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ABSTRACT 

 
 

Davidson, L. J. 2019. The Impact of Climate Change on the Phenology Short- and 
Long-Distance Migratory Birds. 31 pp. 

 
 
Key Words: bird migration, long-distance migrants, short-distance migrants, climate 
change, phenotypic plasticity, microevolution 
 
 

Quickly changing temperatures due to climate change are expected to have 
devastating consequences on the migratory bird populations around the globe. However, 
surprisingly, several studies have demonstrated that some species may be able to keep 
up with the unusually rapid changing temperatures that we are experiencing, as a variety 
of species in these studies have shown changes in their migratory behavior in response 
to these changing temperatures. This thesis aims to determine how climate change will 
affect the migratory behavior in birds and which bird species will be more resilient to 
these changes. It was hypothesized that short-distance migrants would be more resilient 
and better able to adapt to climate change than long-distance migrants, and that short-
distance migrants would shorten their migratory journey or become residents on their 
breeding grounds. Two case studies were investigated to determine whether this 
hypothesis was valid: case study #1 examined the shifts in bird migration timing of 
long- and short-distance migrants, and case study #2 explored the selection for lower 
migratory activity and residency in previously migratory bird populations. It was found 
that short- and long-distance migrants are both responding significantly to the changing 
temperatures and are adjusting their migration times accordingly. In short-distance 
migrant populations, it was found that the increased global temperatures are currently 
favouring birds that are expressing reduced migratory activity. These results suggest that 
phenotypic plasticity and/or microevolution are at play. It has been concluded that it is 
still more likely that short-distance migrants are more resilient to climate change than 
long-distance migrants in the long-run because they show more genetic variability in 
their phenotypic responses, which means that they have a greater evolutionary potential 
than long-distance migrants. 
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1.0 INTRODUCTION 
 

The evolution of migration in birds is a widely debated subject to this day among 

ornithologists (Salewski and Bruderer 2007). Over the years, two main theories for the 

origin of bird migration have been discussed: the “northern-home-theory,” which 

assumes that birds originated from the current northern temperate zone and had to 

migrate south for their non-breeding activities as the climate changed and the “southern-

home-theory,” which assumes that birds originated from the tropics and migrated north 

for better breeding opportunities (Cox 1968; Salewski and Bruderer 2007).  

The leading theory is that the ancestors of tropical birds dispersed northward 

from their tropical breeding sites, supporting the “southern-home-theory” (Cornell 

University 2007). In the tropics, there is high competition for food and space, as well as 

high nest predation rates during the breeding season (Mayntz 2019). Birds that migrate 

out of tropical areas have an advantage over those that do not because they get to utilize 

the seasonally abundant food and unlimited space in the north, which confers higher 

reproductive success (Mayntz 2019).  

The routes of migrating birds vary widely between different species because 

migratory behavior has evolved independently (Meunier et al. 2008). Some migratory 

bird species can be found travelling short distances, within their climate zone, while 

others travel incredibly long distances, between climate zones (Allaby and Park 2013). 

Cyclical control mechanisms that stimulate and terminate migration at certain times of 

the year varies between these different groups of migrants (Meunier et al. 2008). 

Generally, short-distance migrants use external cues such as environmental variables 

and photoperiodism to time their migration, while long-distance migrants mostly rely on 
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internal (endogenous) cues such as zugunruhe, a migratory restlessness that triggers the 

onset of migration from their wintering grounds (Meunier et al. 2008). Some species 

travelling longer distances are also known to take advantage of photoperiod during their 

passage to the breeding grounds and/or as a trigger for the onset of homeland migration 

(Åkesson 2017).  

It is important to conserve the migratory bird populations, as they provide vital 

ecosystem benefits including pest control, the pollination of plants, and seed dispersal 

(USGS n.d.; Food and Agriculture Organization of the United Nations 2017). They also 

serve as an important part of the food chain (USGS n.d.). However, the conservation of 

these birds may become difficult as global climate change continues to take effect and 

temperatures rise to higher levels (McCarty 2002). Climate change is beginning to affect 

some bird species’ in their behavior, ranges and population dynamics (Nature Canada 

n.d.). Ornithologists have already noticed changes in the timing of their migration or 

reproduction, and shifts in their migratory routes (National Audubon Society n.d.). 

