
Developing Machine Learning Coding Similarity
Indicators for C & C++ Corpora

By

Ajinkya Kunjir

Master of Computer Science, Lakehead University, Thunder Bay, Canada

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Computer Science

In the

Department of Computer Science

Faculty of Science and Environmental Studies

© Ajinkya Kunjir 2020

LAKEHEAD UNIVERSITY

5th Term, 2020

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

ii

Declaration of Committee

Name: Ajinkya Rajendrakumar Kunjir

Degree: Master of Computer Science

Thesis title: Developing Machine Learning Coding Indicators
for C & C++ corpora

Committee: Chair: Dr. Jinan Fiaidhi
[Professor, Computer Science Department]

 Dr. Jinan Fiaidhi
Supervisor
[Professor, Computer Science Department]

 Dr. Sabah Mohammed
Committee Member
[Professor, Computer Science Department]

 Dr. Zuhoor Al-Khanjari
External Examiner
[Professor, Department of Computer Science,
College of Science, Sultan Qaboos University]

iii

Abstract

The digital data in this modern world is vulnerable to copying, altering and claiming

someone else’s work as their own. Performing the same activity in programming

assignments can be referred to as source-code theft or e-plagiarism. Despite years of

efforts, the already existing similarity detection engines perform pretty well in detecting

plagiarism for novice programmers, but provides insufficient results when a student uses

complex and smart plagiarism hacks such as word substitution, structure change, line

spacing placeholder comments. This thesis research aims to deliver an assistive forensic

engine named ‘SimDec’, for the evaluators to help detect similar assignments to address

the aforementioned issues. The system's primary objective is to aid the assignment

evaluators to get closer to the code thieves and abide by the university's dishonesty

regulations. The forensic engine has been developed in Java programming language to

detect C and C++ source code's similarities. The research has been split into two modules

labelled as ‘software forensic engine development’ and ‘Similarity level classification with

machine learning’. The proposed system has a workflow of three stages starting with

lexical analysis, tokenizer customization and the final stage displaying similarity

percentage and the corresponding level of ‘Low’, ‘Average’ and ‘High’. The combination

of similarity algorithms integrated in the engine are Levenshtein distance, Jaro & Jaro-

Winkler measure, Dice coefficient and Cosine similarity. The workflow of lexical analysis

and implementing the set of similarity measures on token categories is defined as the first

module. The machine learning algorithms selected for performing the classification task

are multi-class SVM, logistic regression and a simple neural network. In this second

module, the data gathered and generated by the similarity detection engine is fed to the

ML algorithms to train the models and make them efficient for predicting the plagiarism or

similarity level of newly entered data. This hybrid approach would be impactful in reducing

the time complexity and processing speed for the software engine.

Keywords: Plagiarism, lexer, ANTLR, distance algorithm, similarity, forensic engine

iv

Dedication

I hereby declare that this dissertation/thesis entitled “MACHINE LEARNING CODING

SIMILARITY INDICATORS FOR C & C++ CORPORA” is a bonafide and genuine research

work carried out by me under the guidance of Dr. Jinan Fiaidhi, Ph.D. (in Computer

Science (Brunel, UK, 1986).

Date:

Place: Lakehead University

 Ajinkya Kunjir

v

Acknowledgements

It is a genuine pleasure to express my deep sense of thanks and gratitude to my

mentor, a great teacher and my supervisor Dr. Jinan Fiaidhi, a full-time professor and the

graduate coordinator of the Ph.D. program in Biotechnology at Lakehead University,

Thunder Bay. Her dedication and interest, above all her overwhelming attitude to help her

students, have been solely and mainly responsible for completing my work. Her timely

advice, meticulous scrutiny, scholarly advice and scientific approach have helped me

greatly to accomplish my task.

I owe a big thank you to Dr. Fiaidhi for recommending me to research this domain

of computer science and keep keen interest with me on the same at every stage of my

research. Her prompt inspirations, timely suggestions with kindness, enthusiasm and

dynamism have enabled me to complete my thesis.

I want to thank all the faculty members of computer science, Lakehead University,

for their constant guidance in the subjects and areas outside academics throughout my

program's tenure. I am incredibly thankful to my parents for having faith in me and

providing the necessary strength and suggestions during my stay in Canada.

