 respectively. These results indicate that for modest numbers of agents/objectives, the

multi-advisor agent scales linearly with respect to both number of agents and number of objectives.

6.5.2 Environment Parameters

The Environment parameters selected for training and simulation are described in this section,

which includes parameters for the dynamics followed by the initial state-distribution.

Dynamics Parameters

The length of a time-step, ∆t is 1 hour. The parameterized thermal dynamics are given by:

T t+1
in = e−

∆t
τ T tin + (1− e−

∆t
τ)(T tout + η

P theat
A

) (6.31)

T t+1
in = e−

1
25T tin + (1− e−

1
25)(T tout + 1

P theat
0.0778

) (6.32)

16This includes 1 hidden layer with only 4 neurons, 2 actions/dimension, 2 agents, and 2 objectives for each agent.
172000 is selected as the appropriate number of iterations to reach convergence, based on simple experiments. This

damps out the speedup results from primarily selecting exploratory actions

69

Figure 6.2: Execution Time of ’agent.learn’ operation of multi-advisor agent with variable number of

agents

Figure 6.3: Execution time of ’agent.learn’ operation of multi-advisor agent with variable number of

objectives

70

The maximum charge on the EV battery is 24 kWh. The stochastic hidden variables, {ta, td, SOCa}

are each sampled from a truncatednormal distribution (daily, at midnight). Denoting a truncated normal

as Ñ(µ, σ, L, T), (inputs are: mean, variance, lower threshold, and upper threshold respectively) then

the hidden variables are sampled as follows18:

ta ∼ Ñ(18, 1, 15, 21) (6.33)

td ∼ Ñ(8, 1, 6, 11) (6.34)

SOCa ∼ Ñ(.5, .1, .2, .8) (6.35)

In regards to the smart contract parameters, tstart is 18, and tend is 20. The maximum energy

threshold, Eth,p is 4 kWh.

Initial State Distribution

The initial state of an episode s0 follows the distribution:19:

s0 =



T 0
in ∼ 18 + unif(0, 4)

T 0
out ∼ unif(0, 20)− 10

T 0
set = 20

presence0 = 1

SOC0 = 0.5SOCmax

contract0 = 0

E0
th = 0

E0
c = 0

q0c,1 = 0

q0c,2 = 0

t0end = 0

t0 = 0

(6.36)

18∼ denotes ’sampled from’
19Unif(a,b) denotes uniform distribution between a and b.

71

6.5.3 Training

To verify the performance of the multi-advisor system, we select a concrete network for each of the

advisors, and train them in the environment. We compare the multi-advisor system with 2 alternate

DQN-based controller architectures, one centralized and one decentralized. The centralized approach

uses a single-network DQN by considering the actions jointly. The decentralized approach uses two

networks, each DQN is associated with one appliance’s actions.

Performance Metric

As a performance metric, we consider the weighted reward, which we define as 20:

R(st, at, st+1) =
∑
i,j

wi,j(st)Ri,j(st, at, st+1) (6.37)

Naturally, the performance metric provided in equation 6.37 is provided as a reward-signal for the

centrallized agent. In the multi-agent case, each agent j receives a reward corresponding to the weighted

objectives, defined as:

Rj(st, at, st+1) =
∑
i

wi,j(st)Ri,j(st, at, st+1) (6.38)

Agent Hyperparameters

Each DQN (including advisors) use the same network and agent hyperparameters. These hyperparam-

eters were chosen based on simple trial-and-error experimentation. Hyper parameters for the DQN

follow MATLAB defaults, except learning weight, set to 0.001 (normally 0.01) mini-batch size, set to 32

(normally 64), target update frequency, set to 10 (normally 4) and minimum ε, set to 0.001 (normally

0.01). Each network has 3 fully connected layers, 16 neurons each, followed by an output layer with a

single neuron (the network outputs a scalar). The maximum and minimum values of {Pheater, PEV }

are {5, 4} and {0, 0} kWh respectively. Each appliance is allowed 5 discrete actions, evenly spaced

and including boundaries.