Higher rates of decline in long-distance migratory bird populations compared to those of 

their short-distance migratory and resident counterparts has also been observed (Howard 

et al. 2018). Migrating birds are particularly vulnerable to climate change effects 

because they depend on a range of multiple environments to survive, which may 

eventually be lost (Nature Canada n.d.). In the past, species were able to respond to 

global temperature shifts because these shifts were gradual (National Audubon Society 

n.d.). However, the rate of temperature increase today is 10 times faster than the average 

rate of increase since the last ice age (National Audubon Society n.d.; NASA 2010). 

This is a reason for concern because species may not be able to adapt quickly enough to 
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avoid extinction over the next century (National Audubon Society n.d.). Unless serious 

actions are taken towards preventing global climate change, then a large numbers of bird 

species will be at risk of extinction (Nature Canada n.d.).  

1.1  Objective:  

The purpose of this thesis is to identify how climate change will generally affect 

the migratory behavior in birds and what this means for the migratory bird population. 

By examining migrating distances, spring arrival dates, fall departure dates, and the 

proportion of partial migrants in migratory populations, we can predict the potential 

consequences that climate change will have on migratory species as well as determine 

which species are more likely to be resilient to these consequences. 

1.2 Hypothesis:  

It is hypothesized that short-distance migrants will be more resilient and better 

able to adapt to future climate conditions than long-distance migrants and that short-

distance migrants will shorten their migratory routes or become residents in their 

breeding areas. 
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2.0 LITERATURE REVIEW   

2.1. MICROEVOLUTION OR PHENOTYPIC PLASTICITY 

Microevolution and phenotypic plasticity are possible mechanisms than may 

explain the adaptation of migratory activity to climate change (Charmantier et al. 2008; 

Schaefer et al. 2008). Phenotypic plasticity occurs when an organism is able to express 

different phenotypes in response to different environmental conditions (Gienapp et al. 

2007; Schaefer et al. 2008), and microevolution is a response to natural selection and 

involves a change to the genetic constitution of a population over time (Merilä et al. 

2001). While a microevolutionary response to climate change could take a few 

generations, phenotypic plasticity allows individuals to respond to change within their 

lifetimes (Boutin and Lane 2014). Furthermore, the rapid increase in global 

temperatures is calling for an increased demand for rapid adaptation, which will mostly 

occur through plastic changes (Charmantier et al. 2008). Phenotypic plasticity is often 

highly adaptive (Gienapp et al. 2007) and may even have evolutionary potential (Boutin 

and Lane 2014; Grant and Grant 2002; Pulido and Berthold 2010). However, an 

evolutionary response will most likely only occur if a particular trait is already heritable, 

e.g., the timing of spring migration (Gienapp et al. 2007). Microevolutionary and/or 

plastic changes are characterized by the shortening of migration distances, shifts in 

spring arrival and fall departure dates, and the proportion of partial migrants and 

residents in a previously migratory population (Pulido 2007). In addition, short and 

long-distance migratory birds will differ in the degree of phenotypic plasticity they 

express (Charmantier et al. 2008).  
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2.2 BIRD MIGRATION TIMING 

The rapidly changing environment is expected to affect migratory behavior in 

birds. However, not all changes in migratory behavior are caused by warming 

temperatures, as some species, such as certain Blackcap (Sylvia atricapilla) populations 

in England, have been altering their migration times in accordance with humans feeding 

them in the winter (Carey 2009). For the large majority of cases though, phenological 

shifts are most impacted by warming temperatures. Several recent studies have linked 

the advanced spring arrival and delayed autumn departure dates directly to climate 

change, where the maximum temperature has the most influence on the number of days 

spent at breeding grounds (Butler 2003; Zaifman et al. 2017; Žalakevičius 1998). These 

studies have all proposed that short-distance migrants are altering their migration 

patterns more often, and to a greater degree, than long-distance migrants.  

