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ABSTRACT 

Lignin macromolecules, derived from renewable biomass resources, have gained extensive interest 

during the past decade as a sustainable substitute for synthetic oil-based materials. The main goal 

of this dissertation was to formulate and investigate lignin-based materials (dispersants or 

adsorbents) that are renewable, biodegradable, and non-toxic from the molecular level to the 

macroscopic level. To obtain desired physicochemical properties, chemical modifications or self-

assembly were conducted to alter solubility, size, functionality, and surface energy of products 

with hydrophobic, hydrophilic, or near neutral wettability. After following various techniques of 

functionalization, polymerization, and nanoprecipitation (acidification), the desired structure of 

polymers or particles were formed, which were extensively characterized by implementing various 

analytical techniques. The correlations between physicochemical properties of unmodified 

hydrolysis lignin samples and their chemical reactivities toward sulfo-alkylation reactions were 

evaluated. The fundamental understanding of interactions of lignin derivatives and particles was 

further evaluated in variable systems (solid films, oil-water systems, and solid suspensions) by 

evaluating surface and interfacial properties. The formulated (nano) materials were successfully 

used in different applications including, the adsorption of metal ions, stabilization of emulsions 

(Pickering/non-Pickering), and the dispersion of clay suspension. The results showed the 

suitability of the lignin-derived additives in wide-range applications. 

The results on the material synthesis, physicochemical properties, and their fundamental 

correlation to their effectiveness in various colloidal systems, can be utilized as guidelines for the 

development of sustainable processes for the utilization of lignin-based products. 
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Chapter 1: Introduction 
1.1 Overview 

Lignin is the first most abundant aromatic bio-polymer on earth, consisting of 20 to 40% of the 

dry mass of wood.[1,2] As a result of an increase in papermaking production in the 19th century, the  

commercial production of lignin increased globally. In the 19th century, lignin was known to be an 

obstacle to the papermaking process because of its dark color and deteriorating effect on the 

strength of the paper. While 1/3 of the mass of lignocellulose, the precursor to paper is lignin; 

therefore, lignocellulose needed to be delignified, which produced large scale amounts of by-

product annually.[3] For decades, the solution to this problem was as simple as burning it as fuel.  

By the 1930s, sulfite pulping had become the dominant means of producing wood pulp. In this 

process, lignin is removed from wood pulp, and lignosulfonates are a water-soluble by-product.[4] 

Many applications have been proposed.[5] Lignosulfonates (LS) have been used in a vast range of 

applications as dispersants, emulsion stabilizers, binders and sequestrants (water treatment).[6] 

Currently, LS utilization in mentioned applications encountered major drawbacks primarily 

because of the limited worldwide production of LS, which counts for only ca. 2% of the total 

worldwide production of chemical pulp.[7] Therefore, considering the worldwide availability of 

kraft pulping process,[8] a new trend in valorizing kraft lignin was introduced over the past decades.  

Lignin had been treated traditionally as a low-quality, low-value side stream of product processing 

that gained substantial consideration as an abundant raw material to be employed in a wide variety 

of processes and applications, gaining the potential to displace traditional fossil-based chemicals 

and products.[9] For these reasons, lignin is predicted to play a crucial role in the Canadian bio-

economy value chain.[10] 

To find out the most suitable modification route of lignin-based on the desired application, an 

initial comprehensive understanding of the physicochemical structure of unmodified lignin is 

required. Lignin consists of polyphenolic material arising from an enzyme-mediated 

dehydrogenative polymerization of three phenylpropanoid monomers, coniferyl, sinapyl, and p-

coumaryl alcohols.[11] However, lignin is viewed as a macromolecule of physically and chemically 

heterogeneous materials whose structure and consequence of monomers could be unique based on 

the origin, the types of plants (softwood, hardwood, and non-wood), and isolation methods (sulfite, 

kraft, organosolv, soda and hydrolysis).[12,13] Therefore, the first step for lignin valorization is to 

quantify  lignin functional groups , internal linkages, molecular weight, and other physicochemical 

https://en.wikipedia.org/wiki/Earth
https://en.wikipedia.org/wiki/Lignosulfonates
https://en.wikipedia.org/wiki/Lignosulfonates
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properties that could affect its modification routes. Different modification pathways have been 

conducted on lignin to alter its properties and make it useful for specific applications. These 

modifications could be categorized in polymerization,[14] catalytic 

reactions,[15] depolymerization,[16] oxidation,[17] and grafting[18] on the lignin. Modification 

reactions can occur on aromatic, aliphatic, or both parts, which would result in unique properties. 

The focus of this thesis is on the polymerization and grafting methods on lignin to produce 

adsorbents, dispersants, and emulsifiers for application in variable colloidal systems.  

The main goal of this dissertation was to synthesize lignin-based dispersants or adsorbents that are 

renewable, biodegradable, and non-toxic. In this chapter (chapter 1), a brief summary of the 

subsequent chapters in this thesis is provided. First, the objectives of this research work are 

summarized. 

1.2 The overall objectives of this study are to: 

1. Synthesize and characterize physicochemical properties of kraft lignin-polystyrene 

macromolecules via free-radical polymerization in aqueous solutions.  

2. Assess the adsorption affinity of lignin-polystyrene substrate compared to lignin and polystyrene 

in isolating copper ions from the aqueous system.  

4. Synthesize a novel sulfo-functionalized lignin macromolecule and evaluate its potential as an 

emulsifier in the form of polymeric or particle surfactants and analyze the pH-dependent changes 

and the viscoelastic properties in the Pickering and non-Pickering emulsion systems. 

3. Investigate the fundamental dynamic interfacial analysis and emulsion properties of the 

polymeric lignin surfactant at different oil/water interfaces. 

5. Characterize the physicochemical properties of various hydrolysis lignin and their chemical 

reactivity toward various sulfo-functionalization processes. 

6. Systematically compare dispersion properties of various sulfo-functionalized hydrolysis lignins 

considering the differences in charge density, and physical properties. 

The following chapters are presented in this thesis in order to address the proposed objectives. 

Chapter 2 provides a brief introduction to the lignin resources and isolation methods, chemistry, 

chemical valorization, applications and methodologies. The Literature review is structured into 

sections discussing the functionalization and polymerization methods implemented previously to 

add value to lignin-based biopolymers. The second section discusses various methods identified 
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in the literature and in this study to evaluate the properties of lignin-based polymers for potential 

applications such as adsorbents and dispersants.  

Chapter 3 presents a comprehensive literature review relevant to the production and application 

of a variety of plant-based polymers and particles implemented for use as an emulsifier in oil/water 

systems. This section reviews publications related to the resources, modification, chemical 

properties of polymeric or particles of plant-based materials including lignin. Moreover, the 

emulsion knowledge, strategies of stabilization, and properties of plant-based emulsifiers on micro 

and macroscopic properties of emulsions are discussed. 

Chapter 4 introduces the polymerization of lignin and styrene (St) to produce kraft lignin-styrene 

(KL-PS) copolymers. Further, lignin copolymers were characterized to confirm their properties. 

Degree of polymerization and functional groups alteration were examined. The production of 

homopolymers of PS was also illustrated; further, the surface energy of KL, KL-PS and PS were 

assessed and compared. As a potential application, adsorption of copper ions from aqueous 

solution was compared for KL, KL-PS and PS. 

Chapter 5 describes the synthesis of a novel water-soluble sulfo-functionalized polymeric lignin 

(SEKL) with further discussion on its application as emulsifiers for Pickering/non-Pickering 

emulsion stabilization under influence of pH alteration with unique properties. The SEKL 

properties with pH alteration, emulsion formulation, micro and macro-observation of emulsions, 

short-term and long-term stabilities and reversibility of stabilization were analyzed.  

Chapter 6 illustrates the behavior of sulfoethylated lignin at different oil interfaces as a polymeric 

surfactant. Through a systematic approach, the dynamic kinetic adsorption of SEKL polymer were 

examined at the interfaces of xylene, cyclohexane and decane as the oil phase. The effect of 

polymer concentration and ionic strength on the adsorption of polymers at different oil interfaces 

and kinetic studies was investigated. The physical stability analysis of the emulsions was further 

correlated to their adsorption analysis. 

Chapter 7 reports on a comprehensive physicochemical characterization of seven different 

hydrolysis lignin including their various chemical composition, sugar content, hydroxyl group 

content, internal linkages, surface area, and size of particles in suspension. Further, their chemical 

reactivity toward 3 distinctive sulfo-functionalization routes of grafting was conducted and their 

reactivity was compared. In addition, the correlations between unmodified lignin properties and 

DS of produced polymers were assessed. As the final assessment of polymers potential application, 
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their effectiveness in dispersing clay suspensions were compared and the best application for each 

modification was introduced. 

Chapter 8 provides conclusions and suggestions for future research. 
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Chapter 2: Literature review 
2.1 Lignin resources and isolation 

Lignin forms 25-30% of plant cell walls along with the other two major polymeric components, 

cellulose and hemicellulose. The main role of lignin is to act as a matrix material to bind the plant 

polysaccharide microfibrils and fibers together, which imparts strength and rigidity to the plant 

stem.[1] In addition, due to the antioxidant and antimicrobial properties associated with lignin 

chemical structure,[2,3] lignin functions as a shield to protect against biological attack and assists 

in the transportation mechanism of water by sealing plant cell walls against water leaks.[4] 

Technical lignin can be extracted from pulping chemical processes that use either sulphur or are 

sulphur-free. There are five different types of classified technical lignins with distinctive properties 

including kraft, lignosulfonate, soda, organosolv and hydrolysis lignin with variable 

physicochemical properties that are summarized in Table 1.[5] 

This thesis is centered around kraft lignin as the most available technical lignin and hydrolysis 

lignin as the most recent technology and the least investigated of the two. In the kraft process, via 

using white liquor, a strong alkali solvent of aqueous sodium hydroxide and sodium sulphide, the 

bonds between lignin and cellulose are broken. The linkages between the phenylpropane units of 

lignin macromolecules are cleaved into smaller chains, which makes kraft lignin soluble in the 

pulping liquor system and is called black liquor.[6] Black liquor is used mainly as the fuel in the 

recovery process of kraft pulp mills and supplies the energy need of the mills.[7] Different isolation 

methods from black liquor have been introduced to generate the technical Kraft lignin 

commercially. LignoBoost™ and LignoForce™ technologies are the common processes. [8,9] As 

shown in Table 1, added aliphatic thiol groups make kraft lignin a high sulphur content (1 to 2 

wt%) with hydrophobic properties.[10] 

In the hydrolysis process of biomass, lignocellulosic biomass is separated where fractionated 

cellulose and hemicellulose are hydrolyzed to monomer sugars using acid, base or enzyme. For 

the production of enzymatic lignin, which was used in this research thesis, the raw material is first 

processed by mechanical refining and then treated with enzymes for 15-72 h at a temperature 

below 50 °C.[11] Cellulose would be separated from lignin in the form of monomer sugars. 

Although HL is not a sulfur free by-product, its content is much lower (≤1%) than KL or LS (1-

8%), and due to the less chemical consumption, it is considered a greener process.[12] Hydrolysis 

lignin has distinctive properties compared to kraft lignin with a light color, odor free and high 
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content of sugar (10-30 wt.%), which makes its structure closer to that of native lignin.[13] Lignin-

carbohydrate internal linkages, called LCCs, added more complexity to hydrolysis lignin structure 

and less availability of functional groups. 

Table 2.1. Chemical and physical properties of different commercial lignin. (Adapted from Ref. 

[5] with permission of Elsevier). 

Type Sulfur 
content 
(wt.%) 

Sugar 
content 

(wt.%) 

Molecular 
weight 
(g/mol) 

Ash 
content 
(wt.%) 

Moisture 
content 
(wt.%) 

Poly-disperibility 

Kraft 1-3 1-2.3 ˂25,000 0.5-3 3-6 2.5-4 

Lignosulfonate 3.5-8 - ˂15,000 4.5-8 5.8 4.2-9 

Soda 0 1.5-3 ˂15,000 0.7-2.3 2.5-5 2.5-3.5 

Hydrolyzed 
lignin 

0-1 10-22.4 5,000-
10,000 

1-3 4-9 1.5-3 

Organosolv 0 1-3 ˂5000 1.7 7.5 1.5-2.4 

 

2.2 Lignin chemistry 

Lignin chemical structure is shaped from irregular radical oxidative coupling of three basic 

phenylpropane monomers: p-coumaryl alcohol, coniferyl alcohol and sinapyl are referred to as 

“monolignols” in which the heterogenous repeating alcoholic units form p-hydroxyphenyl (H), 

guaiacyl (G) and syringyl (S) polymerized product, respectively [14] as shown in Figure 1. Different 

types of wood species and even distinctive parts of trees (softwoods, hardwoods and non-woods) 

could have remarkable chemical differences with unique molecular structures from the 

polymerization of mentioned monomers.[4] Softwoods lignins consist of mainly of guaiacyl with 

minimal amounts of hydroxyphenyl and syringyl contents.[15] Hardwood lignins contain both types 

of guaiacyl and syringyl lignins with small amounts of hydroxyphenyl lignin.[15] Non-wood lignins 

typically contain all three precursors, guaiacyl, syringyl and para-hydroxyphenyl with variable 

ratios.[16] 
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Figure 2.1: Lignin precursor monolignols p-coumaryl alcohol, coniferyl alcohol, and sinapyl 

alcohol (top row) and the corresponding p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units 

of lignin. The aliphatic carbons 7-9 are referred to as α, β, and γ carbons, respectively, in this 

thesis. Adapted from [17]. 

The variable monomers are linked by carbon-carbon or ether bonds which form the final 

polymerized macromolecule.[18] Carbon-carbon bond with one-third and ether linkages with two-

thirds form the most common linkage types in a lignin molecule that are β-O-4, α-O-4, β-5, 5-5, 

4-O-5, β-1, β-β and dibenzodioxocin shown in Figure 2 within lignin structure.[19-22] 
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Figure 2.2: Representation of the lignin structure with the main linkages. (Adapted from Ref. [22] 

with permission of Elsevier). 

 

Due to the large and complicated structure of lignin with excessive internal linkages and the 

difficulties in lignin analysis, a complete structure of a lignin has not yet been identified, while 

available structure models in literature are only illustrations of each linkage and their lignin unit 

types. 

Delignification and isolation processes would modify the chemical structure of lignin by changing 

the internal linkages. During the kraft process, the majority of β-O-4 and α-O-4 linkages are 

cleaved and produce non-etherified phenolic hydroxyl groups in lignin; however, due to the very 

mild conditions in the hydrolysis process, limited cleavage would occur that indeed increases the 

percentage of etherified linkages.[23] 

The more cleavage of etherified linkages would associate with elevated content of free hydroxyl 

functional groups. The major functional groups of lignin are aliphatic hydroxyl, phenolic hydroxyl, 

methoxyl, carbonyl, and uncondensed guaiacyl groups.[24]  

The content of phenol in lignin directly controls the reactivity of lignin in chemical pulping.[25] 

Therefore, it shows the importance and critical role of the delignification and isolation process 

which could ultimately define the reactivity of isolated lignin. 

Another important factor for the reactivity of lignin to be considered is the connection to 

carbohydrate segments and sugar content. There are eight different types of lignin-carbohydrate 

(L-C) bonds, i.e., benzyl ether, benzyl ester, glycosidic or phenyl glycosidic, hemiacetal or acetal 

linkages, and ferulate or diferulate esters that are linked to lignin at 4-OH and 4-O positions,[26] 

which are shown in Figure 3. It should be mentioned that the ratio of these linkages could again 

vary depending on the source and isolation process, although Benzyl ether (BE), ester, and phenyl 

glycoside (PhyGlc) are considered as the most typical lignin-carbohydrate linkages.[27] 
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Figure 2.3: Major types of LCC linkages: a benzyl ether; b benzyl ester; c ferulate ester; d phenyl 

glycoside; e diferulate ester (5′–5′ linkage) f diferulate ester (4-O-β linkage). Adapted from [26]. 

 

2.3 Value-added product from lignin 

Due to the excessive advantages of lignin, such as easy availability, high energy density (kJ/g), 

active chemical structure, and sustainability, many researchers have tried to make lignin more 

compatible and applicable in different industries. One of the uplifting facts was to make products 

that could replace petroleum-based materials for green and sustainable substitutions.[29] 

Over the past decades, lignin was utilized for variable applications based on three different 

strategies: 1) employing lignin without or with less modification, 2) degradation of lignin to other 

materials, and 3) modification of lignin with altering its properties.[30] Based on the first strategy 

with no modification, technical lignin could be implemented in a particular application by having 

the desired properties. However, most of the isolated lignins require further modifications to be 

useful in variable applications. Degradation of lignin to produce small chemical compounds such 

as vanillin was investigated by many researchers as well.[31] Further chemical changes to degraded 
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lignin materials such as lower molecular weight, less steric hindrance, increased reactive sites, and 

increased content of phenolic hydroxyl put in extra advantages to lignin for the synthesis of lignin-

phenol-formaldehyde resins.[32] The last category is associated with engineering the properties of 

the lignin by chemical modification on the active sites to produce more hydrophobic or hydrophilic 

polymers with variable molecular weights, charge densities, wettability, surface, and interfacial 

properties.[30] 

The polymers from natural resources offer great potential for the preparation of novel and 

advanced applications. This section discusses the two common techniques to produce lignin 

polymers via chemical modifications that have been followed to develop advanced materials from 

lignin to be used in variable applications. 

2.3.1 Free radical polymerization 

Free radical polymerization is considered as the simplest, most economical, efficient, and 

appropriate method for industrial purposes [33] compared to other types of polymerization such as 

RAFT or condensation polymerization. Polymerization of lignin with cationic, anionic, 

amphoteric, and non-ionic monomers are feasible and were reported in the past.[34] The 

functionalization was reported to impart valuable properties to lignin, making it more hydrophilic, 

hydrophobic or thermally stable.  

The polymerization mechanism follows via the formation of phenoxy and alkoxy radicals on lignin 

through the initiator decomposition (e.g., ceric ammonium nitrate, potassium persulfate, or 

hydrogen peroxide) under heating. Polymerization would be initiated following the attack of 

phenoxy radicals to the vinyl group of monomers to form a graft chain of homopolymer on the 

lignin backbone.[35] 

Many polymers were produced using water-soluble monomers. Fang et al. [36] synthesized 

enzymatically hydrolyzed lignin-grafted-acrylamide polymers using acrylamide as an uncharged 

monomer. Kong et al. [37] polymerized acrylic acid (i.e., anionic monomer) and kraft lignin via free 

radical polymerization to produce water-soluble lignin-grafted-acrylic acid polymers. Cationic 

kraft lignin (CKL) macromolecules were produced via polymerizing kraft lignin (KL) with [2-

(acryloyloxy) ethyl] trimethyl ammonium chloride (ATAC) or [2-(methacryloyloxy) ethyl] 

trimethylammonium methyl sulfate (METAM).[38] Another study reported to produce a water 

soluble lignin- poly (acrylamide)-poly (2-methacryloyloxyethyl) trimethyl ammonium) copolymer 
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via polymerizing kraft lignin (KL) with acrylamide (AM) and (2-methacryloyloxyethyl) trimethyl 

ammonium chloride (DMC) as two monomer system in an aqueous solution.[39] 

Using insoluble monomers in water makes the polymerization more challenging in aqueous-based 

systems. Insoluble monomers such as styrene and divinylbenzene would produce water-insoluble 

polymers with distinct properties compared to water-soluble ones. Styrene and divinylbenzene are 

among the most popular polymeric sorbents.[40] Because of their hydrophobic character, 

interactions through van der Waals forces and π-electron interaction of their aromatic ring are 

possible.[40] Chapter 4 states the emulsion polymerization of lignin and styrene in aqueous medium 

following free radical polymerization technique. Polymerization of lignin and styrene have been 

reported previously following different techniques, including atom transfer radical 

polymerization[41,42] radiation induced graft polymerization,[43] or emulsion suspension 

polymerization.[40] Atom transfer radical polymerization (ATRP) technique was implemented to 

polymerize styrene and methyl methacrylate on lignin to produce lignin composites.[41] Graft 

polymerization of styrene and divinylbenzene monomers on kraft lignin was conducted in a 

mixture of water and organic solvents (i.e., toluene and 1-decanol) in an emulsion polymerization 

system to synthesize porous adsorbent.[40] The purpose and novelty of this thesis was also to 

incorporate lignin into polystyrene via radical polymerization to increase PS porosity and add 

functionality to its structure to form an adsorbent for the separation of metal ions from aqueous 

system. 

2.3.2 Graft functionalization 

Different methods of graft functionalization on lignin have been reported over the past ten years. 

This process gained popularity due to its simple chemical process, effectivity, high grafting and 

solubility of the final polymers. The functionalization can happen either on the phenolic, aliphatic 

hydroxyl groups or directly on the ring. Some examples are oxidation,[44] oxyalkylation 
[45] halogenation,[46] amination,[47] carboxyalkylation,[48] and sulfoalkylation.[49] These polymers, 

due to their solubility and controllable charge density and molecular weight, were applied in the 

variable application as dispersant,[50] flocculant,[51] binder,[52] thickener,[53] emulsifier, and 

detergent.[54] 

Chapters 5 and 6 are focused on a simple and facile process to produce sulfoethylated lignin as a 

novel lignin derivative.  
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Grafting mechanism could follow different pathways depending on the reagent used and the 

medium (aqueous/solvent, acidic/basic). The most probable mechanisms are nucleophilic 

substitution with the hydroxy groups of lignin and electrophilic addition to the double bonds of 

the lignin or aliphatic segment. Therefore, the strength of the lignin as a nucleophile in the SN2 

mechanism or as electrophile in electrophilic addition could be crucial. In chapter 7, three variable 

routes of sulfo-alkylation (sulfonation, sulfomethylation and sulfoethylation) of lignin with 

different modification mechanisms were compared and their degree of substitution were correlated 

to their physicochemical properties of unmodified lignin samples. So far, a systematic comparison 

of different sulfo-alkylation reactions has not been reported.  

2.4 Applications 

Various polymers with different properties were reported to be produced using lignin as the 

precursor. However, each of them might be suitable for a specific application due to their distinct 

properties after modifications.[36-56] For example, polymers with high molecular weight and charge 

density obtained from polymerization of lignin and acrylic acid showed promising results as a 

potential wastewater treatment flocculant.[37,55] While a high molecular weight polymer without 

surface charges and lack of solubility like lignin-styrene-divinylbenzene could be an efficient 

adsorbent.[40] On the other hand, low molecular weight polymers with high charge density are 

suitable dispersants for coal slurry,[56] while lower charge density would be an ideal emulsifier to 

adsorb at oil interface as a polymeric surfactant. Therefore, such polymers could be a good 

alternative for oil-based additives in different applications. 

2.4.1 Adsorbents 

Water pollution by heavy metal ions is a worldwide concern due to the high toxicity and 

irreversible detrimental effects of heavy ions on human, animal, and marine systems.[57] In recent 

years, extensive research was conducted to find new cost-effective adsorbents originating from 

biomass.[58] Utilization of adsorbents is considered as a promising method for the removal of heavy 

metal ions in water with an easy form of operation, great removal efficiency, and the high 

availability of various adsorbents.[59] The potential of lignin as a bio-based adsorbent has been 

discussed in previous studies. Lignin was reported to adsorb metal ions such as Pb (II), Zn (II), Cu 

(II) and Cd (II) from aqueous systems. [58,60] As an example, saturated adsorption of 26 mg/g of 

Cu (II) on wheat straw lignin was previously reported as an adsorbent.[61]  
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Guo et al. [62] described that a lignin isolated from black liquor adsorbed ions from an aqueous 

system via interactions through two main sites of carboxylic and phenolic groups identified via 

potentiometric (acid-base) titrations and complexation model calculations in which the phenolic 

sites showed a higher affinity for metal ions. 

Polystyrene, PS, is also well recognized for its dispersive intermolecular interactions, which is 

widely used as the building block to produce adsorbent for water treatment.[40] Different methods 

of functionalization or cross-linking were applied to make a more effective PS. The examples 

include the activation of its active sites [63] via Schiff base,[64] sulfonate groups [65] or amine 

groups.[66] The objective and novelty of this study was to use lignin instead of chemicals to add 

functionality to PS.   

Chapter 4 in this thesis shows the effective incorporation of KL into PS for improving its ion metal 

uptakes as a green substitution. In addition to the functional groups anchored on PS, which are 

capable of adsorbing ions, the aromatic electron-rich system of PS is also capable of interacting 

with ions, as previously reported in literature. [67,68] 

Quadrupolar characteristic of the aromatic system is responsible for the adsorptive properties of 

PS for cations in water. The uneven distribution of π-electron above and below the face of an 

aromatic system forms a quadrupolar system (e.g., benzene ring).[69] Several non-covalent 

interactions are therefore associated with this system namely; polar- π interactions,[70] self-

stacking,[71] hydrogen- π, [72] and cation- π interactions.[67] Therefore, the contribution of Kl and 

PS as a united polymer segment is expected to improve both properties of Kl and PS for effective 

interactions with metal ions. 

2.4.2 Surfactants 

Surfactants have a crucial role in the chemical industry by modifying different phases. They can 

be used as emulsifiers for stabilizing liquid-liquid mixtures or applied as dispersants for solid-

liquid systems. With their variety of applications, they are key portions to produce foods, 

agrochemicals, pharmaceuticals, personal care and/or detergents in the industry.[73] All surfactants 

are constituted of a hydrophilic head and a hydrophobic tail and are categorized into 3 main 

subgroups of anionic, cationic, and amphoteric surfactants.[74] 

Anionic surfactants would form in the presence of carboxylates, sulfonates, sulfates, or phosphates 

in which sulfonate ones due to their wide range of solubility and tolerance against hydrolysis at a 

low or high pH have a wide range of applications in different industries.[75] 
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Despite their wide application, the synthesis of sulfonate based anionic surfactants are complex 

and costly.[73] Therefore, there is a surge for producing more environmentally friendly surfactants 

with a simpler production process. Over the past decades, polymeric surfactants have shown 

considerable advantages over traditional small-molecule surfactants due to their distinctive 

features, such as multiple functional groups, complex conformational changes at oil interface, and 

viscosity enhancement of emulsions.[76] Among them, biobased polymeric materials have attracted 

substantial interest due to their great biocompatibility, biodegradability, renewability, and long-

term stability.[77] In this context, the development of novel bio-based polymers with surface 

activity is in high demand.[73] 

Lignin with the large availability and sustainability has been widely used as polymeric surfactants 

in the form of lignosulfonate to disperse pesticides, dyes, carbon black and in enhanced oil 

recovery (EOR) over the past decades.[78] However, there are some obstacles in using LS as 

surfactants, for one thing, LS has limited ability to reduce the surface tension of the water;  

therefore, other synthetic surfactants are required to be used with LS as co-surfactants.[79] For 

another reason, LS production is only 2% of the whole production of lignin worldwide; therefore, 

a limited supply is available to be used on a large scale.[80] Thus, kraft lignin with large availability 

could be a better substitution with slight chemical modifications.  

Lignin already owns the hydrophobic segment due to the aromatic and aliphatic carbon chains, 

with limited functional groups such as aliphatic and phenolic OH and carboxylate groups.[73] 

However limited solubility and charge density (CD) are the main barriers to be effectively 

implemented as surfactants.  

Grafting functionalization with simple processes is suggested as effective alternatives to improve 

the properties of lignin.[81] Many research studies investigated the effectiveness of such polymers, 

namely: carboxylated, carboxyethylated, sulfonated, and sulfomethylated lignins as emulsifiers or 

dispersants in variable systems.[73] Previously, lignin tannic acid (KL-TA)[44] and 

carboxymethylated lignin (CML)[82] were implemented as polymeric surfactants to stabilize oil-

water systems; however, KL-TA and CML had limited affinity to lower the surface tension of 

water. Therefore, a novel modification to address this issue was needed for better compatibility of 

lignin-based surfactants at the oil-water interface. In addition, the fundamental understanding of 

the mechanism and kinetic of adsorption of polymeric lignin surfactants have not been investigated 

so far.  
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In this thesis, we introduced a novel polymeric surfactant called SEKL as an effective emulsifier 

at the oil-water interfaces. Its surface and interfacial properties and behaviors at different systems 

with variations in polymer dosage, ionic strength and pHs have been investigated comprehensively 

in this thesis and the reports are available in chapter 5 and 6. A comprehensive literature review 

on this subject regarding emulsion types and currently used plant-based emulsifiers are provided 

in chapter 3 as a review paper. 

Dispersants are required to be used in clay suspensions to improve their dispersibility and stability 

of colloidal systems over time.[56] A stable clay colloidal system is critical in various mining, 

chemical and mineral processing industries as the base material for many formulations such as 

cosmetics, ceramics paints and coating.[83] The choice of the right dispersant is very crucial since 

there are many factors that may influence the stability of the suspension. Well-known factors are 

molecular weight, charge density, and particle size, which could affect the system in many 

ways.[84] Evaluating the adsorption of polymers at the surface of colloidal particles is the first step 

of monitoring its performance. Other factors, such as zeta potential of suspension, is important to 

be considered.   

The performance of SEKL as a dispersant for the clay system was also compared with already 

tested dispersants such as sulfonated and sulfomethylated lignin in chapter 7. Table 1 summarized 

the already established grafted lignin samples from different sources and modification routes as 

dispersants for different aqueous suspensions. The most common modification routes for 

synthesizing effective dispersants are sulfonation and sulfomethylation using kraft or alkali lignin 

resources. [85-91] However, there is no report for correlating the physicochemical properties and 

reactivity of HL toward various chemical sulfo-functionalization. The main objective of the last 

study in this thesis is to correlate the physicochemical properties of different HL samples toward 

sulfonation, sulfomethylation, and sulfoethylation and the comparison of their performance as clay 

dispersants. 

Table 2.2. Summary of grafted lignin polymers from different sources and modification routes as 

dispersants for different aqueous suspensions. 

Source Modification Application Ref. 

Washed aqueous slurry Sulfonation Dispersant in dye [85] 

Alkali lignin Sulfonation Dispersant for cement 
particles 

[86] 
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Enzymatic hydrolysis Sulfomethylation Dispersion for graphite 
suspension 

[50] 

Alkaline, and 
enzymatic hydrolysis 

Sulfomethylation Dispersant for concrete 
paste 

[87] 

Oxidized softwood 
kraft 

Sulfomethylation Dispersant for cement [88] 

Hardwood kraft Sulfomethylation Dispersant for cement [49] 

Alkali Sulfomethylation Dispersant for coal–
water slurry 

[89] 

Alkali-corn stalk Sulfomethylation Dispersant for dye [90] 

Wheat straw alkali Sulfomethylation Dispersion for tio2 [91] 

Alkali Sulfobutylation Dispersant for coal-
water slurry 

[92] 

Eucalyptus kraft Sulfobutylation Dispersant for dye [93] 

Harwood kraft Carboxymethylation Dispersant for clay 
suspension 

[56] 

Wheat straw alkali Carboxymethylation Dispersant [94] 

 

2.5 Methodology 

2.5.1 Characterization 

Proton-1 nuclear magnetic resonance (1H-NMR) analysis of unmodified and modified samples was 

conducted by dissolving ≈30 mg of each sample and 8 mg of trimethylsilyl propanoic acid (TSP) 

as an internal standard in 500 mL of appropriate solvent based on solubility (e g. CDCl3, D2O, 

DMSO-d6 or a mixture). After stirring solutions overnight at room temperature, the spectra of 

samples were recorded by INOVA-500 MHz instrument (Varian, USA) at a 45˚ pulse width with 

64 number of scans using 1 s relaxation delay. If required, the areas under the spectra were used 

for quantitative analysis. 

The same method of sample preparation and instrument adjustments were followed for 2D 1H–1H 

COSY analysis. 

The phosphorus-31 NMR (31PNMR) analysis was used for quantitative analysis of phenolic and 

aliphatic hydroxyl moieties of lignin and lignin-based products. The phosphitylation of samples 

were conducted with 2-chloro-4,4,5,5-tetramethyl-1,3,2- dioxaphospholane in a mixture of 
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pyridine and CCl3D solvent (1.6/1). Cyclohexanol, with the known concentration of 0.20 

mmol/mL as the internal standard, and chromium (III) acetylacetonate as the relaxation agent were 

added to the solution mixture. To acquire a spectrum, a 90 pulse with 5 s relaxation delay and 128 

acquisitions with an inverse gated decoupling pulse were employed. Assignments and calculations 

were followed, as reported previously in the literature.[95] The area under the peaks ranging 150.4-

145.5 and 140.3-138.3 ppm were assigned to aliphatic and phenolic hydroxyl moieties in samples, 

respectively.  

2.5.2 Adsorption analysis 

Quartz crystal microbalance with dissipation (QCM-D) technique was implemented in this thesis 

as a sensitive tool for investigating a real-time, label-free measurement of molecular adsorption 

and/or interactions on various surfaces. Fundamentally, QCM counts on the oscillation of a quartz 

crystal sensor at a specific frequency provided from an external voltage. It is known from the 

Sauerbrey relationship that further alterations of the mass on the quartz surface are linked to 

changes in the frequency of the oscillating crystal, as shown in equation 1:[96] 

Δm = -CΔf                                            (1) 

where Δm and Δf refer to the mass and frequency changes and C is a constant value, which is 

related to the physical properties of the sensor (i.e., 0.177 mg/m Hz for a 5 MHz AT-cut quartz 

crystal). It should be noted that this relationship only applies to rigid, evenly distributed, and 

sufficiently thin adsorbed layers. In the case of a soft or viscoelastic layer, other methods (e g. 

Voigt) should be considered. 

In addition to the sensitivity for adsorbed mass (ng/cm2 sensitivity) based on changes in frequency 

of the quartz crystal, structural (viscoelastic) properties of adsorbed layers are also observable via 

changes in the dissipation parameter (D). Dissipation occurs when the driving voltage to the crystal 

is cut off and the energy from the oscillating crystal dissipates from the system. D is defined as:[97] 

D = Elost / 2πEstored                                 (2) 

Elost is the energy lost during one oscillation cycle and Estored is the total stored energy in the 

oscillator. 

The oscillating crystal with the changes in voltage is shown in Figure 4a. The high sensitivity of 

the instrument is associated with the repetition of voltage changes (voltage is applied and turned 

off) over 100 times per second. Figure 4b shows the signal generated by an oscillating crystal and 

the differences in signal decay between rigid and viscoelastic materials. 
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Figure 2.4: a) The oscillating crystal with applied voltage and the shear propagation wave 

penetrating the adsorbed molecular film, b) the difference in dissipation for rigid and soft 

(viscoelastic) films. Images from www.q-sense.com. 

 

2.5.3 Surface and interfacial analysis 

Surface properties, including wettability and surface energy, are two imperative aspects that 

express the compatibility of a polymer surface with the surrounding environment and key factors 

to understand the mechanism of surface-based phenomena. Characterizing the surface properties 

of polymers based on their thermodynamic properties e g., lifshitz-van der Waals and acid-base 

determination, hydrophobicity-hydrophilicity balance are important parameters to determine a 

suitable application. In many industries such as coatings, printing, adhesive, cosmetics, and 

pharmaceuticals, understanding the surface chemistry of polymers and surfaces is crucial.[98] 

For the first-time, the surface energy of the lignin and lignin derivatives was calculated in this 

thesis, and the changes in surface energy components (polar/nonpolar or acidic/basic) in two 

different methods of Fowke’s and Van Oss theory are compared for the unmodified and 

polymerized lignin.  

In this work, two different methods, Fowke’s theory, which explain the surface energy of a solid 

as containing two components, a "dispersive" and a "non-dispersive" and the Van Oss theory, 

which divides it into three components, was chosen. In van Oss theory, the dispersive component 

is the same as Fowke’s theory but the non-dispersive one (polar) is divided into acidic and basic 

components.[99] 

Fowke’s theory is formed by the combination of three equations: young equation (equation 3), 

dupre's definition of adhesion energy (equation 4) and Fowke’s theory; which describes the 

http://www.q-sense.com/


20 
 

adhesion energy between a solid and a liquid to be divided into the interaction between polar and 

non-polar components of two phases (equation 5). [100,101] 

𝑌𝑜𝑢𝑛𝑔′𝑠 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛   𝜎𝑆  =  𝜎𝑆𝐿  +  𝜎𝐿 𝑐𝑜𝑠  𝜃                                             (3) 

𝐷𝑢𝑝𝑟𝑒′𝑠 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑑ℎ𝑒𝑠𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦    𝐼𝑆𝐿 = 𝜎𝑆 + 𝜎𝐿 − 𝜎𝑆𝐿              (4) 

𝐴𝑑ℎ𝑒𝑠𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑤𝑖𝑡ℎ 𝑓𝑜𝑤𝑘𝑒𝑠 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠  𝐼𝑆𝐿 = 2√(𝜎𝐿
𝐷)(𝜎𝑆

𝐷) + (𝜎𝐿
𝑃)(𝜎𝑆

𝑃)          (5) 

In Young’s equation, σL is the overall surface tension of the wetting liquid, σS is the overall surface 

energy of the solid, σSL is the interfacial tension between the solid and the liquid, and θ shows the 

contact angle between the wetting liquid and the solid. In the adhesion energy equation, 

components are divided based on Fowke’s theory to 𝜎𝐿
𝐷 and 𝜎𝐿

𝑃 as the dispersive and polar 

components of the surface tension in the wetting liquid, and 𝜎𝑆
𝐷 and 𝜎𝑆

𝑃 the dispersive and polar 

components of the surface energy of the solid material, respectively. Finally, by rearranging these 

3 formulas, the final equation for Fowke’s theory would be obtained as shown in equation 6. 

Therefore, surface energy of a solid can be calculated by obtaining the contact angle between the 

coated solid surface and the polar and non-polar wetting liquids. [102,103] 

𝜎𝐿 (𝑐𝑜𝑠𝑐𝑜𝑠 𝜃+1) 

2
= √(𝜎𝐿

𝐷)(𝜎𝑆
𝐷) + (𝜎𝐿

𝑃)(𝜎𝑆
𝑃)                                                                      (6) 

The Van Oss theory is attained by dividing the polar components of the surface to acidic (+) and 

basic (-), meaning that interaction of the solid surface with the wetting liquid through polar 

interaction is based on their acidity and basicity. The basic component originates from the ability 

of the surface to act as a basic by donating electron density through dipole-dipole and hydrogen 

bonding. However, the acidic component shows the desire of the surface in accepting electron 

density. By modifying equation 6 by dividing the polar components into acidic and basic, equation 

7 is obtained in Van Oss theory as shown in equation bellow. [104-106] 
𝜎𝐿 (𝑐𝑜𝑠𝑐𝑜𝑠 𝜃+1) 

2
= √(𝜎𝐿

𝐷)(𝜎𝑆
𝐷) + (𝜎𝑆

+)(𝜎𝐿
−) + (𝜎𝑆

−)(𝜎𝐿
+)                (7) 

Hence, by measuring contact angle values between coated surfaces of lignin and polymerized 

lignin with the wetting liquids with known dispersive, acidic and basic surface tension values, the 

solid surface energy can be calculated based on both Fowke’s and Van Oss theories. [107,108] 

The contact angle analysis was conducted via placing 5μL of liquid droplets on the coated surfaces 

following static contact angle with the sessile drop and the analysis was performed using a theta 

optical tensiometer attention (Biolin Scientific) at 25 °C for 30 sec.  
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For determining the three-phase (OCA) contact angles of a solid surface at an oil-water interface 

the slides with the water droplet on top of them were transferred to a glass chamber filled with 

purified oil and the contact angle (i.e., three-phase contact angle) of surface at the oil-water 

interface was measured accordingly following the work of [109] as depicted in Figure 5. 

 
Figure 2.5: measuring the three-phase contact angle of coated slide at oil interface. (Adapted from 

[109] Copyright © 2017, American Chemical Society). 

 

An Attension Theta Biolin optical tensiometer was implemented following the pendant drop 

method to measure the dynamic interfacial tension (γ) between lignin derivative as a polymeric 

surfactant of different concentrations and organic phase.[110] Precisely, 3 mL of organic solvent 

(i.e., xylene, cyclohexane, decane) was charged to a Quartz cuvette and sealed to minimize volume 

loss. The SEKL solution with different concentrations was charged to the syringe that was 

connected to a stainless-steel needle with an inner diameter of 0.84 mm. Before each experiment, 

the needle was cleaned with Milli-Q water and dried. The needle was submerged 1 mm into the 

oil phase, and an aqueous SEKL droplet with a constant volume of 5 µL was generated at the tip 

of the needle. While the chamber was illuminated from the back side with an optic lamp, a video 

camera captured the images from the front side over 3600 sec at a frame rate of 10 images per 

second in the first 600 sec and 1 image per minute in the last 3000 sec. The interfacial tensions 

were calculated from the shapes analysis of droplets using the Young-Laplace equation.[110] 

2.5.4 Stability analysis 

The destabilization behaviour of the emulsion systems in this thesis was studied using a centrifugal 

separation analyser (CSA) LUMiSizer 6100-29 (L.U.M. GmbH Berlin). This instrument 

simultaneously detects the intensity of the transmitted light of a NIR light source (𝜆 of 880 nm) as 

a function of time and position over the entire sample cell length, while being subjected to 

centrifugation using STEPtechnology (space and time-resolved extinction profiles technology). A 
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CCD-line detector within the instrument records the distribution of local transmission over the 

entire sample length to define the stability of the system. Finally, space and time-resolved 

transmission profiles are obtained, from which the integral value indicates the sedimentation 

progress with time.[111] 

 

Figure 2.6: STEP-Technology basic scheme from https://www.lum-gmbh.com/ 

 

A vertical scan analyzer (Turbiscan Lab Expert, Formulaction, France) was also used to monitor 

the stability of emulsions and clay suspensions. The samples were prepared inside the glass 

container of the instrument and subjected to analysis. The entire height of the sample was scanned 

with a pulsed near-infrared light (λ = 880 nm) and the transmitted and backscattered lights were 

record by the detectors in which a microscopic fingerprint of the samples could be presented at a 

given time. 

The stability of samples can be presented quantitively by term of instability index (TSI), where 

both coalescence and settling phenomena are considered in TSI evaluation. The TSI is determined 

by equation 8. 

𝑇𝑆𝐼 = √
∑𝑛

𝑖−1 (𝑥𝑖−𝑥𝑏𝑠)2

𝑛−1
                                                                                 (8)                                                             

Where n, xi, xbs, refer to the number of scanning, an average of the backscattered light intensity 

at the scanning time, and the average of xi, respectively. The higher the TSI, the lower the stability 

is.[44] 

2.6 References 

[1] W. Boerjan, J. Ralph, M. Baucher, Annu. Rev. Plant Biol. 2003, 54(1), 519-546. 

[2] W. Yang, E. Fortunati, D. Gao, G. M. Balestra, G. Giovanale, X. He, L. Torre, J. M. Kenny, 

D. Puglia, ACS Sustainable Chem. Eng. 2018, 6(3), 3502-3514. 

https://www.lum-gmbh.com/


23 
 

[3] J. L. Espinoza-Acosta, P. I. Torres-Chávez, B. Ramírez-Wong, C. M. López-Saiz, B. Montaño-

Leyva, Bioresources 2016, 11(2), 5452-5481. 

[4] J. Ralph, K. Lundquist, G. Brunow, F. Lu, H. Kim, P. F. Schatz, J. M. Marita, R. D. Hatfield, 

S.A. Ralph, J. H. Christensen, Phytochem Rev. 2004, 3(1-2), 29-60. 

[5] A. E. Kazzaz, P. Fatehi, Technical lignin and its potential modification routes: A mini-review, 

Ind. Crops Prod. 2020, 154, 112732-112745. 

[6] F. S. Chakar, A. J. Ragauskas, Ind. Crops Prod. 2004, 20(2), 131-141. 

[7] A. Van Heiningen, Pulp Pap. Canada 2006, 107(6), 38-43. 

[8] A. E. Rodrigues, P. C. d. O. R. Pinto, M. F. Barreiro, C. A. E. da Costa, M. I. F. da Mota, I. 

Fernandes, Chemical Pulp Mills as Biorefineries, An Integrated Approach for Added-Value 

Products from Lignocellulosic Biorefineries, Springer 2018, 1-51. 

