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ABSTRACT 

The sport of boxing historically symbolises a high-risk injury sport due the number of 

concussions occurring on athletes. Indeed, boxing has shown to have the highest rate of 

concussions of any individual male sport. Research studies, however, indicate that boxing 

headgears are generally effective in minimizing concussion risk for training and 

competitions. Unfortunately, concussions continue to occur even when wearing a protective 

headguard. As a result, athletes do not always use boxing headguards during training, 

matches and competitions at the professional level. Based on these concerns, this study 

examined the capacity of three different types of boxing headguard models to mitigate the 

risk of concussions by using static and dynamic headguard testing techniques. The researcher 

included the use of thermoplastic polyurethane (TPU) material inserts in one of the 

headguard models to observe changes in headguard performance to mitigate concussion risk. 

The researcher performed static quasi-compression tests to observe changes to the material 

properties of the headguards, specifically testing percent reduction in the energy absorption, 

force and deformation of the headguard material. The researcher also performed dynamic 

tests by mounting the headguard on a surrogate headform and imparting linear and shear 

impacts to the headform model at different velocities across different headgear locations. The 

researcher used the dynamic measures of linear and angular accelerations to compute the risk 

of head injury across the headgear locations. A set of analyses were conducted to examine the 

capacity of the headguards with and without the TPU material to limit these acceleration 

measures, and subsequently mitigate the risk of concussion. The results of this study revealed 

that the TPU material, when implemented into the headguard, had significant effects in 

mitigating linear accelerations and risk of head injury. This study also found significant 

interactions between headguard types and impact locations on measures of angular 

accelerations and risk of head injury, which included measures of Angular Gadd Severity 
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Index and GAMBIT (Generalized Acceleration Model for Brain Injury Threshold) – an index 

that the combines linear and rotational accelerations. This study is the first to implement TPU 

material into a boxing headguard and provides strong evidence to mitigate concussion risk in 

the sport of boxing based on measures of linear and rotational accelerations. In addition, it 

offers another avenue for manufacturers to improve the capacity of current boxing headgear 

technologies to better support athletes’ safety while practicing in the sport. 
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Introduction 

 Boxing is a combat sport often criticized in society because it poses a high-level risk 

of injury to athletes. Mild traumatic brain injuries (mTBI), or concussions, and long term 

traumatic neurologic impairments, for example, represent the major concerns of risk of injury 

for the medical community. The basic intent of boxing is often to harm or incapacitate the 

opponent and as such, an emphasis is placed on scoring head blows (Canadian Medical 

Association, 2001).  

In boxing, mTBI are often associated with long term, irreversible, and progressive 

effects, previously described as Punch Drunk Syndrome; and now referred to as Chronic 

Traumatic Encephalopathy (Ling et al., 2015). In addition, the formation of subdural 

hematoma due to the collection of blood external to the brain as a result of the head impacts 

represents the leading cause of sports related traumatic brain injuries in boxers (Ling et al., 

2015). 

 The definition of concussion, or mTBI, varies among medical professionals because a 

concussion can result from many types of traumatic brain injuries. The American Academy 

for Neurology defines concussion as a “clinical syndrome of biomechanically induced 

alteration of brain function typically affecting memory and orientation, which may involve a 

loss of consciousness” (Giza et al., 2013, p. 2250).  

 The causes of concussion can include direct trauma, rapid acceleration-deceleration of 

the head, or a blast injury (Mullally, 2017). Primary injuries of the brain in combat sports 

such as boxing occur from an external head impact to the head or face. Secondary injuries, on 

the other hand, result in a molecular, chemical, and inflammatory cascade, occurring minutes 

to days after the brain impact (Galgano et al., 2017). Concussed brain cells are vulnerable 

while still in the recovery process after the head impact and can face irreversible damage by 

the occurrence of swelling if a second concussion is sustained, which is referred to as Second 
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Impact Syndrome (Signoretti et al., 2011). The magnitude of the acceleration of the head also 

plays a significant role in the risk of brain injuries and the severity of the damage (Rowson et 

al., 2016). Concussions more often occur when an impact generates an acceleration of the 

skull, but the brain lags behind due to inertia leading to the strain on the neural tissue and the 

development of various symptoms (Rowson et al., 2016). As concussion mechanisms are 

variable, there are a wide range of signs and symptoms that can present differently from case 

to case.  

A concussion can generate several symptoms in athletes including confusion, 

disorientation, unsteadiness, dizziness, headache, and visual disturbances (Giza & Hovda, 

2001). Concussion symptoms are often undetectable anatomically, meaning that they do not 

typically present as outward physical signs that can be seen visually. The symptoms, 

however, are typically expected to resolve over time due to temporary neuronal dysfunction 

as opposed to cell death (Giza & Hovda, 2001). A concussion can also result in a loss of 

consciousness (LOC), however; LOC occurs in less than 10% of patients who suffer a 

concussion (Mullally, 2017).  

As previously stated, concussion injuries are very prevalent in boxing during training 

and competition, with the most common impacts occurring at the head and facial locations 

(Adkitte et al., 2016; Purcell, 2011). Rates of knockout (KO) and technical knockout (TKO) 

are high in boxing, primarily in male competitions. It has been shown that over half of male 

boxing bouts (51.6%) at the professional level end in a KO or TKO, more than double the 

rate of females (24.4%; Bledsoe et al., 2005). Consequently, the rates of concussion in boxing 

are the highest of any individual male sport, with 0.8 incidences of concussions occurring per 

10 rounds of professional competition, and 7.9 incidences occurring per every 1000 

competition minutes in amateur competition (Tommasone & Mcleod, 2006).  
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 Recovery and return-to-play (RTP) protocols are important in sports due to the 

concern of Second Impact Syndrome and the severity of the concussion (Keenan & Mahaffey, 

2017). Gradual introduction to daily activities, such as walking and other controlled physical 

activities, are emphasized in concussion recovery as opposed to rest (Keenan & Mahaffey, 

2017). When determining a timeline for RTP, assessment of reaction time, balance, and 

oculomotor screening are useful tools (Keenan & Mahaffey, 2017). It is important to 

mention, however, that competition RTP protocols for athletes after suffering a concussion 

are not standardized and in the case of boxers often involve an arbitrary 30 to 90-day 

suspension from competition, with neurologic clearance not always being required (Sethi, 

2016). 

 While RTP protocols offer an avenue to help injured athletes go back to competitions,   

the use of protective headguards provides another path to prevent the occurrence of  

concussions. In the sport of boxing, Canada has different headguard rules by gender and 

competition levels. In the official rules, Boxing Canada states that headguard use is 

mandatory for elite male open boxers, with the exception of National Championship bouts 

(Boxing Canada, 2017). In provincial championships, Boxing Canada gives boxers the option 

of choosing if they want to use headguards as long as both participants agree on the use of 

headguard protection (Boxing Canada, 2017). The International Boxing Organization 

(AIBA), however, prohibits the use of headguards in AIBA open boxing men’s elite 

competition (AIBA, 2019). The AIBA has noted that this ban is motivated by their own 

internal, unpublished studies that show decreased head injury incidences following headguard 

removal (Dickinson & Rempel, 2016). 

Several studies have been performed to test the effectiveness of boxing headguards 

under impacts, showing headguards to be generally useful for reducing concussion risk. 

Using a linear impactor with a semi rigid fist fitted with a glove, Mcintosh and Patton 
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(2015a) tested several AIBA approved headguards for their head impact dynamics and injury 

risk under a range of impact velocities. Through the use of a Hybrid III head and neck 

system, Mcintosh and Patton (2015a) noted significant differences were seen between 

headguard and non-headguard impacts, showing mean peak resultant angular head 

acceleration to be nearly halved by the headguard. The headguards also reduced mean peak 

resultant linear accelerations (RLA), showing that AIBA headguard models to be useful in 

reducing concussion risk. 

Despite these research findings, there are several gaps in the existing literature 

regarding the effectiveness of boxing headguards in mitigating the risk of concussion. 

Furthermore, little research has been conducted to explore the behaviour of boxing headguard 

material in minimizing dynamics shear force impacts to the head. Shear forces are caused by 

rotational accelerations and cause a “jarring” effect to the head, producing more deformation 

to the brain than rotational acceleration would produce in other tissues of the body (Meaney 

& Smith, 2011). In addition, some research has been done to compare the effectiveness of 

headguards at mitigating impact at different impact velocities, however; the velocity impact 

ranges were small to represent the velocity of boxer’s punch. Finally, thermoplastic 

polyurethane (TPU), a material high in tensile and flexural strength, has been recently 

introduced into helmet design (Lin, et al., 2017); however; research on its effectiveness is 

lacking.  

This study examined the material properties of commercial boxing headgear and 

innovated TPU liner inserts in mitigating linear and angular impact kinematics. The study 

also explored the capacity of these headguards in mitigating the risk of concussion in the 

sport of boxing. More specifically, this study included three research purposes. The first 

purpose of this study was to analyze the material properties of TPU and boxing headguards 

statically to test the stiffness of the material across different boxing headgear locations. The 
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second purpose of this study was to examine the effect of headguard type and impact location 

on measures of peak linear acceleration and peak angular acceleration during simulated 

dynamic impacts. The third purpose of the study was to examine the effect of headguard type 

and impact location on head injury risk using measures of linear and rotational impact 

accelerations separately and in combination during simulated dynamic head collisions.  

The study implemented a static testing technique by compressing the headguard 

material to measure the force and deformation for each headguard respectively. The study 

also implemented a dynamic testing technique by impacting a surrogate headform. From the 

results of the static and dynamic tests, the capacity of the headguards to limit concussion risk 

was analyzed based on measures of energy absorption, linear acceleration, rotational 

acceleration and computations of risk of concussion based on linear and rotational impacts to 

the head.  

This study found that the TPU-commercial headguard combination was the most 

effective headguard in absorbing both shear and compression energy in static testing at both 

front and side locations. This finding is indicative of an increased capability of the helmet 

materials to mitigate concentrated loads placed on the head by absorbing more energy across 

the surface of the headguard (Di Landro et al., 2002). This study also found that the TPU-

headguard combination was significantly more effective in mitigating linear acceleration, and 

Gadd Severity Index (GSI) of the headform at front, front boss, and side locations. Finally, 

this study found a significant interaction effect between headguard type and impact location 

on angular acceleration, Angular Gadd Severity Index (AGSI), and Generalized Acceleration 

Model for Brain Injury Threshold (GAMBIT). When analyzing GSI and GAMBIT in 

comparison to threshold measures, the TPU-headguard combination showed a consistent 

capability to reduce impacts below the thresholds, where other headguards surpassed them 

several times (NOCSAE, 2017; Newman et al., 1999).  
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This study is the first to incorporate TPU material into a boxing headguard and it 

shows very promising results in mitigating concussion risk. These results seem to  provide an 

avenue for improvement in boxing headguard safety. Upon more research and possible 

addition of TPU to headguard production, this type of research  may help provide a stronger 

case in support of headguard use in boxing competitions at the amateur and professional 

levels to decrease the occurrence of concussions. 
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Literature Review 

Concussions 

Concussions have been recognized clinically for over 1000 years and studied 

extensively in the 20th century (Mullally, 2017).  The definition of what constitutes a 

concussion, however, is rather inconsistent between researchers and medical sources. 

Mullally (2017) stated that concussions can be caused by direct trauma, rapid acceleration-

deceleration of the head (whiplash), or in a blast injury commonly seen by military personnel 

(Mullally, 2017). Concussion diagnosis is based on the completion of a clinical assessment 

(Mullally, 2017). Several definitions of concussion state that a concussed patient may report 

feeling dazed or “seeing stars” along with momentary confusion (Mullally, 2017). Based on 

this premise, Giza and Hovda (2001) described concussions as “any transient neurologic 

dysfunction resulting from a biomechanical force” (p.1). 

 A traumatic brain injury (TBI) ranges from a mild disruption in consciousness, to a 

state of comatose, or death (Galgano et al., 2017).  The occurrence of TBIs results from 

primary or secondary impact injuries to the brain, which cause neurological deficits of 

varying severities. These neurological deficits can be either temporary or permanent 

(Galgano et al., 2017). More specifically, primary injuries relate to a crucial external brain 

impact; whereas secondary injuries affect a molecular, chemical, and inflammatory cascade 

and can occur minutes to days after a primary impact (Galgano et al., 2017). This cascade is 

responsible for the depolarization of neurons and the release of excitatory neurotransmitters 

that lead to an increase in intracellular calcium (Galgano et al., 2017). This increase in 

calcium causes the neuronal cells to degrade and consequently, an inflammatory response, 

which further damages the neuronal cells, breaching the blood brain barrier and resulting in 

cerebral edema (Galgano et al., 2017). A common type of TBI is a diffuse axonal injury 

(DAI).  
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Diffuse axonal injury. A DAI is a type of brain injury occurring most often in higher 

energy trauma, primarily seen in traffic accidents (Vieira et al., 2016). A DAI is associated 

with microscopic damage to the axons of the brain and neural tracts, corpus callosum, and 

brainstem (Vieira et al., 2016). Diffuse axonal injury result from rotational impact forces, 

which differentiate from cortical contusions and other haemorrhages resulting from 

acceleration/deceleration of the head (Sahler & Greenwald, 2012). Diffuse axonal injuries are 

clinically defined by the presence of coma lasting six or more hours after the TBI (Vieira et 

al., 2016). These injuries are often associated with posttraumatic coma, persistent 

neurovegetative states, and varying levels of disability following TBIs (Vieira et al., 2016). 

Diffuse axonal injuries are the most important factor in determining morbidity and mortality 

in a person suffering a TBI (Vieira et al., 2016).  

 Diffuse axonal injuries can result in many neurological impairments including 

cognitive, physical, and behavioural changes and compromise a person’s social and physical 

abilities (Vieira et al., 2016). These impairments can occur long beyond the acute phase of 

treatment until the brain regains normal function as neural connections are re-established 

(Vieira et al., 2016). Neurological impairments can be better understood by describing the 

pathophysiology of concussions. 

Pathophysiology of concussions. When describing the pathophysiology of  

concussion and the symptoms produced due to a biomechanical impact force, Signoretti et al. 

(2011) stated that a concussion results form a complex cascade of metabolic events triggering 

a disturbance to a delicate homeostatic balance of neurons in the brain. This complex cascade 

of metabolic events results in post-concussive symptoms caused primarily from 

neurotoxicity; that is, when the energetic metabolism of brain neurons is disturbed by 

mitochondrial dysfunction (Signoretti et al., 2011). Concussed cells become vulnerable and 

irreversibly damaged by the occurrence of swelling especially if a second concussion is 
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sustained while cells are still in the state of recovery (Signoretti et al., 2011). This 

complication is referred to as Second Impact Syndrome (Signoretti et al., 2011). Research has 

suggested that N-acetylaspartate, a brain compound that represents neuronal metabolic 

wellness, can be a marker of post-traumatic biochemical damage (Signoretti et al., 2011). N-

acetylaspartate is easily detectable through proton magnetic resonance spectroscopy and can 

be useful in monitoring the recovery of the functional disturbances of the brain (Signoretti et 

al., 2011). Changes in homeostatic balance of neurons in the brain due to a mTBI leads to a 

variety of symptoms affecting the performance of a person and his/her functioning in 

activities of daily living. 

Concussion symptoms. Symptoms of concussions may include confusion, 

disorientation, unsteadiness, dizziness, headache, and visual disturbances (Giza & Hovda, 

2001). The loss of consciousness (LOC) is a strong indicator of a concussion but is not 

required to make a concussion diagnosis (Giza & Hovda, 2001). The LOC is seen in less than 

10% of patients who suffer a concussion (Mullally, 2017). A LOC is caused by “rotational 

forces at the junction of the midbrain in the thalamus, resulting in a transient disruption of the 

reticular activating system” (Mullally, 2017, p. 886). Concussion symptoms are typically 

undetectable anatomically and often resolve over time, indicating that they are due to 

temporary neuronal dysfunction rather than cell death (Giza & Hovda, 2001). 

The severity of concussion injuries can be assessed by symptoms such as prolonged 

LOC on individuals after a head impact. In some cases, however, it may indicate the presence 

of a severe TBI rather than a concussion (Mullally, 2017). The duration of posttraumatic 

amnesia is also an indicator of concussion severity (Mullally, 2017). Posttraumatic amnesia 

includes anterograde (inability to assimilate new memory) and retrograde (memory of events 

preceding the injury), which in some concussion cases is difficult to assess (Mullally, 2017). 
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The severity of these symptoms, however, depends on the magnitude of the linear and 

rotational forces induced in the brain during a head collision. 

Impact forces causing concussions. Concussions are produced by the combination 

of linear and rotational forces causing acceleration-deceleration of the brain during a head 

impact (Meaney et al., 1995). Linear forces cause the brain to elongate and deform, putting a 

stretch on various structures of the brain, including the neurons, glial cells, and blood vessels  

altering membrane permeability (Mckee & Daneshvar, 2015). These types of brain injuries 

also produce a rapid release of neurotransmitters, an influx of calcium, and an efflux of 

potassium (Mckee & Daneshvar, 2015). Due to these chemical changes, the cellular sodium-

potassium pump must be accelerated to maintain membrane homeostasis, which requires a 

large increase in glucose metabolism and is referred to as the neurometabolic cascade of 

concussion (Giza & Hovda, 2001). These chemical changes cause post-concussive 

hypermetabolism resulting in a decrease in cerebral blood flow and creating a disparity 

between glucose supply and demand (Giza & Hovda, 2001).  This outcome can lead to a 

variety of symptoms affecting the physical and cognitive performance of the concussed 

person.  

 Rotational forces, on the other hand, cause shear brain injury. This type of brain 

injury disrupts the white matter and its connections in the brain, disturbing the axons of 

neurons biomechanically and biochemically (Rush, 2011). The disturbances of white matter 

can result in cell death, as well as functional impairments including slowed cognitive speed, 

decreased motor coordination, and a disturbance in higher-level executive functioning (Rush, 

2011). Indeed, the brain tissue deforms more readily with shear forces as compared to other 

biologic tissues due to the physical properties of the brain (Meaney & Smith, 2011). This 

result can be attributed to shear strains causing distortion and the rupture of axons, blood 

vessels, and major fibre tracts (Peerless & Rewcastle, 1967). Subsequently, several studies 
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have suggested that shear deformation resulting from rotational acceleration is the 

predominant injury mechanism in concussion (Adams et al., 1982; Gennarelli et al., 1982; 

Meaney & Smith, 2011; Unterharnscheidt & Higgins, 1969).  