2.2.1 SPRING MIGRATION 

The timing of spring migration in birds has evolved to match peak food 

availability (Both et al. 2010; Carey 2009; Jonzen et al. 2006). However, climate change 

has caused different phenological responses across the trophic levels, making it difficult 

for migrating birds to breed at the time of maximum food abundance (Both et al. 2006). 

Mismatching occurs to species that have not yet advanced their spring arrival dates to 

the time of high food abundance, which could result in reduced availability of food 

during the feeding of nestlings (Carey 2009). As a consequence, many birds will face 

declining populations if they are not able to compensate for the advancement of their 

main food supply (Both and Visser 2001). 
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To thoroughly analyze the effects of climate warming on spring arrival dates, 

researchers have examined decades worth of spring sightings data with hundreds of 

different bird species. These studies have found that short-distance migrants are arriving 

considerably earlier to their breeding sites than the long-distance migrants (Both and 

Visser 2001; Butler 2003; Møller 2008; Murphy-Klassen et al. 2005; Pulido and 

Widmer 2009). In general, species that migrate from nearby temperate areas tend to 

arrive to their breeding grounds earlier than species that migrate from tropical areas 

because they are able to adjust the timing of their migration in response to local climate 

change (Jonzen 2006; Murphy-Klassen et al. 2005; Usui 2017). Tropical-wintering long 

distance migrants may have more difficulty adjusting to these changes because they time 

their migration through endogenously driven circannual rhythms, rather than external 

cues, and thus, they have a lower responsiveness to changing spring temperatures (Both 

and Visser 2001; Usui 2017). However, contrary to most studies, the research of Jonzen 

et al. (2006), which was based on long-term banding and observational data in 

Scandinavia from 1980 to 2004, found that long-distance passerine migrants from the 

tropics have been advancing their arrival dates more often than short-distance passerine 

migrants. This suggests that, even though long-distance migratory activity is under 

endogenous control, individual variation in response to temperature changes during their 

passage may trigger climate-driven evolutionary changes (Jonzen et al. 2006). In fact, it 

has been shown that by adjusting migration speed on route, some long-distance migrants 

have been expressing some degree of variation in their phenotypic response to climate 

change (Forchhammer et al. 2002; Sparks et al. 2004). However, Both (2007) argued 



7 
 

that this variation may just be a result of improved environmental conditions on route, 

and not an evolutionary response. 

 2.2.2 AUTUMN MIGRATION 

 The timing of autumn migration, whether it is advanced or delayed, varies 

among species (Hällforsa 2020). In some cases, the timing of events on the breeding 

grounds carry over to affect the timing of autumn migration (Mills 2005; Mitchell 2012; 

Zaifman et al. 2017). For example, Mills (2005) and Tottrup (2006) both hypothesized 

that if the amount of time that a species spends on their breeding grounds is constant, 

and if climate change allows for earlier spring arrival and breeding, than migrants may 

be stimulated to return to their winter ranges sooner (Filippi-Codaccioni et al. 2010; 

Mills 2005; Tøttrup et al. 2006). This would support the research of Jonzen et al. (2006) 

who found that advanced arrival dates in long-distance migrants happened because some 

long-distance migrants are indeed advancing their annual schedule. Departure from the 

breeding grounds in autumn is often dictated by the future environmental conditions on 

their migration home (Åkesson 2017; Rowan 1926). Long-distance migrants rely mostly 

on circannual rhythms to time their migration; however, at their temperate breeding 

sites, they are also able to use photoperiod to determine their optimal autumn departure 

dates (Åkesson 2017). This is how they may be able to shorten their time spent on the 

breeding grounds, even with no advance in their spring arrival times. Advanced 

departure dates could be beneficial to a long-distance migrant because they could find 

better territories if they arrive earlier to their winter homes, which could result in better 

preparation for spring migration in the next season (Filippi-Codaccioni et al. 2010). 

