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Abstract  

Lithium-ion (Li-ion) batteries are commonly used in various industrial and domestic 

applications, such as portable communication devices, medical equipment, and electric vehicles. 

However, the Li-ion battery performance degrades over time due to the aging phenomenon, 

which may lead to system performance degradation or even safety issues, especially in vehicle 

and industrial applications. Reliable battery health monitoring and prognostics systems are 

extremely useful for improving battery performance, to diagnose the battery’s state-of-health 

(SOH), and to predict its remaining-useful-life (RUL). In general, it is challenging to accurately 

track the battery's nonlinear degradation features as battery degradation parameters are almost 

inaccessible to measure using general sensors. In addition, a battery is an electro-chemical 

system whose properties vary with variations in environmental and operating conditions. 

Although there are some techniques proposed in the literature for battery SOH estimation and 

RUL analysis, these techniques have clear limitations in applications, due to reasons such as 

lack of proper representation of the posterior probability density functions to capture and model 

the nonlinear dynamic system of Li-ion batteries. In addition, these techniques cannot effectively 

deal with the time-varying system properties, especially for long-term predictions.  

To tackle these problems, a novel hybrid prognostic framework has been developed in 

this PhD work for battery SOH monitoring and RUL prediction. It integrates two new models: 

the model-based filtering method and the evolving fuzzy rule-based prediction technique. The 

strategy is to propose and use more efficient techniques in each module to improve processing, 

accuracy and reliability. Firstly, a newly enhanced mutated particle filter technique is proposed 

to enhance the performance of particle filter technique and improve the modeling accuracy of the 

battery system’s degradation process. It consists of three novel aspects: an enhanced mutation 

approach, a selection scheme, and an outlier detection method. Secondly, an adaptive evolving 

fuzzy technique is suggested for long-term time series forecasting. It has a novel error-

assessment method to control the fuzzy cluster/rule generation process—also, a new optimization 

technique to enhance incremental learning and improve modeling efficiency. Finally, a new 

hybrid prognostic framework integrates the merits of both proposed techniques to capture the 

underlying physics of the battery systems for its SOH estimation, and improve the prognosis of 

dynamic system for long-term prediction of Li-ion battery RUL. The effectiveness of the 

proposed techniques is verified through simulation tests using some commonly used-benchmark 

models and battery databases in this field, such as the one from the National Aeronautics and 

Space Administration (NASA) Ames Prognostic Center of Excellence. Test results have shown 

that the proposed hybrid prognostics framework can effectively capture the battery SOH 

degradation process, and can accurately predict its RUL.  
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Motivation of the Proposed Research  

The Lithium-ion (Li-ion) battery is one of the greatest advances in energy-storage 

technology, in which the anode chemistry is lithium-based. Compared to other existing 

rechargeable batteries such as nickel-metal hydride and lead-acid types, the Li-ion battery has 

advantages such as being lightweight, with high energy density, as well as having a long lifespan 

and low self-discharge [1,2]. Nowadays, Li-ion batteries have become the core component of 

many machines, ranging from cell phones and small medical devices, to large aircraft and 

electric vehicles (EVs). For example, with the increasing awareness about climate change, EVs 

are now increasingly popular, whose performance is highly dependent on battery functionality 

and reliability [3,4]. Batteries are expected to provide the necessary power to ensure sufficient 

energy availability in EV operation. However, regardless of the quality of the Li-ion battery, its 

overall performance will degrade over time due to its repetitive cycles of discharge and charge, 

which is known as the aging phenomenon [3,5]. 

Battery aging is considered to be the main disadvantage of a Li-ion battery that limits its 

performance. The two major effects of battery aging are capacity decrease and impedance 

growth, which depend on load conditions and working environment [2,6]. In general, failure will 

occur when the performance exceeds a threshold at an unsatisfactory level, which could result in 

system performance degradation, breakdowns, or even serious safety issues in applications such 

as EVs [3,7-9]. Thus, a reliable technology for Li-ion battery health monitoring and prognostics 

is urgently needed to improve battery functionality and reliability, to diagnose the battery’s state-

of-health (SOH), to schedule battery recharging operations, and to accurately predict the 

remaining-useful-life (RUL) for battery replacement and preventive maintenance.  

In recent years, the health assessment and prognostics for machinery have received 

significant attention in the research community whereby several methods, tools, and practical 

applications have been proposed [5,9]. However, the electro-chemical behaviours of the Li-ion 

battery system are different from those of mechanical systems, mainly because the data from a 

https://www.ebay.com/sch/i.html?_nkw=devices
http://www.thesaurus.com/browse/essential
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battery’s internal electro-chemical reaction is practically inaccessible using common sensor 

technologies. Other differences include the fact that the operation profiles of a Li-ion battery are 

much more dynamic than mechanical systems; its monitoring data collected is value-typed, 

whereas the machinery data is waveform [2,3,5,10]. Therefore, the uniqueness of a Li-ion battery 

system should be considered when developing or identifying a battery prognostic method to 

ensure high reliability for providing power sources and avoiding battery failures. 

 

1.2 Li-ion Battery Aging and Degradation Mechanisms  

In general, a Li-ion battery cell consists of four primary components: anode, cathode, 

electrolyte, and separator: 1) Anode: known as the negative electrode, and commonly 

constructed from graphite and other carbon materials; 2) Cathode: the active source of all the Li-

ions known as the positive electrode, built from lithium metal; 3) Electrolyte: constructed from 

lithium salts and organic solvents; 4) Separator: a microporous sheet constructed of a polymer 

material, and contains a safety feature to prevent contact between the cathode and the anode in 

case the cell accidentally heats up. Its working process can be summarized as shown in Fig. 1.1. 

The Li-ion moves between the anode and the cathode during the charging and discharging 

processes, creating electricity flow to be used for electronic applications [6,10-13]. 

 

 
 

Fig. 1.1 Work mechanism of a Li-ion battery [13]. 
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Overall, the performance of a Li-ion battery relies on material development and other 

components of its cells, where degradation occurs throughout the battery's entire life in many 

proportions related to its utilization mode and environmental conditions [6,9,10,14]. However, it 

is difficult to identify degradation activities because multiple variations are involved in the entire 

process, whereby a number of factors, such as environment and its operating mode, interact to 

provoke different aging effects [2]. In general, aging first occurs in the chemical composition of 

the Li-ion battery electrolyte because cell component degradation is usually caused by a 

change of the electrolyte chemical composition, or waste of active material such as lithium, 

graphite, and carbon [6,8,9,11,14]. For example, research in [15] shows that the degradation is 

tied to the loss of recyclable lithium, a phenomenon manifested via the formation of a solid 

electrolyte interface that occurs by electrolyte decomposition. In addition, the side reaction of 

lithium with decomposed electrolytes will heighten the degree of degradation.  

As stated in [16], the chemical composition of a battery’s electrolyte might also explain 

the aging process, whereby both negative and positive electrodes vary considerably during 

degradation. The composition of these electrodes strongly influences the mechanical and 

chemical aging mechanisms. In addition, throughout the aging period, the degradation of the cell 

components influences other processes including the variation of the electrolyte chemical 

composition, alteration of the structural properties, and dissolution of the material in the 

electrolyte, all of which result in the loss of active materials [16,14]. To identify the extent of 

battery aging, some indicators/notions have been used in battery management systems to 

quantify the battery’s health state. The most commonly-used indicators in the literature include 

the state of charge (SOC), state of health (SOH), and remaining-useful-life (RUL), which can be 

computed based on some extracted battery features [10,16]. 

 

1.3 Literature Review of Technical Approaches for Li-ion Battery Health Monitoring and 

RUL Prediction 

General approaches to estimate the SOC and SOH, and to predict the RUL of Li-ion 

batteries, can be grouped into three main categories:  model-based filtering methods, data-driven 

techniques and hybrid approaches [2,7], whose performance relies upon accurate tracking of the 

nonlinear degradation feature of a battery’s system. The following will describe the related 

techniques in each category, followed by the research objectives of this work. 
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1.3.1 Model-based filtering methods: 

Model-based filtering methods usually combine mathematical models and filtering 

techniques to characterize the system’s degradation for system state tracking and prediction 

[2,9]. In general, the Li-ion battery is a nonlinear dynamic system that requires a precise model 

to represent its electro-chemical characteristics, and to adaptively describe the system’s 

degradation process [1,17]. With respect to battery aging/degradation characteristics, several 

diagnosis models have been proposed in literature to describe battery performance evolution 

during its lifetime, and to characterize the degradation trend [10,9,16]. Where a proper 

filtering/estimation technique can be used to identify the model parameters that represent the 

hidden state (e.g., damage state, degradation behavior, etc.), the following models are considered 

to be the commonly used in this field:  
 

a) Equivalent circuit-based models:  

These models simulate the battery’s running process based on equivalent circuit theory, 

whose model parameters are estimated using some estimation methods [16,18]. For estimating 

battery aging/degradation, the model parameters represent the internal battery parameters such as 

current, voltage and impedance, which can be identified directly from measurements, or by using 

certain equivalent circuit models [2,10]. However, the main limitation of these models is related 

to the extraction accuracy of model parameters.  
 

b) Performance-based models: 

These models are constructed using the correlation between stress factors and capacity 

decline/impedance increase, whereby such a correlation can be identified from battery aging tests 

conducted under different operating conditions. The purpose is to quantify the impact of aging 

factors and define physical equations to model different aging states over a battery’s lifetime, 

where modeling accuracy depends on testing experience under several conditions [2,16]. 
 

c) Electrochemical models: 

Electrochemical models can provide physical and chemical information during battery 

operation based on its performance and conditions (e.g., current, voltage, temperature, electrolyte 

concentration, and corrosion) [2]. However, they usually require precise knowledge about the 

battery’s physical and chemical properties of the battery, such as electrolyte volume, density and 
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porosity of the active materials. Even though these models can provide the internal battery 

behavior parameters that are necessary for monitoring the battery health condition, it is 

challenging to develop a reliable and precise model considering the fact that several factors that 

impact performance degradation interact with each other. Thus, these models use only one or two 

factors in tracking the aging phenomenon in real battery monitoring applications [16,19]. 
 

d) Analytical model with empirical fitting:  

Such a model is identified based on historical experimental data, and can be used to 

evaluate or predict the estimator values [10]. In modeling, estimation techniques utilize certain 

battery measurements to estimate the aging model parameters. The parameter estimation is a 

process used to adjust a model from observations in order to minimize errors. The well-accepted 

methods are the Coulomb counting approach, in which the SOH is estimated through the 

integration of the current over time, and the electrochemical impedance spectroscopy (EIS), in 

which the SOH is predicted by using battery impedance to characterize its dynamic behavior 

[16,20]. 

In general, the reliability of these diagnosis models to analyze the processes of battery 

aging/degradation mechanism relies on the accuracy of the used estimation methods to identify 

the model failure parameters using the available battery features [9,21]. For a complex electro-

chemical dynamic system of a Li-ion battery, its internal electrochemical process and 

degradation features are almost inaccessible, and therefore cannot be measure using common 

sensor technologies. Advanced estimation/filtering techniques such as Kalman filter (KF) and 

particle filter (PF) are the most estimation techniques in this field, as they can identify the model 

parameters in the monitoring process and make inferences about hidden states in the dynamic 

system [21,22]. The KF and PF conduct state estimation based on system model and noisy 

measurements using the Bayesian inference to estimate the posterior probability density function 

(PDF).  

These filtering methods consist of two steps: prediction and correction. The dynamic 

state-space models consist of a transition model for system state prediction, and a measurement 

(sensor) model to associate the predicted states to the noisy measurements [23,24]. The goal is to 

propagate the posterior PDF of the current state (i.e., initial PDF) to project the future state 

distribution (i.e., predicted PDF); when the measured data become available, the posterior PDF 
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will be formed/corrected based on the likelihood of given the incoming data [2,5]. KF can make 

inferences about hidden states in a dynamic system based on available system models and noisy 

measurements, which could provide the optimal solution for linear-Gaussian estimation 

problems [25]. In KF, the dynamic state-space models consist of a transition model for system 

state prediction, and a measurement (sensor) model that associates the predicted states to the 

noisy measurements [10]. The aim is to compute the posterior PDF for state estimation by 

updating finite-dimensional parameters recursively so as to minimize the state error covariance. 

Although KF has been applied in various applications such as communication, inertial 

navigation, robotics and control, it cannot model systems properly with nonlinear/non-Gaussian 

properties [25,26]. This is because KF is derived based on the assumption that transition and 

measurement models are linear-Gaussian, which makes it unreliable to be used for nonlinear 

estimation problems [5]. 

Improved KF techniques have been suggested in several studies to overcome the related 

non-linear Gaussian problem by linearizing the nonlinear models. For instance, Extended KF 

(EKF) performs linear approximation of the nonlinear dynamic state-space models using a first-

order Taylor series expansion, then applies the standard KF to the resulting linear estimation 

problem [26]. The aim is to linearize the nonlinear state and/or the measurement models around 

the current estimate in each time step. The related parameters of the EKF can be adjusted to deal 

with different application conditions, including the factorization of the covariance matrix, Taylor 

series order, and process noise tuning. Many research papers have concluded that the EKF can 

provide more accurate estimation result than KF [3,5], however, EKF cannot deal with highly 

non-linear systems since the Taylor series expansion has limited adaptation to nonlinearities. 

Also, this linearization approach approximates the posterior PDF to be Gaussian, which can 

degrade the estimation accuracy if the true density is non-Gaussian [5,7,9]. 

The unscented KF (UKF) has been suggested to reduce linearization errors in the EKF; it 

employs an unscented transform function to improve the posterior PDF representation [26]. The 

aim is to generate a number of sampling points (Sigma points) around the current state estimate, 

which then are propagated through the non-linear models to represent the state distribution. 

Therefore, these sample points would have a higher probability to capture the true mean and 

covariance of the true posterior PDF, resulting in a better performance than the EKF [25]. 

However, this improvement comes with an increased computational cost, which could prevent 
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UKF from being used for real-time monitoring applications [5]. Also, the UKF is only an 

approximate nonlinear estimator and can diverge when the system or measurement nonlinearities 

become too high [7,8,25].  

In contrast, the PF can model dynamic systems with nonlinear and non-Gaussian 

characteristics, and has outperformed EKF and UKF in many applications [3,25,35,44]. In 

general, PF has become a state-of-the-art estimator in prognostics of engineering systems [1,9], 

including system state tracking [27,28] and prediction applications [7,22,29]. It numerically 

implements the recursive Bayesian function via the Monte Carlo simulation to perform 

inferences in the state-space from observations. The posterior PDF is represented by a set of 

random samples (i.e., particles), and their associated weights are computed by the conditional 

likelihood of each particle based on the observations at that moment [23,25]. The PF can 

represent the uncertainty in the estimated state (e.g., RUL prediction result) with its posterior 

PDF instead of a single value like other prognostic methods (e.g., data-driven techniques); it is 

also less affected by the level of noise and model complexity [1,5,25,26]. 

PF-based techniques have been applied to battery RUL prediction and health monitoring 

in several studies. For example, Saha et al. [30], in the Prognostics Center of Excellence of 

NASA’s Ames Center, have investigated the use of PF for system state estimation and RUL 

prediction in Li-ion batteries. PF is utilized to estimate the coefficients of an exponential growth 

model for both electrolyte and charge transfer resistances from EIS measurements. According to 

the relationship between resistance and capacity, capacity is derived for use in RUL prediction. 

Also, Saha et al. [31] have constructed an empirical capacity model by using the coulombic 

efficiency factor and relaxation effect. PF is applied to estimate the model parameters, where the 

future capacity value is extrapolated to estimate the RUL. Walker et al. [32] have investigated 

the performance of PF for Li-ion batteries’ prognostics in comparison to two estimation methods. 

Test results show that PF is more accurate than the non-linear least squares and UKF methods for 

predicting the RUL of Li-ion batteries. Xing et al. [33] have proposed a PF-based model to fuse 

the principles of the polynomial regression and the empirical exponential models to estimate the 

RUL of Li-ion batteries, whereas PF is used to adjust the model parameters online. Furthermore, 

Wang et al. [34] have proposed a discharge-rate-dependent prognostic model to assess the RUL 

of a battery at different rates of discharge by using PF to posteriorly estimate the parameter 

distribution of the model. In other similar work conducted by Dong et al. [35], PF is used to 
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estimate the parameters of the Brownian motion degradation model for Li-ion batteries SOH 

estimation and RUL prediction.  

However, PF has suffered from two long-standing problems: sample degeneracy and 

impoverishment, which limit its capability to accurately capture the electro-chemical behaviors 

in system state estimation of battery systems [1,7,10,21,36]. Some PF techniques have been 

suggested in the literature to improve its performance. For example, Liu et al. [37] have 

proposed a regularized auxiliary PF technique for system state estimation and forecasting, which 

can be used to predict the RUL of Li-ion batteries. Test results have revealed that the regularized 

auxiliary PF technique can provide more accurate state estimation and RUL prediction than the 

standard and auxiliary PFs. In a parallel study, Miao et al. [38] have utilized the unscented PF, 

which is combined the unscented KF and the linear re-sampling algorithm to generate the 

particles proposal distribution in order to reduce particle diversity deficiency in predicting the 

RUL of Li-ion batteries; that method could predict the RUL more accurately than using the 

standard PF. Dong et al. [39] have implemented the support vector regression PF to calculate the 

battery’s SOH and RUL; their investigation has concluded that this algorithm could monitor the 

SOH and predict the RUL more effectively than using the standard PF.  