Influence of acceleration in concussion. As previously stated, impact forces induced 

to the head and brain represent a motion that generates an acceleration of the skull where the 

brain lags behind due to inertia (Rowson et al., 2016). With concussions, there is a common 

notion that the brain has a large amount of movement, creating a sloshing effect in the skull 

(Rowson et al., 2016). In reality, a minimal and small amount of brain motion and 

deformation can produce a concussion, with more severe impacts causing more brain 

movement and intracranial pressure resulting in more severe injuries (Rowson et al., 2016). 

The brain can move a maximum of 7 mm relative to the skull (Rowson et al., 2016) and head 

accelerations can occur in multiple directions of movement (Browne, et al, 2011). 

Subsequently, the resultant acceleration is the vector sum of all accelerations (Donegan, 

2012) used to quantify the magnitude of the impact and the severity of the concussion.  

 In the case of rotational acceleration, the impact occurs more in an oblique direction. 

This type of acceleration is more associated to strain response and seems to produce more 

damage to the deep internal structures of the brain. As stated by Meaney and Smith (2011), 

the patterns of strain of the brain due to a head impact are dependent on where the force is 

applied, such as stress being placed on the coronal (lateral), horizontal (axial), and sagittal 

planes. Shear forces are often produced by rotational motions and present more harm to brain 

tissue, making it more responsible for mTBI than linear accelerations (Meaney & Smith, 

2011). The LOC occurs more during a rotational impact of the brain than a primarily linear 

impact, as the shear forces readily produce more deformation to the brain than any other body 

tissue (Meaney & Smith, 2011). Concussions are primarily caused by inertial loading or 
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acceleration of the brain that are often the result of a combination of linear and rotational 

accelerations (Meaney & Smith, 2011). Linear acceleration is a good predictor of peak 

pressure occurring within the brain, however, the strains created by pressure gradients are 

more significant with rotational accelerations than linear accelerations (Meaney & Smith, 

2011). With this said, the severity of rotational acceleration injuries differs with relation to 

the site of the brain injury and the amount of tissue injured (Meaney & Smith, 2011).  

Influence of impact location. Brain tissue deformation is influenced by the rotational 

accelerations, intracranial partitioning membranes, and material properties of the tissue 

(Meaney & Smith, 2011). Patterns of deformation are significantly different in a mechanism 

of injury involving rotational acceleration compared to an acceleration applied in the coronal 

(linear), horizontal, or sagittal planes (Meaney & Smith, 2011). The direction of acceleration 

has a strong effect on the corresponding impairment, with lateral (coronal) plane 

accelerations producing the most damage to the internal structures of the brain (Gennarelli et 

al., 1982; Meaney & Smith, 2011). This impairment can be explained through research that 

has shown that coronal plane head motions were the only type of motion that produces axonal 

damage in the brainstem (Gennarelli et al., 1987). Neurological impairment is the result of 

forces applied in the coronal plane, however; similar impairments can be produced with 

rotational accelerations along the horizontal and sagittal planes (Meaney & Smith, 2011). The 

ventricular system of the brain provides a damping effect to the strains that occur in the brain 

during rotational accelerations (Meaney & Smith, 2011). Additionally, the membranes that 

partition the cerebral hemispheres and cerebellum from the cerebrum also influence these 

patterns of deformation (Meaney & Smith, 2011). 

 Kerr et al. (2014) explored the effect of impact location on concussion using the 

injury data for high school football players. The study used National High School Sports-

Related Injury Surveillance Study data (2008/2009–2012/2013) to analyze the details and 
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circumstances of concussions. The study found that concussions occurred primarily from 

impacts at the front of the head (44.7%) and side of the head (22.3%). There was no 

significant relationship between the impact location and concussion characteristics such as 

the symptoms and recovery time. Loss of consciousness was more prominent with impacts to 

the top of the head (8%) than other areas of the head (3.5%).  

 A similar study by Liao, Lynall, and Mihalik (2016) analyzed the data for 33 Division 

I National Collegiate Athletic Association (NCAA) football players to examine the 

relationship between impact location and concussions. Twenty-four concussions were 

matched with impacts of similar kinematic and injury criterion values, such as linear and 

rotational acceleration, that occurred during the same type of event (game, practice, or 

scrimmage). The same matching criteria were also used to match players in the closest 

kinematic or same player group. The data revealed that on the day of the injury, players in the 

concussed group sustained a lower percentage of impacts to the front of the head than the 

non-concussed group (34.5% versus 43.5%, respectively). Comparatively, players in the 

concussed group had a greater frequency of impacts to the sides and top of the head than the 

non-concussed group (side = 19.6% versus 16.6%; and top = 18.9 versus 14%, respectively). 

These findings suggested that it may be more difficult to mitigate concussion sustained with 

side and top of the head impact locations than frontal impacts. These types of concussions are 

also very prominent in the sport of boxing resulting in acute neurological injuries in the 

athlete. Although impact location can be a useful measure for determining concussion risk, 

other measures should be taken to account for the severity of an impact and how it 

corresponds to the risk of injury.  

Risk of Injury Measures  

Wayne State Tolerance Curve. A number of injury tolerance measures have been 

developed to link the relationship between linear acceleration and head injury risk. The 
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Wayne State Tolerance curve (WSTC) was initially developed as a head injury acceleration 

tolerance measure used for automobile crashes (Greenwald, Gwin, Chu, & Crisco, 2008). 

This curve determines injury threshold using a linear acceleration versus impact time duration 

curve (Greenwald et al., 2008). Head injury risk is determined using the onset of a skull 

fracture as the injury criterion as opposed to a brain injury (Greenwald et al., 2008). The 

WSTC is shown in Figure 1. Several injury risk measures have been developed as an 

extension of the WSTC using acceleration-time profiles (Greenwald et al., 2008). 

 

Figure 1: Wayne State Tolerance Curve. Adapted from “Head impact severity measures for 
evaluating mild traumatic brain injury risk exposure”, R. Greenwald, J. Gwin, J. Chu, and J. 
Crisco, 2008, Neurosurgery, 62(4), p. 789-798. Copyright 2008 by Neurosurgery. 
 

Head Injury Criterion. Head injury criterion (HIC) is a valid measure for predicting 

skull fractures and cerebral contusions occurring from linear accelerations of the head 

(Kimpara & Iwamoto, 2012). The formula for HIC is shown in Equation 1. A cut-off of 36 

ms is applied to the HIC to utilize the time interval that produced the maximum HIC, 

removing the influence of long durations and low acceleration impacts (Ouckama, 2013).  

𝐻𝐼𝐶 = {(𝑡2 − 𝑡1) [
1

𝑡2−𝑡2
∫ 𝑎(𝑡)𝑑𝑡

𝑡2

𝑡1
]

2.5

}
𝑚𝑎𝑥

   (1) 

where: 

a = linear acceleration 

t2-t1 = time interval where peak acceleration occurs; t2-t1 ≤ 36 ms 
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A threshold of injury of HIC = 1000, equates to an 18% chance of a life-threatening injury, or 

a 50% chance of a severe head injury (Hutchinson, Kaiser, & Lankarani, 1998).  

Gadd Severity Index. Gadd Severity Index (GSI) is a measure of instantaneous 

acceleration of a headform when impacted (Jeffries, 2017). The equation for GSI is shown in 

Equation 2. 

𝐺𝑆𝐼 = ∫ [𝑎(𝑡)]2.5𝑑𝑡
𝑇

0
       (2) 

where: 

a = instantaneous resultant linear acceleration of the headform 

T = impulse duration  

Severity Index is a method of testing helmet effectiveness that integrates acceleration over 

time and provides an accurate head injury risk assessment that can be replicated under 

different impact conditions (NOCSAE, 2017). The GSI assessment is supported by the logic 

that the acceleration/time curve could provide a risk index (Jeffries, 2017; Ouckama, 2013). 

Furthermore, this means that the risk for certain impulse values could be the same if the 

impact had short duration and high acceleration characteristics, or long duration and low 

acceleration characteristics (Jeffries, 2017; Ouckama, 2013). A 2.5 weighting factor is 

applied to acceleration values to compensate for the fact that lower duration impacts have a 

decreased risk of head injury when exposed to higher acceleration (Jeffries, 2017; Ouckama, 

2013). The National Operating Committee on Standards for Athletic Equipment (NOCSAE, 

2017) sets the pass/fail threshold to a 1200 GSI score, meaning that values above this 

threshold do not meet performance criteria for football helmets. Measures regarding HIC and 

GSI can be useful for determining a helmet’s protection capacity; however, measures such as 

energy dissipation and energy loading/unloading may be more useful for measuring injury 
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risk with a given head impact (Jeffries, 2017, Carlson, 2016). These measurement techniques 

also apply to the sport of boxing, which poses a high risk of concussion on athletes. 

 GAMBIT. The Head Injury Criterion (HIC) and Gadd Severity Index (HIC) do not 

account for measures of rotational acceleration or the combination of both linear and 

rotational accelerations. To address this limitation, Newman et al. (1999) developed a 

Generalized Acceleration Model for Brain Injury Threshold (GAMBIT), which is an injury 

risk measure designed to incorporate both translational and rotational acceleration. The 

GAMBIT model was originally proposed by Newman (1986) as a time dependent non-linear 

weighted sum of linear and rotational acceleration of the head. The formula for GAMBIT is 

shown in Equation 3 (Newman, 1986). 

𝐺𝑚𝑎𝑥(𝑡) = [(
𝑎𝑟𝑒𝑠(𝑡)

250
)

2

+ (
𝛼𝑟𝑒𝑠(𝑡)

25000
)

2

]
0.5

                            (3) 

where: 

𝑎𝑟𝑒𝑠(𝑡) = instantaneous translational acceleration 

𝛼𝑟𝑒𝑠(𝑡) = instantaneous rotational acceleration 

The GAMBIT model  was later simplified to include time duration as a separate independent 

variable (Newman et al., 1999). The current model of GAMBIT incorporates average 

translational and rotational accelerations as well as time durations as separate independent 

variables (Newman et al., 1999). To create a formula for GAMBIT, Newman et al., (1999) 

ran a correlation exercise using a finite element model (FEM) of the human brain for a series 

of hypothetical time dependent translational and rotational acceleration combinations. From 

this analysis, the researchers considered the average accelerations and fixed time durations 

from different spatial orientations. The GAMBIT formula then represents the magnitude of 

internal energy increments in the brain, which indicate the risk of head injury when this 

energy exceeds some limiting value (Newman et al., 1999). In their study, Newman et al. 
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(1999) replicated 24 cases of helmeted head impacts in football, 9 of which resulted in 

concussions in real-life impacts, using a Hybrid III head model. With these replications, rigid 

body translational and rotational accelerations were measured and correlations between head 

injury and head kinematics were assessed (Newman et al., 1999). A logistic regression model 

showed GAMBIT to be a strong predictor of concussion risk (p<.05) in these cases, inferring 

it to be a useful measurement tool in dynamic concussion testing (Newman et al., 1999). 

Although there is not a threshold recognized by NOCSAE for GAMBIT, the authors (1999) 

correlate GAMBIT scores to Abbreviated Injury Scale (AIS) scores, which are graded on a 1-

6 scale (from minor to unsurvivable). Carroll et al. (2010) note that the 1998 version of AIS 

scoring quantifies a score of AIS=1 as a minor head injury, and a score of AIS=3 as a serious 

head injury. As noted by Newman et al. (1999), a GAMBIT score of g=1 corresponds to a 50-

50 (%) chance of AIS=3 (serious). Furthermore, a GAMBIT score of g=0.4 translates to 50-

50 (%) chance of AIS=1 (minor; Newman et al., 1999). These techniques can be very useful 

to assess the rates of head trauma in the sport of boxing when designing headguard protective 

equipment to mitigate concussion risk. 

Rates of Head Trauma in the Sport of Boxing 

 The sport of boxing poses a high risk of concussions for amateur and professional 

athletes. A study examining 16 years of professional boxing fight outcomes and injury reports 

in the state of Victoria, Australia found that the most commonly injured body region was the 

head, neck, and face, combining to make up 89.8% of the total injuries (Zazryn et al., 2003). 

The study analyzed 107 injuries occurring in 427 fight participations between August 1985 

and August 2001 (Zazryn et al., 2003). The researchers found that concussions represented 

the second most common type of injury (15.9%), but eye injuries were the most prominent, 

making up 45.8% of the total injuries (Zazryn et al., 2003). 
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 Previous literature has shown some discrepancies in the rate of concussions in boxing. 

In professional boxing, for example, the literature has shown that between 15.9% and 69.7% 

of all injuries are acute neurological injuries (McCown, 1959; Jordan & Campbell, 1988; 

Zazryn et al., 2003; Zazryn et al., 2009). In amateur boxing, the rates of concussion are 

reported to be between 6.5% and 51.6% (Estwanik, Boitano, & Ari, 1984; Jordan, Voy, & 

Stone, 1990; Larsson et al., 1954; Porter & O’Brien, 1996; Welch, Sitler, & Kroeten, 1986; 

Zazryn et al., 2009).  

 Tommasone and Mcleod (2006) compared the concussion rates in boxing to other 

contact sports through a MEDLINE search of previously published studies. Of the individual 

male sports studied, boxing had the highest rates of concussion, with 0.8 incidences of 

concussion occurring per every 10 rounds of professional competition. In amateur 

competition, boxing was shown to have 7.9 incidences of concussion per 1000 man-minutes 

of competition, which under typical AIBA competition would correspond to approximately 

333 rounds (AIBA, 2019). Ultimately, concussions occur much more typically at the 

professional level (Tommasone & McLeod, 2006). Tommasone and Mcleod (2006) noted 

that due to this concern, boxing would likely benefit from slower return to play progressions 

compared to lower-risk sports.  

 Bledsoe, Li, and Levy (2005) estimated the prevalence of boxing concussions by 

analyzing medical records and outcome data for 524 Nevada boxing matches occurring 

between September 2001 and March 2003. To do this, a pair-matched, case-control design 

was used to explore the rates of KO and TKO. The cases included in this study were boxers 

who received an injury during competition. The overall incidence of injury in these matches 

was 17.1 incidences per 100 boxer-matches, or 3.4 per 100 rounds. The study found that male 

bouts resulted in a KO or TKO at over twice the rate of female bouts (51.4% versus 24.4%, 



         31 

respectively). High rates of head-trauma induced bout stoppages may be a strong indicator 

that concussion rates are high in boxing, specifically in male competitions.  

Types of Boxing Injury 

 The aforementioned study by Bledsoe et al. (2005) explored the types of injury in the 

same set of matches to determine the most common types of injury. Of the incidences of 

injury (17.1 per 100 matches or 3.4 per 100 rounds), facial lacerations accounted for 51% of 

injuries, followed by hand injuries (17%), eye injuries (14%), and nose injuries (5%). 

Knockouts and TKOs were not regarded as injury. With this said, the authors (2005) note that 

these bout results should not be ignored, stating “neurologic dysfunction significant enough 

to cause the clinical “knocked out” picture is no doubt evidence of damage, and it can be 

argued that a knockout may represent severe injury” (Bledsoe et al., 2005, p. 997). 

Furthermore, male boxers were significantly more likely to experience an injury than female 

boxers (3.6 versus 1.2 per 100 boxer-rounds). Boxers who lost their bout were nearly twice as 

likely to suffer an injury than the winners of bouts.  

 A retrospective study by Adkitte et al. (2016) was conducted on 54 National boxers in 

India to determine the prevalence of injuries occurring in boxing training and competition. 

The 54 boxers reported 820 injuries over a two-year period, comprising an average of 15.18 

injuries per boxer over the two years. Subsequently, the injury rate per boxer was 9.64 

incidences per 1000 hours of training. Of these injuries, injuries of the head (42.93%) were 

the most frequent, followed by injuries of the upper limbs (33.90). Soft tissue injuries and 

concussions were also common sources of injury. Of the 54 boxers, 33 (61%) reported at 

least one concussion sustained. The results of this study indicated that injuries were very high 

in boxing training and competition, with injuries of the head and face being the most 

common.  
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 Purcell & Leblanc (2011) analyzed the rates of injury in boxing to examine the safety 

of the sport. The study noted that thousands of males and females under 19 years of age 

participated in boxing in North America, with over 18 thousand being registered in USA 

Boxing in 2008 (Purcell & Leblanc, 2011). Rates of concussions in amateur boxing range 

from 6.5% to 51.6% of all injuries (Zazryn et al., 2009). In this study of amateur boxing, over 

half of the injuries sustained in boxing competition were concussions (51.6%), with an 

incidence rate of 11.4 concussions per 1000 boxing exposures (Zazryn et al., 2009). Other 

research has observed a concussion rate of 0.58 concussions per 100 athlete exposures in 

amateur boxing, compared to 0.28 in male youth hockey, and 0.38 in high school rugby 

(Toth, McNeil, & Feasby, 2005). A final study showed that in amateur boxing competition, 

13% of matches ended resulting from a concussion (Matser et al., 2000). Due to the concerns 

associated with the high rates of concussion in boxing, the American Medical Association 

(2007), Canadian Medical Association (2001) and World Medical Association (2017) all 

noted that boxing competition should be banned. Researchers, however, decided to study the 

mechanisms of injury causing concussions using dynamic head response models to better 

understand how the concussions occurred and how to possibly prevent the occurrence of 

concussions in the sport of boxing.   

Dynamic Head Responses to a Boxing Punch 

Walilko et al. (2005) used a Hybrid III head, neck, and torso model to measure the 

biomechanical impact of a punch to the head. The Hybrid III was a biofidelic model designed 

to simulate human biomechanical responses to impact. The model was designed to replicate 

the 50th percentile of males (O’Sullivan & Fife, 2016), equipped with a headform, neckform, 

and frangible faceform (see Figure 2).  
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Figure 2: The Hybrid III head, neck and torso model with boxing headguard. Adapted from 
“Biomechanics of the head for Olympic boxer punches to the face”, T. Walilko, D. Viano, 
and C. Bir, 2005, British Journal of Sports Medicine, 39 (10), p. 710-719. Copyright 2005 by 
British Journal of Sports Medicine.  
 

This model was equipped with a frangible faceform designed to simulate the dynamic 

responses of the human face when subjected to an impact. The faceform is displayed in 

Figure 3.  