[9] L. Dessbesell, M. Paleologou, M. Leitch, R. Pulkki, C. C. Xu, Renew. Sust. Energ. Rev. 2020, 

123, 109768-109779. 

[10] D. Kai, M. J. Tan, P. L. Chee, Y. K. Chua, Y. L. Yap, X. J. Loh, Green Chem. 2016, 18(5), 

1175-1200. 

[11] Y. Sun, J. Cheng, A review, Bioresour. Technol. 2002, 83(1), 1-11. 

[12] J. Cho, S. Chu, P.J. Dauenhauer, G.W. Huber, Green Chem. 2012, 14(2), 428-439. 

[13] F. Menezes, G. Rocha, R. Maciel Filho, Chem. Eng. Trans. 2016, 50, 397-402. 

[14] F. Xu, Structure, ultrastructure, and chemical composition, Cereal straw as a resource for 

sustainable biomaterials and biofuels. Amsterdam, the Netherlands: Elsevier 2010, 9-47. 

[15] K. M. Holtman, An Investigation of the Milled Wood Lignin Isolation Procedure by Solution-

and Solid-State NMR Spectroscopy, Dissertation 2004. 

[16] O. Derkacheva, D. Sukhov, Macromol. Symp. 2008, 265(1), 61-68. 

[17] M. Sipponen, Effect of lignin structure on enzymatic hydrolysis of plant residues, Dissertation 

2015. 

[18] B. M. Upton, A. M. Kasko, Chem. Rev 2016, 116(4), 2275-2306. 

[19] C. Xu, R. A. D. Arancon, J. Labidi, R. Luque, Chem. Soc. Rev. 2014, 43(22), 7485-7500. 

[20] C. Li, X. Zhao, A. Wang, G. W. Huber, T. Zhang, Chem. Rev 2015, 115(21), 11559-11624. 

[21] P. Azadi, O. R. Inderwildi, R. Farnood, D. A. King, A critical review, Renew. Sust. 

Energ. Rev. 2013, 21, 506-523. 



24 
 

[22] P. Figueiredo, K. Lintinen, J. T. Hirvonen, M. A. Kostiainen, H. A. Santos, Prog. Mater. Sci. 

2018, 93, 233-269. 

[23] I. Norberg, Carbon fibres from kraft lignin, KTH Royal Institute of Technology, 2012. 

[24] B. Joffres, D. Laurenti, N. Charon, A. Daudin, A. Quignard, C. Geantet, A review, Oil Gas 

Sci. Technol. 68(4) (2013) 753-763. 

[25] M. Ek, G. Gellerstedt, G. Henriksson, Wood chemistry and biotechnology, Walter de Gruyter 

2009. 

[26] D. Tarasov, M. Leitch, P. Fatehi, A review, Biotechnol. Biofuels 2018, 11(1), 269-297. 

[27] M. Balakshin, E. Capanema, H. Gracz, H. m. Chang, H. Jameel, Planta 2011, 233(6), 1097-

1110. 

[28] P. Albersheim, A. Darvill, K. Roberts, R. Sederoff, A. Staehelin, Plant cell walls, Garland 

Science 2010. 

[29] J. Zakzeski, P.C. Bruijnincx, A.L. Jongerius, B.M. Weckhuysen, Chem. Rev 2010, 110(6), 

3552-3599. 

[30] S. Laurichesse, L. Avérous, Prog. Polym. Sci 2014, 39(7), 1266-1290. 

[31] A. Mathias, A. Rodrigues, Holzforschung 1995, 49(3), 273-278. 

[32] S. Kalami, N. Chen, H. Borazjani, M. Nejad, Ind. Crops Prod. 2018, 125, 520-528. 

[33] R. Fang, X. Cheng, X. Xu, Bioresour. Technol. 2010, 101(19), 7323-7329. 

[34] D. Bajwa, G. Pourhashem, A. Ullah, S. Bajwa, Ind. Crops Prod. 2019, 139, 111526-111537. 

[35] F. Kong, S. Wang, W. Gao, P. Fatehi, RSC adv 2018, 8(22), 12322-12336. 

[36] R. Fang, X. S. Cheng, J. Fu, Z. B. Zheng, J. Nat. Sci. 2009, 1(1), 17-22. 

[37] F. Kong, S. Wang, J. T. Price, M. K. Konduri, P. Fatehi, Green Chem. 2015, 17(8), 4355-

4366. 

[38] S. Sabaghi, P. Fatehi, Biomacromolecules 2019, 20(10), 3940-3951. 

[39] A. Hasan, P. Fatehi, J. Appl. Polym. Sci. 2018, 135(23), 46338-46349. 

[40] B. Podkościelna, M. Sobiesiak, Y. Zhao, B. Gawdzik, O. Sevastyanova, Holzforschung 2015, 

69(6), 769-776. 

[41] C. Wang, R. A. Venditti, ACS Sustainable Chem. Eng. 2015, 3(8), 1839-1845. 

[42] S. L. Hilburg, A. N. Elder, H. Chung, R. L. Ferebee, M. R. Bockstaller, N. R. Washburn, 

Polymer 2014, 55(4), 995-1003. 



25 
 

[43] A. Ayoub, R. A. Venditti, H. Jameel, H. M. Chang, J. Appl. Polym. Sci. 2014, 131(1) 39743-

39753. 

[44] S. Gharehkhani, N. Ghavidel, P. Fatehi, ACS Sustainable Chem. Eng. 2018, 7(2), 2370-2379. 

[45] I. Kühnel, B. Saake, R. Lehnen, Macromol. Chem. Phys. 2018, 219(7), 1700613-1700619. 

[46] A. Sequeiros, L. Serrano, J. Labidi, J. Chem. Technol. Biotechnol. 2016, 91(6), 1809-1815. 

[47] T. Zheng, D. Zheng, X. Li, C. Cai, H. Lou, W. Liu, X. Qiu, ACS Sustainable Chem. Eng. 

2017, 5(9), 7743-7750. 

[48] K. Bahramia, P. Fatehi, ChemSusChem 2018, 11(17), 2967-2980. 

[49] M. K. Konduri, P. Fatehi, ACS Sustainable Chem. Eng. 2015, 3(6), 1172-1182. 

[50] B. Zhang, D. Yang, H. Wang, Y. Qian, J. Huang, L. Yu, X. Qiu, ACS Sustainable Chem. Eng. 

2018, 7(1), 1120-1128. 

[51] J. Tian, S. Ren, G. Fang, Y. Ma, Q. Ai, Bioresources 2014, 9(4), 6290-6303. 

[52] Y. Chen, H. Zhang, Z. Zhu, S. Fu, Int. J. Biol. Macromol. 2020, 152, 775-785. 

[53] E. Cortés-Triviño, C. Valencia, M.A. Delgado, J.M. Franco, Polymers 2018, 10(6), 670-684. 

[54] C. Chen, M. Zhu, M. Li, Y. Fan, R. C. Sun, Biotechnol. Biofuels 2016, 9(1), 1-15. 

[55] M. Ataie, K. Sutherland, L. Pakzad, P. Fatehi, Sep. Purif. Technol. 2020, 247, 116944-

116954. 

[56] M. K. Konduri, F. Kong, P. Fatehi, Eur. Polym. J. 2015, 70, 371-383. 

[57] M. Vafaeezadeh, M. M. Hashemi, N. Ghavidel, RSC adv 2016, 6(17), 14128-14133. 

[58] Y. Ge, Z. Li, A review, ACS Sustainable Chem. Eng. 2018, 6(5), 7181-7192. 

[59] F. Fu, Q. Wang, A review, J. Environ. Manage. 2011, 92(3), 407-418. 

[60] W. Jin, Z. Zhang, G. Wu, R. Tolba, A. Chen, RSC Adv 2014, 4(53), 27843-27849. 

[61] T. Todorciuc, L. Bulgariu, V.I. Popa, Cell Chem Technol 2015, 49, 439-447. 

[62] X. Guo, S. Zhang, X. q. Shan, J. Hazard. Mater. 2008, 151(1), 134-142. 

[63] J. Chen, G. Cheng, Y. Chai, W. Han, W. Zong, J. Chen, C. Li, W. Wang, L. Ou, Y. Yu, 

Colloids Surf. B: Biointerfaces 2018, 161, 480-487. 

[64] J. Zhou, F. Gao, T. Jiao, R. Xing, L. Zhang, Q. Zhang, Q. Peng, Colloids Surf. A Physicochem. 

Eng. Asp. 2018, 545, 60-67. 

[65] Z. Yang, C. Zhou, H. Yang, T. Cai, J. Cai, H. Li, D. Zhou, B. Chen, A. Li, R. Cheng, Ind. 

Eng. Chem. Res. 2012, 51(27), 9204-9212. 

[66] Y. Zhang, Y. Chen, C. Wang, Y. Wei, J. Hazard. Mater. 2014, 276, 129-137. 



26 
 

[67] L. J. Barbour, S. L. De Wall, E. S. Meadows, G. W. Gokel, Ind. Eng. Chem. Res. 2000, 39(10), 

3436-3441. 

[68] N. Javkhlantugs, H. Bayar, C. Ganzorig, K. Ueda, Int. J. Nanomedicine 2013, 8, 2487-2496. 

[69] M. Keiluweit, M. Kleber, Environ. Sci. Technol. 2009, 43(10), 3421-3429. 

[70] W. Chen, L. Duan, L. Wang, D. Zhu, Environ. Sci. Technol. 2008, 42(18), 6862-6868. 

[71] W. L. Jorgensen, D. L. Severance, J. Am. Chem. Soc. 1990, 112(12), 4768-4774. 

[72] S. C. Ringwald, J. E. Pemberton, Environ. Sci. Technol. 2000, 34(2), 259-265. 

[73] N. Alwadani, P. Fatehi, CRC 2018, 1(2), 126-138. 

[74] L. L. Schramm, E. N. Stasiuk, D. G. Marangoni, Annu. Rep. Prog. Chem., Sect. C: 

Phys. Chem. 2003, 99, 3-48. 

[75] E. L. Crepaldi, P. C. Pavan, J. Tronto, J. B. Valim, J. Colloid Interf. Sci. 2002, 248(2), 429-

442. 

[76] C. C. Chang, R. Letteri, R. C. Hayward, T. Emrick, Macromolecules 2015, 48(21), 7843-

7850. 

[77] S. Kalliola, E. Repo, V. Srivastava, F. Zhao, J. P. Heiskanen, J. A. Sirviö, H. Liimatainen, M. 
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Chapter 3: Strategies for emulsion stabilization using polymers and particles of 

plant-based biomaterials 
3.1 Abstract 

As the main aim of this review chapter, we articulated the recent progress in the use of plant-based 

polymers and particles for the stabilization of Pickering and non-Pickering emulsion systems. Due 

to their availability and promising performance, we discussed how the source, modification, and 

formulation of cellulose, starch, protein, and lignin-based polymers and particles would impact 

their emulsion stabilization. Special attention was given toward the material synthesis in two forms 

of polymeric surfactants and particles and the corresponding formulated emulsions. Also, the 

effects of particle size, degree of aggregation, wettability, degree of substitution, and electrical 

charge in stabilizing oil/water systems and micro and macro structures of oil droplets were 

discussed. The wide range of applications using such plant-based stabilizers in different 

technologies, and their challenge and future perspectives were described. 

3.2 Introduction 

Emulsions play a major role in the formulation of processed foods, personal care goods, 

agrochemical, and pharmaceutical products. Emulsifiers have been utilized in a wide range of 

industries to create such stable emulsions with appropriate shelf lives and functional features. The 

industrial stabilizers are mostly synthetic surfactants, such as tweens and spans,[1] or animal-based 

emulsifiers for food purposes such as gelatins, egg protein, and whey protein.[2] Due to the 

worldwide demand and strong motivation for plant-based natural ingredients, many manufacturers 

have been reformulating their products to replace synthetic[3] or animal origin surfactants with 

green alternatives,[4,5] while biocompatibility of the green surfactants is increasingly regarded as a 

major challenge.[6] 

The most common and available plant-based resources that have been implemented for emulsion 

stabilization are polysaccharides, such as cellulose and starch; aromatic macromolecules, such as 

lignin; and polypeptides, such as proteins. These materials are considered biocompatible due to 

their natural origin and have shown promising capability in stabilizing emulsions as reported in 

several review papers dealing with natural emulsifiers,[7] particles of biological origin,[8] naturally 

derived or biodegradable particles,[9] or plant-based particles intended for food applications. 

However, sensible progress has been achieved on this topic recently, and the prevision articles lack 

the latest development on this area.[10] Other review papers using natural emulsifiers are do not 
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include discussion on the material source and application, e.g., lignocelluloses[11] cellulose[12] 

protein[13] or food Pickering application.[14]  

With given such attention to plant-based emulsifiers, there is still a gap in material production 

mainly through chemical modifications and particle formulations. Many of the potential materials, 

such as proteins and lignin, have been undermined for years in emulsion systems due to their poor 

aqueous dispersibility and strong aggregation tendency.[14] However, surface modification, 

functionalization, and particle formulation have altered their functionality for different 

applications.[15-17] Despite their long history as emulsifiers; starch and cellulose, can be further 

modified to enhance their emulsifying properties and long-term stability. The main reason for the 

modification of such materials is to alter their particle size, wettability, and dispersibility in the 

continuous phase to optimize their interaction at the interface and provide stability to the system. 

Therefore, the focus of this chapter is to articulate a comprehensive overview of the chemical 

modification of plant-based polymeric compounds and particles and their direct effects on the 

stabilization of emulsions. The attention of this article is on both Pickering/non-Pickering 

emulsions.[18] The chapter starts with a brief introduction about the different methods of droplet 

stabilization (Pickering/non-Pickering), and the sources and isolation methods for the four 

different plant-based materials. Furthermore, we directed our attention to how two types of 

polymer and particle formulations would impact the oil droplet size, phase separation, coalescence, 

viscosity, or interfacial tension changes of emulsions. In the end, the application of formulated 

emulsions in different technologies is reviewed. 

3.3 Pickering/Non-Pickering Theory of Stabilization 

3.3.1 Non-Pickering Emulsions 

Mixing two immiscible phases, i.e., oil and water, requires high energy to create an interface; 

otherwise, the two phases tend to reduce their contact to make the system thermodynamically 

stable. The Gibbs free energy of the system (ΔG, J) is defined as (Equation 1):[10] 

ΔG = γ. ΔA (1) 

Where γ (N/m) is the interfacial tension between oil and water, and ΔA (m2) is the total interfacial 

area in the system. To obtain a stable oil and water mixture, i.e., emulsion, emulsifiers are required 

to decrease the interfacial tension between the two phases, thereby lowering the free energy of the 

system (equation 1). The role of emulsifiers is to first adsorb at the oil-water interface and then 

lower the interfacial tension to facilitate the generation of fine droplets. Then, it should maintain 
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the stability of oil/water droplets once they have been formed by generating a coating layer at the 

oil droplets.[7,19] This layer could prevent the aggregation of oil droplets via electrostatic 

interactions (in this case charged emulsifiers) and/or from physical steric barrier interactions, as 

displayed in Fig. 1.[7, 20,21] Insufficient or short-lasting repulsive forces would cause weak 

flocculation, strong flocculation, or coalescence depending on the nature of the emulsifier layer at 

the interface and its resistance to disruption. Electrostatically stabilized emulsions are known to 

be highly sensitive to the changes in pH and ionic strength, e.g., proteins, phospholipids, and ionic 

surfactants.[10,22] On the contrary, those, such as amphiphilic polysaccharides, primarily stabilized 

by steric repulsion are less sensitive to changes in environmental conditions.[7,23] 

Natural-based polymers, such as proteins[24,25] or macromolecules, like starch and lignin, are 

polymers with a strong affinity for one of the phases (soluble in one phase) and can bring 

electrostatic and steric repulsion or both for oil droplets.[26,27] The emulsion formulated using the 

above emulsifiers is called non-Pickering or conventional emulsions. 

 
Figure 3.1: Two different mechanisms of oil droplet stabilization with uncharged and charged 

natural polymers. (Adapted from Ref. [7] with permission of Elsevier). 

 

3.3.2 Pickering Emulsion 

The other category of emulsions is called Pickering emulsions and they are stabilized in the 

presence of solid colloidal particles that are partly wetted by oil and water (Ramsden[28] and 

Pickering[29]). Considerable interests have been rising over the past decade for the use of particles 

as stabilizers due to the substantial stabilizations they introduced to the system.[30,31]  

A distinctive characteristic of Pickering emulsions, compared to the conventional emulsion, is the 

formation of a flexible but robust layer upon the adsorption of solid particles at the liquid-liquid 
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interface,[6] which makes its attachment irreversible due to the considerable energy associated with 

its adsorption according to Equation 2:[30] 

ΔE = πr2γ (1 - |cos θ|)2 (2) 

where r is the particle radius (m), γ is the interfacial tension between pristine oil and water (N/m), 

and θ is the contact angle of particles at the oil-water interface.[30] As depicted in Fig. 2a, if the 

solid particle has a contact angle below 90˚, they become wet preferably by the water phase, 

leading to an oil-in-water (O/W) emulsion. By contrast, if the particles have a contact angle larger 

than 90˚, they are primarily located in the oil phase and a water-in-oil emulsion (W/O) is 

obtained.[32,33] Based on equation 2 and as depicted in Fig. 2b, the magnitude of this energy is 

dependent on the particle size and wettability.[10,34,35] The contour plot of adsorption energies in 

Fig. 2b depicts that various combinations of the contact angle and the size of the particles are 

feasible to optimize the adsorption energy, and it is not restricted to neutral contact angle (θ=90˚) 

and nanometer-size particles.[35,36] However, generally too hydrophobic or too hydrophilic 

particles are not of interest, because it requires large size particles to obtain high detachment 

energy, which ultimately increases the size of emulsion droplets that are unlikely to stay 

stabilized.[6,10,35] Based on the stokes law, a larger droplet size is strongly correlated with lower 

emulsion stability.[10,37,38] Also, generating particles of small size is often an objective as it reduces 

the amount of emulsifier required for stabilizing droplets.[6,35] 
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Figure 3.2: (a) Schematic representation of an O/W and a W/O Pickering emulsion at microscopic, 

and nanoscopic scales (Adapted from Ref. [33] with permission of Elsevier). (b) Contour plot of 

equal detachment energy (ΔG/kT) for various particle radii and contact angle combination 

(Adapted from Ref. [35] with permission of Elsevier).  

 

3.4 Plant-Based Biomaterials-Resources and Structural Characteristics 

3.4.1 Nanocellulose materials 

Plant-based nano cellulose can be classified into two main categories namely: cellulose 

nanofibers (CNFs) and cellulose nanocrystals (CNCs).[39,40] Plant-based natural sources of 

cellulose are wood and agricultural processing wastes.[41,42] Chemically, the crystalline regime of 

cellulose is formed of a linear homopolymerized monomer, named anhydro glucose unit (AGU), 

bearing three hydroxyl groups that are linked by β-1-4-linkages with a varying degrees of 

polymerization (DP).[43-45] 

Cellulose nanofibers (CNFs) are isolated using a mechanical disintegration process of cellulose 

fibers, such as high-pressure homogenization, micro fluidization, grinding, and ultrasonication.[46-

48] Generally, the mechanical deconstruction process of pulp is often used in combination with 

some pre-treatments to reduce the energy requirements, which could be an optional (2,2,6,6-

tetramethylpiperidine-1-oxyl radical) TEMPO-mediated oxidation or chemical/enzymatic 

processes to facilitate fibrillation.[49-51] The CNFs contain crystalline and amorphous areas with 

flexible fibrous with a diameter of less than 100 nm and a length of 500 nm or longer.[52,53]  

As the second category, cellulose nanocrystals (CNCs), also named nanocrystalline cellulose, are 

obtained via the cleavage of the amorphous domains of cellulose fibers through acidic hydrolysis 

(H2SO4, HCl, H3PO4, HNO3) or enzymatic treatment.[54-57] Produced particles are highly 

crystalline (with the degree of crystallinity between 54 and 88%) with broadly rod- or needle-

shape particles with the size of 10-30 nm in diameter and several hundred nanometers in 

length.[52,58-60] 

The use of CNC and CNF in different applications is associated with distinctive results, which 

makes them ideal candidates for a variable application such as, foods, cosmetics, pharmaceutics, 

and composites.[61-64] 

3.4.2 Starch  
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Starch is the most abundant polysaccharide synthesized naturally as insoluble, semi-crystalline 

granules in plant roots, stalks, crop seeds, and staple crops such as rice, corn, wheat, tapioca, and 

potato.[65] The commercial isolation process of starch from botanical sources consists of extraction 

and refining by wet grinding, sieving, and drying.[66,67] Chemically, the polymers of starch, i.e., 

amylose and amylopectin, are composed of several monosaccharides or sugar (glucose) molecules 

that are linked together with -α-D-(1-4) and/or -α-D-(1-6) linkages.[68] Starch can be used either as 

is, which is called “native starch”, or undergoes chemical modifications to reach specific 

properties, which is called “modified starch”.[68,69] 

Synthesis of starch nanoparticles (SNPs) and nanocrystals (SNCs) gained attention along with 

recent interests in nanomaterials formulation, which further enhanced starch application.[70,71] 

Starch nanocrystals (SNCs) form from the disruption of amorphous domains from semi-crystalline 

granules by physical treatments and acid hydrolysis.[72] The main differences between the SNCs 

and SNPs are the relative crystallinity and morphology.[73] The crystallinity of the SNCs is 

significantly higher than the crystallinity of the native starch, while the crystallinity of the SNPs 

is lower than that of native starch.[73] In addition, SNP is spherical, while SNC is platelet-like.[74] 

Starch has a long history in human diet patterns as it is non-toxic, non-irritant, and edible.[75] As a 

result, it has a wide application in the food industry as an ingredient, emulsifier, and thickener.[65,69, 

71] 

3.4.3 Proteins 

Plant-based proteins are naturally produced in soybeans, pulses (e.g., pea, chickpea, and lentil), 

and cereals (e.g., wheat, barley, and zein) for the storage of amino acids.[76] The strings of amino 

acid units covalently linked by peptide bonds create proteins, which are physiochemically varied 

depending on the type, number, and sequence of amino acids in the polypeptide chain.[7,77] The 

extraction of plant proteins is followed according to the classical method of Osborne, which is 

based on the sequential extraction of proteins in water (albumins), dilute salt solutions (globulins), 

alcohol-aqueous mixtures (prolamins), and dilute acids or alkalis (glutelins).[10,14,78] 

Proteins extracted from crops, such as soybeans, corn, and wheat, are commonly generated as by-

products of edible oil, starch, or other food processing products.[13] Most proteins are amphiphilic 

molecules containing a mixture of polar and non-polar amino acids, which are applied in 

emulsification, gelation, foaming, and as ingredients in the food industry.[13,79-81] The preparation 
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of protein particles for altered applications, such as drug delivery, encapsulation, and food 

emulsions, has gained popularity over the past few years.[82-87] 

3.4.4 Lignin 

Lignin is a natural aromatic and heterogeneous biomacromolecule that accounts for 20-30% of dry 

weight of biomass, which is produced as a by-product from the chemical liberation of wood fibers 

(cellulose and hemicellulose) in the pulping process.[88,89] Polymeric lignin is commonly known to 

shape from the irregular radical oxidative coupling of three basic phenylpropane monomers: p-

coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. The repeating alcoholic units[90]  form p-

hydroxyphenyl (H), guaiacyl (G) and syringyl (S) polymerized products, respectively.[91] Lignin 

structure depends on the source (hardwood, softwood or non-wood) as well as the applied pulping 

and isolation process (sulfite, kraft, soda and organosolv pulping processes).[92-95] The main 

differences in the isolated lignin products appear in its functional group contents, such as the 

phenolic and aliphatic hydroxyl, carboxyl, and sulfonate groups.[96-98] Recently, nano-scaled lignin 

particles have gained considerable interest as solutions to overcome many of the obstacles that 

have impeded the efficient and broad utilization of lignin.[99-101] 

3.5 Strategies for Emulsion Stabilization  

3.5.1 Polymeric Surfactants  

Two main components of polymeric surfactants are hydrophilic and hydrophobic moieties that 

provide them with surface-active properties.[102,103] The water-soluble polymers effectively reduce 

intermolecular forces between solvent molecules, thereby reducing surface or interfacial tension 

upon their adsorption at the interface.[104] In this section, the latest modifications of polymeric 

plant-based materials, which were used in emulsifications studies, are reviewed. Also, the impact 

of their properties, such as polymer size, grafting ratio, and solubility, on the emulsion properties 

including droplet size, zeta potential, viscosity, or interfacial tension alterations are evaluated.  

3.5.1.1 Cellulose Derivatives 

Cellulose was proved to be a potentially efficient emulsifier.105 The most common derivatives of 

cellulose implemented as emulsifiers are the cellulose ethers, e.g., methyl cellulose (MC), ethyl 

cellulose (EC), hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), hydroxyethyl 

methylcellulose (HEMC), hydroxypropyl methylcellulose (HPMC) and carboxymethyl cellulose 

(CMC) (Fig. 3) that are currently produced commercially.[105-107] In this case, their synthesis and 

chemistry has been widely reviewed previously.[108-110] The derivatives with different alkyl chains 
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are most often water-soluble and, therefore, useful as stabilizers for immiscible oil-water 

systems.[106,111] Latest studies on the application of such emulsifiers are summarized in Table 1 

and discussed below. 

Figure 3.3: structure of cellulose derivatives with (a) methyl, (b) hydroxypropyl methyl, (c) methyl 

ethyl, and (d) carboxymethyl groups reacted with different alkyl halides. Reprinted with 

permission from [108]. Copyright (2020) American Chemical Society. 

 

Cellulose ethers are usually used as additive emulsifiers and are known to effectively enhance 

viscosity, which is associated with oil droplet stabilization through the steric mechanism.[112] For 

instance, sodium carboxymethylcellulose (CMCNa) was reported to be used as an additive 

emulsifier in the presence of Tween 20, Tween 80 or sodium caseinate for emulsion 

formulations,[113-115] which greatly inhibited creaming and coalescence by decreasing oil droplet 

size and improving emulsion viscosity.[113] 

Hydroxypropyl methylcellulose, HPMC, was shown to be an effective emulsifier in the absence 

of any other additives comprising of both hydrophobic methyl and hydrophilic hydroxypropyl 

substituents that combines surface activity and viscoelastic properties.[116] The molecular weight 

and degree of methyl and hydroxypropyl substitutions are described to alter the emulsion 

properties including droplet size and viscosity.[117,118] HPMC with a lower molecular weight 

produces smaller droplet diameters while that with the higher molecular weight is associated with 

the elevated viscosity of the emulsions, which effectively minimizes the creaming and flocculation 

processes.[117,118] In addition, the higher DS:MS grafting ratio of HPMC is also associated with the 

greater physical stability of emulsions with an improved viscosity.[118,119] 

The hydrophobic cellulose derivatives, ethyl(hydroxyethyl)-cellulose (HM-EHEC) reported to 

dramatically improve the stability of macroemulsions compared to hydrophilic hydroxyethyl 
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cellulose (HEC) due to the better effectiveness of HM-EHEC in lowering the interfacial tension 

and improving the viscosity.[120]  

In addition to the use of etherified cellulose as emulsifiers, regenerated cellulose pulps (RCP) 

without any further modification showed significant amphiphilicity via decreasing the interfacial 

tension (IFT) between oil and water.[121] In this case, the effectiveness of RCP in reducing the IFT 

was directly associated with its Mw (25 to 7 kg/mol).[121] This observation proposed the fact that 

the interfacial activity of cellulose derivatives is not only related to the grafted alkyl chain but a 

large extent associated with the cellulose backbone.[121] 

Despite progress in utilizing cellulose derivatives as emulsifiers, they are still mainly considered 

as thickener [108,122,123] or additive emulsifiers [105] in industrial emulsion systems due to their 

incapability to generate emulsions with long term stability. 

Table 3.1. Properties of cellulose derivatives as emulsifiers. 
Emulsifier-
dosage 

Grafting ratio (mol/mol) Emulsion 
composition 

droplet 
size (µm) 

Zeta 
potential 
(mv)/ IFT 
(mN/m) 

Viscosity 
(mPa.s) 

Ref. 

Tween 20-
1.5% w/w  

- Corn oil, 70% bimodal 
distribution 
(0.2 to 12/ 2 
to 80) 

- 54.83  2.02 [113] 

Tween 20-
1.5% w/w 
+CMCNa-
1% w/w 

0.2 to 12 - 56.3 257.5 

HPMC-2wt.% DS+MS=2.16 
Mw (2 to 90 kg/mol) 

Sunflower, 
10% 

1.44 to 3 +0.291 to 
+0.239 

0.34 to 67 [117] 

HPMC-1wt.% DS= 1.37 and 2, MS= 
0.23 and 0.85, 
Mw=250 and 
670 kg/mol. 

Sunflower, 
10% 

1.5 and 1.7 -1.1 and -1 0.12 and 
2.69 

[118] 

HPMC-1wt.% DS=0.28, MS=0.64 to 
0.94 

Medium chain 
triglycerides, 
15% 

1.38 to 1.96  - 0.05 to 0.4 [119] 

HEC-1.0 wt.% HM=0.01 Paraffin, 50% . IFT 31 0 [120] 

HMHEC-1.0 
wt.% 

10 IFT 27 0.35 

RCP-0.1 wt.% Aged from 24 h to 360 h 
produced RCP with Mw 
25 to 7 kg/mol 

Paraffin, 15% 10 to 1  IFT 20 to 18  1 to 0.1 [121] 

DS; degrees of substitution of methoxy groups,  

MS; mass molar substitutions of hydroxypropoxy groups 

IFT; interfacial tension 

3.5.1.2 Starch Derivatives 
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Native starch cannot function as an ideal stabilizer due to the poor hydrophobicity and large 

size.[124] The size of starch granules is dependent on their botanical sources varying in a wide range 

of 0.3-100 µm.[124-126] The emulsifying properties of starch granules could be improved by 

chemical or physical modifications. The different chemical modifications of starch including 

esterification, etherification, oxidation, acid treatment, hydroxypropilation, and crosslinking have 

been carried out.[70,127,128] The esterified starch at OH¬ group of carbon 2, 3, and 6 in the glucose 

molecule with alkyl halides or alkenyl succinyl anhydrides (-SA) is the most common starch 

derivative with enhanced emulsifying properties due to the enhanced amphiphilic and surface-

active properties (Fig. 4).[69,127-130]  

 
Figure 3.4: Structure of starch derivatives with (a) alkyl halides or chloroacetic acid and (b) alkenyl 

succinyl anhydrides (-SA) groups. (Adapted from Ref. [69] with permission of Elsevier). 

 

Depending on the use of starch granules or water-soluble starch derivatives of octenyl succinic 

anhydride (OSA), both Pickering and non-Pickering emulsions are reported to be produced from 

starch derivatives and a summary of recent studies is shown in Table 2. The use of OSA-starch 

granules as Pickering emulsifiers from various sources and sizes including native rice starch (5-

10 μm), waxy maize starch (10-20 μm), waxy potato starch (20-30 μm), Quinoa~2 and 

Amaranth~1.4 are available.[126,131,132] It was elaborated that emulsion properties (emulsifying 

capacity and storage stability) were influenced by DS and particle size of starch granules. While 

starch with a higher DS was more effective at similar DS values, the particle size of OS-starch 

granules was the key factor, as the smaller particles of OS-starch granules from varied sources 

exhibited a smaller oil droplet size and lower creaming index.[126,131,132]  
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Water-soluble esterified starch (DOSA) offered better emulsification activity than insoluble 

granules (GOSA) with a similar DS by generating greater ζ-potential, smaller particle size, and 

long-term stability.[133] The contributing factors in the stabilization properties of water-soluble OS-

starch derivatives are reported as Rh, DS, Mw, and branch length.[134,135] In this case, however, it 

was depicted that a satisfactory correlation could not be proven between the degree of esterification 

and emulsion stability.[136] Similarly, a comparison between three water-soluble OSA-modified 

waxy maize starches with different Rh (15-78 nm) and DS (0.016-0.028) depicted that the lowest 

DS with a medium Rh sample generated the most stable droplets over time due to the finest oil 

droplets and the highest viscosity.[137] As another effective parameter, the chain-length distribution 

(CLD) or the degree of branching of commercial OSA-starches was altered by hydrolysis 

processes, which demonstrated that the larger molecular size and longer chains at the constant DS 

resulted in larger emulsion droplets, which could negatively affect the stability of emulsions.[138] 

Other starch derivatives, such as acetylated, phosphorylated,[139] alkylated,[140,141] and 

carboxymethylated starch[142,143] were also produced to improve the emulsifying capabilities of 

starch via adding charged or hydrophobic groups. The produced derivatives typically showed 

stronger emulsifying properties, lower surface tension, and better amphiphilic properties than 

unmodified starch. For instance, the negatively charged phosphate starch and the hydrophobic 

starch acetates improved the emulsifying capabilities of the starch derivatives more effectively 

than unmodified starch, however, their stability was less efficient compared to OSA-S stabilized 

emulsions with high oil retention of 94.75%.[139] Laurate starches acted as a better stabilizer 

compared to hydrolyzed starch, which was associated with greater solubility and lower zeta 

potential that caused a more effective electrostatic repulsion between starch granules to effectively 

stabilize oil-in-water emulsions.[140] Amphiphilic starch (CMS-LS) from etherified carboxymethyl 

starch (CMS) had better emulsifying properties than starch and CMS, as it showed higher surface 

activity by reducing the surface tension of water.[142] Despite noticeable progress in implementing 

modified micro-scale starch and starch granules as stabilizers, emulsions have poor stability 

against gravity force due to their large size.[144] 

Table 3.2. Properties of starch derivatives as emulsifiers. 
Emulsifier-
dosage 

Modification 
route 

Source /DS Properties/ 
Particle size 
(µm) 

Emulsion 
type and 
composit
ion 

Oil droplet 
size (µm) 

Other 
properties 

Ref. 
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(OSA)-
Starch 
granule- 
800 mg/mL 

Esterification 
with octenyl 
succinic 
anhydride (OSA) 

Rice, Quinoa, 
and 
Amaranth-3% 

Rice 6.92, 
Quinoa 2.44 
and 
Amaranth 1.48 
µm  

Pickering
- Miglyol 
812- 5% 
v/v  

Rice 26 / 
Quinoa 
17 / and 
Amarant 8  

- [126] 

(OSA)-
Starch 
granule-3% 
w/v 

Esterification 
with octenyl 
succinic 
anhydride (OSA)  

Spherulites, 
Rice, Waxy 
maize and 
Waxy potato-
~0.0180 

OS-SS 3.8, 
OS-NRS 7.5, 
OS-WMS14.5, 
OS-WPS 24 

Pickering
- Orange 
oil- 30% 
v/v  

14-18-23-35  Creaming 
index %=42, 
60, 70 and 
100 

[131] 

(OSA)-
sweet potato 
starch 
granule 

Esterification 
with octenyl 
succinic 
anhydride (OSA) 

Sweet potato -
DS 0,0.0095 
to 0.0230 

15.47  Pickering
- Canola 
oil- 50% 
v/v  

~100 to 10 Emulsifying 
capacity 0 to 
0.57 

[132] 

GOSA/ 
DOSA-1 wt 
% 

Esterification 
with octenyl 
succinic 
anhydride (OSA) 

Waxy maize 
starch- 
DS=0.016-
0.028 

GOSA-20  MCT-10 
wt %  

0.9-0.76/ 
after storage 
2.5-1 

Z=-(8-
15)/IFT:20-
19.4 mN/m 

[133] 

Heat treatment 
and a spray 
drying 

DOSA- 78.6 
nm 

0.34-0.33/ 
after storage 
0.9-0.7 

Z=-(25-
28)/19.3-
16.5 

OSA-CFG- 
0.5, 1, and 
1.5%, w/w 

Esterification 
with octenyl 
succinic 
anhydride (OSA 

Corn fibre- 
DE 0, 0.3, 2.4, 
3.4 and 6.1% 

 2 × 105 kg/mo
l  

Non-
Pickering 
-Soybean 
oil- 5.0% 
w/w 

2.7 to 1 to 
1.5 

IFT= 48 To 
25 mN/m / 
IS= 0.8 to 0.2 
to 0.4 

[136] 

OSA-starch-
1% (w/w) 

Esterification 
with octenyl 
succinic 
anhydride (OSA) 

waxy maize 
W1-0.025 

11.5 nm  Non-
Pickering
- 
MCT 5% 
g/g  

0.19 IFT=38  
ΔT 2.9%  

[137] 

W2-0.031 48 nm 0.2 IFT=35 ΔT 
0.2%  

W3-0.038 3.7 nm 0.17 IFT=24 
mN/m 
ΔT 26.2% 

OSA-starch Commercials- 
debranched 
using isoamylase 

Waxy maize 
varieties∼ 
DS=0.023/ 

∼0.2 nm to 
∼12 nm / 
DB=4.7 to 6.8 
(%) 

Non-
Pickering
- MCT 
15% w/w  

0.2 to 0.4 Viscosity 
∼100 to ∼20 
mpa.s 

[138] 

Phosphoryla
ted waxy 
maize 
starches 

Hydrolysis with 
HCl (5% v/v) 
+Sodium 
tripolyphosphate  

Waxy maize 
starch-0.046 

WI=56% Non-
Pickering
- Orange 
peel oil 
20% w/w  

- Oil 
retentions 
55.75%  

[139] 

Acetylated 
starch 

Hydrolysis with 
HCl 
+Acetylation 
with acetic 
anhydride  

Waxy maize 
starch-0.033 

WI=63% Non-
Pickering
- Orange 
peel oil 
20% w/w  

- Oil 
retentions 
61.31% 

[139] 

Lauroylated 
starch - 20 
and 30 wt.% 

Hydrolysis (H)  Rice starch- 
1.86 

H1-3/ WI= 
3.44%  

-Non- 
Pickering
- Canola 
oil 30% 
w/w  

H-18.2  TSI 2.20  [140] 

+Esterification 
with lauroyl 
chloride (HL) 

HL-4.9/ WI= 
53% 

HL-13.2  TSI 2 

Lauroylated 
starch 
 

Esterification 
with lauroyl 
chloride  

Amaranth- 
0.01 

1.09 Pickering 7-9  - [141] 
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Carboxymet
hyl Starch 
Sodium 
Laurate 
Starch 

Carboxymethylat
ion with 
chloroacetic acid 
+ Lauric acid  

Potato 
Starches-
0.386+ 0.164 

30 amphiphilic Pickering
- 
Soybean 
oil 1% 

- Surface 
tension 29.5 

[142] 

WI: water solubility index 

IS: instability index 

ΔT: gravitational stabilities 

Z: Zeta potential 

DB: Degree of branching 

TSI: destabilization index 

3.5.1.3 Protein Derivatives 

Proteins from diverse sources with variable molecular and physicochemical characteristics can 

greatly affect their abilities to form and stabilize oil-in-water emulsions.[4] Due to their amphiphilic 

structures, the balance between polar and non-polar groups at the surface of proteins control their 

surface activity, [7] while an optimum level of surface hydrophobicity governs whether the protein 

could be a good emulsifier.[145-147] Unmodified pea (Pisum sativum), lentil (Lens culinaris), and 

faba bean (Vicia faba) protein demonstrated to be efficient emulsifiers for forming and stabilizing 

oil-in-water emulsions with small oil droplets (d < 0.3 μm) at higher emulsifier levels (5% 

protein).[148] However, in some cases, the proteins need to be physically or enzymatically modified 

to uncover their buried interior active functions to make them effective emulsifiers as summarized 

in Table 3.   

The surface and interfacial properties of proteins were improved using physical treatment by 

unfolding the aggregates. For instance, more hydrophobic residues of lotus seed protein were 

exposed by microwave treatment, which improved the solubility of the samples.[149] Thus, the 

stable solution improved the emulsifying properties of lotus seed protein by reducing the oil 

droplet size. In addition, the solubility, surface hydrophobicity, and emulsifying activity of 

soybean β-conglycinin,[150] vegetable proteins (pea, rice protein isolate),[151] peanut protein 

isolate,[152] and jackfruit seed protein isolate [153] were enhanced by the high-intensity ultrasound 

treatment due to the reduced particle sizes.  

The particle size and polydispersity of protein reported to be increased by enzymatic cross-linking, 

which led to elevated emulsion stability and elastic gel-like properties (compared to the non-

crosslinked emulsion that showed phase separation after two weeks).[154] Other thermal or acidic 
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treatments of proteins were also effective in forming gel-like emulsions with elevated emulsion 

stability.[155] 

Proteins with high molecular weights and extended structures are often better at preventing 

aggregation by generating stronger steric repulsion in emulsions.[7] One of the proposed reasons[13] 

for unstable emulsions using globular proteins is associated with their structural unfolding at the 

oil interface, which causes the loss of interfacial film thickness and exposure of more reactive 

groups.[156,157] 

Table 3.3. Properties of protein derivatives as emulsifiers. 
Emulsifier-
dosage 

Modification 
route 

Source  Particle size 
nm/Mw 

Emulsion 
composit
ion 

Oil droplet 
size (µm) 

Other 
properties 

Ref. 

LSPIs-
10 mg/mL 

Microwave-
vacuum 
treatment-
ranging from 0 
to 200 W for 
3 min 

Lotus seed- WI 
49.2% 
(untreated) to 
76.2% at 100 w 
opt 

500 
(untreated) 
to 50 

Corn oil- 
25%  

Creaming to 
0.366 after 28 
days 

- [149] 

Soybean β-
conglycinin-
0.5% 

Ultrasound 
treated-20 kHz 
at 400 W-0 to 
40 min 

Defatted 7B soy 
flour- WI 85 
(untreated) to 
93% 

75 
(untreated) 
to 50  

Corn oil 
25% 

- ESI 9.7 to 
57.5 min 

[150] 

PPI- 
0.1 wt.% 

Ultrasound 
treated-20 kHz, 
∼34 W cm−2 for 
2 min 

Pea 5250 
(untreated) 
to 222  

Rapeseed 
oil-
10 wt.%  

0.8 
(untreated) to 
0.5 µm after 
28 days 

IFT 5 mN/m [151] 

PPI- 1% 
 

Ultrasound 
treated-
20 kHz 0-
1020 W for 
1 min 

Peanut protein 
powder 

Native PPI 
474.7 to 
255.8  

Soybean 
oil-33 
wt.%  

- ESI 35 to 60 
min 

[152] 

Crosslinked-
chickpea 
protein-6% 
w/w 
 

Enzymatic 
crosslinking 
with 
ACTIVA®TI 
TG 

Chickpea 
protein- high 
solubility at pH 
10 

Mw=50 to 
240 kg/mol  

Corn oil-
40%  

1 (untreated) 
to 10-100 
(gel-like) 

Emulsions 
were stable 
for more 
than a month 

[154] 

WI: Water solubility index 

ESI: Emulsion stability index 

3.5.1.4 Lignin Derivatives 

Almost all isolated lignin products tend to aggregate in neutral aqueous environments; thus they 

are not suitable for stabilizing emulsions as polymeric emulsifiers.[92-95] Lignosulfonate is the only 

by-product of the pulp and paper industry that is dispersible in water and acts as a polyelectrolyte, 

thus it may stabilize emulsions through repulsion via an electrical double layer. Still, after several 

decades, lignosulfonate is an appealing biomaterial that is applied as a surfactant in many research 
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studies.[158-160] However, lignosulfonate faces some disadvantages: 1) its limited capability in 

reducing the interfacial tension in emulsion systems, which requires supplements, such as synthetic 

co-surfactants,[161] and 2) the limited availability of lignosulfonate (only 2% of the total lignin 

production worldwide).[100] Therefore, the valorization of other insoluble lignin sources via 

grafting or polymerization reactions were implemented to imply surface activity to lignin, which 

produced anionic,[162] amphoteric,[163] and non-ionic derivatives with interfacial activity as stated 

in Table 4. 