Another type of PF-based prognostic technique is the artificial fish swarm algorithm 

proposed by Tian et al. [40], which could outperform the PF approach in predicting the Li-ion 

battery’s RUL. Peng et al. [41] have proposed a support vector regression-unscented PF to 

predict the RUL of a battery, which could provide more favorable results in comparison to the 

unscented PF and standard PF methods. Wang et al. [42] have introduced a spherical cubature 

PF to predict the RUL of Li-ion batteries, which has outperformed the standard PF for this 

purpose. Yu et al. have used a quantum particle swarm optimization-based PF in [43] because it 

requires fewer parameters to control; it performs better in global searching than the particle 

swarm optimization technique to predict the RUL of a Li-ion battery. Li et al. [7] have proposed 

a mutation approach with a particle selection scheme to deal with PF limitations in estimating 

system state and predicting the RUL of a Li-ion battery. Test results have revealed that the 

proposed mutated PF could outperform the standard PF and regularized auxiliary PF technique. 

Although these PF techniques claim to outperform the standard PF for system state 

estimating and for predicting the RUL of Li-ion batteries, they usually suffer from problems 

related to parameters setting and noise sensitivity [36]. In addition, they require a large number 
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of particles to represent the posterior space, which could lead to high computational costs, and 

therefore could not be used for real-time monitoring applications. Furthermore, these PF methods 

rely on the normalized weights to detect and process low-weight particles (sample degeneracy), 

which may not be a robust measurement when all particles are located in low probability regions 

of the posterior space. This could lead to misrepresentation of the high-likelihood area of the 

estimated posterior PDF, and degradation of the estimation accuracy for several iterations. Aside 

from these PFs limitations, the model-based filtering methods may be suitable only in short-term 

prognostics, as the pattern of the battery degradation state remains unchanged or with minimal 

change. This is because the posterior PDF can not be updated in the absence of future 

measurements in order to capture the new variation of the battery degradation process, resulting 

in fixed model parameters during the prediction period. This degrades the prognostic 

performance of model-based filtering methods and could lead to considerable propagated 

uncertainty when the prediction horizon becomes longer [17,22,44]. 

 

1.3.2 Data-driven approaches:  

Data-driven approaches utilize extracted features (e.g., voltage, current and impedance) 

from the battery performance data (training data) to identify the characteristics of the battery 

system in order to predict the system degradation behavior for RUL predictions. Learning 

algorithms are applied in these methods to improve modeling accuracy and minimize training 

errors [1,45,46]. Data-driven approaches include these statistical methods and soft-computing 

tools. The most commonly-used statistical methods consist of relevance/support vector machine, 

Gaussian process regression and least squares regression, while soft-computing tools include 

neural networks (NN), fuzzy logic and neural fuzzy (NF) techniques [2,3]. 
 

a) Statistical methods: 

Statistical methods conduct predictions based on a large number of datasets that represent 

different health states of a battery system [10,47]. Wang et al. [48] have applied the relevance 

vector machine method for battery SOH estimation and RUL prediction using a three-parameter 

capacity degradation model to fit the predictive values at the cycles of the relevance vectors. In a 

parallel study, Nuhic et al. [49] have used the support vector machine method to estimate the 

SOH and predict the RUL of Li-ion cells; a specific data processing method is applied to reduce 

the influence of noise in environmental and load conditions. However, these methods are time-
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consuming due to the very high computation load, and the final model could be difficult to 

interpret for error analysis [50]. To overcome these problems, Liu et al. [51] have proposed a 

least squares support vector machine method for battery capacity prediction based on the 

charging/discharging rate and temperature. Although it could converge quickly during training to 

reach a global solution, this method is sensitive to the outliers and noise with non-Gaussian 

distributions.  

Yang et al. [52] have used the Gaussian process regression for battery SOH estimation, 

whereby four parameters are extracted from the charging curves to represent the battery aging.  

Richardson et al. [53] also have utilized Gaussian process regression for forecasting a battery’s 

SOH, whereby kernel functions are used to capture the battery degradation behavior. Compared 

to relevance/support vector machine methods, although Gaussian process regression has the 

advantages of probability interpretation and self-adaptive acquisition of hyper-parameters, it has 

high computational training costs and poor performance in long-term forecasting, as well as a 

wider confidence interval. In addition, most of the aforementioned methods rely on the 

assumption that the data is noise-free, or that the noise is Gaussian with a zero mean [54]. 

Although some statistical methods require less training data, they may also suffer from 

uncertainty representation. In addition, it may be difficult to obtain sufficient datasets that are 

proportional to different battery health stages for training the models [5].  

 

b) Soft-computing tools:  

Soft-computing tools use battery performance data to recognize the mapping relationship 

between the battery system characteristics and its health condition so as to fit degradation models 

to estimate the SOC, SOH and RUL of a battery [2,55]. For example, Yang et al. [56] have 

suggested a three-layer back propagation NN to estimate a Li-ion battery SOH using the data sets 

generated from a first-order equivalent circuit model for NN training. Eddahech et al. [57] have 

built a recurrent NN to monitor the SOH of a high-power-density Li-ion cell, where the EIS 

measurements are used to model the Li-ion cell’s behavior. In a parallel study, Liu et al. [58] 

have proposed an adaptive recurrent NN for system dynamic state predicting of Li-ion batteries, 

where its NN weights are adaptively optimized using the recursive Levenberg-Marquardt 

algorithm. However, a NN has “black box” reasoning, whereby it is difficult to explain the 

recognized reasoning mechanism. In addition, the NN training phase requires large amounts of 
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data, which may lead to over-fitting in battery RUL prediction and can become time-consuming 

[9,59]. 

Fuzzy logic can deal with uncertainty and nonlinearity through the use of a series of 

fuzzy IF-THEN rules for reasoning operations [3]. Singh et al. [60] have pre-processed the 

measurements and modeled EIS data of a Li-ion battery to select suitable parameters, which are 

used as inputs to the fuzzy predictor for battery SOH and SOC. Landi et al. [61] have used two 

exponential functions to identify the index of battery SOH from battery datasets; fuzzy logic 

technique is then used to estimate the battery health index based on the fitting curve. There are 

only a few studies involving pure fuzzy logic in this field, as it would be difficult to optimize the 

fuzzy system parameters, where any change in a membership function requires a change in fuzzy 

rules, and vice versa. This is because fuzzy logic technique lacks the capability of machine-

learning that NNs have, therefore it does not have proper adaptive capability to accommodate 

varying system dynamic conditions.  

To overcome the limitations of both NNs and fuzzy logic and take advantage of their 

strengths, their synergetic schemes (e.g., NF techniques) have been suggested, which have both 

adaptive learning mechanism and semantic transparency [10]. In general, the adaptive NF 

inference system (ANFIS) is well-known for modeling non-linear systems, and has been used in 

several studies to model battery dynamic characteristics and predict the RUL. For example, Tsai 

et al. [62] have run a new Li-ion battery until it has reached the end of its life in order to collect 

data from the extracted charge, internal resistance and no-load voltage, which are used for 

training the ANFIS. The trained ANFIS is then used to estimate the SOC of Li-ion batteries, with 

less training data require during the training phase. Also, Dai et al. have used the ANFIS for 

online battery SOC estimation in [63]. In parallel studies, ANFIS is used in papers [64-66] for 

Li-ion battery SOH estimation and RUL prediction. Notwithstanding the above, some advanced 

research papers reported that a properly-trained NF technique can outperform both the stochastic 

models and the various NN-based models in forecasting applications [66,67,68].  

  On the other hand, the NF techniques may not have sufficient adaptive capability to 

accommodate dynamic systems with significant time-varying properties such as the electro-

chemical Li-ion batteries under EV operating conditions [68]. In addition, it would be hard to 

determine the proper number of IF-THEN rules in an electro-chemical system with many inputs 
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but a fixed reasoning architecture. The number of rules used for the input-output mapping can 

negatively affect both performance accuracy by under-fitting and over-fitting; as a result, the 

computation efficiency will be very low in estimation and optimization of the related consequent 

and antecedent NF parameters [69]. In general, the reliability of these data-driven techniques 

depends on the quantity and quality of the historical and empirical training data that should be 

representative of the battery’s operation performance; it will be challenging to obtain accurate 

and representative battery datasets in most real-life applications [5,45,59,69]. Those techniques 

also usually suffer from limitations related to training efficiency and parameter-setting in real-

time monitoring applications. Furthermore, the recognized models could have limited adaptive 

capability to adapt to new system states, which could adversely affect performance accuracy 

[7,17, 69,70]. In addition, data-driven approaches cannot be used to model the hidden states in 

the dynamic system (e.g., degradation state, damage state, etc.), which are either inaccessible to 

the sensors or hard to measure using general data acquisition systems. Also, it could not properly 

express uncertainty associated with its predicted future values, which is a critical aspect in 

prognostics systems to schedule predictive maintenance operations [1,9,55]. 

   

1.3.3 Hybrid approaches: 

In general, using a single methodology for the prognostic task (e.g., model-based filtering 

and data-driven) may not provide the expected level of performance due to the complexities of 

battery system degradation dynamics, uncertainties associated with the prediction horizon, and 

the amount of available data [9,22]. The main objective of the hybrid approach is to integrate two 

or more data-driven and model-based methods to strengthen their respective advantages and 

overcome their limitations [1,45]. In the field of Li-ion battery prognostics, model-based filtering 

methods could provide more accurate modeling than data-driven techniques due to their 

advantages such as: 1) modeling the underlying physics of battery SOH degradation processes, 

2) making inferences about hidden states in a dynamic system, and 3)  being able to characterize 

and represent the uncertainty in the estimated results, which is a key element in prognostics 

systems [1,10].  

However, since there are no measurements accessible during the prediction period of the 

RUL, the model-based filtering method cannot update its degradation-prediction model 

parameters in order to capture the new characteristics of battery degradation process during that 
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period, which can essentially degrade prediction accuracy and result in large propagated 

uncertainty, especially for long-term prediction [71]. To overcome these shortcomings, some 

hybrid approaches have been suggested in the literature to enhance modeling accuracy during the 

prognostic process, such as integrating a data-driven method to provide (predict) the degradation 

measurements to the model-based method during the prediction period. For example, Liu et al. 

[67] have proposed a data-model fusion framework to improve prediction performance. Three 

data-driven models (i.e., NN, NF, and the recurrent NF) are used to track the system degradation 

trend from historical data, and to predict the future measurement values. The model-based PF 

then used those predicted measurements to update the prediction model parameters. Test results 

demonstrate that the fusion framework can provide more accurate RUL prediction than using a 

single method (i.e., model-based PF, and the recurrent NF). 

In parallel work, Yang et al. have proposed a hybrid prognostic method in [44], which 

combines the data-model PF and relevance vector machine for battery RUL prediction. Test 

results have shown that it can outperform the data-model PF for battery RUL prediction under 

different testing conditions. Linxia et al. [17] have introduced a hybrid framework for battery 

RUL prediction; it has integrated the model-based PF with two data-driven methods (i.e., support 

vector regression and ANFIS), which are trained offline to build a measurement model and to 

predict the future degradation measurements in order to guide the model-based PF during the 

prediction process. Test results have shown that the hybrid framework can provide more accurate 

RUL prediction than using individual methods (i.e., model-based PF, support vector regression, 

and ANFIS). Another similar framework is suggested by Yuchen et al. in [72], which combines 

the nonlinear degradation-autoregressive model with a regularized PF. The nonlinear 

degradation-autoregressive model estimates the observations using long-term degradation trends, 

and the processing results are then used as inputs in the regularized PF for RUL prediction. 

 Although test results have shown that these proposed frameworks could improve 

prognostic accuracy in comparison to the results by using individual methods, the previously-

discussed limitations of PF and data-driven methods could still affect the reliability of the 

framework. In general, the reliability of a hybrid prognostic framework depends on the 

processing accuracy of each unit. For example, the PF might not provide accurate state 

estimation when  the  posterior PDF is inaccurately characterized. On the other hand, if the data-
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driven predictor generates poor measurement prediction, it will degrade the upcoming prognostic 

accuracy. Thus, it is extremely important that each model (data-driven approach and model-

based filtering) operates efficiently in order to reach the expected goal of a hybrid approach for 

reliability and robustness. 

 

1.4 Research Objectives  

To tackle the related limitations of the aforementioned approaches, a new hybrid 

prognostic framework will be proposed in this PhD work for Li-ion battery health monitoring 

and RUL prediction. The approach is to apply more efficient technique(s) in each processing 

module to improve overall prognostics accuracy. Specific objectives are as follows:  

1) A model-based enhanced mutated particle filter (EMPF) technique will be proposed to tackle 

some of the current PF methods limitations related to sample degeneracy and impoverishment. 

The innovative aspects include the following: 

a) A novel mutation method is proposed to explore the posterior PDF space more efficiently 

by taking into account the prior knowledge about the high-likelihood areas. The goal is to 

generate mutated particles from those particles with low weights to represent the high-

likelihood area of the posterior PDF more sufficiently. 

b) A new selection mechanism is suggested to detect and process low-weight particles in 

order to improve particles diversity. The new mechanism uses the unnormalizing particle 

weights to tackle the problem of using the current normalizing weights, especially when 

all particles are located in low-likelihood areas with negligible weights. 

c) An outlier detection method is proposed to monitor the posterior PDF distribution and to 

identify and process outlier particles. A new measure is suggested to monitor the overall 

pattern, and to characterize the skew properties of the posterior PDF distribution. 

2) An adaptive evolving fuzzy (AEF) technique for long-term time series prediction will be 

developed to improve forecasting accuracy and to deal with some limitations of soft-computing 

tools in long-term forecasting such as the fixed reasoning architectures, high number of fuzzy 

clusters/rules, and limited adaptive capability. The new predictor has the following unique 

aspects:  
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a) An error-assessment method is suggested to monitor the trend of cumulative training 

errors and to control the fuzzy cluster evolving process.   

b) An adaptive particle filter (aPF) technique is proposed to optimize the fuzzy clusters in 

order to enhance incremental learning and improve modeling efficiency. 

3) A new prognostic framework will be developed to integrate the merits of the model-based 

EMPF method and AEF technique (predictor) in order to deal with the lack of battery 

measurements during the prognostic processing to further improve battery prognostics accuracy. 

In this framework, the model-based MPF method will characterize the underlying physics of the 

battery system degradation process for SOH estimation, and the AEF technique will gradually 

evolve using the available battery degradation information in order to forecast degradation 

indicator values beyond the available window. The model-based MPF will then carry out RUL 

prediction, and its posterior PDF can be updated using these predicted indicator values to reduce 

modeling uncertainty and improve the accuracy of SOH and RUL prediction. 

The effectiveness of the proposed techniques will be verified by simulation tests using 

some commonly used benchmark models and battery databases in this field, such as the one from 

the National Aeronautics and Space Administration (NASA) Ames Prognostic Center of 

Excellence. 
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1.6 Thesis Outline 

After the introduction and literature review as described in Chapter 1, the remainder of 

this thesis is organized as follows:   

Chapter 2 introduces the proposed EMPF technique and demonstrates its effectiveness in 

system state estimation. In this Chapter, a detailed review of the general PF will be provided to 

highlight the exciting problems, and then the EMPF technique will be proposed to deal with 

these limitations. Also, the effectiveness of the proposed EMPF technique will be evaluated in 

this Chapter by simulation tests under different testing conditions, using a common benchmark 

model in this field for state estimation. 

Chapter 3 discusses the model-based EMPF technique and demonstrates its effectiveness 

for battery SOH estimation and RUL prediction. In this Chapter, the Li-ion battery prognostic 

data from the NASA Ames Prognostic Center of Excellence will be described. Also, the EMPF 

technique will be implemented for battery SOH estimation and RUL prediction, using two well-

accepted degradation models to describe battery degradation in terms of impedance growth and 

capacity degradation. 

Chapter 4 focuses on the discussion of the proposed AEF technique and demonstrates its 

effectiveness in long-term forecasting. An overview of the evolving fuzzy system will be 

provided in this Chapter to highlight its advantages compared to the classical data-driven 

techniques, also its shortcomings in long-term forecasting operations of nonlinear systems. The 

AEF technique will be proposed to control the fuzzy cluster/rule generation and to enhance 

incremental learning for improving modeling efficiency for long-term time series forecasting.  

Chapter 5 includes the proposed hybrid prognosis framework for Li-ion battery SOH 

monitoring and RUL prediction, and demonstrates its effectiveness. 

Chapter 6 summarizes the conclusion remarks and suggestions for future research. 
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CHAPTER 2 

ENHANCED MUTATED PARTICLE FILTER TECHNIQUE 

2.1 Overview 

Battery state estimation and RUL prediction are the key issues in battery health 

monitoring and management systems. Among the various types of estimation methods, PF 

technique can be used to model dynamic systems with nonlinear and non-Gaussian properties. In 

general, PF is a Bayesian estimation method based on the Monte Carlo simulation, which can be 

applied to make inferences about hidden states in a dynamic system, and to identify the model 

parameters in the prognostic process [73,74]. PF has been employed for battery health 

monitoring and RUL prediction in several studies due to its ability to model the nonlinear 

degradation feature of battery aging mechanisms; It also can represents uncertainty in the 

estimated state (e.g., RUL prediction result) in the form of PDF, and is less affected by the level 

of noise and model complexity [1,5,25,27].  

However, PF has some limitations in real-world applications, such as sample degeneracy 

and impoverishment, which are considered as long-standing challenges in this R&D field 

[7,21,36,74]. Although several techniques have been proposed in literature to tackle these two 

problems, they also have limitations; for example, they cannot effectively represent the entire 

posterior PDF, and are usually unable to deal effectively with sample degeneracy and 

impoverishment. In this Chapter, an enhanced mutated particle filter (EMPF) technique will be 

proposed to improve the performance of PFs. Firstly, a novel enhanced mutation approach is 

proposed in the EMPF technique to actively explore the posterior PDF to locate the high-

likelihood area. Secondly, a new selection scheme is suggested to process low-weight particles 

for optimizing the posterior distribution and tackling sample degeneracy. Thirdly, an outlier 

assessment method is adopted to monitor the overall pattern of the posterior distribution based on 

interquartile range statistical analysis in order to detect and block outlier particle(s) from 

participating in the state estimation. 