Although long-distance migrants have shown some variation in their autumn departure 
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dates, many annual schedules of these migrants have remained unchanged (Butler 2003; 

Murphy-Klassen et al. 2005). For the majority of cases, long-distance migrants 

overwintering further away from their breeding grounds are very much constrained by 

the timing of their migratory journey which prevents adequate adaptation (Both and 

Visser 2001; Jenni and Kéry 2003). 

In contrast, Butler (2003) suggested that short-distance migrants are able to 

respond more quickly to slightly more favourable conditions than long-distance 

migrants. Short-distance migrants are likely to delay their autumn migration because the 

warmer temperatures allow them to benefit from a prolonged breeding season and an 

increased availability of food later in the year (Hällforsa 2020; Jenni and Kéry 2003).  

Delayed autumn migration from the breeding site has its disadvantages as well. Mitchell 

et al. (2012) revealed that late departures could increase an individual’s risk of 

inclement weather during autumn migration and diminished resources at stopover sites 

as a result of resource suppression by earlier migrants. 

2.3 TRANSITION FROM MIGRANTS TO PARTIAL-MIGRANTS/RESIDENTS   

 The evolution of partial migration in some species is currently in progress 

(Pulido and Berthold 2010; Visser et al. 2009). The advanced arrival in the spring and 

delayed departure in autumn, as observed in short-distance migrants, may be a direct 

consequence of birds wintering closer to their breeding grounds where these species are 

better able to predict the onset of spring at their breeding sites (Visser et al. 2009). This 

would explain why short-distance migrants show stronger advancements in arrival dates 

and longer delays in departure dates relative to long-distance migrants, who often have 
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less flexible migration strategies (Visser et al. 2009). Long-distance migrants may not be 

able to shorten their migratory journey because they are constrained by the loss of 

suitable habitat between their breeding and wintering areas (Barbet-Massin et al. 2009). 

This loss in habitat is predicted to increase with climate change and will cause longer 

migration distances for these migrants (Barbet-Massin et al. 2009; Doswald et al. 2009), 

again preventing adaptation (Pulido and Berthold 2010). Selection for lower migratory 

activity in response to global warming will eventually drive the evolution for residency 

in short-distant and partial-migratory populations, without the need for “residency 

genes” by mutation or gene flow (Pulido and Berthold 2010). An increase in the number 

of resident populations in a number of short-distance migrants has been recently 

documented in North America and Europe (La Sorte and Thompson III 2007; Pulido 

and Berthold 2010; Visser et al. 2009). Former migrants would be able to capitalize on 

reduced migration costs and rapid adjustments to the shifts in timing of the availability 

of food if they become residents on their breeding grounds (Pulido and Berthold 2010).  

2.4 NORTH AMERICAN BIRD SPECIES MOST LIKELY TO CHANGE 
MIGRATION PATTERNS DUE TO CLIMATE CHANGE  

Prior studies have shown how some species will be more adaptable amidst 

climate change than others. Because adaptability results from phenotypic plasticity, 

species that are more ‘plastic’ will naturally be more flexible to changes in their 

environment. Certain traits may be more plastic than others, and the species that carry 

these traits are more likely to be favoured by natural selection as temperatures continue 

to change (Gienapp et al. 2007). Some North American species that have shown these 

plastic changes in previous studies are highlighted in Table 1. These migrating birds 

have shown significant changes in their migration timing due to climate change.  
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Table 1. Changes in bird migration patterns from previous studies. 