The anionic derivatives of lignin, such as carboxyalkylated,[164-166] sulfoalkylated,[167] and acylated 

lignin,[168] were reported as effective emulsifiers to increase the interfacial activity of lignin. The 

mutual trend was a decline in surface and interfacial tension with the polar groups, as was reported 

for carboxymethylated lignin (CML), which was further decreased by increasing the DS of 

CML,[165] lignin-tannic acid,[166] and sulfoethylated lignin derivatives.[167] The stabilized emulsion 

with carboxyalkylated and sulfonated lignin derivatives showed pH-responsive performance. This 

behaviour is believed to be a result of surface charge elimination via the protonation of functional 

groups.[165,166,169] Acylated lignin derivatives synthesized from modification of lignin with succinic 

anhydride (SA) and dodecylsuccinic anhydride (DSA) also showed more surface tension depletion 

compared to the unmodified lignin, while the longer chain derivatives showed better emulsifying 

properties.[168]  

Amphoteric derivatives were also effective in improving the surface and interfacial properties of 

lignin. Hydrophilic sulfonic groups and lipophilic long carbon chains of modified alkali lignin 

(ASAL) with amination, sulfonation, and acylation, efficiently were reported to reduce the oil-

water interfacial tension.[170]  

Non-ionic polymeric lignin derivatives were reported to comparably perform as non-ionic 

industrial surfactants.[171] Lignin-PEO (poly ethylene oxide) was successfully used for 

the emulsion polymerization of styrene, while that with a lower molecular weight demonstrated 

higher stabilizing efficiency.[172] Similarly, the surface activity (surface tension decline) and 

emulsifying properties of OZ-PEGylated lignin derivatives (polyethylene glycol) were dependent 

on the length of grafted PEG, as the medium DS showed the better properties.[173]  

Moreover, a stable water-in-oil emulsion was achieved using hydrophobized lignin derivatives 

with butyric anhydride (BA) as the emulsifier.[174] The lignin-BA was found to be completely 
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soluble in organic monomers, as it maintained water-in-oil emulsion stable over 30 days via steric 

and electrokinetic effects.  

Table 3.4. Properties of lignin derivatives as emulsifiers. 
Emulsifier-
dosage 

Modification route Source /DS Propertie
s/ Particle 
size (nm) 

Emulsion 
composition 

Oil 
droplet 
size (µm) 

Other 
properties 

Ref. 

CML- 2% Carboxymethylatio
n with 
monochloroacetic 
acid  

Pine kraft/ 
organosolv-DS 
35% 

Mw 5-6 
kg/mol,  
D=3.5-4 

Kerosene- 30-
70%  

< 2.5  Surface 
tension 
34 mN/m 

[164] 

CMLs Carboxymethylatio
n with chloroacetic 
acid  

Indulin AT-DS 
24-30%, 
Solubility 1.3-2 
g/100 g 

- Kerosene- 30-
70% 

~2.5  Surface 
tension 65-62 
mN/m 

[165] 

KL-TA-
1.5% 

Carboxyalkylation 
with Tannic acid  

Softwood kraft 
lignin-100%-
CD=-2.8 
mmol/g  

8-15  Cyclohexane- 
50%  

6-12 / 
emulsion 
fraction 
75-98% 

IFT 21.7 
mN/m 

[166] 

SEKL-
0.25-1.5 
wt.% 

Sulfoethylation 
with 2-bromoethane 
sulfonate salt 

Softwood kraft 
lignin-100%-
CD=-1.3 
mmol/g  

21  
 

Xylene, 
Cyclohexane, 
and Decane- 
50% 

X~7, C 
~5 and D 
≤ 2.5  

IFT:X 10.7, C 
12.2, D 14 
mN/m 

[167] 

SA/DSA-
lignin-1% 
wt/v 

Acylation with 
succinic anhydride 
(SA), and dodecyl-
succinic anhydride 
(DSA) 

Alkali lignin- 
soluble 

- Xylene- 50%  SI: 
AL=1.6 

Surface 
tension 42 to 
38 mN/m 

[168] 

ALSA=5 
ALDSA
=12 h 

ASAL- 
5%. 

Amination with 
Diethylenetriamine 
and CH2O+ 
Sulfonation with 
Na2SO3 and CH2O 
Acylation with 
palmitoyl chloride 

Alkaline lignin - - - IFT to 5 mN/m [170] 

m-Lig-
PEO-1% 
 

Oxyanionic 
polymerization of 
EO 

Softwood kraft 
lignin-yield 40-
90# solubility 
2.02 mg L−1 

Mw 2.5-9 
kg/mol- 
251 and 
398  

Styrene-20% Latex of 
0.322-
0.405  

Surface 
tension 54-62 
mN/m / SE: 
4.98-2.37 
106 cm2/g 

[172] 

OzEL-
PEGs 

Ozone oxidation 
+Esterification with 
melted polyethylene 
glycol (PEG)  

Enzymatic 
lignin DS (0.47, 
1.13, 1.86) 

2, 4, 17 
kg/mol/ 
Ɖ =1.3-
2.2 

Edible oil- 10% 3 (at DS 
1.13) 

Surface 
tension 55.42, 
52.87, 57.48 
mN/m 

[173] 

BA-KL- 
0.5 and 5 
wt%  

Esterification with 
butyric anhydride 
with 
Methylimidazole 
catalyst  

Kraft lignin 2.7 
kg/mol 

Styrene- 50% 0.499-0. 
363 
 

Decrease the 
interface 
energy from 
35 to 15 J/m2 

[174] 

SI stability index 
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SE Stabilizer efficiency 

EC: Emulsifying capacity  

3.5.2 Particle Stabilization 

Pickering emulsions usually display a longer lifetime when compared to surfactant-based 

emulsions, which is due to the higher steric resistance against droplet coalescence induced by the 

solid particles adsorbed at the O/W interface.[30] The particle preparation can be classified into 

“top-down” and “bottom-up” methods.[175] If the preparation follows a breakdown of larger 

particles via improvement in the structure and size, it is called “top-down” process. On the other 

hand, “bottom-up” process is based on combining atoms or molecules in a controlled manner to 

produce particles.[175] In the following section, different methods of particle formulation based on 

the most common plant-based biomaterials and their use in the Pickering stabilization of oil/water 

system are reviewed. The attention was given to the surface charges, size, and wettability of 

particles and their effect on emulsion properties including oil droplet size and physical stability. 

3.5.2.1 Nanocellulose particles 

Cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) are the two main particle forms 

of nanocellulose materials, in which their methods of production were explained in section 3.1 and 

further, their properties on emulsion formulation are discussed here. Within the nano cellulosic 

materials as particle stabilisers, CNCs gained the main spotlight.[176,177,178] Most recently, the 

introduction of novel resources such as defatted rice bran (DRB),[179] asparagus,[180] and non-

bleached fine fractions of carton pulp,[181] were given extra attention in order to propose more 

sustainable fiber supplies. Latest studies on the use of nanocellulose particles in Pickering 

emulsion stabilization are provided in Table 5. 

The CNCs are usually negatively charged due to the presence of ester sulfate or carboxyl groups, 

which could promote repulsions at the interface while the edges of the nanocrystals are 

hydrophobic allowing for their adsorption at the O/W interface. Adding salt to water (50 mM) or 

removing the sulfate groups from the surface of the CNCs may decrease electrostatic repulsion 

and enhanced emulsion stability.[182-185] For instance, the lower the surface charges by de-sulfation, 

the higher the stability of the formulated emulsions with smaller oil droplet size would be.[184,186] 

A comparison between CNCs and de-sulfated CNCs showed that a porous and multilayer interface 

formed at the oil interface using de-sulfated CNCs, would cause a larger tendency for aggregation 

compared to a denser layer with charged CNCs.[187] However, higher surface charges were also 



45 
 

shown to enhance the emulsification efficiency of produced CNCs with longer hydrolysis time, 

which increased CNC charges and reduced its particle size.[180] 

Therefore, it seems that a combination of the nature of the charges at the surface and particle size 

would ultimately alter CNC’s emulsifying properties, which are all dependant on the source, 

crystalline organization and morphology of particles and the methods of treatment of CNCs (e.g., 

de-sulfation in the acidic or alkaline system). In addition, the non-adsorbed CNCs in the 

continuous phase is also reported to affect the emulsion’s final stabilization.[186]  

Other factors rather than surface charges were shown to have a dominant role in the properties of 

emulsions. For instance, different crystalline allomorph and particle sizes altered the hydrophilicity 

and morphologies of CNCs and consequently affected their ability to stabilize O/W Pickering 

emulsions.[188] Needle-like particles (CNCs-I, length 200 nm) with lower crystallinity and 

hydrophilicity were a better stabilizer compared to individual ellipsoid shape granules (CNCs-II, 

length 18.8 nm) with similar surface charges by showing larger emulsion ratio, two-time smaller 

droplet size, and superior stability performance.[188] In addition, the aspect ratio of cellulose 

particles is known to directly influence the coverage ratio of droplets in emulsions. For example, 

CNCs with a low aspect ratio (short nanocrystals) could form monodispersed oil droplets with a 

high surface coverage ratio (coverage >80%), while a higher aspect ratio (longer nanocrystals) was 

associated with an interconnected network of low covered droplets (40%).[189,187] 

Yet, creaming occurs for stabilized emulsions with CNCs over time. To address this problem, 

water-soluble CNC derivatives (CNC-HEC and CNC-MC) were mixed with CNC particles, which 

led to the smaller oil droplet in the emulsion that stabilized them over a longer time.[190] A lower 

surface coverage was reported for the mixture of stabilizers in emulsions, which revealed the 

important role of HEC and MC to stabilize the interface with fewer CNCs.[190] The effective 

influence of polymers was also shown on the formation of dried and re-dispersible CNC-based 

emulsions.[191] 

The hydrophilic nature of CNCs with abundant hydroxyl groups makes it difficult to disperse in 

hydrophobic polymer matrices and consequently hampers its practical applications, e.g., 

stabilizing W/O emulsions. The hydrophobic particles of CNC derivatives such as acylated CNC 

with an excess of cinnamoyl chloride, [192,193] alkylated,[194-197] and reductive aminated CNC[181,198] 

had higher compatibility with organic solvents yielding the formulation of reverse water-in-oil 

Pickering emulsions.[197]  
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In addition to CNCs, physically or chemically treated CNF particles are reported as Pickering 

stabilizers in many studies.[199-201] CNFs can form entangled networks due to their longer fibers, 

which form a shield around the oil droplets, preventing them from coalescing; while the shorter 

length and aspect ratio of CNC was shown to be more effective in preventing the coalescence 

phenomenon.[199] For instance, TEMPO-CNFs with a shorter length than untreated CNF formed a 

larger volume of emulsions with small and homogeneous oil droplets, which also showed good 

stability after storage for 30 days.[201]   

Several studies also focused on the comparison between CNC and CNF, while the latter one 

formed much larger oil droplets (20 μm) compared to CNC (4-6 μm).[202] On the other hand, 

oxidized (TEMPO)-CNF showed to be as effective as CNC-stabilized emulsions by effectively 

reducing both the particle size and oil droplet size.[202] However, the stability was more significant 

for CNF and T-CNF stabilized emulsions due to the longer networks of fibrils formed around 

droplets resulting in a physical barrier against coalescence.[202-204]  

Table 3.5. Properties of nanocellulose particles as Pickering stabilizers. 
Emulsifier
-dosage 

Preparation Source /DS Properties/ 
Particle size (nm) 

Emulsion 
compositio
n 

Oil droplet 
size (µm) 

3-phase 
CA˚/other 
properties 

Ref. 

CNCs/de-
sulfated 
CNCs 

De-sulfated 
by acidic 
treatment 
(HCl) Time 0 
to 10 h 

Cotton 
(CCN)/Surface 
charges (0.123 to 
0.019 e/nm2) 

189 to 117 Hexadecan
e-30% 

Unstable to 
3.8 

E: 0 to 70% [184] 

CNCs/des
ulfated 
CNCs- 0.8 
to 5 g/L 

Sulfuric acid 
hydrolysis/ 
de-sulfated 
by acidic 
treatment 
(HCl) 

Whatman filters- 
0.16 e/nm2/0 

Rod-like 195 long, 
23 width and 6 
thick 

Hexadecan
e 10, 20, 
and 30% 

S=4.7-2.1 Thickness=7 
nm/ Coverage 
of the droplet 
=85% 

[187] 

D=5-2.8 18 nm/ 45% 

CNC Sulfuric acid 
hydrolysis (T 
1.5-3.5 h) 

Cellulose fibers 
asparagus  

261.8 to 180 Palm oil 
30% 

3 µm /E: 15-
32 % 

Zp= -31.2 to -
52 mV 

[180] 

CNCs-0 to 
3 g/l 

Sulfuric acid 
hydrolysis  

Unmodified 
50 μm and 
mercerized 
microcrystalline 
cellulose (MCC)- 
Surfac charge, 
0.12 and 0.1 e/nm2 

CNCs-I (length 
200, width 16.4, 
and L/W = 13) 
CrIs: 70.9% 

Hexadecan
e- 25% 

50 to 5/ 
E:0.25 to 
0.46 

44˚ [188] 

CNCs-II (length 
18.8, width 10.9, 
and L/W = 1.7) 
CrIs 72.8% 
 

70 to 10/ 
E:0.22 to 
0.40 

26.9˚ 

CNC 0.3+ 
polymer 
0.2 wt % 

Sulfuric acid 
hydrolysis 

Cotton filter aid+ 
MC+ HEC 

- Dodecane 
50% 

CNC 12/ 
Over time to 
30 

SC%=80/ 
coalescence 

[190] 
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HEC or MC 
6 Over time 
to ˃30 μm 

Significant 
coalescence 

Mixed 2-3/ 
minimal 
droplet 
change 

SC%=20% / 
mild creaming 

Cin-CNC- 
0.5-4 
mg/mL 

Esterification 
with 
cinnamoyl 
chloride 

Commercial CNC-rod-like 
length of 110.3 
and width 4.8 

Toluene 
70% 

- 14˚ [192] 

Cin-CNC length 
of 138.9 and width 
8.1 

60 to 5  75.9˚ / SC%= 
62% 

CNC-C18-
0.3 to 0.05 
wt % 

Hydrazone 
reaction with 
hydrazinium 
hydroxide 
and 
amidation 
reaction 
EDC/NHS 

Cellulose filters Length of 84 and 
width of 4.9  

n-Hexane 
50% 

206 to 11 IFT 55.5 to 
39.5 mN/m 

[194] 

CNC-
NH2-0.1-1 
wt.% 

Amination 
with 
epichlorohyd
rin 

Commercial CNC 200  Cyclohexa
ne- 75% 

50 to 32 - [198] 

CNF-0.01-
0.09 wt% 

TEMPO 
oxidized 
with NaClO 
at pH 10 

Kelp (seaweed) Non-uniform 
˃3 μm  

Sunflower 
oil- 25% 

~20 E: 16.2-
26.1%- not 
stable 

[201] 

Length 0.6-1 μm, 
width 10-20  

~10 8.2-21.9% 
stable 

CNC, 
CNF and 
TCNF-8 
mg/mL 

- Wood CNCs, 
wood CNFs, 
TEMPO- CNFs 

CNCs 50-250  Hexadecan
e 20% 

CNCs 4-6  Flowing [202] 
CNFs and TCNFs 
few micrometers 

CNFs 30  Gel-like 
behavior TCNF 1  

E: emulsion volum/ratio 

SC: Droplet surface coverage%  

CrIs: Crystallinity index 

EDC: N-(3-(dimethylamino)- propyl)-N′-ethylcarbodiimide hydrochloride 

NHS: N-hydroxysuccinimide 

3.5.2.2 Starch Particles 

The nanoparticles from starch (SNPs) are produced using various techniques of chemical 

treatments with acid hydrolysis, emulsion-crosslinking, nanoprecipitation, and physical treatments 

with high-pressure homogenization, ultrasonication, reactive extrusion, and gamma irradiation or 

a combination of them.[70,205,206] There are several review articles available for starch modification 

and particle formulation.[70,207] Briefly, Table 6 summarized studies in the past 5 years in producing 

Pickering emulsions using starch nanoparticles. 
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The use of esterified or cross-linked starch for particle formulation via nanoprecipitation or alkali-

freezing/freeze-drying was reported to enhance the wettability of particles (θ closer to 90˚), which 

produced narrowed-sized oil droplets.[208,209] Functionalized starch nanoparticles produced via 

graft polymerization were reported to increase the hydrophilicity of particles at a higher grafting 

ratio, which increased the oil droplet size.[210,211] 

The importance of particle size and their wettability, θow, as the two main variables for Pickering 

emulsion stability were investigated in several studies.[30,212,213] For instance, the three-phase 

contact angle (θ) of particles increased from 53.3˚ to 73.4˚ with the increase in the size of the SNPs, 

inferring the higher hydrophilicity of the smaller particles.[212] In addition, these particles were all 

strongly attached to the water-oil interface, independent of their θ due to the large adsorption 

energy, which was increased with the larger particles (-5.6 × 104 to -1.65 × 106 KBT).[212] However, 

the importance of the wettability of the particles and their direct correlation with the oil droplet 

size was emphasized. For instance, medium-sized nanoparticles (100-220 nm) showed near-

neutral wettability (θow ∼90˚) that produced the smallest oil droplets. However, other particle size 

ranges (<100 nm or >220 nm) were associated with further discrepancies from θow ∼90˚ that 

formed larger oil droplets.[213]  

Starch nanocrystals (SNCs) are considered as the second category of starch particles with variable 

sizes, depending on the starch source.[207] SNCs produced from H2SO4 hydrolysis was successfully 

implemented to form stable gel-like O/W Pickering emulsions in which by increasing 

concentration of particles, oil droplet size decreased, and creaming stability increased.[214,215]  

Modified or treated SNCs were effective in improving the stability of Pickering emulsions. For 

instance, the acetylated SNC particles improved the emulsifying capacity due to the enhanced 

electrostatic repulsion created among the droplets, which reduced the size of oil droplets.[216] 

Moreover, the particle size of SNCs from different sources was effectively reduced by alkaline 

treatment, which ultimately improved the Pickering-stabilizing capacity of starch particles.[217] 

However, a major variation in droplet size, storage stability, and viscosity properties of emulsions 

were reported to be dependent on the starch source. For instance, structural differences between 

the two kinds of maize starch with similar particle sizes played a vital role in the physicochemical 

properties of particles.[217] 

Table 3.6. Properties of starch particles as Pickering stabilizers. 
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Emulsifier-
dosage 

Preparation method Source Particle 
size 
(nm) 

Emulsion 
composition 

Oil droplet 
size (μm) 

3-phase 
CA˚ 

Ref. 

Amphipathic 
SNP-0.5-
2 wt.% 

Acetic 
anhydride and 
phthalic 
anhydride+ 
Nanoprecipitation  

Acidified corn 150 Ethyl 
acetate- 30-
40% 

34-10 104˚ [208] 

CSTNs 
crosslinked 
SNP 1 wt.% 

Alkali-freezing 
dispersions+ 
freeze-drying+ 
crosslinking 
thermal elimination  

Corn 2-10 μm 140 Sunflower 
oil- 30% 

1.8-3 Native 45, 
CSTN 78˚ 

[209] 

CMS-g-
DMAEMA-
1% (w/v) 

Gelatinization+ 
polymerization + 
ethanol 
precipitation 

Carboxymethyl 
maize- G R:14-
33%  

~100 Grape oil- 
50% 

12 to 31 119 to 80˚ [210] 

SNP-g-
PNIPAM-0.5 
mg/mL 

Precipitation of 
initiator-attached 
SNP -graft radical 
polymerization 
SET-LRP 

Acidified corn-
conversion 33-
85 (%) 

190-400  n-hexane, 
toluene  

30 to 100  103 to 65˚ [211] 

SNP  Nanoprecipitation * 100, 
210, 320  

Hexane-
water 
interface 

- 53.3 to 
73.4˚ 

[212] 

SNP-1 wt% Nanoprecipitation/ 
enzymolysis and 
recrystallization 
Method 

Corn, Sweet 
Potato 

 <100 Soybean oil 
50% 

48.34  84.3˚ [213] 
100-
220  

29.33 89.1-94.8˚ 

>220  48.76 105.5-
129.4˚ 

SNC-0.5-
4 wt.% 

Sulfuric acid 
hydrolysis 

Waxy maize 750  Soy oil- 
80% 

60 to 30 78˚ [214] 

Sago-SNC 
0.5-4% (w/v) 

Sulfuric acid 
hydrolysis 

Sago 20-100  Corn oil- 
50% 

* Creaming 
decreased 

[215] 

Acetylated 
SNC-0.2-2 
wt.% 

Acid hydrolysis+ 
acetylation 

Corn 15 μm-
DS= 0.11-0.41) 

SNC 86 Olive oil-
20% 

1.85-1.21 * [216] 

ACSNC 
92  

0.78 

Alkaline 
treated SNC- 
3%, w/v 

Acid hydrolysis+ 
alkaline treatment  

Waxy maize 
starch/ Normal 
maize starch 

300/400  Sunflower 
oil-50% 

5/70 95/78˚-
viscosity 
23/13 
mpa.s 

[217] 

 

3.5.2.3 Protein Particles 

The different methods of self-assembling, enzymatic cross-linking, thermomechanical treatments 

(e.g., ultrasonication, or stirring-heating),[218,219] high-pressure homogenizer[220,221] and solvent-

induced precipitation[222] are introduced as effective techniques for producing protein particles. 

Additional references are available for more details on these methods of particle formulation.86,81 

Studies in the past 5 years in producing Pickering emulsions using protein nanoparticles are 

summarized in Table 7. 
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Using acetylated protein for particle formulation was reported to advance the hydrophobicity of 

particles with neutral wettability (θ=86.7˚) that enhanced its emulsifying properties.[223,224] The 

aggregation of proteins can also be induced by adding divalent ions (Na+ and Ca2+)[225,226] and/or 

crosslinking using transglutaminase, peroxidase or tyrosinase.[227,227] The Ca2+-induced 

aggregation of soy protein isolate (SPI) produced nanosized particles (130 nm), and its 

crosslinking with glutaraldehyde (GAD) increased the particle size to 150 nm.[225] As demonstrated 

in Fig.5, the GAD crosslinking of SPI nanoparticles was associated with the formation of larger 

oil droplets compared to Ca2+-induced SPI nanoparticles. However, the extent of creaming was 

lowered using GAD compared to the uncross-linked nanoparticles. The crosslinking was suggested 

to bring stronger internal integrity that resisted more against droplet flocculation and 

coalescence.[225]  

 
Figure 3.5: Ca2+-induced soy protein nanoparticles formulation with or without cross-linking for 

Pickering stabilization of oil droplets. (Adapted from Ref. [225] with permission of Elsevier). 

 

Protein from different sources may have a high hydrophobic (zein or rapeseed) or hydrophilic 

nature with variable sizes, which restrict their effective adsorption at the oil-water interface. 

Several studies produced stable Pickering emulsion with the incorporation of other hydrophilic or 

hydrophobic components, such as anthocyanins (CAN),[228] chitosan,[229] sodium caseinate,[230] 

tannic acid[231] or octenyl succinic anhydride[232] with tuning the wettability and size of particles. 
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A protein nanoparticle complex (SPI-CAN) was formed by covalent complexation between SPI 

(soy protein isolate) and ACN (anthocyanins), which was initiated by heating with added NaCl 

(300 mM) and leading to a decrease in the particle size compared to SPI alone. SPI-ACN complex 

nanoparticles with smaller particle size and increased repulsion forces formed smaller oil droplets 

with enhanced creaming index by 50%.[228] 

A zein/TA complex colloidal particle (ZTP) was produced following the antisolvent approach 

based on the hydrogen-bonding interaction between zein and TA. A near-neutral wettability 

(θow∼86˚) resulted in a complex particle (ZTP/TA) compared to θow∼110˚ for unmodified particles 

that resulted in elevated Pickering stability due to the smaller particle size and enhanced interfacial 

reactivity.[222,233] 

On the other hand, amphiphilic (neutral wettability) gliadin nanoparticles (OSA-GNPs) were 

produced by esterified hydrophilic gliadin nanoparticles (GNPs) to improve the emulsifying nature 

of GNPs via improving their hydrophobicity, which ultimately decreased the oil droplet size.[232] 

Table 3.7. Properties of protein particles as Pickering stabilizers. 
Emulsifier- 
dosage 

Preparation method Source Particle size 
(nm) 

Emulsio
n 
composi
tion 

Oil droplet 
size (µm) 

3-phase 
CA˚/other 
properties 

Ref. 

ARPI-0.2-0.8% 
w/v 

Thermal processing Rapeseed 170  Rapesee
d oil- 
30% 

1.3 to 0.4  RPI 58˚ [224] 

ARPIT 
86.7˚ 

SPI-0.02-0.4% 
(w/v) 

Ca2+ (5mM) induced 
aggregation+ 
crosslinking with 
GAD (0-200%)  

Soy flour SPI 130  Soy oil- 
50% 

100-50  SC: 3.8 % [225] 

CSPI  150 450-50  8.7-12.6 % 

PPI-0.5-2% Thermal and Na+ 
(500 mM) induced 
aggregation  

Peanut 178 Corn oil- 
20-70%  

124 to 36 45˚ [83] 

260  66˚ 

SPI-ACN 
complex  

Thermal and Na+ 
(300 mM) induced 
aggregation- 0.2% 

Soy 
flour/ 
rice 
extract 
powder  

SPI 675  Soy oil- 
20% 

15-20  CI 34% [228] 

SPI-ACN 
186  

CI 17% 

ZTPs-0.25-1.5 Heating / 
Antisolvent  

Corn/ 
zein/TA 
ratio of 
1:0.2 

∼200 Corn oil 
> 50% 

43 to 12  110˚ [222] 

~ 90  86˚ 

OGNPs-1.5%  Ultrasound 
treatment+ Anti-
solvent +OSA 

Gluten/D
OS 2% to 
10% 

122.97  Corn oil 
10%  

20.72   39.1˚ [232] 

233 to 379  7-4  59.1 to 
99.4˚ 
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Kafirin based 
nanoparticle-
1.5%  

Anti-solvent 
precipitation 

Sorghum 
grain 

Mean value 
206  

Soybean 
oil- 30, 
50, 70% 

75  125˚ [234] 

CI: Creaming Index 

SC: Surface coverage 

3.5.2.4 Lignin Particles 

There are different techniques for lignin nanoparticle (LNP) preparation, which can be found either 

in a spherical or irregular shape.[100] There are several review publications that focused either on 

LNP formulation[101,235,236] and applications.[100,237] Briefly, such methods involve the controlled 

solvent evaporation of atomized droplets of lignin solution,[238] the post-drying of dispersed 

particles formed by microemulsions[239] or solvent shifting techniques that will form spherical 

lignin particles.[240] Other methods of acidification or uncontrolled drying, e.g., oven-drying, result 

in a network of aggregated, irregular, and heterogeneous precipitates.[100] A summary of the lignin 

particles used for Pickering stabilizations over the past 5 years is provided in Table 8. 

The properties of particles can be directly affected by their preparation methods, which would 

ultimately affect the stability of emulsions. For instance, particles formed from the solvent shifting 

(SS) method were generally smaller and more hydrophilic than larger and more hydrophobic 

particles produced via the direct dialysis (DD) method. This SS method was associated with the 

gentle self-assembly of lignin polymers via dialysis against a rapid transformation.[240] 

Consequently, the Pickering emulsions stabilized by LNP were the least stable due to hydrophilic 

and small size particles produced in the SS method.[240]  

The source of lignin (kraft, organosolv, or alkali lignin) was revealed to directly affect the size and 

wettability of particles and consequently the stability of emulsions.[238,240]  Generally, the particles 

formulated from kraft (KL) or alkali lignin (AL), due to higher hydrophilicity, are smaller than 

hydrophobic organosolv (OL) lignin source.[238,240] Accordingly, KL-stabilized Pickering 

emulsions were found to be more stable compared to OL-stabilized emulsions.[238] In addition, 

AL-Pickering emulsions were more stable compared to OL-stabilized emulsions.[240] 

Surface-active particles could also be formed using polymerization techniques [241] while grafting 

degree showed an influential effect on the LNP performance as a stabilizer. For instance, polymer-

grafted lignin nanoparticles (PGLNs) with a lower grafting density (100 μmol/g) led to a greater 

decline in interfacial tension, higher concentration at the oil-water interface, and smaller oil droplet 

size compared to higher grafting particles (700 μmol/g).[242] 
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Table 3.8. Properties of lignin particles as a Pickering stabilizer. 
Emulsifier-
dosage 

Preparation 
method 

Source Particle size 
(nm) 

Emulsion 
composit
ion (w/w) 
or (v/v) 

Emulsion 
droplet size 
(μm) 

3-phase 
CA˚/Others 

Ref. 

LNP-0.6 and 
0.2 wt.%/ 

Lignin alkaline 
solution+ 
Microemulsions  

Kraft lignin Controllable 
size -90 nm to 
1 µm 

Hexadecan
e- 30% 

7.7 and 22.3 - [239] 

Colloidal 
LNP-
0.5 mg/mL 

Solvent-
exchange or 
dialysis  

Organosolv 
lignin  

SS 300  Olive oil, 
toluene and 
silicone oil 
4:1 

Least 
stable/phase 
separation 

23.1˚ [240] 

DD 680 Stabilized 
emulsion 

56.0˚ 

LNP-0.1-
0.6% 

DMF-Aerosol 
Flow Reactor at 
153 °C 

Kraft  356, 1019  Kerosene-
50% 

5-17 57˚ /Cream 
layer 0.7, 
stable 

[238] 

Organosolv 
lignin 

679, 189 - 69 ˚ / not 
stable-
flocculated 

Colloidal 
LNP-
0.5 mg mL−1 

Dialysis  Alkali 300  0.1% 
curcumin-
containing 
sunflower 
oil 25% 

73% oil 
retain 

31˚ [240] 

Organosolv 
lignin 

680  65% oil 
retain 

56˚ 

AL-g-
PNIPAM- 0.1 
wt % 

ARTP 
polymerization+ 
solvent shifting  

Alkali 
lignin/Organ
osolv lignin 

∼152  Palm oil 
1:2 

204  Thermorespon
sive behavior 

[241] 

PGLNs-
1 mg/mL 

RAFT 
polymerization 

Kraft lignin/ 
Grafting:100 
700 μmol/g  

100  Cyclohexa
ne 40%  

19  IFT: 24.5 
mN/m 

[242] 

24  26.5 mN/m 
Cationic-
CLPs-5 g/L 

Solvent shifting 
+ coated with 
cationic KL with 
GTMAC 

Kraft lignin  250  Toluene 
50% 

Bimodal; 5-
10 and 50-
100  

ES 90-100% at 
pH˂6 

[243] 

N-SEKL-
0.25% 

Acidification Kraft lignin 12 polymeric Xylene 
50%  

11  22˚/TSI: 20 [169] 
750 particles ~4  50˚/5 

Colloidal 
LNP-0.1 to 
1wt.%  

Solvent-
exchange  

Lignoboost 
kraft lignin  

200  Rapeseed 
oil 50% 

Uniform oil 
droplets 

Stabilized 
emulsion 

[244] 

LNP-0.60 wt. 
% 

Acid 
precipitation 
dialyzed and 
ultrasonication 

Sulfur-free 
alkaline 
pulping 
liquor 

∼100  Rapeseed 
oil- 10 % 

1  TSI 50 after 21 
days 

[245] 

LNP- 2 g/L Nanoprecipitatio
n with injection 
or dialysis  

Alkaline 
lignin- yield 
80% 

250-750  Essential 
oil- 10%  

2-8  Oil decay 
index reduced 
by 15-25% 
compared to 
lignin 
suspension 

[246] 

TSI: Destabilization index 

ES: Emulsion stability 
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One of the challenges of using lignin nanoparticles as an oil stabilizer is their less compatibility 

with food-grade oils. Sipponen et al.[243] revealed that compared to toluene in-water emulsions, a 

less stable system was formed with olive oil-in-water emulsions (as a polar oil) using cationic 

colloidal lignin particles (c-CLP). The better correlation with organic toluene was suggested to 

originate from attractive forces, such as π-π and cation-π interactions, with the aromatic rings of 

lignin and its cationic moieties at pH˂6.[243] Hence, it may be predicted that more attention would 

be given to enhance the adaptation of lignin nanoparticles toward food-grade emulsion systems in 

the future. 

The advantage of LNPs compared to polymeric lignin surfactants was evaluated in chapter 5 of 

this thesis.[169] Sulfo-functionalized lignin particles (N-SEKL) formed a gel-like and ultra-stable 

Pickering emulsion due to considerable viscosity enhancement of the emulsion (24 Pa.s) compared 

with the unstable liquid-like emulsions (0.24 Pa s) using polymeric surfactants.[169] 

Lignin nanoparticles bring unique advantages of antimicrobial, antioxidant and UV-shielding 

properties over the synthetic particles to emulsion.[247-249] Currently, research on the development 

of an organic solvent-free or industrially scalable nanoparticle production is on-going.[244-246] 

3.5.3 Mixed-plant Emulsifiers 

Recently, a new trend for the formulation of entirely green products using only plant-based 

biomaterials gained interest to improve the properties of the aforementioned emulsifiers. In this 

case, the same mentioned plant-based surfactants or particles would be jointly utilized to elevate 

their properties without any chemical reactions. A summary of the available complexation and 

emulsion properties is summarized in Table 9. 

At a certain pH, due to the opposite charges of the biopolymers, complexes could be formed via 

electrostatic interaction. These complexes are relatively stable due to their surface charges, which 

allow their interaction with solvent molecules making them water-soluble. By designing the 

conditions of the biopolymer self-assembly, such as pH, protein to polysaccharide ratio, total 

concentration, and ionic strength, the complex bioparticles with controlled sizes can be 

produced.[250] Polysaccharides and proteins could be linked either through Maillard (i.e., a 

chemical reaction between amino acids and reactive carbonyl groups of sugars) or electrostatic 

interactions to fabricate surface-active complexes with advantages of both biopolymers.[250] 
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It was stated that pH adjustment plays a crucial role in such complexation. For instance, variable 

properties were associated with the complexation between Pea protein isolate (PPI) and gum 

Arabic (GA) mixtures as a function of pH, which resulted in the formation of soluble (pH 4.23) or 

insoluble (pH 3.77) complexes, maximum biopolymer interactions (pH 3.60), and dissolution of 

complexes (pH 2.62).[251] In another study, it was shown that the sequence of adjusting pH and 

homogenizing soy oil with soy proteins isolate (SPI) solution with/without GA greatly influenced 

the formation of the interface layer, droplet size, and the stability of the formulated emulsions.[252]  

Naturally available plant-based surfactants are reported to increase the emulsifying properties of 

proteins through different combinations, such as soy lecithin/quillaja saponin (QS),[253] gum 

Arabic (GA)/QS, GA/tannic acid (TA)[254] and zein/TA,[222] yielding higher emulsion stability with 

smaller oil droplet sizes.[255] For instance, a natural plant-based surfactant, quillaja saponin (QS), 

which is isolated from the bark of the Quillaja Saponaria tree, was used to successfully improve 

the properties of hydrolyzed Rice glutelin (RG) protein as a deficient emulsifier.[256] In this case, 

the size of the oil droplets decreased as the QS-to-HRG ratio increased, while no creaming was 

observed after 24 h of storage. Similarly, the physical stability of almond protein isolate (API) 

stabilized emulsions was improved by the addition of camellia saponin (CS), another natural plant-

based surfactant at pH=3 and pH=7 via reducing the oil droplet size.[257] 

Tannic acid (TA) as a natural polyphenol and food-grade material with a long history of the 

industrial application was also reported to well control the self-assembly and hydrophobicity  

of wheat starch (WS). The complexes of TA/WS at pH 4 were reported to inhibit the creaming of 

soybean oil-based emulsions by forming a thick interfacial network around oil droplets or 

obtaining smaller-sized droplets with tuned wettability.[258] 

The improvement in the stabilization of Pickering emulsions using modified particles with natural 

emulsifiers is also reported.[259,260] The complexation of pectin with hydrophobic zein particles 

(ZP) improved its wettability (84-86˚) and particle size, which resulted in a smaller oil droplet size 

and prevented coalescence of oil droplets at pH 3. As illustrated in Fig 6, exceeding the isoelectric 

point of ZP at pH 6 caused the desorption of pectin from the surface of ZP due to the electrostatic 

repulsive force, resulting in unstable emulsions similar to ZP particles alone at the interface.[261] 

The complexation of flaxseed protein particles (FP) and the soluble fraction of flaxseed mucilage 

(SFM) at pH 3 enhanced interfacial activity (IFT=10 mM/m) and tuned wettability of particles. 

While using native FP or its particles alone resulted in poorly stable emulsions, stabilized Pickering 
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emulsion was formed using FP-SFM complex with no variation in the droplet size during 

storage.[262] 

Table 3.9. Combination of different plant-based stabilizers for emulsion stabilization. 
Emulsifier
-dosage 

Complex combination Source Particle size 
(nm) 

Emulsion 
composition 

Emulsion 
droplet 
size (μm) 

CA˚/Other 
properties 

Ref 

Soy 
lecithin/ 
QS-0.25-
2% 

Mixing 1% SI and (0.25 
to 2%) QS stock 
solutions. 

Soy lecithin 
and Quillaja 
saponin 

- MCT- 
50 wt.% 

Lecithin=0 
3-1 

5-20 mPa.s [253] 

0.75-0.25  20-35 
mPa.s 

HRG- 
QS-1wt.% 

Mixing HRG (0.5%) and 
QS (0.5%) stock 
solutions. QS-to-HRG 
ratio 1:4 to 1:1 pH 7 

Rice glutelin 
and 
Quillajasapo
nin 

- Refined rice 
bran oil- 
10 wt.%  

QS=0 5-10  creamed [256] 

0.24 to 
0.18  

no 
creaming 

API- CS-
1.5 wt.% 

Mixing API (2wt.%) and 
CS (1/2 wt.%) stock 
solutions. pH 7 / pH 3 

Almond and 
tea saponins 

- Walnut oil- 
5 wt. %l  

CS=0 4.5 / 
20  

- [257] 

1 /7-8  - 
TA/WS at 
0.25-1% 
WS 

2 % (w/v) WS, TA (5 %, 
w/v)- TA/WS=0.05- pH 
4 

Wheat 
grains 

- Soybean oil- 
30% 

9.99 to 2.7  TA=0 38˚ [258] 
86˚ 

ZPHP Mass ratios of pectin-to-
zein particle 1:10, 2:10, 
and 5:10 at pH =3 

Zein, pectin 
from citrus 
peel 
 

116  Corn oil- 75% unstable Pectin=0 
110˚ 

[261] 

583- 659  230-105  86-84˚ 

FP- SFM- 
0.45% 

FP and SFM stock 
solutions 0.45 wt.% 
(ratio50:50) acidification 
at pH 3   

Brown 
flaxseeds 

Super micron 
aggregates  

Tricaprylin 
oil- 2.5 wt.% 

SFM=0: 
10 ˂ 

FP=0, 28˚ [262] 

Around 300  5-6 67˚ 

 

https://www.sciencedirect.com/topics/food-science/saponin
https://www.sciencedirect.com/topics/food-science/saponin
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Figure 3.6: Schematic illustration for the formation of interfacial structure by ZPs at pH 3.8 (a), 

ZPHPs at pH 3.8 (b), and ZPHPs at pH 6.0 (c) and corresponding emulsion stability observation. 

Adapted with permission from [261]. Copyright (2020) American Chemical Society.  

3.6 Application 

Pickering/non-Pickering emulsions stabilized by plant-based particles and emulsifiers are 

sustainable and biocompatible systems that can be applied as foods, drug delivery mediums, hybrid 

materials, crude oil recuperation, and emulsion polymerization. Several review articles have 

focused particularly on the application of lignin,[263] starch,[264] proteins,[265] and cellulosic[176] in 

different technologies using stabilized emulsions. Here, we summarized mostly targeted 

applications of stabilized emulsions using plant-based polymers and particles studied over the past 

5 years. 

3.6.1 Encapsulating agents 

Loaded microcapsules with active ingredients that are soluble in organic phase cores of capsules 

dispersed in aqueous media or vice versa can be attained in the form of emulsions or Pickering 

emulsions.[263] These capsules have a wide range of applications in thermal energy, in situ 

polymerization, or controlled loading and releasing of drugs or pesticides in pharmaceutical and 

agricultural technologies.[266,267] A list of plant-based stabilizers implemented as an encapsulating 

agent in such applications is summarized in Table 10. 

CNCs and CNFs were applied for the microencapsulation of phase change materials (PCMs) for 

thermal energy storage. PS/CNC was employed as a shell to encapsulate paraffin wax as an organic 

PCM material leading to the much higher heat capacities of PW@PS/CNC slurries (31.9 J/g) than 

water.[268] Similar thermal regulation properties were obtained via encapsulated paraffin by CNF 

to further consolidate into a PCM composite with high enthalpy (139 J/g), which was proposed to 

be implemented in energy-efficient smart buildings construction.[269] In addition, the application 

of microcapsule for crop protection is reported using cinnamoyl chloride modified cellulose 

nanocrystals (CNC-CC) to stabilize polydopamine (DA) microcapsules with the controlled release 

over a longer time.[270]  

Encapsulation in the medical application is reported via oil-in-water Pickering emulsion stabilized 

by aminated nanocellulose (ANC) particles, encapsulating coumarin and curcumin, which showed 

to inhibit microbial growth and prevented the favored killing of cancer cells compared to normal 

cells with the sustainable release.[271] Moreover, the encapsulation of various water-soluble or 
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water-insoluble drugs using LNPs is reported with low toxicity (cell viability of 90%) compared 

to many other biomaterials with improved release profile[272-274] and reduced cell viability of cancer 

cells.275 Antibacterial Ag/lignin micro PCMs with both high transition enthalpy (177.6 J/g), good 

thermal stability, durability, and antibacterial activity are formulated.[276] Starch granule, pea 

protein, soy glycinin, and kafirin particles were also used to encapsulate curcumin with high 

efficiency and storage stability.[277-279] Starch-based emulsion successfully simulated oral and 

simulated gastric digestion.[277] 

The OS-starch particles with an amphiphilic character were applied for encapsulating bioactive 

ingredients into foods while protecting them from water, oxygen, heat, etc.[280] As a general 

approach, after preparation of the OS-starch stabilized emulsion with encapsulated ingredients, 

solid capsules are obtained by spray-drying (or freeze-drying) in a powder form that can be used 

in food formulations.[281] The encapsulated active ingredients are released when the OS-starch is 

digested by the enzyme α-amylase.[280] For instance, spray-dried microcapsules of OSA/XG with 

encapsulated octadecadienoic acids (CLA) showed 64% reduced oxidation and enhanced control 

release of CLA in simulated small intestinal conditions.[282] As another interesting application of 

starch particles in food capsulations, sodium salt was loaded within emulsions of W1/O/W2 to 

enhance saltiness sensitivity into the oral cavity as a promising approach for the reduction of salt 

or sugar in emulsion-based foods.[283]  

Table 3.10. Plant‐based materials used for the encapsulation of active substances. 
Emulsifi
er 

Active 
substance 

Encapsulation 
efficiency 

Purpose  Performance Suggested 
application 

Ref. 

PS/CNC PCM (paraffin) 83.5% Thermal energy 
storage 

Thermal stability, 99.4% Isothermal 
thermoses or 
electric 
chargeable hand 
warmers 

[268] 

CNF PCM (paraffin) 72 wt% Thermal 
regulation 
nanocomposites 

Pure PCM showed no tensile 
strength/ PCM/CNF: Tensile 
strength 30 MPa and strain to 
failure of 12%. 

Smart buildings 
construction 

[269] 

CNC-CC Polydopamine 
DA 

90% Crop protection Controlled the DA release to 
80% over 50 h 

Delivery of 
agrochemicals for 
pest control 

[270] 

ANC Curcumin and 
coumarin PE 

93 and 96% 
for curcumin 
and 
coumarin 

Drug systems  Sustained release of 98% and 
48% for coumarin and 
curcumin at pH 3.5 over 8 
days 

Antimicrobial and 
anticancer 
targeted sites 

[271] 

LNCs 
(AL) 

Coumarin 6 70-90% Targeted drug 
delivery 

Complete release over 2 h - [272] 
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APS-
LNPs  

Gatifloxacin (G
FLX) and 
doxorubicin 
(DOX) 

40 and 90% Drug/bioactive 
macromolecule 
loading  

Controlled release of 50% 
over 50 h- cell viability of 
90% 

Biomedical field [274] 

pLNPs  Different drug 
loadings/ 
Benzazulene 
(BZL), 
Sorafenib (SFN) 

77 BZL and 
68% SFN 

Drug delivery 
and biomedical 
applications 

BZL release of 90 and 95 %/ 
SFN 61 and 100% at pH 5.5 
and 7.4- reducing the cell 
viability of cancer cells from 
about 90% to 0%. 