 

To facilitate illustration of the proposed EMPF, a review of a general PF will first be 

provided using a sequential importance sampling PF algorithm, which is the main approach in 

PFs. 
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2.2 Particle Filter Algorithm  

As stated in Subsection 1.3.1, PF numerically implements the recursive Bayesian 

function via the Monte Carlo simulation to perform inference in the state space [23,25]. It 

conducts state estimation based on state transition and measurement (observation) models. The 

system state model in Eq. (2.1) defines the evolution of the system state with time, which is 

modeled as a Markov process. The measurement or observation model in Eq. (2.2) correlates the 

noisy measurements to the hidden state [24]: 

 

),( 1 kkkk uxfx −=                         (2.1) 

),( kkkk vxhy =                         (2.2) 

 

where kx  is the hidden state to be estimated; ky is the measurement at kth time instant; ku  and 

kv  are Gaussian white noise signals with zero mean, which denote the process and measurement 

noise, respectively. 

The Markov process in the system state model is with the initial distribution )( 0p , and 

the transition equation )|( 1−kk xxp . The posterior PDF ( )kk yp :1  is represented by a set of N 

random samples (particles) N
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k 1}{ =  and their associated weights N
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k 1}{ =  computed by the 

conditional likelihood of each particle, given the observation ky  at that time moment. The 

posterior density at the kth time instant can be approximated as [26]: 
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where ( )  is the Dirac function [26], and },.....,{ 2,1:1 kyyyy k =  is the sequence of noisy 

measurements. The weight i

k  can be recursively updated using methods such as the principle 

importance sampling with important density [75]. The particle set is drawn from the prior PDF, 

which is usually selected as the proposal distribution: 
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 When a new measurement becomes available, the particle weights are updated according 

to the importance of corresponding particles. With the calculated likelihood ( )i

kkyp  , the weight 

will be more significant as the error between the prediction value and the observation becomes 

smaller [25,26]. The particle importance weight can be recursively updated by: 
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The weights i

k  of these N particles can be normalized such that: 
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In general, the PF algorithm has two phases: 1) the prediction phase: the particles are 

randomly generated/propagated from the information obtained in the previous step (i.e., prior 

PDF); and 2) the update or correction phase: when a new measurement becomes available, each 

estimated particle from the prediction phase is then compared to the measurement using the state 

model and the measurement model of the system. The weight is updated according to the 

importance of the related measurement, or the weight will become more significant if the error 

between the prediction value and the observation becomes smaller. However, after a number of 

iterations in particle propagation, the weight will concentrate on only a few particles, and other 

particles will have negligible weight, resulting in the problem of sample degeneracy [25,36]. 

 

2.2.1 Sample degeneracy: 

The common problem with the sequential importance sampling PF algorithm is 

degeneracy; after some iterations, the variance of the importance weight gradually becomes 

skewed. In other words, weight concentrates on only a few particles, and the remaining particles 

will have negligible weights. Due to the degeneracy issue, these few particles with high weights 

cannot usually capture the entire posterior PDF, resulting in a poor approximation of the target 

posterior distribution. Moreover, significant computational effort is required to update these 

particles with negligible weights, whose contribution to the target distribution is almost zero 

[26,36].  
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To address sample degeneracy, Gordon et al. introduced a sampling importance 

resampling PF (SIR-PF) algorithm in [26], in which resampling is performed at each iteration to 

reduce sample degeneracy.  Resampling is a process to replicate these high weight particles to 

replace those having low weights at every iteration in order to force the particles to shift to areas 

of high-likelihood. This, however, may cause another problem, namely sample impoverishment. 

 

2.2.2 Sample impoverishment  

Due to the resampling process, particles with high weights could be selected multiple 

times, which leads to degraded diversity among the particles on the resulting distribution. Fig. 

2.1 illustrates the relationship between sample degeneracy and impoverishment, in which the 

circle's size represents the weight of the particles. The sample degeneracy problem is illustrated 

in the top row, where weight concentrates on a few particles (green circles). After resampling, 

only those particles with high weights are sampled, and the low-weighted particles (red circles) 

are abandoned (as illustrated in the bottom row), resulting in sample impoverishment as particles 

are over-concentrated in few points [26,36].   

 

 

Fig. 2.1. Illustration of the relationship between sample degeneracy and impoverishment [36]. 
 

Several techniques have been proposed in literature to tackle these two challenges: the 

sample degeneracy and impoverishment. For example, an auxiliary PF method is suggested in 

[24] to characterize transition density using statistical indicators to guide resampling and 

improve the particles’ diversity. An unscented PF method is proposed in [76] to integrate the 

unscented KF into the Markov chain, Monte Carlo stage, in the PF process to improve the 

proposal distribution and increase estimation accuracy. However, particle diversity in these 

methods may deteriorate due to even minimal process noise, as the resampled particles are 

generated based on a discrete distribution rather than on a continuous one. To improve particle 
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diversity, some techniques have been proposed in the literature, such as the regularized PF (RPF) 

[77], regularized auxiliary PF [37], and mixture regulated rao-blackwellized PF [78], to smooth 

the posterior PDF density and conduct resampling based on continuous distribution. However, if 

the posterior PDF cannot precisely represent  the high-likelihood region, continuous distribution 

may not be reliable.  

Intelligent PFs employ soft-computing tools such as artificial intelligence (e.g., swarm 

optimization, genetic algorithm and clustering), which have been suggested to locate the high-

likelihood area and optimize the distribution of particles [36,40,43]. However, these PF 

techniques usually suffer from problems related to parameter-setting and noise level, as well as 

from gaps that may occur in the high-likelihood regions of the estimated posterior PDF [36]. For 

example, an intelligent PF in [79] is divided the prior particles into large-weight and small-

weight particles. Crossover and mutation operations are then performed on the small-weight 

particles to improve particle diversity. A mutated PF in [7] has conducted a mutation operation to 

the prior particles to improve the posterior PDF space representation. However, these crossover 

and mutation operations blindly generated the new particles without providing necessary 

feedback information about the high-likelihood area to guide the generating process [10]. In 

addition, these methods relied on the normalized weights to identify and process the low-weight 

particles, which may not have reflected the real importance to the actual state when all particles 

fell into the low probability regions. As a result, gaps may have been generated in the high-

likelihood area of the estimated posterior PDF, which can degrade estimation accuracy in both 

the current and subsequent iterations.  

To tackle these aforementioned problems, an enhanced mutated PF (EMPF) technique 

will be proposed in this Chapter to improve the estimation accuracy of PFs. It works to represent 

the high-likelihood area more efficiently, and enhance the diversity in sampling particles. This is 

to capture the battery’s dynamic characteristics and model its degradation process. The proposed 

EMPF technique has the following contributions: 

 1) A novel mutation approach is proposed to explore the posterior PDF space more 

efficiently by continuously taking into account the prior knowledge about the high-

likelihood area. 
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2) A new selection mechanism is suggested to detect and process low-weight particles in 

order to locate the high-likelihood area of the posterior PDF and improve particle 

diversity. 

 3) An outlier detection method is adopted to monitor posterior distribution to identify and 

process outlier particles.  

 

2.3. Proposed EMPF Technique 

The proposed EMPF technique consists of three innovative steps: a novel mutation 

mechanism, a selection scheme, and an outlier detection method to combat sample the 

degeneracy and impoverishment phenomena, which will be discussed in the following 

subsections.  

 

2.3.1 The enhanced mutation method: 

The proposed enhanced mutation method generates mutated particles from prior particles 

to represent the high-likelihood region more efficiently. The goal is to provide prior knowledge 

about the best particle location, where the best fitness has been achieved so far. Such feedback 

information can be used to accelerate the processing time by narrowing down the search region 

for high probability mass particles, and focusing on areas of high likelihood to generate the 

mutated particles. For each prior particle in the particle set { 1

k , 2

k , ..., N

k }, the set of mutated 

particles { 1~
k , 2~

k , ..., N

k
~ } are generated using the following steps: 

 

 1) Compute the respective upper boundary ( )i

kU ~  and lower boundary ( )i

kL ~ : 
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where λk is a standard deviation of the data, which specifies the extended search area around the 

original particle; bestx  is the best fitness particle so far with the highest weight bestw ; i= {1, 2, …, 

N} is the index of N particles at the kth time step. 
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 2) Determine the auxiliary position of the original particle using a mutation mechanism 

[7,80] to generate random numbers over the feasible range with an approximately uniform 

distribution: 
 

L

U
q

i

k

i

k

−

−
=



                                            (2.9) 

( ) otherwise

rq

q

qr
qq

q

r
qq

b

b
























−

−
+−+









−−

=

,
1

11

,1

                                        (2.10)   

( ) ULi

k  +−= 1 ,                                                                                 (2.11)   

 

where i

k  is the auxiliary position around i

k , and r   [0, 1] is a random number; b [0.5, 1] is 

the strength factor to describe the variance of the location of mutated particles around the target 

location; the higher the factor b, the broader the area in which the driven particles may appear. 

 3) Derive the mutated particle from the neighborhood area of the original particle i

k  or 

the highest weight particle: 
 

( )i

k

i

k

i

k

i

k LU  −−−+=~ ,                                                         (2.12)                        

 

where η [0, 1] is a random number.  

 4) Compute the weights i

kw  of the driven particle i

k
~ . If i

kw  < ξ, a new particle i

k
~  will 

be generated using steps 2) and 3) until i

kw ≥ ξ, where ξ is the weight threshold (to be discussed 

later). In addition, if 
best

wwi

k  , update both best  and 
best

w , set best  := i

k
~ , i

kww
best

=: . 

  

As an illustration, if the respective lower and upper boundaries are set to be 0 and 1, Eq. 

(2.9) to (2.11) can be used to randomly generate 105 auxiliary particles for a fixed prior 

particle i

k = 0.3. The distribution of the generated auxiliary particles will have an approximately 

uniform distribution, as illustrated in Fig.  2.2. The calculated auxiliary position information can 

then be used to explore the boundary areas in order to find the optimal location to derive the 

mutated particle.  
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Fig. 2.2. Approximately uniform distribution of the auxiliary particles. 

 

In general, the resulting mutated particles { 1~
k , 2~

k , ..., N

k
~ } with associated weights 

{ 1

kw , 2

kw , …, N

kw } are located in the high probability area, which can result in better system state 

estimation. Fig. 2.3(a) outlines a typical posterior PDF distribution with the sample degeneracy 

problem. The weight concentrates only on a few particles, as most particles have very low 

weights (red crosses). As illustrated in Fig. 2.3(b), the proposed enhanced mutation method can 

generate high-weight posterior particles from those prior particles with very low weights. 

 

 

Fig. 2.3. Posterior PDF distribution of system states: (a) without using the enhanced mutation; (b) using 

the enhanced mutation (red crosses represent particles with low weight factors). 

  

2.3.2. Selection scheme: 

It is noticed that the normalized weights cannot effectively reflect the real important 

weights, especially when all particles are located in the low-likelihood region with negligible 

weights; normalization is only to render the particles comparable in terms of their values. 

Furthermore, to carry out weight normalization, all particles must first be generated, and then 
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normalized, which cannot provide efficient guidance to the mutation process. Fig. 2.4(a) shows a 

case where all particles on posterior distribution have near-zero weights, as they are located in 

the low-likelihood area. Nevertheless, some particles still have high weights after normalization, 

as illustrated in Fig. 2.4(b). Consequently, it may not be appropriate to use the normalized 

weights as a threshold to determine if the particles are located in the high-likelihood area. As a 

result, if those particles are selected in the resampling process, gaps will be generated in the 

high-likelihood region of the approximated posterior PDF, as illustrated in Fig. 2.5; this will 

degrade the estimation accuracy in both the current and subsequent iterations, as represented by 

black arrows. 

 

 

Fig. 2.4. Posterior distribution of a system state: (a) when it is located in the low-likelihood area with very 

low weights; (b) effects after normalization. 
 

 

Fig. 2.5. Misleading of the normalized weights (red line: actual states; blue lines: estimated states by the 

SIR-PF). 
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In general, the particle degeneracy can be estimated by using an indicator of effective 

sample size (ESS), which can determine the number of efficiency particles (i.e., having high 

weights) on the posterior PDF [81, 82]: 
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where i

kw denotes the particles’ importance weights before normalization; the upper bound of 

ESS is N, which is attained when all weights are equal or higher  to 1/N.  

 The proposed selection method aims to make the ESS achieve and maintain the maximum 

upper bound. The threshold ξ = 1/N is selected based on the upper bound condition of the ESS to 

assess the contribution of the generated mutated particles to system state estimation. To enhance 

the posterior PDF representation, the contribution of different particles is characterized by the 

importance weight, recursively. The new mutated particle is accepted if the weight is i

kw . 

Otherwise, those particles with i

kw  will be regenerated over the high-likelihood area using 

the dynamic feedback mechanism. In addition, the proposed selection scheme ξ can be 

adaptively adjusted according to the used particle number N. This can provide a more accurate 

representation of the posterior PDF, even with few particles, as the   value increases when N 

becomes smaller, and vice versa, to ensure a better representation of the high-likelihood area.  

 Fig. 2.6(a) demonstrates an example when the posterior distribution is located in the low-

likelihood area with very low weights. After using the proposed mutation and selection method, 

the prior particles with low weights can be replaced by their mutated counterparts in the high-

likelihood area, as shown in Fig. 2.6(b).  
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Fig. 2.6. Posterior distribution of a system state: (a) when it is located on the low-likelihood area with 

very low weight; (b) results after using the proposed mutation and selection method. 

 

 To further improve the particle diversity, the samples can be drawn from the following 

continuous approximation of the posterior density [37,77,83]:  
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where )(lK  is the rescaled kernel function given by: 
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where l > 0 is the scalar kernel bandwidth, and n is the state vector with   dimension.  

 The kernel )(lK  and bandwidth l are chosen to minimize the mean square error between 

the actual posterior density and the corresponding regularized empirical representation in Eq. 

(2.14). If all the sample particles have the same weights, the optimal kernel would be the 

Epanechnikov kernel: 
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where nc  is the volume of the n-dimensional unit hypersphere given by: 
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In general, if the underlying density is Gaussian with a unit covariance matrix [77,83,84], 

the optimal bandwidth  
l can be determined by: 
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where N is the number of particles.  

 As usual, it is assumed that the density is a Gaussian function, whose covariance matrix 

can be replaced by the empirical covariance matrix [7], such that: 
 

MM T =D,                                                      (2.19) 
 

where M is the square root matrix of D, the kernel function in Eq. (2.15) will be: 
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where det (M) denotes the determinant of matrix M.  

 Fig. 2.7 demonstrates the improvement in terms of particle diversity if the samples are 

drawn from a continuous distribution. It can be seen that the high-likelihood area of the posterior 

PDF is fully represented. 

 

 

Fig. 2.7. The high-likelihood area of the posterior PDF is represented by sampling from continuous 

distribution. 
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2.3.3. Outlier detection for high weight particles: 

An outlier can be defined as an observation that numerically deviates from the rest of the 

data. In general, outliers can occur due to measurement error or noise, or as a result of random 

variation. Detecting the presence of outliers is important because they could lead to model 

misspecification and adversely affect the accuracy of parameter estimation and state prediction 

[85,86]. 

As previously stated, PF uses a transition model and a measurement (sensor) model to 

formulate the dynamic state-space model, where the goal is to estimate the conditional PDF of 

kx  based on measurement ky ; the conditional PDF can be denoted as ( )kk yp | .  

 

However, when there is a square operation for the state parameter in the observation 

model, the PDF of any particle will be the same, no matter if the particle value is positive or 

negative. Thus, some particles may have high probability even though they are located far from 

the actual value. This problem occurs when the process or measurement noise exceeds a certain 

threshold, causing extreme values of the random variables inherent in the distribution. As a 

result, some outlier particles will appear on the posterior PDF distribution, whose high weights 

can induce large state estimate errors or even divergence of the filtering operation. 

To demonstrate this problem, consider an observation model of a system with square 

operation state parameters as in Eq. (2.21): 

 

kkk vy += 2

20

1
                                                                             (2.21)  

 

Given ky , the conditional probability of any particle on the set  N

kkk  ,...,, 21  will be the 

same, whether the particle value is positive or negative. Fig. 2.8 illustrates an example of an 

outlier located at approximately -10, while the majority of posterior particles with high PDF 

values are located around +10. The outlier could be caused by noise or random variations that 

cannot be anticipated. When applying the Bayesian estimator to approximate P( k | ky ), the 

likelihood of this particle could be misinterpreted as one with a high weight. 
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Fig. 2.8. Outlier particle with a high weight. 

 

Directly removing outlier particles may lead to problems such as loose particles diversity 

on the distribution (i.e., sample degeneracy). The proposed outlier detection method uses a 

confidence measure to identify outliers based on underlying distribution properties. An outlier 

with a high weight will modulate statistical distribution properties (e.g., skewed or 

asymmetrical). An interquartile range (IQR) measure is adopted to characterize the skew 

properties of the PDF. The IQR does not rely on the standard deviation or mean of the data, 

which makes no distributional assumptions [86,87].  

The IQR can identify an outlier by detecting unusually high or low data points in the 

distribution. As illustrated in Fig. 2.9, it measures the variables by dividing a rank-ordered 

dataset into four equal quartiles. The first quartile 1Q  represents the middle value in the first half 

of the rank-ordered dataset. 2Q  and 3Q  denote the median dataset and the middle value in the 

second half, respectively. The IQR is computed by: 

 

13 QQIQR −=                                           (2.22) 

 

 

Fig. 2.9. Interquartile range (IQR). 
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Fig. 2.10 illustrates the measure of an outlier. With respect to the window [
1Q - 

1.5×( IQR ), 3Q +1.5×( IQR )], if a data point falls outside this window, it will be treated as an 

outlier. 

 

 
 

Fig. 2.10. IQR fence edges (regions A and B denote the positive and negative outliers). 
 

