
Artificial Intelligence Empowered Virtual
Network Function Deployment and

Service Function Chaining for
Next-Generation Networks

by

Mahzabeen Emu

B.Sc. Ahsanullah University of Science and Technology, 2017

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE FACULTY OF GRADUATE STUDIES

OF LAKEHEAD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE (SPECIALIZATION IN ARTIFICIAL

INTELLIGENCE)

© Copyright 2021 by Mahzabeen Emu

Lakehead University

Thunder Bay, Ontario, Canada

ii

Artificial Intelligence Empowered Virtual
Network Function Deployment and

Service Function Chaining for
Next-Generation Networks

by

Mahzabeen Emu

Supervisory Committee

Dr. Salimur Choudhury,

Supervisor

(Department of Computer Science, Lakehead University, Thunder Bay,

Ontario, Canada)

Dr. Yimin Yang,

Internal Examiner

(Department of Computer Science, Lakehead University, Thunder Bay,

Ontario, Canada)

Dr. Khaled Rabie,

External Examiner

(Department of Engineering, Manchester Metropolitan University, United Kingdom)

iii

ABSTRACT

The entire Internet of Things (IoT) ecosystem is directing towards a high volume

of diverse applications. From smart healthcare to smart cities, every ubiquitous dig-

ital sector provisions automation for an immersive experience. Augmented/Virtual

reality, remote surgery, and autonomous driving expect high data rates and ultra-low

latency. The Network Function Virtualization (NFV) based IoT infrastructure of de-

coupling software services from proprietary devices has been extremely popular due

to cutting back significant deployment and maintenance expenditure in the telecom-

munication industry. Another substantially highlighted technological trend for delay-

sensitive IoT applications has emerged as multi-access edge computing (MEC). MEC

brings NFV to the network edge (in closer proximity to users) for faster computation.

Among the massive pool of IoT services in NFV context, the urgency for effi-

cient edge service orchestration is constantly growing. The emerging challenges are

addressed as collaborative optimization of resource utilities and ensuring Quality-of-

Service (QoS) with prompt orchestration in dynamic, congested, and resource-hungry

IoT networks. Traditional mathematical programming models are NP-hard, hence in-

appropriate for time-sensitive IoT environments. In this thesis, we promote the need

to go beyond the realms and leverage artificial intelligence (AI) based decision-makers

for “smart” service management. We offer different methods of integrating super-

vised and reinforcement learning techniques to support future-generation wireless

network optimization problems. Due to the combinatorial explosion of some service

orchestration problems, supervised learning is more superior to reinforcement learn-

ing performance-wise. Unfortunately, open access and standardized datasets for this

research area are still in their infancy. Thus, we utilize the optimal results retrieved by

Integer Linear Programming (ILP) for building labeled datasets to train supervised

models (e.g., artificial neural networks, convolutional neural networks). Furthermore,

we find that ensemble models are better than complex single networks for control

layer intelligent service orchestration. Contrarily, we employ Deep Q-learning (DQL)

for heavily constrained service function chaining optimization. We carefully address

key performance indicators (e.g., optimality gap, service time, relocation and commu-

nication costs, resource utilization, scalability intelligence) to evaluate the viability

of prospective orchestration schemes. We envision that AI-enabled network man-

agement can be regarded as a pioneering tread to scale down massive IoT resource

fabrication costs, upgrade profit margin for providers, and sustain QoS mutually.

iv

ACKNOWLEDGEMENTS

“Life is not easy for any of us. But what of that? We must have perseverance and

above all confidence in ourselves. We must believe that we are gifted for something,

and that this thing, at whatever cost, must be attained.”

– Marie Curie

I would like to give thanks to the following funding sources, for their financial

support to my research:

• Lakehead University & Ontario Provincial Government for Ontario

Graduate Scholarship;

• Lakehead University Faculty of Graduate Studies;

• Lakehead University Faculty of Science and Environmental Studies;

• Mesh AI and Mitacs;

• Dr. Salimur Choudhury;

• Toronto Vector Institute.

I am deeply indebted to my supervisor Dr. Salimur Choudhury for his continuous

feedback, support, motivation, and much more. I also thank him for providing me

with the opportunity to grow as a research student in many ways with his expertise

and the unique research environment he creates. My thanks and appreciation go to

my former lab mate Peizhi Yan for his input and collaboration in Chapter 3. I am

extremely grateful to Dr. Yimin Yang and Dr. Khaled Rabie for their constructive

comments and valuable feedbacks on this thesis.

Last but not the least, I would like to express my gratitude towards my family - my

parents, sister, husband, and in-laws for their unconditional support, encouragement,

and love. In addition, I want to thank my aunts and brilliant cousins for their wise

counsel, positive influence, and unlimited motivation.

v

PUBLICATIONS

Parts of this thesis have been published or accepted for publication:

• M. Emu and S. Choudhury, “IoT Ecosystem on Exploiting Dynamic VNF Or-

chestration and Service Chaining: AI to the Rescue?,” in IEEE Internet of

Things Magazine, vol. 3, no. 4, pp. 30-35, December 2020. (part of Chapter 2

and 6)

• M. Emu, P. Yan, and S. Choudhury, “Latency Aware VNF Deployment at Edge

Devices for IoT Services: An Artificial Neural Network Based Approach,” 2020

IEEE International Conference on Communications Workshops (ICC Work-

shops), Dublin, Ireland, 2020, pp. 1-6. (part of Chapter 3)

• M. Emu and S. Choudhury, “Ensemble Deep Learning Aided VNF Deployment

for IoT Services,” 2020 16th International Conference on Network and Service

Management (CNSM), Izmir, Turkey, 2020, pp. 1-7. (part of Chapter 4)

• M. Emu and S. Choudhury, “Towards 6G Networks: Ensemble Deep Learn-

ing Empowered VNF Deployment for IoT Services,” 2021 IEEE 18th Annual

Consumer Communications & Networking Conference (CCNC), Las Vegas, NV,

USA, 2021, pp. 1-4. (part of Chapter 4)

• M. Emu and S. Choudhury, “DSO: An Intelligent SFC Orchestrator for Time

and Resource Intensive Ultra Dense IoT Networks,” 2021 IEEE International

Conference on Communications (ICC), Montreal, Canada, 2021. (Accepted, In

press)

vi

Contents

Supervisory Committee ii

Abstract iii

Acknowledgements iv

Publications v

Table of Contents vi

List of Tables ix

List of Figures x

1 Introduction 1

2 Background 9

2.1 Virtual Network Functions . 10

2.2 Multi-access Edge Computing . 10

2.3 Service Function Chaining . 11

2.4 Traditional Mathematical Programming Model 11

2.5 Meta-heuristics . 13

2.6 Neural Networks for VNF Allocation 14

2.6.1 Artificial Neural Networks . 15

2.6.2 Convolutional Neural Network 16

2.7 Deep Reinforcement Learning . 17

2.8 IoT Networks in AI-aided NFV Context 18

2.8.1 Powering Personalized Experiences for IoT Devices 19

2.8.2 Robust and Privacy Preserving Cloud Infrastructures for IoT

Services . 20

vii

2.8.3 Energy Efficiency and Ultra-low Latency Benefits 21

2.8.4 Scalability Intelligence: From Micro Training to Macro Testing 21

2.8.5 Architecture Design: Emphasizing on the Selection of the Most

Appropriate Model . 22

2.9 Summary . 22

3 Latency Aware VNF Deployment at Edge Devices for IoT Services 23

3.1 Introduction . 24

3.2 Related Work . 26

3.3 Optimal Edge VNF Placement . 27

3.3.1 System Model . 27

3.3.2 Problem Formulation . 29

3.4 VNF Placement Using ANN . 30

3.5 Experimental Results . 30

3.6 Summary . 36

4 Real-time VNF Deployment for Mobile IoT Environment 38

4.1 Introduction . 39

4.2 Related Work . 42

4.3 System Model . 44

4.4 Optimization Framework for VNF Deployment 46

4.5 Metaheuristic based ACO approach for VNF deployment 49

4.5.1 Calculation of Initial Pheromone Value 50

4.5.2 Heuristic Formulation . 51

4.5.3 Cloudlet DC Selection Technique 52

4.5.4 Global Pheromone Update . 52

4.5.5 System Parameters . 53

4.6 Proposed Deep Learning Aided VNF Deployment 53

4.6.1 Labeled Dataset Generation 54

4.6.2 Ensemble Convolutional Neural Netowrks (E-ConvNets) . . . 55

4.6.3 Ensemble Artificial Neural Networks (E-ANN) 57

4.7 Performance Evaluation . 57

4.7.1 t-ACO : Hyperparameter Tuning of ACO 59

4.7.2 Hyperparameter Selection of Proposed Deep Learning Models 60

4.7.3 Simulation Environment . 62

viii

4.7.4 Performance Metrics . 63

4.7.5 Results and Discussion . 64

4.7.6 Case study on Generalization 68

4.7.7 Generalization Settings: Bias-Variance Trade-off Analysis . . . 68

4.8 Summary . 70

5 Intelligent SFC Orchestrator for Time and Resource Intensive Ul-

tra Dense IoT Networks 72

5.1 Introduction . 73

5.2 Related Work . 75

5.3 Optimized SFC Orchestration Framework 76

5.4 DSO: Proposed DQN driven Approach for Sharing based SFC Orches-

tration . 80

5.4.1 State and Action Space . 81

5.4.2 Reward Function Design . 82

5.5 Performance Evaluation . 84

5.6 Summary . 88

6 Conclusion and Future Work 89

A List of Abbreviations 94

Bibliography 99

ix

List of Tables

Table 2.1 Basic operations of a 1D CNN network 17

Table 2.2 Summarization of commonly practiced DL approaches 19

Table 3.1 Description of parameters for our system model . . . 28

Table 3.2 ANN architecture details 32

Table 4.1 Summarization of related research works 44

Table 4.2 Description of parameters for our system model . . . 46

Table 4.3 Description of parameters for ACO inspired VNF or-

chestration . 53

Table 4.4 Selected parameters of CNN models for each optimizer

after employing grid search. 61

Table 4.5 Selected parameters of ANN models for each optimizer

after employing grid search 62

Table 5.1 Description of the parameters for SFC orchestration . 78

Table 6.1 Summary of the proposed AI-based algorithms 90

x

List of Figures

Figure 1.1 The evolution of mobile generation and IoT 2

Figure 1.2 Different aspects of 6G communications 3

Figure 1.3 AI-enabled functions in 6G communications 4

Figure 1.4 Divergence of research focus 6

Figure 2.1 SFC (intrusion security, antivirus) by leveraging SDN

capabilities in IoT context 12

Figure 2.2 A typical high level structure of ANN. 16

Figure 2.3 VNF and SFC deployment in context of various IoT

domains . 20

Figure 3.1 A high level architecture of VNF Placement at IoT

edge devices, managed by VNF orchestrator for latency

critical IoT services. 25

Figure 3.2 Comparison of the total latency deviation from ILP

(Optimal edge VNF placement) in percentage achieved

by ANN (VNF placement using ANN) and Greedy

(Greedy placement strategy) for smaller instances of

VNFs and hosts. 33

Figure 3.3 Comparison of the running time of different placement

approaches for larger instances of VNFs varying from

6000 to 10000 and different number of hosts. 34

Figure 3.4 Comparison of the total latency deviation from ILP

(Optimal edge VNF placement) in percentage achieved

by ANN (VNF placement using ANN) and Greedy

(Greedy placement strategy) for larger instances of VNFs

varying from 6000 to 10000 and different number of hosts. 35

xi

Figure 4.1 Deep learning assisted VNF Deployment at the cloudlet

data centers . 42

Figure 4.2 A high level system architecture for VNF orchestration. 45

Figure 4.3 A high level description of E-ConvNets architecture. . 56

Figure 4.4 A high level description of E-ANN architecture. . . . 58

Figure 4.5 Best selected duo of α and β hyperparameters for each

solution over iterations. Each data point represents a

solution and the color of the data point express the

quality of the solution by considering deviation from

ILP (Optimal) in percentage (the lower, the better). . 60

Figure 4.6 Objective value comparison between ACO and t-ACO

over different simulation runs (the lower objective value

deviation from ILP, the better). 61

Figure 4.7 Number of CNN layers and hidden layers selection for

CNN and ANN models, respectively. 63

Figure 4.8 Comparison of the performance impacts of different

VNF deployment strategies for varying number of VNFs

under each eNB for 12 data centers in total. In case

of Figure 4.8d, S and D represent sparse and dense

networks respectively. 65

Figure 4.9 Comparison of the performance impacts of different

VNF deployment strategies for varying number of eNBs

under each data center for 12 data centers in total. In

case of Figure 4.9d, S and D represent sparse and dense

networks respectively. 67

Figure 4.10 Comparison of the performance impacts of different

VNF deployment strategies for varying number of VNFs

in Jisc topology. In case of Figure 4.10d, S and D rep-

resent sparse and dense networks respectively. 69

Figure 4.11 Bias-Variance trade-off analysis for (a) E-ConvNets and

(b) E-ANN model . 70

Figure 5.1 VNF specifics of a SFC request 76

Figure 5.2 Effects of learning rates against increasing episodes . 86

Figure 5.3 Effects of batch size on minimizing loss 86

xii

Figure 5.4 (a) Resource utilization costs, and (b) Running time

comparison. For (a) & (b), we have considered different

density of networks and ILP as baseline for the results

shown. 87

Figure 5.5 (a) Resource utilization costs comparison, and (b) Run-

ning time comparison. For (a) & (b), we have illus-

trated the effects of different SFC lengths and consid-

ered ILP as baseline. 88

Figure 6.1 VNF and SFC deployment in context of various IoT

domains . 92

Chapter 1

Introduction

The worldwide deployment of upcoming 5G wireless networks is provisioned to lay

a foundation of Artificial Intelligence (AI) based network services. Yet, the ulti-

mate aim to furnish fully-intelligent networks and render a thoroughly immersive

user experience can only be realized in Beyond 5G (B5G) future networks [1]. The

prospective 6G telecommunication industry is anticipated to be driven by automated,

self-configurable, and on-the-fly suitable operations to secure many-fold enhancement

in overall network performance, especially service management [2]. The state-of-the-

art visions for 6G are considered as a complex connected network with the ability

to respond to the service calls rapidly by learning from concerned network states.

The network states can be defined by the edge information (e.g., cache pattern),

user-specifics (e.g., locations, battery-life), even air interface (e.g., radio propaga-

tion channel, radio-frequency), and so forth [3]. The unbelievably rapid growth of

the Internet of Things (IoT) devices significantly contributes to the increasing com-

plexity and size of the future communication networks. The active IoT market will

reach approximately 24 billion of devices by 2030, while each person will nearly own

15 “connected things” [4]. Figure 1.1 illustrates the relation between each mobile

generation system and IoT.

The revolution of 6G will transform the “connected things” into “connected intelli-

gence” for ubiquitous wireless connectivity. The breakdown of present and upcoming

IoT services are mainly categorized into four sections: connected living, productiv-

ity, smart health, and entertainment [5]. Remotely operated e-Home devices and

office automation can boost the smart living environment and cause an extraordinary

productivity leap. Furthermore, wearable IoT health devices bring a fresh outlook

to improve well-being and fitness monitoring for healthcare units, professional ath-

2

1G

2G

3G

4G
5G 6G

Time

In
no

va
tio

n

Voice Calling

SMS

Internet

Internet of
Applications Massive

Broadband
& IoT

Internet of Everything

1980 1990 2000 2010 2020 2025-2030

© Mahzabeen Emu

Figure 1.1: The evolution of mobile generation and IoT

letes, and millennials. On a crucial pitch, IoT in health sectors has revolutionized

telemedicine, telesurgery, and surgical robots as well. A digital landscape shift to-

wards immersive entertainment includes crystal-clear video or audio streaming, cloud

gaming, user-specific services, and more. The full potential of the aforementioned IoT

services can be unraveled only depending on the actualization of 6G communications.

Figure 1.2 points out various aspects related to future 6G networks. AI is one of the

most integral parts of 6G architecture as listed in the Figure 1.2. The AI embedding

into next-generation networks can facilitate the widespread application of potential

use cases by resolving different issues existing with traditional algorithms [3] [6] [7] [8].

Especially, AI algorithms have been gaining a lot of attention since most of today’s

devices own enough computational power. Moreover, every sector of research is follow-

ing the trend of accommodating smart or intelligent solutions. AI methods subsume

multidisciplinary approaches, such as optimization theory, machine learning (ML),

deep learning (DL), meta-heuristics, and game theory [3]. Specifically, ML and DL

are the most popular sub-fields that are broadly embraced in wireless networks [3].

DL is a more advanced category of AI techniques for enabling a machine to learn and

perform intelligent tasks with better accuracy compared to ML without human inter-

vention. Therefore, it is worth investigating the strengths and limitations of ML/DL

3

in future wireless system researches likewise.

The roadmap to 6G communications: visions and missions

6G network
architecture

Air
Interface

New
Spectrum

Advanced
Beamforming

with large
scale antennas

Co-existence
of variable

radio access
technologies

Artificial
Intelligence

6G network
dimensions

Edge
Intelligence

Fog
computing

Network
Virtualization

Network
Slicing

Softwarization

Potential
Technologies

Free
Duplexing

Tactile
Internet

Network
Virtualization

Spectrum
Sharing

Blockchain

Use Cases

E-health &
Bio-sensing

Industry 4.0

Holographic
Transmissions

Space &
Deep sea

communication

Robotics &
Automated

Vehicles

Key
Performance

Indicators

Peak data
rate

Area traffic
capacity

eRLLCS

Spectral
Efficiency

Mobility &
massive

connectivity

Research
Challenges

Resource
Allocation

Privacy &
Security

Ultra-low
processing

power

Energy-
efficient
solutions

Hardware
complexity

© Mahzabeen Emu

Figure 1.2: Different aspects of 6G communications

In the following, we outline some of the likely benefits of ML/DL aided network

solutions:

• Identifying hidden and significant patterns of wireless networks;

• Improving key performance indicators (KPIs) compared to traditional approaches;

• Ensuring ultra-low response time with reasonable solution quality compared to

state-of-the-art approaches;

• Resolving technical glitches associated with designing a complex mathematical

model;

• Improving the flexibility, scalability, and adaptability of the algorithm.

With the integration of AI in future large-scale, multi-layered, high complex, dy-

namic, and heterogeneous networks, it is possible to secure diverse Quality-of-Service

(QoS) requirements [9]. The smart agents learn to serve various level of services

to different prioritized group of users (e.g., faster service for premium charged sub-

scribers) without any form of functional constraints. Moreover, ML/DL algorithms

4

can support low data rate, seamless connectivity, high throughput, and better resource

utilization [9]. The reason being that ML/DL are able to assist optimized decision

making and certain localization tasks based on network behaviour activity and traf-

fic pattern. Thus, the zero-touch operation and control in future networks inhibit

ultimate cognition to alleviate different issues (e.g., extremely high time complexity)

with traditional mathematical programming models by initiating prompt response to

service calls [3] [9].

As shown in Figure 1.3, the overall AI-enabled network functions in 6G can be

categorized into four sections: intelligent sensing layer, data mining and analytics

layer, intelligent control layer, and smart application layer [3]. In this thesis, we

explore and demonstrate the potential applicability of ML/DL algorithms in control

layer of next-generation IoT network management optimization problems.

Intelligent
Sensing
Layer

Data mining
& analytics

layer

Intelligent
Control
Layer

Smart
Application

Layer

• Ecobee Thermostat
• CompundTouch

Sensor
• Bioluminescence

Sensor

• Data Center
• Storage
• Computer Server

• SDN
• Core Cloud
• Orchestrator
• Edge Cloud

• Smart City
• Smart Health /

Industry
• Intelligent

Transportation

• Data collection
• Statue Detection
• Environment

Monitoring
• Measurements

• Dimension Reduction
• Abnormal Data

Filtering
• Knowledge Discovery
• Feature Extraction

• Parameter
Optimization

• Resource Allocation
• Task Scheduling
• Policy Learning

• Automated Service
• Distributed Service
• Service Provisioning
• Performance

Evaluation

© Mahzabeen Emu

Figure 1.3: AI-enabled functions in 6G communications

We mainly focus on the network management system in Network Function Vir-

tualization (NFV) [10] context. The reason being that traditional network functions

(NF) are not suitable for next-generation communication industry due to various

reasons [11]. In today’s world, the integration of new NF services requires the instal-

lation of proprietary hardware devices into system infrastructure. These specialized

hardware appliances are not straightforward to modify for supporting new services.

5

This static approach in service management involves several drawbacks, such as high

capital and operational expenditure, poor resource utilization, and limited innova-

tion of new services [12]. Hence, European Telecommunications Standards Institute

(ETSI) has enabled the notion to run virtual network functions (VNFs) as cloud ser-

vices [13]. VNFs are implemented as software modules by completely removing the

dependency on the underlying hardware. Due to the virtualized form of NFs, the

consolidation of numerous network appliances over conventional high volume servers,

storage, and switches are indeed plausible. On top of it, NFV, along with Software-

Defined Networking (SDN) [14], can serve the on-demand deployment of services at

any point in the infrastructure, while being optimized over time to facilitate emerging

business case demands. Multi-access Edge Computing (MEC) [15] expedites the NFV

framework by offering a cloud computing environment at the network edge for con-

tent providers and service developers. With the deployment of VNF services at user

edge premises, core networks are spared from congestion and enabled to serve other

interconnected backbone services. In further chapters, we explain all these network

key topics more elaborately.

All of the above-mentioned wireless technologies can collaboratively open a new

horizon for business segments and enterprise customers. Network users request for a

specific or chained series of VNFs to receive different virtual services. The accom-

modation of requested VNF to optimal hosts/devices is known as VNF allocation

problem [16]. The orchestration of VNFs may consider different network resource

requirements (e.g., bandwidth, resource, and latency). Hence, VNF resource alloca-

tion management is a very timely research problem in both academia and industry.

Conventionally, VNF deployment researches are mostly for static environment and

cloud-centeric [17]. Moreover, the predicted and actual traffic can vary a lot that

disrupts the performance of an offline orchestrator and overload some servers. Our

research focus has been more inclined towards futuristic network management to deal

with various network issues (e.g., resource utilization, ultra-low latency) in dynamic

IoT ecosystem. The conventional mathematical modeling and heuristics have very

high computation complexity that are not suitable for delay-sensitive prospective

IoT services. A pre-trained ML/DL model can significantly save the running time

expenses for prospective communication networks [18]. Offline learning can spare

the training time for servers/devices by only causing inference (prediction) time in

action for orchestrators. Thus, our research outcomes are expected to provide better

resource management and near-optimal end-to-end (E2E) latency in a significantly

6

reduced response time by introducing computational intelligence. Figure 1.4 illus-

trates the research gap between traditional and our research focus. The rest of the

chapters are organized as follows.

VNF
Catalogue

Available
Resources

VNF Deployment Algorithm
VNF

Requirements

Accessible
Virtualized
Resources

VNF Deployment AlgorithmSLA

QoS
Latency

Threshold

Energy
Efficiency
Constraints

Dynamic
Network
Statistics
Collector

Bandwidth
Guaranteed

Polling

Security Level
Concerns

Tr
af

fic
 D

em
an

d

Time𝑇0 𝑇1

VNF4

Initial VNF
Deployment

Static VNF
Deployment

Overloaded
Server

Core

Actual
Traffic at 𝑇1

Predicted
Traffic

Demand at

Tr
af

fic
 D

em
an

d

Time𝑇0 𝑇1

Actual
Traffic at 𝑇1

Core

Edge

Core

Edge

VNF1

Predicted Traffic
Demand at

𝑇0

𝑇0

VNF
reconfiguration

according to
network dynamics

VNF
Migration

Traditional Focus: Standardized Network Our Focus: Beyond 5G and massive IoT ecosystem

• Passive Independent VNF
• VNF Placement at Cloud, designed to exclusively aid

either service providers (energy efficient) or users (latency,
QoS aware)

• Offline algorithm disregarding reconfiguration of VNF
deployments

• Network Slicing issues

VNF Deployment
at Public Cloud
(e.g., Amazon,

Google, Microsoft)

• Multi-access edge computing
• Dynamic VNF reallocation, chained VNFs
• Simultaneously incorporating all the constraint pieces together:

• Robust, hyper-converged, privacy preserving cloud Infrastructures for IoT
services, ultra-low latency benefits, energy efficiency, powering personalized
experiences for users, QoS and SLA aware, resilient, and scalability issues

• Computational Intelligence, AI embedding

VNF1

VNF3VNF2

VNF2
VNF3

VNF1
VNF4

VNF
Catalogue

Available
Resources

VNF
Requirements

Accessible
Virtualized
Resources

VNF2 VNF3

VNF4

VNF1 VNF2
VNF1

VNF3

Core

© Mahzabeen Emu

Figure 1.4: Divergence of research focus

Chapter 2 provides an overview of fundamental concepts, terminologies, and

methodologies used in this thesis.

Chapter 3 considers the research problem to deploy standalone VNF at edge de-

vices in IoT environment. The optimal placement of these VNFs at edge IoT devices

in synergy with network attributes (e.g., latency on links) is a very challenging net-

work management problem. In a large-scale real world network topology of hosts, the

latency optimal VNF placement can radically enhance user experience for low-latency

critical services. The unexpected latency violation in such services can degrade the

user-enteric network performance metrics, even disrupt services in the worst cases.

Example applications can include low-latency video encoders and content caches,

personalised firewalls, web and P2P index engines, security functions, and tactile In-

ternet. Thus, in this chapter, we solely focus on minimizing the overall latency of

the network in a static environment. Since, the exact state-space size (number of IoT

hosts) is massive in such problems, reinforcement learning is prone to exhibit infe-

7

rior performance. Therefore, we propose an Artificial Neural Networks (ANN) based

solution to predict the optimal hosts for VNFs. Simulation results demonstrate that

our proposed methodology can ensure near-optimal latency with significantly reduced

service response time, unlike traditional approaches. Additionally, we demonstrate

that graphics processing unit (GPU) processed ANN can further expedite service

response times, suitable for real-time IoT applications.