Training Results

The centralized, decentralized, and multi-advisor decentralized controllers are trained for 1000 episodes

each. A standard episode lasts 3 days, amounting to 72 time-steps in total. Training curves for each

20This seems to not be an ideal metric for the system.

72

Figure 6.4: Training Curve for centralized controller

agent are shown in figures 6.4, 6.5, and 6.6 respectively. The blue curve represents the return for each

episode, while the red curve represents the average return, averaged over the previous 30 episodes.

A plot of average return (red curves) for the last 500 training episodes is provided for each agent in

figure 6.7. Boxplots for episode return (blue curves) distributions are shown in figure 6.8. From these

results, it seems that the multi-advisor agent exhibits comparable performance to the centrallized and

decentrallized agents.

6.5.4 Simulation

In this section, we simulate the three previously trained agents with the specified environment

parameters. The indoor temperature and SOC on the EV are plotted for typical days of all 3 agents

in figures 6.9, 6.10, 6.11, 6.15, 6.16, 6.17. A boxplot distribution of each is provided in figures 6.12,

6.13, 6.14, 6.18, 6.19, 6.20. Finally, a bar-graph including both the smart-contract failure rate and the

percentage charge on the EV battery and provided in figure 6.21.

Analysis

The behaviour of the multi-advisor agent is notably different from that of the benchmark agents. The

4 objectives noted for this work include temperature control, range anxiety, consumption reduction,

73

Figure 6.5: Training Curve for decentralized controller

Figure 6.6: Training Curve for multi-advisor multi-agent controller

74

Figure 6.7: Average Return of episodes 500-1000 for each agent.

Figure 6.8: Boxplots of episode returns for episodes 500-1000 of training.

75

Figure 6.9: 7 episodes of indoor temperature with centrallized agent.

and smart-contract success. All 3 agents perform EV charging perfectly, where the EV is always fully

charged by the departure time. The multi-advisor agents performs the strongest in terms of temperature

control, while performing the worst in terms of smart contract failure. Despite this, the failure rate is

relatively small at approximately 20%. For reference, a uniformly stochastic policy (randomly selected

actions) has a failure rate of approximately 94%.

6.5.5 Simulation - Different Importance Weights

To further assess the multi-advisor agent, we consider the effects of changing the weight function

from the prespecified case as described in section 6.3.4. In these simulations, we select the weight

function to be independent of the state, and therefore each weight is a fixed value throughout the

episode. To demonstrate performance, we randomly select these weights21 prior to each episode. These

experiments are performed 1000 times for each agent. A boxplot representing the newly-weighted reward

distribution for each agent is provided in figure 6.22, and is rescaled in figure 6.23. Notably, the weighted

reward of the multi-advisor agent exhibits more variance, contains more negative outliers, and has the

(marginally) worst median performance.

To clarify the worsening performance of the multi-advisor agent, consider the indoor temperature of

21The weights sum to 1 for each agent.

76

Figure 6.10: 7 episodes of indoor temperature with decentrallized agent.

Figure 6.11: 7 episodes of indoor temperature with multi-advisor agent.

77

Figure 6.12: Hourly boxplots of indoor temperature with a centrallized agent

Figure 6.13: Hourly boxplots of indoor temperature with a decentrallized agent

78

Figure 6.14: Hourly boxplots of indoor temperature with a multi-advisor agent

Figure 6.15: 7 episodes of SOC with centrallized agent.

79

Figure 6.16: 7 episodes of SOC with decentrallized agent.

Figure 6.17: 7 episodes of SOC with multi-advisor agent.

80

Figure 6.18: Hourly boxplots of indoor temperature with a centrallized agent

Figure 6.19: Hourly boxplots of indoor temperature with a decentrallized agent

81

Figure 6.20: Hourly boxplots of indoor temperature with a multi-advisor agent

Figure 6.21: Expected SOC percentage and smart-contract failure rate of each agent type

82

Figure 6.22: Boxplots of Episode Return for each agent type under random importance.

the 7 episodes with the lowest weighted return, plotted in figure 6.24. In each of these cases, temperature

control is of notably little importance, and as such the multi-advisor agent rarely selects actions which

increase the temperature. These low temperatures dramatically decrease the performance measure as

displayed in figure 6.22. This indicates the need for stronger performance metrics, as the behaviour

demonstrated is not necessarily undesirable, but doesn’t align with the cumulative weighted reward

metric used here.