- [275] 

Ag/lignin PCMs 69.0% Thermal 
resistant and 
antibacterial  

Energy-storage efficiency 
69%, thermal storage 
capability 99%-100th 
heating-cooling cycle 

Biomedical, 
textile and 
construction 
areas. 

[276] 

OSA-
starch 
granule 

Curcumin 80%/24 h 
storage 
stability 

Delivery system
s 

Encapsulation stability of 
95.3% and 86.3% during oral 
and intestinal simulated 
digestions 

Delivery of 
bioactive 
compounds 

[277] 

OSA/XG  Octadecadienoic 
acids (CLA) 

89.25% Food delivery 
system  

Enhanced CLA release to 
12.1%-50.1%. 

A wide range of 
bioactive 
components for 
various 
applications 

[282] 

 

3.6.2 Foods formulated emulsions 

The use of plant-based stabilizer, mainly protein and starch have grown considerably as an 

emulsion stabilizer in food applications due to their availability, nontoxicity, and functional 

qualities, such as pasting and slow digestibility, nutrition values and ultimately their emulsifying 

properties. Several review articles directed on the food application by Pickering particles 

composed of polysaccharides, proteins, or polyphenols are available.[14,284,285] 

OS-starch found a wide application in the food industry mainly as an emulsifier and fat replacer 

due to its colorless, tasteless, low-cost.[280] It should be stated that OS-starch with a DS <3% was 

approved as a food additive in the United States, members of the European Union, and China.[286] 

Mayonnaise-like emulsions without egg yolk were formulated using OSA-starch as the stabilizer, 

which formed a pseudoplastic system (shear thinning behavior) similar to the conventional 

mayonnaise.[287] In this case, the oil content of up to 60 wt.% was feasible to emulsify, while the 

long-term stability remained a problem.[287] Alternatively, egg yolk was partially (75%) substituted 

by (OSA)-modified starch resulting in the maximum emulsion stability of >95% after two months 

of storage.[288]  

Plant-based proteins as emulsifiers are also known to be less allergenic compared to animal-

derived proteins.[265] They can also act as antioxidants, implying that they are capable of inhibiting 

lipid oxidation, which made them suitable for lipid stabilization in food application.[289,290] For 
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instance, water-soluble legume proteins (lentil, pea, faba bean, and almond) effectively reduced 

lipid oxidation as the oil phase (flaxseed, ycopene, walnut, and fish oils) by 25-30% compared to 

animal-based protein stabilizers.[257,291,292] 

A report is also available for the use of nano cellulosic emulsifiers in food-grade emulsions with 

edible oil.[293] In this case, designing food and beverage with cellulose particle stabilized-Pickering 

emulsions with the enhanced bioavailability of functional nutrients is growing.[294] The 

combinations of CNF, guar gum, and CMC in low-fat mayonnaise, with improved stability over 

commercial emulsifiers for O/W emulsion was also reported.[295] 

3.6.3 Composites and other applications 

Plant-based/polymer nanocomposite films can be prepared by polymerizing monomer droplets of 

O/W emulsions stabilized by plant-based polymers or particles, which is very similar to 

conventional suspension polymerization.[296] Several examples are summarized in Table 11, which 

reports the improved properties of composites in the presence of such polymers/particles. 

Composites formed via Pickering polymerization of PS or PBuMA stabilized by CNF or CNCAs, 

respectively, showed enhanced mechanical and thermal properties compared to CNF/CNCAs free 

composites.[297,298] Regenerated cellulose (RC)[299] and LNPs[300] were also incorporated into PLA 

composites via oil-in-water Pickering emulsion stabilized by RC and LNPs, respectively. The 

RC/PLA composites showed enhanced crystallization and thermomechanical properties including 

storage modulus and tensile strength compared with the native PLA.[299] The introduction of lignin 

particles improved crystallinity, stiffness, and thermal properties of PLA, which would have an 

advantage in industrial applications compared to the dispersed lignin particles in the usual melt 

blending material.[300] 

As another application, the water-expandable beads of PS were formed by polymerization with 

cross-linked starch nanoparticles (CSTN) as a Pickering emulsion stabilizer, which improved the 

expandability of beads by 7 times with extended shelf life.[301] 

 

Table 3.11. Plant‐based emulsifiers used for composites and beads formation. 
Emulsifier Application Product Improved property Ref 
TEMPO 
CNF 

Reinforcing 
fillers-12% 

(PS)/CNF 
composites 

Young's modulus 88%- Tensile strength 30%- 
high optical transparency 88% 

[297] 

CNCAs  Reinforcing 
fillers-0.5 
wt% 

PBuMA-CNCAs 
nanolatexes 
composites  

 Young's modulus 550%- fracture strength 
115% 

[298] 
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RC Reinforcing 
fillers- 1-
2 wt.% 

RC/PLA 
composites  

The crystallinity 159%- storage modulus 15%- 
tensile strength 34% 
 

[299] 

LNPs Reinforcing 
fillers -
5.0 wt% 

PLA/lignin 
composites  

The crystallinity 10%- Young's modulus 15%- 
decomposition temperature improved by about 
10 °C 

[300] 

CSTN Water-
stabilizing 
agent-1 wt. 
%  

Water-expandable 
polystyrene beads 
(CSTNWEPS) 

Expansion ratio of ∼7 for as-synthesized beads 
and ∼3 after 3 months- Preserved water content 
after 3 months was 88% compared to 2.6% 
without CSTN incorporation 

[301] 

 

In terms of water-soluble emulsifiers, a widely used application for lignosulfonate has been in a 

chemical injection process of EOR (Enhanced Oil Recovery) for the oil industry.[302,303] 

Carboxymethylated lignin has shown promising emulsifier properties by decreasing the viscosity 

of crude bitumen and refined oil,[164] stabilizing high internal phase ratio emulsions (70:30 fuel-

to-water) for application in a compression-ignition diesel engine[304] and indicated a potential 

alternative for use in fuel emulsions.[165]  

As a promising approach to managing large-scale oil spills with a detrimental impact on the 

environment and marine life, a mixture of lignin nanoparticles and 1-pentanol worked effectively 

for oil spill recovery with the effective adsorption of LNPs to the oil-water interface.[305] 

Ojala et al.[306] also studied the stabilization of marine diesel O/W emulsions with bi-functionalized 

CNC (But-CNCs) for such applications as oil-spill response agents. 

3.7 Future Perspectives and Challenges 

The swift growth in research topics of Pickering stabilization by plant-based particles was 

inevitable over the past 5 years, and the rise would continue. However, still conventional emulsions 

using polymers have their places in research, and it is predicted that more attention would be given 

to the combination of polymers and particles as stabilizers for improved stability of emulsion 

systems. The optimization of surface and morphological properties by modifying particle size, 

wettability, aggregation, and surface chemistry were shown to be the underlying parameters on 

altering emulsion properties that will remain a big challenge to overcome for different materials. 

Despite all the progress on research and development of Pickering emulsions using plant-based 

resources, no commercialized product based on Pickering emulsions is available.[33] Some 

significant challenges to the commercialization of Pickering emulsions remained to be overcome. 

In all the discussed plant-based stabilizers, the composition, structure, and physicochemical 

properties of the isolated raw materials could be easily affected by the source of the material and 
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formulation process, which might remain the greatest challenge for their commercialization. The 

scale-up production of particles will need to be addressed to facilitate the industrialization of 

Pickering emulsion applications. The scale-up processes should be economically viable, 

sustainable, and reproducible. Maintaining a constant composition of the ingredients from batch-

to-batch production could be a real challenge considering the inevitable role of variables (e.g., 

weather and soil conditions, time of harvest, and extraction methods) on the molecular and 

functional properties of plant-based materials.[7] The storage stability and biodegradability rate of 

particles should be improved and controlled for a particular application. In addition to the 

production challenges, expanding the research area on the fundamental studies of the stabilization 

processes should be given more attention. The target of research on such sustainable plant-based 

emulsifying agents is to partially or completely replace the synthetic or animal-based particles and 

emulsifiers with them. Therefore, for future research, it may be suggested that more application-

oriented studies on the use of plant-based polymers and particles be implemented. Alternatively, 

more attention can be paid to the combination and/or modification of plant-based polymers or 

particles from different sources for generating impactful Pickering and Non-Pickering emulsifiers. 

3.8 Conclusions 

Many plant-derived materials are poorly soluble in water, but they can be effectively 

functionalized for higher solubility or be used as insoluble particles in variable sizes from 

nanometers to micrometers that can stabilize oil/water systems. This paper comprehensively 

reviewed various modification and formulation routes for functionalizing and producing plant-

based polymers and particles and their utilization in stabilizing emulsion systems (Pickering/non-

Pickering). The main properties that affected the behavior of polymeric surfactants as emulsifiers 

were molecular weight, surface charge, functional groups, and solubility, while surface charge, 

size, and wettability properties were the influential factors for nanoparticles. The formulated 

emulsions showed a wide range of applications in various technologies, which could be further 

expanded. In conclusion, exploring and modifying underutilized plant-based materials as 

sustainable resources could pave the way for developing green substitutes for oil-based and 

animal-based materials to be used in various processes and technologies. 
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Chapter 4: Synergistic effect of lignin incorporation into polystyrene for 

producing sustainable superadsorbent 
4.1 Abstract 

Lignin has gained intensive interest as an excellent raw material for the generation of advanced 

green products. Polystyrene (PS) is known for its worldwide application in water purification 

processes. To induce a more sustainable polymer (KL-PS) compared to PS, kraft lignin (KL) and 

styrene were polymerized via free radical polymerization in a facile aqueous emulsion process. 

KL enhanced surface area and porosity of KL-PS. The physicochemical properties of induced KL-

PS were analyzed, and the fate of lignin in KL-PS was discussed fundamentally. Wettability and 

surface energy analyses were implemented to monitor the surface properties of KL, PS and KL-

PS. Incorporation of KL in PS (40 wt%) boosted its surface energy and oxygen content, which led 

to KL-PS with better compatibility than PS with copper ions in aqueous systems. A quartz crystal 

microbalance with dissipation (QCM-D) confirmed the noticeably higher adsorption performance 

of copper ions on KL-PS than on PS and KL. The sorption mechanism, which was revealed by 

FTIR studies, was primarily attributed to the coordination of Cu (II) and hydroxyl groups of KL-

PS as well as the quadrupolar system of KL-PS. 

4.2 Introduction 

Water contamination with heavy metals is considered as a serious concern for environmental safety 

due to its threatening consequences for human and ecosystem health.[1] Industrial effluents and 

human activities are known as major producers of materials contaminated with heavy metals.[2] 

Among the extensive heavy metals, copper sequestering gained global attentions because of its 

widespread presence in industrial effluents.[3] Adsorption process is an efficient approach for 

contaminant removals. Various alternative adsorbents including activated carbon, [4,5] silica-based 

materials,[6] aniline-based composites,[7] polystyrene-based nanocomposites,[3] metal oxides[8] and 

biomass[9,10] were previously applied for cleanup of copper ions dissolved in industrially produced 

effluents. 

Lignin, as an abundant renewable, nontoxic and environmentally friendly resource, has gained an 

intensive attention globally.[11] Lignin is known as a bio-based amorphous polymer with a 3-

dimensional structure containing different functional groups.[12] Owing to its functional groups, 

lignin exposes surface activity, which makes its reaction and interaction with other materials 

possible.[13,14] In the past, lignin was used in composite production to improve composite’s 
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sustainability. For example, lignin was incorporated into poly (lactic acid) (PLA) and the product 

showed excellent antioxidant activities and good biocompatibility, which has the potential to be 

used in biomedical applications.[15] It has also been shown that adding lignin to quercetin can 

produce a green alternative to the synthetic antioxidants that are in use in food, cosmetics, and 

pharmaceuticals.[16] In a recent study, a stable nanodrug carrier was formed by self-assembly of 

alkali lignin (AL) with the bioactive molecule resveratrol (RSV) and Fe3O4 magnetic nanoparticles 

which strongly supported the AL NPs application as a new and highly efficient nanodelivery.[17] 

Different studies examined the potential of lignin as a bio-based adsorbent.[18-22] Adsorption of 

Pb(II), Zn(II), Cu(II) and Cd(II) on kraft lignin was reported in the past.[18] As an example, 

Todorciuc and coworkers reported a saturated adsorption of 26 mg g-1 for Cu(II) on lignin 

generated from wheat straw.[19] Adsorption affinity of lignin for metal ions was suggested to 

proceed through its carboxylate and phenolate groups.[20] Although an explicit mechanism for the 

adsorption of metals on lignin is still unknown, surface adsorption[21] and ion-exchange[22] are 

directed. 

Polystyrene, PS, as a hydrophobic polymer with recognized dispersive intermolecular interactions, 

is widely used as the building block for the production of adsorbent for water purification. 

However, it requires functionalization or cross-linking to improve its surface properties.[23] 

Different types of modifier, such as CaCO3,[24] schiff base,[3] sulfonate groups,[25] or amine 

groups[26] were anchored onto PS to improves its compatibility with ions. It is well-known that 

introducing functional groups such as sulfonate, amine or hydroxyl groups on the PS’ surface plays 

an important role in enhancing its compatibility with ions. However, the electron-rich π system of 

PS is also capable of interacting with ions. Lu and coworkers investigated the adhesive force 

between electron- rich π system of poly-l-tryptophan (PTrp), poly-l-tyrosine (PTyr) and 

polystyrene (PS) and the adjacent cations (NH3R+) in water.[27] They stated that cation–π 

interactions occur between positively charged groups and aromatic groups of polymers.[27] In 

another research, Javkhlantugs and coworkers postulated that positively charged guanidine group 

of arginine would closely contact with the benzene ring of the PS, which would indicate the 

existence of cation-π interaction between them.[28] Quadrupolar characteristic of the aromatic 

system enables polystyrene to offer adsorption for cations in water. A quadrupolar is originated 

from the uneven distribution of π-electron above and below the face of an aromatic system (e.g., 

benzene ring).[29] The polystyrene quadrupolar system, owing to its π-donors, has the potential to 
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participate in series of non-covalent interactions namely; polar-π interactions,[30] self-stacking,[31] 

hydrogen-π interactions[32] and cation-π interactions.[27] The latter is a non-covalent interaction 

between a cation and planar surface of an aromatic π-donor system, which will be studied in this 

work. 

Decoration of PS for the production of a functionalized, porous and sustainable bio-adsorbent 

using lignin was the main objective of the present study. Lignin as a green biomacromolecule [33] 

was embedded in PS to enhance its physicochemical properties. The reported product, KL-PS, was 

synthesized via radical polymerization in a facile aqueous emulsion system. Special attention was 

paid to the physicochemical properties of KL-PS and its performance as an adsorbent. Wettability 

and surface energy are two imperative aspects that express the compatibility of polymer’s surface 

with surrounding.[34] Jiang and coworkers depicted that treating lignin film with a non-ionic 

surfactant (i.e., Tween 80) resulted in higher polar surface energy as well as the hydrophilicity of 

lignin film.[35] Despite its potential use, the surface chemistry of KL-PS was yet to be studied. For 

the first time, the surface energy of KL-PS polymer was studied and the changes in surface energy 

components (polar/nonpolar and acidic/basic) of the polymer was compared with those of lignin 

and polystyrene following Fowkes’ and van Oss theories. The presence of hydroxyl functional 

groups in KL-PS was monitored following phosphorus nuclear magnetic resonance (P-NMR). 

Furthermore, the interaction of the functionalized PS (i.e., KL-PS) with copper ions in an aqueous 

medium was monitored by means of a quartz crystal microbalance with dissipation (QCM-D). FT-

IR was also implemented as a tool to fundamentally distinguish the chemical interactions between 

copper and PS, KL and KL-PS polymers.  

4.3 Materials and methods 

4.3.1 Materials 

Softwood kraft lignin was used as received from FPInnovations’ pilot plant facilities in Thunder 

Bay, ON. Dioctyl sulfosuccinate sodium salt (DOSS), α,α′-azoiso-bis-butyronitrile (AIBN), 1-

decanol, toluene, tetrahydrofuran, d6-dimethyl sulfoxide (d6-DMSO), chloroform-d (CDCl3), 

trimethylsilyl propanoic acid (TSP), deuterated chloroform, pyridine, cyclohexanol, chromium 

(III) acetylacetonate, NaOH, calcium chloride, 2-chloro-4,4,5,5-tetramethyl-1,3,2-

dioxaphospholane, diiodomethane, glycerol, Cu(NO3)2.3H2O, 30% ammonium hydroxide solution 

and hydrogen peroxide, all analytical grades, were purchased from Sigma-Aldrich and used as 

received. MiliQ H2O was used instead of distilled water in all QCM experiments. Styrene, 
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analytical grade, was purchased from Sigma-Aldrich and purified following available 

procedures.[36] 

4.3.2 Lignin styrene polymerization.  

Anionic surfactant, DOSS (0.75 g, 1.68 mmol), was added to 150 mL of deionized water in a 250 

mL three neck flask and the mixture was stirred for 0.5 h at 80 °C to dissolve the surfactant in 

water in a nitrogen environment. At the same time, styrene (12 mL, 105 mmol) was charged to 1/1 

(v/v) mixture of 1-decanol and toluene in a separate beaker and was deoxygenated by purging with 

N2 for 0.5 h. The mixture was then transferred to the three-neck flask. One hour was given for the 

oil micelles to form. Lignin (3 g, 16.6 mmol) was separately dispersed in 10 mL of deionized 

water, and initiator, AIBN (based on 1 wt.% of lignin), was added to the lignin suspension while 

stirring and purging with nitrogen for 0.5 h at room temperature. In the last step, the lignin 

suspension with initiator was added to the three-neck flask to initiate the polymerization. The 

mixture was stirred at 350 rpm for 18 h at 80 °C in an oil bath. The lignin-polystyrene (KL-PS) 

polymer was agglomerated upon completion of the reaction and was floated in the polystyrene 

micelles. The mixture was filtered by a filter paper and the precipitate was washed with excess 

amounts of hot water (1L). Soxhlet extraction (using boiling acetone) was applied for purifying 

the product from solvent and remained homopolymer of PS. The purified polymer was dried in the 

vacuum oven at 60 °C for 48 h. The final lignin-polystyrene polymer was denoted as KL-PS in 

this study.  

4.3.3 Polystyrene production.  

The styrene homopolymer, PS, was produced following the same steps of the KL-PS 

polymerization but in the absence of lignin. Upon completion of the reaction, as filtration was 

ineffective in separating the PS particles, they were precipitated in 400 mL of ethanol. The PS was 

dried in a vacuum oven at 60 °C for 48 h. 

4.3.4 NMR analysis.  

In this set of experiments, 27 mg of KL or KL-PS and 8 mg of trimethylsilyl propanoic acid (TSP) 

were dissolved in 500 µL of DMSO-d6 and 27 mg of PS was dissolved in 500 µL of CDCl3 stirring 

overnight and 1H-NMR spectra of samples were recorded by INOVA-500 MHz instrument 

(Varian, USA). A 45° pulse width after 64 number of scans with 1 s relaxation delay were adjusted 

to obtain the spectra. The areas under the spectra were used for quantitative analysis.  
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For quantitative analysis of phenolic and aliphatic hydroxyl moieties of lignin-based products, the 

phosphitylation of KL and KL-PS with 2-chloro,4455-tetramethyl-1,3,2-dioxaphospholane was 

followed.[37] A mixture of pyridine and CCl3D solvent was used to dissolve the samples, and the 

quantification analysis was conducted with a known concentration of internal standard 

(cyclohexanol 0.20 mmol/mL) via following the procedure stated previously.[37] To acquire a 

spectrum, a 90° pulse with 5 s relaxation delay and 128 acquisitions with an inverse gated 

decoupling pulse were employed. Assignments and calculations were followed as reported 

previously in the literature.[37] The area under the peaks ranging 150.4-145.5 ppm was assigned to 

aliphatic hydroxyl moieties in samples. Phenolic moieties have peaks at 140.3-138.3 ppm.[37] 

4.3.5 Molecular weight analysis 

The molecular weights of KL and KL-PS samples were determined using a gel permeation 

chromatography technique, Malvern GPCmax VE2001 Module + Viscotek TDA305 with multi-

detectors (UV, RI, viscometer, low angle and right-angle laser) by dissolving samples in THF as 

eluent. Columns of PAS106M, PAS103 and PAS102.5 were used at a fixed flow rate of 1.0 

mL/min and 35 °C. The molecular weight of PS was analyzed using a static light scattering, SLS, 

an analyzer (BI-200SM Brookhaven Instruments Corp., Holtsville, NY, USA). Polystyrene 

solutions in the concentration range of 1 and 5 g/L were prepared in toluene. Maximum solid state 

laser power of 35 mW at the wavelength of 637 nm was applied, and the measured data was further 

analyzed using Zimm plot software (Holtsville, NY, USA) to obtain the absolute molecular weight 

of the polymers.[38] 

4.3.6 Elemental and surface area analyses.  

Elemental analysis of KL, PS and KL-PS was conducted using an Elementar Vario EL Cube, 

Germany, elemental analyzer. The specific surface areas and pore diameter distributions of KL, 

KL-PS and PS were determined using a Quantachrome surface area analyzer, Nova2200e (USA). 

The ground samples were dried in an oven at 105 °C overnight prior to analysis. Then, 0.05 g of 

each sample was initially pretreated for 4 h at 100 °C. Branuer-Emmett-Teller (BET) method via 

adsorption-desorption isotherms using nitrogen gas at -180 °C in the relative pressure range of 

0.01 to 0.99 were applied to measure the specific surface areas of the samples. The total pore 

volume of the samples (Vp, cm3/g) was calculated at the relative pressure of 0.99.[39] 

4.3.7 Spin coating of polymer films.  
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KL, PS and KL-PS were coated on clean dried glass substrates using a spin coater (WS-400B-

NPP) spin-processor (Laurell Technologies Corp). In this set of experiments, KL and KL-PS were 

dissolved in 1,4-dioxane (4 wt.% concentration) followed by stirring at 300 rpm overnight at room 

temperature, while the PS solution was prepared in toluene under the same conditions. 

Subsequently, the solutions were spin-coated on glass substrates at 2000 rpm over 40 s under a 

nitrogen environment. The coated samples were kept covered prior to analysis.[40] 

4.3.8 Contact angle and surface energy measurements.  

The contact angles of deionized water, diiodomethane and glycerol on the coated surfaces were 

determined for surface energy measurements. The analysis was conducted via placing 5 μL of 

liquid droplets on the coated surfaces following static contact angle measurement with the sessile 

drop method using a theta optical tensiometer attention (Biolin Scientific) at 25 °C for 30 s. Nine 

measurements were conducted on each solid coated surface, and the average values of the readings 

were fitted into Young-Laplace equation.[34] Fowke’s model equation 1 was followed using contact 

angle results of water and diiodomethane as the polar and non-polar wetting liquids to calculate 

the surface energy of KL, PS and KL-PS coated films:[41] 

𝝈𝑳 (𝒄𝒐𝒔 𝜽+𝟏)

𝟐
= √(𝝈𝑳

𝑫)(𝝈𝑺
𝑫) + (𝝈𝑳

𝑷)(𝝈𝑺
𝑷)                 (1)    

where θ is the contact angle between the wetting liquid and the solid surface. Also, 𝛔𝐋, 𝛔𝐋
𝐃 and 𝛔𝐋

𝐏 

are surface tension, as well as dispersive and polar components of 𝛔𝐋, respectively[42] (Table A1.1, 

appendix information) and 𝛔𝐒
𝐃 and 𝛔𝐒

𝐏 stand for the dispersive and polar components of solid and 

liquid through polar interaction is based on surface acidity and basicity, which can be analyzed by 

dividing the polar components of the surface into acidic (𝛔𝐒
+) and basic (𝛔𝐒

−). The basic component 

originates from the ability of the surface to act as a basic by donating electron density through 

dipole-dipole and hydrogen bonding.[43] However, the acidic component shows the desire of the 

surface in accepting electron density. By fitting contact angle results, which were obtained for the 

interaction of the coated films and deionized water, diiodomethane and glycerol, into equation 

2, 𝝈𝑺
+ and 𝝈𝑺

− can be determined. 

𝝈𝑳 (𝒄𝒐𝒔 𝜽+𝟏)

𝟐
= √(𝝈𝑳

𝑫)(𝝈𝑺
𝑫) + (𝝈𝑺

+)(𝝈𝑳
−) + (𝝈𝑺

−)(𝝈𝑳
+)                (2) 

In this equation, 𝛔𝐋
− and 𝛔𝐋

+ are the acidic and basic surface tension components of the test liquids, 

respectively.  
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4.3.9 Adsorption experiment.  

Adsorption experiment was conducted in order to measure and compare the capability of KL, PS 

and KL-PS surfaces for copper uptake from aqueous solution. In this set of experiment, 50 mg/L 

Cu (II) solution was prepared by dissolving 190 mg of Cu (NO3)2.3H2O (MW of 241.6 g mol-1) in 

1L of deionized water and the pH was adjusted to 4.5 by diluted HNO3 solution. This pH was 

selected because Cu (II) forms solid particles of Cu (OH)2 at pH ≥ 6.[44] At first, 0.01 g of KL, PS 

and KL-PS were mixed in 50 mL of prepared Cu (II) solution. The suspensions were then stirred 

at 150 rpm and room temperature for 12 h. The particles were separated from the solution through 

filtration using a filter paper. They were then collected from the filter paper for FT-IR analysis. 

The treated solutions were collected and after dilution were analyzed for quantitative detection of 

Cu (II) by a Varian (Agilent) Vista Pro Radial inductively coupled plasma (ICP) at the wavelength 

327.395 1/cm with plasma flow rate of 15.0 L/min with 3 replicates. 

Adsorption capacity was calculated following equation 3:  

q =
Ci−Cf

m
 × V                                   (3) 

Wherein, q represents the adsorption mass, Ci and Cf express the initial and final Cu (II) 

concentration based on ICP results, V is Cu (II) solution volume and m stands for the adsorbent 

mass 

4.3.10 Substrate preparation for QCM analysis.  

KL, KL-PS and PS substrates were coated on the gold-coated crystals sensors (Q Sense). The 

sensors were cleaned by immersing in a solution of H2O/NH4OH/H2O2 at the ratio of 10/2/2 v/v/v 

for 10 min at 60 °C. Then, the sensors were rinsed with water, dried with nitrogen and irradiated 

with the UV/ozone oxidation cleaner (PSD Series, digital UV ozone system, NOVASCAN) for 10 

min prior to use. Then, 1.4 dioxane was used to prepare a 2.5 wt.% of KL or KL-PS solution, while 

toluene was used to prepare a 2.5 wt.% of PS solution. The solutions were stirred at 300 rpm 

overnight at room temperature. Afterward, 50 µL of the solutions were considered for preparing 3 

different substrates of KL, KL-PS and PS via spin coating on the cleaned gold crystals for 45 s at 

3000 rpm. The coated sensors were dried in oven at 105 °C for 15 h to improve their stability.[35] 

4.3.11 QCM-D experiments.  

In this study, the adsorption of Cu (II) onto KL, KL-PS and PS substrates was studied by means 

of Quartz crystal microbalance with dissipation (QCM-D). Variation in resonant frequency, Δf, 

and dissipation, ΔD, upon the adsorption of adsorbate, Cu (II), on the substrate oscillating gold 
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sensors of the instrument will pertain to the real time detection of mass and viscoelasticity changes 

of the adsorbed layer, as comprehensively explained earlier.[45] Two different adsorption models 

were used to evaluate the obtained data from the instrument. Sauerbrey equation is practical when 

a rigid layer forms on the sensor, whereas Voigt model is suitable for a softer film.[46] The 

magnitude of ΔD defines which model will fit better into data for Δm (mass) and Δd (thickness) 

evaluation. Low dissipation changes relate to the Sauerbrey equation, but higher ΔD will refer to 

the Voigt model.[46] Formulation of adsorbed mass and thickness based on Sauerbrey model is 

shown in equations 4 and 5:[47] 

∆𝐦𝐒𝐚𝐮𝐞𝐫𝐛𝐫𝐞𝐲 = −
𝐂∆𝐟

𝐧
                   (4) 

𝐝𝐒𝐚𝐮𝐞𝐫𝐛𝐫𝐞𝐲 =
∆𝐦𝐒𝐚𝐮𝐞𝐫𝐛𝐫𝐞𝐲

𝛒
               (5) 

where ∆𝐦 and ∆𝐟 refer to the mass and frequency changes and C is a constant value, which is 

related to the physical properties of the sensor (i.e., 0.177 mg/mHz for a 5 MHz AT-cut quartz 

crystal).[48] Voigt model has been explained in detail in the available literature[49] and was applied 

by Q-Tools software (Q-Sense) in this study to estimate the thickness and mass of coated layer of 

KL-PS in adsorbing copper ions from the aqueous solution. These results were compared with 

those of KL and PS films. In this set of experiment, 50 mg/L Cu (II) solution was prepared by 

dissolving 190 mg of Cu (NO3)2.3H2O (MW of 241.6 g/mol) in 1L of Mili-Q water and the pH was 

adjusted to 4.5 by diluted HNO3 solution. This pH was selected because Cu (II) forms solid 

particles of Cu (OH)2 at pH ≥ 6.[44] Coated sensors were installed in a QCM cell and the adsorption 

study was conducted in a real time via monitoring the mass uptake on the coated gold sensors. All 

measurements were started after obtaining a stable baseline for a buffer solution, i.e., Mili-Q water 

with controlled pH of 4.5 (prepared via using HNO3). It approximately took 15 min to reach a 

stable baseline in each experiment, which was then followed by flushing Cu (II) solution at 50 

mg/L concentration at pH 4.5. All experiments were conducted at 22 °C and a constant flow rate 

of 0.15 mL/min. When the changes in frequency for the 5th overtone was less than 2 Hz/h, the 

adsorption was considered equilibrated (in almost 140 min). The buffer solution was applied after 

the experiments to wash any loosely adsorbed Cu (II) from the substrate. The adsorption 

experiments were terminated after 20 min of buffer rinsing. For mass and thickness calculations, 

the bulk viscosity and density were assumed to be 1.05 mPa.s and 0.99 g/cm3 for KL and PS using 
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Sauerbrey equation,[50] respectively, while the adsorbed layer viscosity was approximated to be 

the same as the bulk solution viscosity to fit the data into the Voigt model for KL-PS.[51] 

4.3.12 FTIR analysis.  

The filtered polymers from the batch experiment were used in this set of analysis. After air drying, 

they were placed on the zinc selenide (ZnSe) crystal element of a Fourier transform 

infrared spectroscopy (FTIR) (Bruker Tensor 27) equipped with an ATR assembly. The 

measurements were performed in the 550−4000 1/cm region with a resolution of 0.6 1/cm. To 

compare the absorption wavenumbers shifting, the spectra was also obtained for polymers (KL- 

KL-PS and PS) without copper adsorption. 

4.3.13 SEM analysis.  

The morphology and elemental composition of coated substrates on gold sensors before and after 

ion adsorption were investigated with a scanning electron microscope (SEM) Hitachi field 

emission SU-70 with energy dispersive X-Ray (EDX) Oxford AZtec with the adjusted voltage of 

10 kV. 

4.4 Results and discussion 

4.4.1 Polymer characterization.  

In this study, modified PS (KL-PS) and PS were produced using an emulsion polymerization 

technique. The incorporation of lignin in PS following free radical polymerization can be described 

via formation of phenoxy and alkoxy radicals on lignin through the initiator decomposition under 

heating.[52] AIBN molecule is unstable under heating and decomposes to one nitrogen molecule 

and two radicals of 2-cyanoprop-2-yl. These radicals then produce hydroxyl radicals by capturing 

hydrogens of aliphatic and aromatic OH groups or would directly promote the homo-

polymerization of styrene.[53] Polymerization would be initiated following the attack of phenoxy 

radicals to the vinyl group of styrene, which led to the integration of lignin into PS’s building 

block.52 The proposed structure of KL-PS and 1H-NMR spectra of PS, KL and KL-PS are depicted 

in Figure 1. The aromatic ring and aliphatic signals of PS are observable in the PS spectrum. KL’s 

spectrum also depicts the aromatic moieties, accompanied with a wide signal (region of 3.45-4.05 

ppm) corresponding to methoxy group.[54] The chemical shifts between 8 and 9.5 ppm belonging 

to phenolic hydroxy group is also observable in the spectrum of KL. After polymerization, the 

signature signals of PS and KL are both appeared in the spectrum of KL-PS. However, the intensity 

of peaks is different. The peaks at 0.88 (2’) and 1.26 ppm (1’) possibly indicates the first styrene 
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molecule attached to a hydroxyl group (-O-CH2-CH-) of lignin and the peak at 2.12 ppm (3’) is 

assigned to the other styrene segments attached to the first styrene molecule (2’ in Figure 1), which 

corresponds to 3 hydrogen (-CH2- CH-).54 The H-NMR analysis provides evidence for the 

successful incorporation (grafting) of KL in PS polymerization. The quantitative analysis of NMR 

results confirms the incorporation of 40 wt.% of lignin into KL-PS polymer.  

 
Figure 4.1: H-NMR spectra of PS, KL and KL-PS. AR stands for aromatic ring. The 

polymerization is shown only on the phenol groups of lignin. 

 

Table A1.1 lists the properties of KL, KL-PS and PS. The surface area analysis illustrates variable 

physical properties for KL, KL-PS and KL. Analysing the phosphorylated KL and KL-PS with 
31P-NMR would help monitor the hydroxyl groups of lignin integrating in KL-PS.[55] The 

quantitative data on various -OH groups[56] of KL and KL-PS are listed in Table 1, while the 31P-

NMR spectra for the samples are available in Figure A1.1 . Kraft lignin in this study contains 1.62 

mmol/g aliphatic hydroxyl group, 2.2 mmol/g phenolic group, and 0.14 mmol/g carboxylate group, 

which are in agreement with previously reported values for kraft lignin.[57] Less than half (40%) 

of the total measured hydroxyl groups are composed of aliphatic hydroxyl groups in KL. The rest 
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of the hydroxyl groups (56%) in KL originated from phenolic moieties consisting 63% Ph-OH 

guaiacyl and 37% C5-substituted hydroxyl groups. 

After polymerization, the amount of aliphatic and aromatic hydroxyl groups present in KL-PS are 

0.93 and 1.1 mmol/g, respectively. This elaborates that the polymerization was proceeded through 

participation of hydroxyl groups in radical polymerization, however, almost half of the hydroxyl 

groups remained intact. Based on 31P-NMR results, it is observable that 51 and 43% of total 

phenolic and aliphatic hydroxyl groups participated in the polymerization reaction with styrene, 

respectively. 

KL has a limited surface area of 24 m2/g with the pore volume of 0.035 cm3/g. PS is also known 

to have a limited surface area (in this case 15 m2/g) and pore volume (0.021 cm3/g), which requires 

co-monomers, cross-linkers or further modifications in order to improve its porosity.[58] KL-PS 

has a larger surface area of 44 m2/g with pore volume of 0.053 cm3/g, implying that the 

polymerization of KL and styrene generated a heterogeneous polymer (KL-PS) with larger 

porosity than the polymerization of a homopolymer (PS).  

Aliphatic and phenolic hydroxyl groups of lignin selectively participate in polymerization with PS 

(proven by P-NMR analysis in table1), implying that the polymerization of PS on lignin is 

heterogeneous in nature. As lignin does not have homogenous surface characteristics, this 

heterogenous chain expansion will contribute to the creation of an uneven coating layer on lignin 

and ultimately a more porous material. It should be stated that the purpose of this study was to 

compare the surface area of these polymers with themselves. The increase in the surface area for 

improved adsorption is outside the scope of this study, and it can be persuaded in the future via 

the following pathways suggested in the literature.[9,59] 

The integration of lignin onto PS occurred from three different positions of lignin molecules that 

are shown in Figure 2. Also, the carboxylate group content of KL-PS remained almost unchanged. 

Table 4.1. Hydroxyl groups (mmol/g) of KL and KL-PS studied by means of 31P-NMR 

sample Aliphatic -OH C5-substituted Ph-OH 
guaiacyl (G) 

Total cond. 
phenolate 

Carboxylate 

KL 1.62±0.10 0.80±0.06 1.40±0.06 2.2±0.08 0.14±0.01 

KL-PS 0.93±0.05 0.46±0.01 0.61±0.03 1.1±0.04 0.10±0.01 
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Figure 4.2: Proposed positions for the PS graft polymerization on KL’s hydroxyl groups. 

 

4.4.2 Surface properties of PS, KL and KL-PS substrates.  

The surface tension of the test liquids in Table A1.2 and contact angle results for water, 

diiodomethane and glycerol droplets on the films (Table A1.3 ) were fabricated in Fowke’s and 

Van Oss’s equations for determining the polar 𝜎𝑆
𝑃, dispersive (nonpolar) 𝜎𝑆

𝐷, acidic 𝜎𝑆
+ and basic 

𝜎𝑆
− components of the surface energy of PS, KL and KL-PS which are listed in Table 2.[60,61] The 

contact angle of water droplets on reported surfaces is also shown in Figure 3. 

Lignin shows the highest surface energy among tested substrates. Notley and coworkers also 

reported surface energy of 57.1 mN/m2 for kraft lignin.[62] The results of surface energy in Table 2 

show the significantly more contribution of nonpolar components than the polar component of the 

substrates to the surface energy development. KL has σS
P of 12.9 mN/m2 following Fowke theory. 

Van Oss theory rationales the polar characteristic of surface energy to be 0.66 mN/m2 for σS
P+ 

(acidic) and 18.3 mN/m2 for σS
P−(basic). Interestingly, the majority of the polar component is 

dedicated to the basic rather than acidic component (Table 2), which is related to the electron-

donating property of substrates. Basic component is related to the phenolic and aliphatic hydroxyl 

and methoxy groups of lignin.[57] The electron-donating capacity of these moieties enables such 

surfaces to interact with acidic species, i.e., electron acceptors.[57] Comparatively, Kraft lignin’s 

high basicity can be justified by its functional groups and oxygen content comparably determined 

by 31P-NMR and elemental analysis (Table A1.1). 
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On the other hand, PS has low surface energy with less contribution of polar components. This is 

mainly because of the benzene ring’s existence that is closely associated with dispersive and 

hydrophobic forces. Low surface energy of a material is a barrier for its interaction with the 

surrounding environment.[62] Therefore, modifying PS with a material with higher surface energy 

would improve its compatibility with its surrounding environment. Grafting of KL and PS resulted 

in an increment in the polar component of surface energy for PS. As can be seen in Table 2, 

the σS
−  value was increased from 6.23 mN/m2 for KL to 10.7 mN/m2 for KL-PS, which arises from 

the increment in oxygen content of the surface for KL-PS compared to that for PS (Table A1.1). 

Also, the wettability of PS surface was improved by lignin incorporation. This is because more 

oxygen atoms are associated with lignin’s functional groups than with styrene. Addition of polar 

functional groups is well-known to increase the surface energy of polymers, and as a result, it 

would enhance polymer’s interaction with metals.[63] For example, oxidation is known to enhance 

metal-polymer adhesion.[63] 

 

Figure 4.3: Contact angle images of water droplet on KL, KL-PS and PS coated substrates. 

 

Table 4.2. Surface energy of KL, KL-PS and PS substrates determined following Fowke’s and van 

Oss’s theories with their dispersive and polar components. 

Fowke theory  van Oss theory 

 σS mN m-2 σS
D mN 

m-2 
σS

PmN m-2  σSmN m-2 σS
DmN m-

2 
σS

+mN m-2 σS
−mN m-2 

KL 60±1 47±1 12.9±1  65.86±3 46.9±2 0.66±0.1 18.3±2 

KL-
PS 

53.5±2 46.9±2 6.6±1  57.75±1 46.9±2 0.15±0.1 10.7±1 

PS 46.8±1 41.9±1 4.9±1  50.9±1 41.8±1 1.9±0.4 6.23±1 
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4.4.3 Adsorption analysis.  

KL, PS and KL-PS samples adsorbed 22, 15 and 45 mg/g of Cu (II) following equation 3, 

respectively. The adsorption capacity of these three polymers are in harmony with their physical 

properties, as KL-PS has the highest surface area of 44 m2/g and pore volume of 0.053 cm3/g. 

However, the adsorption experiment does not provide any information regarding the chemical 

interactions of the polymers and the cation ion. To fundamentally examine such an interaction, the 

QCM and FT-IR analyses were performed.  

4.4.4 QCM analysis.  

Figure 4 shows changes in the frequency (Δf) and dissipation (ΔD) of the QCM sensors coated 

with KL, KL-PS and PS as a function of time. Switching the influent solution from buffer to Cu 

(II) led to a drop in frequency, implying the adsorption of Cu (II) onto the substrates. At 

equilibrium, Δf values for KL, KL-PS and PS were -7.2, -24.4 and -7.1 Hz at the 5th overtone, 

respectively. KL-PS showed the highest adsorption affinity with a noticeable decrease in Δf. 

Different trends in Δf are related to the interaction between coated solid substrate and the bulk 

solution. KL coated sensor showed faster adsorption at the beginning of the experiment with a 

steeper Δf change (i.e., it reached the saturation point almost in 60 mins). The PS coated sensor 

had slower adsorption with saturation reaching in 120 min. KL-PS with the maximum Δf seemed 

to have adsorption performance between KL and PS, which showed a fast uptake in the first 60 

min and then slower interaction afterward. Surprisingly, rinsing with a buffer solution made a 

major difference in the interactions of the coated surfaces with the bulk solution. In this case, KL 

coated surface lost copper ions, while KL-PS and PS coated surfaces were not affected by buffer 

rinsing. ΔD changes are also illustrated in Figure 4. Interestingly, both KL and PS show low 

dissipation values. KL shows a rapid ΔD increase, while PS depicted a slower change (i.e., similar 

to their frequency changes). It was postulated previously that magnitude of changes in dissipation 

is related to the properties of the adsorbed layer.[64] Figure 4 also shows different overtones of 5, 

7 and 9 with similar trends for coated sensors. In Figure 4a and 4b; overlapping different frequency 

overtones with minor increment in ΔD  (> 2 × 10-6) would imply that a rigid layer of copper ions 

was formed on the KL and PS coated sensors.50 In Figure 4c; the higher ΔD magnitude of 8.7 ×10-

6 for KL-PS with segregated frequency lines for different overtones would reveal that the adsorbed 

layer was more nonrigid.[65] 
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Figure 4.4: Changes in frequency (Δf) and dissipation (ΔD) as a function of time for Cu (II) 

adsorption on sensors coated with a) KL b) PS c) KL-PS. The arrows indicate a switch in the 

solution feed. The corresponding Δf and ΔD for the 5th, 7th and 9th overtones are illustrated. 

 

The ratio of ΔD/Δf in Figure 5 was also studied to understand the structural properties of adsorbed 

layers. The higher slope represents a dissipative layer, implying that higher energy is bound in 

each frequency change unit while copper ion adsorbs on the surface.[46] In addition, a higher ratio 

implies a more mobile and viscoelastic layer and a lower slope reflects a compact and elastic 

film.[66] In Figure 5, ΔD/Δf ratio for the PS-coated sensor at 5th overtone showed almost zero slope 

at the beginning of the adsorption, which reflects that the adsorbed layer did not change the 

viscoelastic behaviour of the surface,[67] which originates from a large mass growth with a minor 

dissipation variation. Further changes in ΔD results in a slight increase in the ΔD/Δf ratio for PS. 

On the other hand, KL shows a steeper slope at the beginning of the adsorption, but it reaches a 

plateau upon saturation, implying a stiff layer formation on the KL coated sensor.[68] 

KL-PS illustrates a different slope (ΔD/Δf ratio) and it had a larger ΔD and Δf magnitudes, yielding 

a loose and viscoelastic structure.[51] Based on the elasticity and viscoelasticity of the adsorbed 

layer, the degree of Cu (II) adsorption can be determined using Sauerbrey model (ΔmSauerbrey) for 

KL and PS, and the Voigt model (ΔmVoigt) for KL-PS.[67,68] Model fits for the adsorption of Cu(II) 

on the KL-PS is shown in Figure A1.2 in the appendix materials. 