 

Figure 3: The frangible faceform model with the boxing headguard removed. Adapted from 
“Biomechanics of the head for Olympic boxer punches to the face”, T. Walilko, D. Viano, 
and C. Bir, 2005, British Journal of Sports Medicine, 39 (10), p. 710-719. Copyright 2005 by 
British Journal of Sports Medicine. 
 

 Using the Hybrid III model, the study had seven Olympic level boxers of five 

different weight categories deliver 18 straight punches to the face of the model. The 

headform was fitted with an Olympic-style headguard for each of the trials, as shown in 
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Figure 2; however, due to the punches being delivered to the face, the headguard was not 

actively engaged. Accelerometers were attached to both the hands of the boxers, as well as 

the headform to test the acceleration of the hand prior to impact and acceleration of the head 

following the impact. From the punches, data were collected for peak translational and 

rotational head acceleration, neck responses, and jaw pressure distribution. Average peak 

rotational acceleration was 6343 rad/s2, significantly higher than the 4500 rad/s2 , a threshold 

observed by Ommaya et al. (2002). Head injury risks were calculated according to the 

protocol by Pellman et al. (2003). From these calculated risks (Pellman et al., 2003), 

rotational acceleration had the largest effect on head injury risks, having a 68% risk rating. 

Translational acceleration resulted in a 20% concussion risk, while HIC and change in 

velocity had 13% and 3% risks, respectively. Punch force increased linearly as the boxer’s 

weight increased. The findings of this study revealed that boxers at the Olympic level pose a 

high risk of concussions to opponents with a single punch. Additionally, rotational 

acceleration of the head is a significant factor for concussion risk. 

 Head dynamic responses and brain tissue deformations resulting from boxing punches 

were analyzed by Cournoyer and Hoshizaki (2019). Using an anthropometric headform and a 

finite element model, physical representations of boxing punches presenting with and without 

LOC were performed. The purpose, as such, was to compare magnitudes of head acceleration 

and brain tissue deformation for punches resulting in a LOC and punches not resulting in a 

LOC. Peak linear acceleration, peak rotational acceleration, and strain measures in five 

regions of the brain were measured from the punch representations. The LOC most often 

resulted from hook punches (lateral impact to the head involving a rotational motion) to the 

side of the mandible, which caused high levels of rotational acceleration and increased the 

magnitude of trauma in all areas of the brain. The differences between punches resulting in a 

LOC as opposed to those not resulting in a LOC were found in differences in maximum 
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principal strain for different brain regions. It was also noted that a LOC was caused by higher 

levels of brain trauma and should be subject to longer recovery times. The results of these 

types of studies showed that the traumatic effects of boxing led researchers and medical 

professionals to caution against participation in the sport.  

Boxing Safety Recommendations 

 A previously noted, Purcell & Leblanc (2011) included statements made by the 

American Medical Association (2007), Canadian Medical Association (2001), and World 

Medical Association (2017) that all stated that boxing should be banned. As time passed, 

these organizations have not changed their stance. The World Medical Association (2017) 

stated that boxing is qualitatively different from other sports due to the injuries caused and 

that it should be banned. Until a full ban is achieved, the World Medical Association stated 

that several changes should be made, including that all boxers be licensed, no children should 

be permitted to compete, and that protective equipment such as headguards should be 

considered. Similar to the World Medical Association, the American Medical Association 

included increasing glove size and decreasing scoring emphasis for head blows in its 

recommendations. The Canadian Medical Association (2001) provided a similar statement, 

recommending the use of protective headguards and the prohibition of head blows. 

Headguard 

 Headguard rules. Boxing competition is typically sanctioned under a sport 

governing body which is an organization within a state or country, but can be sanctioned by 

an international organization, such as the AIBA. These organizations often have their own 

rules related to competition, including differing regulations for protective equipment such as 

the use of gloves and headguards (often referred to as headgear or boxing helmets). 
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 Boxing Canada, the national sport governing body for Canada as recognized by the 

Canadian Olympic Committee, has different headguard rules by gender and competition 

level. As stated in the official rules, Boxing Canada deems headguards mandatory for elite 

male open boxers, with the exception of bouts at the National Championships (Boxing 

Canada, 2017). Additionally, in their provincial championships, Boxing Canada requires 

headguards to be used until the final, where the boxers are given the option, with headguards 

prevailing in the case of a disagreement between fighters (Boxing Canada, 2017). For all 

other Boxing Canada competitions, boxers must use headguards manufactured by the AIBA 

Official Boxing Equipment License (Boxing Canada, 2017). In the master’s Division, boxers 

are required to use USA Boxing approved Master’s headguards (Boxing Canada, 2017). 

 The AIBA requires headguards to be used at all levels of competition, except in elite 

male competition, where it is prohibited (AIBA, 2019). United States of America (USA) 

Boxing requires headguards to be used in all competitive divisions, with the only exception to 

this rule being in the finals of the national championships, where elite level male boxers may 

be prohibited from wearing it in accordance with AIBA rules (USA Boxing, 2017).  

Headguard specifications. Rules for boxing headguards can vary between boxing 

organizations. The AIBA, whose rules are used by many major boxing organizations 

including Boxing Canada, sets out several standards for competition headguards. The 

following section lists these guidelines as listed in the AIBA Handbook (2019, p. 77-78). 

Several headguard specifications are set out in the AIBA (2019), including a minimum 

weight of 450 grams (16 ounces), and a Velcro closing system for fitting. Furthermore, the 

headguards are required to have a minimum of 2-3 cm of padding, and to be made of high-

quality leather, such as cowhide or Grade A leather.  As per USA Boxing (2017), USA 

Boxing requires headguards to be approved by AIBA or USA Boxing. The rule book does not 

state any specifications to their headguards, only that they must have cheek protectors and an 
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open face (USA Boxing, 2017). Boxing Canada requires that headguards used in their 

competitions must be those approved by the AIBA or by USA Boxing (Boxing Canada, 

2017).  

Testing the material properties of boxing headguards can be useful for determining 

their energy absorption ability. The ability of protective headwear to mitigate the effects 

posed to the head and brain relates to energy dissipation. Energy dissipation is the conversion 

of mechanical energy into another form of energy, such as heat (McLean et al., 1997; Zerpa 

et al., 2016). A material absorbing energy has a loading and an unloading phase. The most 

ideal response to energy absorption would be for the foam of a helmet to be loaded with all of 

the energy of an impact and all of this energy then being dissipated out during the unloading 

phase (Zerpa et al., 2016). Subsequently, all of the energy would be absorbed and directed 

away from the head and brain (Zerpa et al., 2016). A higher dissipation value translates to a 

lower rebound velocity, reducing the risk of a contrecoup injury, where the brain collides 

with the skull as a result of the impact (Barth et al., 2001; Zerpa et al., 2016).  

Subsequently, testing which materials are the most effective in dissipating energy can 

be useful for determining the most effective headguard design. Razaghi et al. (2018) 

examined three different types of headguard materials including expanded propylene (EPP), 

expanded polystyrene foam (EPS), and polyvinyl alcohol sponge (PVA) to analyze the most 

effective material for reducing the amount of injury resulting from a right hook to the face. 

Using a finite element model of the skull, headgear, and punch, von Mises stress 

(distributions of effective/fringe stress) of the zygomatic bone was analyzed under the three 

different materials. It was reported that the EPS material was more effective than the other 

two materials for reducing the von Mises stress, and subsequently the amount of injury, to the 

face of the model. Despite these results, a much wider range of material properties can be 

tested to assess concussion risk. Similarly, a number of different headguard materials not 
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analyzed in the aforementioned study can have an effect on these material properties to 

mitigate not only linear acceleration impact but also rotational accelerations and 

consequently, the risk of concussion. 

 Thermoplastic polyurethane. The use of thermoplastic polyurethane (TPU) material 

has been shown in several protective sports headwear models.  Thermoplastic polyurethane  

is a polymer containing a hard segment composed of urethane groups and a soft segment 

composed of polyol (Lin et al., 2017). The TPU compound has the elasticity of rubber and 

the mechanical properties of plastic materials. When used with other materials, TPU has 

demonstrated high tensile and flexural strength making it effective for impact absorption (Lin 

et al., 2017). Several helmet models incorporated TPU material into their design, including 

several NOCSAE-approved helmets (Cournoyer, Post, Rousseau, & Hoshizaki, 2016).  

Previous research has also shown TPU material to be effective for reducing lower 

peak accelerations at lower velocities (Barker et al., 2018). Furthermore, quasi-static testing 

has shown three-dimensional printed TPU to be useful for energy absorption and impact 

protection when compressed given its tailorable and flexible structure (Bates et al., 2019). 

Finally, high velocity impact testing performed in a study by Rizzo et al. (2020) has shown 

that energy absorption and damage mitigation of hybrid structures is optimized when a TPU 

layer is introduced into the lamination sequence. Results of this study found that a reduction 

of at least 54% of absorbed energy, damage extension, and maximum indentation were seen 

in the hybrid structures when a 1 mm thick TPU layer was applied on the impact surface 

(Rizzo et al., 2020).  

Zerpa et al. (2020) examined the effectiveness of TPU material to reduce concussion 

likelihood when incorporated into cycling helmets. To do this, a set of 4.8 m/s impacts to the 

front, side, and rear locations of a NOCSAE headform were conducted with a cycling helmet 

tested with and without TPU material. The study found reductions in peak resultant linear 
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acceleration scores ranging between 8.37% and 25.48% when TPU was used. The study also 

found reductions in GSI scores ranging between 20.97% and 27.62% across impact locations 

with use of TPU. This provides evidence of the effectiveness of TPU to minimize concussion 

risk caused by linear accelerations with use in cycling helmets. 

Impact Testing 

Standards for impact testing of boxing headguards. To date, the standards of 

testing for boxing headguards are very minimal. As noted by Mcintosh and Patton (2015a), 

the AIBA does not specify impact performance tests for head guards nor do they mandate any 

standard. The only standards noted by AIBA are in the construction and dimensions of their 

headguards (AIBA, 2019).  

 The NOCSAE sets out standards for various types of athletic equipment, including 

standards for pneumatic ram testing of protective headgear. Several studies have complied 

with NOCSAE standards in their methods, including studies performed by Jeffries et al. 

(2017a) and Zerpa et al. (2016) but these NOCSAE standards techniques have not been used 

extensively for boxing equipment testing.  

Several standards for tests on the performance of headgear and face guards through 

the use of linear pneumatic ram testing have been identified (NOCSAE, 2018). Pneumatic 

ram, or linear impact testing, has been designed to deliver an impact to a helmeted and 

instrumented headform on a Hybrid III neck (NOCSAE, 2018). This system is designed to 

measure both linear and rotational acceleration through subjecting the headgear to both 

centric and non-centric impacts, ultimately providing evidence regarding the performance 

capacity of the headgear (NOCSAE, 2018). Rotational acceleration is defined by NOCSAE 

(2018, p. 1) as “a measure of impact severity with respect to the peak acceleration 

experienced by the headform measured in radians per second squared (rad/s
2
).” Furthermore, 

NOCSAE (2018) reported that this testing method was a reliable and repeatable measure for 
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evaluating protective headgear. The method was based on pass or fail criteria for Severity 

Index (SI), rotational acceleration, and within specified tolerances for other measures 

(NOCSAE, 2018). 

In describing the test method for pneumatic ram testing, NOCSAE (2018) identified 

that the headgear was positioned on a headform mounted onto a 50th percentile Hybrid III 

neck model that was mounted to a linear bearing table. This assembly was designed to 

replicate and achieve post impact kinematics. To test this, an impactor was propelled at the 

headgear at a velocity within 2% of a specified level over a distance of no more than 2 in. 

(NOCSAE, 2018). With each impact, the resultant peak linear acceleration, SI, and resultant 

peak rotational acceleration was captured (NOCSAE, 2018). 

For impact locations, NOCSAE (2018) identified several impact locations relative to 

the size of the NOCSAE standard headform. For a medium sized headform, side impacts on 

the coronal plane were set to α = 7° and β = -90°. The NOCSAE (2018) also suggested that 

side impacts should be +60 mm on the Z-axis relative to the basic plane. For front impacts in 

the midsagittal plane, NOCSAE (2018) defined that impacts should be positioned at α = 15°, 

β = 0°, and +78 mm on the Z-axis relative to the basic plane.  

The NOCSAE defined headgear impact testing standards for certain sports such as ice 

hockey, football, baseball, and lacrosse; however, no testing standards specific for boxing 

headgear testing have been identified. As a result, little research conforming to the NOCSAE 

standards have been performed to evaluate boxing headguard performance.  

Previous impact test research on boxing headgear. Using a linear impactor, 

Mcintosh and Patton (2015a) tested several AIBA approved boxing headguards to examine 

the effects of the headguards on head impact dynamics and injury risk. Impacts ranging 

between 4.1 and 8.3 m/s were imparted by the impactor comprised of a 4 kg semi rigid fist 

fitted with a glove. These impacts were delivered to the head of a Hybrid III head and neck 
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system equipped with and without a headguard. Significant differences in head impact 

responses were seen between the headguard models in lateral and forehead tests with peak 

contact forces ranging between 1.9 and 5.9 kilonewtons (kN). With an impact speed of 8.3 

m/s, mean peak resultant acceleration was 130 g for bare headform impacts to the forehead. 

Comparatively, the use of the headguard reduced mean peak resultant acceleration to 85 g. 

Additionally, for impacts at a speed of 6.85 m/s to the bare headform, mean peak resultant 

angular head acceleration ranged between 5200 - 5600 rad/s2, which was almost halved by 

the use of the headguard. For 45° forehead and 60° jaw impacts, linear and angular 

accelerations were also reduced with the use of the headguard. The findings of this study 

confirmed that the use of AIBA headguard was useful in reducing the forces that may result 

in concussion in boxing. 

Dau et al. (2006) also examined the ability of boxing headguard to mitigate peak 

rotational head acceleration, peak linear head acceleration, peak punch force, and HIC by 

using a Hybrid III headform model. This study had 27 amateur boxers impact the head of the 

model with a dominant hand hook punch. Similar to the previous study, accelerometers were 

positioned on both the hands of the boxers and on the head of the dummy. This study 

compared the results for boxers of different heights, masses, ages,  and sexes and trials were 

recorded with and without the use of a headguard. The use of a headguard was particularly 

effective for mitigating many of the aforementioned head injury measures. Significant 

decreases were seen in peak rotational acceleration (9164.10 to 5534.78 rad/s2), peak 

resultant acceleration (78.04 to 51.79 g), punch force (4260.51 to 2815.59 N), and HIC 

(79.23 to 47.34) when the headguard was worn by the model. It is important to note that 

despite the significant decreases seen in peak rotational acceleration, the measures found both 

with and without the use of the headguard were still well above the aforementioned threshold 
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of 4500 rad/s2. The findings of this study showed that although the use of a headguard may 

not eliminate concussion in boxing, it is still beneficial for reducing the risk. 

            McIntosh and Patton (2015b) tested the impact energy attenuation ability of boxing 

headguards in a number of drop tests. The study tested seven different commonly used 

training and competition headguards, including two approved by the AIBA. Tests were 

performed by completing repeated drops from different heights against a flat rigid anvil fixed 

with or without a boxing glove. Impacts were imparted on an International Organization for 

Standardization® (ISO®) rigid headform. Peak linear acceleration of the headform was 

measured on the centre forehead and lateral headguard impact areas.  

The effectiveness of the headguard varied by testing condition but the thicker-

designed headguards showed the best performance for 0.4 m (drop height) rigid anvil tests. In 

these tests, the average peak linear headform acceleration was 48 g, significantly less than the 

lowest model, which produced 456 g peak acceleration. As well, deterioration of the 

headguard with repeated drops was found to be reduced when impacted against a glove. 

There was a 72 - 93% reduction in the overall acceleration with the combination of the use of 

gloves and headguard as opposed to only the headguard for 0.6 and 0.8 m drop tests. Overall, 

it was reported that each style and brand of headguard performed differently, showing that 

testing is beneficial for determining the effectiveness of different headguards for competition. 

Of these brands, the Adidas® taekwondo model was the worst performing headguard for 

frontal and lateral drop test, while the Top Ten® AIBA model was superior to the Adidas® 

AIBA model used in the study.  

            O’Sullivan and Fife (2016) also tested the ability of headguards in mitigating the RLA 

of the head when impacted by using the Hybrid III model. The study tested two AIBA 

approved boxing headguards and two World Taekwondo Federation (WTF) approved karate 

headguards to compare the headguards used in each of their respective sports. Impacts were 
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imparted on the head of the Hybrid III dummy at a terminal striking velocity of 5.0 m/s using 

a standardized martial arts head striker. A total of five impacts were imparted to the left side 

of the headguard. The Adidas®  taekwondo headguard was the most useful for limiting 

resultant acceleration (60.5 ± 4.3 g), followed by the Adidas® boxing headguard (75.4 ± 9.9 

g). The findings of this study suggested that there are not significant differences between 

boxing and taekwondo headguard for mitigating RLA and also suggested that different 

models may produce different results with the headguard manufactured by Adidas® 

providing the most protection.  

 To explore linear and rotational impact effects of the boxing glove and headguard 

padding, Bartsch et al. (2012) performed pendulum impacts to a Hybrid III model with hook 

punch impacts at low and high energy levels. From these impacts, five padding conditions 

were analyzed including unpadded (control), mixed martial arts (MMA) glove–unpadded 

head, boxing glove–unpadded head, unpadded pendulum–boxing headgear, and boxing 

glove–boxing headgear. These impacts were used to test the theoretical brain, skull, and neck 

injury risk based on 17 injury risk parameters. It was reported that each of the padding 

conditions reduced linear impact dosage based on the 17 injury risks, but the boxing glove-

headgear condition was the most effective in reducing linear impact dosage. The results of 

this study found that head and neck injury risk accumulated the fastest with less padding on 

the hands and head.  