The objective of the proposed  outlier detection method is to monitor the overall 

properties of the posterior distribution using the IQR. A particle will be defined as an outlier if it 

falls either in region A (when the mean value of the distribution is negative) or in region B (when 

the mean is positive). Outlier particle(s) is blocked from participating in the current state 

estimation, without deleting or changing the posterior distribution. Moreover, to accelerate the 

outlier detection, this algorithm is applied only when the posterior distribution spreads over the 

positive and negative sides (e.g., 75%). The mean value of the majority particles on the 

posterior distribution should be far from zero, depending on the applications, for example,  
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where mp  is the mean of the posterior distribution, and T is the threshold distance from zero.  

 

2.4 Performance Evaluation  

The effectiveness of the proposed EMPF technique is evaluated in this section by 

simulation tests using a commonly used benchmark model for state estimation that has been 

applied in numerous studies, such as in [7,25-26,37,75,79]. In addition, the related PF techniques 

for battery RUL prognostic and health monitoring will also be used for comparison, including 

sampling importance resampling PF (i.e., SIR-PF), regularized PF (i.e., RPF), and mutated PF 
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(i.e., MPF) techniques. The comparison is in terms of combating sample degeneracy and 

impoverishment so as to improve system state estimation accuracy.  

 

2.4.1. Performance evaluation of the proposed EMPF technique: 

The proposed EMPF technique is examined using a common benchmark model in this 

field, which has bimodal and highly nonlinear characteristics [25]. The respective state and the  

measurement equations are: 
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    kkk vxy += 2
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,                              (2.25) 

 

where ku  and υk are Gaussian white noise signals with zero means.  

 The following conditions are used in this testing: the time steps k = 50, the variance of the 

measurement noise kv  = 1, the variance of the process noise ku = 1, and the initial state x0 = 0.1 

similar to that in [7]. In the proposed EMPF, λ  is selected as the standard deviation of the data; 

the threshold is N/1= ,  where N is the particle number; the strength factor b is determined by 

trial-and-error (b = 0.8 in this case). To examine the robustness of these four PFs to parameter 

vairation, four different particle numbers of 25, 50, 100, and 150 are used for simulation tests 

using Matlab R2017a. 

a) Performance evaluation for system state estimation 

To evaluate estimation accuracy, the root-mean-squares error (RMSE) between the actual 

states and the estimated states are calculated over 30 runs. The simulation results are presented in 

Table 2.1. In general, the more the particles are used, the higher the estimation accuracy of the 

PFs will become, but the longer time they will take in modeling. Testing has revealed that the 

average mean of RMSE becomes smaller as the number of particles increases in all four PFs. 

However, the proposed EMPF performs more accurately (i.e., with the lowest average mean and 

standard deviation of RMSE) compared to other related PFs. For example, when the particle 

number is 25, the proposed EMPF is almost 23%, 14%, and 11% more accurate than SIR-PF, 

RPF, and MPF techniques, respectively, with almost 50% less standard deviation than other PFs. 

This is because the proposed enhanced mutation method can effectively explore the system state 
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space, and properly represent the high probability region of the posterior PDF, even with a 

limited number of particles. In addition, the small averaged standard deviation of the proposed 

EMPF demonstrates its robustness to maintain a reliable performance over the 30 runs under all 

testing conditions. This is a result of the selection scheme that can adaptively adjust threshold ξ  

with the change of particle numbers in order to effectively monitor the particle weights on the 

posterior PDF, to recognize a low-weight particle, and to process it into a higher-likelihood area.  

 

Table 2.1: Averaged mean and standard deviation of RMSE with different particle numbers 

Particle 

Numbers 

Averaged mean of RMSE Averaged standard deviation of RMSE 

SIR-PF RPF MPF EMPF SIR-PF RPF MPF EMPF 

25 4.876 4.364 4.156 3.768 1.488 1.029 1.017 0.681 

50 4.613 3.810 3.539 3.346 1.356 0.687 0.589 0.476 

100 3.867 3.209 3.107 3.051 0.897 0.672 0.615 0.503 

150 3.608 3.336 3.248 2.948 0.729 0.542 0.514 0.477 

  

Table 2.2 summarizes the simulation results of the proposed EMPF with different values 

of strength factor b when the process noise ku = 1 and the particle number N = 50. It is seen that 

the proposed EMPF has delivered the best performance when b = 0.8, in this case. 

 

Table 2.2: Averaged mean and standard deviation of RMSE with a different strength factor 

Strength factor b Averaged mean of RMSE Averaged standard deviation of RMSE 

0.7 3.446 0.505 

0.8 3.346 0.476 

0.9 3.348 0.589 
 

Fig. 2.11 outlines the test results over 30 random runs using the same observation data 

generated from the benchmark model with N = 50 particles, as the multinomial resampling is 

implemented at each time step. It can be seen that the proposed EMPF can provide more accurate 

estimation (i.e., with less variance of the estimation errors) than the other three related PF 

methods due to its capability to represent the high-likelihood area more effectively. The 

proposed selection scheme can increase the ESS in the posterior PDF and enrich the particle 

species. 
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Fig. 2.11. Performance comparison of the related PF techniques over 30 runs by (a) SIR-PF; (b) RPF; (c) 

MPF; and (d) EMPF (red solid lines: the actual states; blue dotted lines: the estimated states). 

 

b) Performance evaluation in terms of process noise  

To further examine the effectiveness of the proposed EMPF, four more test scenarios are 

undertaken corresponding to different variances of process noise ku = 1, 5, 10 and 15. In each 

scenario, 30 datasets are randomly generated using Eq. (2.24) and (2.25). For each dataset, the 

related PFs are tested over 100 times. The related mean and standard deviation of the RMSE are 

summarized in Table 2.3. As seen in Fig. 2.12, the RMSE has increased as the process noise is 

increased. However, the proposed EMPF can adapt itself to these changes and outperforms the 

other three PFs with the lowest averaged standard deviations; this is due mainly to its enhanced 

mutation mechanism, and the fact that the selection scheme can explore the distribution more 

effectively. Moreover, the proposed  outlier detection method can monitor the posterior 

distribution and block outlier particle(s) from participating in state estimation. 
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Table 2.3: Averaged mean and standard deviation of RMSE with different variance of process noise over 

30 datasets tested over 100 times 

Noise 

value 

Averaged mean of RMSE Averaged standard deviation of RMSE 

SIR-PF RPF MPF EMPF SIR-PF RPF MPF EMPF 

1 4.039 3.652 3.595 3.385 0.962 0.542 0.577 0.520 

5 4.727 4.620 4.595 4.362 1.081 0.8253 0.816 0.6162 

10 5.836 5.614 5.449 5.114 1.333 1.094 1.068 0.7844 

15 6.127 6.062 6.057 5.774 1.385 1.185 1.094 0.897 
 

                                                 

                           

                           

                            

Fig. 2.12. Comparison of the related PFs: (a)(c)(e)(g): means of RMSE with variance = 1, 5, 10, 15 

respectively; (b)(d)(f)(h): standard deviations of RMSE with variance = 1, 5, 10, 15,  respectively. (pink 

lines: using SIR-PF; red lines: using RPF; blue lines: using MPF; green lines: using EMPF).  
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It should be noted that after a few iterations, gaps could occur in the PF high-likelihood 

area of the estimated posterior PDF due to sample degeneracy and impoverishment. These gaps 

would degrade the estimation accuracy in the current iteration, which, in turn, would propagate 

to the subsequent iterations and continue to degrade estimation accuracy. On the contrary, the 

proposed EMPF can detect and process possible gaps to reduce the effects of these problems by 

using dynamic feedback and an effective selection scheme. The processing efficiency, or 

execution time, plays an important role in real-time battery monitoring applications. Test results 

indicate that the execution time of the related PFs techniques is quite similar, however, given the 

system state estimation accuracy, the EMPF requires fewer particles, thus, comprehensively, less 

computation time. This issue will be further discussed in Chapter 3 in terms of the 

implementation of the Li-ion battery monitoring. 

 

2.4.2. Testing the outlier detection method: 

This test is conducted to evaluate the effectiveness of the proposed outlier detection 

method, since those outlier particles with high weights can induce large state estimate errors, or 

even divergence of the filtering operation of the PFs. The following tests are conducted with 

particles of 25, 50, 100, and 150, respectively, with conditions of time steps k = 50, variance of 

measurement noise kv = 1, and variance of process noise ku = 1. The datasets are generated using 

Eq, (2.24) and (2.25), with the initial state x0 = 0.1. For each dataset, the three related PF 

techniques (SIR-PF, RPF, and MPF) are tested in over 1000 runs (i.e., 50,000 values to be 

estimated). Table 2.4 summarizes the simulation results for the related PFs. In this case, the 

RMSE is calculated only when an outlier is detected in both scenarios (i.e., using the outlier 

detection method, and without the detection method). Fig. 2.13 shows the comparison of the 

three PFs techniques, which shows that the proposed outlier detection method can provides 

higher modeling accuracy. In addition, the number of iterations where the outliers are detected 

by the proposed outlier detection method has increased as the particle numbers are increased. 
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Table 2.4: Summary of the simulation results of the related PF techniques 

Particle 

Numbers 

SIR-PF RPF MPF 

RMSE 

with  

outliers 

RMSE 

without  

outliers 

Number 

of 

iteration 

RMSE 

with  

outliers 

RMSE 

without  

outliers 

Number 

of 

iteration 

RMSE 

with  

outliers 

RMSE 

without  

outliers 

Number 

of 

iterations 

25 5.139 4.851 1853 4.989 4.745 2298 4.719 4.488 2193 

50 5.023 4.633 3121 4.938 4.439 3866 4.647 4.089 3692 

100 4.762 4.411 4713 4.551 3.839 4833 4.439 3.645 4566 

150 4.534 4.156 5320 4.416 3.683 5068 4.217 3.355 4743 

 

 

Fig. 2.13.  Comparison of the related PFs: (a) SIR-PF, (b) RPF, (c) MPF, with and without using the 

proposed outlier detection method corresponding to different particle numbers. 

 

2.5 Chapter Conclusion: 

In this Chapter, an enhanced mutated particle filter technique (EMPF) has been proposed 

to improve the performance of PFs for system state estimation. It has generated the mutated 

particles from prior particles to explore the posterior space and locate the high-likelihood area 
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with the help of the dynamic feedback mechanism. A selection scheme method is proposed to 

assess the generated mutated particle based on unnormalized weights. An outlier assessment 

method is suggested to solve the problem of outlier particles with high weight on the posterior 

distribution due to the square operation state parameters in the observation model. The 

effectiveness of the proposed EMPF technique has been verified via simulation tests. Test results 

have shown that the EMPF technique can effectively enrich the particle species and explore the 

posterior distribution, even with fewer particles; it has the potential to be used for real-time 

computations.  

In the next Chapter, the EMPF technique will be implemented for battery SOH estimation 

and RUL prediction. 
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CHAPTER 3 

A MODEL-BASED EMPF TECHNIQUE FOR BATTERY HEALTH MONITORING 

AND RUL PREDICTION 

 

3.1 Overview 

The model-based filtering approach has many advantages over data-driven techniques, 

including the ability to model the underlying physics of battery degradation processes. It can also 

make inferences about hidden states in the dynamic system, and represents the uncertainty in its 

RUL prediction [1,5,10,25,26]. This makes it more attractive to model the electrochemical 

behaviors in the Li-ion battery system, whose properties change with variations in environmental 

and operating conditions. The goal is to estimate battery health indicators to evaluate the 

battery’s state of health and predict its RUL. The common indicators in battery health monitoring 

and management are as follows: 

 

a) State of charge (SOC):  

SOC is a measure of the percentage of a battery’s remaining usable charge at its current 

cycle compared to its fully-charged state. The SOC indicates how long a battery can continue to 

operate before recharging [16]. In reality, knowing the SOC does not usually reflect the battery’s 

health condition.  For example, an old battery may run out of power in a short period of time, 

even though the power indicator SOC might show that it would last for 2 hours, only a half-hour 

earlier [5,73]. 

 

b) State of health (SOH): 

SOH is a measure of the current health condition of a battery, compared to its ideal 

conditions when it is new (100%). This makes it a critical factor in battery prognostics for 

monitoring the state of battery health, and for quantifying the amount of remaining time before it 

reaches the failure threshold and loses functionality. In general, a battery’s SOH will decrease 

over time until it reaches the end-of-life criterion (failure threshold), which is commonly set, as it 

loses 30% of its initial capacity [16, 55,73].   
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c) Remaining-useful-life (RUL): 

RUL is commonly defined as the time from the present SOH until a battery reaches its 

end-of-life stage, which can be measured in terms of discharge and charge cycles [2,88]. In 

general, a battery’s RUL forecasting represents the prediction of the remaining cycles (time) 

before battery SOH reaches the predetermined failure threshold.  

In this Chapter, the reliability of the proposed Enhanced Mutated Particle Filter (EMPF) 

technique is examined by conducting battery state estimation and RUL prediction. In general, a 

battery’s internal impedance and its charging capacity are well-accepted indicators to track the 

battery’s aging process, and to approximate the battery’s SOH [3,5]. In this work, two 

degradation models will be used to describe battery degradation in terms of impedance growth 

and capacity degradation, using common Li-ion battery datasets in this field. 

 

3.2 Battery Datasets of Li-ion Batteries 

In this research, the feasibility of the proposed technique will be validated using the well-

accepted Li-ion battery prognostic data from the National Aeronautics and Space Administration 

(NASA) Ames Prognostic Center of Excellence [89]. The related experimental setup to generate 

these datasets is illustrated in Fig. 3.1. It consists of a set of Li-ion cells, chargers, an EIS, 

sensors, a load bank, an environment simulation chamber, a data acquisition system, and a 

computer for test control. The EIS is used to measure battery impedance, and the switching 

circuitry controls the states of the battery (i.e., charge, discharge and impedance). Each dataset is 

recorded at three different operating conditions (i.e., charge, discharge and impedance) at 

constant temperature/humidity conditions, as follows:  

    1) Charging: A constant current of 1.5A is fed to the battery until its voltage reaches 

4.2V; the charging process is then maintained at a constant voltage mode until the charge current 

decreases by 20mA.  

 2) Discharging: This process is performed at a constant current of 2.0A until the battery 

voltage drops to 2.5V.  

 3) Impedance: This measurement is undertaken using an EIS over the frequency 

sweeping range between 0.1 Hz and 5.0 kHz.  
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In the experiment, each battery is repetitively cycled through many iterations of 

discharging and charging until it reaches the end-of-life criterion (set as losing 30% of its initial 

capacity). 

 

 
 

Fig. 3.1. Experimental setup of battery tests [90]. 

 

3.3 Performance Evaluation 

In general, model-based filtering approach uses a degradation model to describe the 

evolution of the system state (degradation state) with time, and a filtering/estimation technique to 

adaptively estimate/update the degradation model parameters [2,9]. The filtering technique aims 

to propagate the posterior PDF of the current system state using a set of particles to represent the 

degradation trend at the future time. Then, when the measured data become available, the 

posterior PDF will be formed (filtered/corrected) based on the likelihood of each particle, given 

the incoming data at that time instant [5,24]. In this work, a Li-ion battery degradation model is 

constructed using experimental data described in the previous section. The mathematical model 

will be identified to characterize battery degradation trends. The proposed EMPF will be applied 

to conduct parameters estimation in order to capture the battery system’s degradation process. 

Two well-accepted degradation models will be used for comparison.  
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3.3.1 The exponential model based on the battery internal impedance 

A battery’s internal impedance is considered as a representative indicator to track the 

degradation process and to determine the battery’s SOH [17,39]. In general, the internal 

impedance values change with various aging and fault processes such as corrosion, plate 

sulfation and passivation [91]. Several studies have indicated that an exponential model can 

characterize the dynamic behavior of a battery’s internal impedance over its lifetime, and that the 

lumped-parameter model can be used to analyze the available impedance data [17,37,67,91,92]. 

The lumped-parameter model, as illustrated in Fig. 3.2, is used to track battery capacity 

degradation. The impedance/resistance is usually inversely proportional to the capacity C/1 

[17,91,92]; this incorporates the electrolyte resistance (RE), charge transfer resistance (RCT), 

Warburg impedance (RW), and the dual-layer capacitance (CDL). In this testing, the parameters of 

interest include RE and RCT, since their values have significant changes over the battery’s lifetime 

due to the degradation/aging process; the RW  is excluded as its change is negligible based on the 

available data analysis from the EIS tests [91].  

 

 

Fig. 3.2. Lumped-parameter model for a Li-ion battery. 
 

The battery dynamic state-space model is built based on the exponential growth model 

for both electrolyte and charge transfer resistances from EIS measurements [17,91,92]; the state 

and measurement equations that describe the Li-ion battery degradation model is formulated as:   
 

     kkk p+= −1                                                                (3.1) 

    ( ) kkkk uRR += − exp1                                                           (3.2) 

    kkk vRM +=                                                                      (3.3) 

 

where kR  is the state vector (i.e., RE or RCT) at time instant k (i.e., elapsed cycle), k is the 

growth parameter (aging state) to be estimated, and kM is the measurement vector containing 

battery parameters inferred from measured data. The state vector kR at the first-time step took the 
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initial value of RE or RCT  from the Li-ion battery dataset. The ρk, uk and vk are additive Gaussian 

noises at iteration k. Equations (3.1) to (3.3) represent the measurements of RE, RCT and C in 

battery #6, which have been smoothed to improve the RUL prediction using the battery model. 

Fig. 3.3 identifies the approximate linear relationship between RE + RCT and C/1 in battery #6. 

 

 

Fig.3.3. The relationship between RE + RCT and C/1 in battery #6 (blue circle line: the measured RE + RCT 

versus C/1; red solid line: a linear fit). 
  