Chapter 4 extends the work of the previous chapter by simultaneously optimiz-

ing communication costs and relocation costs of a VNF in a mobile environment.

A static orchestrator continuously has to monitor the dynamic network parameters

and accommodate VNF placements accordingly. The static orchestrator may induce

significant amount of VNF migration costs to maintain optimal E2E latency. The

migration events are quite likely to happen every now and then, as the users are

expected to constantly move due to small cell sizes considered in next-generation net-

works. This work aims to find the optimal new (migrated) hosts for VNFs such that

the added relocation and communication costs are minimized. Hence, this research

work focuses to eliminate the drawbacks mentioned with any static orchestrator be-

forehand. We suggest the use of ensemble deep learning approaches to solve this

problem and demonstrate the performance aptitude through various KPIs. Through

experimental results, it has been established that ensembling approach rather than

using a standalone deep learning model improves the overall performance significantly.

Finally, we strive to validate the generalization capabilities of the proposed models

via performance verification in a real-word topology.

Chapter 5 introduces the notion of chaining multiple VNFs together to offer a

particular service, unlike previous chapters. The delivery of Value-Added Services

(VAS) depends greatly on actualization of the service function chaining (SFC) [19].

For instance, SFC can immunize cryptocurrency trading platforms by inserting fire-

wall, even though no firewall record is to be found in the routing table perspective

from one network infrastructure point to another. SFC is also very important for

steering customized traffic for a specific group of users/applications [20]. To improve

resource utilization, we enable the scheme of sharing the resources of already on-

boarded VNFs for satisfying a SFC request. The shared resources to serve multiple

services, rather than initiating a new VNF instance can tremendously aid the cause

of improving resource utilities. We also encourage subsequent VNFs in a requested

chain to be allocated in consecutive nodes of IoT substrate network for preserving

latency optimality as well. Due to the significant reduction in state space (feasible

8

solution region), we propose and employ deep Q-learning for this particular problem.

Then, we equip the learning process with Convolutional Neural Networks (CNN) for

better convergence. In the previous chapters, we have avoided reinforcement learning

due to the explosive state-space nature of the aforementioned problems in previous

chapters. Subsequently, we establish that our proposed intelligent SFC orchestrator

is suitable for resource-hungry and real-time IoT use cases.

Chapter 6 summarizes the research efforts conducted in this thesis and sheds light

on the potential future works. This chapter also explains how researchers can adapt

DL approaches for similar research enigmas and their related potential challenges.

9

Chapter 2

Background

This chapter includes a brief review of trending wireless network technologies, opti-

mization criterion, and methodologies that have been considered for the rest of this

thesis.

2.1 Virtual Network Functions . 10

2.2 Multi-access Edge Computing . 10

2.3 Service Function Chaining . 11

2.4 Traditional Mathematical Programming Model 11

2.5 Meta-heuristics . 13

2.6 Neural Networks for VNF Allocation 14

2.6.1 Artificial Neural Networks . 15

2.6.2 Convolutional Neural Network 16

2.7 Deep Reinforcement Learning . 17

2.8 IoT Networks in AI-aided NFV Context 18

2.8.1 Powering Personalized Experiences for IoT Devices 19

2.8.2 Robust and Privacy Preserving Cloud Infrastructures for IoT

Services . 20

2.8.3 Energy Efficiency and Ultra-low Latency Benefits 21

2.8.4 Scalability Intelligence: From Micro Training to Macro Testing 21

2.8.5 Architecture Design: Emphasizing on the Selection of the Most

Appropriate Model . 22

2.9 Summary . 22

10

2.1 Virtual Network Functions

The trend of prospective telecommunication networks strengthening on SDN [21] is

an initiative that expedites the network to be rationally administered utilizing soft-

ware applications. NFV is one of the most popular kinds of technologies consolidated

by SDN [22]. NFV is a paradigm that abstracts network services, which eliminates

the requirement for proprietary, traditional dedicated hardware devices for each ser-

vice [22]. The VNFs (e.g., routing, firewalls, deep packet inspection, load balancers,

and intrusion security) can run on commodity hardware after packaging them to-

gether as virtual machines (VMs) for a group of users [21]. This concept ensures

cost-effectiveness, flexibility, scalability, and more efficiency, along with excluding the

concern of hardware limitations and truck rolls. Due to the virtualization, network

providers hold the flexibility to move the VNFs across various servers according to the

continually changing conditions in the network. Upon the request of a new network

service function from a customer, providers create a new VM to manage the request.

Once the service function is no longer required, it can be easily terminated. VNF

deployments decrease capital expenses and operational expenditure by efficiently de-

ploying new services and managing existing ones [23].

2.2 Multi-access Edge Computing

MEC offers to process, store, and compute data at edge devices that are close to

users and data sources, rather than entirely depending on the cloud data centers [21].

These edge devices can be the home router, network gateways, routing switches, next-

generation base stations, and integrated access devices, which reduce the obligation

of the data to be traversed through the cloud data centers back and forth [24] [25].

The response time of services to the end users and unnecessary utilization of core

networks can be reduced to a great extent in this way, however the cloud continues

to persist.

IoT has already gained much attention due to the explosion of traffic and ex-

pansion of interconnected IoT devices rapidly [26]. The IoT services, different from

traditional network services, expect to support automated provisioning of service

composition along with real-time VNF deployment according to the requirement of

11

users [22]. These service functions demand for a flexible and efficient placement mech-

anism that can handle constantly changing network dynamics (i.e., latency) and place

VNFs at closer proximity to users supported by MEC [26] [25]. Latency on the links

of the networks may continually fluctuate due to various reasons, such as traffic con-

gestion, user mobility, and weather [22]. In the context of IoT, if the latency of the

overall network goes beyond a certain limit, it may disrupt the network services and

decrease the performance of the overall network leading to poor user experience and

low QoS [26].

2.3 Service Function Chaining

SFC [27] can utilize SDN capabilities to form a service chain of interconnected net-

work services (e.g., firewalls, network address translation, video optimizer, intrusion

security, and parental control) and combines them in a virtual chain as shown in the

Figure 2.1. SFC is considered to be operationally profitable by expediting automated

provisioning of network applications and demands, hence enhancing the overall perfor-

mance of the applications [27] [28]. This method guarantees that particular applica-

tions are provided with precise amount of network properties or resources (encryption,

bandwidth, and QoS), which ends up optimizing the usage of network resources. For

each service chain, it is necessary to support the desired QoS level. Otherwise, upon

incompetency to do so, the service level agreement gets disrupted, which incurs un-

satisfactory experience for users and non-negligible penalties for network providers.

2.4 Traditional Mathematical Programming Model

One of the most conventional way to design any resource allocation problem in the

literature is known as Linear Programming (LP) and Integer Linear programming

(ILP) [29]. LP [30] is a method to achieve the best outcome (such as maximum

profit or lowest cost) in a mathematical model whose requirements are represented by

linear relationships. Any LP formulation consists of the three key points: variable(s),

objective function(s), and constraint(s). The generalized canonical form is represented

as follows:

12

© Mahzabeen Emu

Figure 2.1: SFC (intrusion security, antivirus) by leveraging SDN capabilities in IoT
context

maximize
∑

cTx (2.1)

The objective equation above is subject to the following constraint:

Ax ≤ b (2.2)

here, x is a variable. Any particular choice for the values of x (not necessarily optimal)

is known as a solution. A solution that satisfies all of the constraints is considered as

a feasible solution. Yet, a feasible solution might not maximize the objective function.

The solution that maximizes the objective function is regarded as a optimal solution.

An ILP problem is a mathematical optimization or feasibility program in which

some or all of the variables are restricted to be integers. In that case, the second

constraint of the above-mentioned LP problem can be transformed as x ∈ {0, 1}. ILP

is a widely applicable problem-solving model in both academia and industry. Fast

commercial solvers are available for use to solve ILP models, such as, CPLEX [31],

OSL [32], GUROBI [33]. Moreover, powerful binding languages (AMPL, GAMS,

PYTHON) exist as well in today’s world [34].

Most of the literature choose ILP to formulate and solve VNF/SFC allocation

problems for an optimal solution. However, there are some limitations to this ap-

proach, especially when applied in IoT ecosystem. The potential high-dimensionality

13

of decision variables in IoT framework can render unreasonably high running time.

Thus, the performance is most likely to be unacceptable due to the uninterrupted

growth of IoT devices. The combinatorial explosion is the main drawback of this

approach, as the running time grows exponentially with the problem size. Moreover,

critical mathematical modelling can lead to various technical issues in practical cases.

In this thesis, we aim to leverage ILP primarily for the following two reasons:

• To build labeled datasets with optimal solutions retrieved by ILP for training

purpose, since there are no standardized datasets available in this research area

• For finding the optimality gap of our proposed AI based solutions and demon-

strate their efficacy in the simulation environment

2.5 Meta-heuristics

Meta-heuristics [35] methods can not guarantee an optimal solution, unlike ILP. These

methods are popularly utilized to invade the search space effectively for generating

sub-optimal solutions within polynomial time. Moreover, these are problem indepen-

dent methods, and the master strategy is relatively easy to adapt according to other

heuristics. There are many meta-heuristics approaches that are inspired from the

natural collective behavior of insects or animals.

Ant colony optimization (ACO) [36] is one of such algorithms that is known to

able to find “good enough” solutions in relatively “small enough” computing time.

The ACO method imitates the natural collective behavior of live ant colonies origi-

nating from a branch of the Swarm Intelligence (SI) [37] techniques. This algorithm

considers a set of virtual agents/ants. Each of these ants retains a small amount

of memory. These ants individually strive to produce their own solution depending

on heuristic values. Later, the ants aim to enhance the quality of their solutions by

information interchange through pheromone trails. Once the ants produce a locally

optimal solution, they update their respective local pheromone trail values. Even-

tually, all ants generate a globally optimal solution by combining their individually

built local optimal solutions.

The running time complexity of ACO is known to be quadratic [38]. Although

these meta-heuristics strategies are not subject to exponential running time, they

require extensive and large number of hyperparameter tuning [39]. Moreover, the

quality of solution may vary significantly due to poorly chosen hyperparameters.

14

Hence, neural networks come to the rescue with more generalized hyperparameter

optimization maneuvering.

2.6 Neural Networks for VNF Allocation

Deep learning has proven its potential through the different assignment and predic-

tion based problems existing in the literature by providing a smart, holistic, and

expeditious solution [40]. For cloud resource allocation and scheduling purpose, ANN

has been used by combining the stochastic state transition and load prediction, while

supporting expected performance levels [41] [42]. Subramanya et al. also discuss

that machine learning can achieve promising results for different placement problems

based on quantitative results [24]. An energy saving method with deep reinforcement

learning has been approached to reduce power costs significantly without negotiating

production for industrial facility [43]. This is very similiar to the service function

chaining creation problem, which can be approached through deep reinforcement

learning. Moreover, online caching prediction for edge computing using bidirectional

deep recurrent neural network has performed remarkably well, which verifies the ap-

plicability of this approach through edge computation [44]. Deep neural networks

over distributed infrastructures of computing hierarchies (e.g., the cloud, edge and

end hosting devices) have reduced communication costs about 20 times compared

to the traditional way of offloading sensor data in the cloud [45]. The creation of

dynamic service chaining have been attempted through reinforcement learning by

forecasting the consumption of physical and virtual resources (e.g., memory, CPU,

and usage of service functions) in the NFV environment [46]. Another study on VNF

service chaining claim that accelerated reinforcement learning performs remarkably

well (ten times better in terms of cost efficiency) than the conventional reinforcement

learning by monitoring and adapting environmental diversity continually [47].

Therefore, it is envisioned that an intelligent VNF orchestrator can serve the IoT

services that demand fast response time (less delay or latency), resource utilization

efficiency, and desired QoS. In this thesis, we aim to investigate how to leverage

different deep learning techniques for the VNF and SFC orchestration to aid both

providers and users in case of delay-sensitive massive IoT services. Hence, some of the

commonly practiced neural networks and deep learning techniques can be utilized for

the VNF orchestration and management of service chaining purposes in an automated

manner.

15

2.6.1 Artificial Neural Networks

ANN is a popular approach from AI, which is a collection of artificial neurons that

learn through training or experiences, analogous to the human brain [41]. The neu-

rons or nodes of one layer in this network are connected to another layer through

channels having some weights. The inputs are transferred to the next layer by pass-

ing through some activation function [48]. There are different kinds of activation

functions mentioned in the following, for any input x:

sigmoid(x) =
1

1 + e−x
(2.3)

tanh(x) =
ex − e−x

ex + e−x
(2.4)

ReLU(x) = maximum(0, x) (2.5)

The activation functions are introduced to bring non-linearity in ANN. Almost all

the real-world cases have non-linear signal/pattern. Different algorithms are used to

learn these weights of different channels. Gradient descent [49] based optimization

is very popular among them. The weights of the channels are adjusted through

backpropagation (BP) [50] until the end of the training process. The training time

complexity of a typical ANN is polynomial [41]. Once the weights are learnt, the

inference time of a pre-trained model grows linearly with the increasing number of

hidden layers [41]. At last, the weights contribute to the final output that is calculated

in the following way:

o = activation(
n∑
i=0

wixi + b) (2.6)

here, wi is the weight for input xi; o denotes the output; b is bias; activation(·)
represents the activation function. A typical high level structure of ANN has been

illustrated in Figure 2.2.

An ANN can be fed with given and derived input features set, such as latency

characteristics, bandwidth requirements, locations of hosting devices and users, times-

tamped data of energy consumption, optimal placement decisions for previous scenar-

ios, and chaining sequence for different services, etc. After a definite training phase,

the machine can make placements and chaining arrangements accordingly, while obey-

ing the latency threshold and other constraints for an unseen scenario. In conjunction,

16

Input Layer Hidden Layer Output Layer

Back Propagation

Input 1

Input 2

Input N

Output 1

Output N

Input 3

© Mahzabeen Emu

Figure 2.2: A typical high level structure of ANN.

by utilizing the prediction ability, the trained model can select such placements and

chaining that will induce fewer migration costs of VNFs in the dynamic network as

much as possible.

2.6.2 Convolutional Neural Network

CNN [51] was originally developed for image classification with 2D pixels input rep-

resentations for feature learning. However, one-dimensional CNN can be also used

to analyze sequential signal data. 1-D CNNs are particularly known to be useful for

extracting insightful features from fixed length (shorter length) of overall datasets,

especially when the locations of features are not of high relevance [52]. Hence, un-

like image analysis, 1-D CNN are more suitable for communication feature analysis.

Moreover, a major difference between 2D and 1D CNN is the computational burden.

The significant less computational complexity make 1D CNN more approachable for

real-time and lightweight services. The training time complexity for 1D CNN is poly-

nomial, while the prediction time complexity is known as linear [53]. Typically, CNNs

are formed using convolution layers, pooling layers, and fully connected layers [54].

CNN is more towards regularization rather than being entirely fully connected, which

17

reduces the chances of overfitting and the number of parameters significantly unlike

deep neural networks. Pooling operation is performed in between two convolutional

layers, where the number of features get reduced by sampling the from the convolu-

tion layer in a forward looking manner. Table 2.1 highlights the basic layer operations

for feature extraction and classification with 1D CNN:

Table 2.1: Basic operations of a 1D CNN network

Layer Function of this layer

Convolution layer Generates feature/activation map

Pooling Down-sampling operation to preserve detected features

Flattening Prepares features for fully connected layer

Fully Connected Layer Optimize target scores

A CNN network can be trained to select edge devices for VNF placement carefully

and plan scheduling of service function chaining by learning to predict the network

and device characteristics and resources over the training period. The inputs, in this

case, can be deployment specifications and network parameters. At the same time, the

output can be the selected nearby hosting device to place the VNF and provisioned

sequence of service chaining. The error that the model is expected to minimize over

time can be the differences of the output obtained by CNN from optimal cases.

2.7 Deep Reinforcement Learning

Deep Q-learning (DQL) is one variety of model-free reinforcement learning that can

be implemented to select the policy concerning all finite Markov Decision Process

(MDP) [54]. The inputs of the deep Q-networks are states (s ∈ S), and the quality of

the actions (a ∈ A) are basically the output. After the training phase, an agent can

determine the optimal policy provided a state, while maximizing the total expected

reward value. In order to do so, a Q-table (Q : S ×A→ R) is maintained containing

the reward associated with each state-action pairs. For the decision making process

by agent, ε-greedy algorithm [54] is used. Firstly, a random number is generated

between 0 and 1. In case, the random number is greater then ε, the agent tends to

maximize the reward by selecting argmax
a

Q(s, a) as an action. Otherwise, the agent

18

completely executes a random action form A to encourage exploration. Initially, the

Q-table is randomly populated. Next, the update process of Q-tables are formulated

as follows:

Q(s, a) = Q(s, a) + α [r + γ max
a′
Q(s′, a′)−Q(s, a)] (2.7)

where, s and a are the present state and action; s′ and a′ are the next state and

action; r is the instant reward after executing a; α is the learning rate; γ denotes the

discount factor. γ = 0 implies that the agent should focus only on instant rewards.

To further expedite the learning abilities, multi-layered neural networks are used

as Q-tables in Deep Q-network (DQN) [43]. Suppose, θ are the parameters of DQN,

and Qθ(s) is the outcome of DQN based on state s. The target Q-value is formulated

in the following for a MDP transition (s, a, r, s′):

y(s, a) = r + γ max
a′
Qθ′(s

′, a′) (2.8)

here, θ′ is a historical memory copy of θ to prevent oscillations during the train-

ing phase. In this case, a gradient descent-based optimizer is used to update the

parameters θ through minimizing the following loss function:

Lθ = [y(s, a)−Qθ(s, a)]2 (2.9)

Overall, an agent can be continuously trained by perceiving information through

its environment and be able to take satisfactory action from continuous action space

(VNF placement and chaining decisions). This mechanism can evolve the learning

abilities of the agent over time with the intent of improvising policies. The reward

in such scenario can be considered as minimizing the overall latency, resource con-

sumption, and migration costs. The inference time complexity of most of the deep

reinforcement learning is linear [55]. The summarization of all the discussed methods

have been provided in the Table 2.2 with their potential strengths based on VNF

orchestration and SFC generation problem.

2.8 IoT Networks in AI-aided NFV Context

All of the major vendors of IoT application platform (Azure IoT, Amazon Web Ser-

vices IoT, and Google Cloud IoT) are incorporating AI solutions (machine learning

19

Table 2.2: Summarization of commonly practiced DL approaches

Deep Learning
Method

Potential Strength
Some improvement scopes
in the architecture

Deep
Q-Networks [54]

Combine the robustness of
both supervised and unsu-
pervised learning

Double Q-learning, dueling,
and prioritized experience re-
play [54]

ANN [54]
Recognize patterns by
quick formulation and
analytical abilities

Dynamic layer widths selection
for model calibration [54]

CNN [54]

Less chances of overfit-
ting, progressive reduction
in the spatial size of filters,
and inclined towards regu-
larization

Down-sampling transition and
incremental feature construc-
tion for model simplification
[54]

or deep learning based analytics) to wring pattern and insights from data in a faster

way for different service purposes [54]. An efficient automated VNF and SFC or-

chestrator can induce a significant improvement in the overall performance of various

IoT services. Figure 2.3 illustrates the high level concept of VNF placement at edge

server and cloud, while generating different service chains to provide specific service

for various IoT domains. However, various IoT domain has different kinds of spe-

cialized application demands that are need to addressed with AI integration. These

aspects have been carefully taken care of while designing the service management

orchestrators and selecting KPIs in the rest of chapters.

2.8.1 Powering Personalized Experiences for IoT Devices

IoT personalization is an obligation for the vendors to sustain in the perpetually

competitive industry [56]. Many IoT consumer products (e.g., Google Glass, FitBit)

require the ability to capture the personal experiences of individual users to provide

deep insights into their routine based on the historic statistical behavior [57]. Various

wearable IoT devices, for example, a device to track patient’s vitals in the health-

care domain, demand expert prediction ability. This can be achieved by the provision

the VNF requirements and chaining at different IoT edge devices. For the training

purpose to learn VNF orchestration and management strategies, data concerning the

users personalized interaction with the devices can be utilized. Such VNF placement

and service chaining schemes can level up the game for new age IoT devices to create

20

more intuitive experiences for users, while increasing the sales for vendors and service

providers as well.

© Mahzabeen Emu

Figure 2.3: VNF and SFC deployment in context of various IoT domains

2.8.2 Robust and Privacy Preserving Cloud Infrastructures

for IoT Services

Privacy is a primary concern and crucial requirement for any IoT enabled service [58].

IoT ecosystem can be a security threat because of storing users’ personal data (e.g.,

arrival and leaving time at home or office, shopping details, health concerned data,

and voice commands for home assistant) to the publicly exposed or private data

centers [54]. These devices can control the environment of the users as well. By

deploying some VNF at edge devices, it is possible to decline the obligation to upload

or store personal data in the cloud.

21

2.8.3 Energy Efficiency and Ultra-low Latency Benefits

The careful selection for the training time (while charging the device or lying idle)

and resources (over free WiFi) can reduce unnecessary power consumption to a great

extent [57]. Therefore, the training of the model for orchestrating VNF and predicting

service chain may occur when the device is idle to avoid any adverse impact on the

device’s performance. In such a case, the device predicts if a VNF requires to be

placed in that particular device for current or near future usage. As the placement

decisions are expected to be taken at the edge device, the latency experienced by the

users of the IoT services will be much lower.

Energy efficiency has become a critical concern in today’s world with the continu-

ous expansion of data center traffic. Extensive power consumption induce escalating

costs of ownership and carbon footprints as well [59]. It often becomes quite ex-

pensive for providers to pay high electricity costs due to the large volume of power

dissipation from different computational infrastructures. Furthermore, to encour-

age environmental sustainability, carbon taxes have been introduced by some of the

countries as well. Consequently, considering the energy efficient VNF placement and

chaining can aid service providers to decrease their power (and carbon) costs, pos-

sibly to a great extent. Minimum power consumption and low latency are the key

components for overall satisfactory and profitable encounters of applications in the

IoT context. One of the key to enable low power consumption is to ensure balanced

resource utilization [60].

2.8.4 Scalability Intelligence: From Micro Training to Macro

Testing

The deep learning assisted VNF placement along with SFC generation techniques,

require to be scalable in the sense that the model needs to maintain the performance

in large scale scenarios, even after being trained with similar smaller cases [61]. More-

over, if any modifications that are required to be effected in the placement policies,

a generalized update for the training model should be sufficient. Hence, scalability

factor is a an important KPI to be assessed during any AI-aided VNF management

solution.

22

2.8.5 Architecture Design: Emphasizing on the Selection of

the Most Appropriate Model

A critical challenge is to select the most suitable design among various deep learning

and neural network architectures [62]. It is further convincing that the integration

of different learning strategy or individual techniques may be required to deliver the

best performance for VNF orchestration and SFC. The inputs and outputs design

must be carefully selected to ensure prediction capability. The higher number of

parameters into the model or increasing the number of layers will eventually lead to

better accuracy rates. However, significant number of factors considered into the input

data is likely to increase the training and prediction time, which is not agreeable in

the real-time VNF deployment and management context. Online training can easily

capture the dynamic pattern of the environment [63]. Besides, offline training can be

a solution to reduce the redundant communication overhead. Therefore, the design

of the most appropriate AI technique for VNF placement and management strategy

still requires much consideration, as it is not even easy for the expert researchers to

always select the best serving fine-tuned model for various types of problems.

2.9 Summary

It is envisioned that VNF orchestration and SFC with fast response time, less power,

and reduced migration costs conjointly can facilitate both the users and providers.

However, due to the highly dynamic nature of the problem and many network factors

or parameters being involved, traditional optimization approaches (i.e., ILP) are no

longer suitable for the increasing number of time-sensitive massive IoT services (e.g.,

autonomous transportation, abstract virtualization, remote health monitoring and

geographic information system). Hence, we propose the use of neural networks and

deep learning techniques for VNF orchestration and SFC creation in the following

chapters.

23

Chapter 3

Latency Aware VNF Deployment

at Edge Devices for IoT Services

VNFs placed at the edge devices in the vicinity of users improve response time, avoid

redundant utilization of core network, and reduce user-to-VNF end to end latency to a

great extent. Different approaches for VNF placement have been proposed. However,

the main concern has been to minimize the required number of servers to run VNFs

for providing a specific service, without considering network conditions, for example,

latency. In this chapter, we implement the optimal edge VNF placement problem

as an Integer Linear Programming model that guarantees the minimum end to end

latency, while ensuring Quality of Service by not overstepping beyond an acceptable

limit of latency violation. Latency beyond such limits can be the cause of disruption

and degradation of performance for time-sensitive IoT services. The time complexity

of the existing optimal edge VNF placement algorithm is exponential. Thus, we

further propose a VNF placement strategy using ANN trained by the assignment

solutions generated from the ILP model for smaller instances of VNFs. This approach

solves the VNF assignment problem at edge devices for a larger number of VNFs,

while reducing the time complexity to be linear and providing similar results as the

ILP model in terms of latency.