Study Location Species Type of migrant 

Mills (2005) Ontario Hermit Thrush  

(Catharus guttatus) 

Short-distance  

Mills (2005) Ontario Magnolia Warbler 

(Setophaga magnolia) 

Long-distance 

Mills (2005) Ontario White-throated Sparrow 

(Zonotrichia albicollis) 

Short-distance  

Mills (2005) Ontario Yellow Warbler 

(Setophaga petechia) 

Long-distance 

Mills (2005) Ontario Yellow-rumped 

Warbler (Setophaga 

coronata) 

Short-distance 

Murphy-Klassen 

et al. (2005) 

Manitoba Common Grackle 

(Quiscalus quiscula) 

Partial migrant 

Murphy-Klassen 

et al. (2005) 

Manitoba Killdeer  

(Charadrius vociferus) 

Partial migrant 

Murphy-Klassen 

et al. (2005) 

Manitoba Wilson’s Snipe  

(Gallinago delicata) 

Long-distance 

Murphy-Klassen 

et al. (2005) 

Manitoba Canada Goose  

(Branta canadensis) 

Short-distance 

Murphy-Klassen 

et al. (2005) 

Manitoba Hooded Merganser 

(Lophodytes cucullatus) 

Short-distance 
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Butler (2003) New York White‐throated Sparrow 

(Zonotrichia albicollis) 

Short-distance 

Butler (2003) New York Brown-headed Cowbird 

(Molothrus ater) 

Short-distance 

Butler (2003) New York Eastern Bluebird  

(Sialia sialis) 

Partial migrant 

Butler (2003) New York Purple Martin  

(Progne subis) 

Long-distance 

Butler (2003) New York Field Sparrow  

(Spizella pusilla)  

Short-distance 

 

 Some of the common species mentioned in Table 1 are presented as photos in 

Figure 1; this includes one long-distance migrant (Purple Martin), one short-distance 

migrant (White-throated Sparrow), and one partial migrant (Common Grackle).  
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Figure 1. White-throated Sparrow (Cornell University 2019)  
(top left), Common Grackle (Dunne 2019) (bottom left), and  
Purple Martin (Horn 2005) (right).  

 
3.0 RESULTS 

3.1  CASE STUDY #1: SHIFTS IN BIRD MIGRATION TIMING OF LONG-
DISTANCE AND SHORT-DISTANCE MIGRANTS  

As climate change has progressed, alterations in migration strategies in birds 

have become a widely studied phenomenon; however, the extent of these alterations has 

only recently begun to be analyzed (Zaifman et al. 2017). Utilizing data from the 

citizen-science website eBird and historical temperature data, Zaifman et al. (2017) 

analyzed bird migration patterns to determine differences in their correlation with 

historical temperature changes. In this study, bird migration timing was measured 

annually from 2010 to 2016 in two states warming quickly (Alaska and Maine) and one 

state warming gradually (South Carolina). Bird species in each state were manually 

categorized into year-round residents, summer residents, winter residents, and transient 

migrants. The birds were then further categorized into long- and short-distance migrants 
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based on whether they travelled more than ∼2000 km (long-distance migrants) or less 

than ∼2000 km (short-distance migrants) between breeding and wintering grounds. 

Figure 2 shows the general alterations that were found by Zaifman et al. (2017) 

in bird migration timing by state. It also demonstrates the differences between the long-

distance and short-distance migrants showing changes in migration patterns due to 

changing temperatures.  

 

 

 

 

 

 

Figure 2. The long- and short-distance migrant species that showed changes in migration 
patterns over time from 2010 to 2016 in Alaska, Maine, and South Carolina (Zaifman et 
al. 2017).  

 

It was determined that each state contained species that showed shifts in the 

timing of their migration, and these shifts correlated with the warming temperatures 

from 2010 to 2016. In each state, over half of the birds that had altered their migration 

timing were long-distance migrants. One long-distance migrant that had adjusted its 

migration patterns during the span of this study was the Semipalmated sandpiper 
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(Calidris pusilla). As the minimum temperature in Maine increased, this species 

remained in the same area of Maine for a longer time. 

A feature selection and analysis were performed on summer resident, winter 

resident, transient spring, and transient fall birds to determine the features most 

associated with changes in bird migration timing. For each dataset in their research, five 

features were ranked (state, migration distance (long or short), and maximum, 

minimum, and mean temperature) in accordance with changes in the migration pattern at 

arrival date, departure date, and duration of stay. Table 2 shows the analysis of the 

selected ‘most influential’ feature impacting changing arrival dates, departure dates, and 

number of days for summer resident, winter resident, and transient spring and fall 

migrations. 