 Studies published to date have shown strong evidence supporting the use of 

headguards in the sport of boxing. Much of this research can be used to infer that headguards 

perform well to mitigate linear and angular impacts. The literature, however, fails to show a 

strong connection between the performance differences in headguards relating to material 

differences. Specifically, very little research to date has shown the influence of TPU and 

other materials to mitigate head injury risk under different impact conditions.  
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Research Problem 

Despite advances in boxing headguard production, the current literature shows that 

concussions are still highly prevalent in boxing competition, which highlights the need for the 

use of innovative technologies and precautionary measures to be taken to mitigate the risk of 

concussions. The literature also shows that despite the use of TPU material in some helmet 

research studies for different sports (e.g., hockey and cycling) to minimize the magnitude of 

head impacts, no research has been conducted to demonstrate the usefulness of this TPU 

technology in boxing headgear as an avenue to mitigate the risk of concussions. Based on 

these constraints, there is a need to examine the material properties of boxing headguards 

with and without TPU to measure the structural integrity and energy absorption of the boxing 

headgear at different locations. Furthermore, there is a need to understand the impact 

attenuation ability of TPU with the headguard under impact conditions similar to those that 

one would experience in boxing competition. This need includes testing the commercial 

headguards, and TPU-commercial headguard combinations with impacts of different 

velocities and impacts directed at different head locations. This approach may be useful for 

providing evidence of the TPU material effectiveness in mitigating the risk of concussion for 

future headguard production in the sport of boxing.  
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Research Purpose 

Based on the gaps in the existing literature, this study examined the material 

properties of commercial boxing headgear and innovated TPU liner inserts in mitigating 

linear and angular impact kinematics. The study also explored other avenues to assess the risk 

of concussion in the sport of boxing using measures of linear and rotational impacts to the 

head in combination or separately. Specifically, the first purpose of this study was to analyze 

the material properties of TPU and boxing headguards statically to test the energy absorption 

capacity of the material across different boxing headgear locations. The second purpose of 

this study was to examine the effect of headguard type and impact location on measures of 

peak resultant linear acceleration and peak resultant angular acceleration during simulated 

dynamic impacts. The third purpose of the study was to examine the effect of headguard type 

and impact location on head injury risk using measures of linear and rotational impact 

accelerations separately and in combination during simulated dynamic head collisions.  
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Research Questions 

The first purpose of the study was addressed by the following question: 

1) Which boxing headguard (Century® Drive, Adidas®, and TPU-Century® Drive) 

absorbed the most energy when loaded with a compressive and shear force across 

locations (front and side) during static testing? 

 

The second purpose of the study was addressed by the following questions: 

2) Which boxing headguard (Century® Drive, Adidas®, and TPU-Century® Drive) 

would perform better in decreasing linear impact acceleration across different impact 

locations (front, front boss, and side) during dynamic testing? 

3) Which boxing headguard (Century® Drive, Adidas®, and TPU-Century® Drive) 

would be more effective in mitigating angular acceleration at each impact location 

(front, side, front boss, and side) during dynamic testing? 

 

The third purpose of this study was addressed by the following questions: 

4) Which boxing headguard (Century® Drive, Adidas®, and TPU-Century® Drive) 

would perform better at decreasing the risk of head injury due to the effect of linear 

impact acceleration across different headgear locations (front, front boss, and side) 

during dynamic testing? 

5) Which boxing headguard (Century® Drive, Adidas®, and TPU-Century® Drive) 

would perform better at decreasing the risk of head injury due to the effect of angular 

impact acceleration across different locations (front, front boss, and side) during 

dynamic testing? 

6) Which boxing headguard (Century® Drive, Adidas®, and TPU-Century® Drive) 

would perform better at decreasing the risk of head injury due to the shared effect of 
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linear and angular impact accelerations across different headgear locations (front, 

front boss, and side) during dynamic testing? 
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Method 

Instrumentation 

Chatillon TCD1100 Force Tester, and American Mechanical Technology 

Incorporated (AMTI®) Force Plate. The Chatillon force tester and AMTI® force plate 

were used to measure the energy absorption properties of the boxing headguards (Century® 

Drive, Adidas®, and TPU-Century® Drive). The energy absorption of the boxing headguards 

was computed by compressing the sample against the TLC© series load cell. The tester 

compressed the headguards by a given distance. It then uncompressed the materials to the 

undeformed state. The force plate recorded the forces. Plots of compressive force versus 

material compression, and shear force versus shear displacement were obtained for both the 

compressing and uncompressing stages. The enclosed area between the plots was evaluated 

to indicate the energy absorbed. The Chatillon® TCD1100 machine is illustrated in Figure 4. 

 

 

Figure 4: A schematic of the Chatillon® TCD1100 Force Tester (left) and the American 
Mechanical Technology Incorporated (AMTI®) Force Plate (right). Adapted from 
“Chatillon® TCD Series Console, For Use with TCD110, TCD225 and TCD1100 Series 
Digital Force Testers, User’s Guide”, Ametek Inc., 2008, p. 1-2; and “Choosing a Force 
Plate”, Advanced Mechanical Technology Inc., n.d.  

Pneumatic horizontal impactor. The pneumatic horizontal impactor used in this 

study included a large welded steel structure composed of a main frame, linear bearing table, 

and an impacting rod. The subcomponents of the main frame contained a compressed air 
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tank, air cylinder, and air release valve. An MGA-100-A digital pressure gauge© was used to 

fill the air tank with compressed air corresponding to an impact velocity as shown in Table 2. 

When air was released, the air cylinder propelled the impact rod towards the headform of the 

model up to a velocity of 7 m/s (Jeffries et al., 2017a). The impactor rod weighted 13.1 kg 

and it was composed of a cylindrical nylon pad attached to a metal disc. The linear bearing 

steel table designed to secure and position the headform, contained a shuttle plate that moved 

along a 0.49 m track before being stopped by rubber blocks. This movement allowed for the 

simulation of backward movement that might take place during a real-life impact. The shuttle 

table had a mass of 46.6 kg on its own, increasing to 56.1 kg with the standard NOCSAE 

headform in place. Furthermore, weight could be added to the shuttle table to simulate a 

higher body mass (see Figure 5).  

 

Figure 5: A schematic of the pneumatic horizontal impactor. Adapted from “The Use of a 
Pneumatic Horizontal Impact System for Helmet Testing”, L. Jeffries, C. Zerpa, E. 
Przysucha, P. Sanzo, and S. Carlson, 2017, Journal of Safety Engineering, 6(1), p. 8-13. 
Copyright 2017 by Journal of Safety Engineering. 
 

The reliability and validity of this pneumatic horizontal impactor were verified by 

Jeffries et al. (2017b). To test the reliability, 100 impacts were imparted on the headform with 

a helmet and compared even and odd trials for peak linear acceleration across the front, side, 

and rear impact locations. Trials were correlated using an intraclass correlation (ICC) in a 

split-half method. By location, ICC measured ranged between .79-.86, showing consistency 

across locations and consequently high reliability. To show evidence of validation, Jeffries et 
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al. (2017b) compared the impacts of the horizontal impactor to similar impacts of a standard 

NOCSAE drop rig. Trials were conducted with each system using the same impact velocity, 

helmet, and impact anvil materials. The ICC measures across impact locations ranged 

between .85-.95, which showed evidence of concurrent validity.  

 Headform. This study utilized a standard NOCSAE headform. The headform was a 

medium-sized model designed to represent the human head and simulate human mechanical 

responses to movement. The headform was 4.90 kg in mass and was equipped with 

appropriate facial features and bone structures designed to be representative of the 50th 

percentile adult head. As such, it was more anatomically representative of the human head 

than the Hybrid III model that has been used in many of the aforementioned studies (Zerpa et 

al., 2016). The headform was free to move in several directions including forward and 

backward, laterally, up and down, tilting forward and backward, and laterally rotating. The 

headform had accelerometers positioned inside of the head that allowed for linear 

acceleration to be measured in anterior-posterior, superior-inferior, and left-right directions. 

Figure 6 shows the NOCSAE headform that was subjected to impacts in this study. 

 

Figure 6: Mechanical headform and neckform assembly. 
 

Mechanical neckform. The neckform used for this study was designed to represent 

the 50th percentile of a human neck. The neckform was composed of four neoprene discs 

positioned between circular steel discs. The neckform contained component materials used to 
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prevent displacement of the discs. To further prevent displacement, the rubber discs of the 

model had a slight protrusion beyond the metal discs which allowed for a tight compression 

of the discs (Jeffries et al., 2017a). The components of the neckform were held together by a 

top plate and base bracket. The neckform, as shown in Figure 7, was designed with a hole 

through the centre of the discs and large cut outs in each rubber disc on the posterior aspect, 

which helped the neckform to simulate inertial effects of the human neck upon loading 

(Jeffries et al., 2017a, Zerpa et al., 2016). Neckform stiffness levels were manipulated by 

tightening the neck to correspond to different torque values, as determined by Carlson (2016).  

 

 

Figure 7: Mechanical neckform assembly. Adapted from “The Use of a Pneumatic 
Horizontal Impact System for Helmet Testing”, L. Jeffries, C. Zerpa, E. Przysucha, P. Sanzo, 
and S. Carlson, 2017, Journal of Safety Engineering, 6(1), p. 8-13. Copyright 2017 by 
Journal of Safety Engineering. 

Accelerometers, sensors, power supply, and software interfaces. The surrogate 

headform contained a piezoelectric sensor designed to measure the magnitude of impact 

(Jeffries et al., 2017a). A PCB© model 482A04 integrated circuit piezoelectric sensor (ICP) 

amplifier/power supply unit was used to convert analog output signals from the 

accelerometers to digital signals (Jeffries et al., 2017a). This conversion occurred via an 

analog to digital converter from AD Instruments® PowerLab26T (Jeffries et al., 2017a). The 

accelerometers measured acceleration in the superior-inferior, anterior-posterior, and left-
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right directions, noted as Z, Y, and X, respectively (Jeffries et al., 2017a). Acceleration was 

measured at a sampling frequency of 20 kHz and converted to units of gravity (g) (Jeffries et 

al., 2017a). The conversion to g was obtained through the arithmetic function of PowerLab®  

Version 7.3.1 software as shown in Equation 4 (Jeffries et al., 2017a). 

g(i) = Ch(i) /0.01041                    (4) 

where: 

g(i)  = acceleration value for each channel, in g. 

Ch(i)  = channel acquiring acceleration information from X, Y, or Z axis in measures 

of volts; and i represents the axis for each acceleration X, Y, and Z.                                     

           The X, Y, and Z channels were combined to create a resultant acceleration channel 

representing the total magnitude of impact. Furthermore, a 1000 Hz cut-off low-pass filter 

was applied to the resultant acceleration channel to eliminate the effect of high frequency 

noise generated during headform vibrations due to the impacts.  

In addition, a Delsys Trigno™ wireless gyroscope sensor attached to the neckform 

was used to measure the angular displacements of the neck for each impact. The gyroscope 

measured the angular velocity of the head about the Z directions. A magnetometer integrated 

with the gyroscope sensor was used to measure the angular displacements about the X and Y 

directions. The sensors collected the data at a rate of 148 samples per second. All sensors 

were calibrated using an inclinometer placed on top of the surrogate headform.  

To ensure the sensors did not slip when the head was impacted, they were reinforced 

with tape. The following image displays the Delsys Trigno™ wireless gyroscope sensor that 

was placed and taped on the top of the headform for dynamic impact tests. The headform 

with the Delsys Trigno™ wireless gyroscope sensor taped to the top is shown in Figure 8. 
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Figure 8: Delsy’s Trigno™ Wireless Gyroscope Sensor.  
 
 

Headguard models.  The first headguard used in this study was a Century® Drive 

full face headguard. This headguard was composed of polyurethane and polyethylene foam 

outer shell, as well as polyvinyl gel and wool. The ear section of the Century® Drive 

headguard contained only a thin leather covering, with no additional foam padding. The 

Century® Drive model was mounted on the headform and neckform assembly is shown in 

Figure 9.  

 

Figure 9: Century® Drive headguard model. 
 
 

The second model used in this study was an Adidas Response Standard Semi-open 

Experienced Boxing Headguard®. It had an outer shell composed of polyurethane material, 

and an inner layer composed of a high-density foam and I-comfort+ quick dry and anti-slip 
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fabric. The Adidas® model was mounted on the headform and neckform assembly as shown 

in Figure 10 for the dynamic testing. 

 

          
Figure 10: Adidas® headguard model. 
 

Both commercial headguards were composed of an outer shell made from artificial 

leather, so they did not meet the AIBA (2019) requirement of high-grade leather. With this 

said, Adidas®  and Century® Drive produced several models like these that are often used in 

training and competition settings. 

Thermoplastic polyurethane. This study used 3D printed TPU inserts placed as a 

headguard on the headform. This study utilized two small TPU samples, and one large TPU 

sample, decided on the basis of fit within the headguard. The large sample was placed in the 

front location of the headguard, and the two small samples were placed on the front boss and 

side locations of the headguard. The 3D printed TPU inserts are shown in Figure 11.  
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Figure 11: TPU inserts. The three large (left) and small (middle, right) 3D-printed TPU 
inserts used in this study. 
 

When placing the TPU inserts into the Century® Drive commercial headguard, cuts 

were made into the padding of the headguard via the inner felt layer. All interior foam 

padding in each location (front, front boss) was removed to be replaced with a TPU insert, 

with the outer leather shell being kept in place. Only the necessary amount of inner foam 

material was removed from the headgear to firmly fit the TPU insert (see Figure 12).  

 

Figure 12: TPU inserts placed into Century® Drive headguard. Cut Century® Drive 
headguard with a large TPU insert at the front (right) and a small TPU insert at the front boss 
(left) impact locations. 
 

After the TPU was in place, the inner felt leather was re-stitched. The purpose of this 

design was to create a section of the headguard where only TPU would be impacted, and the 

existing impact absorption materials would produce minimal to little effect. For side impacts, 

as the Century® Drive headguard had an open, thin ear covering, no material was cut out, and 

a TPU insert was placed within the opening of this section. Figure 13 displays an image of 

the side (ear) section of the TPU-Century® Drive headguard.  
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Figure 13: Side section of the TPU- Century® Drive headguard. 
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Procedure 

Static testing. All three headguards underwent a static compression test, where the 

Chatillon force tester compressed the headguard to analyze changes in the material 

properties (VanLandingham et al., 2005). Trials were conducted at both the front and side 

locations (Figure 17 and Figure 19, respectively). The Chatillon force tester was modified 

to add a wooden mounting block formation that compressed the material at a 30º angle to 

produce a both a compression and shearing effect. Analyzing both compression and shear 

energy loading better replicates the complex loading situations that a material is subjected to 

in real life cases, with the two more often occurring in combination than individually (Ling et 

al., 2008).  

Furthermore, the top block is equipped with a force sensor that recorded the loaded 

and unloaded forces of the material. The bottom block was connected to an aluminum bracket 

to prevent sliding of the material during testing. Each headguard was fitted between the 

wooden mounting blocks of the machine, shown in Figure 14.   

 

 

Figure 14: Chatillon TCD1100 Force Tester with modified block formation. 
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The Chatillon TCD1100 Force Tester took data of force and displacement (Fv and 

total displacement as shown in Figure 15 below) of the material over the duration of static 

testing. The computation from force and displacement data to energy absorption was 

performed using a number of processes via the MATLAB software. The following free-

body diagram displays the breakdown of forces (shear force T, compressive force N, 

horizontal force FH, vertical force FV) and components of displacement (compression and 

shear displacement) when the material is compressed or uncompressed. These diagrams are 

shown in Figure 16. 

 
 
Figure 15: Free-body diagram (left) and components of displacement (right). 
 

The force capacity of the Chatillon TCD1100 Force Tester was set to 3000 N to 

prevent damaging of the machine. The testing speed was set to 25 mm per minute to ensure a 

slow enough speed for the testing to be considered static. A total of 15 cycles were conducted 

for each location of each headguard (Adidas®, Century® Drive, TPU-Century® Drive) 

respectively. The placement of the Adidas headguard at the front location is shown in 

Figure 16. 



         59 

 
Figure 16: Front static compression test of the Adidas® headguard. 
 

Force and displacement data were extracted across all cycles by the Chatillon 

system. At the same time three force signals, FX, FY and FZ, were obtained from the 

American Mechanical Technology Incorporated (AMTI®) force plate in the X, Y, and Z 

directions. The X and Y force vectors were added together to compute the horizontal 

resultant force vector (FH). The vertical force vector (FV)  was simply the force measured in 

the Z direction. Horizontal force resultant vector (FH) is shown in Equation 5.   

𝐹H = √𝐹X
2 + 𝐹Y

2     (5) 

where: 

FX= force in the x direction 

FY= force in the y direction 

These data were then analyzed using a MATLAB script that calculated the shear 

and compression forces in terms of the horizontal and vertical forces. Shear force (T) and 

compression force (N) were calculated using Equation 6 and Equation 7, respectively. In 

these equations, θ = 30º  is the wedge angle of the wooden mounting block formation. 

𝑁 = 𝐹𝑉𝑐𝑜𝑠𝜃 − 𝐹𝐻𝑠𝑖𝑛𝜃     (6) 

 
𝑇 = 𝐹𝐻𝑐𝑜𝑠𝜃 + 𝐹𝑉𝑠𝑖𝑛𝜃     (7) 
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To evaluate energy absorption, the same MATLAB® script were used to generate 

plots of force vs. displacement, and to calculate the total, compression, and shear energy 

absorptions. Equation 8, Equation 9, and Equation 10 show how energy absorptions were 

determined for the total, compression, and shear, respectively. 

  Total Energy Absorption =
enclosed area of 𝐹𝑧 versus total displacement plot

area under loading plot of 𝐹𝑧 versus total displacement 
      (8) 

Compression Energy Absorption = 
enclosed area of N versus compression plot

area under loading plot of N versus compression 
   (9) 

Shear Energy Absorption = 
enclosed area of T versus shear displacement plot

area under loading plot of T versus shear displacement 
          (10) 

 The force vs. displacement data were used to determine the energy loaded and 

unloaded on the headguard material during the static testing. The percent of energy 

absorption was obtained by dividing the energy unloaded over the energy loaded. 

Dynamic testing. All headguard dynamic tests were performed according to 

NOCSAE standards (NOCSAE, 2018). Headguards used in this study were positioned on a 

headform mounted to a mechanical neckform (NOCSAE, 2018). Neck strength was kept 

constant for all impacts. This neck strength was adjusted  as shown in Figure 20 with a 

calibrated torque wrench between impact locations to maintain the 12-in-lbs strength 

designed to represent the 50th percentile male neck. (NOCSAE, 2018). Impact locations 

complied with NOCSAE (2018) standards for the front, side, and rear impacts on a medium 

sized headform.  