6.6 Conclusions and Future Work

These experiments demonstrate the potential performance of the proposed multi-advisor agent for

smart-home control. The proposed agent architecture has been shown to scale linearly with respect to

both number of agents and number of objectives. Other experiments indicate that the performance of

the multi-advisor agent can be similar to that of the centralized and decentralized DQN-based agents.

The proposed agent has shown to be relatively successful at achieving every objective it is presented.

While changing the weights seems to decrease the performance of the multi-advisor agent more dramat-

ically relative to the benchmarks agents, the instantaneous dramatic change in behaviour indicates the

potential of the proposed agent for quickly adapting to changes in user preferences.

The results are diminished by the decrease in performance of the proposed agent when the impor-

83

Figure 6.23: Boxplots of Episode return for each agent type under random importance, Re-scaled for

clarity.

Figure 6.24: Indoor temperature of worst performing multi-advisor episodes under random importance.

84

tance of each objective is varied. While the selected performance metric decreases, the associated change

in behaviour is not necessarily undesirable. This indicates the need for a more-specialized performance

metric for such a system to reasonably compare the results with standard, single-objective agents.

85

Chapter 7

Conclusions and Future Work

7.1 Conclusions

While many reinforcement learning algorithms can be described as ’model-free’, they generally still

require far too much training time and failed experiments to be directly applicable to the real world

without a model. Nonetheless, a reinforcement learning algorithm need not be aware whether it’s

actions are taken in a simulator or the real world, as in the Dyna architecture [46], and therefore can be

applied with relative ease when an environment model is available. Therefore, reinforcement learning

algorithms can reach feasibility in real applications such as smart-homes either given a reliable model,

or with advances in data-efficiency of reinforcement learning schemes. MAd-RL provides a scheme

which enables the use of any standard off-policy action-value based reinforcement learning algorithm as

a building block.

The potential of MAd-RL is shown by the experiments provided in chapters 5 and 6. In particular,

chapter 6 demonstrated that MAd-RL is capable of making satisfying trade-offs between conflicting

objectives, as well as demonstrating the desirable behaviour by switching dramatically during periods

of lower preference. The work in chapter 6 further demonstrates the potential by expanding to a more

complex multi-agent environment. This chapter demonstrated the performance in comparison to some

reasonable benchmark agents, of which performance was comparable in terms of weighted cumulative

reward. Further analysis revealed the difference in strategy undertaken by the multi-advisor system,

revealing greater risk-taking behaviour by the temperature control agent in regards to smart contracts.

Upon consideration of the effect of changing the weight function arbitrarily, an issue in performance

metrics for a system of this type is revealed; the behaviour of the multi-advisor agent changes dramat-

86

ically with the change in weights in a way that may prioritize achieving singular goals as opposed to

maximizing weighted reward. Nonetheless, the new behaviour isn’t strictly undesirable, and we note

that future work should involve identifying more representative performance measures when compar-

ing algorithms of this type. It seems that a state-weighted reward functions provide different outcomes

than state-weighted action-value functions, notably due to the fact that action-value functions represent

future rewards, which may have a much lower weight when they are actually received rather than the

higher weight that may have led to this reward.

7.2 Future Work

Here we present some promising ideas to extend and improve this work, as well as some curiousities

as to potential algorithm improvements which may be essential to implementing a scheme of this type

in the real world.

Learning Aggregator

The aggregation function utilized in this work uses hand-selected hardcoded weights to aggregate the

action-values into a decision. These weights are considered as representative of human preferences,

but the mapping from weights to performance may be too complex to ask of a user. A feedback

system could be developed to learn the aggregation function, which may be able to more accurately

represent human preferences than the simple weight-based aggregation used in this work. This could be

achieved by surveying a user about their experiences, and using the survey results to specify a reward

signal/performance measure to train the aggregator.