3.1 Introduction . 24

3.2 Related Work . 26

3.3 Optimal Edge VNF Placement . 27

24

3.3.1 System Model . 27

3.3.2 Problem Formulation . 29

3.4 VNF Placement Using ANN . 30

3.5 Experimental Results . 30

3.6 Summary . 36

3.1 Introduction

The trend of future telecommunication networks building on SDN is an initiative

that facilitates the network to be logically and centrally operated using software

applications. This privileges network operators to maintain the extensive network

notwithstanding of the underlying technology. Amongst the variety of technologies

incorporated by SDN, network functions virtualization is a popular one [22]. NFV is

a process to abstract network services that usually operate on traditional dedicated

hardware, basically proprietary devices [22]. These VNFs such as firewalls, WAN

accelerators, load balancers, deep packet inspection, and intrusion prevention, are

allowed to be manipulated, regulated and placed on the software of different network

nodes, diminishing the concern of hardware constraints [64]. NFV is a paradigm where

the functionalities of the network are virtualized to be more efficient, cost-effective,

scalable, and flexible. VNF deployments aid service providers by accelerating the

deployment of new services, while managing the existing services in such an efficient

way that significantly decreases capital expenditure and operational costs. With the

exponential explosion of the IoT devices and growth of traffic, a network service

provider can deploy new services for a specific group of users eliminating the need

for truck rolls, hardware expenses by using this technology. Deploying VNFs at the

IoT end devices efficiently to minimize user-to-VNF end-to-end latency (latency ex-

perienced between a user and a VNF) has been one of the key research concerns of

this domain in recent times. One approach to fulfill the expectations of advancing

networks to improve latency and deploying user-specific services in a notably efficient

fashion can be considered as MEC [65]. The existence of cloud continues to persist,

however, the edge devices process, compute and store the data instead. Therefore,

an extensive variety of IoT applications for which the real-time response has to be

strictly maintained, for example, augmented reality, autonomous vehicles, collabora-

tive computing, and edge video caching can be supported by MEC [66]. The edge

25

devices can be IoT gateways, sensors, actuators, and different IoT devices itself (i.e.,

FitBit, Smart Security Systems, Google Glass). The lightweight, docker containers

can be used to deploy VNFs even on low-cost hosting edge IoT devices considering

the conflicting dependencies [67]. Even though the docker container is much more

preferable, for running services in the edge network, Virtual Machines can be del-

egated as well. While VNFs are being placed in closer proximity to end-user, the

response time and extensive utilization of core networks can be reduced to a great

extent, as it eliminates the obligation of personalized IoT data (e.g., mHealth related

data) to traverse through the core network for providing a service [67]. As shown in

Figure 3.1, the VNF orchestrator deploys and manages VNFs at edge devices so that

the latency experienced between end users and VNF is minimized. Moreover, the

Figure 3.1: A high level architecture of VNF Placement at IoT edge devices, managed
by VNF orchestrator for latency critical IoT services.

orchestrator continuously monitors the dynamic network parameters and accommo-

dates VNF placements accordingly. This is very obvious, as the users are mobile and

expected to constantly move due to small cell sizes considered in next-generation net-

works. Latency on links keeps changing due to various factors other than the mobility

of the user, such as weather, the configuration of hardware devices, and congestion

in network as well [68]. The delay generated in a network, if somehow goes beyond a

certain threshold may be the reason for the degradation of overall performance and

disruption of network services.

26

To the best of our knowledge, no research work for placing VNFs based on the de-

cision of ANN trained by optimal solutions has been approached before. We first train

an artificial neural network with the VNF assignment results of optimal edge VNF

placement and later test the artificial neural network-based placement approach using

larger test instances having a large number of VNFs. In this chapter, we considered

the optimal edge VNF placement strategy, which always ensures the total minimum

latency from users to VNFs [69]. However, the ILP formulated placement strategy

is NP-hard, which can be computationally expensive for large number of VNFs and

hosts [70]. Hence, we propose an ANN-based method for assigning VNFs to edge

devices, where the training phase involves optimal assignment solutions of different

VNF and host pairs resulted from the ILP. The VNF placement via ANN algorithm

exhibits promising results in terms of latency while reducing the time complexity to

be linear compared to the optimal VNF placement method regardless of the size of

training data samples.

3.2 Related Work

NFV originates with the transformation of approaching to the virtualization of net-

work elements, which are presently stationed on hardware devices. The more networks

become evolved towards NFV, the consideration of the data forward plane and control

plane facilitate the management of existing and creation of new services.

Several studies to improvise the efficiency of this technology have been done,

for example, task scheduling [71], allocation of VNFs [72], scaling [73], migration of

VNFs [74], etc. Lately, a few additions have propelled the policy-aware traffic problem

using hardware middle-boxes [75] [76]. Some research works involve in deploying and

orchestrating VNFs [77] [78]. Nevertheless, the attention has been drawn towards

architecture supporting and providing software operating middle-boxes, for example,

NetVM [21] as the hardware capacity is not unlimited. Among different research

works on this area, VNF allocation has gained much attention. Several approaches

have been proposed for efficiently managing VNF assignments. A cut and solve based

approach has been proposed to give a near-optimal solution [79]. Assigning VNFs to

edge server rather than only depending on cloud centers can improve latency up to

70% using Integer Linear Programming [80]. Later, a solution to find the optimal time

for VNF migration has been proposed while ensuring a certain level of QoS [69] [81].

A hybrid online algorithm aiming to minimize the error about prophesying the service

27

chain requests and better competitive ratios are achieved with adaptive processing

abilities [82]. A stable matching algorithm to reduce the run-time of the algorithm

while introducing mixed integer programming to the problem definition and finding

the near-optimal solution in terms of latency has been approached which resulted in

lower time complexity in contrast to the optimal solution [83]. This prevented the

failure of the model in such a case where a VNF can not be placed while trying to

satisfy certain constraints such as staying below a certain threshold of latency.

In distinction to the previous works, our approach is to examine an optimized

end-to-end latency problem overall. However, the need to reduce the time complexity

of the optimization problem which is exponential in nature, we feed an Artificial

Neural Network with different optimal assignment solutions so it can take better

placement decisions in terms of latency while reducing the time complexity to be

linear. Therefore, for a larger number of VNFs and hosts [70], the time complexity of

assigning the VNFs to hosts will be much less than the optimal edge VNF assignment

strategy, while ensuring latency values similiar as the optimal ones.

3.3 Optimal Edge VNF Placement

In this section, the VNF assignment problem is formulated as an ILP problem to find

the assignments of VNF at edge devices in an optimal manner. The optimal Edge

VNF placement strategy aims to find the latency optimal VNF assignments in edge

devices or the distant cloud. To ensure optimal latency for users, network providers

first aim to place the VNFs at edge devices closer to the user. However, in case

the edge devices are out of capacity and fail to accommodate the VNFs, then the

provider’s internal cloud is used to host the VNFs.

3.3.1 System Model

In this chapter, we consider a set of users are connected to some hosting devices (IoT

actuators, sensors, and gateways) through links within a network topology. Table 3.1

exhibits all the parameters considered for the formulation of the system model. We

denote the physical network topology as an undirected graph G = {H, U, E}, where

H and U are the set of hosting devices and users in the network topology connected

by the set of links E.

28

Table 3.1: Description of parameters for our system model

Parameters of Network Description

G = {H, U, E} Topology of the network

H = {h1, h2, ..., hH} All the IoT edge devices defined as hosts available in

network

U = {u1, u2, ..., uU} All the users in the network

E = {hiuj|hi ∈ H, uj ∈ U} All the edges associated with hosts and users in the

network

lij Latency on the link hiuj

Cj Hardware capacity of the host hj

Qij Capacity of the link hiuj

Parameters of VNF Description

N = {n1, n2, ni, ..., nN} All network functions that are required to be assigned

where ni ∈ N
Ri Host requirements of each VNF ni ∈ N
θi Maximum latency tolerance limit of each VNF ni ∈ N

Decision Variable Description

yij Binary decision variable represents whether VNF ni

has been assigned to host hj or not

Derived Parameter Description

Lij Total latency between VNF ni and host hj

bij Required bandwidth in-case VNF ni is hosted at hj

N = {n1, n2, ni, ..., nN} represents the set of network functions which are required

to be assigned to different hosting devices. In practical settings, different types of

VNFs have different hardware requirements to be placed on hosts. For example, fire-

walls demand less than deep packet inspection methods. Hence, we have introduced

Ri to denote that requirements of each VNF ni, and Cj to represent the hardware

capacity of a host hj.

All the VNFs along with computational requirements have a maximum tolerance

limit of delay, denoted by θi according to the provider’s Service Level Agreement

(SLA). Each link in the network has a latency value of lm. The total latency from

a user to VNF is calculated by summing all the lm of links between a VNF ni and

29

a host hj, which is represented by Lij. At last, yij is the key decision variable that

describes if a VNF ni has been assigned to a host hj or not.

3.3.2 Problem Formulation

Given, a set of VNFs N, a set of host devices H, and a set of users U along with the

latency matrix lij, the objective of this chapter is to find the optimal assignments

of the VNFs at different host devices so that the latency experienced between user

and the VNF is minimized. Mathematically, the objective function of this problem

formulated using ILP can be represented by the following equation:

minimize
∑
ni∈N

∑
hj∈H

yij × Lij (3.1)

The object function finds the values of yij, whilst it is subject to the following con-

straints:

C1 :
∑
ni∈N

yij ×Ri ≤ Cj, ∀hj∈H (3.2)

C2 :
∑
hj∈H

yij × Lij ≤ θi,∀ni∈N (3.3)

C3 :
∑
hj∈H

yij = 1, ∀ni∈N (3.4)

C4 :
∑
hj∈H

yij × bij ≤ Qij,∀ni∈N (3.5)

C5 : yij ∈ {0, 1} (3.6)

Hardware resources of each host are limited. Therefore, constraint C1 represents

that each device can host up to a certain number of VNFs until their capacity runs

out. Constraint C2 ensures that, while placing some latency-sensitive VNFs, their

maximum tolerance delay threshold from the user is not violated. The third constraint

C3 secures a single assignment of a VNF to some host. Consequently, each VNF can

be placed to exactly one of the hosts, which can be edge devices close to the user

or the cloud. The fourth constraint C4 ensures that any physical link should not be

overloaded. Finally, C5 represents that the value of decision variable yij will be either

30

0 or 1, in case ni is hosted at hj the value of yij will be 1, otherwise it will be 0.

3.4 VNF Placement Using ANN

In the worst case, the ILP model takes exponential time [84], which is inefficient

while dealing with large number of VNFs for massive IoT services. An ANN has

linear prediction time complexity, regarding the number of samples [85]. Therefore,

training an ANN to predict the optimal VNF placement solution is promising in

reducing the optimization time and improving the user experience. Since there are

no standardized datasets for supervised learning in this research area, we propose to

leverage the result of ILP to build labeled datasets. The labeled dataset contains

VNF and optimal host pairs, with other network metrics as feature vectors.

We leverage the existing ILP solver to optimize the simulated VNF placement

problems, and record the solutions to generate labeled data for training an ANN.

Eventually, we train the ANN through the simulated datasets to imitate the perfor-

mance of ILP. We have considered smaller instances for training the ANN, such as

10 - 45 number of hosts, and 100 - 450 number of VNFs. The details of the of the

training data and simulation parameters are available in section V. If we represent the

ANN as a function F , then we have F(Xij) = Ŷij, where 0 ≤ Ŷij ≤ 1.0. The training

label for each sample Xij is yij. We optimize the ANN parameters to minimize the

mean squared error between yij and Ŷij. The ANN aims to solve the VNF placement

problem in a sequential style. We define the input features of the ANN as an octuple

Xij = ({Ck|1 ≤ k ≤ H}, {Qik|1 ≤ k ≤ H}, {Lik|1 ≤ k ≤ H}, Lij, Ri, θi, bij, Qij),

where i and j indicate the current VNF ni and the host hj respectively. Therefore,

we interpret the output of F(Xij) as a confidence score of placing VNF ni on host hj.

Algorithm 1 depicts the simulation and training process. The procedure of leverag-

ing the trained ANN to optimize VNF placement is shown in Algorithm 2. Further

details of the considered ANN architecture has been summarized in Table 3.2.

3.5 Experimental Results

We have implemented the optimal edge VNF placement and trained an ANN with

the optimal VNF to host (edge devices available in the MEC or IoT layer) assign-

ment solutions generated by the ILP solver. Later, we compare the performance of

our proposed ANN placement strategy with the optimal edge VNF placement and

31

Algorithm 1: Simulation and Training

1 D ← {}
2 for epoch < total simulation epochs do
3 Generate a random system: Lij, bij, θi, Cj, Ri, Qij

4 yij ← Solve the random system through the ILP optimizer
5 for i = 1, 2, ..., N do
6 j ← arg max

j
yij

7 k ← get a random number from {1, 2, ...,m} − {j}
8 D ← D ∪ {(Xij, 1), (Xik, 0)}
9 Cj ← Cj −Ri

10 Qij ← Qij − bij
11 Normalize each feature in Xij where (Xij, yij) ∈ D between 0 and 1.0
12 Train the ANN on every (Xij, yij) pair in D

Algorithm 2: VNF Placement via ANN

Input: Lij, bij, θi, Cj, Ri, Qij

Output: S
1 S ← {}
2 for i = 1, 2, ..., n do
3 M ← array of H elements
4 for j = 1, 2, ...,m do
5 if Lij > θi or Ri > Cj or bij > Qij then
6 Mj ← 0
7 else
8 Mj ← F(Xij)

9 k ← arg max
j

Mj place ni on hk

10 Ck ← Ck −Ri

11 Qik ← Qik − bik

32

Table 3.2: ANN architecture details

Operation/Layer Details

Optimizer SGD

Activation Function ReLU

Number of hidden layers 3

Number of nodes in hidden layer 25

a greedy placement strategy based on latency and running time. The ANN imple-

mentation has been executed using python’s TensorFlow packages. The greedy VNF

assignment method always selects the best available VNF to host assignment at that

moment which might be proven to be very bad in the long run in terms of latency.

The greedy placement strategy from the set of candidate solutions picks the ni and

hj pair with locally optimal latency Lij at each stage. However, the greedy algorithm

may fail to find the optimal solution, with the possibility of even offering the worst

possible VNF to host assignment resulting in highly deviated total latency from the

optimal case. Although the optimal edge VNF placement using ILP always ensures

better latency benefits, for large number of VNFs and hosts [70], the time complexity

remain exponential. On the contrary, VNF placement using the proposed ANN strat-

egy reduces the time complexity to be linear, which reduces computational expenses

at a significant rate for large scale VNFs to hosts assignments.

For running the simulations, we have used an INTEL® CORE™ CPU i9-7920X

(12 cores at 2.9GHz to 4.4GHz) machine with NVIDIA® GTX1080Ti GPU and

128GB Memory. In the case of placement experimentation using ANN, we have run

the placement algorithm with both two and four GPUs respectively. The performance

of this proposed placement method can also be improved further by running it on

different CPU threads in parallel. The latency violation limit of each VNF (θi) has

been generated between 30 − 100 milliseconds, as different IoT services may have

different tolerable limits of latency. Similarly, the values of VNF requirements (Ri),

capacity of hosts (Cj) in case VNF ni is placed at hj has been considered to be in the

range of 10 - 50 and 10 - 800 respectively, due to dynamic capacity owning of different

IoT devices. Moreover, the bandwidth requirement (bij) of a VNF ni placed at host

hj can be 5 - 10, while the hosts have the bandwidth capacity (Qij) ranging between

50 - 100. The latency values on the links vary due to several reasons, hence Lij values

33

have been generated randomly to be varying from 5 to 100 milliseconds. All of the

mentioned parameters have been adapted from the existing work in [83] [86].

Figure 3.2 illustrates the total latency deviation of greedy placement strategy and

placement strategy using ANN, from the optimal edge placement with respect to the

delay variation in percentage scale. In this case, latency deviation represents how

10,
100

15,
150

20,
200

25,
250

30,
300

35,
350

40,
400

45,
450

Number of hosts,
Number of VNFs

0.0

2.5

5.0

7.5

10.0

12.5

15.0

T
o
ta

l
L
a
te

n
c
y
 D

e
v
ia

ti
o
n
 i
n

 %

0%

3%
2% 2%

1%

3%

1%
2%

8%

11%

8% 8% 8%
7%

3%

5%

Figure 3.2: Comparison of the total latency deviation from ILP (Optimal edge VNF
placement) in percentage achieved by ANN (VNF placement using ANN) and Greedy
(Greedy placement strategy) for smaller instances of VNFs and hosts.

much the latency values of ANN and greedy placement mechanisms vary from the

optimal latency value achieved by ILP. This experiment has been done with 10, 15,

20, 25, 30, 35, 40, and 45 number of hosts in combination with 100, 150, 200, 250, 300,

350, and 450 VNFs respectively. It is evident that ANN placement strategy exhibits

promising total latency results resembling as the optimal, as the delay deviation from

the optimal total latency can vary by 0% to 3% only, comparing to the optimal edge

placement strategy. In contrast, the greedy placement approach increases the total

latency deviation from optimal case by a maximum of 11%, while generating at least

three times greater total latency than the VNF placement using ANN.

For the next experimentation, we have considered the host numbers to be 90, 110,

130, and 150 with the number of VNFs varying from 6000 to 10000. As shown in

Figure 3.3a, 3.3b, 3.3c, and 3.3d the execution time for ANN placement strategy with

two or four GPUs improve the running time by a significant amount (50% - 60%

decrease of running time for ANN placement strategy using two GPUs and 65% -

85% in case of ANN placement strategy using four GPUs) comparing to the optimal

34

(a) Running time comparison for 90 hosts (b) Running time comparison for 110 hosts

(c) Running time comparison for 130 hosts (d) Running time comparison for 150 hosts

Figure 3.3: Comparison of the running time of different placement approaches for
larger instances of VNFs varying from 6000 to 10000 and different number of hosts.

edge VNF placement with the growing number of VNFs.

The trends in the increase of running time for optimal edge placement explain that

it performs poor than VNF placement using ANN in terms of running time, while

handling large scale VNF placement. Figure 3.4a, 3.4b, 3.4c, and 3.4d, demonstrate

the total latency deviation of greedy placement strategy and placement strategy using

ANN, from the optimal edge placement with respect to the delay variation in percent-

age scale. The (Greedy-ILP)/ILP and (ANN-ILP)/ILP represent the differences or

deviations of latency values achieved by greedy placement strategy and ANN place-

ment strategy from optimal latency values found by ILP in terms of percentage. This

experiment has been done with 6000 to 10000 number of VNFs, which is significantly

larger than the instance size of VNFs used in the training phase. It can be easily

observed that the total latency occurred to place all the VNFs using ANN strategy

gives very much reasonable cumulative latency results (0.0% - 0.3% deviated from

35

6000 7000 8000 9000 10000

Number of VNFs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
o
ta

l
L
a
te

n
c
y
 D

e
v
ia

ti
o
n
 i
n

 %

0.1%

0.3%

0.2%

0.1%

0.0%

0.3%

0.7%

1.0%

1.2% 1.2%

(a) Latency deviation comparison for 90
hosts

6000 7000 8000 9000 10000

Number of VNFs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
o
ta

l
L
a
te

n
c
y
 D

e
v
ia

ti
o
n
 i
n

 %

0.0%

0.1% 0.1%

0.2%

0.1%0.1%

0.5% 0.5%

0.7% 0.7%

(b) Latency deviation comparison for 110
hosts

6000 7000 8000 9000 10000

Number of VNFs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

T
o
ta

l
L
a
te

n
c
y
 D

e
v
ia

ti
o
n
 i
n

 %

0.0% 0.0% 0.0%

0.2%

0.1%0.1%

0.2% 0.2%

0.5% 0.5%

(c) Latency deviation comparison for 130
hosts

6000 7000 8000 9000 10000

Number of VNFs

0.0

0.1

0.2

0.3

0.4

0.5

T
o
ta

l
L
a
te

n
c
y
 D

e
v
ia

ti
o
n
 i
n

 %

0.1%

0.0%

0.1%

0.0%

0.1%

0.2%

0.1%

0.3%

0.2%

0.4%

(d) Latency deviation comparison for 150
hosts

Figure 3.4: Comparison of the total latency deviation from ILP (Optimal edge VNF
placement) in percentage achieved by ANN (VNF placement using ANN) and Greedy
(Greedy placement strategy) for larger instances of VNFs varying from 6000 to 10000
and different number of hosts.

36

optimal only) in comparison to ILP solver. On the contrary, the greedy placement

strategy can cause up to 1.2% deviated total latency from ILP, which is more than

twice of total latency variation resulted from ANN. Therefore, with the growing num-

ber of VNFs, placement strategy using ANN delivers very similar total latency results

as the optimal edge VNF placement strategy, while ensuring much shorter execution

time by taking faster placement decisions.

3.6 Summary

In this chapter, our concern has been to design an alternative placement strategy ex-

pected to be faster than the ILP model of optimal edge placement. Since, in case of

real-time IoT applications (e.g., Storage Incompatibility Detection, Perimeter Access

Control, Forest Fire Detection, Smart Roads, Patients Surveillance, and Ultraviolet

Radiation Detection), the VNF orchestrator is required to take VNF to host as-

signment decisions as quickly as possible. Therefore, we have considered the optimal

edge VNF placement problem using Integer Linear Programming. To ensure optimum

latency, the trade-off here is between time complexity and latency minimization, con-

sidering this placement strategy takes exponential time. Therefore, we have designed

another placement strategy using ANN, where the training phase is completed based

on the optimal VNF to host assignments generated by the ILP model of optimal edge

VNF placement for smaller instances. This placement method is better considering

the time complexity being linear, which reduces the computational complexity to a

great extent when dealing with a large number of VNFs and hosts. Furthermore,

this placement strategy shows promising results resembling the latency minimization

capability of the optimal edge placement method. The total latency deviation of this

strategy from the optimal case varies up to 3% for the training instances and up to

0.3% only in case of larger instances compared to the training phase, which is trivial.

Moreover, this placement strategy decreases the running time of the optimal edge

VNF placement up to 60% with two GPUs and 85% with four GPUs. The promising

results in terms of reducing the running time of VNF orchestration and providing

resembling optimal latency results, also indicate that artificial neural networks can

be used for similar optimization research problems.

The main limitation of this study is that the orchestrator has been designed for a

static environment. Thus, to keep up with the track of necessary VNF migrations, the

orchestrator requires constant monitoring of various network dynamics. Moreover, the

37

placement decisions have to be re-evaluated every now and then for keeping the overall

latency minimal. Oftentimes, to accommodate the optimal VNF relocations, major

VNF allocation changes are introduced in the network, while leading to unnecessary

migration overhead. Hence, in the next chapter, we extend the research to address

the aforementioned issues with a static VNF orchestrator.

38

Chapter 4

Real-time VNF Deployment for

Mobile IoT Environment

In the 6G networks, due to the massive IoT connectivity and substantial growth

of communication traffic, an effective VNF orchestration scheme is anticipated to

function dynamically and intelligently. Moving beyond the traditional paradigm of

the VNF orchestration and employing VNFs on the network edge located cloudlets

based on the inspiration from multi-access edge computing can intensify the overall

performance of delay-sensitive applications. In this chapter, we intend to investi-

gate how to simultaneously leverage the ensembling of multiple deep learning models

for proper calibration to provide real-time VNF placement solutions. We also ad-

dress the challenges associated with state-of-the-art approaches to deal with dynamic

network traffic and topology patterns. Our envisioned methods, based on Convolu-

tional Neural Networks and Artificial Neural Networks named as E-ConvNets and

E-ANN respectively, suggest two proactive VNF deployment strategies. These VNF

placement strategies demonstrate (simulation results) encouraging performance (op-

timality gap nearly 7%) in terms of minimizing relocation and communication costs,

and high scalability intelligence factor (around 0.93). Moreover, the presented re-

sults are further indications of integrating edge computing and deep learning-based

strategies into similar research enigmas for future telecommunication networks.

4.1 Introduction . 39

4.2 Related Work . 42

39

4.3 System Model . 44

4.4 Optimization Framework for VNF Deployment 46

4.5 Metaheuristic based ACO approach for VNF deployment 49

4.5.1 Calculation of Initial Pheromone Value 50

4.5.2 Heuristic Formulation . 51

4.5.3 Cloudlet DC Selection Technique 52

4.5.4 Global Pheromone Update . 52

4.5.5 System Parameters . 53

4.6 Proposed Deep Learning Aided VNF Deployment 53

4.6.1 Labeled Dataset Generation 54

4.6.2 Ensemble Convolutional Neural Netowrks (E-ConvNets) . . . 55

4.6.3 Ensemble Artificial Neural Networks (E-ANN) 57

4.7 Performance Evaluation . 57

4.7.1 t-ACO : Hyperparameter Tuning of ACO 59

4.7.2 Hyperparameter Selection of Proposed Deep Learning Models 60

4.7.3 Simulation Environment . 62

4.7.4 Performance Metrics . 63

4.7.5 Results and Discussion . 64

4.7.6 Case study on Generalization 68

4.7.7 Generalization Settings: Bias-Variance Trade-off Analysis . . . 68

4.8 Summary . 70

4.1 Introduction

Based on the expectations to fulfill the demands of ultra-high processing speed and

low communication delay sensitive applications, 6G cellular networks are envisioned

to support an extensive variety of vertical use cases [87]. Some of the applications can

be the massive connectivity of IoT, collaborative computing, remote surgery and ma-

chinery, augmented reality (AR), virtual reality (VR), and autonomous driving [69].

Nevertheless, the current network service orchestration schemes become incompetent

to handle numerous service specifications and various device types due to not imply-

ing sustainability for real-time applications and poor administration capability [69].

Thus, NFV [82] pledges to facilitate network service provisioning at considerably de-

creased capital costs and operational expenditure. The intention is to replace the

40

necessity of proprietary hardware devices with the software enabled implementation

of VNFs on conventional virtualized platforms such as VMs running in cloudlets

(small scale data centers at the edge of Internet) [82]. As suggested by the concept of

MEC or fog computing [66], VNFs (e.g., firewall, load balancer, WAN accelerator, and

intrusion detection system) placed at cloudlets in closer proximity to the users dimin-

ishes the burden of unnecessary data traversal and bandwidth consumption through

the centralized cloud. The vision towards future telecommunication networks antici-

pates that the third parties will designate the content-aware and user-specific services

along with their corresponding specifications, for example, the highest tolerable la-

tency or least throughput limits, to the network administrator, expedited by NFV

and SDN [88].