The calculated adsorbed mass and thickness of Cu (II) layer on KL, KL-PS and PS substrates after 

buffer rinsing are summarized in Table 3. There is not a distinguishable difference between the 

fitted adsorbed mass for KL and PS in both models, but a deviation is noticeable for ΔmVoigt from 

ΔmSauerbrey for KL-PS. This designates that the adsorbed layer onto KL-PS is not rigid and is mostly 

viscoelastic, whereas the adsorbed layer onto KL and PS is rigid,[49] which is in accordance with 

previous discussion on the structure of adsorbed layers. The adsorbed mass on KL-PS substrate 

was determined to be 434 ng/cm2 following the Sauerbrey model and 4378 ng/cm2 following the 

Voigt model. The reason for this noticeable variation in mass uptake between QCM and adsorption 

experiments would be the adsorption of water molecules on the coated layer of KL-PS that resulted 

in a thicker and loose structure. It may also be implied that the KL-PS film possesses higher 

porosity after coating on the QCM sensor.  



94 
 

 
Figure 4.5: Changes in dissipation (ΔD) as a function of changes in frequency (Δf) for the KL, 

KL-PS and PS substrates in the Cu (II) adsorption experiment at 5th overtone (total time=140 min). 

 

Table 4.3. The adsorbed mass and thickness of Cu (II) layer on KL, KL-PS and PS substrates using 

Sauerbrey and Voigt models. 

Substrate ΔmSauerbrey (ng/cm2) ΔdSauerbrey (nm) ΔmVoigt (ng/cm2) ΔdVoigt (nm) 

KL 81 0.67 77 0.77 

PS 120 1.08 97 0.97 

KL-PS 434 3.94 4378 4.38 

 

4.4.5 FT-IR analysis.  

This tool was implemented to compare vibrational changes of the molecules of KL, PS and KL-

PS before and after Cu(II) adsorption in Figure 6.[69,70] The FT-IR absorption spectra in Figure 6a 

shows different absorption wavelengths associated with KL structure, in which the wide peak at 

3100-3550 1/cm contributes to the hydroxyl functional groups of KL, and the signal at 1647 1/cm 

is related to the C=O stretching vibration.[71] Figure 6b and 6c illustrate the wavelengths relating 

to the structures of PS and KL-PS. Two characteristic absorption peaks of 746 and 690 1/cm are 

observable in the PS spectrum and peaks at 2821 and 2930 1/cm were observed due to −CH2 

stretching vibrations.[72] KL-PS spectrum in Figure 6c represents the peaks that are observable on 

the spectra of both KL and PS, confirming the integration of KL in PS substrate. 
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The second spectra (blue line) in each panel illustrates the changes in FTIR absorption vibration 

after copper ion adsorption. A difference in KL absorption signals is observable after copper 

adsorption, which in fact illustrates the movement of hydroxyl group signal from 3400 to 3410 

1/cm (Figure 6a). This may be caused by the formation of dipole bonds between Cu (II) and 

hydroxyl groups of lignin owing to their negative dipole moments, resulting in an increase in 

energy and a blue shift in absorption.[69,73] Figure 6b represents that there is not a noticeable 

variation in absorption by Cu (II) adsorption on PS. This, in fact, justifies the limited adsorption 

capacity of PS as experienced in the QCM experiment (Figure 4b). PS did not show effective 

interaction with copper ions mainly because of a shortage of functional groups as well as low 

surface area and surface energy as shown in Tables S1 and 3. Therefore, neither chemical nor 

physical adsorption occurs effectively in this case and only a minor variation in the characteristic 

signal of PS (from 746 to 749 1/cm) was obtained, which will be explained later.  

On the other hand, KL-PS showed the highest adsorption mass both in batch and QCM 

experiments, which resulted in noticeable changes in the FT-IR vibrational absorption in Figure 

6c. The visible difference is observable for the vibrational band at 746 1/cm (the same signal in 

PS), which is assigned to out-of-plane bending of aromatic C-H bonds, δC−H.[74] The out-of-plane 

bending in aromatic structure is visible when all 5 C-H bonds bend at the same time and in the 

same direction perpendicular to the aromatic ring, which is illustrated in Figure 6c (the bending 

may happen in or out of paper, which is shown as + and -).[75] In the absence of copper (grey line 

in Figure 6c), light with a wavenumber of 746 1/cm is needed to excite δC−H vibration for KL-PS. 

After the adsorption of copper by KL-PS (Figure 6c), light at a higher wavenumber (754 1/cm) 

was required for the δC−H vibration absorption, representing a constraint effect of copper ions on 

aromatic C-H bond’s bending. These results would suggest that a copper ion might be above the 

aromatic ring of KL-PS. This orientation corresponds to the formation of cation-π interaction 

between copper ions and the aromatic structure of KL-PS. The copper cations with a low electron 

density interact with the high electron density in the π system of aromatic ring, resulting in higher 

excitation energy, which was stemmed from the δC−H vibration absorption band.[76] 

The solvation of cations also plays an important role in the strength of the cation-π interaction. 

Solvation of the cations extends the distance between cation and π system, thus lessening the 

energy associated with the cation-π interaction.[77] Although hydration of cations in aqueous 

system might be a barrier to π-system interactions, significant bonding strength (33 kJ/mol) is 
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simulated to exist within the π-system and cations surrounded with water molecules.[78] Wang and 

coworkers introduced δC−H band shifts (4 1/cm) in FTIR analysis as an indicator of the cation-π 

interaction between mineral surfaces and aromatic hydrocarbons.[75] Along with the observed 

vibrational movement at 746 1/cm, KL-PS-Cu wavelengths illustrate another visible signal 

alteration at the characteristic peak of residual hydroxy moieties (3100-3550 1/cm) in Figure 6c. 

The mentioned signal depicted a blue shift from 3371 to 3388 1/cm, which is identical to the same 

signal change observed in KL-Cu spectrum, suggesting the participation of residual functional 

groups in adsorbing Cu (II) ions. 
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Figure 4.6: FTIR spectra of a) KL, b) PS and c) KL-PS before (grey) and after (blue) Cu (II) 

adsorption. 

4.4.6 Adsorption mechanism.  

Based on the obtained data, it is possible to propose the adsorption mechanism involved in 

adsorption. The schematic chemical interactions are suggested in Figure 7. KL has limited surface 

area of 24 m2/g, which is a limitation for effective physical adsorption. Therefore, the most 

probable interaction between KL and Cu (II) would be the ion‐dipole interaction between Cu (II) 

and polar functional groups of lignin, such as phenolate, aliphatic hydroxy and carboxyl groups, 

owing to their negative dipole moments (Figure 7a), which were proven by FT-IR results. The 

adsorption process observed by steep changes in ΔD and Δf in QCM experiment for KL (Figure 

4a) would also imply that the interaction of KL’s surface with the ions is based on polar 

interactions. PS’ limited surface area (15 m2/g) would not make any advantage for its physical 

adsorption, although a paucity of chemical interaction is evident based on FT-IR results. Therefore, 

the most probable interaction between PS and copper ions is suggested to be the cation-π 

interaction, which is well recognized to be closely associated with dispersive and hydrophobic 

forces (Figure 7b). 

Polystyrene lacks sufficient pore size and surface area (Table A1.1) accessible for copper ions, 

which justify its limited adsorption mass. However, the incorporation of KL into PS resulted in 

enhanced chemical and physical interactions for KL-PS polymers. The adsorption mechanism is 

more complicated for KL-PS as it seems to adsorb Cu (II) through physical interaction as well as 

more than one chemical interaction (Figure 7c). Its surface area is relatively larger than KL and 
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PS. Therefore, the physical interaction can play an important role in the adsorption mechanism. 

For chemical interactions, it is possible that both ion‐dipole and cation-π interactions contribute to 

the isolation of Cu (II) from the bulk solution (Figure 6), as the polymer could have the advantages 

of both KL’s and PS’s chemical properties. Indeed, the higher surface area of KL-PS provided 

better possibility for the adhesion of copper ions through the chemical interaction mainly cation-π 

interactions. 

 
Figure 4.7: The possible interactions of copper ions and a) KL b) PS c) KL-PS substrates. Grey, 

red and blue balls represent carbon, oxygen and hydrogen atoms, respectively. For simplicity, only 

one unit of lignin or polystyrene is presented. 

4.4.7 Visualization analysis.  

The morphologies of KL, KL-PS and PS coated on QCM sensors were visualized by SEM/EDX 

before and after Cu (II) adsorption. The images before adsorption are available in Figure A1.3 in 

appendix information, while the images after the adsorption experiment are depicted in Figure 8. 

It is evident that a uniform layer is coated on each of the QCM sensors. The more porous structure 

of KL-PS than KL and PS is also observable. The EDX data provides elemental identification of 

surfaces. KL-PS is the only surface with detectable Cu (II) on its surface. The lack of N 

composition (from counter ion NO3
-) also confirms that copper is adsorbed in the cation form and 

is distributed uniformly on the KL-PS surface (Figure A1.3). 
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Figure 4.8: SEM/EDX images of coated gold sensors a) KL b) PS c) KL-PS d) EDX of KL-PS 

image after Cu (II) adsorption. The sharp Au signal comes from the gold sensor. 

a) 

c) 

d) 

b) 
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4.5 Development of a sustainable PS product.  

Sustainability is a critical factor in the development of new products worldwide. This study 

reported a simple method to produce a more sustainable polystyrene matrix, which has the 

potential to be used as an adsorbent. The incorporation of lignin into PS not only improved its 

physicochemical properties but also decorated a greener and a sustainable polymer. The 40 wt% 

proportion of KL in KL-PS implies a 40 wt.% reduction in styrene monomer use for PS production 

and use. Due to the high adsorption capacity of KL-PS (Figure 5 and Table 2), the mass of KL-PS 

required for achieving a certain level of adsorption, e.g., 20 mg/g, will be significantly smaller 

than that of PS needed. In other words, KL incorporation in PS would not only reduce the mass of 

styrene needed for PS-based adsorbent production, but also decrease the overall mass of the 

induced KL-PS required as an adsorbent for ion removals. The extremely higher adsorption of KL-

PS than PS (45 vs 15 mg/g Figure 5 and Table 3) suggest that KL-PS will have a much more 

cleaning effect in water and wastewater treatment processes. The results of this study provide solid 

evidence for the development of a new generation of sustainable PS-based adsorbent that is much 

more impactful than regular PS in ion removal for water and wastewater purification purposes. To 

further develop this new sustainable PS based adsorbent with a larger surface area, the production 

process of KL-PS should be investigated via developing the following techniques reported in the 

literature at larger scales.[9,56] 

4.6 Conclusion  

The incorporation of lignin, as a green and sustainable chemical, in polystyrene was reported as a 

facile process for producing a more efficient and sustainable polystyrene-based adsorbent. 

Successful incorporation of KL into polystyrene was confirmed by FT-IR and NMR 

characterization techniques. The 31P-NMR analysis elucidated the participation of varied hydroxyl 

functional groups, such as aliphatic, guaiacyl and C5-substitied in the free radical polymerization 

with styrene. The surface area and image analysis confirmed the production of a more porous 

structure of KL-PS than PS and KL. We noted that the appearance of functional groups afforded 

solid surface energy increment and consequently enhanced interaction of KL-PS’s surface with 

copper ions. QCM-D studies indicated better compatibility of KL-PS than KL and PS with copper 

ion, while showing a loose and viscoelastic structure of adsorbed ions with water entrapment. Both 

physical and chemical interactions contributed to copper ions adsorption, while implementing FT-

IR analysis indicated that two mechanisms of ion-dipole and cationic-π interactions were 
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responsible for chemical uptake of copper ions. The modified polystyrene revealed a promising 

application as an adsorbent for copper ion uptake by KL-PS from an aqueous medium.  

4.7 References 

[1] Y. Yi, Z. Yang and S. Zhang, Environ. Pollut 2011, 159, 2575-2585. 

[2] R. Gupta, N. Gupta and P. Rathi, Appl. Microbiol. Biotechnol. 2004, 64, 763-781. 

[3] J. Zhou, F. Gao, T. Jiao, R. Xing, L. Zhang, Q. Zhang and Q. Peng, Eng. Asp. 2018, 545, 

60-67. 

[4] P. T. Yeung, P. Y. Chung, H. C. Tsang, J. C. Tang, G. Y. Cheng, R. Gambari, C. H. Chui 

and K. H. Lam, RSC Adv. 2014 ,4, 38839-38847. 

[5] H. Gedam and R. S. Dongreb, RSC Adv. 2016, 6, 22639-22652. 

[6] M. Vafaeezadeh, M. M. Hashemi and N. Ghavidel, RSC Adv. 2016, 6, 14128-14133. 

[7] R. Gupta, R. Singh, S. Dubey, Sep. Purif. Technol. 2004, 38, 225-232. 

[8] C. Jin, X. Zhang, J. Xin, G. Liu, G. Wu, Z. Kong and J. Zhang, ACS Sustainable Chem. 

Eng. 2017, 5(5), 4086.  

[9] N. A. Awang, W. N. Wan Salleh, A. F. Ismail, N. Yusof, F. Aziz and J. Jaafar, Ind. Eng. 

Chem. Res. 2018, 58(2), 720-728. 

[10] F. E. Soetaredjo, A. Kurniawan, L. K. Ong, D. R. Widagdyo and S. Ismadji, RSC 

Adv. 2014, 4, 52856-52870. 

[11] T. Aro and P. Fatehi, ChemSusChem 2017, 10(9), 1861-1877. 

[12] S. S. Chen, T. Maneerung, D. C. Tsang, Y. S. Ok and C. H. Wang, Chem. Eng. 

J. 2017, 328, 246-273. 

[13] J. Xu, S. Zhu, P. Liu, W. Gao, J. Li and L. Mo, RSC Adv. 2017 ,7 , 44751-44758. 

[14] J. Joshua, B. A. Simmons and S. W. Singer, RSC Adv. 2016, 6, 54382-54393. 

[15] D. Kai, W. Ren, L. Tian, L. Chee, Y. Liu, S. Ramakrishna and X. J. Loh, ACS 

Sustainable Chem. Eng. 2016, 4(10), 5268-5276. 

[16] D. Liu, Y. Li, Y. Qian, Y. Xiao, S. Du and X. Qiu, ACS Sustainable Chem. Eng. 

2017, 5(9), 8424-8428. 

[17] L. Dai, R. Liu, L. Q. Hu, Z. F. Zou and C. L. Si, ACS Sustainable Chem. Eng. 2017, 

5(9), 8241-8249. 

[18] Y. Ge and Z. Li, ACS Sustainable Chem. Eng. 2018, 6(5), 7181-7192. 



102 
 

[19] T. Todorciuc, L. Bulgariu and V. Popa, I. Cell Chem. Technol. 2015, 49(5-6), 439-

447.  

[20] X. Guo, S. Zhang and X. Q. Shan, J Hazard Mater. 2008, 151, 134-142. 

[21] W. Jin, Z. Zhang, G. Wu, R. Tolba and A. Chen, RSC Adv. 2014, 4, 27843-27849. 

[22] R. H. Crist, J. R. Martin and D. R. Crist, Environ. Sci. Technol. 2002, 36, 1485-

1490. 

[23] S. Fujisawa, E. Togawa and K. Kuroda, Biomacromolecules. 2016, 18(1), 266-271. 

[24] J. Chen, G. Cheng, Y. Chai, W. Han, W. Zong, J. Chen, C. Li, W. Wang, L. Ou and 

Y. Yu, Colloid Surf. B Biointerf. 2018, 161, 480-487. 

[25] Z. Yang, C. Zhou, H. Yang, T. Cai, J. Cai, H. Li, D. Zhou, B. Chen, A Li and R. 

Cheng, Ind. Eng. Chem. Res. 2012, 51(27), 9204-9212.  

[26] Y. Zhang, Y. Chen, C. Wang and Y. Wei, J. Hazard Mater. 2014, 276, 129-137. 

[27] L. J. Barbour, S. L. De Wall, E. S. Meadows and G. W. Gokel, Ind. Eng. Chem. 

Res. 2000, 39(10), 3436-3441.  

[28] N. Javkhlantugs, H. Bayar, C. Ganzorig and K. Ueda, Intl. J. Nanomedicine 2013, 

8, 2487. 

[29] M. Keiluweit and M. Kleber, Environ. Sci. Technol. 2009, 43, 3421-3429. 

[30] W. Chen, L. Duan, L. Wang and D. Zhu, Environ. Sci. Technol. 2008, 42, 6862-

6868. 

[31] W. L. Jorgensen and D. L. Severance, J. Am. Chem. Soc. 1990, 112, 4768-4774. 

[32] S. C. Ringwald and J. E. Pemberton, Environ. Sci. Technol 2000, 34, 259-265. 

[33] F. Yue, F. Lu, S. Ralph and J. Ralph, Biomacromolecules 2016, 17(6), 1909-1920. 

[34] A. Elabbadi, H. A. Jerri, L. Ouali and P. Erni, ACS Sustainable Chem. Eng. 2015, 

3(9), 2178-2186. 

[35] F. Jiang, C. Qian, A. R. Esker and M. Roman, J. Phys. Chem. B 2017, 121, 9607-

9620. 

[36] D. La. Rosa, L. Varela, E. Sudol, M. El‐Aasser and A. Klein, J. Polym. Sci. A 1999, 

37, 4054-4065. 

[37] Y. Pu, S. Cao and A. J. Ragauskas, Energy Environ. Sci. 2011, 4, 3154-3166. 

[38] J. A. Lucey, M. Srinivasan, H. Singh and P. A. Munro, J Agric Food Chem. 2000, 

48, 1610-1616. 



103 
 

[39] Y. Liu, X. Chen, X. Jia, X. Fan, B. Zhang, A. Zhang and Q. Zhang, Ind. Eng. Chem. 

Res. 2018, 57(50), 17259-17265.  

[40] T. Tammelin, M. Österberg, L. S. Johansson and J. Laine, Nord Pulp Pap Res J 

2006, 21(4), 444-450. 

[41] J. Panzer, J. Colloid Interf. Sci. 1973, 44, 142-161. 

[42] D. K. Owens and R. Wendt, J. Appl. Polym. Sci. 1969, 13(8), 1741-1747. 

[43] C. J. Van Oss, R. Good and M. Chaudhury, J. Colloid Interf. Sci. 1986, 111(2), 

378-390. 

[44] T. W. J. Albrecht, J. Addai-Mensah and D. Fornasiero, Chemeca 2011: Engineering 

a Better World: Sydney Hilton Hotel, NSW, Australia, 2011. 

[45] K. Kubiak, Z. Adamczyk and M. Oćwieja, Langmuir 2015, 31, 2988-2996. 
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Chapter 5: Pickering/non-Pickering emulsions of nano structured sulfonated 

lignin derivative 
5.1 Abstract 

In this work, we produced sulfoethylated lignin (SEKL) polymeric surfactant and nano 

sulfoethylated lignin (N-SEKL) particles with the average size of 750±50 nm in a facile green 

process utilizing a solvent free reaction and acidification-based fractionation. SEKL formulated a 

liquid-like conventional emulsion with low viscosity that had temporary stability (5 h) at pH 7. 

However, N-SEKL formed a gel-like, motionless, and ultra-stable Pickering emulsion through a 

network of interaction between N-SEKL particles that created a steric hindrance among oil 

droplets at pH 3. The deposition of SEKL and N-SEKL on the oil surface was monitored by a 

Quartz crystal microbalance. Experimentally, it was shown that adsorption at pH 7 was reversible 

due to the low adsorption energy of SEKL on the oil droplet (ΔE~15 KBT), which was determined 

with the help of three-phase contact angle measurement. However, the high desorption energy 

(ΔE~6.0×10+5 KBT) of N-SEKL made it irreversibly adsorbed on the oil droplets. SEKL was too 

hydrophilic to attach to the oil interface (ΔE~0) and thus did not facilitate emulsion at pH 11. 

Therefore, it is feasible to apply SEKL for the formulation of Pickering or non-Pickering emulsions 

in the form of nanoparticle or polymeric surfactant, depending on the targeted application. 

5.2 Introduction 

The stabilization of emulsions by solid particles has gained substantial considerations over the past 

two decades because they not only possess most of the basic properties of conventional emulsions, 

but also they dramatically decrease the dosage of required emulsifier and exhibit long-term 

stability.[1] In conventional emulsions, an emulsifier forms an interfacial thin layer surrounding oil 

droplets that create interactions with hydrophilic and hydrophobic phases and is prone to 

gravitational separation and droplet coalescence.[2] While the adsorption of surfactant molecules is 

a reversible process (ΔE 10 KBT),[3] the desorption energy (ΔE) required to remove a solid 

particle from the oil-water interface is several orders of magnitude greater than the thermal 

energy.[4] It is suggested that the irreversible adsorption of particles at the oil interface in Pickering 

emulsions is due to the formation of a densely packed particle layer at the oil-water interface, 

which prevents both emulsion flocculation and coalescence by inducing a steric barrier.[5,6] The 

long-term stability of emulsions is an essential factor in many industries, such as food storage or 

cosmetic formulations.[7-8] However, for some other applications, the short-term stabilization of 
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emulsion or reversible adsorption of surfactant is the primary concern, including emulsion 

polymerization,[9] oil recovery[10] and interfacial catalysis for biphasic reactions.[11] Shifting on and 

off Pickering emulsions have been extensively studied applying variation in Ph,[12] temperature,[13] 

magnetic fields[14] or CO2.[15] However, to the best our knowledge, using one emulsifier to produce 

both Pickering and non-Pickering (conventional) emulsions and to demulsify in a formulation is a 

novel approach.  

Recently, a shift toward using biobased particles such as cellulose,[16] chitosan,[17] lignin,[18] 

modified starch[19] and soy protein[20] was observed in emulsion systems for responding to the 

environmental-friendly procedures.[21] Lignin is abundant biomass accounting for approximately 

20-30% of plant weight and is considered as a natural three-dimensional macromolecule.[22] 

However, lignin is still considered as an underutilized material because only 1-2% of its vast 

production annually (50-70 million tons) is utilized for the production of value-added products.[23] 

Structurally, lignin is composed of both hydrophobic skeleton (phenylpropane monomers) and 

hydrophilic functional groups, such as carbonyl and phenolic hydroxyl groups.[24,25] Lignin 

extracted from pulp and paper industry was suggested to have potential for applications, such as 

bio-based adhesives, stabilizers, nano‐ and micro scaled carriers, via producing water dispersed 

lignin nanoparticle.[26,27] For example, Wei et al.[18] reported synthesizing lignin particles by 

adjusting the pH value of an aqueous lignin solution from an alkaline system, which was used for 

emulsion polymerization of styrene. However, partial Pickering emulsion was formed, which was 

stable only at pH˂4 with a large oil droplet size (20-58.9 μm) and the 1:4 oil-water ratio. 

Unmodified lignin only contains limited surface-active groups, which restrict its function as an 

efficient emulsifier.[12] It is reported that a large amount of acid or alkali is required to activate 

lignin precipitation/dissolution, and the changes in emulsion properties is limited only to alkaline 

and acidic conditions. Also, increasing the oil to water ratio would limit its performance as an 

effective emulsifier.[12] Therefore, lignin functionalization gained considerable attention to 

promote the application of lignin as a polymeric emulsifier.[28] Increasing the dosage of emulsifier 

or salt and altering pH were among the techniques to improve emulsion properties [29] e.g., 

emulsion fraction, long-term stability or viscosity. Li et al. [30] formulated oil-in-water (O/W) fuel 

emulsions using carboxymethylated lignin (CML) as the emulsifier. They reported that smaller oil 

drop sizes (2.5 μm) were obtained with CML of increased degree of substitution, reduced pH, or 
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water-to-oil ratio. However, the use of high CML concentration (4 wt.%) and degree of substitution 

(DS=30%) makes its application unappealing. 

In our previous study,[31] grafted lignin-tannic acid (KL-TA) emulsifiers were synthesized, which 

showed pH-responsive stability with varied emulsion fraction using 1.5 wt. % of KL-TA with the 

charge density of -2.8 mmol/g. In these studies, high-charged lignin surfactants were produced that 

were not appealing for emulsion formulation. This is due to the increased particle-oil and particle-

particle electrostatic repulsion,[32] hence a higher dosage of lignin was used to improve the stability 

of conventional emulsions. Therefore, lower degrees of functionalization with limited surface 

charges were targeted in this study to overcome these obstacles. Comparatively, one of the simplest 

approaches to enhance emulsion properties is the use of solid particles for the formulation of 

Pickering emulsions via protonation/deprotonation of the functional groups of the emulsifiers, 

which is known to alter the wettability of the emulsifiers.[33] Such measures were previously 

reported by Kalliola et al. [34] via precipitation of carboxymethylated chitosan to prepare stable 

Pickering emulsions. 

As the main novelty of the present study, we report on the production of a novel water-soluble 

lignin polymer by sulfo-functionalization of lignin using 2-bromoethanesulfonate salt (NaBES) in 

a facile and solvent free process without hazardous chemicals with low sulfonate content. In the 

next step, the formation of nanoparticles via acidifying the sulfoethylated kraft lignin solution 

(SEKL) was followed and denoted as N-SEKL. Furthermore, the formation of N-SEKL was 

visualized by TEM imaging. 

The energy of adsorption of SEKL/N-SEKL at xylene, as the oil phase, was determined using the 

three-phase contact angle to predict the reversibility of their adsorption (Pickering/non-Pickering). 

The next objective of this study was to experimentally evaluate the performance of N-SEKL and 

SEKL for the formulation of Pickering/non-Pickering emulsion at the low dosage of 0.25 wt.%. 

For this reason, the fundamental understandings of the stabilization mechanism and the properties 

of the formulated emulsions, e.g., the rheological characteristics and their short and long-term 

stabilities, were thoroughly assessed. 

5.3 Experimental Section  

5.3.1 Materials 

Softwood kraft lignin (KL) produced via the LignoForceTM technology was received from 

FPInnovations. The analytical grades of 2-bromoethanesulfonate salt (NaBES), sodium hydroxide 
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(NaOH, 97%), potassium hydroxide (KOH, 97%), sulfuric acid (H2SO4, 98%), hydrochloric acid 

(HCl, 37%), phosphotungstic acid hydrate, sodium dodecyl sulfate salt (SDS), dimethyl sulfoxide-

d6 (DMSO-d6), deuterium oxide (D2O) deuterated chloroform, pyridine, cyclohexanol, 

chromium(III) acetylacetonate, 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, poly 

(ethylene oxide) and cellulose membrane (1000 g/mol cut off) were purchased from Sigma-

Aldrich. Xylene (C6H6(CH3)2 ≥98.5%, ACS grade as a mixture of ortho, meta and para isomers, 

and Nile red dye were purchased from Fisher Scientific. All chemicals were used without further 

purification. HPLC-grade water was produced by a Milli-Q water purifier and used in QCM 

experiments. SiO2-coated Q- Sense sensor crystals (QSX 303) were supplied from Q-Sense, Biolin 

Company, Gothenborg, Sweden. 

5.3.2 Synthesis of sulfoethylated kraft lignin 

Ground KL powder (1 g, 5.5 mmol) was dispersed in deionized water in three-neck flasks to make 

a 20 g/L suspension. The pH of the suspension was adjusted to 11 by adding 1M NaOH solution. 

The suspension was kept stirring for 1 h for a complete deprotonation of KL’s functional groups 

(aliphatic and aromatic hydroxy groups). Then, 2-bromoethanesulfonate salt, NaBES (2.5 g, 11 

mmol) with the molar ratios of 2:1 (NaBES): KL was fed to the reaction medium. The reaction 

was initiated by transferring the three-neck flask in a preheated water bath at 80 °C. Upon 

finalization of the reaction after 4 h, the reaction was cooled down to room temperature and was 

neutralized by adding 5 wt.% H2SO4. The sample was dialyzed using cellulose membrane for 2 

days to purify the product from salts. The product solution was further dried in an oven at 105 °C.  

5.3.3 SEKL Characterization 
1H-NMR and 1H-1H 2D-NMR analysis was conducted via dissolving KL and SEKL (35 mg) in 

DMSO-d6 and D2O (0.5 µL), respectively. The NMR spectra were recorded using INOVA A-500 

MHz (Varian, USA) NMR instrument with a 45° pulse width, 64 scans, and a relaxation time of 

1.0 or 4.0 s for 1D or 2D NMR, respectively.[35]  

The molecular weight of SEKL was determined in the form of weight- and number-average 

molecular weights by the UV detector of a gel permeation chromatography (GPC) (Viscotek 

GPCmax, Malvern, UK) using PolyAnalytic columns, PAA206 and PAA203. A 0.1 mol/L NaNO3 

aqueous buffer solution was used as an eluent in the system and to prepare a 5 mg/mL sample 

solution. Poly (ethylene oxide) was used as a standard solution in the GPC.  
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SEKL functional groups from high to low pH (11-3) compared to acidified KL powder was 

identified via a Fourier transform infrared spectroscopy (FTIR) (Bruker Tensor 27) equipped with 

an ATRassembly. The measurements were performed in the 550-4000 1/cm region with a 

resolution of 0.6 1/cm. SEKL suspensions at varied pH ranges (11-3) were prepared using KOH 

or HCl 0.8N and after protonation/dissociation of functional groups were dried in the oven 

overnight for further FT-IR analysis. 

Acid-base titrations were performed to determine functional groups content and their pKa’s, using 

an automatic titrator (Metrohm, 905 Titrado, Switzerland) with a potentiometric endpoint 

determination, which was equipped with a syringe pump and pH meter. Typically, an aqueous 

suspension of SEKL (100 mg) in deionized water (100 mL) was used in the experiment, while its 

initial pH was adjusted to 2.5 by 0.1 N HCl. The samples were titrated with 0.1 N NaOH with 

continuous stirring with magnetic bar at a titration rate of 0.5 mL/min. The same procedure was 

repeated for the control sample that did not have SEKL. The comparison of the sample and control 

facilitated the functional group and pKa determination.[36]  

5.3.4 N-SEKL formation and analysis using TEM 

A SEKL aqueous solution (0.25 wt.%) was prepared at pH 7 and stirred overnight for fully 

dissolving SEKL in water. Nanoprecipitation was followed by acidifying the solution to pH 3±0.2 

by adding a few drops of 0.8N HCl while slowly stirring the solution at 100 rpm and room 

temperature. After a short time, an opaque dispersed suspension of lignin particles was formed. 

One drop of N-SEKL suspension at pH 3 was placed on the carbon-coated sample holder grid of 

the TEM instrument and allowed to dry at room temperature overnight, then one drop of 

phosphotungstic acid hydrate solution (1wt.%) was placed on top of particles (N-SEKL) to provide 

electron beam conductivity [37] and allowed to dry at room temperature before imaging. The formed 

nanoparticles (N-SEKL) were imaged via transmission electron microscopy (TEM; Hitachi 7700, 

Japan) at the accelerating voltage of 100 kV and their sizes were determined based on the obtained 

images. The same procedure was followed for SEKL solutions for TEM analysis at pH 7 and 11. 

5.3.5 Hydrodynamic size and zeta potential analysis 

Dynamic light scattering analyzer (BI-200SM Brookhaven Instruments Corp., USA) equipped 

with a 35mW laser power source was used to obtain hydrodynamic diameters of SEKL at varied 

pH ranges. The operating conditions of this test were the wavelength of 637 nm, scattering angle 

of 90° and 25 °C. Six cells of 0.25 wt.% of SEKL solutions were prepared at pH 7, and their pH 
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was adjusted to various ranges of pH 3-11±0.2 using KOH or HCl 0.8N. After stabilizing for 2 h, 

their hydrodynamic size (Rh) was determined. The zeta potential of the prepared solutions was also 

measured using a ZetaPALS analyzer (Brookhaven Instruments Corp, USA). 

5.3.6 Emulsion preparation 

Stock aqueous solutions of SEKL (0.25 wt.%) at pH 7 and 11 and N-SEKL (0.25 wt.%) at pH 3 

were prepared. Volumetric ratio of unity of aqueous SEKL solution or N-SEKL suspension and 

xylene, as the organic phase, were prepared in clean glass vials and emulsified using an ultrasonic 

machine (Omni-Ruptor 4000, Omni International Int.) at room temperature, 240 W power and 30 

s for 3 s intervals.  

5.3.7 Microscopic Structure 

The dynamic changes in the microstructure of emulsions by pH changes were observed 

immediately after preparation by a Leica TCC-SP8 confocal laser scanning microscope (Leica 

Microsystems Inc., Germany) equipped with a WLL laser (563 nm excitation wavelengths) using 

a HC PL APO CS2 100×/1.40 oil immersion objective lens. After preparation of emulsion at pH 

11 as explained above, emulsions at pH7 and pH3 were prepared accordingly by adding HCl 

(0.8N) dropwise to the system and further vortex mixing to observe the changes in microstructure 

of emulsions. In this set of experiments, 200 µL of emulsions without dilution were taken from 

the emulsion layer of the samples immediately after the pH adjustment and were stained by the 5 

µL of Nile red dye suspension in water (0.5 wt.%). The stained samples were placed on a glass 

slide with cover glass slides on the top. Red fluorescence was used for observation of the samples 

with a 600-710 nm filter under a 563 nm laser illumination. 

5.3.8 Rheological Properties 

The rheological properties of formulated emulsions at pH 3 (using N-SEKL), 7 and 11 (using 

SEKL) were analyzed as described previously.[31] A hybrid rheometer (TA Instruments, Discovery 

HR-2) with a parallel plate geometry (8 mm, gap 500 μm) was used for carrying out the 

experiments at room temperature. Experiments were performed immediately after the preparation 

of the emulsion. Precisely, 1 mL of each emulsion was transferred by a pipet onto the lower plate 

of the instrument. A 3 min pre-shear at 100 1/s was applied on each sample prior to recording the 

data. The variations in viscosity were measured from 0.1 to 1000 1/s at 23 °C. To determine the 

linear viscoelastic region of SEKL, an amplitude sweep test was performed in the range of 0.01 
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and 100 1/s at frequency of 10 rad 1/s. A strain of 0.1% was chosen from the linear viscoelastic 

region to carry out frequency sweep measurements in the range of 0.1 and 1000 rad/s. 

5.3.9 Stability measurements 

A multi-sampling analytical centrifuge, a dispersion analyzer (LUMiSizer 611, LUM GmbH, 

Berlin, Germany) was used to investigate the separation behavior and long-term physical stability 

of the emulsions using SEKL or N-SEKL.[38] Undiluted formulated emulsions at pH 3, 7 and 11 

were transferred into separate cells and subjected to a centrifugal force of the instrument. The 

operational parameters of the test were total emulsion volume of 0.4 mL; the wavelength of 865 

nm; centrifugal rotation of 1000 rpm; experimental time of 1000 s with 1 s time interval between 

the recording, and temperature of 25 °C. 

5.3.10 Contact angle analysis 

The two- (WCA) and three-phase (OCA) contact angles of a solid surface (SEKL/N-SEKL) at an 

air-water and oil-water interface were determined using a theta optical tensiometer attention 

(Biolin Scientific). First, a 300 µL SEKL solution (0.25 wt.%) at pH 7 and 11 and N-SEKL 

suspension at pH 3 (0.25 wt.%) were coated on clean glass slides using a spin coater (WS-400B-

NPP) spin-processor (Laurell Technologies Corp) at 1500 rpm for 20 s under nitrogen 

environment, and the films were dried in the oven at 105 °C overnight. Then, a drop of deionized 

(DI) water (5 µL) was placed on the coated glass slides, and the contact angle of SEKL/N-SEKL 

at the water-air interface (WCA) was determined following static contact angle (i.e., two phase 

contact angle) measurement with the sessile drop method at 25 °C for 10 s,[9] then the slides were 

transferred to a glass chamber filled with purified xylene and the contact angle (i.e., three phase 

contact angle) of SEKL/N-SEKL at the oil-water interface was measured accordingly.[39] 

5.3.11 QCM-D measurements 

The self-assembly of SEKL/N-SEKL at water-xylene interface was studied using a QCM-D and 

SiO2-coated Q-Sense sensor (QSX 303), Sweden. We chose SiO2 substrate for coating xylene due 

to the reported effective interaction between these two materials.[40]  

To eliminate the presence of impurities on the surface, the SiO2-coated sensor was first cleaned 

thoroughly by immersing it in SDS, sodium dodecyl sulfate solution (0.4 wt.%) for 2 h, and then 

it was extensively rinsed with MilliQ water. It was then dried with N2 gas and treated with 

UV/ozone oxidation cleaner (PSD Series, digital UV ozone system, NOVASCAN) for 15 min. 

Afterward, it was rinsed again with MilliQ water and dried with N2 before coating with xylene [41]. 
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We followed a previously established procedure for coating silicon oil on Si substrate in this study 

on SiO2-coated Q-Sense sensor with further modifications.[42] Xylene (5 µL) was spin-coated on 

the sensor at 3000 rpm for 30 s under N2 environment with the acceleration rate of 200 m/s2, 

followed by drying the sensor in the oven at 110 °C for 1 h. The coating procedure was repeated 

for 10 consecutive times while drying the sensor in the oven between each coating cycle. 

The QCM-D adsorption experiments were started by rinsing the sensors with buffer solutions that 

were prepared by adjusting the pH of MilliQ water at 3, 7 or 11±0.2 by adding few drops of 0.8 N 

HCl or 0.8 N KOH (previously prepared solutions in MilliQ water), until the baseline was 

stabilised. Then, the adsorption experiment was initiated by replacing the buffer solutions with 

SEKL or N-SEKL solutions (500 mg/L) with the same pH as buffer. The temperature of 22 °C and 

a pump rate of 0.15 mL/min were maintained throughout all QCM-D experiments. The curves of 

resonance frequency (Δf) and dissipation factor (ΔD) were recorded accordingly over 20 minutes 

and the results at 7th overtone were collected. 

Another set of adsorption experiments at pH 3 was followed as explained above, however this time 

after adsorption completion, the N-SEKL sample was replaced by the buffer solution at the same 

pH and pumped into the chamber to observe the reversibility of the adsorbed layer which continued 

for an additional 10 mins. 

5.3.12 SEM analysis 

Scanning electron microscope (SEM) Hitachi field emission SU-70 was implemented to observe 

the SiO2-QCM gold sensor before and after the formation of xylene film. The elemental 

composition of the substrates on the sensors before and after xylene coating was measured with 

energy dispersive X-ray (EDX) Oxford AZtec with the adjusted voltage of 10 kV at a ×200 

magnification. In the second experiment, the coated sensors were air-dried after adsorption of 

SEKL or N-SEKL on a xylene-coated gold sensor, and the morphology of the adlayer was 

investigated by SEM with the voltage of 10 kV at a ×250 magnification. 

5.3.13 pH-responsive behavior of emulsions 

Stock solutions of SEKL (3 mL) at 0.25 wt.% concentration and pH 7 were fed to glass vials with 

3 mL of xylene (oil/water ratio 1:1), and the emulsions were formed by ultrasonication at 240 W 

power and 30 s for 3 s intervals. The pH of the formulated emulsion at pH 7 was once changed to 

3 by adding few droplets of 0.8 N of HCl and the emulsion was re-emulsified by ultrasonication 

for 10 s. In another set of experiments, the pH of the formulated emulsion was altered to 11 by 
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adding few droplets of 0.8N KOH and the mixing was conducted with a vortex mixer (VWR) at 

2500 rpm for 10 s. The stability of emulsions was then visualized immediately after applying pH 

changes by a digital camera and monitored by a vertical scan analyzer (Turbiscan Lab Expert, 

Formulation, France) at room temperature for 24 h to obtain the stability index (TSI) of the 

emulsions at the bottom and top parts of the emulsion systems, where both coalescence and settling 

phenomena were considered in the TSI evaluation. The details for the operation of the vertical scan 

analyzer were previously explained,[31] and briefly, the TSI is determined following equation 1, 

TSI = √
∑ (xi−xBS)2n

i=1

n−1
                           (1) 

where n refers to the number of scans, xi is the average of the backscattered light intensity at each 

scanning time, and xBS is the average of xi. Generally, the higher the TSI, the lower the stability.[43] 

The pH alteration was kept applying for another 5 cycles switching from pH 7 to 11 and vice versa 

and the TSI observations over 24 h were monitored by a vertical scan analyzer. The same trials 

were conducted by shifting pH of emulsions at pH 3 to 7 and 11 and vice versa. 

5.3.14 Statistical Analysis 

All experiments in this study were performed at least three times, and the data was expressed as 

mean ± standard deviation (SD). 

5.4 Results and Discussion  

5.4.1 SEKL production and dissolution  

Water-soluble sulfoethylated kraft lignin (SEKL) polymer was produced through a substitution 

reaction for replacing phenolic hydroxyl groups of lignin with 2-bromoethansulfonate (Figure 

A2.1). The 1H and 2H-H-NMR spectra of the products and raw material confirmed the grafting of 

ethyl group on lignin structure (Figure A2.2) following the SN2 reaction mechanism.[44] The GPC 

revealed the Mw and Mw/Mn (PDI) of 10±1 kg/mol and 1.80 for SEKL compared to 6.5±0.5 and 

2.1 kg/mol for KL, and titration experiments showed the sulfonate group content of 1.2 and 0 

meq/g for SEKL, and KL, respectively (Table A2.1). SEKL was highly stable at neutral pH without 

showing any sign of precipitation over three months (Figure A2.3). The system was also stable by 

alkalizing the solution to pH 11. However, acidifying the system to pH 3 disturbed its stabilization 

and resulted in aggregation and formation of nano-SEKL (N-SEKL) as shown in Figure 1a.  
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Figure 5.1: a) Zeta potential (ζ) and hydrodynamic size (Rh) of SEKL solution and b) FT-IR spectra 

of SEKL as a function of pH. 

 

Quantitative measurements in Figure 1a show a continuous increase in ζ from -50 mV at pH 11 to 

-10 mV at pH 3 and the elevation in Rh from 9 to 750 nm, consequently. The higher stability at 

neutral and alkaline conditions is due to the sufficient electrostatic repulsion among the polymer 

segments originating from the charged sulfonate and carboxylate functional groups that were 

determined through FT-IR (Figure 1b) and titration analysis (Figure A2.4). Figure 1b presents the 
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FTIR spectra of KL and SEKL at different pH. The wide absorbances at 3400 1/cm in the FTIR 

spectra of KL and SEKL are the stretches of phenolic and aliphatic hydroxyl groups,[45] which is 

less strong at pH 11 and 9; suggesting the protonation of these functional groups on SEKL at lower 

pH. A sharp carboxyl group peak is presented for KL at 1706 1/cm. [46] This stretching vibration 

is strong under acidic pH for SEKL and is absent at higher pH, indicating its dissociation at pH 

˃7. Compared to KL, SEKL has strong absorbance of S-O and S=O stretches at 1030, 1136 and 

1213 1/cm,[45,47] which indicates the presence of sulfonate groups on SEKL. These peaks are 

present at all pH ranges, however, they moved toward a higher wavenumber by acidification due 

to the protonated acid groups. In addition, a new absorbance band at 660 1/cm is presented at pH 

3, which is associated with the stretching vibration of S-OH band.[47] 

The lignin polymer started to agglomerate at pH lower than 7. By acidifying the system, the 

functional groups were protonated at their pKa, which would result in the elimination of 

electrostatic repulsion. The first noticeable increment in Rh (40 nm in Figure 1) was observed at 

pH 5 and continued without precipitation till pH 4 for solution with the Rh of 60 nm. This first step 

of nano-aggregation of SEKL is associated with the protonation of carboxylate groups of lignin 

with pKa of 5±0.1 (Figure A2.4). The carboxylate group content of SEKL, which was originated 

from lignin, was quantified to be 0.25±01 mmol/g following the titration method (Figure A2.4), 

and 0.15±05 mmol/g following the P-NMR technique (P NMR analysis is described, and results 

are provided in Figure A2.5). 