Partial Observability

In this work, each advisor shares the same state-space. This may be of concern w.r.t. privacy, as

some devices need not have knowledge of the other’s input features1. Secondly, this enables further

computational scalability as the input dimensionality of the neural networks would decrease, allowing

a smaller-sized network be used for each problem. Experimentation could be performed by defining a

minimum set of state-variables for each advisor/agent, and gradually including states from other agents,

measuring performance as a function of observability.

1Eg: An automatic coffee maker doesn’t need to know the user’s desired indoor temperature.

87

Growing Agents

Related to the desire for functionality under partial observability is the task of expanding the state-

space. Particularly, an answer to the question ”How can I efficiently improve performance by adding a

new sensor to my already functioning system?” is desired. This is notably a concern when considering

that work involving the expansion of the input-space of a neural network is elusive.

Furthermore, adding an advisor (a new objective) to a previously trained agent is desirable as

well because unforeseen objectives commonly manifest. Intuitively, the new advisor would require the

inclusion of more sensors, which relates to the previously described partial observability concerns. This

would include work involving training a newly added advisor with a new objective in a previously trained

and functioning system.

Alternate Advisor Algorithms

In this work, each advisor is implemented by a DQN, a feedforward neural network which estimates

Q(s, a). Other algorithms such as Q-learning [58] or neural episodic control [35] could be used instead.

The former is simple and requires a discrete state-space. The latter is complex, requires a detailed

architecture, but learns at a much faster rate. There are many Q-function based algorithms available

for experiment. Furthermore, another potentially interesting idea could be to instead approximate

that objective’s (stochastic) policy directly using a policy-gradient method, and have the aggregator

re-weight the probabilities according to user preferences for the current state.

Advanced Multi-agent Algorithms

In chapter 6, the multi-agent component of the system is dealt with by treating each other agent as

part of the environment. This technique is known as independent Q-learning, as each agent learns

independently from the others. There are more dedicated algorithms for multi-agent learning available,

but are outside the scope of this work. For example, in the related work, we note algorithms presented

in [11] and [23] which are dedicated to dealing with the issues of multi-agent reinforcement learning.

These techniques both follow the centralized learning, decentralized execution paradigm, which could

be challenging to integrate when agents are allowed to have multiple objectives.

88

Feature Sharing

A standard approach to transfer learning in image recognition using convolutional neural networks is

to treat the output from the last convolutional layer as a set of features to provide to any standard

supervised learning algorithm. In this way, the features useful for identifying cats could be helpful to

identify dogs. Similarly, the features that are useful to estimate Q(s, a) for a single objective may be

more useful to a learning aggregator than the Q-values themselves. This could essentially break the

learning problem down into components which are more simple to aggregate. Furthermore, early layer

features could be shared between the advisors internally, for example, a recurrent network could be

used to extract features from raw sensor data, and fed into fully-connected predictors for each of the

advisors.

89

Bibliography

[1] M. H. Albadi and E. F. El-Saadany. “Demand Response in Electricity Markets: An Overview”.

In: 2007 IEEE Power Engineering Society General Meeting. June 2007, pp. 1–5. doi: 10.1109/

PES.2007.385728.

[2] S. Althaher, P. Mancarella, and J. Mutale. “Automated Demand Response From Home Energy

Management System Under Dynamic Pricing and Power and Comfort Constraints”. In: IEEE

Transactions on Smart Grid 6.4 (July 2015), pp. 1874–1883. issn: 1949-3053. doi: 10.1109/TSG.

2014.2388357.

[3] Enda Barrett and Stephen Linder. “Autonomous hvac control, a reinforcement learning approach”.

In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases.

Springer. 2015, pp. 3–19.

[4] Richard Bellman. “A Markovian Decision Process”. In: Indiana Univ. Math. J. 6 (4 1957), pp. 679–

684. issn: 0022-2518.

[5] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge uni-

versity press, 2004.