Accordingly, the deployment of these VNFs requires a highly efficient and scalable

strategy to deal with the continually evolving network dynamic patterns and the large

volume of traffic emerging from value-added services [70]. Mostly, state-of-the-art

NFV resource orchestrators consider the static condition of networks, while ignoring

the temporal differences in network traffic and topology due to mobility of users or

congestion [83] [82]. Moreover, the lack of considering the re-computation of VNF

placements in these methods makes them ill-equipped to be employed in practical

settings, and often the consequences are violations of the QoS and SLA [89]. Ongoing

researches evolve around different optimization formulations using ILP and MILP to

outline the VNF orchestration scheme, which is NP-hard by nature [84] [39], and fail

to offer fast VNF placements decisions at different times. To approach intelligent VNF

orchestration, meta-heuristic based swarm intelligence algorithm, specifically, ACO,

has been proposed in [39]. However, the family of swarm intelligence algorithms,

including ACO, requires extensive parameter tuning of exploitation-exploration ra-

tios, making them heavy weighted to accommodate for real-time orchestration [39].

Moreover, in some cases, the ACO or other meta-heuristics may provide network

function placement solutions far off from in terms of reducing overall communication

delay [39].

In distinction to the existing works, we have aimed to propose lightweight and dy-

namic deep learning [18] aided strategies for the VNF orchestration and deployment

that facilitates both users and services provides exclusively by collaborative minimiza-

tion of communication, relocation delay and costs in real-time. We have considered

two popularly known approaches, Convolutional Neural Networks [18] and Artificial

Neural Networks [18] blended with the twist of ensemble training and prediction fash-

41

ion [90]. The pre-trained models can be placed on the cloudlets (local, device hosted

or infrastructure based clouds) so the VNF orchestration process may be swift and

prompt enough for delay-sensitive IoT applications [82]. Furthermore, the pre-trained

proposed deep learning models employed for VNF placement dismiss the obligation to

tune hyperparameters during service orchestration. The expeditious growth of inter-

connected devices and real-time IoT applications raises the concerns to direct towards

adaptive orchestration schemes for VNFs that can function intelligently. The major

contributions and findings of this chapter have been outlined in the following:

• Firstly, we explain the necessity of integrating deep learning-based cloudlet VNF

deployment in the next-generation networks to offer ultra-low communication

delay for real-time IoT applications. As a use case, we select the system model

and problem formulation of mobility aware VNF deployment from an existing

literature [39]. Then, we urge on the demands for deep learning enabled ensem-

ble approaches and eventually validate through extensive simulation studies for

prospective service orchestration based telecommunication researches.

• We propose the employment of intelligent VNF orchestration using two ensem-

ble deep learning techniques that are E-ANN and E-ConvNets. The primary

concern remains to offer ultra-low response time for dealing with large-scale

VNF placement due to progressively increasing IoT devices and exhibit low

running time compared to the traditional approaches. Ensembling is used to

serve the purpose of calibration in the VNF orchestration process.

• The proposed techniques suggest to ensure minimum communication delay in

the network with the least possible migration overhead collaboratively, that can

ensure the utmost privileges both for the providers and users.

• The effectiveness of the deep learning-based edge inspired VNF orchestration

is evaluated by extensive experimental analysis in different settings. Based

on the experimental studies, this chapter demonstrates that E-ANN and E-

ConvNets are capable of providing near optimal real-time solutions for large-

scale IoT services, unlike traditional mathematical programming approaches,

for example, ILP. Ensemble deep learning-based methods show a significant

escalation in the performance evaluation even though compared to the improved

and hyperparameter tuned version of ACO [39], named as t-ACO hereafter. The

42

results also designate the potentiality of different deep learning-based methods

to be applied for intelligent orchestration services in future networks.

• This chapter elaborately justifies the generalization aptitude of proposed models

through validation experiments: a) simulation results on a National Research

and Education Network (NREN) and b) bias-Variance trade-off analysis.

Figure 4.1 outlines the research gap between our work and traditional focus.

Figure 4.1: Deep learning assisted VNF Deployment at the cloudlet data centers

4.2 Related Work

NFV technology emerges around different researches to enhance the efficiency regard-

ing scaling [26], allocation of VNFs [91], task scheduling [92] [71], and migration of

VNFs [93], etc. Recently, a few extensions have driven the policy-concerned traffic

problem utilizing hardware middle-boxes [26] [92]. There have been several kinds of

research considering VNF deployment in the context of heterogeneous networks. A

broad plethora of research studies related to VNF deployment in the hybrid cloud

has been emerging lately [94] [79] [95]. To enhance the Quality-of-Experience (QoE)

of the users, massive computation time critical applications require a large volume of

communication resources. Thus, a lot of focus has been drawn towards resource con-

straints management based VNF deployment strategies [96] [97]. The authors of [97]

43

have proposed distributed VNF deployment by caching resources, yet this mecha-

nism is unable to manage dynamic network situations. Moreover, some researches

focus solely on different VNF migration schemes [98] [99]. Ben et al. have proposed

a capacitated VNF migration scheme with the help of Virtual Network Embedding

(VNE) [89]. However, the main focus has been deviated away from communication

delay that may affect the overall user experience.

A stable matching algorithm to reduce the execution time by introducing mixed-

integer programming and obtaining the near-optimal results in terms of latency has

been approached [83]. This algorithm can prevent the failure of the model in extreme

cases. Even so, this model has been designed according to static network arrange-

ments, which would require to be initiated every time instance not being feasible for

online applications. A further extension to this work by utilizing local search has

been proposed in [100]. Fei et al. use artificial intelligence to predict the service

chain requests that have been able to gain improved competitive ratios, but ignores

dynamic processing capability [82].

As a step closer towards intelligent VNF orchestration, swarm-based intelligence

inspired by the natural behavior of ant colony has been approached [39], which con-

siders both user mobility based VNF relocation and communication costs. However,

the difficulty is that these types of algorithms need a lot of attention towards param-

eter tuning that require longer execution times to deal with large scale and real-time

scenarios [70]. Hence, these algorithms are not generally suitable for critical use

cases, such as, services regarding Unmanned aerial vehicle (UAV), space-air-ground

integrated network, and Unmanned underwater vehicle (UUV) [102] [103]. A service

placement using federated learning on edge clouds, while focusing privacy concerns

of users have been proposed in [101]. Table 4.1 summarizes the relevant literature

and provides brief comparison among the existing research works. Deep learning also

appears to exhibit promising results in intelligent resource allocation for cloud based

services [104]. Ensemble methods are the combination of different machine learning

models into a single predictive model to minimize bias, variance and improve the

capability of prediction [90].

Among all the presented literature works, we have preferred [39] over others to

compare the performances of our proposed deep learning models. The reason being

that only this specific literature among others that have been listed in Table 4.1

integrates both VNF allocation and migration resembling our research focus. To

the best of our knowledge, none of the existing works suggested the use of ensemble

44

Table 4.1: Summarization of related research works

Ref. Target of Concern Approach Limitations

[79]
[96]

VNF deployment in
hybrid network archi-
tecture and cloud

Cut-and-solve, mixed
integer gaming

Static, not suitable for real-
time applications, no consid-
eration for edge computing,
non scalable, and not QoS
aware

[97]
[89]

VNF deployment Resource caching

Static, not suitable for real-
time applications, non scal-
able, and no support for edge
driven services

[98]
[99]

Capacitated VNF Mi-
gration Scheme

Virtual Network Em-
bedding (VNE)

Not QoS optimal, high com-
munication delay, non scal-
able, and not edge driven

[83]
[100]

VNF allocation
Stable matching, local
search

Static, non scalable, and not
fit for real-time use cases

[82]
Virtual service predic-
tion

Online learning

Not suitable for real-time ap-
plications, non scalable, and
no support for edge driven
computation

[39]
VNF allocation and
migration in the cloud

Meta-heuristics based
ant colony optimiza-
tion

Extensive range of online pa-
rameter tuning, no support
for edge driven computation,
non scalable, and high orches-
tration time makes it inca-
pable for real-time or time
critical, large scale use cases

[101] Privacy awareness Distributed Learning
Non QoS Optimal, non scal-
able, not suitable for real-
time use cases

deep learning assisted strategies for VNF orchestration in order to function within

reasonable running time limits, promote scalability and support both the providers

and users interest mutually, while approaching towards 6G cellular networks.

4.3 System Model

The system architecture [39] of the network, as shown in Figure 4.2 includes two

distinct domains. One of them is the cloudlet domain or edge domain, while the

45

PDN-GW

S-GW VNF1
VNF2

VNF4
VNF5

Mobile Devices Laptop and
Wearable
Devices

Virtual
Reality devices

Autonomous
driving

and
Biometric
MachineDue to user mobility VNF

relocations are required

Dynamic
VNF

Deployment

EdgeCloudlet
DCs

eNB

VNF3

Figure 4.2: A high level system architecture for VNF orchestration.

other one is the Radio Access Network (RAN) domain. The cloudlet domain consists

of a set of small scale data centers (DCs), D at the edge of the Internet, having secure

and robust wired connections among them. On exploiting cloudlet confederation, the

connected cloudlet DCs can offer and receive services from one another. Besides, the

domain of RAN incorporates a set of access points, for example, base stations termed

as evolved NodeB (eNB). A number of users can be connected to each eNB through

radio signal. A base station controller usually manages a collection of eNBs. A single

eNB is allowed to be connected to only one cloudlet DC via the Serving Gateway (S-

GW) and Packet Data Network Gateway (PDN-GW) of the particular DC. However,

numerous numbers of eNBs can be connected to a cloudlet DC. In certain occupied

and busy zones, cloudlet DCs serve an enormous number of eNBs, and in case of

lightly packed regions, cloudlet DCs serve limited numbers of eNBs associated with

them.

The Virtual Network Functions (VNFs) are run on different cloudlet DCs, where

each DC has a restricted capability of supporting service oriented or application

VNFs. A set of eNBs, E can receive service from its associated DC. A data center

can provide direct services by running the corresponding VNF of a client or user under

the eNB connected to that cloudlet DC. Moreover, it can offer passive services via

46

neighbouring DCs, which demands additional service cost. Due to user mobility, Vj

can be considered as the set of VNFs of eNB, ej ∈ E that are required to be relocated.

The requests for VNF migration usually occur because of hand off between an eNB,

ej ∈ E and other eNBs that are connected to different cloudlet DCs unlike ej. Table

4.2 exhibits the major notations along with their description used to implement the

optimization framework.

Table 4.2: Description of parameters for our system model

Notation Description
D={d1, d2, ..., dD} The set of cloudlet DCs in the network
E={e1, e2, ..., eE} The set of all eNBs connected to the cloudlet DC where the

system is running
V={v1, v2, ..., vV } The set of all VNFs

Vj The set of VNFs of eNB, ej ∈ E that are required to be
relocated, where Vj ⊆ V

ϑworst Maximum communication delay toleration limit of the network
tk,l The communication delay between a cloudlet DC, dk ∈ D and

the cloudlet DC, dl ∈ D, provided that k 6= l
t̃j,k The communication delay between eNB, ej ∈ E and the

cloudlet DC, dk ∈ D
Si Size of VNF, vi ∈ V
φk Cost to place any VNF to some cloudlet DC, dk ∈ D
ψk Cost to take service from cloudlet DC, dk ∈ D
Ck Capacity of the cloudlet DC, dk ∈ D for holding VNFs
σi Execution time of VNF, vi ∈ V
η Priority factor of VNF migration or relocation
τi Transfer time of VNF, vi ∈ V
Nk Number of VNFs that are already executing in cloudlet DC,

dk ∈ D
Υi
k,j Summation of communication, relocation, and execution time

if VNF, vi ∈ Vj of eNB, ej ∈ E is placed at cloudlet DC,
dk ∈ D

4.4 Optimization Framework for VNF Deployment

The primary objective of ILP formulation for VNF deployment is to ensure an optimal

placement of VNFs that are required to be relocated due to the mobility of the users

[39]. The ILP formulated optimization framework considered in this chapter has been

47

proposed in [39]. The idea is to run the ILP based VNF placement strategy in each

cloudlet DC to manage the VNF requests coming from the eNBs under it or the eNBs

that are connected to different data centers. The ILP design focuses to minimize the

number of relocations and maximize QoE for users. To introduce a trade-off between

these two conflicting objectives a priority factor η has been considered. According

to network size and Service Level Agreement (SLA), the priority factor η can be set

carefully by the service providers. In order to deploy VNF, vi ∈ Vj of eNB, ej ∈ E to

cloudlet DC, dk ∈ D, the relocation time Ri
k,j can be calculated using the following

equation:

Ri
k,j = {(1− εik)× bik,j} ×Qi

k (4.1)

where, εik holds 1, if the VNF instance have been earlier running on cloudlet, DC

dk ∈ D, otherwise 0. Therefore, in case (1− εik) is 1, the corresponding VNF instance

can be considered for relocating to a cloudlet, DC dk ∈ D. Likewise, the decision

variable bik,j holds 1 if VNF, vi ∈ Vj of eNB, ej ∈ E is placed at cloudlet DC, dk ∈ D,

otherwise 0. The relocation cost to migrate VNF, vi ∈ Vj of eNB, ej ∈ E to some

cloudlet DC, dk ∈ D can be represented by Qi
k and calculated as follows:

Qi
k = (1− nik)× τi (4.2)

Again, nik holds 1, if the expected VNF, vi ∈ Vj of eNB, ej ∈ E is running on

the cloudlet DC, dk ∈ D, otherwise 0. Therefore, upon the value of (1 − nik) being

1, we need to relocate or transfer the VNF from the previous DC. In such case, the

relocation cost is equal to transfer time τi, which can be calculated using the following

equation:

τi =
Si
r

(4.3)

where, r is the achievable data rate to relocate any VNF and Si represents the size of

the VNF, vi. The communication delay to get service for a VNF, vi ∈ Vj is calculated

from the following equation:

T ik,j = bik,j × (t̃j,k + tk,l) (4.4)

here, the summation of communication delay between eNB, ej ∈ E and the cloudlet

DC where the solution is executing (t̃j,k) along with the communication delay between

cloudlet DC, dk ∈ D and the cloudlet DC, dl ∈ D, which holds the running VNF (tk,l)

48

contribute to the total communication delay. In the case of taking direct services from

own cloudlet DC, where the solution is running, there is no requirement to consider

and calculate tk,l. On the contrary, for taking services via neighboring cloudlet DCs,

we need to add both t̃j,k and tk,l together to find the cumulative communication delay

T ik,j. Finally, the objective function formulation using ILP can be presented as the

following:

minimize
∑
ej∈E

∑
vi∈Vj

∑
dk∈D

{η ×Ri
k,j × φk + (1− η)× T ik,j × ψk} (4.5)

The first part of the objective function interprets the relocation costs (φk) multiplied

by required relocation time (Ri
k,j) to DC, k ∈ D for VNFs, vi ∈ Vj of eNB, ej ∈ E. The

following part refers to the communication cost in terms of communication time (T ik,j)

and costs (ψk) for eNBs to take service from their directly connected DC or distant

cloudlet DCs. A trade-off is introduced by estimating the priority factor denoted as

η. The objective is to minimize the overall network relocation and communication

costs of the network. This particular and most suitable way of integrating multiple

objective functions is known as the weighted sum method. In contrast, the other

popularly known state-of-the-art approaches (e.g., ε− constraint and weighted metric

method) require prior knowledge of posterior facts, which is nearly impossible for

real-life use cases. The objective function presented in the Eq. (4.5) is subject to the

following constraints:

C1 :
∑
dk∈D

bik,j = 1, ∀ej∈E, ∀vi∈Vj (4.6)

C2 :
∑
vi∈Vj

∑
dk∈D

bik,j = |Vj|, ∀ej∈E (4.7)

C3 :
∑
dk∈D

(Ri
k,j + T ik,j + σi) ≤ ϑworst, ∀ej∈E, ∀vi∈Vj (4.8)

C4 :
∑
ej∈E

∑
vi∈Vj

bik,j ≤ Ck, ∀dk∈D (4.9)

C5 : bik,j ∈ {0, 1}, ∀ej∈E, ∀vi∈Vj , ∀dk∈D (4.10)

The constraint C1 is basically an atomicity constraint, ensuring the single assign-

ment of each VNF, vi ∈ Vj of eNB, ej ∈ E to exactly one cloudlet DC, dk ∈ D.

Another constraint C2 specifies that all VNFs, vi ∈ Vj of eNB, ej ∈ E must be al-

49

located to some cloudlet DC, dk ∈ D. Next, The QoS constraint C3 guarantees the

summation of relocation delay, communication delay, and execution time of VNFs to

remain below a certain pre-defined threshold ϑworst, which can be varied according to

application nature. The capacity constraint C4 assures not to overload cloudlet DCs.

Hence, the number of VNFs executing in a cloudlet DC is not allowed to exceed the

capacity of that cloudlet DC. Finally, the constraint C5 is a binary constraint repre-

senting the value of decision variable bik,j to be 1, in case VNF, vi ∈ Vj of eNB, ej ∈ E
is placed at cloudlet DC, dk ∈ D, otherwise remains 0.

4.5 Metaheuristic based ACO approach for VNF

deployment

We consider an existing AI-based ACO algorithm that claims to find the near-optimal

solution in a reasonable amount of time in case of practical settings [39]. The proof

to the NP-hardness of this problem can be found in [39] as well. The master strategy

of swarm intelligence algorithms is simple to modify for different problem domains

by generating appropriate heuristics in order to acquire solutions close to optimal.

The ACO has been inspired by the collective behavior of real ant colonies [39]. In

this problem, a set of virtual ants is created, where each ant possesses a short memory.

These ants attempt to build a solution using heuristic values and improve the state

of the solution by interchanging learning via pheromones among themselves. In a

distributed manner, each ant tries to construct a local solution and updates its local

pheromone trail eventually. Finally, the locally found solutions are consolidated to

construct a global solution. The VNF deployment algorithm concerning ACO based

strategy has been presented in algorithm 3 [39].

First of all, the values of several system parameters and set of virtual ants are

initialized in lines 1-2. Next, the line numbers 3 and 4 calculate the initial pheromone

value ζ0, and generate an initial set of solution employing the First Fit VNF (FF-VNF)

deployment algorithm, respectively. Each ant produces a local set of solutions for

deploying VNFs of all eNBs to appropriate DC based on initial or updated pheromone

values and local heuristic values in lines 8 to 10, while satisfying capacity and QoS

constraints. For each solution of VNF placement to some cloudlet DC found by an

ant, the local pheromone trail value is updated based on a relative weight factor ωl to

encourage exploration of the search space and diversification of solution by making

50

Algorithm 3: ACO based VNF Deployment algorithm at each cloudlet DC
dk ∈ D

Input: E, V j, D
Output: cloudlet DC-VNF pairs for each eNB

1 Initialize system parameters α, β, ωl, ωg
2 Initialize a set of ants A
3 Compute initial value of pheromone ζ0 using Eq. (4.11)
4 Construct an initial solution using Algorithm 4
5 Set the value of total iterations
6 while (iteration ≤ total iterations) do
7 foreach ant az ∈ A do
8 foreach eNB ej ∈ E do
9 foreach VNF vi ∈ Vj do

10 Assign VNF vi ∈ Vj of eNB ej ∈ E to some DC dk ∈ D using
Eq.(4.14)

11 foreach VNF vi ∈ Vj do
12 ζ ik,j ← ωl × ζ0 + (1− ωl)× ζ ik,j
13 Update the value of global pheromone using Eq. (4.16)
14 iteration = iteration + 1

15 return cloudlet DC-VNF pairs for each eNB

the already found solutions less desirable for ants in lines 11-12. The system constant

ωl shows the relative priority of historical and current pheromone values. The global

solution set is obtained as the best local solution set among all the solution sets

found locally by all ants after repeating the steps mentioned so far. Then, the value

of global pheromone is updated in line 12. The overall algorithm has been elaborately

discussed in the following subsections.

4.5.1 Calculation of Initial Pheromone Value

In the case of the VNF deployment problem, the pheromone value indicates the poten-

tiality metric of placing a VNF to a cloudlet DC. Every ant begins with an underlying

pheromone estimation for each VNF to cloudlet DC pair. The primary arrangements

of VNF- cloudlet DC pairs are generated utilizing the FF-VNF deployment approach

recorded in algorithm 2. This algorithm allocates the VNFs of all the eNBs to the

cloudlet DCs based on first fit approach in lines 2-9, while securing the placements

to avoid violation of application tolerable QoS limit and without exhausting cloudlet

DCs.

51

Algorithm 4: FF-VNF Deployment at each cloudlet DC dk ∈ D
Input: E, V j, D
Output: cloudlet DC-VNF pair for each eNB in initial solution δ0

1 δ0 ← ∅
2 foreach eNB ej ∈ E do
3 foreach VNF vi ∈ Vj do
4 foreach DC dk ∈ D do
5 if (Nk < Ck and Υi

k,j < ϑworst) then
6 δ0 ← δ0 ∪ (ej, vi, dk)
7 Nk = Nk + 1
8 Break

9 return δ0

The initial pheromone value is determined by the inversed summation of the total

relocation delay and total communication time of the system, hence calculated as

follows:

ζ0 =
∑
ej∈E

∑
vi∈Vj

∑
dk∈D

1

(Ri
k,j + T ik,j)

× %kj,i (4.11)

where %kj,i is a decision variable which can be represented as following:

%kj,i =

1, if (ej, vi, dk) ∈ δ0

0, otherwise
(4.12)

δ0 is the initial solution created by FF-VNF deployment strategy. If a solution

for VNF, vi ∈ Vj of eNB, ej ∈ E being placed on cloudlet DC, dk ∈ D exists in

initial solution δ0, then the value of decision variable %kj,i will be 1, otherwise 0. The

higher the inverse summation of relocation time and communication delay, the more

pheromone is deposited towards that solution.

4.5.2 Heuristic Formulation

With the intent to minimize both relocation and communication delay with costs, the

heuristic value can be determined by the following equation:

H i
k,j =

1

η ×Ri
k,j × φk + (1− η)× T ik,j × ψk

(4.13)

52

The Eq. (4.13) ensures that the more inferior the weighted total of relocation and

communication cost for deploying a VNF to a cloudlet DC, the greater will be the

heuristic value used to select that cloudlet DC.

4.5.3 Cloudlet DC Selection Technique

We assume that Dc ⊆ D is the set of candidate cloudlet DCs, which have available ca-

pacity to further accommodate VNFs. To select the cloudlet DC, the pseudo random

proportional action rule has been defined below:

s =


argmax
dk∈Dc

([ζ ik,j]
α × [H i

k,j]
β), if p ≤ p0

argmax
dk∈Dc

pzk,j,i, otherwise
(4.14)

p0 and p are system parameters and randomly chosen from uniformly distributed

values respectively, and both range between 0 and 1. In case of p ≤ p0, exploitation

of the search space occurs, on the other way around exploration is performed based

on the following equation:

pzk,j,i =


([ζik,j]

α×[Hi
k,j]

β)∑
dk∈Dc

([ζik,j]
α×[Hi

k,j]
β)
, dk ∈ Dc

0, otherwise

(4.15)

4.5.4 Global Pheromone Update

After the construction of a set of local solutions, the global pheromone value is cal-

culated as follows:

ζ ik,j = ωg ×∆ζ ik,j + (1− ωg)× ζ ik,j (4.16)

ωg exhibits the relative importance factor of ∆ζ ik,j and ζ ik,j in Eq. (4.16). We assume

that the set of global solutions is denoted by Γ. The variable ∆ζ ik,j can be represented

in the following equation:

∆ζ ik,j =

ζ ik,j, if (ej, vi, dk) ∈ Γ

0, otherwise
(4.17)

If a solution for VNF, vi ∈ Vj of eNB, ej ∈ E being placed on cloudlet DC, dk ∈ D
exists in the global solution Γ, then the value of variable ∆ζ ik,j will be ζ ik,j, otherwise

53

0.

4.5.5 System Parameters

All the parameters to implement ACO have been listed in Table 4.3.

Table 4.3: Description of parameters for ACO inspired VNF orchestration

Notation Description
ζ0 Initial pheromone value
ζ ik,j Pheromone value for deploying VNF, vi ∈ Vj of eNB, ej ∈ E to

cloudlet DC, dk ∈ D
H i
k,j Local heuristic value for deploying VNF, vi ∈ Vj of eNB, ej ∈ E to

cloudlet DC, dk ∈ D
pzk,j,i Probability for selecting cloudlet DC, dk ∈ D for deploying VNF,

vi ∈ Vj of eNB, ej ∈ E by an ant az
ωl Weight constant for local pheromone value update
ωg Weight constant for global pheromone value update

∆ζ ik,j Global pheromone value for deploying VNF, vi ∈ Vj of eNB, ej ∈ E
to cloudlet DC, dk ∈ D

α Weight constant for pheromone value
β Weight constant for local heuristic value

The dynamic parameter tuning of system constants for ACO implementation de-

mand extensive research work. Through simulation results and researches existing

in literature, we have considered ωl = 0.3, ωg = 0.4, η = 0.7, number of ants =

20, and maximum 200 iterations for all the performance evaluations [39]. Unlike the

literature, we dynamically vary the value of α and β to improve the performance of

existing ACO algorithm. The detailed process on how we tune these parameters has

been explained in Section 4.7.