The amount of sulfonate group and its pKa were determined to be 1.2±01 mmol/g and at 

pH=2.8±0.1 (Figure A2.4), which promoted the nanoprecipitation of SEKL to produce sulfonated 

lignin nanoparticles (N-SEKL) by further acidification of solution to pH 3±0.2 (Figure 1). Indeed, 

the nanoprecipitation process occurred owing to 1) the lower solubility of SEKL at pH 3 as a result 

of the protonation of functional groups, that also weakened the electrostatic repulsion between the 

segments (ζ = -10 mv), and 2) superior attractive interaction between SEKL segments originating 

from the hydrogen-bonding, π-π interaction and hydrophobic forces[48,49] between alkyl chains and 

aromatic groups of SEKL at low pH. 

Amorphous sulfonated Lignin nanoparticle (N-SEKL) was visualized with TEM, and its structure 

was shown in Figure 2 with a diameter of 533± 25 nm. Interestingly, a large cluster is formed of 

smaller nanoparticles in the range of 40-50 nm (Figure 2), which may also provide evidence for 

the aggregation of N-SEKL. The Rh of N-SEKL was 750± 50 nm at pH 3, which is fairly 



117 
 

comparable with the TEM image. However, the results are not completely comparable technically, 

mainly because Rh determines the hydrodynamic size of N-SEKL in solution, while TEM shows 

the size of particles in a dried state. The drying of polymeric precipitates is expected to affect the 

size and shape of the particles.[34] 

It should be noted that nanoparticles were not observed for dried samples at pH 7 and 11 via 

implementing TEM visualization, and a uniform film of SEKL was formed in the dried state 

(Figure A2.6).  

 
Figure 5.2: TEM image of a N-SEKL at pH 3 in a dried state (×100 nm). 

5.4.2 Emulsions formulation 

In this study, emulsions with varied stabilities and droplet sizes were formulated using SEKL/N-

SEKL depending on the pH at the dosage of 0.25 wt.%. The dynamic changes in confocal images 

of formulated emulsions (from high to low pH by adding HCl) with their size distributions and 

long-time stability under centrifugal forces (shown as accelerated instability index) are depicted 

in Figure 3a-3d. Oil phase (xylene) was stained with Nile red, and is visualized by green color in 

the images.  

The confocal images in Figure 3a and droplet size distribution graphs in Figure 3b for emulsions 

at pH 11 indicated the presence of a large and uneven droplet size at this pH. Most of the formed 

droplets are larger than 20 µm at pH 11. The dynamics of such emulsion was visualized by 

watching the motion of the droplets (Video V1), which exhibited a fast mobility of droplets at pH 

11. Therefore, due to the higher collision of oil droplets, the likelihood of droplets’ coalescence 

would increase by the accumulation of small droplets on the surface of large droplets, and thus the 

phase separation is highly probable. As a result, the instability index of 1 was obtained for emulsion 

at pH 11 (Figure 3c), implying a complete separation of oil and water phase after centrifuging 

(Figure 3d) that confirmed the poor emulsifying affinity of SEKL at pH 11. By adding HCl to the 
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system, formulated emulsion at pH 7 had smaller droplet sizes of 11 µm, and more even size 

distributions (Figure 3a and 3b) compared with that at pH 11. The motion of droplets has slightly 

decreased; however, still the obvious movements of droplets was recorded (Video V2). Hence, 

due to a more even droplet size distribution, less accumulation of oil droplets occurred and as a 

result, comparatively more stable emulsions are created at pH 7 compared with that at pH 11 

(Instability Index of 0.6 in Figure 3c). Further decreasing the pH of the emulsion system to 3, 

confocal images showed different microscopic properties with considerable declines in the droplet 

size (to 4-5 µm) and motionless droplets under the microscope (Video V3). The stationary status 

of emulsions at pH 3 should be related to the formation of solid-like particles of N-SEKL at the 

oil interface. As a result of uniform and small droplet size and lack of collisions between them, 

ultra-stable emulsions were found at pH 3 (Instability Index of 0.1 in Figure 3c), with the minimum 

phase separation (Figure 3d). 

 
Figure 5.3: Dynamic changes in a) confocal images, b) droplet size of emulsions from high to low 

pH by adding HCl to pH11 emulsion after preparation and d) corresponding cell images after 

centrifuging. The scale bar is 10 µm in confocal images. 

5.4.3 Rheological Characteristics 
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The rheological properties of formulated emulsions at different pHs were monitored by measuring 

their viscosity as a function of shear rates (Figure 4a). Evidently, there is a distinguishable viscosity 

difference among the emulsions at altered pH. The emulsion at pH 11 is more of a Newtonian 

fluid. However, emulsions at pH 7 and 3 are shear-thinning (i.e., a significant decrease in viscosity 

with increasing the shear rate).[50] Also, at the beginning of the measurements at a shear rate of 0.1 

1/s, the viscosity of emulsions was 0.092, 0.24 and 24 Pa.s, at pH 11, 7 and 3, respectively (Figure 

4a). Water and xylene are both Newtonian fluids with viscosities of approximately 0.001 and 

0.0006-0.0008 Pa.s, respectively.[51] This implies that SEKL insignificantly impacted the fluid 

properties at pH 11 compared to other pHs.[31] The results may suggest that the adsorption of SEKL 

at the oil interface should be minimal, hence the oil droplets were relatively free (fewer inter-drop 

interactions) in the continuous phase (i.e., water).[30] As shown, we observed more viscosity 

increment at pH 7 and more markedly at pH 3. It has been previously reported that the changes in 

emulsion viscosity is generally affected by the interactions between the molecules/particles in the 

continuous phase and at the surfaces of the oil droplets.[52] For instance, Li et al.[30] suggested that 

the ion-dipole attraction between carboxymethylated lignin (CML) molecules and kerosene oil 

droplets elevated the fluid viscosity.[53] The same reason should be applicable for the elevated 

viscosity of water-xylene emulsion in the presence of SEKL at pH 7, however, the remarkable 

increase in the viscosity of the emulsion at pH 3 (24 vs 0.24 Pa.s) suggests a much stronger 

interaction (e.g., favourable hydrophobic interaction and π-π stacking)[54] between N-SEKL and 

xylene. In addition, a Pickering emulsion (formed from particles) generally has a high viscosity 

owing to the adsorption of solid particles at the oil interface that restrain the motion of oil 

droplets.[55] Based on Stokes’ equation,[56] it is well-known that creaming is accelerated by a large 

droplet size and low viscosity of the continuous phase.[57] The enhanced viscosity at pH 3 slowed 

the droplet migration rate (V1 in appendix material) and the number of collisions between oil 

droplets (Figure 3). Therefore, lower viscosity along with smaller droplet size improved emulsion 

stability at pH 3. Accordingly, we observed less stability at pH 7 and unstable emulsion at pH 11 

(Figure 3c).  

Oscillatory measurements are helpful in demonstrating the viscoelastic properties of emulsions. 

The magnitudes of storage and loss modulus reflect two behaviors; namely, viscous or liquid-like 

behavior (G′ < G″) or elastic or gel-like behavior (G′ > G″).[58,59] Figure 4b shows the storage and 

loss modules as functions of angular frequency for emulsions at different pHs at fixed strain (1%) 
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and 0.25 wt.% SEKL/N-SEKL concentration. The results indicated that G′ was greater than G″ for 

all range of angular frequencies for emulsions stabilized at pH 3 in the presence of N-SEKL and a 

crossover was observed at the starting angular frequency point (0.1 rad/s); representing a gel-like 

behaviour. However, no crossover point was observed at pH 7 and pH 11 in the presence of SEKL, 

indicating a liquid-like behavior. The results indicated that stabilized emulsions with N-SEKL at 

pH 3 have a strong three-dimensional network structure, and the interfacial films formed at the oil-

water interface are more elastic than the one stabilized at higher pHs.[50] However, the emulsion 

stabilized at pH 7 and 11 were not strong to form a network by increasing the angular 

frequency.[60,61] 

 

 
Figure 5.4: Rheological characteristics of emulsions at different pH values: (a) viscosity versus 

shear rate and (b) storage modulus G′ and loss modulus G″ versus angular frequency (G′ and G″ 

are represented as open and solid markers, respectively). 
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5.4.4 Wettability and adsorption energy 

To predict the pH-dependence of adsorption of SEKL/N-SEKL at xylene interface, two- (WCA) 

and three-phase (OCA) contact angles of a solid surface (SEKL/N-SEKL) at an air-water and oil-

water interface were determined, respectively.[62] 

WCA would define the wettability of the SEKL surface in different pHs. The adsorption of 

SEKL/N-SEKL at the interface is possible only if the equilibrium of a three-phase contact angle θ 

exists.[63] The strong trapping of colloidal particles at fluid interfaces is a result of the significant 

decrease in surface free energy of the fluid upon adsorption of particles. The reduction in the 

detachment energy (ΔE) through the adsorption of a particle at the interface is known to associate 

with its radius (r or ½ Rh in our case) and 3-phase contact angle (θ) with following equation: [64,65] 

|ΔE|= γ0πr2(1- cos θ)2                     (2) 

where γ0 denotes the interfacial tension of the pristine water-xylene interface (0.04 N/m)[66] and θ 

is the equilibrium contact angle of the oil-water interface in the presence of SEKL/N-SEKL.  

Measuring the θ can help to predict the emulsion stability,[12] because the energy of adsorption at 

the interface based on eq 2 would be relatively small ˂10 kBT if the particle is too hydrophilic 

(θ≤20˚) or too hydrophobic (θ ≥160).[67] The WCA and OCA images of SEKL/N-SEKL surface at 

pH 3, 7 and 11 are depicted in Figure 5. It is clear that the surface of coated SEKL is vastly wetted 

by water droplets when all the functional groups are deprotonated at pH 11 (WCA˂10˚ and 

OCA=8˚). This confirms that SEKL is super hydrophilic at pH 11 with minimal compatibility 

toward the oil interface. The protonation of SEKL to pH 7 resulted in less wettability (WCA~20˚ 

and OCA~25˚), showing slightly better interaction of SEKL with the oil interface. The SEKL at 

pH 3 (i.e., N-SEKL) showed the highest compatibility with the oil interface with the WCA of 40˚ 

and OCA of 50˚. The elevated WCA/OCA at pH 3 would be associated with the reduction of 

electrostatic repulsion, which led to the dominance of hydrophobic features of lignin 

macromolecules.[48,68] 

Adsorption free energy of the emulsion system, |ΔE|, was calculated following eq 1 via considering 

the results of ½ Rh (from Figure 1) and OCA (from Figure 5) to be 0.1, 14 and 6.0×10+5 (kBT) at 

pH 11, 7 and 3, respectively. Calculated |ΔE| at pH 11 is close to zero, which implies a considerable 
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hindrance toward the adsorption of SEKL at the xylene interface, yielding the complete separation 

of two phases and unstable emulsion at pH 11 (Figure 3). In addition, the |ΔE| at pH 7 is comparable 

with that of the adsorption of most surfactant molecules, however, they are easily detached and 

may not be effective over time.[4] On the other hand, one consequence of the very high adsorption 

energy at interfaces is the irreversibility of the adsorption.[4] The considerable enhancement of |ΔE| 

at pH 3 is associated with the enlarged particle size (Figure 1) and elevated OCA˚ (Figure 5). The 

magnitude of |ΔE| (6.0×10+5) at pH 3 proposes the formation of Pickering emulsion with an 

outstanding stability, which is comparable to the energy associated with the adsorption of solid 

nanoparticles at the oil interface. [69,70]  

 
Figure 5.5: Contact angle of SEKL/N-SEKL surface at various pH for water-air (WCA) and oil-

water (OCA) interface. 

5.4.5 Adsorption analysis at the oil surface 

Xylene-coated SiO2 sensors were used in the adsorption experiment of SEKL/N-SEKL and the 

SEM/EDX images of SiO2-sensors before and after xylene coating and the water contact angle of 

the surfaces are depicted in Figure A2.7. The assembly of SEKL/N-SEKL at oil-coated surface is 

summarized in Figure 6 at different pH, which represents the SEKL/N-SEKL adsorption affinity 

(Δf) and the viscoelasticity (ΔD) of the adlayer at xylene coated surface, respectively (Δf and ΔD 

plots vs time are presented in Figure A2.8a-b). It is observed that the adsorption of SEKL at the 

surface of xylene was only achievable at pH 3, when SEKL was in the form of N-SEKL, as seen 

as a considerable decrease in f (-7 Hz). The changes in D were limited to 0.3 ×10-6, which illustrates 

the formation of a rigid N-SEKL adlayer at the oil surface. The surface morphology of the adlayer 
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on the xylene coated sensor is visualized by SEM (Figure 7), which illustrates the rough surface 

of the sensor, indirectly illustrating the assembly of solid particles on the xylene coated sensor. To 

find out whether the higher increment of frequency (f) at pH 3 was because of the adsorption or 

deposition of N-SEKL particles, the adsorption step (after 20 min) in QCM studies was followed 

by a buffer solution that had the same pH in a new adsorption experiment, and the results are 

presented in Figure A2.8c. It is seen that by washing the adlayer at pH 3 (after 20 min), desorption 

did not occur, and Δf remained constant. This was unsurprising since the adsorption of N-SEKL 

was anticipated to be irreversible due to the high adsorption energy (6.0×10+5 kBT). Therefore, this 

test confirms that all the increment of f is indeed due to the adsorption at the oil surface rather than 

particles deposition, in which case the particles would have been washed off. 

Interestingly, the adsorption experiment with SEKL solution at pH 7 resulted in an increment, 

rather than a decline in the f (Figure 6), which shows the desorption of SEKL from the surface, 

instead of adsorbing onto the surface.[71,72] This can happen when a hydrophobic segment of SEKL 

interacts with xylene. However, the higher hydrophilicity of SEKL (Figure 5) at this pH keeps it 

in the water phase and desorption of oil happens via the aqueous flow in the chamber. Indeed, 

SEKL functions as a detergent/surfactant in removing the oil droplets from the substrate. The fact 

that this removal happened at neutral pH would introduce SEKL as a potential biomaterial for the 

formulation of novel safe detergents. Furthermore, it was observed that there was no change in D 

(0, Figure 6) at pH 7, which suggests that SEKL did not change the viscoelasticity of the surface.[73] 

The SEM images of the surface after experiment may confirm the reduction in oil content of the 

coated sensor, which was confirmed by the reduction in the carbon content of coated xylene surface 

after desorption by X-ray (EDX) results (Figure A2.9). 

A limited decline in f (-1.65 Hz) was observed at pH 11, which was coupled with an increase in D 

(0.64 ×10-6, Figure 6). These changes can be attributed to the hydrophilic affinity of SEKL at pH 

11 that penetrated through the oil film and attached to the hydrophilic SiO2 surface. This indeed 

resulted in an increase in D that made a less rigid adlayer on top of the surface compared with the 

results at pH 3 (0.64 ×10-6 ˃0.3 ×10-6). A similar statement was reported while experimenting the 

slippery performance of lubricant coated surfaces (oil) on Si substrate, where the water molecules 

would come more into contact with the Si-substrate when there was no covalent bond formed 

between oil and Si surface.[42] Since the interaction of SEKL and the surface at pH 11 is in 
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nanometer range size (≤10 nm, Figure 1), there is no observable accumulation in the SEM analysis 

(Figure 7).  

 
Figure 5.6: Equilibrium frequency and dissipation at 7th overtone after 20 min for the adsorption 

of SEKL/N-SEKL on xylene-coated SiO2 sensor at pH 3, 7 and 11. 

 

 
Figure 5.7: SEM images of adlayer from QCM-D experiment on xylene coated SiO2 sensor at 

pH3, pH7 and pH11. 

5.4.6 pH-responsive performance  

To investigate whether the reversibility of emulsion is feasible with respect to pH, the pH 

responsive cycling experiments were conducted. Figure 8a and 8b shows the transformation of 

emulsions stability by changing pH from 7 to acidic or basic and vice versa. The 24-h stability of 

these samples was examined with a stability analyzer and visualized by a digital camera. In Figure 

8, the instability of emulsions starting from pH 7 immediately after preparation depicted that the 

phase separation occurred at the same speed and level in the top and bottom zones of the emulsion, 
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and approximately the TSI of 20 was obtained in both zones after 24 h. It is evident that 

sedimentation and creaming happened in the bottom and top of the emulsion layer at pH 7 after 

6h. Sedimentation corresponds to the excess of SEKL that sediment and form gel in the clarified 

phase over time, while creaming is known to be driven by the lower density of stabilized 

droplets.[74] Overall 50 % of the emulsion is remained stable after 24 h at pH 7 formulation as is 

squared by the red line in Figure 7b.  

By adding a few drops of KOH to the emulsion at pH 7, an obvious sign of phase separation was 

immediately observed (Figure 8a and 8b). The phase separation was very fast (occurred in the first 

30 minutes) and TSI reached 20 in both zones and increased over time to almost 40 and 50 for the 

top and bottom zones, respectively. Finally, a large clarified layer of aqueous SEKL solution on 

the bottom and coalescence oil on the top were visualized (Figure 8b). Only a small portion of 5% 

emulsion remained after 24-h observation at pH 11 formulation (squared red line).  

By adding a few drops of HCl to emulsions of pH 7, phase separation was hindered, and stabilized 

emulsion was preserved with a minimum sign of phase separation over 24 h (only 15%). The 

destabilization only occurred in the bottom zone to TSI level of 10 with the formation of a thin 

clarified layer with no sign of sedimentation (no lignin color), which shows that SEKL segments 

participated in the emulsion formation in the form of N-SEKL, which had higher affinity toward 

oil phase rather than the aqueous phase. The emulsion remained macroscopically homogeneous 

with well distributed droplets that caused uniform backscattered light over the 24-h observation.  

Alkalizing the emulsions of pH 3 to pH 7 and 11 did not initiate phase separation, and a stable and 

unseparated emulsion of pH 3 was preserved (the same TSI and visualization as shown in Figure 

8a and 8b at pH 3 was observed). Hence, it is inferred that emulsion of pH 3 is irreversible as 

shown by red arrows in Figure 8b. This irreversibility should be due to their extreme gel-like 

properties (Figure 4b) and high desorption energy (6.0×10+5 KBT) of N-SEKL at the oil interface. 

However, according to the work of Wei et al.,[18] Pickering emulsions stabilized by unmodified 

lignin particles are pH-responsive due to the dissolution of lignin particles in the alkaline system, 

and thus demulsification could occur. In this case, the nature of sulfonated lignin and acidified 

lignin particles would impact their behavior. Acidified lignin particles are agglomerated due to the 

strong π-π stacking and H-bonding developed among lignin segments. However, in addition to the 

mentioned interactions, the protonated sulfonic acid groups form additional intra- and 

intermolecular bonding via dipole-dipole and elevated H-bonding interactions. Moreover, there 
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are still partial sulfonate groups that are dissociated at pH3 (zeta=-10mv). Therefore, a network of 

ionic interactions would also form between positively protonated functional groups and anionic 

sulfonate groups that enhanced the compactness of the formed N-SEKL particles, which overall 

makes the interactions among N-SEKL stronger.[28] In addition, the size of unmodified lignin 

particles is generally smaller (around 200 nm)[18,27] than the size of N-SEKL (750 nm) in this study. 

Therefore, the functional groups are less accessible for deprotonation in the large particles of N-

SEKL. The N-SEKL particles are also expected to form stronger intra interactions by strong ion-

dipole associations between sulfonate groups on the adjacent oil droplets,[30] which is absent 

between lignin particles and oil droplets. The formulated Pickering emulsion by unmodified lignin 

particles are markedly larger (20-60 µm)[18] which yield lower inter-drop interactions[30] and make 

their adsorption reversible. Rather than chemical interactions, experimental conditions such as oil 

type, emulsifiers dosage and oil:water volume ratio that were respectively higher and smaller in 

previous studies for lignin particles[18] compared to this study would be influential factors in the 

pH-responsive behavior. 

Further, the pH-responsive cycling was followed for 5 cycles between emulsification-

demulsification between pH 7 and 11 as shown with green arrows in Figure 8b and the TSI 

alteration is presented in Figure A2.10 in appendix material. 
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Figure 5.8: The 24-h emulsion observation upon pH alteration as a) TSI and b) visual observation. 

5.4.7 Emulsification stability mechanism 

The possible pH-dependent mechanism of Pickering/non-Pickering emulsions and de-emulsified 

oil-SEKL solution is presented in Figure 9. A typical property of Pickering emulsion is the large 

adsorption energy (ǀΔEǀ)[4] that was only obtained for emulsions formed at pH 3 (6.0×10+5 KBT). 

Formation of N-SEKL at pH 3 (Figure 2) produced a strongly stable gel-like Pickering-emulsion 

with high viscosity (Figure 4), which assembled a rigid N-SEKL adlayer at the oil surface (Figure 

6 and Figure 7). These properties suggested significant self-assembly of N-SEKL at the oil 

interface that bridges oil droplets together (Figure 9).[75] In this case, the hydrophobic interactions 

among N-SEKL and oil droplets made a network of interactions (e.g., van der Waals and π-π 

stacking). Indeed, due to the steric hindrance originating from the dense layer of N-SEKL at the 

oil interface, the aggregation of oil droplets was prevented, thus stabilized Pickering emulsions 

were formed. 

The ǀΔEǀ of SEKL at oil interface at pH 7 was fairly low (14 KBT), which represents the adsorption 

of polymeric surfactants and formulation of conventional emulsions.[65] With using a water-soluble 

polymer (SEKL), the emulsion was not stable over time due to the liquid-like behaviour with lower 

viscosity (Figure 4) and higher mobility (V2) of the emulsions at pH 7. Although SEKL was able 

to interact with oil molecules (deposition occurred based on the results in Figure 6), the charge and 

solubility of SEKL hindered its effective self-assembly at the oil interface (Figure 9) due to 

electrostatic repulsion between SEKL-SEKL and SEKL-oil and higher affinity of SEKL toward 

water (WCA=15˚, Figure 5). Therefore, the oil droplets would tend to coalesce due to the lack of 

physical hindrance, the creaming of the oil droplets was promoted over time (Figure 8) and 

emulsion with short-term stability was formed. 

At pH 11, fully charged SEKL molecules are too hydrophilic to wet the oil droplets (ζ=-50mv, 

Figure 1), hence the adsorption of SEKL at the interface was prevented thermodynamically (|ΔE| 

 0) and kinetically (Figure 6). Highly charged SEKL did not influence rheological properties of 

oil (i.e., low viscosity and liquid-like fluid, Figure 4), hence oil droplets would tend to coalescence 

very fast (blue arrows in Figure 9) and in a short period of time (Figure 8).[76] Consequently, 

emulsion formulation is prevented at this pH (Figure 8). 
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Figure 5.9: Schematic mechanism of emulsions stability at the xylene interface at different pHs in 

the form of Pickering at pH 3 or non-Pickering emulsion at pH 7 and demulsification at pH 11. 

The yellow half circle shows oil droplets, and the blue arrow shows the tendency for coalescence. 

5.5 Application and future studies 

It is feasible to use SEKL for the formulation of Pickering or non-Pickering emulsions depending 

on the targeted application in the form of nanoparticle or polymeric surfactant. While SEKL 

polymer is water-soluble at pH 7, non-Pickering emulsion can be formulated, which is completely 

stable in the first 5 h of formulation and then creaming and sedimentation happens slowly over 

time (Figure 8). The liquid-like properties of emulsion formulated by SEKL makes it suitable for 

application, such as emulsion polymerization, which requires fast mixing and short-term 

stability.[9] Accordingly, a complete demulsification can be followed by alkalizing the system. 

Gel-form Pickering-emulsion can be formulated by either acidifying the emulsion of pH 7 or by 

adding N-SEKL directly to the system at pH 3. Therefore, N-SEKL can be utilized for the emulsion 

formulation with a long-term stability requirement. The adaptable feature of emulsion stabilization 

with pH is an interesting phenomenon for industrial applications, because it shows a flexible 

routine to transform the microstructure and rheological properties of a formulation.[74] For 

example, in food and cosmetics applications, a flexible and liquid like emulsion at pH 7 can be 

prepared during the production steps, which can later be adapted to a gel structure for the final 

desired product through a simple pH change. Interestingly, this final gel product can tolerate the 

subsequent pH alteration (in the case of acidic pH) or be reversed to liquid-like solution (in the 

case of alkaline pH). Another proposed application for SEKL is its use in detergent formulation. 

However, this needs further research and experimentation. 

5.6 Conclusions 

This work demonstrates the ability to carefully tailor emulsion properties with a green lignin-based 

emulsifier. A 100% green process without using solvent or hazardous chemicals was implemented 
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to synthesize sulfoethylated lignin polymer (SEKL) and a simple pH alteration to produce 

sulfonated lignin nanoparticles (N-SEKL). Non-Pickering (SEKL) and Pickering emulsions (N-

SEKL) were formulated at pH 7 and pH 3 via mixing the respective lignin derivatives with xylene 

and water mixtures at the low dosage of 0.25 wt.%. While the emulsion containing SEKL showed 

liquid-like properties with low viscosity at pH 7, the presence of N-SEKL introduced solidity and 

gel-like properties with high viscosity to the Pickering emulsion. The adsorption analysis revealed 

the effective assembly of N-SEKL at pH 3 on the oil surface with a rigid adlayer on the oil surface. 

The bridging between oil droplets through a network of assembled particles with a high adsorption 

energy (ǀΔEǀ=6.0 ×105 KBT) yielded irreversible adsorption of N-SEKL at the oil interface, which 

was associated with an ultra-stable emulsion overtime at pH 3. At a higher pH, SEKL only partially 

interacted with the oil surface without effective assembly due to its higher surface charges. The 

formulated emulsion at pH 7 was temporarily (5 h) stable due to lack of steric hindrance between 

oil droplets and low adsorption energy of SEKL at oil interface (14 KBT). It was also observed that 

a complete demulsification is feasible by alkalizing non-Pickering emulsions to pH 11. At pH 11, 

highly charged SEKL polymer was too hydrophilic (WCA˂10˚) to adsorb at oil interface due to 

ǀΔEǀ~0. As SEKL marginally influenced the Newtonian properties of the oil, fast oil coalescence 

happened. In opposition to non-Pickering emulsion, the Pickering emulsion using N-SEKL was 

not disturbed by pH alteration due to the network of rigid particle interaction. This adaptable 

system utilizing SEKL or N-SEKL can potentially be used for the preparation of oil-water 

emulsions with tunable physical properties depending on the targeted application in various 

industrial fields, e.g., cosmetics, pharmaceuticals or emulsion polymerizations. In this study, the 

sulfonation of lignin particles (N-SEKL) exhibited numerous advantages over unmodified acidic 

lignin particles for the formation of Pickering emulsions including, 1) lower dosage of emulsifier 

2) stronger intra- and intermolecular interactions 3) larger nano-ranged particle size 4) use of more 

oil: water ratio 5) smaller oil droplet size 6) gel-like properties 7) tolerance to the subsequent pH 

alteration and 8) progressive control on the emulsion properties in an extended pH ranges. 
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Chapter 6: Dynamic interfacial and emulsion characterisation of polymeric 

lignin surfactant at different oil/water systems  
6.1 Abstract 

It is hypothesized that polymeric lignin surfactants have different affinities for stabilizing oil-water 

emulsions and that their emulsifying performance is highly affected by their adsorption 

performance at the oil-water interface. To validate the hypothesis, the adsorption performance of 

sulfoethylated lignin (SEKL) surfactant at different oil-water interfaces was examined by assessing 

the contact angle, dynamic interfacial tension depletion (surface pressure), and surface loading (Γ). 

Moreover, the interfacial adsorption kinetics of SEKL was comprehensively assessed at different 

oil-water systems to reveal the controlling mechanisms of the SEKL adsorption at the interface. 

Also, the impacts of SEKL concentration and ionic strength on the performance of SEKL as an 

effective emulsifier for the emulsions were assessed. Furthermore, the droplet size and instability 

index of the emulsions were systematically correlated with the adsorption performance of SEKL 

at the interface of oil and water. For the first time, by implementing a modified Ward Toradai 

diffusion model, two distinct early stages of the adsorption of SEKL at the oil interface were 

identified. Interestingly, the second stage was the determining stage of adsorption with the 

diffusion-controlled mechanism when polymers reconfigured at the oil/water interface. Salt 

screening facilitated the clustering of SEKL upon charge repulsion elimination, which removed 

the energy barrier in the first stage of adsorption (ΔEp→0=0), but it introduced a steric barrier 

upon the configuration of polymers at the oil interfaces in the second stage of adsorption. In 

addition to the kinetics of adsorption, satisfactory correlations were observed between surface 

pressure (∆γ= γ∞- γ0), surface loading (Γ) of polymers, and contact angle at oil interfaces on one 

hand and the oil droplet size and emulsion stability on the other hand.  

6.2 Introduction 

Biobased polymeric materials such as lignocellulosic, starch, and chitosan macromolecules have 

attracted substantial interest due to their great biocompatibility, biodegradability, renewability.[1-

4] They are applied as solubilizers, thickeners and stabilizers for emulsions systems due to their 

inherent features such as multiple functional groups, complex conformational changes at oil 

interface, and viscosity enhancement.[5,6] 

Water-soluble lignin derivatives can be used as emulsifying agents to reduce the interfacial tension 

between oil and water and stabilize liquid-liquid mixtures by forming steric interfacial films.[7,8] 
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For instance, functionalized water-soluble lignin derivatives including carboxymethylated 

lignin,[9,10] kraft lignin-tannic acid,[11] sulfoethylated lignin[12] and polyacrylamide-grafted 

lignin[13] have been reported as efficient stabilizers for emulsions formation. Currently, methods 

for the characterization of emulsions using lignin derivatives mainly involve the analysis of 

destabilization, droplet size, and the rheological characterization of the emulsions.[9-13] In addition 

to such analysis, the knowledge of the kinetics of adsorbed mass at the interface of oil and water 

can shed lights on understanding the role of emulsifiers in such emulsion systems, especially in 

their long-term stability.[14-16] 

Recently, substantial attention was devoted to exploring the interfacial behavior of natural-based 

emulsifiers including cellulose,[17] protein granule,[18] starch,[19] and chitosan[20] with different 

techniques, such as interfacial shear rheology, ellipsometry and dynamic interfacial tensiometry, 

to further determine their role in emulsion stability. For instance, Wei et al.[19] proposed a 

correlation between interfacial rheological properties of esterified fibre gum (CFG) and its 

emulsion stability. In another study, the surface loading of starch was determined by dual-

wavelength methods to form a compact emulsifier layer at oil interface of n-hexane.[21] The impacts 

of structural and chemical properties of proteins on the interface properties of oil-water interfaces 

were also evaluated.[14,22,23] In our previous study, the use of sulfoethylated lignin (SEKL) as a 

polymeric surfactant was examined, even though the focus was on forming a Pickering stabilizer 

at altered pH.[12] However, the fundamental impacts of SEKL on the interfacial properties and 

emulsion stability of oil-water emulsions have not been evaluated.   

The main objective of this study was to further understand the adsorption behavior and interfacial 

properties of the sulfoethylated lignin (SEKL) at different oil-water interfaces. In this work, 

decane, cyclohexane, and xylene were chosen as oil phases to explore the tendency of SEKL for 

stabilizing various oil-water emulsions.[24,25] 

To predict and evaluate the compatibility and interfacial adsorption kinetics of SEKL at different 

oil-water interfaces, the contact angle of SEKL at water and oil interfaces and dynamic interfacial 

tension (γ) were measured. From the dynamic interfacial tension analysis, the important 

understandings of polymer behavior at the interface of different oils are plausible. Hence, the 

surface loading (Γ) was evaluated using Gibbs adsorption isotherms, as it was previously used for 

linking surface/interfacial tension to the surface concentration of polymers.[26-28] In addition, the 

modified Ward and Tordai diffusion model was implemented for the early stages of adsorption [29-
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31] to assess the diffusion performance of SEKL from the bulk system (i.e., water) to the interface 

and to further identify the mechanism of SEKL adsorption at different oil interfaces.[32]  

In several studies, salt addition was found to facilitate the adsorption of polymers at the oil 

interface by screening polymer-oil and polymer-polymer electrostatic repulsion and thus 

facilitating the stability of emulsions.[33,34] For instance, the solubility and hydrophilicity of 

carboxymethylated lignin, CML, was reported to decrease with increasing the salt concentration, 

which improved the interaction of CML with the oil phase.[10] Similarly, the role of electrostatic 

interactions in the adsorption of SEKL at the oil-water interface was evaluated in this study. 

Lastly, to find out whether there is a correlation between the interfacial properties and emulsions 

stability, emulsion stability was evaluated by means of confocal microscopy and accelerating 

centrifugal destabilization instruments. 

6.3 Experimental Section 

6.3.1 Materials 

Softwood kraft lignin (KL) produced via the LignoForceTM technology was received from 

FPInnovations. Also, 2-bromoethanesulfonate salt (NaBES 98%), sodium hydroxide (NaOH, 

97%), potassium chloride (KCl), sodium nitrate (NaNO3), sulfuric acid (H2SO4, 98%), 

hydrochloric acid (HCl, 37%), dimethyl sulfoxide-d6 (DMSO-d6), cyclohexane (C6H12), 

deuterium oxide (D2O), polyethylene oxides and cellulose membrane (1000 g/mol cut off) were 

purchased from Sigma-Aldrich. Xylene (C6H6(CH3)2 ≥98.5%, ACS grade as a mixture of ortho, 

meta and para isomers, n-deacane (C10H22), and Nile red dye were purchased from Fisher 

Scientific. All chemicals were used without further purification. 

6.3.2 Synthesis of Sulfoethylated Kraft Lignin 

Dried KL powder was used as a precursor to synthesize sulfoethylated kraft lignin (SEKL) 

following our previously established method.[12] The alkalization of hydroxy groups of lignin (a 

20 g/L aqueous system) was carried out in the presence of sodium hydroxide to form ionized 

nucleophiles. The phenol ions then reacted with 2-bromoethanesulfonate salt (NaBES) under the 

conditions of 2/1 mol/mol (NaBES/KL), 80 °C and 4 h reaction time in a three-neck glass flask to 

produce SEKL. Upon completion of the reaction, the reaction medium was cooled down to room 

temperature and then neutralized with 5 wt.% H2SO4. Afterward, it was dialyzed using a cellulose 

membrane for 4 days to purify the products from salts and unreacted reagents (i.e., Na+, SO4
2-) 



137 
 

while changing the water every 12 h. The dried product, SEKL, was obtained after the evaporation 

of water in the oven at 105 °C. 

6.3.3 Hydrodynamic Size Analysis  

A dynamic light scattering analyzer (BI-200SM Brookhaven Instruments Corp., USA) equipped 

with a 35mW laser power source was used to obtain the hydrodynamic diameters of SEKL. 

Solutions of SEKL at 0.8 wt.% in a salt-free system and 10 and 100 mM KCl solutions were 

prepared at pH 7. After stabilizing for 24 h, the solutions were filtered by Whatman filters with a 

pore size of 0.45 μm. The Rh distribution of the samples was determined at the wavelength of 637 

nm with a scattering angle of 90° at 25 °C. 

The zeta potential of all solutions was also analyzed using a ZetaPALS analyzer (Brookhaven 

Instruments Corp, USA). Each sample was measured three times and the average values were 

reported. 

6.3.4 Contact Angle Analysis 

The contact angle of SEKL polymers at the air-water (WCA) and oil-water (OCA) interfaces was 

determined in two different experiments. Initially, the SEKL solution of 0.8 wt.% at pH 7 were 

coated on glass slides using a spin coater (WS-400B-NPP) spin-processor (Laurell Technologies 

Corp) at 1500 rpm for 20 s under nitrogen environment, and the films were dried in the oven at 

105 °C overnight. In this experiment, a drop of deionized water (DI) was placed on the SEKL-

coated glass slide and the contact angle of SEKL at the water-air interface (WCA) was determined 

following static contact angle measurement with the sessile drop method at 25 °C.[35] Then, 

following the Bizmark et al. procedure[24] the glass slide with the water droplet on its surface was 

introduced to a chamber filled with purified organic phase (i.e., xylene, cyclohexane or decane) to 

reflect the situation, in which emulsification occurs when SEKL polymers are dispersed in water 

first and then interacted with oil interface.[24] After the oil-water phase reaching its equilibrium (1 

h), the OCA was measured accordingly. The same procedures were followed in different salinities 

at newly prepared coated glass slides. Aqueous droplets of 10 and 100 mM KCl were placed on 

the SEKL coated slides, and the WCA and OCA were obtained following the same steps explained 

above. All the measurements were repeated 3 times and the average of contact angle was reported 

in each experiment. 

6.3.5 Dynamic Interfacial Tension Measurement 
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Dynamic interfacial tension (γ) between SEKL of different concentrations and the organic phase 

was measured using an Attension Theta Biolin optical tensiometer following the pendant drop 

method.[36] Precisely, 3 mL of organic solvent (i.e., xylene, cyclohexane, decane) was charged to 

a Quartz cuvette and sealed to minimize the volume loss. In one set of experiments, the SEKL 

concentration varied from 0.25 to 1.5 wt.% at 0 mM KCl ionic strength. Then, a droplet of SEKL 

solutions at variable concentrations with a constant volume of 5 µL was generated at the tip of a 

needle, which was submerged into the oil phase.[36] The images of the droplets were recorded over 

3600 sec at a frame rate of 10 images per second in the first 600 sec and 1 image per minute in the 

last 3000 sec. The interfacial tensions were calculated from the analysis of the shape of droplets 

using the Young-Laplace equation.[37] In all calculations, density values (at 22 °C) were considered 

997 kg/m3 for water, 864 kg/m3 for xylene, 730 kg/m3 for decane and 779 kg/m3 for 

cyclohexane.[38] The steady-state interfacial tensions (γ∞) for all oil-water systems studied in this 

work were obtained from the intercepts of plots of γ against 1/√t. A reference baseline for the γ of 

the oil-water systems was initially established (Figure A3.1). The value of γꝏ of xylene, 

cyclohexane and decane against pure water (i.e., oil-water interface tension) was found to be 35, 

44 and 47 mN/m, respectively, and the values were constant during the measurements. These 

results are comparable with reported values in other literature.[11,39,40] In another set of experiments, 

the concentration of SEKL was maintained constant at 0.8 wt.% in the presence of 10 and 100 mM 

KCl concentrations. Then, the above analysis was repeated to determine interfacial tensions in 

saline systems. Repeated measurements of the same experiment were in good correspondence with 

each other and generally lay within ±0.5 mN/m. 

In addition to interfacial observations, the critical aggregation concentration (CAC) point of SEKL 

was determined to shape at 0.8 wt.% concentration and further details of surface tension analysis 

are provided in the appendix materials (Figure A3.2). 

6.3.6 Emulsion Preparation 

Different emulsion systems were prepared in this study using xylene, cyclohexane, and decane as 

the organic oil phase with varied chemical structures (Figure A3.3). Different stock solutions of 

SEKL at 0.25, 0.5, 0.8, and 1.5 wt.% concentrations in the salt-free system and at 0.8 wt.% SEKL 

in 10 and 100 mM KCl systems were prepared. The emulsions were prepared by mixing SEKL 

stock solutions and different oils in the volumetric ratio of 1/1 using an ultrasonic instrument 
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(Omni-Ruptor 4000, Omni International Int.) at 240 W power and 3 s interval for 30 s and room 

temperature. 

6.3.7 Microscopic Structure 

The microstructure of prepared emulsions was observed by a Leica TCC-SP8 confocal laser 

scanning microscope (Leica Microsystems Inc., Germany) equipped with a WLL laser (563 nm 

excitation wavelengths) using a HCPLAPOCS2 100×/1.40 oil immersion objective lens. In this 

set of experiments, 200 µL of all prepared emulsions without dilution was taken from the emulsion 

layer of the samples and were stained by the 5 µL of Nile red dye suspension in water (0.05 

wt.%).[41] The stained samples were placed on a glass slide with a cover glass slide on the top. Red 

fluorescence was observed with a 600-710 nm filter under a 563 nm laser illumination. 

6.3.8 Emulsion Stability 

The accelerated stability of the emulsions using a dispersion analyzer (LUMiSizer 611, LUM 

GmbH, Berlin, Germany) was measured to determine the long-time storage stability of the 

emulsion in this study.[42] This instrument can reflect the movement of emulsion droplets through 

the sample. Undiluted emulsions were prepared as explained in the previous section, and they were 

placed in separate cells and subjected to a centrifugal force of this instrument. Upon the 

centrifugation, the heavier and lighter phases started to separate, and migration happened through 

the cell, which caused light transmission through the cells. Simultaneously, near-infrared light of 

the instrument (λ= 865 nm) was applied to illuminate the samples to determine the instability 

indices by the included software (SepView 6.0; LUM).[42] The dimensionless index was quantified 

by the clarification at a given separation time, divided by the maximum clarification.[43] The 

dramatic separation of phases is an indication of the instability of emulsions, which results in a 

larger instability index. The integration graphs were also generated and described as the “creaming 

rate”, which showed the transmitted light in % over time. The higher creaming rate represents the 

lower stability of emulsions and vice versa. The operational parameters of the tests were the total 

sample volume of 0.4 mL of emulsion, the wavelength of 865 nm, rotational speed of 112 times 

compared to gravity, experimental time of 1000 s, the interval time (between recording) of 1 s and 

the temperature of 25 °C. 

The zeta potential of the emulsion was measured with a ZetaPALS analyzer (Brookhaven 

Instruments Corp, USA). Samples were prepared following methodology stated in section 2.6. 

(Emulsion Preparation) and the samples were diluted 100 times in deionized water. The samples 
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were loaded into the cells and analyzed at the laser wavelength of 659 nm and the scattering angle 

of 90°. Zeta potential measurements was carried out as a function SEKL concentration, and oil 

type. At least three measurements were performed for each sample. 

2.9. Statistical analysis 

All measurements were implemented in triplicate and the results are reported as mean and standard 

deviation. Analyses were carried out in Excel 2016® for Windows® (Microsoft Office Home and 

Student®, 2016). 

6.4 Results and Discussion  

6.4.1 SEKL Formulation and Characterization 

In this study, 2-bromoethanesulfonate (NaBES) was used to produce sulfoethylated kraft lignin 

(SEKL).[12] Briefly, the reaction followed a nucleophilic substitution mechanism (SN2) where 

alkoxy ions from the dissociation of lignin’s hydroxy groups in an alkaline medium substituted 

with brome ion on the NaBES salt (Figure A3.4). The 1H and 2H-H-NMR spectra of the products 

and raw material confirmed the grafting of the ethyl group on the lignin structure (Figure A3.5). 

The GPC revealed the Mw and Mw/Mn of 10±1 kg/mol and 1.80 for SEKL compared to 6.5±0.5 

and 2.1 kg/mol for KL, and titration experiments showed the sulfonate group content of 1.2 and 0 

meq/g for SEKL, and KL, respectively (Table A3.1), which confirmed the success of the 

sulfoethylation reaction. 

6.4.2 Stability of SEKL Polymer Solution 

As was shown previously, SEKL forms a stable solution at pH 7 in a salt-free system with no 

observable agglomeration or precipitation over time.[12] The effect of ionic strength on the stability 

of SEKL solutions was evaluated by monitoring the changes in electrostatic potential (ζ) and 

hydrodynamic size (Rh) at a constant concentration (Figure A3.6), and the results are summarized 

in Table 1. The charge screening lessened the magnitude of ζ from an initial value of -45 ±3 mV 

at 0.8 wt.% SEKL in the absence of salt to -31 ±2 mV and -20 ± 2 mV at elevated salinity, 

suggesting that salt screened some of the surface charges of the polymer (Table 1). The same 

behavior was previously reported for the grafted lignin polyacrylamide, as the ζ of its solution 

dropped from -40 to -22±2 mV when the NaCl concentration increased to 10 mM.[13]  

The mean Rh of SEKL enlarged in higher salinity (Table 1), which suggests the aggregation of 

polymers at higher ionic strengths. Lignin is known to develop hydrophobic interactions, such as 

van der waals and π-stacking forces, which strongly contribute to the nano-aggregation of 
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polymers leading to a higher hydrodynamic size by screening the electrostatic repulsion between 

them.44,45 These results agree with the DLVO theory,[46,47] which predicts the accumulation of 

polymers by a decrease in the double layer repulsion through salt screening that caused aggregation 

to a certain level. However, the SEKL solution was still stable with no observable precipitation 

(Figure A3.7) due to the sufficient electrostatic repulsion (ζ ˂ -20 mv).[48] However, clusters with 

larger Rh are formed at elevated ionic strength. 