Table 2. The most influential features that impacted the changing arrival dates, departure 
dates, and number of days stayed for the spring and fall migrations of summer resident 
(SR), winter resident (WR), and transient (T) species (Zaifman et al. 2017). 

  Most important feature 

SR WR T spring T fall 

 

AD State Min temp. State State 

DD Mean temp. Max temp. State State 

ND State Max temp. Max temp. Max temp. 

 

In this case, summer residents refer to those species that have travelled north to 

their summer breeding grounds. Winter residents refer to those that have migrated back 
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south from their summer breeding grounds to their wintering locations. Transient 

migrants are the migratory species that do not nest or winter in the area where the data 

was collected for the study but use the area as a stop-over site on route to or from their 

summer or wintering grounds.  

The arrival dates of summer resident and transient bird changes were most 

influenced by state. The most important feature for the departure date of summer 

residents from their breeding grounds was mean temperature. The maximum 

temperature at the stop-over site was the most important feature for the number of days 

stayed at stop-over sites in transient migrants. During winter resident migration, the 

minimum temperature was the most important feature for the arrival date to their 

wintering grounds. In contrast, the maximum temperature most influenced their 

departure date and length of stay. 

3.2  CASE STUDY #2: CURRENT SELECTION FOR LOWER MIGRATORY 
ACTIVITY WILL DRIVE THE EVOLUTION OF RESIDENCY IN A MIGRATORY 
BIRD POPULATION  

 As temperatures continue to increase, the survival and adaptability of many 

species will be tested. Pulido and Berthold’s (2010) aimed to predict how certain species 

will adapt to the sudden and rapid increase in temperatures. This was accomplished 

through examining the migration behavior in a population of European Blackcaps 

(Sylvia atricapilla) (Figure 3) to test for evolutionary responses to recent climate 

change. The Blackcap is a small passerine bird that typically breeds in southern 

Germany or Austria and winters in southern Europe to northern Africa or the United 

Kingdom (Figure 3).  



16 
 

 

 

 

 

 

 

 

 

Figure 3. Blackcap (left) and its migratory route in Europe (right)  
(Britannica 2021; Understanding Evolution 2010). 

 

This species is partially migratory, which means that its population consists of 

both migrants and residents. The Blackcap, in particular, exhibits a wide variety of 

migration patterns, with some travelling short distances, some travelling long distances, 

and some who do not migrate at all (Delmore et al. 2020). Specifically, Pulido and 

Berthold (2010) used Blackcaps in their experiment because they have strongly 

responded to recent increases in temperature and associated environmental changes in 

central Europe, making them the model species for studying the genetics and evolution 

of avian migration.  

 Using a common garden experiment and selective breeding in captivity, as well 

as an artificial selection experiment, Pulido and Berthold (2010) were able to collect the 

relevant data to test whether Blackcaps have adapted their migratory behavior to the 

recent increase in ambient temperatures and to the resulting widening of the 

reproductive time window.  
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Experiment #1: Common Garden Experiment. The common garden 

experiment allowed Pulido and Berthold (2010) to draw inferences about genetic 

changes in wild populations with a strict and controlled set of experimental conditions 

that did not change over time. This was achieved through collecting nestlings at an early 

age, hand-raising them, and studying them in climate-controlled chambers in captivity 

from 1988 to 2002. These results showed a genetic reduction in migratory activity, 

which were not induced by environmental conditions or maternal effects (environment 

provided by mothers to offspring) from the parents collected in the wild. All traits 

investigated showed moderate to high heritabilities. A change in the response of the age 

at onset of migration to hatching date was also found within the 14 years of this study. 

Experiment #2: Selection Experiment. Between 1996 and 2002, Pulido and 

Berthold (2010) conducted an artificial selection experiment in which a total of 305 

Blackcaps were bred using the birds collected in the wild from 1995 and 2001. Lower 

migratory activity was selected for in a selection line, which they ran for up to five 

generations. The response of the amount of migratory activity was highest in the first 

generation of selection and decreased thereafter. Overall, the selection experiment 

showed strong responses to the selection for lower migratory activity, yielding a total of 

14 non-migratory individuals (individuals showing no migratory activity) in an 

exclusively migratory population.  