4.6 Proposed Deep Learning Aided VNF Deploy-

ment

The future of cellular networks and NFV infrastructure manager expect to exploit AI

for offering intelligent orchestration and management systems [87]. In this section,

we propose two ensemble deep learning techniques using E-ANN and E-ConvNets for

AI enabled VNF deployment [18]. The concept is to locate the pre-trained models in

54

cloudlet DCs so that the deployment decisions induced by the testing phase can offer

real-time solutions with ultra-low execution time required for prediction.

4.6.1 Labeled Dataset Generation

We leverage the ILP optimization framework solver described in section 4.4 to opti-

mize different VNF deployment scenarios, and then record the respective solutions

to generate labeled data for training purpose. There are two primary reasons behind

generating the labeled datasets using ILP:

• There are no standardized datasets for VNF resource allocation or related re-

searches. Thus, for such problems, ILP (optimal) results can be leveraged to

create labeled datasets for supervised learning.

• Reinforcement learning for resource allocation problems where the outcome

numbers are too high (feasible solution space) are not effective [105] [106]. It is

known that reinforcement learning can learn well when the number of actions

are marginal [105] [55].

The input features for the training models are considered as D, E, Vj, ϑworst, R
i
k,j,

T ik,j, φk, ψk, Ck, σi, η, τi, and Nk as presented in the algorithm 5. We merge the

features along with the decision variable bik,j or target variable found by ILP solver to

produce a labeled dataset for training purpose in lines 5-7 of algorithm 5. We denote

the labeled dataset as L.

Algorithm 5: Ensemble training phase of deep learning aided VNF Deploy-
ment at each cloudlet DC dk ∈ D

Input: D, E, Vj, ϑworst, R
i
k,j, T

i
k,j, φk, ψk, Ck, σi, η, τi, and Nk

Output: Set of trained models M∗

1 M∗ ← ∅
2 foreach model mt ∈M do
3 L ← ∅
4 for epoch < total simulation epochs do
5 S ← Generate a random system using input parameters
6 bik,j ← Assign the decision variable by solving system S through the

ILP optimizer framework
7 L ← S ∪ bik,j
8 Train the model mt using labeled dataset L
9 M∗ ←M∗ ∪mt

55

4.6.2 Ensemble Convolutional Neural Netowrks (E-ConvNets)

We have applied the Convolutional Neural Network due to its extraordinary perfor-

mance in pattern identification that may aid VNF deployment strategies for user spe-

cific services and content aware networks [18]. However, to generate a well-calibrated

model due to the uncertain nature of the network parameters, we have incorporated

the ensembling technique into the model utilizing E-ConvNets [90]. The E-ConvNets

method consists of a set of alternative different convolutional network models M.

Each model mt ∈ M is trained by different randomly generated datasets as ex-

plained in lines 2-7 of algorithm 5. Finally, at the end of this algorithm as suggested

in line 8, we receive a set of trained ensemble models M∗ that are further used for

deploying VNF vi ∈ Vj of eNB ej ∈ E to some cloudlet DC dk ∈ D using algorithm

6. The testing or prediction phase of ensemble techniques for E-ConvNets have been

Algorithm 6: Ensemble testing phase of deep learning aided VNF deploy-
ment at each DC dk ∈ D

Input: D, E, Vj, ϑworst, R
i
k,j, T

i
k,j, φk, ψk, Ck, σi, η, τi, and Nk

Output: A set of solutions F
1 U ← Generate a random system using input parameters
2 F ← ∅
3 X i

k,j ← 0

4 foreach trained model mt ∈M∗ do
5 foreach eNB ej ∈ E do
6 foreach VNF vi ∈ Vj do
7 foreach cloudlet DC dk ∈ D do
8 if (Nk > Ck and Υi

k,j > ϑworst) then

9 Ŷ ik,j ← 0

10 else

11 Ŷ ik,j ← Set the confidence score between 0 and 1 by
applying trained model mt on U

12 X i
k,j ← X i

k,j + Ŷ ik,j
13 foreach eNB ej ∈ E do
14 foreach VNF vi ∈ Vj do
15 tempk ← ∅
16 foreach DC dk ∈ D do
17 tempk ← tempk ∪ X i

k,j

18 max← argmax
k

tempk

19 F ← F ∪ (ej, vi, dmax)

56

exhibited in algorithm 6. We have generated random unlabeled data U for perfor-

mance evaluation in line 1. In lines 5-11, we verify the constraints and apply trained

models mt ∈M∗ exploiting E-ConvNets on unlabeled dataset U to generate the con-

fidence scores for placing all VNF, vi ∈ Vj of every eNB, ej ∈ E to each cloudlet

DC, dk ∈ D. We update this confidence score obtained by each model in variable

Ŷ ik,j that can range between 0.0 and 1.0. We accumulate the cumulative prediction

confidence score of all trained models for deploying VNFs, vi ∈ Vj of eNB, ej ∈ E to

cloudlet DC, dk ∈ D, and store it in the variable X i
k,j through line 12. In lines 14-18,

we select the cloudlet DC, dk ∈ D that holds the highest cumulative confidence score

generated by all trained models for every VNF, vi ∈ Vj of eNB, ej ∈ E pair. Finally, a

set of solutions F is constructed iteratively containing respective eNB, ej ∈ E, VNF,

vi ∈ Vj, and selected cloudlet DC, dk ∈ D in line 19.

The abstract architecture of E-ConvNets has been presented in the Figure 4.3.

The sequential styled E-ConvNets feature a set of typical model designs [18]. Each

Unlabeled
System
Data

Output
Layer

(Softmax)

Conv1D ReLU Dropout

Max PoolingBatch
Normalization

1st Layer

ith Layer

kth Layer

1st CNN
Model

Nth CNN
Model

ith CNN
Model

Filtering

Ensembled
Output Layer

Figure 4.3: A high level description of E-ConvNets architecture.

model includes several convolutional layers that are followed by a pooling layer. Batch

normalization is performed to enhance the performance, speed, and stability of mod-

57

els, thus require less computational complexity. For the convolutional layers, we select

rectified linear (ReLU) activation function, while output layers use softmax function

by following the cross-entropy loss function [18]. The detailed description on state-

of-the-art deep learning architectures have been described in [18]. For ensembling,

multiple CNN models are incorporated for the training and prediction phase rather

than solely depending on the prediction of a single trained network.

4.6.3 Ensemble Artificial Neural Networks (E-ANN)

The ANN [18] [41] is a paradigm for processing information and usually configured

according to the requirement of applications through the learning phase. Our pro-

posed E-ANN consists of multiple models mt ∈ M. In order to train the E-ANN

models, we apply the algorithm 5 on some randomly generated labeled data L, as

explained earlier in the subsection 4.6.1. The output layer of the E-ANN has equal

number of nodes specifying cloudlet DCs for every model of the ensemble learning.

The output nodes indicate the probability or confidence score of placing a VNF under

some eNB to each cloudlet DC provided an unlabeled random system U . Finally, we

place a VNF on the cloudlet DC of the corresponding output node having the highest

cumulative confidence score summed up from all the trained models. We employ the

same algorithm 6 for the prediction phase of VNF deployment, while applying the E-

ANN architecture. The detail explanation of the working procedure of this algorithm

has been discussed under subsection 4.6.2.

Figure 4.4 illustrates the architecture of E-ANN. Instead of employing a single

architecture of ANN, we utilize a set of trained models that altogether contribute to

the final outputs. We assemble these models to accumulate the confidence score of

each output node to interpret the ultimate set of output nodes for proper calibration

[90]. The final layer of the E-ANN architecture utilizes softmax function under cross-

entropy loss regime, while the nodes from hidden layer employ hyperbolic tangent

function [18].

4.7 Performance Evaluation

In this section, we first discuss the procedure of hyperparameter tuning to upgrade

the performance of t-ACO (tuned and improved version) comparing to ACO [39].

The original ACO existing in the literature use fixed hyperparameter (exploitation-

58

Unlabeled
System

Data

1st Model

Nth Model

2nd Model

Confidence scores for 1st, 2nd, … Nth

models respective to each DC
interpreted as output node

Input layer
Node
Hidden
layer Node
Output
layer Node
Selected
Node

Hyperbolic
Tangent
Function

Softmax

Cumulative
confidence score
for each DC of

all models

(1.45)

(1.35)

(2.46)

(0.15)

Figure 4.4: A high level description of E-ANN architecture.

exploration) and disregard the tuning process completely for solving the dynamic

VNF orchestration problem [39]. To ensure a fair comparison with the proposed

deep learning-based VNF placement methods taking into account hyperparameter

tuning, we have also tuned the exploitation-exploration control variables of t-ACO.

Even though, the performance of t-ACO is significantly lower than our proposed en-

semble deep learning approaches. Next, we discuss regarding the hyperparameter

selection of proposed deep learning models. Then, we define some performance met-

rics adopted in our experiments to evaluate VNF orchestration strategies. Finally, we

demonstrate the simulation results of the ILP Optimization Framework, E-ConvNets,

E-ANN, CNN, ANN, and compare with the improved state-of-the-art t-ACO based

VNF deployment [39]. ACO has been adopted to solve the dynamic, mobility aware

VNF placement problem while considering relocation overhead and QoE in the lit-

59

erature [39]. Simultaneously, other methods discussed in the literature section are

either non-QoS optimal or static, ignoring the movement of users. For these rea-

sons, we have chosen t-ACO to compare with the performance of our proposed deep

learning-driven VNF placement strategies.

To implement the ILP formulation of the problem, we have used the Gurobi op-

timization solver. Python’s TensorFlow libraries have been utilized to support the

experiments concerning our proposed deep learning-based approaches (E-ConvNets

and E-ANN). We are not proposing any particular network architecture or rout-

ing protocol. Therefore, the experiments do not require to be implemented in the

CloudSim or any other kind of network simulator. However, the proposed algorithms

can be integrated in these types of simulators as well.

4.7.1 t-ACO : Hyperparameter Tuning of ACO

ACO is one of the swarm intelligence inspired meta-heuristic algorithms. This algo-

rithm has two control parameters α and β to regulate the trend of exploration and

exploitation nature over search space [39]. To understand the impact of these param-

eters over iterations, we plot the best solution (closest to optimal) found by ACO as

a single data point in Figure 4.5 for each iteration against best-found values of α and

β. To determine each iteration’s best solution, we let ACO to try different values of

α and β ranging from 1 to 10 and 1 to 5 respectively. Then, the collaborative pa-

rameters, α and β, are recorded along with each iteration’s best-found solution. The

colors of these data points determine the solution’s quality illustrating the deviation

from optimal in percentage. It is noteworthy from Figure 4.5 that the best choice of

α and β values do not remain static rather change over iterations.

Moreover, it can be observed from Figure 4.5 that the solutions converge more

toward optimal, along with the advancement of iterations. Figure 4.5 also suggests

that during the early stage of the search, the best selected values of α are small to

support an extensive exploration of the search space. Then, the best values of α

increase over time to enhance the ACO’s local searchability (exploitation).

The opposite occurs for β. Thus, for t-ACO, over the iterations, we increase the

values of α, starting from 1 to 10. Concurrently, we decrease the values of β from 5

to 1.

Contrarily, the existing ACO in the literature employs fixed value of α and β to

be 5 and 1 respectively [39].

60

β

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

α

1
2
3
4
5
6
7
8
910

it
er

at
io
n

0

50

100

150

200

250

42

44

46

48

50

52

Ob
je
ct
iv
e
Va

lu
e
De

vi
at
io
n

 fr
om

 IL
P
(O
pt
im
al
) i
n
%

Figure 4.5: Best selected duo of α and β hyperparameters for each solution over
iterations. Each data point represents a solution and the color of the data point
express the quality of the solution by considering deviation from ILP (Optimal) in
percentage (the lower, the better).

Figure 4.6 illustrates that t-ACO can improve the performance up to 6.3% in

terms of objective function value minimization for VNF orchestration compared to

ACO [39] mentioned in the literature.

Therefore, we select t-ACO to distinguish the performance evaluation of our pro-

posed VNF placement strategies for the comparison to be just and equitable. The

other parameters for these experiments have been discussed elaborately in the subsec-

tion 4.7.3 and randomly selected following a normal distribution for each simulation

run.

4.7.2 Hyperparameter Selection of Proposed Deep Learning

Models

In this subsection, we address the study comprising the hyper-parameter tuning to

determine the optimal structure of the deep learning models for both ensemble and

61

1 2 3 4 5
Simulation Run Number

0

10

20

30

40

50

60

Ob
je

ct
iv

e
Va

lu
e

De
vi

at
io

n
 fr

om
 IL

P
(o

pt
im

al
) i

n
%

41.2 40.9 41.3
45.5

42.8
46.1 46.5 45.0

51.8
48.3

t-ACO
ACO

Figure 4.6: Objective value comparison between ACO and t-ACO over different sim-
ulation runs (the lower objective value deviation from ILP, the better).

standalone ones. We performed the grid search [107] technique to select the hyperpa-

rameters of proposed models. The grid search results have been manifested in Table

4.4 and 4.5, where we outline the best performing combination of hyperparameters

against each optimizer for a single layer. We conducted the grid search amidst six

broadly utilized optimizers, as listed in both the tables. For electing the activation

function, we experimented with a set of four commonly utilized functions: relu, selu,

tanh, and sigmoid [18]. Concerning the batch size, we tuned the estimation by ap-

plying a set of different equidistant values from 100 to 500 with a gap of 50. In order

to select the optimal dropout rate, we examined values ranging from 0.1 to 0.5. We

Table 4.4: Selected parameters of CNN models for each optimizer after employing
grid search.

Optimizer
Selected parameters Deviation from

ILP (optimal)
in %

Activation
Function

Kernel
Size

Batch
Size

Dropout
Rate

Epochs

Adadelta ReLU 3 450 0.4 5 8.55%
Nadam ReLU 3 350 0.4 10 8.73%
SGD ReLU 3 500 0.5 10 9.81%

RMSprop ReLU 2 450 0.4 10 9.19%
Adagrad ReLU 2 400 0.3 5 8.56%
Adam ReLU 3 500 0.3 10 7.53%

62

Table 4.5: Selected parameters of ANN models for each optimizer after employing
grid search

.

Optimizer
Selected parameters Deviation from

ILP (optimal) in %Activation
Function

Batch size Hidden layer
nodes

Epochs

Adadelta ReLU 350 50 10 13.34%
Nadam ReLU 400 35 10 14.23%
SGD ReLU 350 45 10 15.78%

RMSprop ReLU 350 45 5 14.57%
Adagrad ReLU 300 40 5 15.43%
Adam ReLU 450 50 10 12.76%

varied the number of epochs using ten values extending from 1 to 10. For the CNN

model, the kernel size employed for tuning has been considered from 2 to 5. Moreover,

the number of nodes in hidden layers has been studied from 30 to 60 by 5 differences.

The best performing combination for CNN models is obtained for the adam op-

timizer along with activation function ReLU, kernel size 3, batch size 500, dropout

rate 0.3, and the number of epochs 10 as depicted in Table 4.4. Hence, for further

experiments of standalone and ensemble CNN models (CNN and E-ConvNets), we

employed these hyperparameter values. Likewise, for the ANN models, the adam op-

timizer, activation function ReLU, batch size 450, hidden layer nodes 50, and epochs

10 appear as best hyperparameters set represented in Table 4.5.

After the fixation of hyperparameters for each layer, we experimented with tuning

the number of CNN layers and hidden layers in the ANN model. According to Figure

4.7, the number of optimal convolution layers has been considered as 4. Moreover,

Figure 4.7 illustrates that the number of hidden layers set as 3 ensures the best results

for ANN models considering being close to ILP (optimal).

All the hyperparameter selection process have been conducted using 5-fold cross-

validation to enhance model’s generalization abilities. Furthermore, we have used the

same hyperparameters to compile and train each model in order to retain simplicity.

To implement all the DL models, we have used python’s TensorFlow packages.

4.7.3 Simulation Environment

For our experimental analysis, we have studied a network consisting of 12 cloudlet

DCs. These DCs are heterogeneous in terms of capacity, hence can host up to a

certain number of VNFs. The number of eNBs under each cloudlet DC can differ

63

1 2 3 4 5
Number of Layers

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

De
vi
at
io
n
of
 o
bb

je
ct
iv
e
fu
nc

tio
n

 fr
om

 IL
P
(o
pt
im

al
) i
n
%

CNN ANN

Figure 4.7: Number of CNN layers and hidden layers selection for CNN and ANN
models, respectively.

in the range of 5 - 25, while the number of VNFs under each eNB can be between

500 - 2500. The communication delay between different pairs of cloudlet DCs can

vary between 10 - 200 milliseconds. However, to get service from the cloudlet DC

directly connected to the respective eNB, a trivial amount of time ranging between 2

- 5 milliseconds has been considered. We assume the data rate of transferring VNFs

between distinct pairs of cloudlet DCs to be 1 - 50 Mbps, and the size of VNFs are

allowed from 100 to 300 KB. The value of priority factor η for minimizing the overall

relocation costs has been selected as 0.7. All the mentioned network parameters have

been adapted from the existing literature [39].

4.7.4 Performance Metrics

The performance metrics analyzed for the evaluation of different VNF deployment

strategies have been described in the following:

• Total Weighted VNF Relocation and Communication Costs Deviation from ILP

(Optimal) in %: This metric can be considered as an interpretation of how

much the objective function value mentioned in the equation Eq. (4.5) deviates

away from ILP (optimal) in percentage for each VNF placement strategy. It

provides an overall idea concerning to what extent the swarm intelligence based

64

methods (t-ACO), ensemble, and standalone deep learning-based approaches

(E-ConvNets, E-ANN, CNN, ANN) can accomplish its objective comparing to

the ILP optimization framework. The lower the VNF orchestration strategy

achieves the percentage deviation from ILP, the more it is considered to be

efficient for providing near-optimal placement solutions.

• Running Time: By reporting the execution times of algorithms, we can recog-

nize how quickly a VNF placement method can extend its orchestration services

to the users.

• Number of VNF Relocation: The total number of VNF relocations required to

migrate the VNFs to the selected cloudlet DC is defined by this metric, which

directly impacts the administration of the whole network.

• Scalability Intelligence Factor : This metric depicts the scalability power of our

proposed deep learning assisted methods. Due to the predictable exponential

growth of IoT devices in 6G cellular networks, the VNF orchestration tech-

nique has to perform equally well on different kinds of network arrangements.

Hence, to calculate this metric, we have trained the models on dense and sparse

networks individually and tested on the other way around to illustrate how

much the performance of these models deviate from the optimization frame-

work. Then, we have normalized the resultant metric values between 0 and

1.

To generate a sparse network system, we have varied the communication delay

10 times more than the dense networks. Concerning the dense networks, we

have considered the same parameters mentioned and utilized throughout the

entire experiments.

4.7.5 Results and Discussion

We have categorized the analysis of the results into two kinds. A brief description of

these simulation results have been provided below:

Varying number of VNFs under each eNB

Figure 4.8 represent the effects on the mentioned performance metrics associated

with the experiment of varying the number of VNFs under each eNB. From Figure

65

500 1000 1500 2000 2500
Number of VNFs per eNB

0

10

20

30

40

50
To

ta
l W

ei
gh

te
d

Re
lo

ca
tio

n
&

Co
m

m
un

ica
tio

n
 P

at
h

Co
st

 D
ev

ia
tio

n
fro

m
 IL

P
(o

pt
im

al
) i

n
%

E-ConvNets E-ANN CNN ANN t-ACO

(a) VNF relocation and communication costs
deviation from ILP (optimal) in percentage

500 1000 1500 2000 2500
Number of VNFs per eNB

0

5

10

15

20

25

30

35

Ru
nn
in
g
Ti
m
e
(in

 se
co
nd

s)

ILP (Optimal)
E-ANN

E-ConvNets
t-ACO

ANN
CNN

(b) Running time comparison

500 1000 1500 2000 2500
Number of VNFs per eNB

10

15

20

25

30

Nu
m
be
r o

f V
NF

 R
el
oc
at
io
ns
 (i
n
pe
rc
en
ta
ge
)

ILP (Optimal)
E-ANN

E-ConvNets
t-ACO

ANN
CNN

(c) Number of VNF relocations (%) com-
parison

500 1000 1500 2000 2500
Number of VNFs per eNB

0.70

0.75

0.80

0.85

0.90

0.95
Sc

al
ab

ilit
y

In
te

llig
en

ce
 F

ac
to

r

E-ConvNets (D-Train + S-Test)
E-ANN (D-Train + S-Test)
CNN (D-Train + S-Test)
ANN (D-Train + S-Test)

E-ConvNets (S-Train + D-Test)
E-ANN (S-Train + D-Test)
CNN (S-Train + D-Test)
ANN (S-Train + D-Test)

(d) Scalability intelligence factor compar-
ison

Figure 4.8: Comparison of the performance impacts of different VNF deployment
strategies for varying number of VNFs under each eNB for 12 data centers in total.
In case of Figure 4.8d, S and D represent sparse and dense networks respectively.

4.8a, it can be easily seen that the t-ACO based deployment is the worst performing

one irrespective of the number of VNFs. Being a minimization problem, the higher

the objective value, the lower the performance is considered. However, the ensemble

strategies E-ConvNets and E-ANN continue to provide better performances through

the increasing number of VNFs comparing to standalone CNN and ANN models.

E-ConvNets exhibit the most promising objective function value resembling the ILP

formulation for all the cases. The running time of ANN has been shown to be the low-

est in 4.8b, and CNN manifest very similar execution time as well. E-ConvNets and

E-ANN require trivial amount of additional running time than standalone models, yet

significantly lower than ILP and t-ACO. Since, the traditional ILP and t-ACO based

66

approaches require higher running time to take VNF deployment decisions compar-

atively, these are not suitable for latency sensitive real-time IoT applications. The

number of VNF relocations affect the migration overhead of networks that have been

presented in the Figure 4.8c. E-ConvNets and E-ANN incur migrations ranging be-

tween around 12% - 20%. The standalone ANN and CNN models seem to cause 16%

- 25% migration overhead. However, ACO based placement strategy induces reloca-

tions above 25%, while the optimal percentage of relocations shown by ILP remains

approximately 10% - 15% for different numbers of VNFs. For future networks, or-

chestration systems demand scalability. Hence, to support the scalability experiments

of ensemble and standalone deep learning models, we train the models in different

settings of sparse and dense networks and test their performance on vice-versa. Fig-

ure 4.8d illustrates that all the deep learning models perform significantly well when

they are trained using a sparse network. Specifically, E-ConvNets incorporated with

sparse training present high scalability intelligence factor of around 0.95.

Varying number of eNBs under each cloudlet DC

Figure 4.9 illustrates the performance impacts due to the varying the numbers of

eNBs from 5 to at most 25 under each cloudlet DC, while keeping the number of

VNFs fixed at 1000. The results found in this experiment somewhat resemble the

ones found in the earlier simulations represented in this chapter.

The ensemble VNF placement strategies (E-ConvNets and E-ANN) are able to ac-

complish their goal significantly better than the standalone models (CNN, ANN) and

t-ACO based method by minimizing the summation of weighted relocation and com-

munications costs, while considering ILP as the baseline for a diverse number of eNBs

as shown in Figure 4.9a. However, E-ConvNets appears to be the most promising

approach in terms of being able to perform similar as ILP with least amount of devia-

tion. From Figure 4.9b, it can be easily observed that all the deep learning empowered

methods (E-ConvNets, E-ANN, CNN, and ANN) undertake considerably lower the

running time that makes these methods feasible to offer real-time VNF placement

solutions. On the other hand, t-ACO based and conventional ILP implementations

require much longer time to deliver services to the users comparatively.

The percentage of relocations in the case of E-ConvNets and E-ANN seem to

differ by around 10% from optimal scenarios as represented in Figure 4.9c. The

standalone models (ANN and CNN) cause 13%−15% more relocation overhead than

67

5 10 15 20 25
Number of eNBs per data center

0

10

20

30

40

To
ta
l W

ei
gh

te
d
Re

lo
ca
tio

n
&
Co

m
m
un
ica

tio
n

 P
at
h
Co

st
 D
ev
ia
tio

n
fro

m
 IL
P
(o
pt

im
al

) i
n

%

E-ConvNets E-ANN CNN ANN t-ACO

(a) VNF relocation and communication costs
deviation from ILP (optimal) in percentage

5 10 15 20 25
Number of eNBs per data center

0

5

10

15

20

25

30

35

40

Ru
nn

in
g
Ti
m
e
(in

 se
co
nd

s)

ILP (Optimal)
E-ANN

E-ConvNets
t-ACO

ANN
CNN

(b) Running time comparison

5 10 15 20 25
Number of eNBs per data center

10

15

20

25

30

Nu
m
be

r o
f V

NF
 R
el
oc
at
io
ns
 (i
n
pe

rc
en

ta
ge

)

ILP (Optimal)
E-ANN

E-ConvNets
t-ACO

ANN
CNN

(c) Number of VNF relocations (%) com-
parison

5 10 15 20 25
Number of eNBs per data centers

0.70

0.75

0.80

0.85

0.90

0.95
Sc

al
ab

ilit
y

In
te

llig
en

ce
 F

ac
to

r

E-ConvNets (D-Train + S-Test)
E-ANN (D-Train + S-Test)
CNN (D-Train + S-Test)
ANN (D-Train + S-Test)

E-ConvNets (S-Train + D-Test)
E-ANN (S-Train + D-Test)
CNN (S-Train + D-Test)
ANN (S-Train + D-Test)

(d) Scalability intelligence factor compar-
ison

Figure 4.9: Comparison of the performance impacts of different VNF deployment
strategies for varying number of eNBs under each data center for 12 data centers in
total. In case of Figure 4.9d, S and D represent sparse and dense networks respectively.