Table 6.1. Physicochemical properties of SEKL solutions. 

SEKL concentration 
(Wt.%) 

KCl 
(mM) 

Mean Rh (nm) 

(±2) 

ζ potential (mV) 

(±3) 

0.8 

0.8  

0.8  

0 

10 

100 

21 

35 

43 

-45 

-31 

-20 

 

 

6.4.3 Interfacial analysis 

6.4.3.1 Wettability and compatibility of SEKL at Oil Interfaces  

The contact angle of SEKL polymers at the air-water (WCA) and oil-water (OCA) interfaces was 

measured, and the results are shown in Figure A3.8. WCA at 0 mM (36.6˚) represents the 

hydrophilic nature of SEKL, which is associated with the functional groups, such as sulfonate 

moieties, anchored on lignin. The increased salinity resulted in an upsurge in WCA (39˚ and 43˚ 

at 10 and 100 mM KCl, Figure A3.8), verifying the elevated hydrophobicity of SEKL coated 

surface in saline systems. This is due to the partial neutralization of surface charges of polymers 

in the presence of counter ions (i.e., K+), which compressed the double layer and weakened 

electrostatic repulsive forces by reducing zeta potential (Table 1).[49,50] 

The OCA is shown to be dependent on the oil system, which is the lowest (~25˚) at the xylene 

interface and greater at cyclohexane (~27˚) and decane (~36˚) interfaces. The lowest OCA at the 

xylene interface (Figures A3.8) implies the least favorable interaction between SEKL and xylene 

interface, despite the mutual structural aromaticity, which should be related to the higher polarity 

of xylene at the interface (2.5, Table A3.2).[51] On the other hand, the better compatibility of SEKL 

with cyclohexane and decane interfaces (i.e., larger OCA˚) with aliphatic structures should be 
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associated with the elevated hydrophobic interactions at the interface due to the limited oil 

polarity.[51] 

In addition, charge screening effectively improved the OCA to (~35˚) independent of the oil type 

at 10 mM KCl (Figure A3.8) originating from the elimination of electrostatic repulsion and 

enrichment of hydrophobic interactions. At 100 mM KCl, the OCA at the xylene interface was 

raised to 53˚, while it was 42˚ and 44˚ for cyclohexane and decane interfaces, respectively (Figure 

A3.8). These superior hydrophobic interactions between xylene and SEKL structure probably 

originate from the π-π interactions associated with their mutual aromatic structure, which is absent 

in cyclohexane and decane systems. 

6.4.3.2 Dynamic interfacial analysis  

The dynamic interfacial tension (γ) is a fundamental quantity that is related to the assembly 

properties of adsorbed materials at interfaces and plays a crucial role in the process of emulsion 

formation and stabilization.[52] Polymeric surfactants reduce γ by migrating to the interface before 

their concentration reaches equilibrium at the interface.[53] In this study, the dynamic γ was 

measured via pendant drop tensiometry and drop-shape analysis for all systems at different SEKL 

concentrations over 3600 s, and the results are presented in Figure A3.9. The steady-state 

interfacial tensions (γ∞) for all oil-water systems studied in this work were obtained from the 

intercepts of plots of γ against 1/√t (Figure A3.10) from data of t ˃1900 s in Figure 2, where a 

minimal alteration in γ is observed, and the results are summarized in Table 2.  

As expected, the changes in γ for all systems at the oil-water interfaces depend on the concentration 

of SEKL in the aqueous solutions (Figure A3.9), as the higher dosages of SEKL in the bulk system 

(e.g., 1.5 wt% SEKL) yielded lower final γ values (γ∞ in Table 2). Also, the rate of decline in γ 

varied over time, while changes were steeper in the first 250 s of the test, and it reached a plateau 

at the later stage of analysis (t 3000 s), suggesting that the polymers assembly reached an 

equilibrium.[21,54] 

Paying attention to γ∞ and γ0 (pristine interfacial tension) at different oil interfaces (Table 2); the 

higher surface pressure (∆γ= γ∞- γ0) was obtained for the decane interface (33 mN/m) than for 

cyclohexane (31.8 mN/m) and xylene (24.3 mN/m) at the highest SEKL concentration, which 

implies a higher surface activity of SEKL at the decane interface. It is implied that the higher 

polarity of the oil at the interface was associated with fewer surface pressure variations, as was 
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also reported by Bergfreund et al.[55] on the adsorption of nanocrystals (CNCs) at different oil 

interfaces.  

Table 6.2. The steady-state interfacial tensions (γ∞) for aqueous solutions of SEKL at xylene, 

cyclohexane, and decane interfaces in salt-free systems. 
SEKL  

(wt.%) 

γ∞ (mN/m) 

Xylene 

(±0.5) 

γ∞ (mN/m) 

Cyclohexane 

(±0.5) 

γ∞ (mN/m) 

Decane 

(±0.5) 

0 

0.25 

0.5 

0.8 

1.5 

35 

12.1 

11.9 

11.0 

10.7 

44 

17.3 

14.6 

13.7 

12.2 

47 

16.5 

15.5 

15.0 

14.1 

 

Implementing the Gibbs adsorption isotherm (equation 1), surface loading of SEKL polymers per 

unit area at the interface was identified.[56] 

Γ= 1

nRT

dγ∞

dlnc
                                (1) 

In this equation, Γ stands for surface loading (mol/m2), γ∞ is the equilibrium interfacial tension 

obtained from Figure A3.9 and Table 2, c is the SEKL bulk solution concentration, n accounts for 

the ionic state of the polymer (n=2 for ionic polymers and n=1 for non-ionic polymers), T is the 

absolute temperature and R is the gas constant.  

The area occupied by SEKL at the interface (a) can then be calculated following (eq 2): 

 a= Mw/(ΓNA )  (2) 

where Mw is the molecular weight of SEKL (10 kg/mol) and NA is Avogadro’s number.[13] The 

computed (Γ) and (a) for all systems are shown in Figures 1a and 1b.  

The results display a continuous increase in the interfacial loading (Γ) when more SEKL is 

available in the bulk system (Figure 1a). The number of SEKL polymers at the interface reached 

the maximum amount of 7.3×10-4, 9.2×10-4, and 9.6×10-4 mol/m2 for xylene, cyclohexane, and 

decane systems, respectively. The trend for interfacial loading of SEKL at the oil interface follows 

the trend in the surface pressure at these interfaces, (Table 2), which reveals the higher interfacial 

activity of SEKL at the decane interface. Moreover, as the adsorption of SEKL increased at the 

interface, the area of occupation of SEKL decreased accordingly. Results in Figure 1b depicted 
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the smallest surface occupation (a) for the SEKL at the interface of decane (17.2-23.6 nm2) and 

the largest at the interface of xylene (22.7-32.3 nm2). Therefore, it can be concluded that the oil 

type plays a vital role in the interfacial activity of SEKL at the interface.  

Various surface-sensitive techniques, such as neutron reflectometry (NR),[57] vibrational sum-

frequency generation spectroscopy (SFG),[58] ellipsometry[39] or interfacial Langmuir trough[36] 

were previously implemented to experimentally measure the surface loading or area of occupation 

of molecules at air-water or oil-water interfaces. These methods reported results that were aligned 

with the theoretical Gibbs adsorption equation for analyzing surface or interfacial tension for a 

wide range of surfactants and polymers.[59] Perkins et al.[60] reported the experimental surface 

loading (Γ) of polyethylene glycolated lignin polymers at air-water interface via ellipsometry and 

the results were correlated to the surface tension using the Gibbs adsorption equation. Also, 

variations between theoretical and experimental results would be possible, which depend on the 

accuracy of the theoretical models and the nature of surfactants (i.e., cationic or anionic).[61] 
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Figure 6.1: a) Computed (Γ) and b) computed (area, a) for SEKL as a function of bulk 

concentration (wt.%) at xylene, cyclohexane, and decane interfaces. 

6.4.3.3 Diffusion into Oil Interface 

The three main types of adsorption kinetics for polymers at interfaces have been reported to be 

diffusion-controlled, energy-barrier controlled, or a mixed barrier-diffusion.[62] It is generally 

accepted that the adsorption process at the pristine interface is diffusion-controlled when there is 

no energy barrier.[62] In this case, polymer molecules easily migrate from the bulk to the pristine 

interface and freely adsorb. For a better understanding of the adsorption process, the analysis of 

the effective diffusivity (D*) of SEKL into the oil interface is important. Finding effective D* to be 

much smaller than the estimated diffusion in the bulk phase indicates the existence of an adsorption 

barrier, while similar values show diffusion-controlled adsorption.[63] In the present work, the 

estimated diffusion coefficient of SEKL in bulk water was anticipated to be 2×10-12 m2/s using the 

Stokes-Einstein equation (equation 3):[64] 

𝐷 =
𝐾𝑇

6ΠµRh
                                    (3) 

where k is the Boltzman constant, T the absolute temperature, µ is the viscosity of the solution, 

and Rh is the hydrodynamic radius of SEKL.[64] 

The modified Ward and Tordai diffusion model[31] was implemented to express the diffusion 

phenomenon of SEKL from the bulk system (i.e., water) to the interface. Assuming the adsorption 

barrier is not significant at the pristine interface, equation 3 can be applied as previously used for 

polymers and proteins.[64-66] In this case, the adsorption process is characterized by D*
t → 0, effective 
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diffusion coefficients in a short time (𝑡 → 0), in which a single SEKL polymer is adsorbed onto a 

free interface: 

  γ =  γ0 − 2nRTC0√
𝐷∗t → 0

π
× √𝑡                        (4) 

Here, γ is the dynamic interfacial tensions at time t and, γ0 at pristine interface, respectively, n is 

1 for non-ionic polymers and 2 for ionic ones. 𝐶𝑂 is the SEKL concentration in the solution (i.e., 

water), 𝑇 is the temperature and R is the universal gas constant (8.314 J /mol. K).  

The changes in γ vs √𝑡 in the initial time (√𝑡 = 15 √𝑠) is shown in Figure 2, where the sharpest 

decline in γ was observed (Figure A3.9). Remarkably, we detected two distinguishable straight 

lines of γ against √𝑡 as shown in Figure 2 for the early stages of adsorption. While the changes of 

γ in the first stage are small (t→0), a larger slope of γ vs √𝑡 was observed for the second stage (t→t1). 

The transition between two stages happens sooner for SEKL at the decane interface than at 

cyclohexane and xylene interfaces. Accordingly, D*
t → 0 and D*

t → t1 is obtained from (eq 4) using 

the slope of a plot of γ vs √𝑡 from Figure 2 for both stages (slopes are shown in Figure A3.11).[67]  
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Figure 6.2: plots of γ vs √𝑡 showing 2 different stages of interfacial depletion at different oil 

systems with increasing SEKL wt.% and ionic strengths. 

 

The D*
t → 0 and D*

t →t1 of SEKL at different oil interfaces are depicted in Figure 3a-b and is 

compared with bulk diffusion D (2×10-12 m2/s) to find out the adsorption mechanism, which is not 

similar in all situations and will be further discussed here. 
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Equation 5 was applied to quantify the differences between D and D*,[68] where ΔEp→0/t1 

determines the extent to which adsorption is kinetically limited (not diffusion-controlled), or is the 

activation energy of attachment of SEKL at the interface.[64,69]   

D*
t → 0/ t1= D exp (- ΔEp→0/t1 

kB𝑇
)                              (5) 

This equation can explain the situation in which the diffusion of a molecule and subsequently its 

adsorption at the interface is hampered for some reasons, e.g., steric or electrostatic repulsions as 

well as restructuring in the case of bulky macromolecules, such as polymers and proteins.[70,71] 

Considering the results of D*
t → 0 and D in Figure 3a, the apparent inconsistencies exist with bulk 

D depending on the oil type and polymer concentrations, and ΔEp→0 calculations identify this 

difference as an energy barrier upon adsorption (Figure 3c).  

In the case of the decane system, the D*
t → 0 was greater than the bulk D, which reveals the 

diffusion-controlled adsorption in the early stage of adsorption (stage 1), since the diffusion-

controlled adsorption model of Ward and Tordai assumes that the step of transfer from the 

subsurface to the interface is faster compared to the transport from the bulk to the subsurface.[62] 

Therefore, we obtained ΔEp→0 ≈ 0 kBT (i.e., the order of thermal fluctuations) for all SEKL 

concentrations, indicating the validity of eq 4 and diffusion-controlled adsorption in stage 1 at the 

decane interface.[62,72] 

However, in the case of cyclohexane interface, this validation is only approved in the concentration 

range of 0.25-0.5 wt.%; while at 0.8 and 1.5 wt.% SEKL concentrations, the D*
t → 0 decreased to 

2.22× 10-14 and 6.65× 10-15 m2/s, which is 2 to 3 orders of magnitude smaller than bulk D (22× 10-

12 m2/s) (Figure 3a), resulting in the ΔEp→0 of 4.5 and 5.7 kBT, respectively. Therefore, the 

adsorption kinetics of SEKL at the water-cyclohexane interface is only diffusion-controlled below 

its CAC point (0.8 wt%), above which an energy barrier exists (due to ΔEp→0 ≥ 0 kBT). At the 

xylene interface, variations between D*
t → 0 and bulk D is applicable at all SEKL wt.% ranges, 

which resulted in ΔEp→0=1.6-7 kBT, suggesting that an energy barrier to the adsorption exists and 

adsorption is no longer diffusion-controlled.[72] 

In the second stage, different behavior is observed, and the discrepancy is only visible at 

concentrations beyond CAC point (1.5wt.%) for all oil systems (Figure 3b). As a result, ΔEp→t1=0 

for stage 2 (Figure 3d) is associated with diffusion-controlled adsorption for all oil interfaces.  

SEKL consists of hydrophilic segments of sulfonate and hydroxyl groups and hydrophobic 

aromatic and aliphatic cores.[56] The first step of SEKL adsorption was found to be kinetically 
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limited at cyclohexane and xylene interfaces (Figure 3c) due to the existing energy barrier, while 

it was barrier free (ΔEp=0) at decane interface. Ionic molecules, e.g., SEKL, are unable to easily 

diffuse into the interface due to the strong hydrogen bonds formed with water molecules.[73] On 

the other hand, the net interactions between SEKL and the oil surface may include not only van 

der Waals and hydrophobic attraction but also electrostatic repulsion due to the ionic 

characteristics of SEKL (ζ of -45 mV).[30] Hence, it is suggested that the superior hydrophobic 

interactions of SEKL with decane should have resulted in a barrier free adsorption by exceeding 

the H-bonding and electrostatic repulsion, while the hydrophobic interactions at cyclohexane and 

xylene were less significant (OCA results in Figure A3.8). As is schematically illustrated in Figure 

4, when SEKL arrives at the hydrophobic interface of oil, the hydrophobic segment of SEKL 

initially interacts with the oil interface and restructures by facing its hydrophilic moieties outward 

the water phase and the hydrophobic segments toward the oil phase, which is analogous to protein 

denaturation at an oil interface.[14,72] This can be ascribed to the “unfolding” of SEKL at the water-

oil interface, as the interactions switch from SEKL-water in the bulk to SEKL-oil at the 

interface.[25,63] This step of restructuring of polymers at oil interfaces was shown to be diffusion-

controlled (Figure 3d). The elimination (or reduction) of H-bonding and effective restructuring of 

SEKL at oil interfaces should have further associated with stronger hydrophobic interactions and 

less electrostatic repulsion between SEKL-oil interfaces, therefore the energy barrier no longer 

exists. In stage 2, two processes would occur simultaneously: (1) the diffusion process of new 

molecules from bulk solution, which makes the adsorbed layer denser that caused the continues 

depletion of the interfacial tension; and (2) the reorientation of SEKL segments within the 

adsorption layer leading to a diffusion control process as was reported in the past.[74,75] 

The observable ΔEp beyond the CAC point (at 1.5 wt.%) could be associated with the changes in 

the conformation or nano-aggregation of active solutes, i.e., macromolecules.[63,76] CAC is stated 

to have a significant effect in diffusivity of macromolecules that caused an abrupt change in D*
t 

→t1 (Figure 3b), which further restricted restructuring at the interface.[63]  

Ultimately, it could be summarized that SEKL showed a better interfacial activity at the decane 

interface in the initial stage of adsorption, however, this activity improved later at xylene and 

cyclohexane interfaces in the second stage, in which diffusion-controlled adsorption was 

developed at all oil interfaces. 
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Figure 6.3: a) diffusion coefficients D*

t → 0 (eq 4) in stage 1, b) D*
t → t1 (eq 4) in stage 2, c) energy 

barrier ΔEp t → 0 (eq 5) in stage 1 and d) ΔEp t → t1 (eq 5) in stage 2 of the SEKL of different 

concentrations (0.25-1.5 wt. %) at different oil interfaces. 

 

 

Figure 6.4: Schematic illustration of SEKL adsorption in stage 1 and stage 2 at cyclohexane and 
xylene interface in a salt free system. 

6.4.3.4. Diffusion and Adsorption Mechanisms in Salty Systems 

The changes in D*
t →0 and D*

t →t1 (calculated according to equation 4 and the slopes in Figure 

A3.11) and corresponding ΔEp→0 and ΔEp→t1 (equation 5) at the early stages of adsorption in 

accelerated salinity systems are also summarized in Table 3.  

An interesting observation in stage 1 was the increment in D*
t →0 by the orders of 1 to 2 magnitude 

at the elevated salinity compared to the salt-free system for cyclohexane and xylene interfaces, 

which made ΔEp→0= 0 kBT at 100 mM. It indicates that the salt concentration (100 mM) was 
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sufficient to eliminate the adsorption barrier since the diffusivities calculated from Ward and 

Tordai would recover the bulk values measured with DLS, and therefore, diffusion-controlled 

adsorption is valid.[63] The increment in D*
t → 0 and reduction in energy barrier at higher salinity 

was previously reported to associate with the reduced polymer-interface repulsion.[32] Similarly, 

electrostatic repulsion among SEKL polymers was shown to be weakened at elevated saline 

systems based on zeta potential (Table1) and stronger hydrophobic interactions were formed at oil 

interface (OCA results in Figure A3.8), which resulted in effective adsorption at xylene and 

cyclohexane interfaces in the presence of SEKL.  

Interestingly, a reverse shift was observed at the decane interface compared to xylene and 

cyclohexane interfaces for SEKL adsorption in the first stage, and D*
t → 0

 decreased at 100 mM 

salinity resulting in ΔEp=1.1 KBT. As hydrophobic interactions were already dominant in the case 

of SEKL adsorption at the decane interface with diffusion-controlled adsorption in the first stage 

of the salt-free system, charge elimination did not accelerate the diffusion (Table 3). On the other 

hand, the bulkier clusters of SEKL had slower diffusion into the interface due to SEKL’s 

agglomeration (Table 1). Therefore, a barrier is determined against adsorption at 100 mM salt 

concentration. 

In stage 2, D*
t →t1 is decreased in opposition to stage 1 and ΔEp→t1 increased to less than 1 kBT. In 

the salty system, the already adsorbed clusters are bulkier and therefore more difficult to 

restructure at the interface. Therefore, a steric barrier existed for the restructuring of adsorbed 

SEKL as well as against the adsorption of new polymers from the bulk, which resulted in ΔEp˃ 0 

KBT in stage 2.  

Table 6.3. Effect of KCl concentration on the kinetic parameters of SEKL adsorption at early 

stages of adsorption at different oil interfaces and 0.8 wt.% SEKL concentration.  

Oil phase KCl,  

(mM) 

Stage 1 Stage 2 

D*
t →0(eq4) 

(m2/s) 

ΔEp→0(eq5) 

(kBT)±0.5 

D*
t →t1(eq4) 

(m2/s) 

ΔEp→t1(eq5) 

(kBT)±0.5 

Xylene 0 1.95×10-13 2.3 1.87×10-12 0.06 

 10 1.01×10-12 0.3 9.30×10-13 0.40 

 100 2.58×10-12 0 2.58×10-13 0.63 
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Cyclohexane 0 220×10-14 4.5 1.36×10-12 0.40 

 10 7.83×10-13 0.6 1.90×10-12 0.20 

 100 2.86×10-12 0 5.80×10-13 0.60 

Decane 0 1.78×10-11 0 4.30×10-12 0.00 

 10 2.10×10-12 0 5.80×10-13 0.80 

 100 3.64×10-13 1.1 5.25×10-13 0.70 

 

6.4.4 Emulsions Observation 

Physical observation and stability of emulsion were analyzed through microscopic imaging and 

physical stability analysis under centrifugal forces. The emulsion phase rested atop the excess 

aqueous phase, suggesting that the system was an oil-in-water (O/W) emulsion,[50] which was 

anticipated from contact angle measurements (θ < 90°) (Figure A3.8). 

6.4.4.1 Confocal Images 

The confocal images of emulsions formulated from different oils are presented in Figures 5. The 

oil phase is demonstrated by green color as was stained by the dye. The variations in the oil droplet 

size are observable by changing the oil type and bulk concentration. It is inferred that xylene, as 

the oil phase, contributed to the formation of the largest oil droplets (~15 µm), while decane 

showed the smallest droplet size (˂ 7 µm) at 0.25 wt.% SEKL concentration. The findings are in 

accordance with previous observations reported on the formulation of larger oil droplets for polar 

oils compared to non-polar oils.[77] Also, a possible explanation might be the higher interfacial 

loading at the decane interface, which facilitated the production of small droplets, as was reported 

previously.[78] 

By further increasing the bulk concentration, the size of oil droplets dropped in all formulated 

emulsions (xylene ~7 µm, cyclohexane ~5 µm, and decane ≤ 2.5 µm at 1.5 wt.%). In a lower SEKL 

concentration, the number of polymers adsorbed at the interface is not sufficient, therefore 

coalescence or flocculation is probable, which resulted in larger oil droplets.[79] In addition, rising 

the salinity of the system dropped the oil droplet size to less than 2.5 µm for all systems without 

further coalescence or flocculation. Charge screening is evident to cause more packing of SEKL 

at the oil-water interface that formed a smaller oil droplet size. 
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Figure 6.5: Confocal images of the emulsions prepared from xylene, cyclohexane, and decane as 

the oil phase and SEKL aqueous solutions at concentration ranges of (0.25-1.5 wt.%) and salinities 

(10 and 100 mM). Scale bar is 5 µm in all images. 

6.4.4.2 Stability of Emulsions 

The stability of the emulsions was compared considering the changes in accelerating physical 

instability index (Figure A3.12) and zeta potential (ζ) of emulsions. The comparison of instability 

indices (Figure A3.12) shows that formulated emulsion with decane as the oil phase is more stable 

compared to the other two oils, and the stability for all systems improved by concentrating the bulk 

solution (instability index decreased). Moreover, the instability index reduction was limited to 0.36 

and 0.25 in the case of xylene and cyclohexane systems, respectively, while it reached 0.04 for the 

decane emulsion.  

Instability index depletion with increasing bulk concentration is entirely consistent with the 

variations in droplet size (Figure 5), which follows Stoke’s law stating the smaller the oil droplet 

size, the lower the creaming rate of emulsions would be.[80,81] The creaming rate of emulsions also 

decreased with increasing the bulk concentration, which would be evident from the smaller slopes 

of transmittance graphs with position and the integral transmission as a function of time[82] in 

Figure A3.13a and figure A3.13b, respectively (showed only for the decane system). All ζ values 

were negative at the lowest SEKL dosage (decane -36, cyclohexane -35 and xylene -36 2 mV) 

due to the presence of sulfonate anionic groups.[83] The magnitude of zeta potential of emulsions 

increased for all three oils by concentrating the SEKL bulk solution.[83] Moreover, decane 
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exhibited the highest absolute potential at a 1.5% SEKL dosage (-55 3 mV) compared to 

cyclohexane (-50 2 mV) and xylene (-47 2 mV), which agreed with the highest stability of 

emulsions with decane in a salt free system. These observations were coherent with the adsorption 

results shown in Figure 1a, reflecting that a higher Γ at decane interface led to higher stability that 

was associated with more packing and stronger barrier at decane interface. The fact that further 

reduction in the ζ of emulsions was correlated to the superior stability and smallest droplet size 

imparted that electrostatic repulsive forces among oil droplet is the main mechanism of droplet 

stabilization in salt free system.[84] 

A substantial reduction in the instability indices for all emulsions at higher salinity was obtained 

as the oil droplet size was significantly reduced (Figure 5). The instability index reached 0.01, 0.01 

and 0.04 for xylene, decane, and cyclohexane systems at 100 mM salt, respectively, suggesting 

the ultra-stable emulsion formulation in the saline systems (the images of the emulsions after 

centrifuging are presented in the supplementary material in Figure A3.14). In this case, the reduced 

electrostatic repulsion between SEKL and interface (due to the reduced charge of polymers in bulk 

solution, Table 1) and elevated hydrophobicity of SEKL formed a stronger intermolecular 

interaction between SEKL-oil interface in the saline system (WCA and OCA results as shown in 

Figure A3.8), which resulted in the concentrating SEKL at oil interfaces.[12] It is suggested that the 

main mechanism of droplet stabilization in salty systems is a steric barrier based on the bulkier 

polymers and the reduced ζ potential of solutions at higher ionic strengths (Table 1).[85] 

Moreover, a strong correlation is observed between the magnitude of instability indices and the 

results of the OCA at different oil systems (Figure A3.8). For instance, the largest and smallest 

OCA at the decane and xylene interfaces were associated with the smallest (most stable) and 

largest oil droplets (least stable) (Figure 5 and A3.12) in a salt-free system, respectively. The 

intense increment in the OCA in the salty systems (Figure A3.8) is also associated with the highly 

stable emulsions with the smallest oil droplet (Figure 5). This made the emulsion stability 

independent of the oil choice, as the emulsions with xylene and cyclohexane are as stable as the 

one with decane.  

6.5. Comparison 

Comparing the physical properties of emulsions of different systems is challenging as the oil type, 

content, and emulsification conditions can greatly affect the macroscopic properties and, 

ultimately the stability of the system. The quantitative analysis from the previously used bio-based 
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polymers for stabilizing oil-water systems is summarized in Table 4. As seen, several studies have 

quantitatively characterized the kinetics of adsorption at the interface by calculating 

diffusivity.[66,83,86] For instance, the Deff was calculated for citrus pectin with different degrees of 

esterification, and diffusion-controlled adsorption kinetics was reported at 1 wt.% bulk 

concentration for the Rapeseed oil-water system.[86] Compared with the results of the present 

study, the oil droplet size was much larger, and increasing salt concentration further enlarged the 

droplet size to 50 µm, which caused demulsification due to substantial droplet coalescence.[86] A 

fairly similar diffusivity rate (1.22 ×-13 m2/s) to the result of the present study was reported for 

lentil protein isolates (LPI) at the olive oil interface.[66] 

The two-stage transition for SEKL adsorption at oil interface was also identified for 

amphiphilic derivatives of chitin or chitosan,[87] bovine serum albumin (BSA) protein,[68] and 

hydrophilic (poly (ethylene glycol) PEG NPs.[72] These results showed to be diffusion-controlled 

on the dynamic surface and interfacial analysis.  

Another study using Acrysol TT-935, a polymeric surfactant, and soy lipophilic protein referred 

to the adsorption process of the polymer at the interface to follow the diffusion-controlled.[64] For 

this system, the surface loading based on Gibbs adsorption isotherms was reported to be 12.3 KT 

for Acrysol polymer.[64] In another study, the comparison between the emulsifying properties of 

lignin derivatives (kraft LA and calcium lignosulfonate LG) and whey protein WPI illustrated the 

better emulsifying properties of the more hydrophobic polymer (LA), which formed smaller oil 

droplets that were associated with a prominent decline in the interfacial tension.[88] Compared with 

those studies, better hydrophobic interaction in this study at the decane interface was associated 

with higher interfacial activity and better emulsifying properties (smaller oil droplet and instability 

index). 

SEKL showed better emulsion properties compared to the previously reported lignin tannic acid 

(KL-TA) with higher charge density (-2.8 mmol/g) as a stabilizer, which formed a larger oil droplet 

size with greater instability.[11] It is known that the higher surface charges are associated with larger 

oil droplets that will cause instability over time.[89] Carboxymethylated lignin (CML) showed 

better emulsifying properties with a smaller oil droplet, however, one issue with CML is its limited 

affinity to lower the surface tension.[10] In another study, hydrophobically modified corn fiber gum 

(CFG) grafted by octenyl succinate anhydride (OSA) was reported to obtain stabilized emulsions 

under centrifugal forces in the dosage range of 1-1.5 wt.%,[19] which was comparable with SEKL’s 
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performance. It should be stated that, compared with the oil fraction of the current study (50%), 

the oil fraction was much lower in the studies discussed above, which could greatly affect the 

emulsifying capacity of polymers. 

Table 6.4. Comparison of SEKL as an emulsifier with previously used polymeric surfactants in 

terms of physical properties and interfacial analysis. 

Emulsifie
r- dosage 

Emulsion 
system/ oil 
content 
(wt.%) 

Oil 
droplet 
size 
(μm) 

Instability 
Index/instr
ument 

Contact 
angle 
θH2O 

Equilibrium 
interfacial 
tensions 
mN/m 

D (m2/s) Ref. 

SEKL, 
0.25-
1.5% 

Xylene, 
Cyclohexane, 
Decane- 50% 

15 to 2  0.8 to 0.04 
(Lumisizer) 

36˚ 10.7, 12.2, 
14.1 

1.87×10-12, 
1.36×10-12, 
4.3×10-12 

This 
study 

OSA-
starches/ 
0.125-1 
wt.% 

MCT- 5%  0.2-0.25 △T% =10-
30% 
(Turbiscan) 

- 38.1-24  

 

6.9 ×10-7-
4.7 ×10-6  

[83] 

Pectin- 
1% 

Rape seed 
oil- 30%  

25-10  - - - 2×10-12- 
1.2×10-11  

[86] 

LPI 0.1-
30 mg/ml 

Olive oil, 
10% 

12 to 
0.4 

ESI=24 to 
386 h 
Gravitation
al settling 

 12 1.22 ×-13 [66] 

LG-
0.5wt.% 

Sunflower 
oil- 10% 

1.739  TSI, 9 30.50˚ 5 

 

- [88] 

LA 1.777  8  49.33˚ 

WPI  15 
(Turbiscan)
  

- 

KL-TA-
1.5% 

Cyclohexane
- 50% 

6-12  TSI 20 
(Turbiscan) 

20˚ 21.7 - [11] 

CMLs- 
2% 

Kerosene- 
30-70% 

1.7-3  -  Surface 
tension 65-
62  

- [10] 
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OSA-
CFG- 0.5- 
1.5% 

 

Soybean 
5.0%  

1.5-2.5   0.75 to 
0.25 
(Lumisizer) 

 33 to 25  Interfacial 
viscoelasticity 
studies 

 

[19] 

△T: Transmission difference 

ESI: Emulsifying stability index 

6.6. Conclusions 

For the first time, a systematic analysis of the interfacial behavior of a polymeric lignin surfactant 

(SEKL) was provided to identify the adsorption performance of SEKL at the interface of different 

oil-water systems. Firstly, altering the polarity and chemical structure of the oil affected the surface 

pressure ∆γ, surface loading Γ, and contact angle θ of SEKL at the oil interfaces, which revealed 

the highest adsorption performance at decane interface. These observations were associated with 

stronger hydrophobic interactions in the order of decane˃cyclohexane˃xylene at the interface. 

Secondly, the adsorption behavior of SEKL was noticed to happen in two distinguishable stages 

analogous to diffusion and denaturation of proteins at the oil interface. Thirdly, the implication of 

a modified Ward Toradai diffusion model for kinetic adsorption analysis revealed that although 

the diffusion was kinetically limited in the very first seconds of adsorption at interfaces of oils 

(except for decane), the restructuring in the second stage was diffusion-controlled for all systems. 

The changes in the interactions from SEKL-water (stage 1) to SEKL-oil (stage 2) eliminated (or 

reduced) the strong H-banding of water molecules with SEKL and associated with stronger 

hydrophobic interaction upon restructuring at the oil interfaces. Furthermore, charge screening at 

higher salinity eliminated the energy barrier for the SEKL adsorption in the first stage at xylene 

and cyclohexane interfaces. Nonetheless, a new steric hinderance was generated in the second 

stage, which hindered the diffusion-controlled reorientation of SEKL clusters at oil interfaces. The 

overall adsorption of SEKL at the interface was diffusion-controlled (considering stage 2 as the 

determining stage) at all oil interfaces in a salt-free system. In a saline system, the adsorption at 

the interface was strictly limited due to the formation of bulkier SEKL clusters. SEKL led to strong 

stability against a phase separation via increasing the bulk concentration and ionic strength, which 

were confirmed by a considerable decrease in the oil droplet size and instability indices under 

centrifugal forces. The decrease in the zeta potential of emulsions in salt free systems suggested 

that the mechanism behind the stabilization of droplets to be electrostatic repulsion. However, it 

is believed that the steric barrier is associated with droplet stabilization in salty systems due to the 
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adsorption of bulkier polymers at oil interfaces. In addition, a direct correlation was exhibited for 

the first time between oil contact angle, surface pressure and surface loading Γ of SEKL at the oil 

interface and the oil droplet size and instability of the systems. The results in this study, for the 

first time, helped to understand the mechanism of adsorption and interfacial behavior of sulfonated 

lignin surfactants at the interface of different oil systems. More studies are suggested to explore 

the impact of lignin polymer structure and charged groups on the stability of oil-water emulsions. 

Also, the rheological and strength of the deposition of lignin surfactants on oil droplet can be 

studied in future. 
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Chapter 7: Chemical reactivity and sulfo-functionalization response of 

hydrolysis lignin  
7.1 Abstract 

This study focuses on the physicochemical characterization of six different hydrolysis lignin (HL) 

samples obtained as the by-product of enzymatic hydrolysis of wood biomass. It was revealed that 

the samples with the least internal ether linkages associated with the highest cleavage of β-O-4 

aryl ether and lignin-carbohydrate (LCC) bonds had superior phenolic hydroxyl and carboxylate 

groups, respectively. These correlations were revealed from a reverse relation observed between 

the content of identified internal ether linkages by x-ray photoelectron spectroscopy (XPS) and 

two-dimensional 1H-13C heteronuclear single quantum coherence NMR (2D HSQC NMR) with 

the hydroxyl group contents from 31phosphorus NMR (31P-NMR) analysis. Moreover, the least 

sugar content associated with smaller but more porous samples. 

The chemical reactivity analysis of unmodified HL samples toward various sulfo-functionalization 

routes (sulfonation S, sulfomethylation SM and sulfoethylation SE) validated a direct correlation 

between the degree of substitution (DS) of the functionalized HL and phenolic guaiacyl (G) and 

condensed hydroxyl group content of unmodified HL. Also, the sugar content and particle size of 

unmodified HL were reversely related to the DS of sulfo-functionalization of lignin. The highest 

chemical functionalization was attained for the SM reaction. The HL derivatives of SM and S with 

adequate water solubility (9-10 g/L), CD (≥1.9 mmol/g) and small particle size (5 µm) were shown 

to be effective stabilizers for clay suspensions with noticeably reducing the instability index 

(TSI~10) and settling velocity (-4 %/h) of clay particles in the suspension. 

Keywords: Hydrolysis lignin, Physicochemical properties, Sulfo-alkylation, Chemical reactivity. 

7.2 Introduction 

Biochemicals and biofuels from wood biomass are green replacements for synthetic chemicals 

from petrochemicals.[1] Enzymatic hydrolysis is a well-known process for fractionating 

lignocellulosic materials into cellulosic ingredients and lignin.[2,3] In this process, cellulosic 

materials are considered the main product for biochemical or biofuel productions and lignin is 

regarded as an undesired by-product.[2,3] On the other hand, the pulp and paper industry is generally 

known as a traditional source of lignin production, mostly in the form of kraft or lignosulfonate.[4] 

Despite their interesting properties, the sulfur content of kraft lignin and lignosulfonate may limit 

their potential applications.[5] Although hydrolysis lignin, HL, is not a 100% sulfur free by-product, 
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its sulfur content is much lower (≤1%) than KL or LS (1-8%), which may promote its potential 

use.[6] 

Structurally, the mild conditions of enzymatic processes of biomass would impart less internal 

bonding deprivation in HL, and it was reported that HL might even exist in the form of lignin-

carbohydrate complex (LCC).[7, 8] Moreover, the functional groups, such as phenolic hydroxyl and 

alcoholic hydroxyl, of HL are considered preserved compared to other lignin resources.[9] Owing 

to these interesting characteristics, the potential use of HL in many applications may need to be 

explored. However, obtaining precise knowledge of the physicochemical properties of HL is 

required for advancing its utilization. The most frequently technique to identify the ether bond 

including LCC bond is the two-dimensional 1H-13C heteronuclear single quantum coherence 

nuclear magnetic resonance spectroscopy (2D-HSQC NMR), because it avoids the issue of 

overlapping peaks in the single proton or carbon NMR.[10] However, this method is usually 

implemented for a comparative analysis between samples rather than yielding quantitative 

information, because the cross-peaks and the concentration of chemical groups in the sample are 

not exactly proportional.[11] Moreover, 1D 31phosphorus NMR (31P-NMR) analysis is an 

established method to quantify the hydroxyl functional groups of lignin samples.[12] As HL is a 

relatively unknown material with complicated structure, the main objective of this work was to 

assess the physicochemical properties of HL following various analytical techniques. The 

physicochemical characteristics of lignin could affect its reactivity toward varied modification 

reactions.[13] In this respect, lignin originating from different sources (e.g., hardwood, softwood 

and annual plants) and technical processes (e.g., organosolv, kraft, soda, and sulfite pulping) were 

previously studied with respect to their reactivity toward phenolation,[14] oxyalkylation,[15] 

esterification[16] and Mannich reaction.[17] However, HL did not receive the deserved attention for 

its valorization. Valorizing HL will not only help with the proper use of HL, but also could promote 

the enzymatic hydrolysis of biomass as a feasible technique to generate valuable products. To 

valorize HL, Zhang and Fatehi[9] reported on the production of a HL based coagulant by the 

periodate oxidation of HL. In another study, HL was activated using a NaOH/urea aqueous solution 

to enhance its sulfonation degree and dispersion property.[18] Despite these specific studies on one 

type of HL, to the best knowledge of the authors, there is no report for correlating the 

physicochemical properties and reactivity of various HL samples toward chemical sulfo-

functionalization. 
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The sulfo-functionalization of lignin is among the facile approaches to alter the physicochemical 

properties of lignin to produce potential dispersants or emulsifiers.[19] The most received facile 

sulfo-functionalization pathways of lignin are sulfonation, sulfo-methylation and sulfo-

ethylation.[20-21] Structurally, these chemical routes modify lignin in different ways. For example, 

the sulfur containing functionality may occur on aliphatic, aromatic hydroxyl or directly on the 

aromatic ring of lignin following these sulfo-functionalization pathways. Hence, the second 

objective of this work was to evaluate the chemical reactivity of HL with variable physicochemical 

properties towards sulfonation, sulfo-methylation and sulfo-ethylation to identify the most suitable 

and effective approach for valorizing HL. 

Sulfo-functionalized kraft lignin products were previously used as dispersants for the stabilization 

of cement, dye or inorganic suspensions.[23-27] To study the performance of sulfo-functionalized 

HL as value-added products, the dispersion performance of these products in a clay suspension 

was comprehensively studied. The novelties of this work are to develop 1) a precise correlation 

between the physicochemical properties of HL samples 2) a correlation between the 

physicochemical properties and chemical reactivity of HL for sulfo-functionalization reactions and 

3) the effectiveness of functionalized HL derivatives as dispersants for clay suspensions. 

7.3 Experimental Sectıon 

7.3.1 Materials 

Six enzymatically hydrolyzed lignin (HL) samples were received from FPInnovations, Pointe 

Claire, QC, Canada and were named HL1-HL6. Initially they were produced based on the patented 

technology of a biomass fractionation process[2] and then were chemically or physically modified 

to a variable extent. The hydrolysis process using cellulolytic enzymes was reported to carry out 

at a pH between 3 to 9, temperature 10-80 °C, biomass consistency of 2-30% for up to 144 

hours.[2] Clay was supplied from Old Hickory Clay Company, Hickory, KY, USA. The following 

chemicals were purchased from Sigma-Aldrich (Canada) and used without further purification: 

deuterated chloroform (CDCl3), pyridine (C5H5N), cyclohexanol (C6H12O), chromium (III) 

acetylacetonate, 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, sulfuric acid (98 wt%), 

sodium hydroxide pellets, sodium sulfite (Na2SO3), formaldehyde (CH2O 37 wt.%), 2-

bromoethanesulfonate salt (NaBES 98%), polydimethyldiallyl ammonium chloride (PDADMAC 

100,000–200,000 g/mol), para-hydroxybenzoic acid, silicon oil, and poly (ethylene oxide). 

Dialysis membrane (Cut off of 1,000 g/mol) was provided by Spectrum Labs. Deionized water 
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with a resistivity of less than 18 MΩ/cm was generated using a Millipore water purification system, 

and it was used for all the experiments conducted in this study. 

7.3.2 31P NMR and 1H-13C HSQC Analysis of HL samples 

The hydroxyl functional groups of HL samples were determined following the established 31P-

NMR analysis.[28] At first, phosphitylation reaction was conducted with (2-chloro,4455-

tetramethyl-1,3,2 dioxaphospholane). In this experiment, 24 mg of HL samples was dissolved in a 

1.6/1 v/v chloroform-d (CCl3D) and pyridine (C5H5N) solvent mixture. Cyclohexanol (0.20 

mmol/mL) and chromium (III) acetylacetonate (0.20 mmol/mL) solutions were added to the 

sample solution as the internal standard and relaxation agent, respectively. After stirring for 1 h 

and complete solubility of H-lignin samples, 100 μL of phosphitylation agent was added and 

reacted for another 1 h. A 90° pulse width and a 5 s relaxation delay with 128 acquisitions were 

followed to acquire 31P-NMR spectra. The peak assignments were followed as previously 

described in the literature.[28] 

For the 1H-13C HSQC experiment, 50 mg of HL samples was added to 0.7 mL of deuterated 

dimethyl sulfoxide, DMSO-d6, and stirred at 45 °C overnight. The following adjustments were 

implemented using a standard Bruker pulse sequence; 13 ppm spectra width in F2 (1H) dimension 

with 1024 data points (95.9 ms acquisition time), 210 ppm spectra width in F1 (13C) dimension 

with 256 data points (6.1 ms acquisition time), a 90° pulse, 0.11 s acquisition time, 1.5 s pulse 

delay, 1JC-H of 145 Hz and 48 scans.[12] NMR data were processed using the TopSpin 4.1.1 

software (Bruker BioSpin). 

7.3.3 Sugar analysis 

For determining carbohydrate content of the HL samples, the samples were hydrolyzed with 4 

wt% sulfuric acid at 120 °C for 1 h to convert all poly sugars to mono sugars following the 

procedure described by Liu.[29] The content of mono sugars was then determined using an ion 

chromatography (IC) unit (Dionex ICS-5000+ DP. Thermo Scientific) equipped with Dionex 

CarboPac SA10 column, Thermo Scientific, and pulsed amperometric detector (Thermo Scientific 

Electrochemical Detector). KOH was used as the eluent with the 1 mM concentration and 1 

mL/min flow rate. 

7.3.4. Surface area analysis (BET). The samples were initially dried in an oven at 105 °C 

overnight and before analysis, 0.05 g of sample was pretreated for 4 h at 250 °C. Branuer-Emmett-

Teller (BET) method was followed via adsorption-desorption isotherms using nitrogen gas at the 
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pressure range of 0.01 and 0.99 Pa at -180 °C with a Quantachrome surface area analyzer, 

Nova2200e (USA) to determine the specific surface areas of HL samples. 

7.3.5 X-ray Photoelectron Spectroscopy (XPS)  

The surface chemical compositions of the different HL samples in the powder form were analyzed 

using X-ray photoelectron spectroscopy (XPS) measurements. Oven-dried HL powders were 

transferred onto a double-sided carbon tape and measurements were performed on a Kratos Axis 

Supra with a monochromatic Al Kα radiation (1486.7 eV) operating at 15 kV (90 W) in a FAT 

mode (fixed analyzer transmission) with a pass energy of 40 eV for the ROI region and 80 eV for 

the survey region. The high-resolution XPS spectra of the samples were analyzed using ESCApe 

software.  