The performance and reliability of the proposed EMPF technique are examined by 

conducting an investigation to estimate the performance indices for battery system state tracking 

(RE is estimated using the battery model and the Li-ion battery datasets). Figures 3.4-3.6 

demonstrate the performance comparison of the related PF techniques (i.e., sampling importance 

resampling PF (i.e., SIR-PF), regularized PF (i.e., RPF), and mutated PF (i.e., MPF) techniques), 

corresponding to three different particle numbers (i.e., 50, 200 and 500), over 30 random runs 

using the same observation datasets. It is seen that the proposed EMPF outperforms other related 

PF techniques in system state tracking; the other techniques required a large number of particles 

to deal with sample degeneracy and impoverishment. For example, other research papers such as 

in [7,37,67] have used 1000-2500 particles with these related PFs to model the battery 

degradation models, as represented by Eq. (3.1) to (3.3) using the same Li-ion battery dataset. 

This is because gaps are generated in the high-likelihood region of the approximated 

posterior PDF, which have prevented the particle information from being delivered to the 

subsequent iterations, degrading the estimation accuracy over several iterations in the related 

PFs. In contrast, the proposed EMPF technique can effectively represent the high-likelihood area 

of the posterior PDF, and can efficiently track the system state behavior using only a small 

number of particles. Consequently, the proposed EMPF has great potential to be implemented in 

real battery health monitoring applications with its higher accuracy and processing efficiency 

using only a small number of particles.  
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Fig. 3.4. Performance comparison of the related PF techniques, using 50 particles: (a) SIR-PF, (b) RPF, 

(c) MPF, and (d) EMPF (red solid line: the true states; blue solid lines: the estimated states at different 

runs). 
 

 

Fig. 3.5. Performance comparison of the related PF techniques, using 200 particles over 30 runs (red solid 

line: the actual states; blue solid lines: the estimated states at different runs). 
 

 
Fig. 3.6. Performance comparison of the related PF techniques, using 500 particles over 30 runs (red solid 

line: the actual states; blue solid lines: the estimated states at different runs). 
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To carry out the RUL prediction, the first part of the trajectory (i.e., RE and RCT) is used 

to estimate and update the battery’s degradation model parameters (growth state). The updated 

model parameters for each PF technique are then applied to predict the RUL. In each iteration, 

1000 particles are generated to estimate the posterior PDF. The time moment to trigger the 

prediction depends on specific application requirements; in this case, a period of 35 cycles is 

chosen for long-term prediction (at approximately 85% of actual battery life), as a period of 15 

cycles for a short-term prediction (at about 74% of actual battery life). Fig. 3.7 illustrates the 

long-term prediction of two-state tracking of data RE and RCT, and the RUL prediction, 

respectively, using battery #6 data. The forecasting starts at cycle 34 until the battery SOH 

reaches the failure threshold at cycle 69. 

 

 

Fig. 3.7. State tracking and future state prediction at cycle 34: (a) for parameter RE, (b) for parameter RCT, 

using four PFs: SIR-PF (— black line), RPF(*— red line), MPF (— magenta line), EMPF(◦— green 

line), and (—blue line) the true states. 

 

It can be seen that the MPF outperforms the SIR-PF and RPF in RE prediction, while the 

EMPF provides the best forecasting accuracy for both battery parameters due to its adaptive 

update of the battery model parameters during estimation. According to the relationship between 

RE + RCT and C/1 capacity, the predicted values of RE and RCT are used to estimate the RUL in 

terms of the capacity drop [7,73]. The derived capacity is used to calculate the SOH based on the 

following equation: 
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100
max

=
C

C
S k

k                                                                       (3.4) 

 

where kC is the current capacity at time instant k, and maxC  is the initial capacity when the 

battery is new at time k=1, whereas the estimated values will be compared against the end-of-life 

threshold (i.e., battery SOH is 70%). 

 Fig. 3.8 outlines the SOH for the estimation and prediction periods using the four PF 

techniques, which shows that the proposed EMPF technique can predict an RUL error of only 11 

cycles early, and outperforms SIR-PF, RPF and MPF with 22, 19 and 16 cycles early, 

respectively. Furthermore, the proposed EMPF can be 50%, 40% and 30% more accurate than 

SIR-PF, RPF and MPF, respectively, in long-term prediction. 

 

 

Fig. 3.8. Comparison of the derived capacity using four PFs: SIR-PF (— black line), RPF(*— red line), 

MPF (— magenta line), EMPF(◦— green line), and true states (—blue line). 

 

 In short-term prediction (over 15 cycles in this case), the prediction performance 

becomes more accurate as more data are used to estimate the battery’s model parameters. Fig. 

3.9 demonstrates that the proposed EMPF can provide the most accurate forecasting results of RE 

and RCT because it can effectively locate the high-likelihood area with its new mutation 

mechanism.  
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Fig. 3.9. State tracking and future state prediction at cycle 54, (a) for parameter RE, (b) for parameter RCT, 

using four PFs: SIR-PF ( — black line), RPF(*—red line), MPF (—magenta line), EMPF(◦—green line), 

and true states (—blue line). 

 

 Fig. 3.10 shows zoomed results for the prediction period from cycle 54 to 69 before it 

reaches the failure threshold. It is clear that the EMPF yields the minimum RUL prediction 

errors, with only four cycles earlier, due to its ability to explore the entire distribution to 

diversify the particles and to improve model parameter identification. On the other hand, SIR-PF 

is incapable of reaching the RUL threshold, with large errors of 0.03 Ah, while MPF and RPF 

have similar errors with 6.8 and 7 cycles early, respectively.  

 

 

Fig. 3.10. Zoomed prediction period of the derived capacity using four PFs: SIR-PF (— black line), 

RPF(*—red line), MPF (—magenta line), EMPF(◦—green line), and true states (—blue line). 
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3.3.2 The empirical degradation model based on the battery capacity 

In this section, the empirical degradation model in Eq. (3.5) will be used to characterize 

the capacity degradation process on the battery system model, which will consider the reduction 

in capacity with battery use as well as the battery’s self-recharge behavior [2,31,40,43].  
 


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11 exp                                             (3.5) 

 

where c  is the Coulombic coefficient ( c = 0.997 in this case); 1b and 2b are the unknown 

parameters to be estimated; kkkt
tt −= +1  is the rest time (

kt
 = 1 in this case); and kc is the 

charging capacity at the cycle kth, which has been calculated in the available dataset by 

integration of the measured current ( I ) over time from the starting ( startt ) to the end ( endt ) of 

discharging, as in Eq. (3.6). 
 

dttIc
end

start

t

t

k  )(=                                                                               (3.6) 

 

In general, the more particles that are used, the higher the estimation accuracy of the 

unknown model parameters 1b and 2b , but the larger the computational costs. Our systematic 

investigation has concluded that the related PFs require at least 200 particles to be able to 

represent the posterior PDF space and model the system state behavior, while the proposed 

EMPF technique can work effectively using only a small number of particles. For example, Fig. 

3.11 shows the performance of all PFs for SOH estimation and RUL prediction using only 25 

particles, where the prediction starts at cycle 106. However, other PFs have lost tracking of the 

system state within the first few cycles (indicated by black arrows), since their working 

mechanism rely on the particles’ normalized weights to estimate the model parameters. In this 

demonstration, when all particles fall into the regions with low posterior probability, their 

normalized weights would misguide the resampling process, which will lead to gaps in the high-

likelihood region of the approximated posterior PDF, as previously discussed.  

Thus, those related PFs will have to use a large number of particles to capture the high 

posterior probability region. For example, most research papers use 200-500 particles to 

characterize this capacity degradation model in Eq. (3.5), using the same Li-ion battery datasets 
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[22,40,93]. This confirms that the proposed EMPF is capable of dealing with sample degeneracy 

with a small number of particles. On the other hand, using the particles’ normalized weights to 

identify and process the low-weight particles may not be a reliable measure to reflect the real 

importance of the particles to the actual state. More importantly, since the proposed EMPF can 

use only small number of particles, it would require lower computational costs, which is a 

benefit in real battery health monitoring applications. The SIR-PF technique is excluded from 

comparison due to its poor performance in this simulation test. 

 

 

Fig. 3.11. Performance comparison of the estimated and predicted SOH using 25 particles: RPF(■—red 

line), MPF (—magenta line), EMPF(◦—green line), and actual states (—blue line). 

 

In this testing, to carry out the RUL prediction, each PF will be utilized to track battery 

degradation and to identify the unknown model parameters during the estimation period using 

200 particles. The battery model with the identified parameters is then used to predict the 

capacity states, and to estimate the RUL for the battery to reach the failure threshold. Battery #5 

data is used in this test, which can reach its end-of-life criterion at the cycle 162. The time 

instants to trigger the prediction are selected as 60, 40, and 20 cycles for long-term, medium-

term and short-term prediction, respectively. Table 3.1 summarizes the prediction results, which 

also include the starting point of each prediction period, as well as the relative error for each 

technique. Figures 3.12-3.13 show the zoomed results for the medium-term and long-term 

predictions, starting at 126 and 106 cycles, respectively. The relative error can be calculated by 

Eq. (3.7) [43], where ( trueRUL = 162 in this case).  

 

100
−

=
true

true

error
RUL

RULRUL
R                                 (3.7) 
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Table 3.1. Summary of the prediction results of the related PFs. 

Prediction starting  

point 

PF 

technique 

Prediction 

result (cycle) 

Error (cycle) Relative error 

146 RPF 150.2 11.8 7.28% 

MPF 152 10 6.17% 

EMPF 153.1 8.9 5.49% 

126 RPF 134.8 29.2 16.79% 

MPF 149.5 12.5 7.72% 

EMPF 151.2 10.8 6.67% 

106 RPF 144.7 17.3 10.61% 

MPF 147.1 14.9 9.09% 

EMPF 148.8 13.2 6.82% 

   

Test results show that EMPF outperforms other related PF in the long-term prediction 

with RUL relative error of 6.82%, while RPF and MPF have a higher relative error of 9.09% and 

10.61%, respectively. Although the forecasting accuracy can be improved for all PF techniques 

with a shorter prediction period, the proposed EMPF technique provides the best performance for 

SOH estimation and RUL prediction under all testing conditions. It can capture a battery’s 

dynamics, track its capacity degradation during the estimation period, and effectively predict its 

RUL.  In contrast, other PFs cannot adapt themselves to recognize the characteristics of battery 

capacity degradation, which could degrade the accuracy of state estimation and RUL prediction. 
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Fig. 3.12. Zoomed performance comparison for prediction period of the medium-term prediction (over 40 

cycles) using three PFs: RPF(■—red line), MPF (—magenta line), EMPF(◦—green line), and actual 

states (—blue line). 

 

 

Fig. 3.13. Zoomed performance comparison for prediction period of the long-term prediction (over 60 

cycles) using three PFs: RPF(*—red line), MPF (—magenta line), EMPF(◦—green line), and actual states 

(—blue line). 

 

The uncertainty of the PFs techniques can be characterized using the PDF of the 

estimated state (i.e., RUL prediction), where the PDFs with narrower and taller distributions 

have more precise results in predictions [7]. Fig. 3.14 illustrates the PDFs for the short-term 

prediction of the related PF techniques at the point when the related PF techniques have reached 

the determined end-of-life criterion (i.e., battery SOH of 70%). It is clear that the EMPF has the 

least uncertainty with its taller PDF and reasonable distribution compared to other PF techniques, 

due to its ability to effectively represent the high probability region of the posterior PDF. This is 

because its unique enhanced mutation method and selection scheme work to provide a higher 

adaptive capability to locate the high-likelihood region on the posterior PDF using a dynamic 

feedback strategy.  
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Fig. 3.14. Comparison of the uncertainty of the RUL prediction for short-term prediction: RPF (red line), 

MPF (magenta line), EMPF (green line), and true states (black line). 

 

3.4 Chapter Conclusion: 

In this Chapter, the proposed EMPF has applied two well-accepted degradation models for Li-

ion battery SOH monitoring and RUL prediction using the battery’s internal impedance and 

capacity measurements. Test results have concluded that EMPF can accurately track the system 

characteristics with fewer particles, and provide better results for SOH monitoring and RUL 

prediction compared to other related PF techniques. However, since no new measurements are 

available during the prediction period, the parameters of the degradation-prediction model will 

be fixed during this period, which can degrade the prognostic performance, especially for long-

term prediction. To tackle this problem, an adaptive evolving fuzzy (AEF) technique (predictor) 

will be proposed in the next Chapter for long-term time series forecasting, which will be used to 

forecast the battery degradation indicator values (e.g., capacity and impedance) so as to improve 

the accuracy of model-based EMPF prognostics. 
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CHAPTER 4 

AN ADAPTIVE EVOLVING TECHNIQUE FOR LONG-TERM TIME SERIES PREDICTION 

 

4.1 Overview 

A reliable long-term time series prediction technique is critically needed in various 

domains, such as the financial market [94,95], environmental sciences [96,97], and industrial 

engineering [98,99]. For example, time series forecasting is applied to identify system 

characteristics based on the current and past data (training data) in order to predict the evolution 

of the monitored feature, which will be very useful for system health monitoring and prognostics 

in industrial applications.  Many data-driven soft-computing techniques have been proposed in 

literature for this purpose such as neural networks [50,58,100], fuzzy logic [60,101], and their 

synergistic schemes [65,98,102,103]. However,  those soft-computing techniques usually suffer 

from limitations related to training efficiency and parameter-setting. Moreover, these data-driven 

models usually have limited adaptive capability to accommodate the variable environmental and 

operating conditions due to their fixed structures, especially in nonlinear systems [45,69,104]. In 

recent years, evolving fuzzy systems (eFS) have been introduced to tackle some of the 

aforementioned data-driven limitations related to the fixed reasoning architectures. 

 

4.2 Brief Background of Evolving Fuzzy Systems 

The evolving fuzzy technique is a recent development in soft-computing, which can be 

defined as a self-constructing and self-learning system with self-adapting capability for its 

parameters and structure. An eFS can gradually evolve its reasoning structure to deal with the 

time-varying system dynamics, and uses incremental learning algorithms to update its parameters 

to enhance performance [69]. Among the different types of fuzzy models, the Takagi-Surgeon 

(TS) fuzzy model is commonly applied as the reasoning platform due to its high degree of 

modeling flexibility [70]. The properties of these eFS techniques are summarized as follows: 

 

1) Structure-evolving:  

The process of fuzzy clustering is usually undertaken without prior knowledge about how 

many clusters/rules are required to characterize the system’s input/output spaces. A number of 

criteria have been suggested in the literature to control the fuzzy cluster evolving process [104]. 
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For instance, Angelov et al. [105-107] have proposed some evolving TS (eTS) fuzzy models 

based on the potential of incoming datasets using Cauchy functions. By comparing the new data 

potential with the potentials of existing clusters, a decision is made for cluster/rule generation 

and updating. Several publications use distance-based measures to generate and modify fuzzy 

clusters, for example, using the Euclidean distance [108-111] and the Mahalanobis distance 

[112,113]. The distance is measured between the new data point and the existing cluster centers 

to determine if the existing clusters can characterize the properties of the new data point. Another 

criterion is based on the firing strength (activation degree) of the new data point with respect to 

existing clusters [70,104,114,115]; for instance, if the firing strength of all existing clusters is 

below a certain threshold, a new cluster will be generated.  

Although some promising results of those evolving mechanisms can be achieved in 

applications such as control, classification and short-term prediction, their speed of fuzzy 

cluster/rule generation is sensitive to the distribution of incoming data points. This will be a 

challenge, especially in long-term forecasting operations of nonlinear systems where the spread 

of the incoming data (inputs) would be wider as the prediction horizon becomes longer. This 

would result in the generation of many extra clusters/rules during the evolving process and could 

lead to problems such as over-fitting and high computational costs. 

 

2) Incremental learning:  

Typically, eFS uses some incremental learning algorithms, where the antecedent and/or 

the consequent parameters are updated on a per-sample basis in each evolution pass [114]. 

Although the antecedent parameters (i.e., the centers and spreads of the clusters) are usually 

determined in the evolving process on the input space [116,117], they are usually not updated 

after all fuzzy clusters are formulated. In general, most eFS techniques use a certain measure to 

update the cluster center; for example, a higher potential data point should fall close to the 

existing cluster center in order to replace it. However, in some other cases, although a new data 

point is more related to system dynamics, its potential may not always be high enough to be 

selected to update the cluster/rule base if the new data point is contaminated by noise. This may 

degrade the modeling efficiency, resulting in under-fitting, and could reduce its adaptive 

capability in handling variations in operating conditions.  
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In addition, our investigation has concluded that the eFS consequent parameters could be 

dependent, to some degree, on the estimation of antecedent parameters. This means that the 

coupling error will degrade the training process. Therefore, a new approach is needed to guide 

antecedent parameter training in order to provide the eFS with more adaptive capability to handle 

changes in system dynamics and operating conditions. Although some derivative-based methods 

(e.g., Levenberg–Marquardt, gradient descent and KF) have been applied to optimize the 

antecedent parameters [110,111,118], the optimization processes are usually undertaken offline 

due to their high computational costs.  

To tackle these aforementioned problems in structure-evolving and incremental learning, 

an adaptive evolving fuzzy (AEF) technique is proposed in this Chapter to control the fuzzy 

cluster/rule generation and to enhance incremental learning, with the goal of improving modeling 

efficiency for long-term time series forecasting.  

 

4.3 Proposed AEF Predictor 

The proposed AEF predictor has the following novel aspects: 1) an error assessment 

method is suggested to monitor the trend of training errors based on a queue data buffer to 

control the fuzzy cluster/rule evolving process. 2) An adaptive particle filter (aPF) technique is 

proposed to explore the fuzzy rule space and to adjust/optimize the fuzzy cluster centers in order 

to improve the modeling flexibility and adaptive capability. In the proposed AEF predictor, the 

fuzzy rules are the TS-1 type to  describe the input-output mapping for r-steps-ahead prediction. 