[6] Yu-Han Chang, Tracey Ho, and Leslie P Kaelbling. “All learning is local: Multi-agent learning in

global reward games”. In: (2004).

[7] Choosing the Algorithm - MATLAB Simulink. Available online: https://www.mathworks.com/

help/optim/ug/choosing-the-algorithm.html. (Accessed: 2019-07-27).

[8] Panos Constantopoulos, Fred C Schweppe, and Richard C Larson. “ESTIA: A real-time consumer

control scheme for space conditioning usage under spot electricity pricing”. In: Computers &

operations research 18.8 (1991), pp. 751–765.

90

[9] George Bernard Dantzig. Linear Programming and Extensions. Santa Monica, CA: RAND Cor-

poration, 1963. doi: 10.7249/R366.

[10] Damien Ernst, Pierre Geurts, and Louis Wehenkel. “Tree-based batch mode reinforcement learn-

ing”. In: Journal of Machine Learning Research 6 (2005), pp. 503–556.

[11] Jakob Foerster et al. “Counterfactual multi-agent policy gradients”. In: Proceedings of the AAAI

Conference on Artificial Intelligence. Vol. 32. 1. 2018.

[12] Vincent François-Lavet et al. “An introduction to deep reinforcement learning”. In: Foundations

and Trends® in Machine Learning 11.3-4 (2018), pp. 219–354.

[13] Arthur M Geoffrion. “Generalized benders decomposition”. In: Journal of optimization theory and

applications 10.4 (1972), pp. 237–260.

[14] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. “Extreme learning machine: a new learn-

ing scheme of feedforward neural networks”. In: 2004 IEEE International Joint Conference on

Neural Networks (IEEE Cat. No.04CH37541). Vol. 2. 2004, 985–990 vol.2. doi: 10.1109/IJCNN.

2004.1380068.

[15] S. Gupta et al. “Multi-objective Reinforcement Learning based approach for User-Centric Power

Optimization in Smart Home Environments”. In: 2020 IEEE International Conference on Smart

Data Services (SMDS). 2020, pp. 89–96. doi: 10.1109/SMDS49396.2020.00018.

[16] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual. 2021. url: http://www.gurobi.

com.

[17] Matthew Hausknecht and Peter Stone. “Deep recurrent q-learning for partially observable mdps”.

In: arXiv preprint arXiv:1507.06527 (2015).

[18] Historical electricity rates — Ontario Energy Board. Available online: https://www.oeb.ca/

rates- and- your- bill/electricity- rates/historical- electricity- rates. (Accessed:

2019-07-27).

[19] A. Jindal, M. Singh, and N. Kumar. “Consumption-Aware Data Analytical Demand Response

Scheme for Peak Load Reduction in Smart Grid”. In: IEEE Transactions on Industrial Electronics

65.11 (Nov. 2018), pp. 8993–9004. issn: 0278-0046. doi: 10.1109/TIE.2018.2813990.

[20] Romain Laroche et al. “Multi-Advisor Reinforcement Learning”. In: CoRR abs/1704.00756 (2017).

arXiv: 1704.00756. url: http://arxiv.org/abs/1704.00756.

91

[21] Y. Li et al. “Automated Residential Demand Response: Algorithmic Implications of Pricing Mod-

els”. In: IEEE Transactions on Smart Grid 3.4 (Dec. 2012), pp. 1712–1721. issn: 1949-3053. doi:

10.1109/TSG.2012.2218262.

[22] Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning”. In: arXiv

preprint arXiv:1509.02971 (2015).

[23] Ryan Lowe et al. “Multi-agent actor-critic for mixed cooperative-competitive environments”. In:

arXiv preprint arXiv:1706.02275 (2017).

[24] Renzhi Lu, Seung Ho Hong, and Mengmeng Yu. “Demand response for home energy management

using reinforcement learning and artificial neural network”. In: IEEE Transactions on Smart Grid

10.6 (2019), pp. 6629–6639.

[25] Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement learning”. In: International

conference on machine learning. PMLR. 2016, pp. 1928–1937.