 Impact locations. Impacts were conducted for each of the 18 velocities for the front, 

front boss, and side locations. Impact locations were according to NOCSAE (2018) standards 

for a medium sized headform. Table 1 presents the specific measurements for a medium sized 

headform (NOCSAE, 2018).  
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Table 1 
 
Impact location specifications for a medium-sized headform. 

 
Impact Location α 

 

Β 

 

Z axis relative to 
basic plane 

Y axis 

Front 15 º 0 º +78 mm On the midsagittal plane 

Front Boss 15 º -60 º +73 mm 56 mm anterior to coronal 
plane 

Side 7 º -90 º +60 mm On the coronal plane 

Note. Adapted from “The Effect of Facial Protection, Impact Location, and Neckform 
Stiffness on Peak Linear Acceleration, Risk of Injury, and Energy Loading Measures of 
Horizontal Impacts on a Hockey Helmet”, Jeffries, 2017, p. 78, Master’s thesis, Lakehead 
University. Copyright 2017 by Leigh Jeffries.   

 

For the different locations, the head and neck were rotated on the linear bearing table. 

Figure 17, Figure 18, and Figure 19 display each individual impact location (front, front boss, 

and side), respectively as represented by NOCSAE (2018). 

 

Figure 17: Front Impact Location (NOCSAE, 2018). Adapted from “Standard pneumatic ram 
test method and equipment used in evaluating the performance characteristics of protective 
headgear and face guards”, NOCSAE, 2018, p. 3. Copyright 2018 by NOCSAE. 
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Figure 18: Front Boss Impact Location (NOCSAE, 2018). Adapted from “Standard 
pneumatic ram test method and equipment used in evaluating the performance characteristics 
of protective headgear and face guards”, NOCSAE, 2018, p. 8. Copyright 2018 by NOCSAE. 
 

 

Figure 19: Side Impact Location (NOCSAE, 2018). Adapted from “Standard pneumatic ram 
test method and equipment used in evaluating the performance characteristics of protective 
headgear and face guards ”, NOCSAE, 2018, p. 7. Copyright 2018 by NOCSAE. 
 

 For the trials conducted with the TPU material, impacts were directed at the portion of 

the TPU-Century Drive headguard where the TPU was inserted. These locations remained 

consistent to where the impacts occurred on the commercial headguards. Trials were 
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conducted for 3 headguard types, 3 impact locations, and 18 impact velocities. This design 

resulted in a total of N=162 impacts. 

 Impact velocity. Impacts were conducted at 18 different impact velocities at three 

different impact locations (front, front boss, side). These impact velocities were accomplished 

by adjusting the compressed air pressure to be released from the air tank. The pressure-

velocity formula is shown in Equation 11 (Jeffries et al., 2017a): 

𝑣 = 0.00005𝑝3 − 0.0063𝑝2 + 0.3307𝑝 − 2.9423    (11) 

where: 

p = air pressure, in psi  

v = velocity, in m/s. 

 Air pressure augmented in increments of 2 psi, with corresponding impact velocities 

beginning at 2.01 m/s and increasing at an average of 0.2 m/s to the highest velocity, 5.13 

m/s. Each air pressure and its corresponding impact velocity are shown in Table 2.  

 
Table 2 
 
Compressed air tank pressure of the horizontal impactor and corresponding impact velocity.  
 

Pressure (psi) Impact Velocity (m/s) 

24 2.01 

26 2.14 

28 2.42 

30 2.62 

32 2.83 

34 3.12 

36 3.25 

38 3.47 

40 3.61 

42 3.64 
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44 3.86 

46 3.94 

48 4.11 

50 4.26 

52 4.48 

54 4.56 

56 4.65 

58 5.13 

Note. Adapted from “The Effect of Facial Protection, Impact Location, and Neckform 
Stiffness on Peak Linear Acceleration, Risk of Injury, and Energy Loading Measures of 
Horizontal Impacts on a Hockey Helmet”, Jeffries, 2017, p. 75, Master’s thesis, Lakehead 
University. Copyright 2017 by Leigh Jeffries.   
 

 Neck strength. The neck was torqued to ensure 12 in-lbs of stiffness prior to each 

subset of impacts (18 impacts at each location) for each headguard. This procedure ensured 

that the neck has not been weakened by the prior impacts. In cases where an impact caused 

the headguard to shift or loosen, it was readjusted within the subset of impacts. Figure 20 

displays the method used for adjusting the strength of the neckform, using the torque wrench 

and a load cell.  
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Figure 20: Neck strength adjustment setup. 
 

 Linear acceleration. Linear accelerations in each of the directions (X, Y, and Z) were 

analyzed and displayed in LabChart® using the data obtained from PowerLab® via the 

accelerometers positioned in the headform. The resultant linear acceleration (RLA) was 

calculated within Labchart® using Equation 12.   

RLA =  √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2      (12) 

where: 

ax= linear acceleration in the x direction 

ay= linear acceleration in the y direction 

az= linear acceleration in the z direction 

Additionally, the peak resultant linear acceleration (PRLA) was recorded by the 

Labchart® software. 

 Angular acceleration. To obtain angular acceleration, a set of steps was taken, as the 

measured signals were angular velocity about the Z direction (from the gyroscope) and 

angular displacements about the X and Y directions (from the magnetometer).  

Step 1: The signals obtained from the gyroscope sensor in units of volts and the 

magnetometer in units of microteslas were calibrated and converted to units of degrees.  

Step 2: The angular velocity about Z was numerically integrated to obtain the angular 

displacement about Z. Resultant angular displacement was then calculated using Equation 13. 

 
θ = √θx2 + θy2 + θz2     (13) 

where:  

θx= angular displacement about the X direction 
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θy= angular displacement about the Y direction 

θz= angular displacement about the Z direction 
 
Step 3: Using a MATLAB script, smoothed splines were used to model the individual and 

resultant angular displacements, and angular velocities were then calculated using the 

derivatives of splines.  

Step 4: The smoothed splines and derivatives of splines were repeated on the angular 

velocities to obtain individual as well as resultant angular accelerations. Resultant angular 

acceleration was calculated as a vectorial sum of angular accelerations about the X, Y, and Z 

directions, as shown in Equation 14. 

𝛼 = √𝛼𝑥
2 + 𝛼𝑦

2 + 𝛼𝑧
2          (14) 

where:  

αx = angular acceleration about the X direction 

αy = angular acceleration about the Y direction 

αz = angular acceleration about the Z direction 
 

Risk of injury. GSI was calculated using the RLA measures via a MATLAB script. 

This calculation was done using Equation 2. The equation is restated below.  

GSI = ∫[𝑎(𝑡)]2.5𝑑𝑡

𝑇

0

 

where: 

a(t) = instantaneous resultant linear acceleration of the headform 

T = impulse duration  

 
 To account for the instantaneous angular acceleration experienced by the headform, 

Angular Gadd Severity Index (AGSI) was used as a variable. The AGSI is similar to GSI, 



         67 

where the resultant linear acceleration a(t) is replaced with resultant angular acceleration α(t), 

expressed in radians/s2. In GSI, the linear acceleration a(t) is dimensionless, so for angular 

acceleration α(t) to become dimensionless, it needs to be normalized. The value used for 

normalization in this study was 88 radians/s2. The adjustment was made by taking into 

consideration what the angular acceleration about the centre of mass of the head would be if 

9.81 m/s2 was applied to the top of skull. The adjustment was implemented by dividing the 

linear acceleration on the top of the head (9.81 m/s2 ) by the average distance of 11.15 cm 

measured from the centre of mass of the head to the top of the head (Clauser et al., 1969). 

Equation 15 presents the angular GSI adjustment. 

9.81 m/s2 ÷ 0.1115 m ≈ 88 radian/s2      (14) 

With this adjustment made, pilot data analysis showed AGSI to be highly correlated 

with GSI and GAMBIT. With this established, it was used as a variable in this study. The 

formula for AGSI is shown in Equation 16.  

AGSI = ∫ [
𝛼(𝑡)

88
]

2.5

𝑑𝑡
𝑇

0
      (15) 

where:  

 α(t) = instantaneous resultant angular acceleration of the headform 

T = impulse duration  

 
 To analyze the combined effects of linear and angular forces on the head, GAMBIT 

was also tested. The GAMBIT measures were also calculated with the use of a MATLAB® 

script. The current equation for GAMBIT is shown in Equation 17.  

𝐺𝑚𝑎𝑥(𝑡) = [(
𝑎𝑟𝑒𝑠(𝑡)

250
)

2

+ (
𝛼𝑟𝑒𝑠(𝑡)

25000
)

2

]                                                (16) 

where: 

𝑎𝑟𝑒𝑠(𝑡) = instantaneous value of the resultant translational acceleration 
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𝛼𝑟𝑒𝑠(𝑡) = instantaneous value of the resultant rotational acceleration 

 
 This combination of variables was chosen as they provide a full examination of linear 

and angular impact forces both individually and in combination. Additionally, GSI is a 

variable that is recognized by NOCSAE (2017) for helmet testing. NOCSAE (2017) sets a 

threshold of 1200 as a pass/fail criterion.   

Independent and dependent variables. The independent variables used in the 

analysis of this study were headguard type (Adidas®, Century® Drive, and TPU-Century® 

Drive) and impact location (front, front boss, side). The dependent variables measured and 

analyzed were PRLA (g), peak resultant angular acceleration (radians/s2), Gadd Severity 

Index (GSI), Angular Gadd Severity Index (AGSI), GAMBIT, and energy absorption (%). 

Analysis. A number of different statistical analysis methods were performed to 

address each research purpose, with both inferential and descriptive statistics being tested.  

The first research purpose sought to analyze the material properties of TPU and boxing 

headguards statically to test the energy absorption capacity of the material across different 

boxing headgear locations. To address this question, the numerical integration obtained from 

the Chatillon® force tester was analyzed to evaluate the percentage of compression energy, 

shear energy, and total energy absorbed by each headguard condition. The changes in energy 

absorption (compression, shear, total) across all cycles were compared for each headguard 

condition and each impact location. Additionally, the means of these values were compared 

to show which headguards performed best overall in absorbing energy in static testing.  

The second research purpose sought to examine the effect of headguard type and 

impact location on measures of PRLA and peak resultant angular acceleration during 

simulated dynamic impacts respectively. To address the research questions for the second 

purpose of this study, 3 impact locations (front, side front boss) x 3 headguard types 
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(Adidas®, Century® Drive, and TPU-Century® Drive) two-way independent measures 

ANOVA tests were performed for each dependent variable (PRLA, peak resultant angular 

acceleration) respectively. If an interaction effect was found, the interaction was explained 

using simple main effects via one-way ANOVAs.  If no significant interactions were found 

for a respective dependent variable, the main effects for each independent variable were 

analyzed separately. Posthoc analyses and descriptive statistics were implemented using 

Tukey’s test for mean pair comparison regarding the interactions and main effects.  

The third research purpose sought to examine the effect of headguard type and impact 

location on head injury risk measures during simulated dynamic impacts. To address the 

research questions for the third purpose of the study 3 impact locations (front, side, front 

boss) x 3 headguard types (Adidas®, Century® Drive, and TPU-Century® Drive) two-way 

independent measures ANOVA tests were performed for each dependent variable (GSI, 

AGSI, GAMBIT) respectively. If an interaction effect was found, the interaction was 

explained using simple main effects via one-way ANOVAs.  If no significant interactions 

were found for a respective dependent variable, the main effects for each independent 

variable were analyzed separately. Posthoc analyses and descriptive statistics were 

implemented using Tukey’s test for mean pair comparison regarding the interactions and 

main effects.  
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Results 

The results of this study addressed each research question separately when comparing 

the boxing headgears across impact locations during the static and dynamic testing. The static 

analysis included measures of total, compression and shear energies. The dynamic analysis 

included measures of linear and rotational accelerations. The dynamic analysis also included 

measures of risk of head injury based on measures of linear as well as rotational impacts, and 

their combination. 

 

Static Testing 

 
Research Question 1. Which boxing headguard (Century® Drive, Adidas®, and TPU-

Century® Drive) absorbed the most energy when loaded with a compressive and shear force 

across locations (front and side) during static testing? 

 

 Front static tests. Prior to conducting the static results, the researcher noted 

inconsistent and markedly high energy absorption shown for the 1st cycle across headguard 

conditions. For this reason, the first cycle of each condition was removed and only 14 cycles 

were included in the statistical analysis. The results for the static tests conducted at the front 

headguard location indicated that the TPU-Century® Drive absorbed the highest mean 

percentage of total energy of the three headguards (M=42.38%), followed by the Century® 

Drive (M=31.98%), and then the Adidas® headguard, which absorbed the lowest percentage 

of energy (M=25.71%). Figure 21 shows a representation of the percent of total energy 

absorption when comparing the three headguards at the front location across 14 loading 

cycles.  
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Figure 21: Total percent of energy absorption for the Adidas®, Century® Drive, and TPU-
Century® Drive headguards at the front location during static testing. 
 

 When the amount of energy absorbed was broken into compression and shear 

energies, similar results were found in terms of headgear performance. The TPU-Century® 

Drive absorbed the highest mean percentage of compressive energy (M=46.25%), followed 

by the Century® Drive (M=36.39%), and then the Adidas® headguard, which absorbed the 

lowest percentage of compression energy (M=30.13%). A representation of the percent 

compressive energy absorption at the front location when comparing the three headguards 

across 14 loading cycles is shown in Figure 22.  
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Figure 22: Percent compression energy absorption of the Adidas®, Century® Drive, and 
TPU-Century® Drive headguards at the front location during static testing. 
 

 In terms of shear energy, the TPU-Century® Drive again absorbed the highest 

percentage of shear energy (35.08%) when compared to the Century® Drive (M=22.85%), 

and Adidas® headguard (M=17.63%). A representation of the percent shear energy 

absorption at the front location when comparing the three headguards across 14 loading 

cycles is shown in Figure 23. It is important to note, however, that the percentage of shear 

energy absorbed was lower across all three headguards when comparing it to the percentage 

of compressive energy absorbed. 
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Figure 23: Percent shear energy absorption of the Adidas®, Century® Drive, and TPU-
Century® Drive headguards at the front location during static testing. 
 

Side static tests. The results of the static tests conducted at the side headguard 

location indicated that the TPU-Century® Drive absorbed the highest mean percentage of 

total energy (41.52%) when compared to the Adidas® headguard (M=34.42%), and 

Century® Drive (M=24.01%) headgears. A representation of the percent total energy 

absorption at the side location when comparing the three headguards across 14 loading cycles 

is shown in Figure 24.  
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Figure 24: Total percent energy absorption of the Adidas®, Century® Drive, and TPU-
Century® Drive headguards at the side location during static testing. 
 

 When the energy absorbed was broken into compression and shear energies, the  

TPU-Century® Drive absorbed the highest mean percentage of compressive energy 

(M=48.48%), when compared to the Adidas® (M=40.10%), and Century® Drive 

(M=28.66%) headgear. A representation of percent of compressive energy absorption at the 

side location when comparing the three headguards across 14 loading cycles is shown in 

Figure 25.  
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Figure 25: Percent compression energy absorption of the Adidas®, Century® Drive, and 
TPU-Century® Drive headguards at the side location during static testing. 
 

  Similarly, for the shear energy, the TPU-Century® Drive absorbed the highest 

percentage of energy (29.15%), when compared to the Adidas® headguard (M=22.48%), and 

Century® Drive (M=13.51) headgears. A representation of the percent shear energy 

absorption at the side location when comparing  the three headguards across 14 loading 

cycles is shown in Figure 26.  

It is noted that the percentage of shear energy absorbed was lower across all three 

headguards when comparing it to the percentage of compressive energy absorbed. This was 

similar to the results for the front location. However, at the side location, the Adidas® 

headguard absorbed more energies (total, compression, and shear) than the Century® Drive. 
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Figure 26: Percent shear energy absorption of the Adidas®, Century® Drive, and TPU-
Century® Drive headguards at the side location during static testing. 
 

Dynamic Testing 

Research Question 2. Which boxing headguard (Century® Drive, Adidas®, and TPU-

Century® Drive) would perform better in decreasing linear impact acceleration across 

different impact locations (front, front boss, and side) during dynamic testing? 

 

Linear impact acceleration. Research question 2 sought to explore which boxing 

headguard (Adidas®, Century® Drive, TPU- Century® Drive) performed better in 

decreasing linear impact acceleration across different impact locations (front, front boss, and 

side). The researcher addressed this research question by conducting a 3-headguard 

(Adidas®, Century® Drive, TPU- Century® Drive) X 3-location (front, front boss, and side) 

independent measures ANOVA to examine the interaction effect between headguard and 

location on the measure of PRLA.  
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Before conducting the analysis of variance, the researcher explored SPSS functions in 

combination with the outlier labelling rule (Senthamarai Kannan et al., 2015) to identify 

extreme outliers possibly affecting the homogeneity of variance. The researcher decided to 

remove extreme values beyond two standard deviations from the mean and conducted the 

ANOVA with and without outliers. The analysis revealed that the extreme values did not 

have a significant effect on the PRLA variance for each group. Consequently, the researcher 

did not remove any extreme values from the data.  

 The results of a two-way independent measures ANOVA showed that there was not a 

significant interaction, F(4,153)=1.087, p=.365, between headguard condition (Adidas®, 

Century® Drive, TPU-Century® Drive) and impact location (front, front boss, side) on the 

measure of PRLA. 

 When examining the main effects, however, the results showed that there were 

statistically significant differences, F(2,153)=17.066, p<.05, η2=.182 between headguard 

types (Adidas®, Century® Drive, TPU- Century® Drive) on the measure of PRLA. The 

Tukey’s post-hoc analysis showed statistically significant differences in PRLA measures 

among the different types of headguard at p<.05. The TPU-Century® Drive performed the 

best in mitigating PRLA (M=104.61g, SD=48.39), when compared to the Century® Drive 

(M=182.93g, SD=99.58) and Adidas® (M=184.94g, SD=92.27) at p<.05. The differences in 

performance between the Century® Drive and Adidas®, however, were not significant 

(p>.05). Figure 27 displays a representation of the estimated marginal means of PRLA, 

expressed in g’s, across headguard types. 
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Figure 27: Estimated marginal means of PRLA across headguard types. 
 