Consider n inputs }{ )1(2   ..., , , , rnkrkrkk xxxx −−−− , where kx  represents the current kth data point, and 

r is the step. The fuzzy reasoning is described as follows:   
 

     Rule j:  If ( kx is jA1 ) and ( rkx − is jA2 ) and ...  and ( rnkx )1( −−  is j

nA ), then: 

     rnk

j

nrk

j

k

jj

j xaxaxaaf )1(210 .... −−− +++=                        (4.1) 

 

where j  denotes the jth fuzzy rule, ],1[ Nj ; N is the total number of rules; j

nA are the fuzzy sets 

for the nth input; and },....,{ 10

j

n

jj aaa  are the consequent parameters.  
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To facilitate the input/output partitioning, the membership functions (MFs) of all fuzzy 

sets are in Gaussian form [118]. The MF grade (i.e., premise parameter) of the n inputs at the 

time instant k in the set j

nA  is computed by: 
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where ijc and ij are the center and spread of the jth fuzzy cluster for ith input. For simplicity, they 

will be denoted as jc  and j , respectively, in the remainder of this Chapter. Using a T-norm 

operator, the firing strength of the jth fuzzy rule can be computed by:  
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After normalization, the overall output Ŷ , which is the r-steps-ahead prediction rkx + , can 

be computed by:  
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where jf is the consequent part (e.g., the model output) of the rule j, and 


=

=
N

j

j

j

j

W

W
W

1

 is 

normalized MF degrees. Linear consequent parameters j

na  are to be updated using the recursive 

least squares estimator or its variations [117]. 

 

4.3.1 The proposed error-assessment method  

 

In inference structure evolution, the potential criteria [118] is used for illustration. The 

input vector is } ,....., ,{ )1( rnkrkkk xxxX −−− , }{ rkk xY +  is the actual output, and kŶ  is the output 

computed by the proposed AEF predictor. The first data sample ],[ kkk YXz =  at the time instant 

k = 1 is used to initialize the rule parameters; the number of clusters 1:=N , the center of the first 
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cluster kzc =:1 . The spread will be initialized as 25.0:1 = , the initial potential of this data point 

1:)( =kk zP , and the potential of this first cluster 1)( :=jk cP .  

As the next data point ],[ kkk YXz =  arrives, its potential is calculated by Eq. (4.5), and 

the potential of all existing clusters will be updating recursively by Eq. (4.6): 
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k z 11 −− +=  , ],1[ Nj  denotes 

the number of fuzzy clusters/rules. 

Typically, a new fuzzy cluster is formulated if the potential of the new data point is 

higher than the potential values of all existing clusters, or if: 
 

    )( kk zP  > )( jk cP , then:  

      )(:)( ,25.0: , ,1: : kkNkNkN zPcPcNN z ==+= =               (4.7) 

  

However, this condition may be satisfied successively over several incoming data points 

in case of long-term prediction operation. This is because the input horizon of a dynamic system 

will have a broader distribution pattern due to its nonlinear and non-stationary nature. Fig. 4.1 

shows a simulation example of the fuzzy cluster/rule growth of a 10-steps-ahead prediction using 

the Mackey-Glass benchmark data [104]. It can be seen that it has 5 clusters/rules at data sample 

237, which continuously increases until it reaches 19 clusters/rules at time instant 251. This is 

because the potential of the data sample keeps increasing, and will always be higher than those 

of all existing cluster centers. 
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Fig. 4.1. Fuzzy cluster/rule generation process. 
   

The high number of clusters/rules would not only result in higher computational costs, 

but would also make the system prone to over-fitting. Furthermore, it would degrade processing 

accuracy, as illustrated in Fig. 4.2, whereby the training error keeps increasing over several steps. 

 

 

Fig. 4.2. Increase in training errors. 
 

The proposed error assessment method aims to track the trend of training errors (i.e., 

monotonically decreasing or increasing) to control the cluster formulation process. Since the 

recent data point usually has a higher impact on the future behavior of the dynamic system, a 

queue data structure buffer is adopted to keep only the most recent training errors. Based on the 

determined trend of the recent training errors, a decision will be made to either update the 

properties of existing cluster/rule to accommodate the new data sample with higher potential, or 

a new cluster/ rule will be formulated and added to the cluster/rule base.  

The proposed error-assessment method is conducted by using a )(f  function, as shown 

in Eq. (4.8):  
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where )(f is monotonically increasing if 0 , and monotonically decreasing if 0 .   
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The trend of recent training errors held in the queue buffer is estimated by: 
 

     1−−= kkk EE                                                        (4.9) 

     =
+−=

k

Rki
ik eE
1

                                                          (4.10) 

     kkk YYe ˆ−=                                               (4.11) 

 

where kE  and 1−kE  are the cumulative training errors for the recent data points at the kth and the 

(k-1)th time instants, respectively.  

   in Eq. (4.9) is an indicator that assesses the error trend in the queue buffer:  > 0 if the 

current cumulative errors are increasing, or  < 0  if errors are decreasing.  

 ke  in Eq. (4.11) is the training error at the kth time instant, which is used to update the queue 

data structure in the buffer, as illustrated in Fig. 4.3. The queue buffer length R can be 

determined by the prediction step r. In this case, 1+= rR  is selected based on the training error 

patterns. 

 

 

                                                Fig. 4.3. Queue buffer updating mechanism. 

 

The proposed error-assessment method is summarized as follows: 

 1) Adding a new cluster/rule scenario: A new cluster/rule will be added only if both 

conditions in Eq. (4.7) and Eq. (4.12) are satisfied simultaneously. This means that the potential 

of the new data point is higher than the potentials of all existing cluster centers, and the 

cumulative errors are monotonically increasing: 

 

      +− 1)( 1kf                                                          (4.12) 
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where   is a small real number that represents the data bias associated with cluster sensitivity, it 

can be used to provide some degree of freedom in the threshold of the condition.  

 

 2) Updating the existing cluster/rule scenario: If only the condition in Eq. (4.7) is satisfied, 

but the cumulative error is monotonically decreasing, the new data point with a higher potential 

will replace the closest existing cluster center, or:  
 

     jk czI −=
=

N
1j

min arg                                                  (4.13) 

 

The cluster center and potential will be updated by:   
 

     kI zc =:                                            (4.14) 

     )(:)( kkIk zPcP =                                                       (4.15) 

 

where I is the index of the cluster (with the center Ic ), closest to this new data point with a 

higher potential.  

Fig. 4.4 demonstrates how the proposed error-assessment method can tackle the 

aforementioned problems in Figures 4.1 and 4.2. As illustrated in Fig. 4.4(a), when the error-

assessment method recognizes a monotonic increase of the cumulative error at time instant 240, 

and the following data point (i.e., at 241) has a higher potential, a new cluster will be added, as 

shown in Fig. 4.4(b), as conditions in Eq. (4.7) and Eq. (4.12) are satisfied simultaneously. 

Consider another case for the incoming data point at time instant 242, whereby both conditions 

are satisfied, another new cluster is generated to model the new system characteristics. This 

demonstrates that the proposed error-assessment method can capture the new characteristics of 

the system by adding only two clusters/rules instead of 14 clusters/rules, as illustrated in Fig. 4.2. 

Fig. 4.4(c) outlines how the proposed error-assessment method can prevent the over-fitting 

problem by reducing training errors and improving modeling efficiency.  
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Fig. 4.4. Proposed method mechanism to add rules. 
  

  The recognized evolving system will be optimized by using the proposed training 

approach, (to be discussed in the following section).    

 

4.4. Adaptive Particle Filter Technique for Optimization 

Although the fuzzy cluster centers are defined based on an evolving approach, those 

clusters may not be updated after all clusters have been formulated. Fig. 4.5 illustrates an 

example of the cluster generation over 1600 data samples for 6-steps-ahead prediction. Two 

fuzzy clusters are generated within the first few data samples; rule #1 is not updated after data 

sample 29, which may prevent the eFS from handling variations in operating conditions; it will 

also degrade forecasting accuracy if the cluster parameters are defined or updated based on noisy 

data. 
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Fig. 4.5. Generated fuzzy clusters/rules progress. 

  

In this work, an adaptive PF (aPF) training technique is proposed to adaptively explore 

the fuzzy rule space and optimize fuzzy cluster centers. The objectives are to minimize the 

impact of uncertainties in cluster formulation and improve modeling flexibility. As stated in 

Subsection 2.2, the PF is a Bayesian estimation method based on the Monte Carlo simulation, 

whereby posterior PDF is represented by a set of random samples (particles). The associated 

weights of these particles are computed based on the conditional likelihood of each particle 

[119]. However, it is difficult to use the general PF algorithm in eFS due to the high 

computational costs of its resampling process. In addition, it is difficult to properly characterize 

the high-likelihood area of the estimated posterior PDF due to sample degeneracy.  

A new adaptive approach will be suggested in the proposed aPF to generate particles on 

the high-probability regions of posterior density to improve estimation accuracy. A unique 

implementation strategy will also be proposed to accelerate the optimization process. The 

proposed aPF training technique will be executed only if the error-assessment method recognizes 

monotonically-increasing training errors due to reasons such as poor modeling performance. 

Unlike the existing PF techniques, the proposed aPF does not require parameter-setting and 

resampling. Correspondingly, it can reduce computation time for real-time monitoring 

applications. 

As the parameter optimization is related to nonlinear filtering, the respective dynamic 

state-space model and the measurement model of the proposed aPF technique can be described 

by Eq. (4.16) and Eq. (4.17): 
 

     ),( kjj ucfm =                                                            (4.16) 

     ),( kjkk vmhY =                                                                   (4.17) 
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where jm is the hidden state to be estimated, which will be the optimal location for the fuzzy 

cluster center jc ; kY  is the actual output at the kth time instant; )( •h  denotes the proposed AEF 

predictor; ku  and kv  are random noise.  

The posterior PDF of the state jm  can be represented by T  particles { 1

jm , 2

jm ,..., T

jm }, 

which will be used in Eq. (4.2) to compute the MFs. The associated weights { 1

j , 2

j , ..., T

j } 

will be computed based on the conditional likelihood of each particle with respect to the target 

output. The posterior density at time instant k can be approximated as: 
 

     )()|(
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                                  (4.18) 

 

where (.)  is the Dirac function, and the weight t

j can be recursively updated using the 

principle importance sampling [119].  

In initialization, the weight of the current cluster center jc  is computed and denoted as ξ, 

which is initially considered as the optimal location bestC  with the highest weight  =:best .  

The proposed aPF training technique will generate a set of T particles { 1

jm , 2

jm ,..., T

jm } 

using the following steps: 

 1) Define the respective upper (U) and lower (L) boundaries of the fuzzy cluster/rule space 

with the searching region: 
 

     RbestCU +=                                                                 (4.19) 

     RbestCL −=                                                                          (4.20) 

 

where R  is the standard deviation of the R  most recent data points to recognize the optimal 

location. bestC  is the optimal location so far. 

 2) Derive the T  particles {
1

jm ,
2

jm ,...,
T

jm } from the determined high-likelihood region: 
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where ],1[ Tt  is the particles index, and  [0, 0.5] is a random number to explore these 

boundaries with an approximately uniform distribution for optimization, by minimizing the 

training error in Eq. (4.17). 

 3) Compute the weight t

j  of the driven particles. For each particle, if best

t

j   , both bestC  

and  best will be updated by: t

jbest mC =:  , t

jbest  =: . The jth fuzzy cluster center jc will be 

updated using the particle value with the highest weight, or bestj Cc =: . 

The proposed adjustment approach, as discussed above, can evaluate the modeling 

performance of each specified location, and adjust a fuzzy cluster/rule center to a new location 

only to achieve a better performance. This will ensure that the AEF predictor can gradually make 

the necessary update to maintain high modeling efficiency. Fig. 4.6(a) illustrates high training 

errors due to the impact of static cluster centers that cannot properly deal with variations in 

operating conditions. Fig. 4.6(b) demonstrates how the proposed error-assessment method and 

aPF training technique can recognize and process training errors.  

 

 

Fig. 4.6. Training errors during 1600 data samples: (a) without using the proposed aPF technique,  

(b) using the aPF technique. 

 

Fig. 4.7(a) shows a MF grade without updating cluster centers. Fig. 4.7(b) illustrates how 

the proposed aPF training technique can adjust the fuzzy cluster centers in order to re-capture the 

system’s new dynamics. Fig. 4.8 shows the training error distribution, where the proposed aPF 

training technique in Fig. 4.8 (b) can generate lower error standard deviation and higher 

modeling accuracy. 
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Fig. 4.7. Comparison of the MF grade of the input space: (a) without using the proposed aPF technique, 

(b) effects using the proposed aPF technique. 

 

 

Fig. 4.8. Fitting training error distribution in a histogram: (a) without using the proposed aPF technique, 

(b) using the aPF technique. 
 

4.5. Performance Evaluation  

The effectiveness of the proposed AEF technique and aPF algorithm is evaluated in this 

section by simulation tests using the Mackey-Glass data series, which is chaotic, non-

convergence, and non-periodic in nature. It is a benchmark dataset that has been widely used in 

many publications in this research and development field [70,98,101,104-110]. The Mackey-

Glass data equation is: 
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In this testing, 10000 data points are generated with the following conditions: 

2.1)0( =x , ,1=dt 30=  (which is more nonlinear than the commonly-used 17= ). The aPF 

training algorithm will use 15 particles. The test is undertaken using the Matlab R2017a. For 
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simplicity, the threshold   in Eq. (4.12) is selected as the standard deviation of the data in this 

testing. Four input variables }{ 32 , , , rkrkrkk xxxx −−−  will be used for the r-steps-ahead prediction 

rkx + , where kx  represents the data point at the kth time instant, and rkx +  is the predicted output 

kY . 

 

4.5.1. Performance evaluation for long-term predictions 

In this subsection, the proposed AEF predictor is evaluated in terms of modeling 

performance and the number of fuzzy clusters/rules. Two well-accepted evolving techniques are 

used for comparison: the evolving eTS technique, based on potential criteria [106,111,116,118], 

and eFS technique, based on distance criteria [110]. Table 4.1 summarizes the simulation results 

for the r-steps-ahead prediction using 1600 data samples in terms of root-mean-squares error 

(RMSE) between the actual output and the computed output. Results show that the proposed 

AEF predictor can provide higher prediction accuracy with fewer clusters/rules, especially for 

long-term prediction (e.g., 8~14 steps-ahead). When r = 13, although the eFS technique has 

generated the same number of clusters/rules as the proposed AEF predictor, the AEF predictor is 

20% more accurate than the eFS due to its efficient clustering approach.  

 

Table 4.1. Performance comparison of the related predictors in terms of RMSE and number of rules. 
 

No. of Steps 

eTS eFS AEF 

RMSE 
No. of 

Rules 
RMSE 

No. of 

Rules 
RMSE 

No. of 

Rules 

1 0.003 4 0.002 1 0.002 2 

2 0.007 2 0.008 1 0.007 2 

3 0.022 3 0.023 1 0.022 3 

4 0.041 3 0.046 1 0.041 3 

5 0.063 4 0.057 8 0.063 4 

6 0.086 2 0.066 11 0.080 2 

7 0.093 5 0.065 11 0.077 4 

8 0.077 13 0.057 13 0.055 6 

9 0.068 15 0.059 14 0.051 6 

10 0.054 31 0.057 12 0.045 7 

11 0.056 22 0.060 11 0.045 11 

12 0.057 14 0.064 13 0.043 8 

13 0.073 12 0.072 9 0.059 9 

14 0.081 9 0.073 9 0.071 7 
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Fig. 4.9 illustrates the test results of those techniques in terms of RMSE, and Fig. 4.10 

compares the number of generated clusters/rules. It is clear that the proposed AEF predictor can 

generate a smaller number of clusters/rules to map the fuzzy input and output spaces with higher 

modeling accuracy (or lower RMSE). For example, although the eTS and eFS techniques have 

generated 4 and 2 times more clusters/rules, respectively, than the proposed AEF predictor for 

10-steps-ahead prediction, the AEF predictor can effectively capture the system’s dynamic 

characteristics and provide higher modeling accuracy (with lower RMSE (0.045 vs. 0.054 and 

0.057)) while using fewer clusters/rules (7 vs. 31 and 12). This is because its error-assessment 

method can effectively accommodate the high potential data point instead of adding new rules if 

the training errors follow a decreasing monotonic trend. The proposed aPF training technique can 

adaptively adjust the fuzzy cluster centers in order to improve the modeling performance. In 

general, the more clusters/rules are generated, the higher the computational cost to update and 

estimate the related antecedent and consequent parameters. Since the proposed AEF predictor 

uses fewer rules to reach high prediction accuracy, it will be more computationally efficient, 

which is a key for real-time health monitoring and prognostics applications.  

 

 

Fig. 4.9. Performance comparison in terms of RMSE using: eTS (blue dotted line), eFS (red dashed line), 

and AEF (yellow solid line). 
 

  
Fig. 4.10. Comparison of the generated rules using: eTS (blue column), eFS (red column), and AEF 

(yellow column), respectively. 
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4.5.2. Performance evaluation for the aPF algorithm  

To examine the efficiency of the proposed aPF training algorithm, its performance will be 

compared with two classical training algorithms, such as the gradient descent (GD) and 

decoupled extended Kalman filter (DEKF) methods [111,120]. The goal is to optimize the 

antecedent parameters (i.e., the centers of the clusters) of the resulted AEF predictor models 

from the previous section. The training is performed offline over one epoch using 1600 data 

points, followed by the testing of 1000 data points to evaluate the recognized models. The 

learning rate for the GD is determined by trial-and-error (learning rate = 0.01 in this case), which 

is similar to that in [120] for the same data. Table 4.2 summarizes the performance over five runs 

of the training and testing stages in terms of RMSE for long-term predictions (i.e., 8, 9…. and 14 

steps ahead). Figures 4.11 and 4.12 illustrate the training and testing error distribution as well as 

the standard deviation examples corresponding to 8-, 11- and 14-steps-ahead prediction, 

respectively. Figures 4.13 and 4.14 demonstrate the training and testing performance comparison 

of the related training techniques for 8-steps-ahead prediction, respectively. 

 

Table 4.2. Comparison in terms of the averaged mean for the training RMSE, and testing RMSE. 