4.0 DISCUSSION 

Because of spatial differences in the strength of climate change, bird migration 

timing is location-specific, with both short- and long-distance migrating birds adjusting 
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their migration timing differently through different latitudes (Rubolini et al. 2007). This 

phenomenon is best represented through the feature analysis of Zaifman et al. (2017) 

(Table 2), where the authors attempt to determine why species were altering their 

migration timing at different rates. In the feature analysis, a migrant’s timing changes 

were most influenced by temperature and state. In Maine and South Carolina, migrants 

stayed longer at their breeding grounds as temperature increased, while the opposite 

trend occurred in Alaska. This seems to be a consistent pattern among both short- and 

long-distance migrants. Based on all of the species studied, Zaifman et al. (2017) also 

observed that maximum temperature had the most influence on the arrival date, 

departure date, and the number of days stayed at the breeding grounds (summer resident 

migration), and that minimum temperature was most associated with the arrival date at 

the wintering grounds (winter resident migration). These results indicate that birds may 

migrate to their warmer wintering grounds to avoid the harsh weather conditions in their 

breeding grounds (Somveille et al. 2015). It also suggests that birds may return to their 

breeding grounds as the maximum temperature during the winter increases because a 

temperature increase at the wintering grounds can indicate a temperature increase at the 

breeding grounds, as well as a larger abundance of food (Barcena et al. 2004).  

My thesis hypothesized that short-distance migrants would be better able to 

adapt to changing climate conditions than long-distance migrants. Based on Zaifman’s 

et al. findings, this statement is may not be entirely accurate. In previous studies, it was 

often suggested that the ability to change migration patterns through phenotypic 

plasticity in response to temperature changes is a trait that is selected for only in short-

distance migrants (Rubolini 2007; Viser and Both 2005). However, Zaifman et al. 
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(2017) suggested that long-distance migrants are now adjusting their migration patterns 

as well and by a significant amount (Figure 1); hence, challenging the conventional idea 

that species wintering closer to their breeding grounds should respond more strongly to 

climate change than those long-distance migrants wintering in the tropics. An example 

of such a long-distance migrant is the Semipalmated Sandpiper. Zaifman et al. (2017) 

believed that “by shifting its migration pattern, the semipalmated sandpiper may be 

adjusting to find more advantageous conditions that may allow it to increase population 

numbers.” This further supports the idea that long-distance migrants have some degree 

of phenotypic plasticity over the timing of their migration. 

It is well known that long-distance migrants base their migration timing 

primarily on circannual rhythms, which are not influenced by outside factors, such as 

temperature and photoperiod. But long-distance migrant still seems to be changing the 

timing of their migration somehow. The simplest explanation, argued by multiple 

sources (Jonzen et al. 2006; Marra et al. 2005; Tøttrup et al. 2008) appears to be that 

long-distance migrating birds are shifting their migration patterns in response to changes 

in temperature. Warmer temperatures can indicate a surge in the food supply at the 

breeding grounds, so migrants will become inclined to alter their migration patterns in 

response to these warming temperatures to arrive at the breeding grounds at peak food 

abundance (Barcena et al. 2004). Since long-distance migrants are unable to sense a 

change of temperature at their breeding areas while wintering in the tropics, the 

initiation of their migration from the wintering grounds may not vary greatly. However, 

they may experience this change in temperature as they progressively approach their 

breeding grounds, allowing them to adjust their migration speed to match the climatic 
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conditions along their passage (Jonzen et al. 2006; Marra et al. 2005; Tøttrup et al. 