ILP and 3% − 10% more comparing to the ensemble ones. Nevertheless, the t-ACO

dependent VNF strategy incurs at least 20% extra VNF relocations comparing to

optimal solutions. Next, Figure 4.9d illustrates that E-ConvNets trained on sparse

networks have been proven to be functioning effortlessly well rather than all the

other considered models in context of various network environments with respect to

the scalability intelligence factor. This factor differs between 0.7 - 0.9 range for other

models due to variety of training.

These results justify the requirement for ensemble training and prediction rather

than relying on the decisions of an individually trained solo model. Since, the nature

of networks can be extremely dynamic and influence the VNF placement result of

68

standalone models to be deviated away from ILP (optimal) more often than ensemble

ones. Therefore, from the results, it can be undoubtedly deduced that the E-ConvNets

model pre-trained on sparse networks emerges as the most effective strategy to provide

real-time solutions for VNF placements in terms of minimizing costs and relocation

overhead, with ultra-low prediction time, and noticeably enhanced scalability intelli-

gence factor applicable for various dynamic practical settings.

4.7.6 Case study on Generalization

In order to prove the generalization capability of our proposed model, we have utilized

the Jisc nation-wide NREN backbone network, as reported by Topology-zoo [108] for

this case study. We have assumed cloudlet DCs, each capable of running a limited

number of VNFs to simulate provider’s NFV infrastructure at randomly chosen points

of presence of the Jisc network topology. We have modeled the topology into our

system model according to previously discussed simulation environment. Then, for

various number of VNFs, we analyze the performances of our proposed pre-trained

(on random networks) models on Jisc topology. As per the results presented in

Figure 4.10, our proposed E-ConvNets and E-ANN models exhibit and maintain

substantially well performance on Jisc network, even though the models are pre-

trained on completely different random networks.

4.7.7 Generalization Settings: Bias-Variance Trade-off Anal-

ysis

To further explain our proposed models’ generalization assurance, we have studied the

bias-variance trade-off effects through experiments. The prediction error bias reports

the differences between the model’s average prediction and actual (optimal) values.

Variance refers to the dispersion of predictions over actual values due to different

training datasets. This metric helps to evaluate the model sensitivity towards various

training observations. Any model with high variance leads to overfitting training data

and cannot generalize on unseen test instances. As a result, high bias and variance

result in higher training and test errors. To maintain performance consistency in

both training and test cases, low bias and variance are desirable. The bias-variance

dilemma is the dispute to simultaneously minimize these two aforementioned predic-

tion errors that limit models to generalize beyond training instances.

69

500 1000 1500 2000 2500
Number of VNFs per eNB

0

10

20

30

40

50
To

ta
l W

ei
gh

te
d

Re
lo

ca
tio

n
&

Co
m

m
un

ica
tio

n
 P

at
h

Co
st

 D
ev

ia
tio

n
fro

m
 IL

P
(o

pt
im

al
) i

n
%

E-ConvNets E-ANN CNN ANN t-ACO

(a) VNF relocation and communication costs
deviation from ILP (optimal) in percentage

500 1000 1500 2000 2500
Number of VNFs per eNB

0

5

10

15

20

25

30

35

Ru
nn
in
g
Ti
m
e
(in

 se
co
nd

s)

ILP (Optimal)
E-ANN

E-ConvNets
t-ACO

ANN
CNN

(b) Running time comparison

500 1000 1500 2000 2500
Number of VNFs per eNB

10

15

20

25

30

35

40

Nu
m
be

r o
f V

NF
 R
el
oc
at
io
ns
 (i
n
pe

rc
en

ta
ge

)

ILP (Optimal)
E-ANN

E-ConvNets
t-ACO

ANN
CNN

(c) Number of VNF relocations (%) com-
parison

500 1000 1500 2000 2500
Number of VNFs per eNB

0.65

0.70

0.75

0.80

0.85

0.90

0.95
Sc

al
ab

ilit
y

In
te

llig
en

ce
 Fa

ct
or

E-ConvNets (D-Train + S-Test)
E-ANN (D-Train + S-Test)
CNN (D-Train + S-Test)
ANN (D-Train + S-Test)

E-ConvNets (S-Train + D-Test)
E-ANN (S-Train + D-Test)
CNN (S-Train + D-Test)
ANN (S-Train + D-Test)

(d) Scalability intelligence factor compar-
ison

Figure 4.10: Comparison of the performance impacts of different VNF deployment
strategies for varying number of VNFs in Jisc topology. In case of Figure 4.10d, S
and D represent sparse and dense networks respectively.

Theoretically, the total error of any modeling technique has been decomposed as:

Err(x) = (E[f̂(x)]−f(x))2+E[(f̂(x)−E[f̂(x)])]+µ2 = Bias2 + Variance + Irreducible

error. Here, f̂(x) is an approximation of f(x) achieved through a particular modeling

or learning technique for any instance x. On ensuring an optimal bias-variance trade-

off, a model is proven to achieve generalization that neither underfits nor overfits. To

proceed with this study, we have determined the bias and variance of our proposed

models with the growing complexity of the models. Again to quantify errors, we have

considered the results of ILP (optimal) as ground truth. The complexity of models

grows with increasing convolutional layers or hidden layers by expanding the number

of trainable parameters proportionately. According to Figure 4.11a and 4.11b, both

70

1 2 3 4 5 6
E-ConvNets Model Complexity

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Er

ro
r i

n
%

Bias Variance Total Error

(a)

1 2 3 4 5 6
E-ANN Model Complexity

5

10

15

20

25

Er
ro
r i
n
%

Bias Variance Total Error

(b)

Figure 4.11: Bias-Variance trade-off analysis for (a) E-ConvNets and (b) E-ANN
model

E-ConvNets and E-ANN are able to achieve optimal balance between bias-variance

trade-off, while the models are not oversimplified or too complex. To be specific,

E-ConvNets and E-ANN minimizes both sources of errors at layer number 4 and 3,

respectively. Hence, based on this study, we can confidently conclude that the model

is able to learn the underlying pattern from system data and export the learned

knowledge on unseen test cases.

4.8 Summary

Recently, the VNF orchestration over resource-constrained infrastructure is gaining

much attention from the researchers to emphasize on different optimization tech-

niques. However, the conventional optimization techniques due to the various draw-

backs, mostly lacking agility, fail to be qualified for real-time adaptions in dynamic

network perspectives. Therefore, we have stressed on designing a prompt technique

for intelligent networks to proactively assign VNFs to the edge cloudlets DCs with

best possible relocation and communication costs as the outcome, while considering

the predictable rapid growth of IoT services in near future. For the sake of the model

calibration process, we have considered utilizing multiple models instead of relying

on a single one for the training and prediction phase. Hence, we have applied E-

ConvNets and E-ANN in simulated network arrangements and compared the results

with other existing conventional approaches. Experimental results suggest that E-

ConvNets outperforms all other methods in terms of minimizing costs and relocation

71

burden with significantly improved scalability intelligence factor. Although, E-ANN

performs best according to running time, yet being very close to execution times of

E-ConvNets.

The limitation of this research is not considering resource optimization concerns

by incorporating them into the objective function. The main motivation for resource

optimization is to improve the battery life of IoT devices and energy efficiency overall.

Moreover, this work does not handle the notion of chaining multiple VNFs together

to create a specific network service. Thus, in the next chapter, we focus on resource

utilities by introducing the sharing concept for chained VNF resources.

72

Chapter 5

Intelligent SFC Orchestrator for

Time and Resource Intensive Ultra

Dense IoT Networks

Among the massive pool of IoT devices in NFV context, the urgency for efficient ser-

vice orchestration is constantly growing. The emerging challenges can be addressed

as collaborative optimization of resource utilities and ensuring QoS with prompt or-

chestration in dynamic, congested, and resource-hungry IoT networks. Traditional

mathematical programming models are NP-hard, hence inappropriate for time sen-

sitive IoT scenarios. This chapter promotes the need to go beyond the realms and

propose an intelligent DQN driven SFC orchestration, named as DSO hereafter. We

further equip this proposed DSO model with the notion of sharing the flow of al-

ready deployed network function rather than urging a new instantiation. The sharing

conceptualization improves resource utilization, and DQN is employed for adaptive,

robust, and swift orchestration. Our extensive simulation results demonstrate the

remarkable capability and adaptability of the proposed DSO model for cutting back

running time (≈ 10 hours) and ensuring near-optimal resource utilization across ex-

tremely dense IoT substrate network settings.

5.1 Introduction . 73

5.2 Related Work . 75

5.3 Optimized SFC Orchestration Framework 76

73

5.4 DSO: Proposed DQN driven Approach for Sharing based SFC Orches-

tration . 80

5.4.1 State and Action Space . 81

5.4.2 Reward Function Design . 82

5.5 Performance Evaluation . 84

5.6 Summary . 88

5.1 Introduction

Due to the ever-growing number of IoT devices, the IoT networks have transformed to

be multivariate and ultra-dense [109]. Hence, the entire IoT service orchestration sys-

tem is gradually converting to be unmanageable for traditional network frameworks.

NFV [65] appears to be a promising technology for facilitating efficient IoT resource

management, scalability, and flexibility. This mechanism decouples the conventional

network functions from specially-designed proprietary hardware. Moreover, it allows

the telecommunications service providers (TSPs) to implement and run VNFs on

top of an IoT network’s substrate or physical nodes (e.g., IoT sensors, actuators,

controllers, wearables, and smart devices) [110]. IoT users utilize a heterogeneous

ordered chain of VNFs deployed at cloud, carrier networks (SGi-LAN), and edge

(consumer premises devices) for processing the massive flow to avail complex service

chaining [111] [66].

MEC [66] strengthens the SDN [65] for enhanced QoS and context aware delivery

for users. This mechanism enables the viability of hosted services to access resource

and traffic flow measurements for improving content specific services [66]. As another

complimentary benefit, MEC aids monetization aspects for TSPs with effective edge

resource utilization. However, the capacity of edge resources and battery life of mobile

devices are considerably limited in IoT networks [66]. A sinking battery of edge IoT

sensors can be severely damaging, such as causing halt to an industry’s production,

misinterpretation of valuable data for research, false fire alarms, and life-threatening

situations in case of malfunctioning surgical robots and autonomous driving. Hence,

the optimizing the edge resource consumption is mutually beneficial for both TSPs

and IoT users. Thus, the SFC orchestrator discussed in this chapter emphasizes

the utilization of underused, sharable, and identical type previously deployed VNF

instances [112].

74

An SFC deployment involves selecting a path in the network while simultane-

ously creating new instances or sharing VNFs and forwarding packets through the

chain [111]. An SDN controller [65] is assumed to be responsible for forwarding

traffic through the deployed chain by configuring switches of the forwarding plane.

The bump-in-the-wire (BITW) [111] technique is supported by both Open Virtual

Networking (OVN) and OpenStack Tacker [112]. This mechanism allows communi-

cations over a series of logical links for configuring SFC. Several existing literature

suggest the use of combinatorial optimization and meta-heuristics for SFC deploy-

ment [39] [111] [113] [27]. However, mathematical programming models are NP-

hard [84]. On the other side, meta-heuristics involves extensive model-specific hy-

perparameter tuning that also involves high running time [39]. Therefore, these ap-

proaches are not feasible for time-critical IoT applications (e.g., collaborative comput-

ing, telesurgery, bio-metric, smart grid, remote machinery, uncrewed aircraft system,

and AR/VR) [109] [66] [65]. In this chapter, we propose the employment of sharing

based SFC orchestration inspired by advanced Deep Q Networks [55], acknowledged

as DSO afterwards. The motivation comes from DQN’s successful employment for

IoT network management with added facility of ultra-low running time [55]. The

major contributions of this chapter have been listed as follows:

• We consider and improvise an ILP formulation to solve sharing based SFC

deployment, while ensuring the predefined QoS [112]. Current ILP model pro-

posed in [112] sometimes fails to provide solution even for fairly simple cases.

We have fixed the issues with the ILP model and implemented it as baseline

(optimal) for our performance metrics.

• Next, we formally prove the sharing based SFC orchestration problem to be

NP-hard.

• Then, we implement our proposed DSO−sharing based SFC orchestration scheme

harnessing DQN combined with sophisticated techniques (experience and replay,

target network, and convolutional neural networks), unlike vanilla Q-learning

with convergence insufficiency [55]. This advanced DSO model acts upon effec-

tive resource utilization, QoS sustainability, and last but not the least signifi-

cantly improves running time with the intention to unravel the full potentials

of present and future IoT applications.

• Finally, with extensive simulation analysis, we demonstrate the remarkable ca-

75

pability and adaptability of the model for improving running time and resource

cost minimization across different IoT substrate network settings.

5.2 Related Work

Various studies focus on a broad plethora of diverse research topics related to indi-

vidual VNF, such as task scheduling and dependency, offloading, allocation, scaling,

and migration of VNFs, etc [69] [110]. Presently, the research regarding the SFC

or VNF chain orchestration is in its infancy, while directing towards the consolida-

tion and expansion of a single VNF. The SFC related specific researches are mainly

categorized into two types: a) orchestration and b) traffic forwarding path configu-

ration [112] [111] [113] [114]. Mostly, the state-of-the-art works regarding allocation

involve traditional mathematical programming models [69] [112] [27]. Farkiani et al.

have applied Benders decomposition technique to introduce master-slave ILP formu-

lation for faster solution [27]. Many other research articles, including theirs, solely

center around energy awareness, disregarding delay and hardware resource optimiza-

tion constraints for IoT environment [111]. Other existing works in the literature em-

phasize QoS requirements and end-to-end (E2E) delay without considering resource

overhead [39] [110] [69]. Contrarily, some literature only pay attention towards CPU

utilization rate, bandwidth, and traffic flow configuration [113] [111]. Except for the

literature [112], no other study demonstrated the SFC placement gain due to sharing

the flow of already deployed VNFs to maximize resource utilization, and maintain

QoS simultaneously. However, they have proposed an ILP framework, and these

ad-hoc combinatorial optimization problems are NP-hard [84] because of its exten-

sive time and computational complexity. Thus, these approaches are not suitable

for a time-sensitive IoT platform [109]. With the advent of modern deep learning

approaches, many research articles analyze the provisioning of services and resource

demands, eventually aiming to reduce overall execution time for service orchestra-

tion [114] [113] [55]. Yet, these approaches either consider the QoS and resource

optimization targets exclusively, or overlook the demonstration of their performance

comparison the with regard to optimal [27] [69] [113]. To bridge the research gap and

serve a vertical range of resource exhaustive and time-sensitive IoT use cases [109] [66],

we have proposed a paradigm shift to a modern and adaptive DSO model. With the

intent to overcome the mentioned shortcomings, we incorporate the concept of shar-

ing based SFC deployment in the proposed DSO model, considering resource and QoS

76

concerns mutually.

5.3 Optimized SFC Orchestration Framework

The IoT substrate network model can be considered as a graph G = {U , E} including

a set of nodes U connected by a set of bidirectional links E . The nodes in the net-

work serve as VNF hosting devices. Since resources and traffic flow are heterogeneous

in the IoT environment, each node and link has its specific computing resources or

traffic requirements. In order to deliver a specific service, an ordered set of chained

VNF instances is formed as an SFC request. Every instance from the set of VNFs V
has a particular type along with different computational requirements for processor

and memory. Upon the allocation of required resources, the maximum traffic flow

that can be handled by each VNF varies. The maximum flow a VNF can control

is directly proportional to the total resources assigned to it [112]. Sometimes VNFs

(e.g., parental control, firewalls, and video optimizer) cause packets to drop, reflected

in outflow comparing to inflow. Otherwhiles, for VNFs excluding dropping character-

istics (e.g., load balancer), the amount of outflow remains exactly the same as inflow.

The outflow of preceding VNF is considered as the inflow of the next consecutive

VNF in the chain. For example, the load balancer virtual function has more CPU

and RAM allocated to it. Hence the maximum flow handled by this VNF instance is

285, being comparatively greater than the other ones, as shown in Figure 5.1.

V1: Firewall
RAM: 10
CPU: 5
S & D

V2: Load Balancer
RAM: 12
CPU: 6
S & ND

V3: Parental Control
RAM: 6
CPU: 3
NS & D

Max-Flow = 248
Inflow = 90
Outflow = 82

Max-Flow = 285
Inflow = 82
Outflow = 82

Max-Flow = 210
Inflow = 82
Outflow = 72

S: Sharable NS: Non-sharable D: Drops ND: No-Drops

Figure 5.1: VNF specifics of a SFC request

The SFC deployment framework has been formulated and proposed as an ILP

77

model with binary decision variables and some quadratic constraints in the existing

literature [112]. However, this formulation has some issues involved and fails to

provide an SFC deployment solution, even for simple cases due to erroneous model

constraints. The consecutive node verification constraint (7) of their ILP model [112]

leads to infeasibility. This can happen due to any consecutive node pairs that are not

qualified to host two VNF pairs, while other solution exists. Firstly, we resolve the

ILP formulation related issues to ensure the satisfiability of SFC requests whenever

possible. Then, we discuss the improvised ILP model and prove the formulation

to be NP-hard [84], addressing it unacceptable for a real-time or time-sensitive IoT

ecosystem. Table 5.1 contains parameters with a concise description essential to

formulate the ILP model.

The objective of this problem formulation aims to either deploy or share VNFs of

an SFC so that the overall resource utilization (CPU, RAM, and bandwidth costs)

is minimized. Since deploying a new instance of VNF requires more resources (CPU,

RAM, and bandwidth), the objective function defined in Eq. 5.1 encourages the

sharing based VNF allocation. The sharing of VNF instances only require bandwidth

consumption disregarding the demand for additional CPU and RAM resources, unlike

new VNF instantiation. The first term of the objective function determines the

computational (CPU and RAM allocation) costs in case a VNF is deployed. The

latter term defines the bandwidth costs required for both sharing or deploying a

VNF.

minimize

|Ŝj |∑
i=1

∑
un∈U

{(ηc × cpuji + ηr × ramj
i)× x

j
i,n +Oji × ηb × (xji,n + yji,n)} (5.1)

The objective function presented in the Eq. 5.1 is subject to the following constraints:

C1 :
∑
un∈U

(xji,n + yji,n) = 1, ∀i∈[1−|Ŝj |] (5.2)

C2 :
∑
un∈U

(xji,n + πi,n × %i × yji,n) = 1, ∀i∈[1−|Ŝj |] (5.3)

C3 : Iji × y
j
i,n ≤ fi,n, ∀i∈[1−|Ŝj |] (5.4)

78

Table 5.1: Description of the parameters for SFC orchestration

Parameters of Substrate Model
Notation Description
G = {U , E} Topology of the substrate network

U Set of all the VNF hosting substrate nodes {u1, u2, ..., uU}
E Set of bidirectional links in substrate network
Cn Total CPU capacity of a node un ∈ U (in cores)
Mn Total memory capacity of a node un ∈ U (in GBs)

C̃n Available CPU of a node un ∈ U (in cores)

M̃n Available memory of a node un ∈ U (in GBs)
Dnn′ The propagation delay of a link connection from a node un to another

node un′ , where un, un′ ∈ U and n 6= n′

Bnn′ Total bandwidth capacity of link form a node un to un′ , where
un, un′ ∈ U and n 6= n′ (in Mbps)

˜Bnn′ Available bandwidth of link form a node un to un′ , where un, un′ ∈ U
and n 6= n′ (in Mbps)

SFC Request and VNF Related Parameters
Notation Description

Ŝj A SFC request where Ŝj ⊆ V
|Ŝj| Length of a SFC Ŝj
V Set of all VNF instances {v1, v2, ..., vV}
cpuji Required CPU for deploying VNF vi ∈ V of SFC Ŝj
ramj

i Required RAM for deploying VNF vi ∈ V of SFC Ŝj
F i Maximum controllable flow of VNF vi ∈ V
δi Binary input flag to denote whether a VNF vi ∈ V drops inflow or

not
%i Binary input flag to denote whether a VNF vi ∈ V is shareable or

not

Iji Inflow of VNF vi ∈ V to satisfy SFC Ŝj
Oji Outflow by VNF vi ∈ V of SFC Ŝj
Θj Maximum tolerable E2E delay threshold of SFC Ŝj

Constants, auxiliary, and decision variables
Notation Description

xji,n Decision variable for deploying a new instance of VNF vi ∈ V be-
longing to SFC Ŝj at node un ∈ U

yji,n Decision variable for sharing the flow of VNF vi ∈ V belonging to
SFC Ŝj with previously deployed same type VNF at node un ∈ U

πi,n Binary input parameter indicating if a similar type instance of VNF
vi ∈ V has been deployed at node un ∈ U or not

fi,n Unconsumed available flow of already deployed VNF vi ∈ V at node
un ∈ U

ηc, ηr, ηb Unitary costs of CPU, RAM, and bandwidth

79

C4 :

|Ŝj |∑
i=1

cpuji × x
j
i,n ≤ C̃n, ∀un∈U (5.5)

C5 :

|Ŝj |∑
i=1

ramj
i × x

j
i,n ≤ M̃n, ∀un∈U (5.6)

C6 : (xji,n + yji,n) ≤
∑

{un,un′}∈E

(xji+1,n′ + yji+1,n′),∀un,un′∈U , ∀i∈[1−|Ŝj |] (5.7)

C7 :
∑
un∈U

∑
un′∈U

Oji × (xji,n + yji,n)× (xji+1,n′ + yji+1,n′) ≤ ˜Bnn′ , ∀i∈[1−(|Ŝj |−1)] (5.8)

C8 :

|Ŝj |−1∑
i=1

∑
un∈U

∑
un′∈U

Dnn′ × (xji,n + yji,n)× (xji+1,n′ + yji+1,n′) ≤ Θj (5.9)

C9 : xji,n, y
j
i,n ∈ {0, 1}, ∀un∈U , ∀i∈[1−|Ŝj |] (5.10)

Constraint C1 ensures the single mapping (placement or sharing) of every VNF

vi ∈ V of SFC Ŝj into a physical node. The constraints C2 and C3 verify that in

case of sharing, the same type already on-boarded VNF vi ∈ V of SFC Ŝj has to

be present at node un ∈ U with sufficient unconsumed/available flow for presently

considered VNF’s inflow. For a valid deployment decision xji,n, constraints C4 and

C5 secure the availability of enough computational resources (CPU and RAM). Next,

the constraint C6 guarantees the deployment or sharing of any consecutive VNF pair

vi ∈ V and vi+1 ∈ V from SFC Ŝj to mapped on two such nodes un ∈ U and un′ ∈ U
in the substrate graph G that are connected by direct link or edge. Subsequently,

the constraint C7 assures the available bandwidth ˜Bnn′ in a link connection of two

nodes un ∈ U and un′ ∈ U to be enough for accommodating the outflow generated by

VNF vi ∈ V in both the cases of either deployment or sharing. Furthermore, the QoS

performance (E2E delay) requirement of an SFC Ŝj is satisfied by the constraint C8,

while preventing the total propagation delay to be overboard beyond a permissible

threshold Θj. According to application domain’s nature and Service Level Agreement

80

(SLA) [69], this threshold can be carefully set by the TSPs. Finally, the constraint

C9 is binary constraint indicating the value of decision variable xji,n to be 1, in case

VNF vi ∈ V of SFC request Ŝj is deployed at node un ∈ U , otherwise remains 0.

Likewise, yji,n is 1 if a VNF vi ∈ V of SFC request Ŝj shares the traffic flow of the

identical type already deployed VNF at node un ∈ U , else 0.

Theorem 1. The aforementioned sharing based SFC orchestration problem is NP-

hard.

Proof: Let us consider the 0/1 minimization multiple knapsack problem. Given

a knapsack instance I = (P,K,W, V,Ω), where P is the set of items, W and V

represent the set of weights and values for selecting each item respectively. Moreover,

K denotes the set of knapsacks, while Ω specifies the set including capacities of each

knapsack. Taking another instance I ′ of the SFC deployment problem, we can map

I ′ = (P ⇐ Ŝj, K ⇐ Gc,W ⇐ Hj, V ⇐ ρj,Ω ⇐ θGc) to I. Here, Ŝj is basically an

SFC request containing an ordered set of VNFs, Gc represents a clique (to validate

constraint C6) substrate graph containing certain nodes, Hj defines the combined

required resources (CPU, RAM, and bandwidth) to satisfy Ŝj once deployed or shared.

Seemingly, ρj is the set of costs to orchestrate a VNF vi ∈ V belonging to SFC Ŝj,
and θGc is a set of the available resource capacities of each node on substrate graph Gc.
Firstly, we apply the restriction %i = 0 in ILP mode, which means that the sharing

option is completely disabled for all the VNFs vi ∈ V of SFC Ŝj. Then, we apply

the restrictions of ˜Bnn′ = +∞, Θj = +∞, and fi,n = +∞, leading to ignore the

QoS, bandwidth, and flow constraints in the ILP instance I ′. Lastly, we consider the

outflow of Oji to be 1 for every VNF vi ∈ V of SFC Ŝj in the considered special case.

Hence, the restricted case I ′ of the ILP model transforms into I, a general case of

known NP-hard problem. Thus, the optimization problem for SFC orchestration is

NP-hard as well. �

5.4 DSO: Proposed DQN driven Approach for Shar-

ing based SFC Orchestration

In this section, we present our proposed DSO model for SFC orchestration approach

in details. The DSO approach leverages its persuasive mechanisms termed as experi-

ence and replay, occasionally frozen target network with convolutional neural networks

(CNNs) for robustness, efficiency, and better convergence [55]. Any typical reinforce-

81

ment learning involves four key components: agent, environment (optional), reward,

and value function [55]. The agent’s ultimate goal is to maximize the long-term

(myopic) rewards by interacting with the environment and looping through observed

feedback. A transition in state occurs once the agent takes action depending on the

corresponding action’s reward value. Besides, value function plays an essential role

in determining a state-action pair’s goodness by predicting the likely future rewards

affiliated with it. Afterwards, we discuss how we have mapped the considered SFC

orchestration problem to be unraveled by DQN inspired DSO with elegant training

particulars.