No. of Steps 

GD DEKF aPF 

Training 

RMSE 

Testing 

RMSE 

Training 

RMSE 

Testing 

RMSE 

Training 

RMSE 

Testing 

RMSE 

8 0.046 0.053 0.042 0.051 0.039 0.044 

9 0.041 0.084 0.028 0.033 0.026 0.031 

10 0.037 0.048 0.044 0.070 0.037 0.047 

11 0.036 0.049 0.032 0.041 0.033 0.040 

12 0.037 0.047 0.035 0.057 0.029 0.034 

13 0.054 0.099 0.054 0.112 0.049 0.063 

14 0.084 0.108 0.070 0.092 0.059 0.074 

 

It is clear that the proposed aPF training algorithm has the lowest RMSE during the 

training stage, in most cases. For example, it has a lower RMSE than DEKF, with about 10%, 

15%, 20%, and 15% for 8-, 10-, 12-, and 14-steps-ahead predictions, respectively. In addition, 

RMSE values are approximately 15%, 40%, 20%, and 30% lower than the GD, for 8-, 9-, 12-, 

and 14-steps-ahead predictions, respectively. Similarly, the proposed aPF training algorithm 

outperforms related algorithms such as DEKF and GD under these testing conditions.  
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Fig. 4.11. Performance comparison in terms of training errors corresponding to: (a) 8-steps-ahead 

prediction, (b) 11-steps-ahead prediction, (c) 14-steps-ahead prediction. GD (blue dotted line), DEKF (red 

dashed line), and aPF (yellow solid line). 

 

Test results conclude that the proposed aPF can maintain high modeling efficiency, and 

effectively tackle the over-fitting problem; this is because it can effectively explore the fuzzy 

rule spaces, and capture the high-likelihood region at the posterior PDF in order to reduce the 

trapping of possible local minima. Furthermore, the working mechanism of the aPF algorithm 

can effectively recognize the optimal location for fuzzy cluster/rule center, so as to achieve 

higher modeling efficiency with the current consequent parameters. On the contrary, the GD and 

DEKF methods perform inconsistently under different testing conditions; for example, the DEKF 

performs better than the GD under some training and testing condition such as 8-, 9-, and 14-

steps-ahead predictions, while the GD outperforms DEKF in predictions with r = 10, and 13. 

This is due to the fact that the GD usually converges slowly, and is sensitive to training data 

noise, while the DEKF has limitations related to updating the covariance matrices in a nonlinear 

dynamic system.  
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Fig. 4.12. Performance comparison in terms of testing errors corresponding to: (a) 8-steps-ahead 

prediction, (b) 11-steps-ahead prediction, (c) 14-steps-ahead prediction. GD (blue dotted line), DEKF (red 

dashed line), and aPF (yellow solid line). 
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Fig. 4.13. Performance comparison of the related training techniques for 8-steps-ahead prediction training 

by (a); GD (b) DEKF; and (c) aPF; (blue lines: the actual data; red lines: the prediction performance). 
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Fig. 4.14. Performance comparison of the related training techniques for 8-steps-ahead prediction testing 

by (a); GD (b) DEKF; and (c) aPF; (blue lines: the actual data; red lines: the prediction performance). 

 

Furthermore, during the training process, the execution time is used to measure 

processing efficiency. Table 4.3 summarizes the execution time in seconds of the related training 

algorithms (i.e., aPF, DEKF, and GD). Test results show that the proposed aPF algorithm has the 

highest processing efficiency (i.e., the lowest execution time), which is about 15 times faster than 

other methods on average. This is because the aPF algorithm applies less particles to represent 

the high-likelihood region at the posterior PDF. In addition, it does not require resampling 

process at each iteration, which can further reduce computational time and required memory. In 

contrast, GD and DEKF algorithms have more complex working mechanisms, which require 

high computational costs at each iteration to update their parameters (i.e., gradient vectors, 

covariance matrices, observation error covariance matrices, etc.).  
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Table 4.3. Comparison in terms of training execution time for the related training techniques. 

No. of 

Steps 

GD DEKF aPF 

Time (sec) Time (sec) Time (sec) 

8 7.206 6.072 0.401 

9 7.149 6.389 0.424 

10 7.516 6.436 0.471 

11 8.044 7.216 0.626 

12 7.689 6.733 0.549 

13 7.515 7.498 0.563 

14 7.243 7.764 0.535 

 

4.6 Chapter Conclusion: 

In this Chapter, an adaptive evolving fuzzy (or AEF) predictor has been proposed for 

long-term time series forecasting. In this AEF predictor, an error-assessment method is proposed 

to control the fuzzy cluster/rule generation. A queue data structure buffer is suggested and 

applied to monitor the trend of cumulative training errors. An adaptive particle filter (or aPF) 

training algorithm has been proposed to adaptively adjust the fuzzy cluster centers so as to 

improve modeling accuracy of the proposed AEF predictor. The effectiveness of the proposed 

AEF and aPF technologies has been verified through simulation tests using a commonly-used 

benchmark data. Test results have demonstrated that the proposed AEF predictor not only can 

generate a smaller number of clusters/rules to model the fuzzy rule spaces, but also can reach 

higher prediction accuracy. Due to its simpler processing mechanism and efficient aPF training, 

the AEF can be much faster, which is a benefit for online prediction in real-world applications.  

In the next Chapter, the proposed AEF predictor will be integrated with the model-based 

EMPF method to further improve prognostics performance for Li-ion batteries. 
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CHAPTER 5 

A HYBRID PROGNOSTIC FRAMEWORK FOR BATTERY HEALTH 

MONITORING AND RUL PREDICTION 

5.1 Overview 

As discussed in Chapter 1, compared with data-driven techniques, a PF-based prognostic 

method has its own advantages in Li-ion battery prognostics, including 1) modeling the 

underlying physics of battery SOH degradation processes; 2) making inferences about hidden 

states; and 3) ability to represent the uncertainty in the estimated state with less sensitivity to 

noise [1,5,10,25,26,123]. However, PF methods have limitations, such as: 1) sample degeneracy 

and impoverishment, which affect the estimation accuracy of the posterior PDF and RUL 

prediction [7,22,24,37,38]; and 2) difficulty in updating the posterior PDF during the prognostic 

period since no new measurement data are available [1,9,22,44,71,72]. To solve some of these 

PF problems, a model-based EMPF technique has been proposed in Chapters 2 and 3 for battery 

health prognosis. The EMPF applies a novel mutation approach to characterize the underlying 

physics of battery degradation. It can properly represent prediction uncertainty with its posterior 

PDF, and provide better state estimation than other related PF techniques. However, due to the 

lack of battery measurement information during the prognostic process, its RUL prediction errors 

increase as the prediction horizon becomes longer.  

To deal with the lack of battery measurements during the prognostic process, a data-

driven AEF predictor has been proposed in Chapter 4 for long-term time series prediction, which 

will gradually evolve its reasoning structure and tune its related parameters. Test results have 

demonstrated that the AEF predictor can effectively capture the characteristics of a dynamic 

system and has sufficient adaptive capability to deal with variations in operating conditions. 

However, it also has some shortcomings as a data-driven method, for example, it cannot make 

inferences about hidden states that are inaccessible to the sensors for measurement, and cannot 

properly model uncertainty associated with its predicted future values [1,23,121,122].  

In general, both a model-based technique and a data-driven predictor have their own 

merits and unpreventable limitations. Their performance depends on the complexities of battery 

system dynamics, noise and uncertainties in operation, prediction horizon, and measurement 

availability [9,20]. A new hybrid prognostic framework will be developed in this Chapter to 
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integrate the merits of both model-based EMPF and data-driven AEF techniques, but will reduce 

their respective limitations. Specifically, the AEF will be used to predict the values of the battery 

degradation trend, and the EMPF will be applied to reduce modeling uncertainty and improve the 

accuracy of SOH and RUL prediction. 

 

5.2 The Proposed Hybrid Prognostic Framework 

The developed hybrid prognostics framework consists of two phases in processing, as 

illustrated in Fig. 5.1. In Phase 1, the model-based EMPF will be used to describe the evolution 

of the system state and to model battery degradation trend with time for battery SOH estimation; 

its model parameters are adaptively updated using the available battery measurement indicator 

values (e.g., capacity and impedance). On the other hand, the AEF predictor will be evolved 

using the available measured indicator values in a gradual but online manner, which will be used 

in Phase 2. The battery RUL will be predicted in Phase 2, during which there will be no new 

measurements. The formulated AEF in Phase 1 will be used to forecast measurement indicator 

values beyond the available window, which will be used by the model-based EMPF to track the 

battery’s degradation trend. By this methodology, the EMPF will keep updating its posterior 

PDF to reduce uncertainty and forecast the degradation trend for RUL prediction. The details 

methodology of the proposed hybrid prognostic framework will be discussed in the following 

subsections. 

 

 

Fig. 5.1. Schematic diagram of the prognostics framework phases. 
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5.2.1 Phase 1: Degradation modeling (battery health monitoring): 

The block diagram of degradation modeling processes is illustrated in Fig. 5.2. The 

monitoring data are available during Phase 1 period. The goal of the prognostic framework is to 

capture and track the battery degradation characteristics based on the available measurements so 

far. The model-based EMPF will use a degradation-prediction model (i.e., diagnosis model) to 

represent the battery’s degradation progression during the battery's lifetime. It models the 

battery’s health as a function of battery use condition (i.e., SOH), time duration (elapsed cycle), 

and model parameters (damage/aging behavior). The EMPF conducts state estimation based on 

the state transition and measurement (observation) models that can define the evolution of the 

system degradation behavior with time. The system state transition model as in Eq. (5.1) and the 

measurement or observation model in Eq. (5.2) will represent the mapping relation between the 

measured degradation indicator values and the degradation model parameters:  
 

)1,( kkkk uxfx −=                                                                        (5.1) 

    ),( kkkk vxhy =                                                                           (5.2) 

 

where kx  are the model parameters to be estimated; ky  are the battery degradation indicators 

(i.e., capacity and impedance) at kth time instant; uk and υk are Gaussian white noise signals with 

zero mean.  

 

 

Fig. 5.2. Schematic diagram of degradation modeling phase in the prognostics framework. 
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The objective of the model-based EMPF is to perform battery state estimation with model 

parameters identified recursively as new observation becomes available. The EMPF can estimate 

the posterior PDF of the hidden state (i.e., model parameters) through some random samples 

(particles), where particle weights are continuously adjusted according to the likelihood of each 

particle from the new observation at that time instant. The updated/estimated posterior PDF can 

represent the high probability region for the system state whose PDF can characterize the 

expected uncertainty in the estimated result. The goal of this process is to use these available 

battery degradation indicator values to recognize the high-likelihood area on the system space in 

order to track the battery degradation trajectories and model the fault propagation with time.  

Furthermore, the AEF predictor will be evolved in Phase 1 using the available battery 

measured indicator values (e.g., capacity and impedance) for long-term time series prediction. As 

discussed in subsection 4.3, the AEF predictor will be gradually evolved to describe the input-

output mapping for r-steps-ahead prediction, and its related antecedent and consequent 

parameters will be recursively updated to enhance performance. The r-steps-ahead predicted 

value can be described as: 

 

     ,.....),,(ˆ 2rkrkkrk yyygy −−+ =                                                                        (5.3) 

 

where rky +ˆ  is the forecasted indicator value at the (k+r)th time instant; { ,.....,, 2rkrkk yyy −− } 

are the available battery degradation indicator values in Phase 1; and )( •g  denotes the AEF 

predictor.  

Unlike other data-driven techniques used in the related hybrid prognosis frameworks 

such as [17,22,44,67,71-72], the AEF predictor in this work cannot only evolve its reasoning 

structure online to deal with the time-varying system dynamics and update its related parameters 

to improve modeling flexibility and accuracy. It can, however, maintain sufficient adaptive 

capability to capture and track the battery’s degradation characteristics. In contrast, other related 

data-driven techniques apply fixed reasoning structures, and their parameters are usually trained 

offline using some historical data that may not reflect the current operating conditions. This can 

degrade the modeling efficiency by resulting in under-fitting, and reduce their adaptive 

capability in handling variations in operating conditions.  

 



90 

 

5.2.2 Phase 2: RUL prediction  

Fig. 5.3 shows the processing procedures in Phase 2. The moment to trigger the battery 

RUL prediction is referred to as the starting point (Fig. 5.1). Then the recognized EMPF 

degradation-prediction model from Phase 1 will be used to forecast the battery RUL, or the time 

duration for the battery state to reach its threshold (i.e., 70% of the original battery SOH state). 

The formulated AEF predictor in Phase 1 will be applied to forecast the future measurement 

indicator values )ˆ,.....ˆ,ˆ,ˆ( 321 rkkkk yyyy ++++ in order to tackle the problem of lack of battery 

measurements during the prognostic process. Therefore, the EMPF can continuously update its 

posterior PDF to reduce modeling uncertainty and improve the accuracy of SOH and RUL 

prediction. 

 

 

Fig. 5.3. Schematic diagram of the battery RUL prediction in the hybrid prognostics framework. 

 

  System RUL is usually conducted by modeling the fault propagation trend to estimate the 

time before failure. In Phase 2, the model-based EMPF will firstly perform a one-step-ahead 

prediction to forecast the degradation state distribution (i.e., the predicted PDF) of the next time 

step or ( 1+k ), using the posterior PDF of the current state (i.e., the initial PDF). The particles 

that shape the current posterior PDF will be propagated using the state transition model in Eq. 

(5.1) to form the predicted PDF. Then, as discussed in subsection 2.3, the unique mutation 
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approach in the EMPF will recursively update the new posterior PDF (i.e., predicted PDF) based 

on the likelihood of each particle, as illustrated in Fig. 5.4.  

 

 

Fig. 5.4. Illustration of the EMPF operations for updating the posterior PDF. 
 

The propagation operation in Fig. 5.4 will be repeated a number of times to forecast the 

degradation trend and identify the moment when the battery SOH reaches its end-of-life 

threshold for RUL prediction. In general, the posterior PDF of the current state (related to the 

initial PDF) is considered to be the core element in this prognostic process. Using the predicted 

indicator values by the AEF predictor to update the posterior PDF at each time step in Phase 2 

will force particles to shift/focus to areas with high-likelihood, which could reduce modeling 

uncertainty and result in more accurate predictions. In general, a PDF with a narrower and taller 

distribution would have more precise predictions [1,7,20,23]. Fig. 5.5 illustrates a comparison of 

the PDF properties using this developed hybrid prognostics framework versus that using a single 

model-based EMPF.  

 

 

Fig. 5.5. Illustration of uncertainty in the form of the PDF in the phase of RUL prediction. 
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5.3 Performance Evaluation for Battery RUL Prediction 

The effectiveness of the developed EMPF and AEF hybrid prognosis framework, denoted 

as EMPF-AEF, will be examined in this section for battery SOH monitoring and RUL prediction. 

This testing will be conducted using the same datasets as used in Chapter 3 (i.e., battery datasets 

and prediction starting points). It will investigate the framework's reliability to deal with the 

problem of no measurements during the prognostic process in Phase 2, and the uncertainty 

associated with its RUL prediction in the form of PDF distribution. Its performance will be 

compared with the related PF methods: 

1) the quantum particle swarm optimization-based PF (QPSO), which is a population-

based swarm intelligence algorithm [43].  

2) the hybrid method of QPSO integrated with a data-driven technique: adaptive neuro-

fuzzy inference system (ANFIS) [124], denoted as QPSO-ANFIS in this test.  

Since the AEF predictor is a data-driven technique that cannot express uncertainty 

associated with its processing result in the form of probability as discussed in subsection 1.3.3, it 

will be excluded from the comparison as an individual method. 

In investigating battery SOH for RUL prediction, the battery capacity is usually used as a 

degradation indicator in many studies [10,21,22,31-33,35], which can be calculated by 

integrating the battery current over time. In this test, the empirical degradation model in Eq. (5.4) 

will be used to model the Li-ion battery physics, which can consider the reduction in battery 

capacity as well as the battery’s self-recharge behavior [2,31,40,43]. The battery capacity can be 

converted to the SOH in a unified form in Eq. (5.5) : 
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where c is the Coulombic coefficient ( c = 0.997 in this case); kC is the charging capacity at the 

kth  cycle; 0C is the initial capacity at the time k = 1; 1b and 2b are the parameters to be estimated; 

kS  is the battery SOH  at the kth cycle; and kkkt
tt −= +1  is the rest time interval from the kth 

cycle to the ( 1+k )th cycle (
kt

 = 1 in this case).  
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In this test, the number of particles is selected to be 200, which is similar to that in the 

QPSO-PF in [43] to ensure a fair comparison. To compare the performance of the related 

methods, testing is performed over 50 times, using data of battery #5 from the NASA battery 

prognostic data [89], which reaches its failure threshold at cycle 162. The test comparison is in 

terms of the accuracy of modeling and RUL forecasting. The time moments to trigger the 

prediction are selected at 86, 106, 126, and 146 cycles, respectively, which will cover different 

battery SOH conditions and represent long-term, medium-term, and short-term predictions. Table 

5.1 summarizes the average mean and standard deviation values of RMSE over 50 test runs. Fig. 

5.6 shows the comparison of the related techniques, corresponding to different prediction starting 

points (i.e., 86, 106,126, and 146) over 50 random runs.  

 

Table 5.1 Average mean and standard deviation of RMSE over 50 runs. 