 The main effect analysis also showed that there were statistically significant 

differences, F(2,153)=4.237, p=.016, η2=.052, between impact locations (front, front boss, 

side) on the measure of PRLA. The Tukey’s post-hoc analysis showed statistically significant 

differences between the impact locations at p<.05. The PRLA experienced by the headform 

was significantly lower for front boss impacts (M=138.30g, SD=75.43) when compared to 

side impacts (M=182.73g, SD=108.91) at p<.05. The differences in PRLA for front impacts 

(M=151.45g, SD=80.21) compared to front boss and side impacts were determined to be 

statistically insignificant (p>.05).  Figure 28 displays a representation of the estimated 

marginal means of PRLA, expressed in g’s, across impact locations.  
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Figure 28: Estimated marginal means of PRLA across impact locations. 
 
 
Research Question 3. Which boxing headguard (Century® Drive, Adidas®, and TPU-

Century® Drive) would be more effective in mitigating angular acceleration at each impact 

location (front, front boss, side) during dynamic testing? 

 
Angular acceleration. Research question 3 sought to explore which boxing 

headguard (Adidas®, Century® Drive, TPU-Century® Drive) performed better in mitigating 

angular impact acceleration across different impact locations (front, front boss, side). The 

researcher addressed this research question by conducting a 3-headguard (Adidas®, 

Century® Drive, TPU- Century® Drive) X 3-location (front, front boss, and side) 

independent measures ANOVA to examine the interaction effect between headguard and 

location on the measure of peak resultant angular acceleration.  

 The results of the two-way independent measures ANOVA showed a significant 

interaction, F(4,153)=4.103, p=.003, η2=.097, between headguard condition (Adidas®, 

Century® Drive, TPU-Century® Drive) and impact location (front, front boss, side) on the 
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measure of peak resultant angular acceleration. Figure 29 displays a representation of this 

interaction. 

 

Figure 29: Interaction effect of headguard type and impact location on the estimated 
marginal means of angular acceleration. 
 

 The researcher conducted simple main effect analyses to further explain this 

interaction. The researcher began by conducting a set of one-way ANOVA tests to compare 

the three headguard types for each impact location respectively on the measure of peak 

resultant angular acceleration. Similarly, the researcher conducted another set of one-way 

ANOVA tests to compare the three impact locations for each headguard separately.  

  Comparing headguard types for each impact location. The results of the one-way 

ANOVA showed that at the front location, there were significant differences in peak resultant 

angular acceleration, F(2, 51)=6.456, p=.003, η2=.202 among the three headguard types.  

A Tukey’s post-hoc analysis showed that for the front impacts, measures of peak 

resultant angular acceleration were the highest for the Adidas® headguard (M=1209.99 
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rad/s2, SD=840.99) when compared to the Century® Drive headguard (M=713.06 rad/s2, 

SD=431.40) and the TPU-Century® Drive headguard (M=588.15 rad/s2, SD=108.47), at 

p<.05. The differences in performance between the two better performing headguards, the 

TPU-Century® Drive and the Century® Drive, were not statistically significant (p>.05) at the 

front location. Figure 30 displays a representation of the difference in the mean peak resultant 

angular acceleration measure, expressed in rad/s2, across headguard conditions for front 

impacts. 

 

Figure 30: Estimated marginal means of angular acceleration across headguard types for 
front impacts. 
  
 
 At the front boss location, there were not statistically significant differences F(2, 

51)=.153, p=.858, in peak resultant angular acceleration measure between the Century® 

Drive (M=579.57 rad/s2, SD=144.01), Adidas® (M=585.75 rad/s2, SD=89.57), and TPU-

Century® Drive (M=600.30 rad/s2, SD=105.65) headguards.  

At the side location, there were not statistically significant differences, F(2, 51)=.869, 

p=.425, in peak resultant angular acceleration measure between the Adidas® (M=925.98 
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rad/s2, SD=481.02), Century® Drive (M=1135.95 rad/s2, SD=730.42), and TPU-Century® 

Drive (M=1224.07 rad/s2, SD=831.75) headguards.  

Comparing the impact locations for each headguard. For the ANOVAs conducted 

by headguard types, there were significant differences found in peak resultant angular 

acceleration measure across impact locations for the Adidas® headguard F(2, 51)=5.572, 

p=.006, η2=.179.  

The Tukey’s post-hoc analysis showed that for Adidas® headguard, peak resultant 

angular acceleration was lowest for front boss impacts (M=585.74 rad/s2, SD=89.57), when 

compared to front impacts (M=1209.99 rad/s2, SD=840.99), at p<.05. The differences in the 

mean peak resultant angular acceleration measure for side impacts (M=925.98 rad/s2, 

SD=481.02), when compared to front and front boss impacts, were not statistically significant 

(p>.05 for both). Figure 31 displays a representation of the difference in mean peak resultant 

angular acceleration measure, expressed in rad/s2, across impact locations for the Adidas® 

headguard. 

 

Figure 31: Estimated marginal means of angular acceleration across impact locations for 
Adidas® headguard impacts. 
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 Significant differences were also seen in the peak resultant angular acceleration 

measure across impact locations for Century® Drive headguard impacts, F(2, 51)=6.154, 

p=.004, η2=.194. The Tukey’s post-hoc analysis showed that the mean peak resultant angular 

acceleration was significantly higher (p<.05 for both) for impacts at the side (M=1135.95 

rad/s2, SD=730.42) compared to impacts at the front (M=713.06 rad/s2, SD=431.40) and front 

boss (M=579.57 rad/s2, SD=144.01). The differences in front vs. front boss impacts were not 

statistically significant for the Century® Drive headguard (p>.05).  Figure 32 displays a 

representation of the difference in mean peak resultant angular acceleration measure, 

expressed in rad/s2, across impact locations for the Century® Drive headguard. 

 

Figure 32: Estimated marginal means of angular acceleration across impact locations for 
Century® Drive headguard impacts. 
 
  

For the TPU-Century® Drive headguard impacts, significant differences were also 

seen in the peak resultant angular acceleration measure across impact locations, F(2, 

51)=9.993, p<.05, η2=.282. The Tukey’s post-hoc analysis showed that the mean peak 

resultant angular acceleration measure was significantly higher (p<.05 for both) for impacts 
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at the side (M=1224.07 rad/s2, SD=831.74) compared to front boss (M=600.30 rad/s2, 

SD=105.65) and front impacts (M=588.15 rad/s2, SD=108.47). The differences between the 

mean peak resultant angular acceleration measure for front and front boss impacts were not 

statistically significant (p>.05) for the TPU-Century® Drive headguard. Figure 33 displays a 

representation of the difference in mean peak resultant angular acceleration measure, 

expressed in rad/s2, across impact locations for the TPU-Century® Drive headguard. 

 

Figure 33: Estimated marginal means of angular acceleration across impact locations for 
TPU-Century® Drive headguard impacts. 
 
 
 
Head Injury Risk   

Research Question 4. Which boxing headguard (Century® Drive, Adidas®, and TPU-

Century® Drive) would perform better at decreasing the risk of head injury due to the effect 

of linear impact acceleration across different headguard locations (front, front boss, and side) 

during dynamic testing? 
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Gadd severity index (GSI). Research question 4 sought to determine which boxing 

headguard (Adidas®, Century® Drive, TPU-Century® Drive) performed better in decreasing 

the risk of head injury due to the effect of linear impact accelerations across different impact 

locations (front, front boss, and side). The researcher addressed this research question by 

conducting a 3-headguard (Adidas®, Century® Drive, TPU- Century® Drive) X 3-location 

(front, front boss, and side) independent measures ANOVA to examine the interaction effect 

between headguard and location on the measure of GSI.  

The results of the two-way independent measures ANOVA did not reveal a significant 

interaction F(4,153)=.716, p=.582, between headguard condition (Adidas®, Century® Drive, 

TPU-Century® Drive) and impact location (front, front boss, side) on the measure of GSI.   

The analysis of the main effects, however, showed that there were significant 

differences F(2,153)=12.280, p<.05, η2=.138, between headguard types (Adidas®, Century® 

Drive, TPU-Century® Drive) on the measure of GSI. 

 The Tukey’s post-hoc analysis showed statistically significant differences among the 

different types of headguards at p<.05. The TPU-Century® Drive headguard performed the 

best in mitigating GSI (M=348.72, SD=271.50) when compared to the Century® Drive 

(M=853.41, SD=770.14) and Adidas® (M=863.28, SD=701.27), at p<.05. The differences in 

performance between the Century® Drive and Adidas®, were not statistically significant 

(p>.05). Figure 34 displays a representation of the estimated marginal means of GSI across 

headguard conditions.  
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Figure 34: Estimated marginal means of Gadd Severity Index across headguard conditions. 
 

 The main effects test did not show significant differences, F(2,153)=2.695, p=.071 in 

GSI scores across the impact locations, front (M=669.56, SD=607.49), front boss (M=561.04, 

SD=518.24), and side (M=834.81, SD=811.62). Figure 35 displays a representation of the 

estimated marginal means of GSI across impact locations.  



         87 

 

Figure 35: Estimated marginal means of Gadd Severity Index across impact locations. 
 
 
 
Research Question 5. Which boxing headguard (Century® Drive, Adidas®, and TPU-

Century® Drive) would perform better at decreasing the risk of head injury due to the effect 

of angular impact acceleration across different locations (front, front boss, and side) during 

dynamic testing? 

 
 

Angular Gadd Severity Index (AGSI). Research question 5 sought to determine 

which boxing headguard (Adidas®, Century® Drive, TPU-Century® Drive) performed better 

in decreasing the risk of head injury due to the effect of angular impact accelerations across 

different impact locations (front, front boss, and side). The researchers addressed this 

research question by conducting a 3-headguard (Adidas®, Century® Drive, TPU-Century® 

Drive) X 3-location (front, front boss, and side) independent measures ANOVA to examine 

the interaction effect between headguard and location on the measure of AGSI.  
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The results of the two-way independent measures ANOVA showed a significant 

interaction effect, F(4,153)=6.082, p<.05, η2=.137, between headguard condition (Adidas®, 

Century® Drive, TPU-Century® Drive) and impact location (front, front boss, side) on the 

measure of AGSI. Figure 36 shows a representation of this interaction.  

 

Figure 36: Interaction effect of headguard type and impact location on the estimated 
marginal means of Gadd Severity Index 
  

The researcher conducted simple main effect analyses to further explain this 

interaction. The researcher began by conducting a set of one-way ANOVA tests to compare 

the three headguard types for each impact location respectively on the measure of AGSI. 

Similarly, the researcher conducted another set of one-way ANOVA tests to compare the 

three impact locations for each headguard separately. 

Comparing headguard types for each impact location. The results of the one-way 

ANOVA showed that at the front location, there were significant differences in AGSI, F(2, 
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51)=11.795, p<.05, η2=.316 across headguard conditions. A Tukey’s post-hoc analysis 

showed that the Adidas® headguard performed significantly worse (M=44.23, SD=30.07) 

than the TPU-Century® Drive (M=12.42, SD=6.02) and the Century® Drive (M=23.21, 

SD=16.04) headguards (p<.05 for both) at the front location. There was not a significant 

difference between the two better performing headguards, the TPU-Century® Drive, and the 

Century® Drive.  Figure 37 displays a representation of the difference in mean AGSI scores 

across headguard conditions for front impacts.  

 

Figure 37: Estimated marginal means of AGSI across headguard types for front impacts. 
  

At the front boss location, there were not statistically significant differences in AGSI 

measures, F(2, 51)=.217, p=.805, between the Adidas® headguard (M=13.850, SD=9.33), the 

TPU-Century® Drive (M=15.61, SD=9.28), and the Century® Drive headguard (M=15.85, 

SD=16.94).  Similarly, at the side location, there were not statistically significant differences 

in AGSI measures, F(2, 51)=1.844,  p=.169, between the Adidas® headguard (M=23.45, 
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SD=16.77), TPU-Century® Drive headguard (M=36.22, SD=27.10), and Century® Drive 

headguard (M=41.97, SD=40.19). 

Comparing the impact locations for each headguard. Results of a one-way ANOVA 

showed that for Adidas® headguard impacts, there were significant differences between 

impact locations, F(2, 51)=10.497, p<.05, η2=.292, on AGSI scores. For this headguard, a 

Tukey’s post-hoc test showed that AGSI scores were lowest at the front boss (M=13.39, 

SD=9.33), followed by side impacts (M=23.45, SD=16.77), however, these differences were 

not statistically significant (p>.05). Impacts to the front produced significantly higher AGSI 

(M=44.23, SD=30.07) compared to other locations for this headguard (p<.05 for both). 

Figure 38 displays a representation of the estimated marginal means of AGSI for the 

Adidas® headguard across impact locations. 

 

Figure 38: Estimated marginal means of AGSI for Adidas® headguard across impact 
locations. 
 

For Century® Drive impacts there were also significant differences between impact 

locations, F(2, 51)=4.534 p=.015, η2=.151, on AGSI scores. The Tukey’s post-hoc test 
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showed that for this headguard, AGSI was significantly higher (p<.05) for side impacts 

(M=41.97, SD=40.19) compared to front boss impacts (M=15.85, SD=16.94). Differences in 

front impacts (M=23.21, SD=16.04) compared to front boss and side impacts were not 

statistically significant (p>.05 for both). Figure 39 displays a representation of the estimated 

marginal means of AGSI for the Century® Drive headguard across impact locations.  

 

Figure 39: Estimated marginal means of AGSI for Century® Drive headguard across impact 
locations. 
 

For TPU-Century® Drive impacts there were significant differences between impact 

locations, F(2, 51)=10.520 p<.05, η2=.292 on AGSI scores. For this headguard, AGSI scores 

seemed to be the lowest at the front location (M=12.42, SD=6.02), followed by the front boss 

location (M=15.61, SD=9.28), however, the Tukey’s post-hoc test did not find statistical 

significance in the differences between these locations (p>.05). For this headguard, AGSI 

was significantly higher for side impacts (M=36.22, SD=27.10) when compared to impacts at 

the front and front boss (p<.05 for both). Figure 40 displays a representation of the estimated 

marginal means of AGSI for the TPU-Century® Drive headguard across impact locations.  
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Figure 40: Estimated marginal means of AGSI for TPU-Century® Drive headguard across 
impact locations. 
 
 
Research Question 6. Which boxing headguard (Century® Drive, Adidas®, and TPU-

Century® Drive) would perform better at decreasing the risk of head injury due to the shared 

effect of linear and angular impact accelerations across different headguard locations (front, 

front boss, and side) during dynamic testing? 

 
 

GAMBIT. Research question 6 sought to determine which boxing headguard 

(Adidas®, Century® Drive, TPU-Century® Drive) performed better in decreasing the risk of 

head injury due to the shared effect of linear and angular impact accelerations across different 

impact locations (front, front boss, and side). The researcher addressed this research question 

by conducting a 3-headguard (Adidas®, Century® Drive, TPU-Century® Drive) X 3-

location (front, front boss, and side) independent measures ANOVA to examine the 

interaction effect between headguard and location on the measure of GAMBIT.  
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The results of the two-way independent measures ANOVA showed a significant 

interaction effect, F(4,153)=3.510, p=.009, η2=.084, between headguard condition (Adidas®, 

Century® Drive, TPU-Century® Drive) and impact location (front, front boss, side) on the 

measure of GAMBIT. Figure 41 shows a representation of this interaction.  

 

Figure 41: Interaction effect of headguard type and impact location on the estimated 
marginal means of GAMBIT. 
 

The researcher conducted simple main effect analyses to further explain this 

interaction. The researcher began by conducting a set of one-way ANOVA tests to compare 

the three headguard types for each impact location respectively on the measure of GAMBIT. 

Similarly, the researcher conducted another set of one-way ANOVA tests to compare the 

three impact locations for each headguard separately. 

Comparing headguard types for each impact location. The results of the one-way 

ANOVA showed that at the front location, there were significant differences in GAMBIT, 

F(2, 51)=3.513, p=.037, η2=.121 across headguard conditions. A Tukey’s post-hoc analysis 
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showed that the Adidas® headguard (M=.70, SD=.40) performed significantly worse (p<.05) 

in mitigating GAMBIT when compared to the TPU-Century® Drive headguard (M=.39, 

SD=.23). Differences in Century® Drive headguard results at this location (M=.48, SD=.40) 

compared to Adidas® and TPU-Century® Drive headguard results were not statistically 

significant (p<.05 for both). Figure 42 displays a representation of the difference in mean 

GAMBIT scores across headguard conditions for front impacts.

 

Figure 42: Estimated marginal means of GAMBIT across headguard types for front impacts. 
 

 At the front boss location, there were not significant differences, F(2, 51)=1.423, 

p=.250, in GAMBIT measures between the Adidas® (M=.25, SD=.36), TPU-Century® Drive 

(M=.38, SD=.19), and Century® Drive (M=.44, SD=.42) headguards. At the side location, 

significant differences in GAMBIT scores were found across headguard conditions, F(2, 

51)=5.919, p=.005, η2=.188. The Tukey’s post-hoc analysis showed that at the side location, 

the TPU-Century® Drive performed significantly better (M=.41, SD=.23) than the Century® 

Drive (M=.83, SD=.58), and Adidas (M=.85, SD=.42) headguards (p<.05 for both). The 

differences between the Century® Drive and Adidas® headguards were not statistically 
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significant (p>.05). Figure 43 displays a representation of the difference in mean GAMBIT 

scores across headguard conditions for side impacts. 

 

Figure 43: Estimated marginal means of GAMBIT across headguard types for side impacts. 
 

Comparing the impact locations for each headguard. Results of a one-way ANOVA 

showed that for Adidas® headguard impacts, there were significant differences between 

impact locations, F(2, 51)=11.194, p<.05, η2=.305, on GAMBIT scores. The Tukey’s post-

hoc analysis showed that for Adidas® headguard impacts, GAMBIT scores were 

significantly lower at the front boss location (M=.25, SD=.36) compared to the front location 

(M=.70, SD=.40), and the side location (M=.85, SD=.42), (p<.05 for both). The differences 

between GAMBIT scores for the front and side impacts were not statistically significant 

(p>.05). Figure 44 displays a representation of the difference in mean GAMBIT scores across 

impact locations for Adidas® headguard impacts. 
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Figure 44: Estimated marginal means of GAMBIT for Adidas® headguard across impact 
locations. 
 