5.4.1 State and Action Space

We interpret the state space as currently available resources within nodes, underlying

link bandwidths, and other specifications of the substrate IoT network. Therefore, for

the DSO based SFC embedding process, we have considered the currently available

quantities of resources (CPU, RAM), unconsumed flow, and bandwidths as some of

the state configuration elements. Additionally, we take other IoT network parame-

ters into account, such as whether a VNF has already been deployed into some node,

the sharing flag, dropping, and flow characteristics of the deployed VNF. The combi-

nation of these pieces of information form a vector indicating the present state s =

{C̃n,M̃n,Dnn′ , ˜Bnn′ ,Fi, δi, %i, πi,n, fi,n}. According to the current state of IoT network

dynamics inferred from the environment, the agent selects the substrate nodes to be

allotted for VNF deployment or sharing purposes in order to satisfy a particular SFC

request. Hence, the action space is defined by the number of nodes in IoT substrate

network. The agent is authorized to execute one action at a time step from the action

space represented by A = U . As mentioned earlier, U = {u1, u2, ..., uU} is a set of

all the VNF hosting IoT substrate nodes. After each valid mapping (feasible action)

of a VNF to a substrate node in a time step, the agent observes a state transition

(varying resources and IoT network dynamics). A feasible action is a mapping of a

VNF to a substrate node, where all the constraints of the ILP model (C1 through C9)

are satisfied. Upon the successful embedding of a VNF, the agent proceeds towards

the next VNF in the requested SFC provided the updated state space. The entire

SFC orchestration process terminates after the orchestration of the last VNF from the

requested chain of services. Apparently, the action space may seem to be huge, yet

the validation of the consecutive VNF mapping constraints reduce the action space

82

size significantly.

5.4.2 Reward Function Design

Usually, the agent strives to maximize the cumulative reward in the long run. In

a general context, the total rewards accumulated through each time step can be

represented by Rt =
∑∞

k=0 γ
krt+k+1, 0 ≤ γ ≤ 1, where γ acts as a discount factor.

The discount factor γ ∈ [0, 1] penalizes the future rewards, since there are various

uncertainties involved. With the aid of this factor, a more precise balance between

instant and future rewards can be ensured. We consider the reward obtained at each

time step to supervise the agent towards a better solution with respect to our objective

function described in Eq. 5.1 for every time step. As previously mentioned, this

objective function leads to efficient resource utilization and prefer sharing the flow of

on-boarded VNFs over deploying a new instance. We define the reward function in Eq.

5.11, which is inverse of the SFC orchestration ILP model’s objective function. Thus,

maximizing the cumulative rewards over time mimics the minimization of overall

resource utilization costs.

reward = α× {(ηc × cpuji + ηr × ramj
i)× x

j
i,n +Oji × ηb × (xji,n + yji,n)}−1, α > 0

(5.11)

DQN is an off-policy training algorithm that enables the agent to learn through

temporal differences [55]. Temporal difference [55] is a very unique technique by

replacing the actual complex calculation of future rewards with an estimation or

prediction, which is expected to keep improving over the time. In this off-policy

training period, the agent ignores to find the best policy rather tries to learn the

appropriate Q-function. Say, we denote the state space as S = {s1, s2, ..., sm} and

action space as A = {a1, a2, ..., an}. At the time t, the agent chooses an action at ∈ A
depending on the current state s ∈ S of the environment mode. Then, the system

transfers to a new state st+1 ∈ S depending on the largest Q-value (argmax
a

Q(st, at)).

However, in actual rather than always maximizing the Q-value, exploration in the

action space is emphatically encouraged. We employ an exploration rate of ε ∈
[0, 1] to balance exploitation versus exploration, popularly acknowledged as ε-greedy

algorithm [55]. According to this algorithm, for every decision-making process, we

generate a random number between 0 and 1. In case the generated random number is

83

greater than pre-defined ε, the agent intends to maximize Q-value (selects action that

contributes to argmax
a

Q(st, at)). On the contrary, the agent accepts any randomized

action from the action space A. Q-function is actually the action value function

intended to be learnt by the agent. The recursive Q-function learning is updated

by Eq. 5.12. The update process is completed through the information regarding

present time step (st, at, rt), following time step (st+1, at+1, rt+1), and learning rate α.

As suggested earlier, the discounting factor γ can be tuned and γ = 0 tend to focus

on instant rewards only, which is undesirable.

Q(st, at)← Q(st, at) + α[γmax
a∈A

Q(st+1, a)−Q(st, at)] (5.12)

Then, We exploit the “memory and replay” [55] mechanism to replay the learning

experience saved as tuple (st, at, rt, st+1) in memory mini-batches. Since we let the al-

gorithm bootstrap [55] (sampling with replacement) on previously stored experiences,

a sample can be picked up multiples times. Hence, the significant outcome is the dis-

ruption of correlation and non-stationary distribution of the observation sequences,

eventually leading to more efficient update of CNN. Next, to stabilize the overall

training process, we have utilized a target network [55] that is a copy of Q-function.

The target network is a CNN, and this network’s parameters remain fixed for some

training time steps. On the other hand, the parameters of another CNN are constantly

being updated. The parameters of both the mentioned CNNs are synchronized after

a certain period. Though the target network mechanism adds delay, it prevents the

havoc in the training process due to oscillations and divergence created by agent for

chasing non-stationary future rewards. Due to the uncertain nature and dynamics of

IoT environments, this technique is particularly useful. Suppose, Q(st+1, at+1;w
−) is

generated by target network with parameters w−, while the DQN network estimates

Q(st, at;w) with parameters w. Finally, we apply the gradient descent method to

update the DQN parameters w by optimizing the following loss function:

loss = (rt + γmax
a∈A

Q(st+1, at+1;w
−)−Q(st, at;w))2 (5.13)

The entire DQN based DSO algorithm for SFC orchestrator module has been de-

scribed in Algorithm 7.

84

Algorithm 7: DSO for sharing based SFC embedding

Input: G, Ŝj, C̃n,M̃n,Dnn′ , ˜Bnn′ ,Fi, δi, %i, πi,n, fi,n, A
γ, ε, reset limit

1 Model the environment with IoT substrate nodes, links
2 Set DQN and target network by random w and w−

3 foreach episode e do
4 Initialize state s and counter ← 0
5 foreach timestep t do
6 η ← Pick a random number from [0,1]
7 if η < ε then
8 at ← Select a random action from A
9 else

10 at ← argmax
at

Q(st, at;w)

11 if at is a feasible action then
12 Perform action at by SFC orchestrator according to reward

function
13 Collect rt through state transition to st+1

14 Save tuple (st, at, rt, st+1) in buffer
15 Bootstrap (sk, ak, rk, sk+1) for replay
16 if episode e terminates at k + 1 then
17 zk ← rk
18 else

19 zk ← rk + maxak+1
Q̂(sk+1, ak+1;w

−)
20 Utilize Gradient Descent to optimize the loss function

(zk −Q(sk, ak;w))2

21 counter ← counter + 1
22 if counter mod reset limit = 0 then
23 w− ← w

5.5 Performance Evaluation

We simulate the IoT environment and evaluate different performance metrics of DSO,

considering ILP as the baseline. All the experiments have been carried out on DELL

ALIENWARE m15 R3 machine of Intel core i7-10750H CPU @2.6 GHz equipped with

16 GB RAM and Windows 10 Home. We have used Gurobi to solve the ILP model. In

the simulation environment, substrate IoT networks are created using NetworkX with

varying nodes (700-1000), and the connectivity probability of links differs between 0.2

and 1.0. The generated topology is assigned resource capacities randomly from the

inclusive ranges of 8-64 CPU cores, 16-128 GB RAM, and 100-1000 Mbps bandwidth,

85

respectively. Also, the propagation delay varies from 50-1000 m on a random basis.

Next, the SFC lengths can be any random value between 5 and 25. The total E2E

latency is derived from the term (|Ŝj| − 0.5) multiplied by average link delay. In

addition, the resource and flow requirements of VNFs that build up an SFC also have

been drawn randomly from pre-defined ranges 2-8 cores for CPU, 4-16 GB for RAM,

maximum flow derived as a function of CPU and RAM, and inflow [0.15×maximum

flow - maximum flow] Mbps. Furthermore, if a VNF has dropping characteristics,

then outflow is between 0.4×inflow and inflow, otherwise exactly the same as inflow.

We set the unit costs of CPU, RAM, and bandwidth as 2.5, 1.7, and 2, respectively,

ultimately having no effect on results being static for all simulation cases. All the

mentioned network parameters have been adapted from the existing literature [112].

The results have been presented as an average of 10 simulation runs.

With the above mentioned settings, we implement the proposed DSO process us-

ing python’s TensorFlow packages. However, the solutions can be easily integrated

in any other network simulator (e.g., CloudSim) via customized interface. We have

considered three fully connected layers with 32 nodes for CNNs. All the hyperpa-

rameters of the DSO model operating DQN underneath have been selected through

hyperparameter tuning and simulation analysis.

Figure 5.2 illustrates the effect of learning rate versus obtained rewards and sug-

gests 0.05 to be the most viable option. Since, this selected learning rate is neither

too high to over jump the global optimum nor too low for slower convergence, we

have selected 0.05 as learning rate. The loss in the training steps can vary due to

batch size as shown in Figure 5.3. Batch size of too large may lead to overfitting,

leading to poor local optima. On the contrary, smaller batch size cause variance and

slow convergence to minimize the loss using batch gradient descent. According to

the experimental results, we have considered batch size as 32 for our experiments.

Moreover, the loss leading to as close as 0 proves the efficiency of our proposed DSO

approach in terms of achieving convergence. We have set the other hyperparameters

as follows: ε = 0.2, γ = 0.7, and episodes=1000.

One of the two performance metrics, total resource utilization costs deviation,

denotes how far the overall performance of DSO is from ILP (optimal) in terms of

minimizing the objective function. The other metric gives us the idea of how much

the running time can be saved or improved by the DSO model comparing to the

ILP model [112]. We have performed two sets of experiments. The first one is to

explore the effects of varying connectivity probability (the probability that determines

86

Figure 5.2: Effects of learning rates against increasing episodes

0 200 400 600 800 1000
Episodes

0.0

0.1

0.2

0.3

0.4

0.5

L
os

s

Batch size=8
Batch size=16
Batch size=32
Batch size=64

Figure 5.3: Effects of batch size on minimizing loss

if two nodes are connected by a link) among different sized topology. The second

one whereas is to evaluate the performances with various lengths of SFCs. Figure

5.4a and 5.4b depict the performance of DSO regarding the first set of experiments,

where we have considered network topology with nodes varying from 700 to 1000,

and the nodes may have varying connecting probability of links between 0.2 and

87

(a) (b)

Figure 5.4: (a) Resource utilization costs, and (b) Running time comparison. For (a)
& (b), we have considered different density of networks and ILP as baseline for the
results shown.

1.0. The connectivity probability 0.2 refers to very sparse graphs, whereas 1.0 forms

a clique/ultra-dense IoT substrate graph. Particularly, Figure 5.4a illustrates that

resource utilization costs derived by DSO in sparse and dense networks can be from

as low as 6% to as high as 19%. However, it is noteworthy from Figure 5.4b that

the proposed DSO approach for sharing based SFC orchestration can save up to 400

minutes (approximately 6.66 hours) comparing to ILP in case of large and dense

substrate graphs. The graph’s exponential trend confirms that in the case of more

massive and dense networks, the DSO approach will reduce even more time and be

able to extend its fast IoT service to the users.

Figure 5.5a demonstrates that the DSO model deviates from optimal with the

growing number of VNFs in an SFC, termed as SFC length. However, according

to literature [113] [112] [27], the usual length of SFCs can be around 10 − 15, for

which the DSO derived costs are 12% − 16% off from ILP. On the other hand, in

addition to the near optimal solutions, SFC orchestration with DSO reduces 70−600

minutes worth of running time overall in different network settings. Hence, it can

be summarized that regardless of connectivity probability, topology size, and SFC

length, DSO provides near optimal solution with significantly reduced time, highly

desirable for time critical IoT domain.

88

(a) (b)

Figure 5.5: (a) Resource utilization costs comparison, and (b) Running time com-
parison. For (a) & (b), we have illustrated the effects of different SFC lengths and
considered ILP as baseline.

5.6 Summary

Even with fluctuating IoT dynamics, proposed DSO model maneuvers timely SFC or-

chestration with adaptive resource utilization. This chapter justifies the reliability of

intelligent SFC orchestration to serve machine type communications (mMTC), ultra-

reliable low-latency communications (URLLC), narrow-band IoT (NB-IoT), enhanced

mobile broadband (eMBB), and so forth for 5G and beyond use cases. Additionally,

DSO−the sharing based placement incorporated with DQN utilizes the flow of on-

boarded VNFs to save massive IoT resources in dense networks, unlike other existing

researches. Moreover, our simulation results illustrate the significant running time

performance gain for ultra-dense networks (high connectivity probability), counter-

feit of future IoT. To the best of our knowledge, crowdsourcing shared VNF resource

utilization at a comprehensive pace, QoS cognizant, and prompt SFC orchestration

through DQN intelligence has not been approached before. The synergistic con-

cerns prefer the mutual interests of IoT resource manufacturers, TSPs, and IoT users

jointly. A future research direction to this work can be integrating SFC orchestration

for several categories of users (e.g., prioritizing premium subscribers over the regular

charged users).

89

Chapter 6

Conclusion and Future Work

In this thesis, we proposed the application of machine learning techniques in

future-generation wireless network optimization problems. We mainly studied the

implications of three AI based techniques: a) supervised learning, b) meta-heuristics,

and c) reinforcement learning. For supervised learning, a labeled dataset should be

available consisting a collection of input and target pairs. Since there were no stan-

dardized labeled datasets, we leveraged the optimal solutions generated by ILP for

our proposed supervised learning methods (ANN, E-ANN, and E-CNN). Meanwhile,

ACO, a meta-heuristic algorithm, imitated the collective behavior of ants to effec-

tively invade search space. On the other side, we proposed DSO as an intelligent

orchestrator that learns through experiences via interaction with environment. The

environment of our considered system was virtual service management in IoT context.

The first ANN based static VNF orchestration model simulated a large number

of scenarios through ILP. Then, the simulation model attempted to convert the VNF

and network attributes as input and corresponding optimal hosts as target pairs to

enable supervised learning. Due to the explosive number of output state space (fea-

sible VNF hosting devices), reinforcement learning was prone to perform poorly in

such problems. Then, we introduced ensembling techniques to improvise variety of

KPIs (e.g., scalability, relocation overhead, communication costs, and running time)

for a mobility aware VNF orchestrator. We also strived to apply t-ACO (impro-

vised meta-heuristic) to this problem, yet this algorithm exhibited larger optimality

gap and running time due to scenario-specific hyperparameter tuning. Ensemble and

90

standalone pre-trained ANN and CNN models fixed optimal hyperparameter on val-

idation sets, hence there was no requirement for tuning at test cases. Finally, our

proposed DSO intended to serve SFC orchestrators that targeted reduced feasible

region specific problems, with significantly lower state space. DSO mainly aimed

to optimize the total resource consumption by enabling the services to share the

resources of likewise on-boarded VNFs.

Additionally, in this thesis, we strived to transform the running time complexity

of latency sensitive next-generation service orchestration from exponential to linear.

All of our above-mentioned proposed AI algorithms had shown linear inference time

complexity with reasonable optimality gap. On the contrary, the time complexity of

t-ACO (meta-heuristic) approach grows in quadratic manner. Table 6.1 summarizes

the specifics of the methodologies used in this thesis:

Table 6.1: Summary of the proposed AI-based algorithms
ANN E-CNN, E-ANN DSO

Orchestrator handler Standalone VNF Standalone VNF Service function chaining

Type Supervised Learning Supervised Learning Reinforcement learning

Design
philosophy

Optimize through ILP
Optimize through ILP;
Meta-heuristics

Optimize through
interaction and experience

Objective type Single-objective Multi-objective Multi-objective

Objective criterion
Minimize the total
latency

Minimize total
communication and
relocations costs

Optimize resource
utilization

KPIs
Latency;
Running time

Total communication
and migration costs;
Relocation overhead;
Scalability intelligence;
Running time;
Generalization Aptitude

Model loss;
Resouce utilization;
Running time

Time Complexity

Linear: O(h); h being
the number of hidden
layers including softmax
(Inference time)

Linear: O(ch); c is a
constant number of
ensemble models
(Inference time)

Linear: O(w); w being
the DQN weights
(Inference time)

We conclude this thesis by putting forward some details on future research di-

rections and potential challenges involved with AI enabled service management IOT

framework. Federated learning (FL) can enhance service management’s efficiency by

taking it to the next level for automated provisioning as a future research direction

to this thesis work. FL is a collaborative machine learning approach for which the

edge devices conduct the training phase locally rather than the cloud [57]. FL has

already been implemented in the Google keyboard (Gboard), which locally stores the

contemporary context information and suggestions accepted on the device [57]. Then,

the historical data are being utilized to improve the local training by integrating the

91

small focus updates to the trained model for succeeding suggestion scheme. This is

a distributed machine learning approach, where generic models from the cloud are

downloaded and customized at different edge devices. Then, the sub-models keep

training on each edge device locally. Finally, the sub-models of the edge devices col-

laborate to enhance the performance of the generic shared model in the cloud. This

is done by updating the locally trained and improved sub-models from all the edge

devices to the cloud.

This approach eliminates the need for centralized training data in one machine or

cloud data center by bringing the training and prediction in local sub-models present

at the edge devices unlike conventional machine learning methods [57]. Even, FL is

not simply a re-branded distributed learning. FL is different from the concept of on

device automated reply suggestions and mobile vision API (facial features detection)

that only use local sub-models of hosting devices for prediction purposes, and not for

training [57]. FL can highly benefit three major aspects of IoT industry:

• Security : The decentralized FL breed of AI removes the obligation to send over

data, rather only updates model weights to the cloud. This way or learning with

model increases the chances of IoT end devices to be secured from personal data

breach.

• Advanced fault tolerance: In case of communication failures (e.g., dropped up-

dates) and byzantine updates, there has been several research works that uphold

the ability of FL to trim the faulty bits. Various robust server update policies

can manage the service orchestration in more efficient manner.

• Mobile Edge Learning (MEL): MEL is an emerging parallel learning framework

to learn the attributes of users to improve customized experience. This can

be achieved by the federated version on-device training to provision the VNF

requirements and chaining at different IoT edge devices. For the training pur-

pose to learn VNF orchestration and management strategies, data concerning

the users’ personalized interaction with the devices can be utilized. Such VNF

placement and service chaining schemes can level up the game for new age IoT

devices to create more intuitive experiences for users, while increasing the sales

for vendors and service providers as well.

Figure 6.1 illustrates the overview workflow of VNF placement and service chain-

ing at IoT environment based on the FL mechanism.

92

© Mahzabeen Emu

Figure 6.1: VNF and SFC deployment in context of various IoT domains

Neural networks, DQN, and FL can be promising approaches to manipulate the

automation of VNF orchestration and service chaining for the next generation IoT

services. However, there are some challenges associated with these advanced learning

techniques that are required to be addressed. One of them is the demand for extensive

GPU resources. GPU with Compute Unified Device Architecture (CUDA) program-

ming framework are ideal for neural networks and deep learning methods. To train

VNF orchestrator and SFC models at the edge IoT devices, extensive hardware design

equipped with proper GPU resources is one of the most anticipated breakthroughs in

the following years to come [54]. While increasing the computational efficiency, it is

also necessary to keep track of the added hardware expenses to balance the overall

performance-cost ratio, particularly for progressively growing competition in the IoT

marketplace.

Another issue is with the ongoing debate regarding centralized and distributed

93

learning. There is no specific answer that justifies the use of either a centralized (DQN,

Neural Networks) or distributed learning approach (FL). While distributed training at

edge IoT devices offer ultra-low latency and reduced privacy concerns, it comes with

the cost of employing sophisticated hardware for vendors with raising the concerns of

profitability for providers and reasonable pricing for customers. However, centralized

learning increases the possibilities of the unnecessary signaling overhead, placement

delay, and relatively less appreciated user experience. The trade-off here requires to

be addressed with extensive research and testing efforts on different VNF deployment

learning models for various practical IoT driven scenarios. Another direction of future

work can be using LSTM so that once new data points arrive, the pre-trained model

can be updated based on the new arrival data points. Certainly, deep learning can

emerge as a promising approach to solve such combinatorial optimization problems,

when integrated with the research expertise of such areas.

94

Appendix A

List of Abbreviations

5G: The fifth generation

6G: The sixth generation

A
API: Application programming interface

AR: Augmented reality

AI: Artificial intelligence

ANN: Artificial neural network

ACO: Ant colony optimization

B
B5G: Beyond 5G

BITW: Bump-in-the-wire

BP: Backpropagation

C

95

CNN: Convolutional neural network

CPU: Central processing unit

D
DC: Data center

DL: Deep learning

DQN: Deep Q-network

DQL: Deep Q-learning

DSO: Deep Q-network sharing based orchestration

E
E2E: End-to-end

ETSI: European Telecommunications Standards Institute

E-ConvNets: Ensemble convolutional neural network

E-ANN: Ensemble artificial neural network

eMBB: Enhanced mobile broadband

F
FF: First fit

FL: Federated learning

G
GPU: Graphics processing unit

Gboard: Google keyboard

I

96

ILP: Integer linear programming

IoT: Internet of things

K
KPI: Key performance indicator

L
LP: Linear programming

LAN: Local area network

M
MEC: Multi-access edge computing

ML: Machine learning

MDP: Markov decision process

MSE: Mean squared error

mMTC: Mobile machine type communication

MEL: Mobile edge learning

MILP: Mixed integer linear programming

N
NFV: Network Function Virtualization

NREN: National research and education network

NB-IoT: Narrow band IoT

O

97

OVN: Open virtual networking

P
PDN-GW: Packet data network gateway

Q
QoE: Quality of experience

QoS: Quality of service

R
ReLU: Rectified linear units

RAN: Radio access network

RAM: Random access memory

S
SI: Swarm intelligence

SDN: Software defined networking

SFC: Service function chaining

SLA: Service level agreement

S-GW: Serving gateway

T
TSP: Telecommunications service provider

t-ACO: Tuned ant colony optimization

98

U
UAV: Unmanned aerial vehicle

UUV: Unmanned underwater vehicle

URLLC: Ultra reliable low-latency communication

V
VR: Virtual reality

VM: Virtual machine

VNF: Virtual network function

VAS: Value added services

VNE: Virtual network embedding

W
WAN: Wide area network

99

Bibliography

[1] J. Navarro-Ortiz, P. Romero-Diaz, S. Sendra, P. Ameigeiras, J. J. Ramos-

Munoz, and J. M. Lopez-Soler, “A survey on 5g usage scenarios and traffic

models,” IEEE Communications Surveys Tutorials, vol. 22, no. 2, pp. 905–929,

2020.

[2] N. N. Dao, Q. V. Pham, N. H. Tu, T. T. Thanh, V. N. Q. Bao, D. S. Lakew,

and S. Cho, “Survey on aerial radio access networks: Toward a comprehensive

6g access infrastructure,” IEEE Communications Surveys Tutorials, pp. 1–1,

2021.

[3] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y. A. Zhang, “The roadmap

to 6g: Ai empowered wireless networks,” IEEE Communications Magazine,

vol. 57, no. 8, pp. 84–90, 2019.

[4] A. M. Zarca, J. B. Bernabe, A. Skarmeta, and J. M. Alcaraz Calero, “Virtual

iot honeynets to mitigate cyberattacks in sdn/nfv-enabled iot networks,” IEEE

Journal on Selected Areas in Communications, vol. 38, no. 6, pp. 1262–1277,

2020.

[5] W. Dong, Z. Xu, X. Li, and S. Xiao, “Low-cost subarrayed sensor array design

strategy for iot and future 6g applications,” IEEE Internet of Things Journal,

vol. 7, no. 6, pp. 4816–4826, 2020.

[6] H. Yang, A. Alphones, Z. Xiong, D. Niyato, J. Zhao, and K. Wu, “Artificial-

intelligence-enabled intelligent 6g networks,” IEEE Network, vol. 34, no. 6, pp.

272–280, 2020.

[7] B. Mao, Y. Kawamoto, and N. Kato, “Ai-based joint optimization of qos and

security for 6g energy harvesting internet of things,” IEEE Internet of Things

Journal, vol. 7, no. 8, pp. 7032–7042, 2020.

100

[8] G. Liu, Y. Huang, N. Li, J. Dong, J. Jin, Q. Wang, and N. Li, “Vision, require-

ments and network architecture of 6g mobile network beyond 2030,” China

Communications, vol. 17, no. 9, pp. 92–104, 2020.

[9] M. Emu and S. Choudhury, “Iot ecosystem on exploiting dynamic vnf orches-

tration and service chaining: Ai to the rescue?” IEEE Internet of Things

Magazine, vol. 3, no. 4, pp. 30–35, 2020.

[10] A. Muhammad, L. Qu, and C. Assi, “Delay-aware multi-source multicast re-

source optimization in nfv-enabled network,” in ICC 2020 - 2020 IEEE Inter-

national Conference on Communications (ICC), 2020, pp. 1–7.

[11] M. Emu, P. Yan, and S. Choudhury, “Latency aware vnf deployment at edge

devices for iot services: An artificial neural network based approach,” in 2020

IEEE International Conference on Communications Workshops (ICC Work-

shops), Dublin, Ireland, 2020, pp. 1–6.

[12] M. Emu and S. Choudhury, “Ensemble deep learning aided vnf deployment for

iot services,” in 2020 16th International Conference on Network and Service

Management (CNSM), Izmir, Turkey, 2020, pp. 1–7.