2008). An increase in the speed of migration may not necessarily mean an increase in 

acceleration. However, if the weather in the spring becomes warmer, and this causes an 

earlier peak in food abundance in habitats used as stopover sites, migrants would be able 

to increase refueling rates and shorten visits at these sites, which would in turn speed up 

the migratory process (Coppack and Both 2002; Jonzen et al. 2006). This would also 

optimize their arrival time at the breeding areas while taking advantage of a climate-

induced early spring. This theory supports Tøttrup’s et al. (2008) that suggests that 

species migrating longer distances may experience a degree of phenotypic 

responsiveness to spatial variability in conditions during their journey. Short-distance 

migrants, on the other hand, are able to adjust the onset of their spring migration in 

response to the temperature changes on their wintering grounds.  

My thesis also hypothesized that short-distance migrants will shorten their 

migratory routes or become residents in their breeding areas. This is supported by Pulido 

and Berthold (2010). Their findings provide strong evidence for microevolution being 

the underlying mechanism for the rapid adaptive changes in migration seen in many 

Blackcap populations across Europe. Using the common garden experiment, they 

demonstrated a genetic reduction in migratory activity and an evolutionary change in 

phenotypic plasticity of migration onset. In the artificial selection experiment, a 

simulation of the current selection in the wild favoring shorter migration distances was 

conducted. The results showed that all monitored traits in the experiment had moderate 

to high heritabilities, suggesting that migratory activity strongly responds to selection in 

the wild and that this process will eventually lead to the evolution of a partial migrant. If 
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this selection for lower migratory activity continues, residency will rapidly evolve in 

completely migratory bird populations. 

In the wild, the global increase in temperature is currently favouring birds that 

are wintering closer to their breeding ground, and it is likely that populations of short-

distance migrants will strongly respond to these changes in selection (Pulido and 

Berthold 2010). The advancement and lengthening of the breeding season in Blackcap 

populations and the increased observations of Blackcaps wintering in southern Germany 

are examples of such changes in selection (Pulido and Berthold 2010). A reduction in 

migratory activity may be an important factor in the adaptation of migratory birds to 

climate change because it reduces migration costs and facilitates rapid adjustments to 

the shifts in the timing of food maximum food abundance on the breeding grounds to 

avoid possible mismatching during the breeding season (Pulido and Berthold 2010). 

5.0 CONCLUSION 

By analyzing recent alterations in the migration phenology of both short- and 

long-distance migrating birds, this thesis has shown how many of these changes are 

significantly associated with climate change. There is no doubt that many migrating bird 

species will fall victim to the effects of climate change; however, it is also important to 

note that others may be very adaptable and resilient to these changes. Short- and long-

distance migrants both include such resilient species that are able to show variation in 

their behavior in response to environmental changes. Firstly, although previously 

thought be constrained by their long migration distances, long-distance migrants are 

responding by adjusting their migration patterns during the migratory process in 
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accordance with environmental temperatures. Secondly, short-distance migrants, such as 

Blackcaps, have responded by wintering closer to their breeding grounds or becoming 

non-migrants who permanently reside on their breeding grounds. Recent reports 

(Bókony et al. 2019; Pulido and Berthold 2010) have found that selection is strongly 

favouring those birds that exhibit a reduction in migratory activity. If mean migratory 

activity decreases, the evolution of residency will become inevitable in a previously 

short-distance migrating population.   

While phenotypic plasticity is important in the quick responses to environmental 

changes and may have adaptive potential, microevolution is the only mechanism that 

will ensure populations will cope with the very rapid and prolonged shifts of climate 

change (Gienapp et al. 2007). To discover whether a species is displaying a 

microevolutionary response to climate change, directional selection and heritability of 

migration time need to be demonstrated (Gienapp et al. 2007). These evolutionary 

variables have been expressed in the short-distance migrants studied in this thesis paper. 

Although long-distance migrants have shown some phenotypic response to recent 

climatic changes and may still have evolutionary potential, they have not nearly 

exhibited the amount of genetic variability that short-distance migrants have. To answer 

the question of which species group will be more resilient to climate change, I believe 

that short-distance migrants have a stronger lasting chance at the potentially devastating 

effects of climate change. 
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