[26] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In: Nature

518.7540 (2015), pp. 529–533.

[27] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In: arXiv preprint

arXiv:1312.5602 (2013).

[28] Elena Mocanu et al. “On-line building energy optimization using deep reinforcement learning”.

In: IEEE transactions on smart grid 10.4 (2018), pp. 3698–3708.

[29] Hossam Mossalam et al. “Multi-objective deep reinforcement learning”. In: arXiv preprint arXiv:1610.02707

(2016).

[30] John F Nash et al. “Equilibrium points in n-person games”. In: Proceedings of the national academy

of sciences 36.1 (1950), pp. 48–49.

[31] Nest Temperature Sensor - Google Store. Available online: https://store.google.com/ca/

product/nest_temperature_sensor. (Accessed: 2021-04-02).

[32] D. O’Neill et al. “Residential Demand Response Using Reinforcement Learning”. In: 2010 First

IEEE International Conference on Smart Grid Communications. Oct. 2010, pp. 409–414. doi:

10.1109/SMARTGRID.2010.5622078.

[33] K. Ogata. Modern Control Engineering. Instrumentation and controls series. Prentice Hall, 2010.

isbn: 9780136156734. url: https://books.google.ca/books?id=Wu5GpNAelzkC.

92

[34] Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. “Optimal and approximate Q-value

functions for decentralized POMDPs”. In: Journal of Artificial Intelligence Research 32 (2008),

pp. 289–353.

[35] Alexander Pritzel et al. “Neural episodic control”. In: International Conference on Machine Learn-

ing. PMLR. 2017, pp. 2827–2836.

[36] Rates - Synergy North. Available online: https://synergynorth.ca/residential/billing/

rates/. (Accessed: 2019-07-27).

[37] Reinforcement Learning Toolbox Documentation. Available online: https://www.mathworks.

com/help/reinforcement-learning/. (Accessed: 2021-02-22).

[38] Martin Riedmiller. “Neural fitted Q iteration–first experiences with a data efficient neural re-

inforcement learning method”. In: European Conference on Machine Learning. Springer. 2005,

pp. 317–328.

[39] H. Roh and J. Lee. “Residential Demand Response Scheduling With Multiclass Appliances in the

Smart Grid”. In: IEEE Transactions on Smart Grid 7.1 (Jan. 2016), pp. 94–104. issn: 1949-3053.

doi: 10.1109/TSG.2015.2445491.

[40] F. Ruelens et al. “Residential Demand Response of Thermostatically Controlled Loads Using

Batch Reinforcement Learning”. In: IEEE Transactions on Smart Grid 8.5 (2017), pp. 2149–

2159. doi: 10.1109/TSG.2016.2517211.

[41] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems. Vol. 37.

University of Cambridge, Department of Engineering Cambridge, UK, 1994.

[42] Stuart J Russell and Andrew Zimdars. “Q-decomposition for reinforcement learning agents”. In:

Proceedings of the 20th International Conference on Machine Learning (ICML-03). 2003, pp. 656–

663.

[43] T. Samad, E. Koch, and P. Stluka. “Automated Demand Response for Smart Buildings and

Microgrids: The State of the Practice and Research Challenges”. In: Proceedings of the IEEE

104.4 (2016), pp. 726–744. doi: 10.1109/JPROC.2016.2520639.

[44] Lloyd S Shapley. “Stochastic games”. In: Proceedings of the national academy of sciences 39.10

(1953), pp. 1095–1100.

93

[45] S. Singh and A. Yassine. “Mining Energy Consumption Behavior Patterns for Households in Smart

Grid”. In: IEEE Transactions on Emerging Topics in Computing 7.3 (2019), pp. 404–419.

[46] Richard S Sutton. “Dyna, an integrated architecture for learning, planning, and reacting”. In:

ACM Sigart Bulletin 2.4 (1991), pp. 160–163.

[47] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,

2018.

[48] Richard S Sutton, Andrew G Barto, and Ronald J Williams. “Reinforcement learning is direct

adaptive optimal control”. In: IEEE Control Systems Magazine 12.2 (1992), pp. 19–22.