7.3.6 Sulfoalkyation of lignin 

In our previous studies, varied sulfo-functionalization routes were investigated under different 

reaction parameters, such as time, temperature, molar ratio using kraft lignin.[20-21] Based on these 

systematic studies, appropriate reaction conditions were chosen for sulfo-functionalization of HL 

samples in the present work.  

7.3.6.1 Sulfonation  

In this set of reactions, [20] 0.5 g of HL samples were dispersed in water in a three-neck flask with 

a magnetic stirrer to make a 15 g/L lignin concentration, then Na2SO3 powder in the molar ratio 

of 1/1 was added to the mixture. The reaction medium was adjusted to pH≈11 with NaOH solution 

(1M) and was transferred to a water bath heating at 90 ℃ for 3 h. The solution was then cooled to 

room temperature, neutralized with 5% H2SO4(aq) and then kept in membrane dialysis for two 

days, while changing the water every 2 h for the first 6 h and then once a day for two days for 

purification. Then, the dried sulfonated H-lignin samples were obtained by evaporating the water 

of solutions at 60 ℃ in an oven and the samples were named S1- S6. 

7.3.6.2 Sulfomethylation 

The sulfomethylation of HL samples was conducted as previously described.[21] A 40 g/L lignin 

solutions were prepared in a three-neck flask, which was followed by the addition of formaldehyde 

(37 wt.%) at the formaldehyde to lignin molar ratio of 1.4/1. The solutions were adjusted to pH≈11 

with NaOH solution (2.5 mol/L) and were heated in a water bath at 75 ℃ for 2 h. Then, Na2SO3 

powder was added to the mixture at the Na2SO3 to lignin molar ratio of 1/1 and allowed for reaction 
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for another 3 h at 90 ℃. After completion of the reaction, the purification and drying steps were 

followed as explained in the previous section. The samples were named SM1-SM6. 

7.3.6.3 Sulfoethylation 

Sulfoethylated HL samples were produced following our previous work.[22] Shortly, grounded HL 

powder (0.5 gr) was dispersed in deionized water in a three-neck flask to make a 20 g/L suspension. 

The pH of the suspension was adjusted to 11 by adding 1M NaOH solution. Then, 2-

bromoethanesulfonate salt (NaBES) was fed to the reaction medium at the NaBES to HL molar 

ratios of 2/1. The reaction was heated in a water bath at 80 ⁰C for 4 h. After completion of the 

reaction, the purification and drying steps were followed as explained in the previous section. The 

samples were named SE1-SE6. 

7.3.7 Charge density and solubility analysis 

The solubility and charge density of HL derivatives were obtained according to the process 

described previously[30] using a Particle Charge Detector (BTG Mutek, PCD 03, Germany).  

7.3.8 Elemental analysis 

The elemental analysis of unmodified and HL derivatives was performed using an Elementar Vario 

EL Cube elemental analyzer by a combustion analysis method. The samples were first dried in a 

105 °C oven overnight in order to remove any moisture. Approximately, 2 mg samples were 

weighed and loaded in the integrated carousel of the elemental analyzer. Furthermore, the samples 

were automatically transferred into a combustion tube and burned at 1200 °C. The reduced 

combustion gases were further analyzed for carbon, hydrogen, nitrogen, and sulfur contents of the 

samples. The oxygen content was determined by a mass balance. 

The degree of substitution (DS, mol/mol) for the sulfoalkylation reactions was calculated based on 

the sulfur content of the samples according to equation 2.[31] 

𝐷𝑆 =
180×(𝑆𝑆𝐿−𝑆𝐻𝐿)/32

𝑀𝑤−32×(𝑆𝐻𝐿)
                 (2) 

Where 180 (g/mol) was considered as the molecular weight of lignin, 32 (g/mol) was the atomic 

mass of sulfur element, SSL was the sulfur content of S, SM or SE and SKL was the sulfur content 

of KL. Mw was the molecular weight of grafted groups onto lignin (Mw = 80 g/mol for S, Mw = 94 

g/mol for SM and Mw = 108 g/mol for SE).  

7.3.9 Particle size  

The average particle size of unmodified HLs and their derivatives in an aqueous system was 

determined using a laser diffraction particle size analyzer (Malvern Mastersizer 3000, 
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Worcestershire, UK) at the room temperature. In this set of experiments, the aqueous suspensions 

of all samples (3 wt.%) were stirred overnight prior to the test at room temperature. Then, 1 mL of 

each suspension was introduced to a chamber containing 700 mL of water under stirring (1000 

rpm). The particle size distribution based on D [3,2] was measured using the instrument software 

(Malvern 3000).  

7.3.10 Dispersion analysis  

The dispersibility of clay suspension was investigated in the presence of unmodified HLs and their 

derivatives using a Turbiscan Lab Expert, Formulaction, France. In this set of experiments, clay 

suspensions (100 g/L) were prepared in the presence of HL and its derivatives at the fixed dosage 

of 16 mg/g clay in a water bath shaker at 150 rpm and 30 °C for 1 h. The changes in the stability 

of the suspensions were analyzed for 2 h by scanning the cell vertically every 2 min at 30 °C. 

Based on the obtained data, the destabilization index was determined using Turbisoft 2.1 software. 

The velocity of particle settlement (%) based on the slope of backscattered light changes vs time 

was obtained using the Turbisoft 2.1 software. 

7.3.11 Zeta potential 

The zeta potential of the dispersed clay suspensions in the presence or absence of HL derivatives 

was measured using a ZetaPALS analyzer (Brookhaven Instruments Corp, USA). In this 

experiment, 0.4 mL of clay suspensions from the dispersed portion of clay suspensions were 

separated by a pipette and diluted with 20 mL of filtered KCl solution (0.1 mM), and 3 mL of the 

solutions were transferred to glass cells for the zeta pontifical analysis. 

7.4 Results and discussion 

7.4.1 Physicochemical characterization of HL 

The HL samples were characterized for their chemical composition, sugar content, functional 

groups and specific surface area and the results are summarized in Table 1.  

Table 7.1. Physicochemical properties of different H-lignin samples.  
Sample Elemental compositions, 

wt.%*  
Total  

sugar%
** 

Hydroxyl groups, mmol/g*** Surface 

area, m2 

D [3,2],  

µm (±3) 

C H S O OH 

Aliphatic 

Ph-OH 

(Cond.) 

Ph-OH 

(S) 

Ph-OH 

(G) 

CO

OH 

  

HL1 53.6 6.3 0.1 40.0 30.0 3.58 0.17 0.30 0.18 0.03 17.0 38 

HL2 54.0 6.5 0.1 39.5 29.5 3.00 0.22 0.24 0.17 0.10 17.6 35 

HL3 55.0 6.3 0.8 36.0 22.5 8.37 0.47 2.00 0.76 0.01 40.3 26 
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HL4 59.7 6.3 1.5 32.2 19.5 4.38 3.42 0.68 1.15 0.52 48.4 22 

HL5 57.0 6.3 1.2 34.0 16.0 8.51 3.9 0.65 1.36 0.37 37.9 21 

HL6 58.0 6.4 1.2 33.9 24.5 3.43 1.65 0.36 0.56 0.21 33.9 30 
a Elemental analyzer 
b  IC 
c 31P-NMR 

The HL samples had 0.1 to 1.5 wt% sulfur, which may originate from wood or sulfuric acid used 

in the HL samples treatment.[32] It is observed that HL1 to HL3 had a lower carbon composition, 

but higher oxygen compared to HL4 to HL6. The HL samples had substantial sugar content 

associated with the existence of lignin-carbohydrate complexes (LCC) in the samples.[7,8,33] Also, 

samples with a higher oxygen content had a higher sugar content (Table 1). The type of HL samples 

was identified to be G/S based on the identified syringyl and guaiacyl structures in 2D-HSQC 

correlations (will be discussed later). With that consideration, the detectable -OH groups for the 

samples based on their 31P NMR spectra were aliphatic OH (145-150 ppm), phenolic OH including 

C5 substituted condensed phenolic OH, 5-5 (140.1-141.6 ppm), and β-5 (143.6-144.5 ppm), 

syringyl phenolic OH (S) (142-143.6 ppm), guaiacyl phenolic OH (138.8-140.1 ppm), and 

carboxylic acid OH (133.6-136.6 ppm).[12] 

Correlations were made between the chemical and physical properties of HL and the results are 

shown in Figure 1a-c. Generally, the reduction in the sugar content of the samples led to an increase 

in the Ph-OH content of the samples. As accessibility to reaction sites/groups and thus surface area 

is a critical parameter in the sulfoalkylation of lignin, the properties of the HL were reported in 

regard to their surface area by dividing the mass-based properties of the samples by their surface 

area (Table 1). With this change, it can be assumed that all groups are accessible and, for example, 

located on the surface of the samples. A linear correlation (R2= 0.76) between Ph-OH and sugar 

content of samples was seen in Figure 1a, suggesting that the reduction in sugar would moderately 

lead to a predictable Ph-OH increase in the HL. However, such a correlation was not observed 

with aliphatic OH content (R2=0.23, Figure A4.1 in appendix material). The correlation of physical 

and chemical properties of the samples are depicted in Figures 1b and 1c. Interestingly, the sugar 

content of the samples was inversely related to its pore volume and particle size, while its Ph-OH 

was directly correlated with its pore volume and particle size. These results suggest that by 

reducing sugars, the samples became smaller but more porous, and more Ph-OH of the samples 

would be exposed/available (Figures 1b and 1c).  
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Figure 7.1: Correlations between chemical and physical properties of HL samples. The sugar 

content is deducted from the reported Ph-OH data in all figures.  

 

To further explore the correlation between the chemical characteristics of the samples, the internal 

chemical bonds of HL samples were quantitatively examined by the XPS analysis and verified by 

2D-HSQC NMR. The modeling for the mentioned bonds from C1s peak of XPS for different HL 

samples are shown in Figure 2 and quantitative results are summarized in Table 2. In general, the 

C 1s peak from XPS spectra derived from individual peaks corresponding to C-C linkages (≈285 

eV), C-O linkages in ethers and alcohols (≈286 eV), C=O linkages in acetals (≈288 eV) and O-

C=O linkages in esters (≈289 eV).[34]  

It is noticeable that the composition of internal bonds varies depending on the HL, while the 

distinctive variation is evident for C-C and C-O composition bonds. Two type of variations are 

notable among samples, C-O ˃ C-C (for HL1 and HL2) or C-C ˃ C-O for the rest of the samples. 

The higher sugar content in HL samples (Table1) might have contributed to the elevated ether 

bond in HL samples that will be further discussed from HSQC analysis.[35,36] The C3 (C=O) bond 

associated with internal linkages among propyl alcohol units of lignin slightly varied among 

various samples. A variation is more noticeable in C4 (O-C=O) bond that is linked with 

carboxylate group and is predominant for HL4 and HL5, which supports the results of the P-NMR 

analysis in Table 1. 

Linear or cyclic C-O-C bonds are considered to be the most important bonding in lignin, where 

the nonphenolic β-O-4 is the most abundant ether linkage in lignin.[37-39] The cleavage of β-O-4 

bond is known to generate phenolic units.[40] Moreover, the presence of carbohydrate would 

associate with elevated ether linkages known as LCC bonds.[37-39] The cross-peaks analysis of 

HSQC was considered to qualitatively compare these ether bonds in HL samples as depicted in 

Figure 3. The cross-peaks of carbohydrates are visible in C/H 70-75/3-3.5 ppm in all samples.[41] 

In addition, β-O-4 and LCC bonds were identified and HL1-HL3 are associated with the highest 

distribution of β-O-4 (C/H 60.0/3.2-3.9, 72.6/4.8 and 83.8/4.2 (G) ppm) and two distinguishable 

LCC bonds namely, phenylglycoside PG (C /H 99.5-100/4.28-5.17 ppm) and -ester GE (C /H 

62.0-65.0/4-4.5 ppm).[41] However, only β-O-4 at C/H 60.0/3.2-3.9 ppm and PG as the LCC bonds 

were identified for HL4 and HL5. The content of β-O-4 and LCC bonds is comparatively higher 

for HL6 compared to HL4 and HL5. Therefore, the analysis of HSQC data confirmed that the 
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higher C-O linkage in HL1-HL3 samples is indeed related to the β-aryl ether and LCCs bonds,[37] 

while this linkage had comparatively fewer distribution in HL4 and HL5 samples. In addition to 

the information from the internal linkages, the comparison of HSQC cross-peaks with hydroxyl 

groups content from P-NMR, reveals the direct relation of higher cleavage of β-O-4 in HL4 and 

HL5 samples with their highest phenolic hydroxyl content as was similarly reported elsewhere.[12] 

The lack of β-O-4 at cross-peaks of C /H 83.8/4.2 ppm (G) and 72.6/4.8 ppm in these two samples, 

are associated with the highest content of G and condensed phenolic hydroxyl in them. Another 

interesting correlation is associated with the fewer LCC bonds in HL4 and HL5 (lacks GE), which 

is correlated with the higher carboxylate groups in these two samples (Table 1 and 2). This direct 

correlation between LCC bond and carboxylate group content was reported to connect with the 

cleavage of the ester bonds from lignin-carbohydrate linkages.[12,42] Moreover, the higher 

contribution of condensed Ph-OH of HL4-HL6 are visualized from the cross-peaks associated with 

these structures namely, phenylcoumaran (β-5) (C) and Dibenzodioxcin (5-5) (DBD)[41] as labeled 

in Figure 3, which are not observed in HL1-HL3 due to the very low content.   
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Figure 7.2: XPS spectra of C 1s for HL1-HL6 samples. 

 

Table 7.2. Quantitative chemical bonds at the surface of HL samples as determined by XPS 

analysis. 

Sample C 1s mass conc. % 
C1 (C-C) C2 (C-O, C-O-C) C3 (C=O) C4 (O-C=O) 

HL1 38.31±2.21 53.49±2.43 6.60±2.01 2.72±1.16 
HL2 33.19±1.16 57.41±1.29 6.68±0.96 2.72±0.63 
HL3 48.52±2.44 41.83±2.40 6.62±1.39 3.02±1.30 
HL4 56.27±1.76 33.26±1.65 5.90±0.94 4.53±0.95 
HL5 53.62±2.0 35.67±1.74 6.10±1.70 4.59±0.98 
HL6 56.13±1.87 32.11±1.79 7.83±2.09 3.93±0.94 
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Figure 7.3: 2-D HSQC spectra of HL1-HL6 samples. The identified cross peaks are: β-O-4, β-O-

4 Aryl ether; β-O-4 (G), β-O-4 aryl ether in Guaiacyl; GE (LCC), -ester; PG (LCC), Glycoside; 

OMe, Methoxy group; S, Syringyl; G, Guaiacyl; C, Phenylcoumaran (β-5); DBD, Dibenzodioxcin 

(5-5); R, Resinol. 

 7.4.2 HL chemical reactivity towards sulfo-alkylation reactions 

To find out the chemical reactivity of different HL samples, three different routes of sulfo-

alkylation reactions with known substitution mechanisms were evaluated. To distinguish the 
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reactivity differences, first various mechanisms of chemical reactions are briefly explained in here, 

while detailed explanations with schemes are provided in the appendix data (Figure A4.2).  

Sulfonation (S) tends to occur at the α-position of aliphatic chain of lignin in an alkaline 

environment due to the formation of a quinone methide intermediate with phenolic substrates as 

the first step. Next, sulfite addition happens at the α position and further at the β position, resulting 

in the cleavage of the β-aryl ether bond.[20,43] Sulfomethylation (SM) reaction starts with an 

electrophilic addition of formaldehyde on the ortho position of Ph-OH after the dissociation of OH 

groups in an alkaline medium.[21] Then, the substitution of new methyl hydroxyl group occurs in 

the presence of sulfite ions. Lastly, sulfoethylation (SE) reaction follows a nucleophilic 

substitution on the bromine atom of SEB substrate with dissociated hydroxyl nucleophiles of HL 

in an alkaline medium.[22] 

The reactivity of different HL samples toward described chemical reactions were compared based 

on the water solubility, charge density (CD), degree of substitution DS (based on elemental 

analysis), and particle size of the products, and the results are summarized in Table 3. Overall, the 

observation of the results shows the higher CD and DS in the order of SM˃S˃SE modifications 

for most of the samples. Among all samples, HL1 and HL2 had the lowest reactivity with DS 

≤0.009 mol/mol for all the reactions. HL3 and HL6 showed higher reactivity compared to HL1 

and HL2 and obtained the DS between 0.04-0.08 mol/mol with a CD of 0.7-1.8 mmol/g. The most 

reactive samples were HL4 and HL5 with a CD between 1.9 and 2.2 mmol/g for the S and SM 

reactions. Interestingly, the particle size of HL derivatives reduced greatly for most of the HL 

samples after modification compared to the unmodified HL (Table 1) except for HL1 and HL2.  

Table 7.3. Characterization of sulfo-functionalized HL derivatives. 

Derivative 
 

Modificati
on 
route 

Solubility 
(g/L)  
(±1) 

Charge 
density 
(mmol/g) 
(±0.1) 

DS 
(mol/mol) 
(±0.001) 

D [3,2],  
µm (±3) 

S1 

S 

2.0 0.4 0.001 25 
S2 2.0 0.4 0.004 26 
S3 5.0 1.5 0.07 9 
S4 8.5 1.9 0.11 7 
S5 9.0 2.0 0.14 6 
S6 6.3 1.2 0.06 15.8 
SM1 2.1 0.4 0.006 30 
SM2 SM 2.1 0.4 0.006 28 
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SM3 5.2 1.8 0.08 15 
SM4 9.5 2.2 0.14 4 
SM5 9.5 2.0 0.12 5 
SM6 6.5 1.4 0.07 14 
SE1 1.5 0.2 0.003 32 
SE2 

SE 

1.5 0.2 0.006 33 
SE3 4.5 1.0 0.02 17 
SE4 6.8 1.2 0.03 14 
SE5 6.5 1.1 0.05 13 
SE6 6.0 0.8 0.01 16 

 

To find out the influential reactivity factors of the samples toward the chemical modifications, 

different properties of the unmodified HL samples were correlated with the DS of modified ones 

and the graphs are shown in Figure 4 a-d. 

The content of G type and condensed phenolic hydroxyl groups of samples showed almost a linear 

correlation with the DS of all reactions (Figure 4 a-b), implying that by increasing the phenolic G 

and condensed phenolic content the DS for all three reactions were improved. This correlation was 

stronger with G (R2  0.7) than condensed phenolic (R2  0.7).  However, such correlation was not 

observed for the aliphatic OH content of HL (appendix material, Figure A4.3).  

Moreover, from the correlations in Figure 4c, it is evident that the higher sugar content of samples 

with higher LCC bonds (Figure 3) tied to less reactivity and thus DS of HL samples. This should 

associate with less accessibility of functional groups to chemicals for progressing with reactions 

when attached to higher carbohydrate content.[12] 

As depicted in Figure 4d, the particle size of HL samples was also reversely correlated to the DS 

of reactions. Apparently, the functional groups of smaller but more porous HL (Table 1) promote 

accessibility to chemicals for the reaction.  

It is notable that despite the observed correlations between physicochemical properties of samples 

and the DS of reactions, S and SM modifications were more effective than SE reactions in all 

graphs. This fact speaks of the important role of various mechanisms of sulfo-alkylation reactions 

on chemical reactivity.  
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Figure 7.4: Correlation between DS (mol/mol) of the substitution reactions (S, SM and SE) with 

a) Ph-OH (G) b) condensed Ph-OH (the sugar content is deducted) c) sugar content of samples, 

and d) particle size D [3,2] of unmodified HL samples. 

7.4.3 Dispersion evaluation 

The effectiveness of different sulfo-functionalized HL derivatives was evaluated as dispersants for 

stabilizing mineral clay suspensions to identify the most effective route of modification. The clay 
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among particles.[44] The basal faces of clay particles carry a permanent negative charge, which is 

balanced by exchangeable cations (e.g., Na+, Ca2+) adsorbed at the surfaces of particles.[45] Adding 

a charged dispersant to the aqueous suspensions changes the overall surface charge density of 

particles by adequate adsorption on the particles,[46] which will lead to the stability of particles in 

the suspension. As an analytical method of evaluation, the static stability of clay particles in the 

suspension were obtained over 2 h, and the changes in TSI% (destabilization index) vs time are 

available in Figure A4.4 in appendix information.  

The higher TSI value depicts the least stability of suspensions[30] as the blank clay suspension 

indicated TSI of 90% showing a fast settlement over time. First, it was shown that the unmodified 

HL samples marginally affected the stability of clay particles (TSI ≥60% in Figure A4.4). A brief 

overview of the graphs reveals that all samples were not equally effective. For better interpretation, 

the trend of TSI changes via polymer solubility and charge density for different modification routes 

were graphed (Figure 5a-b). A linear relationship is observed for these correlations; implying that 

the higher solubility and CD are associated with enhanced stability of clay suspensions. In 

addition, the graphs revealed that S and SM samples were highly effective in dispersing clay 

suspensions with the adequate solubility range and CD by decreasing TSI to ~10-20%, while SE 

derivatives were not efficient and in the best situation TSI reached 30%.  

The CD of polymers is reported to be an important variable when investigating the dispersibility 

of kaolin suspensions.[47] In this study, HL polymers with the lower charge of CD ˂0.8 mmol/g 

marginally changed the stability of clay particles while the TSI improved using HL polymers with 

the CD range of 0.8-1.8 mmol/g and the highest stability was obtained with CD ˃1.9 mmol/g. This 

shows the vital contribution of the properties of the HL derivatives rather than the modification 

routes. 

Moreover, the improvement in the zeta potential of the suspension with a higher CD in Figure 5c 

agrees with the previous studies showing that the highest stability of clay suspensions at the most 

negative zeta potential of -40 to -45 mv would be achieved,[48] which was obtained with polymers 

with CD ˃1.9 mmol/g.  

The settlement velocity of clay particles was obtained from the slope of TSI vs time graphs (from 

Figure A4.4) and further correlated to the particle size of HL polymers in Figure 5d. It indicates 

that the smaller the particles are, the slower the rate of clay suspension settlement would be. 

Wherein, the settlement happened faster using SE derivatives with the largest particle size while 



182 
 

smaller S and SM derivatives further hindered the fast settlement of clay suspension. Ultimately, 

SM derivatives of HL4 and HL5 with the highest solubility, CD and lowest particle size, were the 

most sufficient dispersants for the stability of clay particles followed by S derivatives of the same 

HL. However, SE derivatives, due to the limited chemical reactivity, were not efficient stabilizers 

for the clay suspension. The results emphasize the underlying role of raw material with the 

appropriate physicochemical properties for further chemical reactions to meet the required final 

properties, which were high CD, solubility and low particle size.  

 
 

 

 

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10

TS
I (

%
)

Solubility (g/L)

a S SM SE

S5

SM4
SM5

S4

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5

TS
I (

%
)

CD (mmol/g)

b S SM SE



183 
 

 

 
Figure 7.5: Instability index (TSI) of clay suspension at 16 mg/g dosage of S, SM and SE 

derivatives of HL samples vs a) polymer solubility, b) CD and c) zeta potential changes of clay 

particles vs CD of polymers and d) the settlement velocity of clay particles vs particle size of HL 

derivatives D [2,3]. 

7.4.4 The optimal physicochemical properties 

Among all samples examined in this study, HL4 and HL5 depicted not only the highest chemical 

reactivity towards S and SM modifications but were also highly effective in clay dispersibility. 

More precisely, the physicochemical properties of these two samples with the lowest percentage 

of C-O-C internal linkages (Table 2), fewer identified β-O-4 and LCC cross peaks (Figure 3), least 

sugar content (Tables 1), the smallest particle size and highest pore volume, and phenolic content 

(Table 1) provided them the advantages compared to other HL samples. Most importantly, the 
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lowest content of β-aryl ether bonds identified in HL4 and HL5 samples were related to the highest 

content of phenolic hydroxyl contents in these samples, which showed to directly correlate with 

the highest DS of reactions (Figure 4). The correlation results in Figures 1 and 4 emphasized the 

underlying role of residual sugar on the accessibility and activity of hydroxyl groups. The fewer 

LCC bonds identified in HL4 and HL5 associated with the highest carboxylate groups and smallest 

particle size, which resulted in effective chemical reactions. The identified condensed phenol 

groups (β-5 and 5-5) in these two samples also effectively correlated with higher chemical 

reactivity.   

The mechanism of modification reaction also played an important role in the final DS of reactions 

since SE modification was not as effective as S and SM reactions for HL4 and HL5. Therefore, in 

addition to the right choice of HL, finding the right reagent for the chemical reaction is crucial for 

generating sulfo-alkylated lignin with adequate properties as a dispersant.  

7.5 Conclusions 

In this study, the comparison between six different enzymatic hydrolysis lignin (HL) revealed the 

fundamental role of β-aryl ether and residual carbohydrate on the physicochemical properties and 

chemical reactivity of the samples to generate dispersants for the clay suspension. 

Based on the observed correlations among properties of HL samples, the HL samples with a fewer 

distribution of β-O-4 and LCC bonds from HSQC cross peaks had the highest Ph-OH and 

carboxylate group content, respectively. Based on the XPS and HSQC analysis, the higher ratio of 

C-O, C-O-C/ C-C bonds was associated with the superior contribution to the β-aryl ether and LCC 

bonds among samples. The samples with the lowest sugar content were the smallest and most 

porous one that should have facilitated the chemical reactivity by providing higher accessibility 

for functional groups. The optimal physicochemical properties (e.g., highest Ph-OH and lowest 

aryl-ether and sugar content, smallest particle size, and highest surface area) were identified based 

on a direct correlation developed between HL properties to the highest degree of substitution (DS) 

toward chemical reactions. Whereas sulfomethylation (SM) and sulfonation (S) reactions were 

more effective modification routes compared to sulfoethylation (SE) on modifying HL. 

Consequently, the samples with the optimal physicochemical properties were associated with the 

highest solubility, CD (≥1.9 mmol/g) and smallest particle size of HL derivatives of S and SM that 

were highly effective in stabilizing clay suspensions. The optimal derivatives of S and SM 



185 
 

modifications reduced the zeta potential of clay suspension to ~-40 mv and TSI to 10-20% 

compared to unstable clay suspension (TSI=90%) without the HL dispersant.  
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Chapter 8: Conclusion and Future Work 
Various lignin derivatives, such as lignin-grafted-polystyrene (KL-PS), functionalized 

sulfoethylated (SEKL), sulfonated (SHL), sulfomethylated (SMHL) lignins, and particles of N-

SEKL with tunable physicochemical properties were produced in this thesis. A comprehensive 

physicochemical characterization of unmodified and derivatives of lignin were followed. Based 

on the results in this thesis, the post-modification of lignin materials should be carefully selected 

to tailor the properties depending on the final application, and it is only possible with the right 

choice of raw material with known physicochemical properties and the right choice of the 

modification process. For the first time, a comprehensive understanding of surface and interfacial 

properties of lignin derivatives were revealed. Valid direct correlations were established between 

the functional group contents and internal ether linkages to the chemical reactivity of HL samples 

toward sulfo-functionalization reactions. Moreover, the application of lignin derivatives in various 

technologies as an adsorbent, emulsifier, and dispersant was evaluated. KL-PS was successfully 

implemented to adsorb copper ions (45 mg/g) from an aqueous medium. SEKL formed a stabilized 

conventional emulsion for 5 h with 50% oil separation, while phase separation was reduced to only 

15% after 24 h, using N-SEKL with a Pickering stabilization. Finally, SHL and SMHL efficiently 

stabilized the clay suspension by reducing the instability index (TSI) to 10-20% compared to the 

unstable clay suspension (TSI=90%). 

For future studies, the analysis of 13C- and HSQC NMR for KL-PS polymer is suggested to 

precisely identify its chemical structure to prove the H-NMR assignments. The comparison 

between the surface properties of the polymerized KL-PS and the mixture of KL and PS could also 

be considered to find out the role of the polymerization reaction. It is suggested that the 

functionalization of KL-PS adsorbent for more efficient ion adsorption be considered. This could 

happen via amination or sulfonation substitution reactions of the phenolic ring of PS or the 

remained hydroxyl groups of lignin.  

The functionalized N-SEKL particles are suggested to be precipitated in a more controlled process 

of self-assembly (e.g., solvent exchange) to form spherical particles rather than irregular shape 

particles observed with TEM imaging in this study. The comparison of N-SEKL performance as 

an emulsifier based on their shape (i.e., irregular vs spherical) and with commercial products such 

as lignosulfonate (LS) could be the subject of further fundamental analysis of adsorption at the oil-

water interface.  
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Chapter 9: Appendix 

9.1 Synergistic effect of lignin incorporation into polystyrene for producing sustainable 

superabsorbent 

9.1.1 Polymer characterization 

Table A.1.1 lists the properties of KL, KL-PS and PS. The increase in the C/H ratio via 

polymerization depicts the increment in the proportion of aromatic double bonds, i.e., benzyne 

group, in kg mol-1 than KL-PS (MW of 296 kg/mol), inferring that the homo-polymerization of 

styrene was more favored than its polymerization with lignin in the reaction. 

Table A1.1. Properties of KL, KL-PS and PS. 

Sample MW 
(kg/mol) 

Surface area 
(m2/g) 

Pore volume 
(cm3/g) 

KL 29±4 24 0.035 

KL-PS 296±15 44 0.053 

PS 880±20 15 0.021 

 

[a] based on mass balance 
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Figure A1.1: P-NMR spectra of KL and KL-PS 

Table A1.2 Surface tension of the test liquids and polar, dispersive, acidic and basic 

components.[1]                          

𝝈 (Mn/m) water diiodomethane glycerol 
Total 72.8 50.8 63.4 

Dispersive 26.4 50.8 37.0 
Polar 46.4 - 30.0 

Acidic (+) 23.2 - 3.92 
Basic (-) 23.2 - 57.4 

  

9.1.2 Surface properties of PS, KL and KL-PS substrates 

Contact angle of water, diiodomethane and glycerol on the PS, KL and KL-PS coated substrates 

are summarized in Table A1.3, and also images of the water droplets’ contact angle on the 

substrates using sessile drop measurements are available in Fig. 3. Film generated via coating KL 

on the glass slide had a contact angle of 50.2˚ for water droplets. Contact angles of water droplet 

in the range of 46˚ and 60˚ were reported for lignin film on glass slides,[2,3] and differences in 

results are originated from the difference in the type of lignin used.[3] The water droplet’s contact 

angle on PS coated surface was 85.5˚. The incorporation of lignin into PS reduced contact angle 

of KL-PS to 63˚ compared to PS. This reduction originated from the introduction of functional 

groups in the final KL-PS product. 

Table A1.3. Contact angles (°) of the test liquids on the coated KL, KL-PS and PS Films 
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Surface water diiodomethane glycerol 

KL 50.2±1 22.53±0.5 49.6±1 

KL-PS 63.1±0.4 22.6±0.5 52.2±0.1 

PS 85.5±2 35.2±1 86.3±2 

 

 
Figure A1.2: representative Δf and ΔD vs time curves for Cu2+ adsorption on KL-PS surface. 

Black lines show the fitted Voigt model for the adsorption of Cu2+ on the KL-PS coated sensors.  

 

  

a) 
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c) 

b) 
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Figure A1.3: SEM/EDX images of coated gold sensors a) KL b) PS and KL-PS c) before and d) 

after Cu2+ adsorption in different areas. 
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9.2 Pickering/non-Pickering emulsions of nano structured sulfonated lignin derivative 

 

Spectrum3 

 

Spectrum2 

Spectrum1 

d) 
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Figure A2.1: Scheme of substitution reaction on lignin hydroxyl group. 
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Figure A2.2: a) 1H and b) 2H-H-NMR spectra of KL and SEKL polymer. 

Table A2.1. KL and SEKL chemical properties 

Material Mw 

(kg/mol) 
Mw/ Mn 
 

Sulfonate content 
(mmol/g) 

KL 
SEKL 

6.5±0.5 
10±1 

2.1 
1.8 

- 
1.2±0.1 

 

 
Figure A2.3: Stable SEKL solution at pH 7 after 1 month. 

9.2.1 Quantitative determination of acid groups 

Potentiometric titration with NaOH was performed to quantify the acid group of SEKL. The 

titration curves obtained using a conventional titrator are shown in Figure A.2.4a and 4b for 

water as blank and SEKL solution. The base consumption (NaOH) for various functional groups 

b 
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were determined from the first derivatives (dpH/dv) of the titration curves (Figure A2.4b) 

representing the titration endpoints (Ep) obtained automatically from the software of titrator 

(blue lines). 

Using this approach, three types of functional groups of SEKL with corresponding acid 

dissociation constant (pKa) were quantified: sulfonate (pKa1= 2.8±0.1), carboxylate (pKa2= 

5.1±0.1) and phenolate (pKa3= 9±0.3). The corresponding contents of these groups were 1.2, 0.2 

and 0.2 mmol/g as explained previously.[1] pKa of sulfonate group (pKa1) is equal to the pH at 

the half-way point to the first equivalence point (EP1) as is illustrated by red line in Figure A.2.4 

The second pKa2 (carboxyl group) is equal to the pH mid-way between EP1 and EP2 and etc..[2] 

 

 

 

a) 

b) 
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Figure A2.4: Titration curves obtained using a titrating device for a) water (blank) b) SEKL 

solution. Blue lines indicate the first derivative. 

9.2.2 Phosphorus NMR 

For quantitative analysis of lignin functional groups, the phosphitylation of KL with 2-chloro-

4,4,5,5-tetramethyl-1,3,2- dioxaphospholane was followed as is explained previously.[3] To 

acquire a spectrum, a 90° pulse with 5 s relaxation delay and 128 acquisitions with an inverse 

gated decoupling pulse were employed. Peak assignments and calculations were followed as 

reported previously in literature, the results are summarized in Figure A2.5 and Table A2.2.[4]  

 
Figure A2.5: 31P-NMR spectra for unmodified kraft lignin 

Table A2.2. Functional groups (mmol/g) of KL studied by means of 31P-NMR 

Sampl
e 

Aliphati
c -OH 

C5-
substituted 

Ph-OH 
guaiacyl 
(G) 

Total 
cond. 
phenolate 

Carboxylate Sulfonate 
content 
(mmol/g) 

KL 1.62±0.1 0.80±0.06 1.40±0.06 2.2±0.08 0.14±0.01 N/A 
 

 

Figure A2.6: TEM image of SEKL film at pH 7 and 11 in a dried state (×100 nm). 
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Figure A2.7 indicates the SiO2-coated QCM gold sensor before and after xylene film formation 

through spin-coating experiment. The darker color and appearance of black spots are the 

confirmation of xylene presence at the surface. The results of energy dispersive X-ray (EDX) 

proves the formation of the xylene film via an increase in the carbon intensity from 20 to 90 eV 

compared to a clean SiO2-coated sensor (Figure A2.7). In addition, the WCA of the sensor shows 

the transformation of a hydrophilic SiO2 surface (35˚) to a hydrophobic film of xylene (75˚). 

 

 

 

Figure A2.7: a) SEM and water contact angle images of clean and xylene-coated SiO2 gold 

sensors b) energy dispersive X-ray (EDX) elemental analysis of the surface of a clean and 

xylene-coated SiO2 gold sensor. 

a) 

b) 

35° 75° 
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Figure A2.8: Changes in a) F and b) D at 7th overtone vs time for 20 min for the adsorption of 

SEKL/N-SEKL at pH 3, 7 and 11 and c) adsorption at pH3 followed by a washing step with buffer 

at the same pH on xylene-coated SiO2 sensor. 
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Figure A2.9: Elemental analysis via energy dispersive X-ray (EDX) analysis of the surface of 

xylene film coated on SiO2 coated sensor after SEKL adsorption at pH 7 (QCM-D), which shows 

the desorption of xylene and reduced carbon content. 

 

Figure A2.10: pH-responsive cycling for 5 cycles between emulsification-demulsification 

between pH 7 and 11. 
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9.3 Dynamic interfacial and emulsion evaluation of polymeric lignin surfactant at different 

oil/water systems  

9.3.1 Nuclear Magnetic Resonance 

One-dimensional 1H-NMR and two-dimensional 1H-1H homonuclear correlation spectroscopies 

were carried out on KL and SEKL to confirm the success of sulfoethylation reaction on KL. The 

samples were prepared by dissolving 25 mg of KL and SEKL in 500 µL of DMSO-d6 and D2O, 

respectively. INOVA-500 MHz instrument (Varian, USA) was used to record the 1H-NMR spectra 

of samples in the following adjustments: 64 number of scans, a 45° pulse width and a relaxation 

delay of 1.0 s for 1 dimensional NMR analysis; and the relaxation time of 4.0 s, 16 number of 

scans in 128 increments in a 45° pulse width for the two dimensional NMR analysis.[1] 

9.3.2 Sulfonate Group Analysis 

An automatic potentiometer, Metrohm, 905 Titrado, (Switzerland) was used to quantitatively 

measure the sulfonate group content of SEKL following the procedure explained earlier.[2] In this 

experiment, a 0.1 g sample of KL or SEKL was dissolved in 100 mL of distilled water and the pH 

of the solution was adjusted to 3.0 using 0.1 M HCl. The titration was then followed by adding 0.1 

M NaOH to the solution to determine the number of sulfonate groups on the lignin samples. 

9.3.3 Molecular Weight and Hydrodynamic Size Analysis  

The molecular weight of SEKL was evaluated using a gel permeation chromatography (GPC), 

Malvern Viscotek GPCmax, (Malvern, UK) with a UV detector. In this set of experiments, 4 

mg/mL sample solutions were prepared by dissolving dried powders of SEKL in 10 mL of 0.1 

mol/L NaNO3 solutions. After filtration with a 0.2 µm nylon filter (13 mm diameter), the samples 

were passed through PolyAnalytic, PAA206, and PAA203 columns, at 35 °C at the flow rate of 

0.70 mL/min, while polyethylene oxides were used as standard polymers for calibration. 



202 
 

 

Figure A3.1: The reference baseline for the γ of the oil-water systems in the absence of SEKL. 

9.3.4 Critical aggregation concentration (CAC) determination  

A tensiometer equipped with a Du Nouy ring (Sigma 701, Biolin Scientific) and OneAttension 

software was used to determine the changes in surface tension of water at an elevated concentration 

of SEKL to determine the CAC point of SEKL in an aqueous system. The petri dish and the ring 

were washed with water and acetone before the analysis. The samples with a predetermined 

concentration (0.2-2 wt.%) were then prepared to monitor the surface tension variations. 
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Figure A3.2: Surface tension of SEKL solution as a function of concentration and determined 

CAC point. 

 
Figure A3.3: Chemical structure of a) decane, b) cyclohexane and c) xylene (a mixture of 

isomers). 

 
Figure A3.4: Scheme of substitution reaction on the lignin hydroxyl group. 
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Figure A3.5: a) 1H and b) 2H-H-NMR spectra of KL and SEKL polymer. 
 

Table A3.1. KL and SEKL chemical properties  
Material Mw, 

kg/mol 

Mw/ Mn 
 

Charge density, 
mmol/g 

Sulfonate content, 
mmol/g 

KL 
SEKL 

6.5±0.5 
10±1 

2.1 
1.8 

0.10±0.05 
1.3±0.1 

- 
1.2±0.1 

 

 
Figure A3.6: Hydrodynamic size (Rh) distribution of SEKL at 0.8 wt.% at 0 mM KCl and ionic 

strength ranges of 10 and 100 mM KCl. 
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Figure A3.7: Stable SEKL solution in different concentrations and 100 mM KCl. 

 
Figure A3.8: WCA and OCA of SEKL at various ionic strengths 0, 10, and 100 mM KCl. 

 

Table A3.2. Physical properties of oils.[3] 

Oil Polarity 
Index 

Dielectric 
constant 

Decane 
Cyclohexane 
Xylene (mixture)  

0.1 
0.2 
2.5 

1.95 
2.02 
2.56 

 

9.3.5 Solubility of the SEKL in organic solvents  

The maximum solubility of the SEKL at saturation was determined as follows: 70 mg of the solid 

SEKL polymer was weighted in 5 mL vials, then 2 mL organic fluids (xylene, cyclohexane, or 

decane) was added to the vial. In total, three vials were prepared for each solvent tested. After 3 h, 

200 µL of the polymer solution was collected from the supernatant in each vial, the solvent was 

evaporated in the oven at 110 ºC and the final solid residue was weighed.[4] 
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Figure A3.9: Interfacial tension (γ) of the xylene, cyclohexane, and decane in aqueous solutions 

of SEKL at various polymer concentrations (wt.%) in a salt-free, 10 and 100 mM KCl systems 

over 3600 s.  
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Figure A3.10: The steady-state interfacial tensions (γ∞) determination for SEKL aqueous 

solutions in the concentration range of (0.25-1.5 wt.%) at xylene, cyclohexane, and decane 

interfaces at 0 mM ionic strength or constant 0.8wt.% SEKL with 10- and 100-mM ionic 

strength. (data of t ˃1900 s from Figure A3.8) 
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Figure A3.11: Fits short-time interfacial tension (γ) data for xylene, decane, and cyclohexane 

with water interface for stage 1 and stage 2 at 0.25-1.5 wt.% SEKL at 0 mM ionic strength and 

0.8 wt.% at 10 and 100 mM KCl solution. (data of t ˂ 6.5 s for stage 1 and 20 ˂t˂ 100 for stage 2 

from Figure 2). 
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concentration of SEKL reduced the phase separation and subsequently light transmission during 

the centrifuging process. As is observed, the light transmittance is maximum at 0.25% and 

minimum at 1.5 wt% of SEKL in Figure A3.13a. 

 

 

 

Figure A3.12: The accelerating physical instability index of emulsions formed by different 
mixtures; as a function of SEKL wt.% concentration. 
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Figure A3.13: Evolution of (a) transmission profiles, % and (b) the integrated transmission-time 
plots for emulsions presented with the slopes of changes as a straight line, prepared from the 
volumetric ratio of 1/1 decane: SEKL solution at 0.25-1.5wt.% concentrations. 
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Figure A3.14: Image of emulsions after centrifugal in different SEKL dosages and ionic strength.  
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9.4 Effect of physicochemical properties of raw hydrolysis lignins on chemical reactivity 

toward various sulfo-functionalization routes and its effect on dispersion performance 
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Figure A4.1: Correlations between Aliphatic OH of HL samples and sugar content per area of 

samples.  

9.4.1 Reaction schemes 

Sulfonation tends to occur at the α-position of the aliphatic chain of lignin in an alkaline 

environment due to the formation of a quinone methide intermediate with phenolic substrates as 

the first step. Next, sulfite ions would be added to this intermediate structure at the α position. 

Further electron-withdrawing effect of the first sulfonic group on the α position facilitates the 

addition of another sulfonic acid group at the β position, resulting in the cleavage of the β-aryl 

ether bond.[1, 2] 

Sulfomethylation reaction first starts with an electrophilic addition reaction with formaldehyde on 

the carbon atom with a rich electron cloud on the ortho position of Ph-OH after the dissociation of 

OH groups in alkaline medium.[3] Then, the substitution reaction on the new methyl hydroxyl 

group occurs in the presence of sulfonate group. Sulfonate substitution is also probable to occur 

on the aliphatic hydroxyl group or α position as well.  

Sulfoethylation reaction follows a nucleophilic substitution mechanism that starts with the 

formation of hydroxyl nucleophiles which attacks the Br-CH2- linkage in SEB substrate for the 

substitution with Br.[4] Since SEB is a primary alkyl halide, the steric hindrance and nucleophile 

strength are important parameters in the success of the SN2 mechanism.  
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Figure A4.2: Substitution routes for chemical reactions of sulfonation, sulfomethylation and 

sulfoethylation of H-lignin samples.  
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Figure A4.3: Correlation between DS (mol/mol) of the substitution reactions (S, SM and SE) with 

aliphatic-OH content. (The sugar content is deducted). 
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Figure A4.4: Static stability of clay particles evaluated as changes in TSI vs time for a) 

unmodified HL, b) S c) SM and d) SE modified HL derivatives. 
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