Prediction 

starting point 
Method 

Averaged mean 

of RMSE 

Standard deviation 

of RMSE 

86 

 

QPSO-PF 0.035 0.003 

QPSO-ANFIS 0.017 4.827 × 10-5 

EMPF-AEF 0.015 4.596 × 10-5 

106 

 

QPSO-PF 0.019 0.002 

QPSO-ANFIS 0.014 5.117 × 10-5 

EMPF-AEF 0.013 4.311 × 10-5 

126 

 

QPSO-PF 0.016 0.001 

QPSO-ANFIS 0.013 3.688 × 10-5 

EMPF-AEF 0.008 3.532 × 10-5 

146 

 

QPSO-PF 0.012 4.584 × 10-4 

QPSO-ANFIS 0.006 7.003 × 10-5 

EMPF-AEF 0.004 3.246 × 10-5 
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Fig. 5.6. Performance comparison (the average RMSE over 50 runs) corresponding to different prediction 

starting point: (a) 86, (b) 106, (c) 126, and (d) 146, using QPSO-PF (blue line), QPSO-ANFIS (green 

line), and EMPF-AEF (red line). 
 

The RMSE can be reduced as the prediction period becomes shorter using all related 

techniques. The QPSO-ANFIS outperforms the QPSO-PF, because the ANFIS predictor keeps 

updating the model parameters during the prediction period. The developed EMPF-AEF 

framework performs best under all testing conditions; for example, it is approximately 60%, 

30%, 50%, and 65% lower in RMSE than QPSO-PF, as well as 10%, 8%, 40%, and 30% lower 

than the QPSO-ANFIS, corresponding to prediction starting points at 86, 106, 126 and 146, 

respectively. This is because the proposed EMPF-AEF framework can effectively integrate the 

strengths of both the EMPF and AEF techniques in modeling the underlying physics of battery 

health degradation.  
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In this case, the EMPF can alleviate the impact of sample degeneracy and 

impoverishment for better system state estimation. In addition, it can properly represent  the high-

likelihood region of the posterior PDF to track battery dynamic behavior and to forecast the 

degradation state distribution, which is the key aspect to achieve high-performance prediction. 

The unique evolving mechanism of the AEF predictor can effectively capture the battery 

dynamic characteristics even using the limited available battery data in Phase 1, due to its 

adaptive  capability to adjust its reasoning structures and parameters to minimize the impact of 

uncertainties. The model-based EMPF in Phase 2 can properly update its posterior PDF using the 

predicted indicator values by the AEF and improve RUL prediction performance under all 

testing conditions. Furthermore, the small standard deviation of the RMSE using the proposed 

EMPF-AEF framework can demonstrate its robustness under different operating conditions. 

Processing efficiency (i.e., execution time) plays a key role in real-time system 

monitoring applications, which can be an indicator of the computing complexity of the related 

techniques. Table 5.2 summarizes the average execution time using the related techniques, which 

are measured under the same testing conditions over 50 random runs using the same observation 

datasets. Fig. 5.7 schematically compares the average execution time using the related methods, 

corresponding to different prediction starting points (i.e., 86, 106,126 and 146), over 50 random 

runs. It is seen that execution time increases significantly for both the QPSO-PF and the QPSO-

ANFIS as the prediction period becomes shorter; it is because the extra available data have to be 

processed for modeling and forecasting. In addition, the QPSO-PF duplicates its particle 

numbers using a wave function to reduce sample degeneracy and impoverishment, which takes 

longer time for processing. 

The QPSO-ANFIS framework takes even longer execution time than the QPSO-PF in 

modeling and ANFIS training. In contrast, the developed EMPF-AEF framework uses the 

shortest execution time, or it is about 4 times faster than the QPSO-PF (1.309 sec vs. 5.794 sec, 

1.598 sec vs. 7.469 sec, 1.678 sec vs. 8.600 sec, 1.739 sec vs. 9.813 sec), and almost 7 times 

faster than the QPSO-ANFIS framework (1.309 sec vs. 10.579 sec, 1.598 sec vs. 11.196 sec, 

1.678 sec vs. 11.720 sec, 1.739 sec vs. 13.404 sec). This is because the EMPF uses a dynamic 

feedback mechanism to guide the search of the high-likelihood region at the posterior PDF, as 

discussed in subsection 2.3.1; its selection scheme can also accelerate the recognition of low-

weight particles to reduce sample degeneracy as discussed in subsection 2.3.2. In addition, the 



96 

 

AEF predictor can map the input-output spaces with fewer clusters/rules, which in turn can speed 

up the training process. 

 

 

 

Fig. 5.7. Comparison of the average execution time over 50 runs corresponding to different prediction 

starting point: (a) 86, (b) 106, (c) 126, and (d) 146, using QPSO-PF (blue line), QPSO- ANFIS (green 

line), and EMPF-AEF (red line). 
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Table 5.2 The average execution time of the related methods over 50 runs.  

Prediction starting 

point 
Method Time (sec) 

86 

 

QPSO-PF 5.794 

QPSO-ANFIS 10.579 

EMPF-AEF 1.309 

106 

 

QPSO-PF 7.469 

QPSO-ANFIS 11.196 

EMPF-AEF 1.598 

126 

 

QPSO-PF 8.600 

QPSO-ANFIS 11.720 

EMPF-AEF 1.678 

146 

 

QPSO-PF 9.813 

QPSO-ANFIS 13.404 

EMPF-AEF 1.739 

 

Table 5.3 summarizes the results for the battery RUL prediction using the related 

techniques, which also includes the RUL PDF interval, relative errors, and prediction starting 

points. Fig. 5.8 outlines the performance of the related methods for SOH estimation and RUL 

prediction with prediction starting at cycle 86 (over 80 cycles). Figures 5.9 and 5.10 show the 

zoomed results for the medium-term and short-term predictions, starting at 106 and 126 cycles, 

respectively. It is seen that the QPSO-PF has the lowest prediction accuracy (with the highest 

errors) under all testing conditions because it cannot update model parameters during the 

prediction operation, even though its performance can be improved for short-term predictions. 

The QPSO-ANFIS framework performs better than the QPSO-PF because the ANFIS can 

adaptively predict the degradation indicator values during the prognostic process (Phase 2) to 

update the degradation model in RUL prediction. On the other hand, the QPSO-ANFIS could not 
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generate clear improvement as the prediction length becomes shorter and more data are used in 

modeling in Phase 1, when the prediction starts at cycle 106 and 126, respectively. This is 

because the ANFIS predictor has limited adaptive capability due to its fixed reasoning structure, 

which could limit its ability to deal with electro-chemical battery system conditions. 

 

Table 5.3 Summary of the prediction results of the related methods 

Prediction 

starting point 
Method 

Prediction 

result (cycle) 

RUL-PDF 

interval 

Absolute 

error (cycles) 

Relative 

error 

86 

QPSO-PF 140 92-166 22 13.58% 

QPSO-ANFIS 152 151-153 10 6.17% 

EMPF-AEF 159 158-162 3 1.85% 

106 

QPSO-PF 146 109-166 16 9.88% 

QPSO-ANFIS 155 154-156 7 4.32% 

EMPF-AEF 159 158-161 3 1.85% 

126 

QPSO-PF 148 123-166 14 8.64% 

QPSO-ANFIS 154 156-161 8 4.94% 

EMPF-AEF 155 153-157 7 4.32% 

146 

QPSO-PF 152 139-166 10 6.17% 

QPSO-ANFIS 164 163-165 2 1.24% 

EMPF-AEF 162 161-163 0 0.00% 

 

In contrast, the developed EMPF-AEF framework performs the best in RUL prediction 

under all testing conditions, which is approximately 30%, 40%, and 10% more accuracy than 

QPSO-ANFIS with prediction starting points at 86, 106, and 126, respectively. The AEF 

predictor in the proposed EMPF-AEF framework has advanced adaptive capability to 

accommodate dynamic battery conditions, by updating not only its parameters like the ANFIS, 
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but also its reasoning architectures. Therefore, it can model battery dynamics and track its 

degradation characteristics more accurately.  

 

 

Fig. 5.8. Performance comparison of the estimated and predicted SOH for long-term prediction (over 80 

cycles) using: QPSO-PF (■—yellow line), QPSO-ANFIS (—black line), EMPF-AEF (•—red line), 

and actual states (blue line). 

 

 
Fig. 5.9. Zoomed performance comparison for prediction period of medium-term prediction (over 60 

cycles) using: QPSO-PF (■—yellow line), QPSO-ANFIS (—black line), EMPF-AEF (•—red line), 

and actual states (blue line). 

 

 
Fig. 5.10. Zoomed performance comparison for prediction period of short-term prediction (over 40 

cycles) using: QPSO-PF (■—yellow line), QPSO-ANFIS (—black line), EMPF-AEF (•—red line), 

and actual states (blue line).  
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In machinery health management and prognostics, the reliable RUL prediction 

information can be used to schedule the predictive maintenance and repair operations 

[23,121,122]. In this work, the confidence interval associated with the RUL estimation will be 

represented in the form of the PDF distribution (i.e., PDF interval), where a lower interval 

indicates less uncertainty and more reliability [7,121,122]. In other words, the more accurate 

RUL prediction (with less uncertainty) corresponds to a PDF with a narrower and taller 

distribution, as illustrated in Fig. 5.5. The processing uncertainty of each technique can be 

characterized by using the PDF in the RUL prediction as the state reaches the battery’s end-of-

life threshold. Table 5.3 above summarizes the RUL PDF intervals of the upper and lower 

bounds of the posterior PDF distributions. Figures 5.11 and 5.12 illustrate the PDFs of the related 

techniques for predictions starting at cycle 106 and 146, respectively, which are approximated 

using the kernel density method [43]. It can be seen that the PDF of the proposed EMPF-AEF 

framework has narrower and taller distributions than other related techniques, which can attest to 

its better robustness and modeling efficiency to represent the region of the posterior PDF due to 

its enhanced mutation approach, as discussed in subsection 2.3.1.  

 

 

Fig. 5.11. Comparison of the uncertainty of the RUL prediction for medium-term prediction (over 60 

cycles) using: QPSO-PF (black line), QPSO-ANFIS (blue line), EMPF-AEF (red line). 
 

   

Fig. 5.12. Comparison of the uncertainty of the RUL prediction for short-term prediction (over 20 cycles) 

using: QPSO-PF (black line), QPSO-ANFIS (blue line), EMPF-AEF (red line). 



101 

 

In comparison, the QPSO-PF method has a wider PDF distribution, which becomes even 

wider as the prediction horizon becomes longer. This is because it duplicates particles to 

represent a wider area of the posterior PDF, without a mechanism to guide its particles to the 

high-probability area of the posterior PDF. Although the QPSO-ANFIS framework has a 

narrower PDF distribution than that of QPSO-PF, its distribution is slightly skewed because the 

resampling process would select particles with high weights many times, resulting in more 

particles concentration to some area. This degraded diversity on the PDF distribution could affect 

the RUL prediction when the mean values are used. 

 

5.4 Chapter Conclusion 

In this Chapter, a new hybrid prognostic framework has been developed to integrate the 

model-based EMPF and the data-driven AEF to improve modeling accuracy and RUL prediction 

reliability. The developed hybrid prognostics framework involves two phases of operation. In 

Phase 1, the battery health degradation is modeled by the EMPF, and the AEF predictor is 

formulated using the available battery measurement indicator values. The RUL prediction is 

undertaken in Phase 2, where the EMPF will perform successive one-step prediction by 

propagating the posterior PDF of the current state to forecast the state distribution at the future 

time. The forecast indicator values by the AEF predictor will then be used by the EMPF to 

recursively update its posterior PDF to reduce modeling uncertainty. This process is repeated a 

number of times to describe the evolution of the battery degradation state to predict when the 

battery SOH will reach the end-of-life threshold. The effectiveness of the proposed framework 

has been examined through simulation tests in terms of convergence, modeling accuracy and 

processing efficiency.   
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

The Li-ion battery is one of the greatest advances in energy-storage technology, which 

has been commonly used in engineering applications, such as electric vehicles. However, the Li-

ion battery’s performance degrades over time due to problems such as aging-related capacity 

degradation and impedance growth. These consequences affect the battery’s performance, and 

may result in system breakdowns as well as safety issues in applications such as passenger 

vehicles. Although many techniques have been developed in the literature for Li-ion battery 

health monitoring and RUL prediction, it is still challenging to accurately capture and model the 

electro-chemical behaviors of the Li-ion battery, whose properties vary with environmental (e.g., 

humidity and temperature) and operating (e.g., load and speed) conditions. Besides, its nonlinear 

degradation features are almost inaccessible to measure using general sensors. Therefore, the 

uniqueness of a Li-ion battery system makes it difficult to achieve reliable prognostics 

performance using these existing methods, which may have succeeded in other health assessment 

and prognostics fields (e.g., machinery). 

For example, the PF-based prediction methods are applied to battery health monitoring 

and RUL prediction in many studies due to the capability of the PF algorithm to properly deal 

with the battery nonlinear degradation features, and because it is less sensitive to noise and 

model complexity. However, these methods have suffered from limitations related to sample 

degeneracy and impoverishment, which can prevent these methods from properly representing 

the posterior PDF to capture the battery degradation dynamics. Another limitation is that the 

posterior PDF cannot be updated during the prognostic period since no new measurements are 

available, which can degrade the prognostic performance, especially for long-term predictions. 

Therefore, it is extremely important to effectively eliminate the impact of these limitations to 

have more reliable and robust performance to diagnose the battery’s SOH and predict the RUL. 

To tackle these aforementioned challenges, in this PhD work, a model-based EMPF 

technique has been proposed to tackle some limitations of the current PF methods such as being 
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unable to effectively recognize low-weight particles in the posterior PDF (sample degeneracy), 

lack of particle diversity in the posterior PDF space, and inability to deal with possible outlier 

particles on the posterior PDF distribution. A new mutation approach has been proposed to 

process low-weight particles and reduce sample degeneracy. A new selection mechanism has 

been suggested to improve particles diversity and guide the mutation approach to locate the high-

likelihood area in the posterior PDF space, while an outlier detection method is introduced to 

identify and process outlier particles. Test results have shown that the EMPF technique can 

enhance the posterior PDF representation, and alleviate the impact of sample degeneracy and 

impoverishment. In addition, it can effectively capture the battery SOH degradation dynamics 

and track system characteristics for RUL prediction. Furthermore, the EMPF technique can also 

characterize the uncertainty of RUL prediction in the form of PDF instead of a single value as is 

the case in data-driven techniques.  

Also, in this PhD work, an AEF technique has been developed for long-term time series 

forecasting, to deal with the lack of battery measurements during the prognostic period in the 

model-based EMPF. The AEF is new in two aspects: 1) An error-assessment method is 

suggested to control the fuzzy cluster evolving process; 2) an adaptive particle filter optimization 

algorithm is proposed to enhance incremental learning and improve modeling efficiency. Its 

effectiveness has been examined by simulations using the common benchmark dataset in this 

research and development field (i.e., Mackey-Glass). Test results have demonstrated that the 

AEF predictor can generate a smaller number of clusters/rules to map the input-output spaces, 

and can provide more flexibility in fuzzy modeling to deal with the time-varying system 

dynamics.  

In general, both a model-based technique and a data-driven predictor have their own 

merits and unpreventable limitations. For example, the EMPF technique cannot update its 

posterior PDF during the prognostic period since no new measurements are available to compute 

the battery’s degradation feature/indicator. Therefore, its RUL prediction errors increase as the 

prediction horizon becomes longer. On the other hand, the AEF predictor has some drawbacks as 

a data-driven technique: 1) it cannot make inferences about hidden states that are inaccessible to 

the sensors for measurement; 2) it cannot properly model uncertainty associated with its 

predicted future values. To bridge the gap between both techniques and tackle these 
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aforementioned drawbacks. In this PhD work, a new hybrid prognostic framework for battery 

health monitoring and RUL prediction has been developed to provide a more reliable tool for 

battery health prognosis and management in electric vehicles. It has integrated the merits of both 

model-based EMPF and data-driven AEF techniques, and attempts to reduce their respective 

limitations.  

The developed hybrid prognostics framework consists of two phases in processing. In 

Phase 1, the EMPF is used to model the evolution of the system degradation state for battery 

SOH estimation. At the same time, the AEF predictor is gradually evolved using the available 

measured indicator values. The RUL prediction is performed in Phase 2, in which the formulated 

AEF in Phase 1 is used to forecast measurement indicator values beyond the available window to 

tackle the lack of measurements during the prediction stage. The model-based EMPF will 

propagate the posterior PDF of the current state to forecast the state distribution in the future. 

The EMPF will then use the forecasted indicator values by the AEF to update the EMPF 

posterior PDF. This propagated procedure will be repeated several times to forecast the 

degradation trend and identify the RUL of the battery. The effectiveness of the developed hybrid 

prognostic framework has been examined by simulation tests using NASA battery prognostic 

data under different conditions over 50 runs. Test results reveal that the developed hybrid 

prognostic framework can effectively deal with the lack of measurements during the prognostic 

process in Phase 2.  It can properly solve some limitations of the current prognostic techniques 

such as the effect of sample degeneracy in the SOH estimation accuracy, fixed reasoning 

architectures, and reduce the level of uncertainty associated with the prediction results. Besides 

its improved reliability in SOH and RUL prediction, it can clearly improve the computation 

efficiency with low computational costs, and has great potential to be used for battery health 

monitoring and prognosis in electric vehicles. 

 

6.2 Future Work  

Advanced research can be undertaken to cover the following topics:  

1) Develop new Li-ion batteries datasets when the battery research facility will be available 

at Dr. Wang’s research lab. The tests will be undertaken corresponding to battery cells 
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and modules under different operating conditions in terms of load and speed for 

advanced research and development in order to further improve battery performance.  

2) Develop new data-driven intelligent classifiers and efficient machine learning algorithms 

to improve SOC and SOH analysis accuracy and to further improve the adaptive 

capability to accommodate different electric vehicle operating conditions.  

3) Develop new soft-computing tools that can fuse battery system information received 

from various sources to capture the characteristics of the system’s dynamic. For 

example, the principal component analysis can be used to decompose multidimensional 

extracted features (e.g., voltage, current and impedance) into several independent source 

signals. Then some soft-computing tools will be used to model these multi-source 

signals, which can enrich the input-output mapping process for accurately capturing the 

battery degradation characteristics. 

4) Implement the developed hybrid prognostic framework in real battery applications at 

both the cell and module levels.  
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