[13] B. Jaeger, “Security orchestrator: Introducing a security orchestrator in the

context of the etsi nfv reference architecture,” in 2015 IEEE Trustcom/Big-

DataSE/ISPA, vol. 1, 2015, pp. 1255–1260.

[14] R. Amin, M. Reisslein, and N. Shah, “Hybrid sdn networks: A survey of existing

approaches,” IEEE Communications Surveys Tutorials, vol. 20, no. 4, pp. 3259–

3306, 2018.

[15] M. Mehrabi, D. You, V. Latzko, H. Salah, M. Reisslein, and F. H. P. Fitzek,

“Device-enhanced mec: Multi-access edge computing (mec) aided by end device

computation and caching: A survey,” IEEE Access, vol. 7, pp. 166 079–166 108,

2019.

[16] S. Agarwal, F. Malandrino, C. C. Fabiana, and S. De, “Vnf placement

and resource allocation for the support of vertical services in 5g networks,”

IEEE/ACM Trans. Netw., vol. 27, no. 1, p. 433–446, Feb. 2019.

101

[17] L. Fallon, J. Keeney, and R. K. Verma, “Autonomic closed control loops for

management, an idea whose time has come?” in 2019 15th International Con-

ference on Network and Service Management (CNSM), 2019, pp. 1–5.

[18] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless networks:

A comprehensive survey,” IEEE Communications Surveys Tutorials, vol. 20,

no. 4, pp. pp. 2595–2621, Fourthquarter 2018.

[19] A. Hirwe, I. Dalal, and K. Kataoka, “Predicting dynamic network state of sfc

operation with uncertainties,” IEEE Communications Letters, vol. 24, no. 11,

pp. 2564–2568, 2020.

[20] W. Ren, Y. Sun, H. Luo, and M. S. Obaidat, “A new scheme for iot service func-

tion chains orchestration in sdn-iot network systems,” IEEE Systems Journal,

vol. 13, no. 4, pp. 4081–4092, 2019.

[21] T. Wood, K. K. Ramakrishnan, J. Hwang, G. Liu, and W. Zhang, “Toward a

software-based network: integrating software defined networking and network

function virtualization,” IEEE Network, vol. 29, no. 3, pp. 36–41, May 2015.

[22] X. Cheng, Y. Wu, G. Min, and A. Y. Zomaya, “Network function virtualization

in dynamic networks: A stochastic perspective,” IEEE Journal on Selected

Areas in Communications, vol. 36, no. 10, pp. 2218–2232, Oct 2018.

[23] L. Ma, X. Wen, L. Wang, Z. Lu, and R. Knopp, “An sdn/nfv based frame-

work for management and deployment of service based 5g core network,” China

Communications, vol. 15, no. 10, pp. 86–98, 2018.

[24] T. Subramanya and R. Riggio, “Machine learning-driven scaling and placement

of virtual network functions at the network edges,” in 2019 IEEE Conference

on Network Softwarization (NetSoft), Paris, France, June 2019, pp. 414–422.

[25] Y. Liao, L. Shou, Q. Yu, Q. Ai, and Q. Liu, “An intelligent computation de-

mand response framework for iiot-mec interactive networks,” IEEE Networking

Letters, vol. 2, no. 3, pp. 154–158, 2020.

[26] H. Tang, D. Zhou, and D. Chen, “Dynamic network function instance scaling

based on traffic forecasting and vnf placement in operator data centers,” IEEE

Transactions on Parallel and Distributed Systems, vol. 30, no. 3, pp. 530–543,

March 2019.

102

[27] B. Farkiani, B. Bakhshi, and S. A. Mirhassani, “A fast near-optimal approach

for energy-aware sfc deployment,” IEEE Transactions on Network and Service

Management, vol. 16, no. 4, pp. 1360–1373, Dec 2019.

[28] K. Mebarkia and Z. Zsóka, “Service traffic engineering: Avoiding link overloads

in service chains,” Journal of Communications and Networks, vol. 21, no. 1, pp.

69–80, 2019.

[29] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah, “Generic ilp versus

specialized 0-1 ilp: an update,” in IEEE/ACM International Conference on

Computer Aided Design, 2002. ICCAD 2002., San Jose, CA, USA, 2002, pp.

450–457.

[30] J. A. Momoh, M. E. El-Hawary, and R. Adapa, “A review of selected optimal

power flow literature to 1993. ii. newton, linear programming and interior point

methods,” IEEE Transactions on Power Systems, vol. 14, no. 1, pp. 105–111,

1999.

[31] R. lima and E. Seminar, “Ibm ilog cplex-what is inside of the box,” in Proc.

2010 EWO Seminar, 2010, pp. 1–72.

[32] A. S. Minkoff, “A systematic approach to osl application programming,” IBM

systems journal, vol. 31, no. 1, pp. 49–61, 1992.

[33] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2021. [Online].

Available: http://www.gurobi.com

[34] R. Anand, D. Aggarwal, and V. Kumar, “A comparative analysis of optimiza-

tion solvers,” Journal of Statistics and Management Systems, vol. 20, no. 4, pp.

623–635, 2017.

[35] X. S. Yang, Nature-inspired metaheuristic algorithms. Luniver press, 2010.

[36] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE

computational intelligence magazine, vol. 1, no. 4, pp. 28–39, 2006.

[37] G. Beni, “Swarm intelligence,” Complex Social and Behavioral Systems: Game

Theory and Agent-Based Models, pp. 791–818, 2020.

http://www.gurobi.com

103

[38] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE

Computational Intelligence Magazine, vol. 1, no. 4, pp. 28–39, 2006.

[39] P. Roy, A. Tahsin, S. Sarker, T. Adhikary, M. A. Razzaque, and M. Hassan,

“User mobility and quality-of-experience aware placement of virtual network

functions in 5g,” Elsevier Computer Communications, vol. 150, pp. 367–377, 12

2019.

[40] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and wireless

networking: A survey,” IEEE Communications Surveys Tutorials, vol. 21, no. 3,

pp. 2224–2287, thirdquarter 2019.

[41] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial neural

networks-based machine learning for wireless networks: A tutorial,” IEEE Com-

munications Surveys Tutorials, vol. 21, no. 4, pp. pp.3039–3071, Fourthquarter

2019.

[42] K. Braiki and H. Yousef, “Resource management in cloud data centers: A sur-

vey,” in IEEE 15th International Wireless Communications Mobile Computing

Conference (IWCMC), Tangier, Morocco, June 2019, pp. 1007–1012.

[43] X. Huang, S. H. Hong, M. Yu, Y. Ding, and J. Jiang, “Demand response

management for industrial facilities: A deep reinforcement learning approach,”

IEEE Access, vol. 7, pp. 82 194–82 205, 2019.

[44] L. Ale, N. Zhang, H. Wu, D. Chen, and T. Han, “Online proactive caching

in mobile edge computing using bidirectional deep recurrent neural network,”

IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5520–5530, June 2019.

[45] Y. You, Z. Zhang, C. Hsieh, J. Demmel, and K. Keutzer, “Fast deep neural

network training on distributed systems and cloud tpus,” IEEE Transactions

on Parallel and Distributed Systems, vol. 30, no. 11, pp. 2449–2462, Nov 2019.

[46] X. Fu, F. R. Yu, J. Wang, Q. Qi, and J. Liao, “Service function chain embedding

for nfv-enabled iot based on deep reinforcement learning,” IEEE Communica-

tions Magazine, vol. 57, no. 11, pp. 102–108, November 2019.

[47] S. Agarwal, F. Malandrino, C. F. Chiasserini, and S. De, “Vnf placement

and resource allocation for the support of vertical services in 5g networks,”

IEEE/ACM Transactions on Networking, vol. 27, no. 1, pp. 433–446, Feb 2019.

104

[48] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Efficient

neural network robustness certification with general activation functions,” arXiv

preprint arXiv:1811.00866, 2018.

[49] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with

gradient descent is difficult,” IEEE transactions on neural networks, vol. 5,

no. 2, pp. 157–166, 1994.

[50] N. Benvenuto and F. Piazza, “On the complex backpropagation algorithm,”

IEEE Transactions on Signal Processing, vol. 40, no. 4, pp. 967–969, 1992.

[51] B. Liu, X. Yu, P. Zhang, A. Yu, Q. Fu, and X. Wei, “Supervised deep fea-

ture extraction for hyperspectral image classification,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 56, no. 4, pp. 1909–1921, 2018.

[52] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and K. Mizu-

tani, “State-of-the-art deep learning: Evolving machine intelligence toward to-

morrow’s intelligent network traffic control systems,” IEEE Communications

Surveys Tutorials, vol. 19, no. 4, pp. 2432–2455, Fourthquarter 2017.

[53] S. Sakib, M. M. Fouda, Z. M. Fadlullah, N. Nasser, and W. Alasmary, “A

proof-of-concept of ultra-edge smart iot sensor: A continuous and lightweight

arrhythmia monitoring approach,” IEEE Access, vol. 9, pp. 26 093–26 106, 2021.

[54] N. Kato, Z. M. Fadlullah, F. Tang, B. Mao, S. Tani, A. Okamura, and J. Liu,

“Optimizing space-air-ground integrated networks by artificial intelligence,”

IEEE Wireless Communications, vol. 26, no. 4, pp. 140–147, August 2019.

[55] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y. Liang, and D. I.

Kim, “Applications of deep reinforcement learning in communications and net-

working: A survey,” IEEE Communications Surveys Tutorials, vol. 21, no. 4,

pp. 3133–3174, 2019.

[56] T. Vallée, K. Sedki, S. Despres, M. . Jaulant, K. Tabia, and A. Ugon, “On per-

sonalization in iot,” in 2016 International Conference on Computational Science

and Computational Intelligence (CSCI), Las Vegas, NV, 2016, pp. 186–191.

[57] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning based on over-

the-air computation,” in IEEE International Conference on Communications

(ICC), Shanghai, China, May 2019, pp. 1–6.

105

[58] A. Ukil, S. Bandyopadhyay, and A. Pal, “Iot-privacy: To be private or not to be

private,” in 2014 IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS), 2014, pp. 123–124.

[59] C. Pham, N. H. Tran, S. Ren, W. Saad, and C. S. Hong, “Traffic-aware and

energy-efficient vnf placement for service chaining: Joint sampling and matching

approach,” IEEE Transactions on Services Computing, vol. 13, no. 1, pp. 172–

185, 2020.

[60] O. Soualah, M. Mechtri, C. Ghribi, and D. Zeghlache, “Energy efficient algo-

rithm for vnf placement and chaining,” in 2017 17th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2017, pp. 579–

588.

[61] C. Tseng and F. J. Lin, “Extending scalability of iot/m2m platforms with fog

computing,” in 2018 IEEE 4th World Forum on Internet of Things (WF-IoT),

Singapore, 2018, pp. 825–830.

[62] G. Zhong, K. Zhang, H. Wei, Y. Zheng, and J. Dong, “Marginal deep architec-

ture: Stacking feature learning modules to build deep learning models,” IEEE

Access, vol. 7, pp. 30 220–30 233, 2019.

[63] T. H. Luan, L. X. Cai, and X. Shen, “Impact of network dynamics on user’s

video quality: Analytical framework and qos provision,” IEEE Transactions on

Multimedia, vol. 12, no. 1, pp. 64–78, 2010.

[64] S. Sailik, C. Ankur, S. Abdulhakim, H. Dijiang, A. Adel, and K. Sub-

barao, “A survey of moving target defenses for network security,” CoRR, vol.

abs/1905.00964, 2019.

[65] J. Wu, M. Dong, K. Ota, J. Li, W. Yang, and M. Wang, “Fog-computing-

enabled cognitive network function virtualization for an information-centric fu-

ture internet,” IEEE Communications Magazine, vol. 57, no. 7, pp. pp. 48–54,

July 2019.

[66] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb, “Survey

on multi-access edge computing for internet of things realization,” IEEE Com-

munications Surveys Tutorials, vol. 20, no. 4, pp. 2961–2991, Fourthquarter

2018.

106

[67] R. Cziva and D. P. Pezaros, “Container network functions: Bringing nfv to

the network edge,” IEEE Communications Magazine, vol. 55, no. 6, pp. 24–31,

June 2017.

[68] C. Pei, Y. Zhao, G. Chen, R. Tang, Y. Meng, M. Ma, K. Ling, and D. Pei,

“Wifi can be the weakest link of round trip network latency in the wild,” in

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on

Computer Communications, San Francisco, CA, USA, April 2016, pp. 1–9.

[69] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic, latency-optimal

vnf placement at the network edge,” IEEE INFOCOM 2018 - IEEE Conference

on Computer Communications, pp. 693–701, 2018.

[70] M. Abu-Lebdeh, D. Naboulsi, R. Glitho, and C. W. Tchouati, “On the place-

ment of vnf managers in large-scale and distributed nfv systems,” IEEE Trans-

actions on Network and Service Management, vol. 14, no. 4, pp. 875–889, Dec

2017.

[71] W. Lu, L. Liang, and Z. Zhu, “On vnf-sc deployment and task scheduling for

bulk-data transfers in inter-dc eons,” in 2017 IEEE/CIC International Confer-

ence on Communications in (ICCC), Qingdao, China, Oct 2017, pp. 1–4.

[72] P. T. A. Quang, A. Bradai, K. D. Singh, G. Picard, and R. Riggio, “Single and

multi-domain adaptive allocation algorithms for vnf forwarding graph embed-

ding,” IEEE Transactions on Network and Service Management, vol. 16, no. 1,

pp. 98–112, March 2019.

[73] H. Nguyen, T. Do, A. Hegyi, and C. Rotter, “An approach to apply reinforce-

ment learning for a vnf scaling problem,” in 2019 22nd Conference on Inno-

vation in Clouds, Internet and Networks and Workshops (ICIN), 02 2019, pp.

94–99.

[74] X. Zhu and Y. Wang, “Research on virtual network function (vnf) migration,”

Nanjing Youdian Daxue Xuebao (Ziran Kexue Ban)/Journal of Nanjing Uni-

versity of Posts and Telecommunications (Natural Science), vol. 38, pp. 45–53,

02 2018.

107

[75] Z. A. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, Y. Vyas, and M. Yu, “Simple-

fying middlebox policy enforcement using sdn,” SIGCOMM Comput. Commun.

Rev., vol. 43, no. 4, pp. 27–38, Aug. 2013.

[76] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul, “Flowtags: Enforcing

network-wide policies in the presence of dynamic middlebox actions,” in Pro-

ceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software

Defined Networking, ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp.

19–24.

[77] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and S. Davy,

“Design and evaluation of algorithms for mapping and scheduling of virtual

network functions,” in Proceedings of the 2015 1st IEEE Conference on Network

Softwarization (NetSoft), April 2015, pp. 1–9.

[78] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca, “The dynamic

placement of virtual network functions,” in 2014 IEEE Network Operations and

Management Symposium (NOMS), May 2014, pp. 1–9.

[79] S. Ayoubi, S. Sebbah, and C. Assi, “A cut-and-solve based approach for the

vnf assignment problem,” IEEE Transactions on Cloud Computing, pp. 1–1, 06

2017.

[80] R. Cziva and D. P. Pezaros, “On the latency benefits of edge nfv,” in 2017

ACM/IEEE Symposium on Architectures for Networking and Communications

Systems (ANCS), May 2017, pp. 105–106.

[81] A. Alleg, T. Ahmed, M. Mosbah, R. Riggio, and R. Boutaba, “Delay-aware

vnf placement and chaining based on a flexible resource allocation approach,”

in 2017 13th International Conference on Network and Service Management

(CNSM), Nov 2017, pp. 1–7.

[82] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive vnf scaling and flow routing with

proactive demand prediction,” in IEEE INFOCOM 2018 - IEEE Conference on

Computer Communications, April 2018, pp. 486–494.

[83] K. S. Ghai, S. Choudhury, and A. Yassine, “A stable matching based algorithm

to minimize the end-to-end latency of edge nfv,” Procedia Computer Science,

vol. 151, pp. pp. 377 – 384, 2019.

108

[84] M. R. Garey. and D. S. Johnson, Computers and Intractability; A Guide to the

Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co.,

1990.

[85] R. Livni, S. Shalev, and O. Shamir, “On the computational efficiency of training

neural networks,” in Advances in Neural Information Processing Systems 27.

Curran Associates, Inc., 2014, pp. 855–863.

[86] K. S. Ghai, S. Choudhury, and A. Yassine, “Efficient algorithms to minimize the

end-to-end latency of edge network function virtualization,” Journal of Ambient

Intelligence and Humanized Computing, 01 2020.

[87] W. Saad, M. Bennis, and M. Chen, “A vision of 6g wireless systems: Ap-

plications, trends, technologies, and open research problems,” IEEE Network,

vol. 34, no. 3, pp. 134–142, 2020.

[88] M. Gharbaoui, C. Contoli, G. Davoli, G. Cuffaro, B. Martini, F. Paganelli,

W. Cerroni, P. Cappanera, and P. Castoldi, “Demonstration of latency-aware

and self-adaptive service chaining in 5g/sdn/nfv infrastructures,” in 2018 IEEE

Conference on Network Function Virtualization and Software Defined Networks

(NFV-SDN), Verona, Italy, Nov 2018, pp. 1–2.

[89] H. Ben-Ammar, Y. Hadjadj-Aoul, and S. Ait-Chellouche, “Efficiently allocating

distributed caching resources in future smart networks,” in 2019 16th IEEE

Annual Consumer Communications Networking Conference (CCNC), Jan 2019,

pp. 1–4.

[90] H. Ge, F. Jiang, and Z. Zhang, “A hybrid localization algorithm of rss and

toa based on an ensembled neural network,” in 2019 IEEE 8th Joint Interna-

tional Information Technology and Artificial Intelligence Conference (ITAIC),

Chongqing, China, May 2019, pp. 1280–1284.

[91] J. Fu and G. Li, “An efficient vnf deployment scheme for cloud networks,”

in 2019 IEEE 11th International Conference on Communication Software and

Networks (ICCSN), Chongqing, China, June 2019, pp. 497–502.

[92] V. Quintuna Rodriguez and F. Guillemin, “Cloud-ran modeling based on par-

allel processing,” IEEE Journal on Selected Areas in Communications, vol. 36,

no. 3, pp. pp. 457–468, March 2018.

109

[93] T. Hirayama, T. Miyazawa, M. Jibiki, and V. P. Kafle, “Service function migra-

tion scheduling based on encoder-decoder recurrent neural network,” in 2019

IEEE Conference on Network Softwarization (NetSoft), Paris, France, June

2019, pp. 193–197.

[94] C. Zhang, H. P. Joshi, G. F. Riley, and S. A. Wright, “Towards a virtual

network function research agenda: A systematic literature review of vnf design

considerations,” Journal of Network and Computer Applications, vol. 146, p.

102417, 2019.

[95] J. Gil Herrera and J. F. Botero, “Resource allocation in nfv: A comprehensive

survey,” IEEE Transactions on Network and Service Management, vol. 13, no. 3,

pp. 518–532, Sep. 2016.

[96] J. Fu and G. Li, “An efficient vnf deployment scheme for cloud networks,” pp.

pp. 497–502, June 2019.

[97] X. Chen, Z. Zhu, J. Guo, S. Kang, R. Proietti, A. Castro, and S. J. B.

Yoo, “Leveraging mixed-strategy gaming to realize incentive-driven vnf service

chain provisioning in broker-based elastic optical inter-datacenter networks,”

IEEE/OSA Journal of Optical Communications and Networking, vol. 10, no. 2,

pp. pp. 232–240, Feb 2018.

[98] N. T. Khai, A. Baumgartner, and T. Bauschert, “Optimising virtual network

functions migrations: A flexible multi-step approach,” in 2019 IEEE Conference

on Network Softwarization (NetSoft), Paris, France, June 2019, pp. 188–192.

[99] X. Zhou, B. Yi, X. Wang, and M. Huang, “Approach for minimising network

effect of vnf migration,” IET Communications, vol. 12, no. 20, pp. pp. 2574–

2581, 2018.

[100] K. S. Ghai, S. Choudhury, and A. Yassine, “Efficient algorithms to minimize the

end-to-end latency of edge network function virtualization,” Journal of Ambient

Intelligence and Humanized Computing, 01 2020.

[101] Y. Qian, L. Hu, J. Chen, X. Guan, M. Hassan, and A. Alelaiwi, “Privacy-

aware service placement for mobile edge computing via federated learning,”

Information Sciences, vol. 505, pp. 562 – 570, 2019.

110

[102] H. Ghafoor and Y. Noh, “An overview of next-generation underwater target

detection and tracking: An integrated underwater architecture,” IEEE Access,

vol. 7, pp. pp. 98 841–98 853, 2019.

[103] V. Sanchez-Aguero, F. Valera, B. Nogales, L. F. Gonzalez, and I. Vidal, “Venue:

Virtualized environment for multi-uav network emulation,” IEEE Access, vol. 7,

pp. 154 659–154 671, 2019.

[104] M. Alasaly, M. Hassan, and A. Alsanad, “A cognitive/intelligent resource provi-

sioning for cloud computing services: opportunities and challenges,” Soft Com-

puting, p. pp. 9069–9081, 05 2019.

[105] P. Vamplew, J. Yearwood, R. Dazeley, and A. Berry, “On the limitations of

scalarisation for multi-objective reinforcement learning of pareto fronts,” in

Australasian joint conference on artificial intelligence. Springer, 2008, pp.

372–378.

[106] P. Sequeira and M. Gervasio, “Interestingness elements for explainable reinforce-

ment learning: Understanding agents’ capabilities and limitations,” Artificial

Intelligence, vol. 288, p. 103367, 2020.

[107] M. Amirabadi, M. Kahaei, and S. Nezamalhosseini, “Novel suboptimal

approaches for hyperparameter tuning of deep neural network [under the

shelf of optical communication],” Physical Communication, vol. 41, p. 101057,

2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S1874490719306652

[108] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The

internet topology zoo,” IEEE Journal on Selected Areas in Communications,

vol. 29, no. 9, pp. 1765–1775, 2011.

[109] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng, “Iot middleware:

A survey on issues and enabling technologies,” IEEE Internet of Things Journal,

vol. 4, no. 1, pp. 1–20, 2017.

[110] A. Laghrissi and T. Taleb, “A survey on the placement of virtual resources and

virtual network functions,” IEEE Communications Surveys Tutorials, vol. 21,

no. 2, pp. 1409–1434, 2019.

http://www.sciencedirect.com/science/article/pii/S1874490719306652
http://www.sciencedirect.com/science/article/pii/S1874490719306652

111

[111] H. Hantouti, N. Benamar, T. Taleb, and A. Laghrissi, “Traffic steering for

service function chaining,” IEEE Communications Surveys & Tutorials, vol. 21,

no. 1, pp. 487–507, 2019.

[112] A. Mohamad and H. S. Hassanein, “On demonstrating the gain of sfc placement

with vnf sharing at the edge,” in 2019 IEEE Global Communications Conference

(GLOBECOM), Waikoloa, HI, USA, 2019, pp. 1–6.

[113] J. Wang, H. Qi, K. Li, and X. Zhou, “Prsfc-iot: A performance and resource

aware orchestration system of service function chaining for internet of things,”

IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1400–1410, 2018.

[114] G. Wang, S. Zhou, S. Zhang, Z. Niu, and X. Shen, “Sfc-based service provision-

ing for reconfigurable space-air-ground integrated networks,” IEEE Journal on

Selected Areas in Communications, vol. 38, no. 7, pp. 1478–1489, 2020.

	Supervisory Committee
	Abstract
	Acknowledgements
	Publications
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Virtual Network Functions
	Multi-access Edge Computing
	Service Function Chaining
	Traditional Mathematical Programming Model
	Meta-heuristics
	Neural Networks for VNF Allocation
	Artificial Neural Networks
	Convolutional Neural Network

	Deep Reinforcement Learning
	IoT Networks in AI-aided NFV Context
	Powering Personalized Experiences for IoT Devices
	Robust and Privacy Preserving Cloud Infrastructures for IoT Services
	Energy Efficiency and Ultra-low Latency Benefits
	Scalability Intelligence: From Micro Training to Macro Testing
	Architecture Design: Emphasizing on the Selection of the Most Appropriate Model

	Summary

	Latency Aware VNF Deployment at Edge Devices for IoT Services
	Introduction
	Related Work
	Optimal Edge VNF Placement
	System Model
	Problem Formulation

	VNF Placement Using ANN
	Experimental Results
	Summary

	Real-time VNF Deployment for Mobile IoT Environment
	Introduction
	Related Work
	System Model
	Optimization Framework for VNF Deployment
	Metaheuristic based ACO approach for VNF deployment
	Calculation of Initial Pheromone Value
	Heuristic Formulation
	Cloudlet DC Selection Technique
	Global Pheromone Update
	System Parameters

	Proposed Deep Learning Aided VNF Deployment
	Labeled Dataset Generation
	Ensemble Convolutional Neural Netowrks (E-ConvNets)
	Ensemble Artificial Neural Networks (E-ANN)

	Performance Evaluation
	t-ACO : Hyperparameter Tuning of ACO
	Hyperparameter Selection of Proposed Deep Learning Models
	Simulation Environment
	Performance Metrics
	Results and Discussion
	Case study on Generalization
	Generalization Settings: Bias-Variance Trade-off Analysis

	Summary

	Intelligent SFC Orchestrator for Time and Resource Intensive Ultra Dense IoT Networks
	Introduction
	Related Work
	Optimized SFC Orchestration Framework
	DSO: Proposed DQN driven Approach for Sharing based SFC Orchestration
	State and Action Space
	Reward Function Design

	Performance Evaluation
	Summary

	Conclusion and Future Work
	List of Abbreviations
	Bibliography