For Century® Drive impacts, there were significant differences between impact 

locations, F(2, 51)=3.787, p=.029, on GAMBIT scores. Century Drive® headguard impacts, 

GAMBIT scores seemed to be the lowest at the front boss location (M=.44, SD=.42), 

followed by the front location (M=.48, SD=.40). GAMBIT scores seemed to be the  highest 

at the side location (M=.83, SD=.58). The Tukey’s post-hoc analysis showed that for this 

headguard, differences in GAMBIT scores were statistically significant between front boss 

impacts vs. side impacts (p<.05), but not between other locations (p>.05 for both). Figure 45 

displays a representation of the difference in mean GAMBIT scores across impact locations 

for Century® Drive impacts. 
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Figure 45: Estimated marginal means of GAMBIT for Century® Drive across impact 
locations. 
 

 For TPU-Century® Drive impacts, there were not significant differences F(2, 

51)=.119, p=.888, in GAMBIT scores between front boss (M=.38, SD=.19), front (M=.39, 

SD=.23), and side (M=.41, SD=.23) impact locations. 
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Discussion 

 The sport of boxing has historically been considered a dangerous sport, particularly 

due to its concussion risk (Bledsoe et al., 2005), but little equipment interventions are 

enforced to lessen these risks. At this point in time, the primary equipment types for 

concussion prevention are headguards and mouthguards, but little evidence supports the use 

of these to prevent concussions outside of specific sports such as cycling, skiing and 

snowboarding (Daneshvar et al., 2011). No evidence currently exists to explore the use of 

TPU material for concussion mitigation in the sport of boxing.  

 Current commercial boxing headguards are composed of a range of different materials 

and vary in structure, and little standards exist to establish guidelines for their production. 

The AIBA (2019), only requires headguards to contain a high-quality leather outer shell and 

does not state any specific material requirements for inner materials. Consequently, variations 

in inner materials are seen between models. For example, the two commercial headguards 

used in this study, the Adidas® and Century® Drive use materials such as polyurethane, 

polyethylene, and high-density foam.  

 The current study created a modified boxing headguard by inserting 3D printed TPU 

liners into a Century® Drive boxing headguard to explore its capability to mitigate 

concussion risk when compared to two commercial headguards. This TPU material was 

chosen as it has displayed effectiveness for reducing accelerations (Barker et al., 2018). The 

TPU material has also been shown to be useful for energy absorption due to its tailorable and 

flexible structure (Bates et al., 2019).  

Alternatively, little evidence has been shown to support the use of TPU in sport-

specific impact testing, and it has been rarely used in protective headwear despite its 

established benefits. There are a number of ways that headguards and TPU material can be 
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tested. Two common testing methods that were performed in this study are in the form of 

static testing and dynamic testing.  

Static compression testing can be performed with the method of testing stiffness of a 

material. Stiffness is the amount of force needed to achieve a certain deformation of a 

structure (Baumgart, 2000). Stiffness is further described by Baumgart (2000) as being 

quantified by “load” divided by “deformation”. The function of a stiff outer shell of a 

material is to distribute the impact energy over a large area in order to avoid a concentrated 

load (Di Landro et al., 2002). Using energy analysis in place of typical linear acceleration 

measure provides an advantage in that the dynamic response of helmets material properties 

can be analyzed across impact locations (Zerpa et al., 2016). More specifically, this analysis 

accounts for the force generated during an impact as well as the deflection of the helmet 

materials to resist damage caused by the force at each location (Zerpa et al., 2016).  

Dynamic testing is a testing that accounts for a head’s dynamic (or impact) responses 

such as linear and angular accelerations. Taylor et al. (2016) note that finite element 

modelling (FEM) of the brain and data from kinematic response curves of linear and 

rotational accelerations can be key measures of concussion risk. More specifically, these 

measures allow for interpretation of the heads dynamic responses and how this can influence 

strain to brain tissues resulting in injury (Taylor et al., 2016). Dynamic impact testing in this 

context allows for real life impacts that would be seen in a boxing match to be replicated, 

encompassing a wide range of possible conditions. Full analysis of protective headwear using 

dynamic response and brain deformation over the entire helmeted surface is crucial for 

improving helmet technology to reduce concussive injury incidences (Taylor et al., 2016). In 

spite of research showing injury can occur at almost any location on the head, helmet testing 

has often been limited to a single or minimal number of impact areas (Taylor et al., 2016). To 
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address these concerns, the current study utilized multiple impact locations and velocities to 

explore a range of dynamic head responses.  

Static Testing 

 As noted by Di Landro et al. (2002), a stiff outer shell of a helmet allows for 

distribution of impact energy over a large area in order to avoid a concentrated load. As such, 

testing material’s responses to compression through the use of static compression testing can 

provide information on how a boxing headguard is able to absorb energy, as a result reducing 

the stress experienced by the head by a concentrated load. To examine the material’s capacity 

to absorb impacts, Research Question 1 sought to explore which boxing headguard absorbed 

the most energy when loaded with a compressive and shear forces across locations (front and 

side). Static testing results showed that the TPU-Century® Drive headguard was most 

effective in absorbing shear energy, compression energy, and total energy at both locations 

(front, side).  

Front energy absorption. Across 14 static energy loading and unloading cycles at 

the front location, mean energy absorption by the TPU-Century® Drive in terms of total, 

compression, and shear energies was 42.38%, 46.25%, and 35.08% respectively. The 

Century® Drive headguard was the second most effective headguard for total, compression, 

and shear energy absorptions, absorbing an average of 31.98%, 36.39%, and 22.85%, 

respectively across the 14 cycles. The Adidas® headguard was the least effective in energy 

absorption across cycles for these measures, absorbing an average of 25.71%, 30.13%, and 

17.63%, respectively. These findings indicate that the addition of a single TPU insert to the 

front location of the Century® Drive headguard resulted in close to a 10% increase in 

capability of the headgear to absorb total, compression, and shear energies. 

 Side energy absorption. At the side location, the average of 14 energy loading and 

unloading cycles showed that the TPU-Century® Drive was the most effective in absorbing 
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total, compression, and shear energies, absorbing 41.52% , 48.48%, and 29.15%, 

respectively. The Adidas® headguard was the second most effective headguard for at this 

location for total, compression, and shear energy absorptions, absorbing an average of 

34.42%, 40.10%, and 22.48%, respectively across the 14 cycles. The Century® Drive 

headguard was the least effective across cycles for these measures, absorbing an average of 

24.01%, 28.66%, and 13.51%, respectively. Compared to the Adidas headguard®, the TPU-

Century® Drive absorbed an average of over 7% more energy for the side location. The 

addition of a single TPU insert to the Century® Drive headguard’s side location yielded more 

than twice as much shear energy (29.15% versus 13.51%), and more than 15% more total and 

compression energies absorbed.   

 As noted by Zerpa et al. (2016), this type of analysis can provide more information on 

protective headwear’s properties across locations during impacts. Information from these 

types of tests can help equipment manufacturers improve weaker helmet areas to dissipate 

energy, decrease rebound velocity, and minimize brain tissue damage risk when the head is 

impacted (Zerpa et al., 2016). Results from these tests may infer that the Adidas® headguard 

is less effective in absorbing energy at the front, while the Century® Drive is weaker at the 

side. This may highlight that these headguards require improvement at these locations to 

make them safer in reducing loads placed on the head (Di Landro et al., 2002). The 

implications of these results also support the inclusion of TPU material in boxing headguards 

for absorbing impact energy. The TPU material is a relatively light material that did not 

increase or decrease the size or shape or weight of the Century® Drive headguard upon being 

added. As shown by the static testing results, TPU inclusion in the Century® Drive 

headguard resulted in marked improvements in shear and compression energy absorptions 

across both locations (front, side). These findings parallel the research presented by Bates et 
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al. (2019) and Rizzo et al. (2020), which showed TPU material to be useful for energy 

absorption. 

Dynamic Testing 

 Analysis of kinematic response such as linear and rotational accelerations provide an 

interpretation of the head’s dynamic responses and how these influence brain tissue injury 

risk (Taylor et al., 2016). The current study utilized a number of dynamic impact conditions 

to measure head injury risk through the use of linear and angular (rotational) accelerations as 

well as several specific injury risk measures. 

Linear acceleration. To explore linear impact effects, Research Question 2 sought to 

determine which boxing headguard (Century® Drive, Adidas®, and TPU- Century® Drive) 

would perform better in decreasing linear impact acceleration across different impact 

locations (front, front boss, and side) during dynamic testing. There was not a significant 

interaction between headguard type and impact location on the measure of PRLA (p>.05). 

These results suggest that the headguards do not perform differently based on impact location 

for minimizing PRLA of the head. Additionally, there was not a significant main effect when 

exploring the differences between impact locations on the measure of PRLA. These findings 

suggest that impact locations, specifically front, front boss, and side, do not significantly 

influence linear motion of the head when impacted.  

 Significant main effects were seen across headguards on the measure of PRLA 

(p<.05). The TPU-Century® Drive headguard performed significantly better than the 

Century® Drive headguard and the Adidas® headguard when observed across impact 

locations collectively (p<.05). When compared to the Century® Drive and Adidas® 

headguards, which produced very similar average PRLA results (182.93g vs. 184.94g, 

respectively), the TPU-Century® Drive headguard reduced PRLA by more than 40%. This 

finding suggests that the use of TPU material in boxing headguards can produce meaningful 
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reductions in concussion risk due to linear accelerations. Mcintosh and Patton (2015b) 

previously showed Adidas® headguards to perform poorly in reducing acceleration in drop 

tests. Alternatively, O’Sullivan and Fife (2016) found Adidas® headguards to be stronger in 

linear acceleration mitigation compared to other headguards. O’Sullivan and Fife’s (2016) 

study, however; noted that all headguards tested failed the American Society for Testing and 

Materials (ASTM) RLA threshold of 150g. In the current study, the Adidas® and Century® 

Drive headguards failed this threshold as well, while the TPU-Century® Drive performed 

better and passed the threshold value  below what is recommended by ASTM  (M=104.61g, 

SD=48.39). These findings also build on the work of Barker et al. (2018), who found TPU to 

be effective at reducing lower accelerations at low velocities. The current study showed TPU 

to be effective across a wide range of impact velocities. These findings seem novel in the area 

of boxing headguard testing, highlighting the effectiveness of TPU in reducing concussion 

risk caused by linear accelerations. Further analysis of the TPU-Century® Drive headguard 

showed that PRLA was mitigated below the ASTM threshold across all locations. This 

further outcome proves the effectiveness of TPU, showing that its PRLA mitigation benefits 

are not location-dependent, but rather that it is effective at all locations.  

Although rotational accelerations, or a combination of rotational and linear 

accelerations, are more significant indicators of concussion risk, linear acceleration alone is 

still a good predictor of peak pressure occurring within the brain (Meaney & Smith, 2011). 

As noted with static testing, dissipation of energy over a materials surface results in less 

concentrated loads placed on the head (Di Landro et al., 2002). Subsequently, it can be 

suggested that the increased absorption capability of the TPU-Century® Drive headguard 

may have influenced the reductions in PRLA of the head when impacted.  

 GSI. This measure integrates acceleration over time, providing an accurate head 

injury risk assessment that can be replicated under different impact conditions (NOCSAE, 
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2017). As GSI is the measure of instantaneous resultant linear acceleration of the head (see 

Equation 2), analysis of GSI measures produced similar results to PRLA. To analyze this risk 

measure, Research Question 4 sought to determine which boxing headguard (Century® 

Drive, Adidas®, and TPU-Century® Drive) would perform better at decreasing the risk of 

head injury due to the effect of linear impact acceleration across different headguard 

locations (front, front boss, and side). There was not a significant interaction effect between 

headguard type and impact location on the measure of GSI, nor a significant main effect 

between impact location on the measure of GSI (p>.05 for both). As shown with linear 

acceleration, this finding suggests that head injury risk from linear forces is not location 

dependent. More specifically, it suggests that when the head is impacted at the front, front 

boss, or side, there is not significant changes in concussion risk from a linear motion alone. 

With this said, this contrasts previous research indicating that direction of strain has a strong 

effect on damage to brain structures (Gennarelli et al., 1982; Meaney & Smith, 2011). This 

suggests that the lack of differences across locations is more driven by similarities in 

performance across locations for each headguard than through the dynamics of the headform 

itself.  

 Significant differences in GSI measures were shown between headguard conditions 

when exploring headguard performance across all impact locations collectively. As was seen 

with PRLA, the TPU-Century® Drive headguard performed significantly better than the 

Adidas and Century® Drive headguards (p<.05), with the latter two not performing 

significantly differently (p>.05). The TPU-Century® Drive headguard exhibited nearly a 

60% reduction in average GSI when compared to the other two headguards. To create a more 

simplified expression of linear testing results, Table 3 displays the significant main effect test 

results for linear impact measures (PRLA, GSI).  
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Table 3 
 
Results for significant main effect tests for linear impact measure testing. 
 

Dependent 
measure 

Independent 
measure Significance Most effective 

headguard 
Relevant figure  

PRLA Headguard 
Type 

Significant TPU-Century® Drive  Figure 27 

GSI Headguard 
Type 

Significant TPU-Century® Drive  Figure 34 

 

When comparing GSI measures to the threshold of 1200 GSI stated by NOCSAE 

(2017), the Adidas® headguard had n=18 impacts that surpassed this threshold, including 

cases at all 3 impact locations. The Century® Drive headguard surpassed this threshold in a 

total of n=17 impacts, with cases of this also occurring at all 3 locations. There were no 

impacts beyond this threshold with TPU-Century® Drive headguard trials, with the highest 

GSI measure recorded being GSI=949.06 when this headguard was used. This finding 

suggests a strong and consistent influence of TPU material on reducing concussion risk 

occurring from linear forces. This outcome may imply that several incidences of possible 

concussive impacts would be mitigated if TPU material was used in the headguard. As such, 

TPU material may have a significant effect in reducing strain posed by linear impacts onto 

the brain. The reductions in GSI found with use of TPU parallels the findings of Zerpa et al. 

(2020), who found TPU to provide significant GSI reductions when used in cycling helmets. 

With this, it can be suggested that TPU material should be incorporated into headguard 

design at the front, front boss, and side to reduce the risk of concussion risk caused by linear 

forces. 

 Angular acceleration. Results of analysis of angular forces imparted on the headform 

revealed more varying results across headguard types and impact locations. Angular 

acceleration of the head causes a “jarring” effect of the head, producing more deformation in 
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the brain than this type of force would in other tissues of the body (Meaney & Smith, 2011). 

Again, rotational accelerations are stronger predictors of concussion than linear accelerations 

(Meaney & Smith, 2011). To explore this, Research Question 3 sought to determine which 

boxing headguard (Century® Drive, Adidas®, and TPU-Century® Drive) would be more 

effective in mitigating angular acceleration at each impact location (front, front boss, side).  

The results of this study revealed a significant interaction between headguard type and 

location on the measure of peak resultant angular acceleration. When evaluating this 

interaction by individual location, significant differences were seen between headguards for 

front impacts. For front impacts, the Adidas® headguard performed significantly worse than 

the Century® Drive and TPU-Century® Drive. Front boss and side impacts did not produce 

significant differences between headguards.  

When comparing impact locations for each individual headguard, all 3 headguards 

yielded significant differences between locations. For the Adidas® headguard, impacts to the 

front produced significantly higher mean peak resultant angular acceleration measures 

compared to impacts to the front boss. The combination of the last two findings suggests poor 

frontal impact protection ability of the Adidas® headguard. The researcher noticed 

weakening and deterioration of the Adidas® headguard’s front material across the higher end 

of impact velocities. Additionally, a marked increase was seen between two consecutive 

impacts at velocities of 3.86 m/s and 3.94 m/s, where peak resultant angular acceleration 

doubled from 647.55 rad/s2 to 1712.11 rad/s2  respectively. This increase in peak resultant 

angular acceleration for Adidas® front impacts was maintained as impact velocities 

continued to increase. This outcome may highlight a lack of durability of the front protection 

materials of the Adidas® headguard and may indicate that it is unable to withstand impacts at 

higher velocities.  
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 For both the Century® Drive and TPU-Century® Drive headguards, side impacts 

produced significantly higher mean peak resultant angular acceleration values than front and 

front boss impacts. For both of these headguards, front boss and front impacts were not 

significantly different. Although side impact performance for these headguards were not 

significantly different from the Adidas® headguard, this finding suggests that the advantages 

provided by these headguards for front impacts is not shared for side impacts. When 

comparing these results to the threshold of 4500 rad/s2 of angular acceleration noted by 

Ommaya et al. (2002), the current study found no impacts resulted in angular acceleration 

that came even close to meeting this threshold. These findings build on the research of 

Mcintosh and Patton (2015a), as well as Dau et al. (2006), who both found significant 

reductions in angular acceleration on headguard impacts compared to bare head impacts. Dau 

et al. (2006) tested angular acceleration when a headform was impacted with a hook punch. 

Consequently, their study found much higher peak angular acceleration measures than the 

current study, with Dau et al. (2006), finding the measure to surpass the 4500 rad/s2 threshold 

even with the use of a headguard. This outcome may infer that more rotational forces are 

placed on the head with a “hook” impact as opposed to a straight impact, with the latter being 

used in the current study. Nonetheless, the current study further builds on previous research 

by showing significant benefits in mitigating angular acceleration through the use of the 

Century® Drive and TPU-Century® Drive headguards. It is also important to note that 

although Mcintosh and Patton (2015a) and Dau et al. (2006) used higher upper end impact 

velocities (8.43 m/s and 9.57 m/s, respectively) than the current study (5.13 m/s), the current 

study used a much heavier impact instrument. Mcintosh and Patton (2015a) used a 4 kg semi 

rigid fist model, while Dau et al. (2006) used human punches, with the average adult arm 

being 5.335 kg (Plagenhoef et al., 1983). With this study using a 13.1 kg impacting rod, the 

peak momentum (the product of mass times velocity) placed on the head is actually higher 
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for this study than the two aforementioned studies, despite having lower peak impact 

velocities. As such, these findings further suggest that the headguards, particularly the 

Century® Drive and TPU-Century® Drive, maintain their effectiveness in mitigating angular 

acceleration of the head at higher impact momenta.  

AGSI. This measure integrates angular acceleration over time to provide an injury 

risk assessment, resulting from head rotation. As such, Research Question 5 sought to 

determine which boxing headguard (Century® Drive, Adidas®, and TPU-Century® Drive) 

would perform better at decreasing the risk of head injury due to the effect of angular impact 

acceleration across different locations (front, front boss, and side). The results of this analysis 

revealed a significant interaction between headguard and impact location on the measure of 

AGSI. This implies that differences in headguard performance are seen at different impact 

locations for mitigating AGSI.  