[49] Richard S Sutton et al. “Policy gradient methods for reinforcement learning with function ap-

proximation.” In: NIPs. Vol. 99. Citeseer. 1999, pp. 1057–1063.

[50] Ming Tan. “Multi-agent reinforcement learning: Independent vs. cooperative agents”. In: Proceed-

ings of the tenth international conference on machine learning. 1993, pp. 330–337.

[51] A. Tittaferrante and A. Yassine. “Importance Scaling for Elastic Appliance for Automated Power

Management in Smart Homes”. In: 2019 IEEE 16th International Conference on Smart Cities:

Improving Quality of Life Using ICT IoT and AI (HONET-ICT). Oct. 2019, pp. 115–120. doi:

10.1109/HONET.2019.8907970.

[52] A. Tittaferrante and A. Yassine. “Importance Scaling for Elastic Appliance for Automated Power

Management in Smart Homes”. In: 2019 IEEE 16th International Conference on Smart Cities:

Improving Quality of Life Using ICT IoT and AI (HONET-ICT). 2019, pp. 115–120.

[53] Topics in Reinforcement Learning by Dimitri Bertsekas. Available online: https://mslgoee.

asu.edu/Mediasite/Play/2d63c9507ef1456397ada6716e8523591d. (Accessed: 2021-04-03).

[54] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement learning with double

q-learning”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 30. 1. 2016.

[55] Harm Van Seijen et al. “Hybrid reward architecture for reinforcement learning”. In: Advances in

Neural Information Processing Systems. 2017, pp. 5392–5402.

[56] R.J. Vanderbei. Linear Programming: Foundations and Extensions. International Series in Oper-

ations Research & Management Science. Springer US, 2007. isbn: 9780387743882. url: https:

//books.google.ca/books?id=T-BW1g69wbYC.

94

[57] Z. Wan et al. “Model-Free Real-Time EV Charging Scheduling Based on Deep Reinforcement

Learning”. In: IEEE Transactions on Smart Grid 10.5 (2019), pp. 5246–5257.

[58] Christopher J.C.H. Watkins and Peter Dayan. “Technical Note: Q-Learning”. In: Machine Learn-

ing 8.3 (May 1992), pp. 279–292. issn: 1573-0565. doi: 10.1023/A:1022676722315. url: https:

//doi.org/10.1023/A:1022676722315.

[59] Z. Wen, D. O’Neill, and H. Maei. “Optimal Demand Response Using Device-Based Reinforcement

Learning”. In: IEEE Transactions on Smart Grid 6.5 (2015), pp. 2312–2324.

[60] Marco Wiering and Martijn Van Otterlo. “Reinforcement learning”. In: Adaptation, learning, and

optimization 12.3 (2012).

[61] David H Wolpert and Kagan Tumer. “Optimal payoff functions for members of collectives”. In:

Modeling complexity in economic and social systems. World Scientific, 2002, pp. 355–369.

[62] X. Xu et al. “A Multi-Agent Reinforcement Learning-Based Data-Driven Method for Home Energy

Management”. In: IEEE Transactions on Smart Grid 11.4 (2020), pp. 3201–3211. doi: 10.1109/

TSG.2020.2971427.

[63] A. Yassine. “Implementation challenges of automatic demand response for households in smart

grids”. In: 2016 3rd International Conference on Renewable Energies for Developing Countries

(REDEC). July 2016, pp. 1–6. doi: 10.1109/REDEC.2016.7577546.

[64] Erik Zawadzki, Asher Lipson, and Kevin Leyton-Brown. “Empirically evaluating multiagent learn-

ing algorithms”. In: arXiv preprint arXiv:1401.8074 (2014).

[65] D. Zhang et al. “An Optimal and Learning-Based Demand Response and Home Energy Man-

agement System”. In: IEEE Transactions on Smart Grid 7.4 (July 2016), pp. 1790–1801. issn:

1949-3053. doi: 10.1109/TSG.2016.2552169.

95