When evaluating this interaction by individual location, significant differences were 

seen between headguards for front impacts. For front impacts, the Adidas® headguard 

performed significantly worse than the TPU-Century® Drive and Century® Drive 

headguards, with the latter two headguards not performing significantly differently. 

Significant differences were not seen in AGSI measures between headguards at the front boss 

or side location.  

When comparing impact locations for each individual headguard, all 3 headguards 

yielded significant differences between locations. When isolating results for the Adidas® 

headguard alone, impacts to the front produced significantly higher AGSI measures when 

compared to front boss or side impacts, which were not significantly different. The 

combination of these two findings, as with the peak resultant angular acceleration, suggest 

that the Adidas® headguard performs poorly for front impacts when compared to the 

Century® Drive and TPU-Century® Drive. This outcome may highlight a weakness in the 
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protective capability of the front material and design of the Adidas® headguard. Similar to 

the linear impact results, a marked increase was seen in Adidas® AGSI measures for front 

impacts towards the upper end of impact velocities. This outcome may again infer issues with 

durability and high velocity impact performance with the Adidas® headguard.  

 When isolating AGSI results for the Century® Drive headguard, side impacts 

produced significantly higher mean peak resultant angular acceleration measures when 

compared to front boss impacts. Front impacts were not significantly different from front 

boss or side impacts. AGSI measures were significantly higher than front and front boss 

impacts for the TPU-Century® Drive, with the latter two not being significantly different. 

These findings again display poor performance in the sides of the Century® Drive and TPU-

Century® Drive headguards when compared to other areas of the headguards. Impacts to the 

side of the head represent an impact in the coronal plane, which has shown to produce the 

most damage to the internal structures of the brain (Gennarelli et al. 1982). These types of 

side impact, in addition to all other impact locations used in the current study, are deemed 

legal strike locations by the AIBA (2019). With this considered, the TPU design structure 

may need to be adapted to provide better protection to the side of the head. For example, 

having the TPU material cover a larger area of the side of the head may be able to better 

reduce the rotational forces placed on the head by side impacts.  

These results do not determine a headguard that is consistently better or worse in 

mitigating angular impact effects across all locations. However, a theme emerges that the 

Adidas headguard is worse in mitigating angular effects for front impacts, particularly at 

higher velocities. Another emerging theme is that the TPU-Century® Drive headguard and 

the Century® Drive construction are less effective for reducing angular impact effects at the 

side when compared to the front and, in most cases, the front boss. Furthermore, the lack of 

significant difference between the Century® Drive and TPU-Century® Drive performance in 
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peak resultant angular acceleration and AGSI suggest that the TPU material may not be as 

effective for mitigating angular impact forces as it is for linear forces. As previous literature 

has been more focused on the linear impact mechanics of TPU, and has not examined 

extensively the angular impact mechanics, this represents relatively novel information. Future 

research should look to further explore the angular dynamics of TPU when impacted. 

Nonetheless, when looking at the differences in the angular acceleration measure in the 

headguards alone, O’Sullivan and Fife (2016) also noted significant differences in headguard 

performance across impact locations. This outcome may be due to the differences in structure 

and design of the headguards at different locations, with both headguards in this study 

providing more protection at the front and front boss as opposed to the side (see Figures 9, 

10, and 13).  

GAMBIT. When assessing concussion risk, evaluating linear and rotational 

acceleration impact effects individually is useful; however, concussions more commonly 

occur from these two accelerations in combination (Meaney et al., 1995). The measure of 

GAMBIT provides an injury risk index that incorporates both linear and angular accelerations 

(see Equation 3). With this considered, Research Question 6 sought to determine which 

boxing headguard (Century® Drive, Adidas®, and TPU-Century® Drive) would perform 

better at decreasing the risk of head injury due to the shared effect of linear and angular 

impact accelerations across different headguard locations (front, front boss, and side). A 

significant interaction effect was seen between headguard type and impact location on the 

measure of GAMBIT.  

 When evaluating this interaction by individual location, significant differences were 

seen between headguards for front and side impacts, but not for front boss impacts. For front 

impacts, the TPU-Century® Drive headguard performed significantly better than the 

Adidas® headguard. These findings further display poor performance for front impacts by the 
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Adidas® headguard. For side impacts, the TPU-Century® Drive headguard performed 

significantly better than both the Century® Drive and Adidas® headguards, which were not 

significantly different from one another. These findings indicate that the addition of TPU into 

a headguard is advantageous for mitigating the combination of angular and linear acceleration 

at the side. While the Century® Drive and TPU-Century® Drive headguards were not 

significantly different for front impacts, these headguards did both provide a significant 

advantage at the front in mitigating this combination when compared to the Adidas®. The 

advantages offered by the TPU material for side impacts were seen in the PRLA results, but 

not as much in the peak resultant angular acceleration results. As such, the reduction in 

GAMBIT offered by TPU material is likely driven by its linear impact effect performance.  

When comparing impact locations for each individual headguard, the Adidas® and 

Century® Drive headguards yielded significant differences between locations, while the 

TPU-Century® Drive headguard did not. For Adidas impacts, front boss impacts produced 

significantly lower mean GAMBIT values than front and side impacts, which were not 

significantly different. This outcome is relatively similar to the simple main effect results of 

peak resultant angular acceleration and AGSI, where each measure showed front boss 

impacts to be significantly lower than front impacts. On the Adidas® headguard, slight ridges 

on the padding can be observed near each side of the front boss location, where there is a 

very small increase in the thickness of the padding covering each temple area. Although this 

detail of the padding is very small, it might be a factor that contributed to the significant 

reductions seen in GAMBIT measures for the front boss.  

For the Century® Drive headguard, front boss impacts produced significantly lower 

GAMBIT values when compared to side impacts. This finding is relatively similar to the 

Century® Drive results for peak resultant angular acceleration, where the headguard 

produced significantly higher GAMBIT at the side when compared to front and front boss. It 
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is also similar to the AGSI results, where side impacts again produced significantly higher 

results at the side when compared to front boss. The combination of these results consistently 

shows weaker side impact performance for the Century® Drive headguard. Significant 

differences in both linear and angular acceleration between impact locations were also seen in 

the study by O’Sullivan and Fife (2016). This may highlight an issue in the lack of 

standardization of boxing headguards, showing the need for impact absorption to be 

relatively consistent across the headguard. Similarly, Zerpa et al. (2020) noted differences in 

linear concussion risk mitigation across locations with the use of TPU in cycling helmets. 

Zerpa et al. (2020) also found lesser results of TPU at the side location compared to other 

locations. Similarly, Zerpa et al. (2020) noted that this may be due to geometrical differences 

in the helmets. It is important to note that, although the Century® Drive headguard 

consistently performed worse at the side, its side performance is not significantly worse than 

that of the Adidas® headguard. That is, the decreases in performance seen for side impacts do 

not suggest it is an inferior headguard for side impact protection, but rather that it is not as 

effective at the side in comparison to its other locations. The decrease in effectiveness at the 

side however is still a cause for concern due to the aforementioned increased strain placed on 

the brain by coronal plane impacts (Meaney et al., 1995). This outcome may highlight the 

need for further development of headguard padding to more closely resemble the padding 

offered at the front and front boss locations. As the side padding of both headguards used in 

this study is thinner and more open than the front and front boss padding, this may be where 

the issue stems from. Table 4 displays a simplified expression of the interaction tests for 

headguard type and impact location on measures of peak resultant angular acceleration, 

AGSI, and GAMBIT. Results are shown for all differences between headguards and noted 

where these differences were deemed significant.  
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Table 4 
 
Interaction tests for headguard type and location on measures of angular acceleration, AGSI, 
and GAMBIT. 
 

Dependent 
measures 

Interaction 
significance 
(headguard 
*location) 

Most effective headguard by location 

Front Front boss Side Relevant 
figure 

Angular 
Acceleration 

Significant TPU-
Century® 

Drive 

Century® 
Drive 

Adidas® Figure 29 

AGSI Significant TPU-
Century® 

Drive 

Adidas® Adidas® Figure 36 

GAMBIT Significant  TPU-
Century® 

Drive 

Adidas® TPU-
Century® 

Drive 

Figure 41 

Note: Bolded TPU headguard denotes which location the TPU performed 
better than the others. 

 

 

 As can be seen in this table, the only cases that showed significant differences 

between headguards were those where the TPU-Century® Drive was the top performing 

headguard. This highlights several examples of locations and variables where the TPU-

Century Drive headguard offered a significant advantage over at least one of the other 

headguards. This result builds on previous research that has shown TPU material to have 

positive effects in mitigating linear acceleration and linear injury risk measures (Zerpa et al., 

2020; Barker et al., 2018). In addition to providing these benefits, the addition of TPU into 

the boxing headguard also provides a benefit when the linear and angular forces are both 

considered. This demonstrates its effectiveness in a novel and more complex concussion risk 

context. The importance of this finding is supported by the idea that concussions occur 

primarily from combined angular and linear forces as opposed to linear or angular force 

individually (Meaney et al., 1995). 
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The thresholds for GAMBIT noted by Newman et al. (1999) suggest that a GAMBIT 

score of g=1 corresponds to a 50% chance of AIS=3 (serious head injury), while a score of 

g=0.4 corresponds to a 50% chance of AIS=1 (minor head injury). Mean GAMBIT results 

showed that the Adidas® headguard surpassed the 0.4 threshold for front (M=.70, SD=.40) 

and side impacts, falling well under it for front boss impacts (M=.25, SD=.36). Again, this 

highlights the advantages of the front boss protection of the Adidas® headguard in 

comparison to its other locations. The Century® Drive headguard surpassed the 0.4 threshold 

at the front (M=.48, SD=.40), front boss (M=.44, SD=.42), and side (M=.83, SD=.58). The 

TPU-Century® Drive headguard was below the threshold for front (M=.39, SD=.23) and 

front boss (M=.38, SD=.19). The TPU-Century® Drive headguard was just above the 

threshold for side impacts (M=.41, SD=.23). With this said, as previously stated, this was still 

significantly lower than the mean GAMBIT values produced at the side in Century® Drive 

and Adidas® Drive impacts. In addition to this, when looking at individual impacts, several 

cases went above the g=1 threshold (corresponding to a 50% chance of serious head injury) 

for the Adidas® headguard (n=14) and Century® Drive headguard (n=13). Alternatively, no 

cases of TPU-Century® Drive went beyond this threshold. This finding infers a strong and 

consistent ability of the TPU material to mitigate concussion risk. Despite the TPU having 

better ability in mitigating linear forces compared to angular ones, its GAMBIT measures 

show that it is capable of reducing concussion risk as a whole when the two forces are 

collectively considered by one measure. The benefits of TPU material shown in this study 

resemble the research presented by Zerpa et al. (2020), Barker et al. (2018), and Rizzo et al. 

(2020), which showed benefits of TPU in impact protection. As such, the findings of this 

study provide positive evidence in support of the use of TPU in boxing headguards, showing 

it to be an effective concussion risk mitigation tool in many different aspects. This highlights 

a possible avenue for further concussion research and suggests that TPU should be 



         115 

incorporated into commercial boxing headguard designs at the front, front boss, and side 

locations.  
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Conclusion 

 With previous research displaying a lack of conclusive evidence regarding the 

benefits of boxing headguards, a lack of enforcement of headguard use has been seen in 

boxing competition (Dickinson & Rempel, 2016). With this considered, this study attempted 

to explore how different boxing headguards performed at different impact locations in 

mitigating a number of injury risk measures. This study also attempted to explore the effect 

of thermoplastic polyurethane (TPU) material in mitigating these measures when introduced 

into a commercial headguard. These variables were tested through static and dynamic 

measures, with dynamic testing utilizing a headform and neckform assembly designed to 

accurately simulate the human response to impact. Using a number of impact velocities and 

impact locations, the testing was designed to replicate the types of striking situations to which 

a boxer may be subjected in a real bout. Three boxing headguards were compared across 

locations (front, front boss, side), these being an Adidas® headguard, a Century® Drive 

headguard, and a TPU-Century® Drive headguard.   

The results of this study showed the addition of TPU to the headguard to be effective 

in lowering linear concussion risk indexes, these being PRLA and GSI. The TPU was also the 

most effective in absorbing energy, suggesting its material properties are beneficial for 

reducing concentrated loads to the head (Di Landro et al., 2002). The TPU also produced 

significant reductions in measures of GAMBIT, a concussion risk index that accounts for 

both linear and angular accelerations. Results for peak resultant angular acceleration, AGSI, 

and GAMBIT were dependent on impact location, suggesting angular forces are more 

dependent on where the headguards are struck. Differences in GAMBIT were also location 

dependent, with the addition of TPU to the commercial headguard offering significant 

reductions at the front and side locations. The TPU-headguard combination produced no 

incidences where it surpassed the NOCSAE (2017) threshold for GSI, nor ever surpassing the 
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serious concussion risk threshold for GAMBIT established by Newman et al. (1999). 

Alternatively, several incidences where these thresholds were surpassed were seen in the two 

commercial headguards. This outcome suggests several possible concussion incidences that 

may have been mitigated by the use of TPU. These findings show significant benefits of the 

TPU material when used in a boxing headguard, primarily for limiting linear forces placed on 

the head (Newman, 1986).  

This study expands on the work of several previous researchers as it sought to provide 

a more extensive examination on concussion risk mitigation of boxing headguards. For 

example, it expands on the work of Mcintosh and Patton (2015a), as well as Dau et al. 

(2006), who explored the effectiveness of boxing headguards in mitigating angular and linear 

impact measures. The current study built on this literature by incorporating the use of TPU 

material, as well as a wider range of impact velocities and a more complex injury risk 

measure, this being GAMBIT. Furthermore, this study expands on the work of Zerpa et al. 

(2020), as well as Barker et al., (2018), who provided evidence of the effectiveness of TPU 

material in mitigating linear acceleration. The current study builds on this by exploring the 

effectiveness of TPU in mitigating angular forces and injury risk measures that represent a 

combination of linear and angular forces. This outcome provides an avenue for future 

research in regard to TPU use in boxing headguards and may suggest for equipment 

manufacturers to start to incorporate TPU into headguard design.  

Strengths 

 The introduction of TPU material into the boxing headguard is the primary strength of 

this study. Despite its established benefits, concussion research using TPU has been relatively 

limited, and no research has integrated it into boxing headguard testing. Static and dynamic 

testing showed a number of advantages provided by the TPU material, primarily with linear 

forces.  
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 Another strength of this study was the range of impact conditions and concussion risk 

measures included. Inclusion of multiple impact locations and a wide range of impact 

velocities created a closer replication of impacts that occur in a real boxing match. Use of 

both accelerometers and gyroscope sensors allowed for both translational and rotational 

movements of the head to be analyzed, also more closely resembling the combination of head 

motions that a boxer would sustain when struck. Analysis of the GAMBIT variable allowed 

for these measures to be analyzed in a combined injury risk index that has not been 

commonly used in previous headguard research. 

Limitations  

 This study also faced a number of limitations that future research should look to 

explore. Physical constraints of the pneumatic impactor prevented the usage of impact angle 

as a variable. As such, the range of head movement in boxing that results in the head being 

struck at different angles could not be accounted for. Additionally, the physical shape of the 

impactor rod did not permit the use of a boxing glove in impacts. Although this study did not 

require the inclusion of a boxing glove as the aim was to compare different headgear, for 

future research the impacting rod may need to be modified to attach a boxing glove to 

replicate different mechanisms of injury in the sport of boxing. Alternatively, not including a 

boxing glove when comparing different headguards is better for reliability tests and would 

ensure more consistent impacts across conditions.  

 Another limitation of the study was the stiffness of the neckform. The neckform was 

adjusted to represent the 50th percentile male neck. As such, the findings of this study more 

closely replicate results for males and may differ for female subjects.  

 Furthermore, the method of insertion of the TPU inserts into the boxing headguard 

may represent a reliability concern. The researcher had to cut out the padding of the 

Century® Drive headguard to fit the inserts into the front and front boss, and simply fit the 
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insert into the gap of the ear padding. With this lack of design standardization, it is difficult to 

determine if results would have changed if the inserts were placed differently within the 

headguard. With this said, the researcher attempted to have the TPU inserts as the primary 

point of contact when this headguard was being impacted.  

 The final limitation of the study was the possible movement of the wireless gyroscope 

sensors. Due to the physical construction of the sensors, they had to be held onto the head 

with a tape, and as such, it cannot be guaranteed that they were not loosened or dislodged 

across impacts. To address this concern as well as possible, the researcher examined the 

measures across replications to ensure consistency and checked the sensors between impacts 

to confirm that they did not shift or loosen from the head.  

Future Directions 

 Future research should look to incorporate TPU and other impact absorption materials 

into currently produced headguards. As headguard research has shown inconclusive results to 

support or caution the use of headguards, introduction of new materials and headguard 

modifications should be proposed and tested. Comparison of other helmet materials, similar 

to the methods of Razaghi et al. (2018) may be useful for further displaying the effectiveness 

of thermoplastic polyurethane in static and dynamic testing. Analyzing the energy absorption 

capability of TPU in comparison to commercial liners such as EPP, EPS, and PVA and other 

rubbers, foams, and sponges, may propose more effective headguard modifications (Razaghi 

et al., 2018).  

Future research should also seek to explore the performance of these headguards and 

materials under more complex conditions, such as a wider range of impact angles and neck 

strengths. Dynamic testing should be performed with the headform positioned at multiple 

oblique angles to explore the effect of headguards when impacted at different angles. This 
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may better replicate the range of positions that a headguard may be impacted at in a real 

boxing match.  

 The interaction effects between headguard type and impact location on measures of 

peak resultant angular acceleration, AGSI, and GAMBIT should be more closely explored. 

The results of this study showed that the Century® Drive and TPU-Century® Drive 

performed significantly better for front impacts, while the Adidas® headguard was more 

effective at the front boss impacts in comparison to its other locations. Exploration of more 

headguards may be useful in further exploring these interactions to determine why these 

differences occur, possibly highlighting advantages of different impact materials. 

 Finally, future research should look to explore impact conditions like those used in 

this study, also incorporating bare head impacts across locations. This approach would allow 

for headguard performance to be explored using the bare head as a reference point. From this, 

the true effectiveness of headguard use can be more accurately examined, showing if there is 

a true advantage of using a headguard to reduce concussion risk. 
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