vi

Table of Contents

Declaration of Committee .. ii
Abstract .. iii
Dedication .. iv

Acknowledgements ... v

Table of Contents ... vi
List of Tables ... viii
List of Figures... ix

List of Acronyms ... xi
Preface.. xii

Chapter 1. Introduction .. 1

1.1 Problem Context .. 1

1.2 Thesis Statement ... 1

1.2.1 Methodology .. 2

1.3 General Thought on Prior Work .. 4

1.4 Need for the System .. 6

Chapter 2. Scientific Background ... 8

2.1 Similarity Detection as a Solution ... 8

2.2 Evolution of Plagiarism Detector Software.. 9

2.3 Types of Plagiarism Tools .. 11

2.3.1 Inter-Document Plagiarism with Internet Context.................................... 11

2.3.2 Intra-Document Plagiarism ... 12

2.4 IEEE Homework Programming Dataset ... 13

2.5 The Software System Compilation Model ... 16

Chapter 3. Forensic Engine Implementation .. 20

3.1 ANTLR Tokenizer ... 20

3.2 C & C++ Grammar ... 21

3.3 First Phase – Lexical Analysis .. 27

3.3.1 Tokenizing the source codes .. 29

3.4 Second Phase – Computations .. 35

3.4.1 Execution of Distance, Token, Sequence Similarity Algorithms 35

3.4.2 Data Aggregation and Results .. 39

3.5 Third Phase – Representation .. 41

3.5.1 Full-stack Development .. 42

3.5.2 Visualization on the Web GUI ... 43

Chapter 4. Mathematical Similarity Algorithms .. 48

4.1 Edit Distance based Algorithms .. 48

4.1.1 Levenshtein Distance ... 49

4.1.2 Jaro Distance ... 50

4.1.3 Jaro- Winkler Distance ... 51

vii

4.2 Token-based Algorithms .. 51

4.2.2 Sorenson Dice Coefficient .. 51

4.2.3 Cosine Similarity-Based Method .. 52

4.3 Sequence Based Algorithms .. 53

4.3.1 Least Common Subsequence .. 53

4.4 Integration with the System .. 54

Chapter 5. Computational Performance Analysis .. 55

5.1 Machine Learning Algorithms ... 55

5.1.1 Second Module of Research .. 55

5.1.2 Programming & Development Environment .. 56

5.1.3 Need of ML in Software Systems ... 56

5.2 Supervised Learning Classification .. 58

5.2.1 Support Vector Machines (SVM) .. 58

5.2.2 Logistic Regression .. 59

5.2.3 Neural Networks... 61

5.3 Unsupervised Learning Clustering ... 63

5.3.1 K-means Algorithm ... 63

5.3.2 Principal Component Analysis .. 70

5.4 Experimentation Analysis & Results ... 72

Chapter 6. Conclusions and Future Work .. 75

6.1 Conclusion ... 75

6.2 Future Work ... 76

References ... 77

Footnotes ... 80

Appendix A. Installation of ANTLR & Other libraries ... 81

Appendix B. Lexical Analyzer: Java code Samples .. 83

viii

List of Tables

Table 1: Latest 2019 research- Matija Novak [2] Database Querying 4

Table 2: Overview of top plagiarism detection tools according to the SEO of internet...... 5

Table 3: Table displaying tool names with similarity calculation method, year of invention
and reference to the publication ... 9

Table 4: Statistics for folder A2016 and A2017 .. 15

Table 5: Statistics for folder B2016 and B2017 .. 15

Table 6: Symbol Table Specification ... 29

Table 7: Tokenization Implementation for 'C' file ... 29

Table 8: Tokens of 'C' source code ... 30

Table 9: Tokenization of a 'C++' source code file .. 33

Table 10: Classification rules for Plagiarism detection ... 40

Table 11: Accuracies of all supervised learning algorithms.. 74

ix

List of Figures

Figure 1: Number of Similarity detectors developed from 1980-2015 5

Figure 2: Solution elements of similarity detection ... 8

Figure 3: Structure and Composition of IEEE Homework Programming Dataset 14

Figure 4: Dataset Folder representation .. 15

Figure 5: Working of a MVC software Design Framework ... 18

Figure 6: Software System Architecture - Model-Controller and View Architecture 19

Figure 7: ANTLR LEXER working .. 20

Figure 8: C grammar- Defining primary expressions.. 22

Figure 9: C grammar- Defining Operator grammar .. 23

Figure 10: C grammar- Declaring all the keywords and operators 24

Figure 11: C Grammar - Defining text fragments and line comments, whitespaces 25

Figure 12: C++ Grammar- Defining literals and constants ... 26

Figure 13: C++ Grammar- Defining fragments... 27

Figure 14: Tokenization: Lexical Analysis .. 28

Figure 15: Execution of Similarity techniques on extracted data 36

Figure 16: Screenshot of ‘Keywords score’ table with Similarity Techniques 37

Figure 17: Screenshot of ‘Identifiers score’ table with Similarity Techniques 37

Figure 18: Screenshot of ‘Logical score’ table with Similarity Techniques 37

Figure 19: Screenshot of ‘Math Score’ table with Similarity Techniques 38

Figure 20: Screenshot of ‘Numerical score’ table with Similarity Techniques 38

Figure 21: Screenshot of ‘Other Operators’ score table with Similarity Techniques 38

Figure 22: Aggregation of similarity measures for a token category (TC) 39

Figure 23: Screenshot of ‘Average scores’ table for student assignments 40

Figure 24: SimDec Web application - HomePage .. 43

Figure 25: Assignment Level- Low, Average, High Display.. 44

Figure 26: SimDec Engine - Severe Similarity Display .. 44

Figure 27: SimDec Web App Visualization - Bar Graph & Charts 45

Figure 28: SimDec Token Categories .. 45

Figure 29: Token Category Percentage with Visualization ... 46

Figure 30: Similarity Measures scores representation to users 47

Figure 31: Machine Learning for Software systems ... 57

Figure 32: Sigmoid function for logistic regression .. 60

Figure 33: Predictions for new system data: Neural Networks 63

Figure 34: K-means output for k=2 with related scores .. 65

Figure 35: K-means: Optimal Number of clusters .. 67

Figure 36: K-means Clusters for 500 Observations ... 69

Figure 37: CLARA cluster visualization for 500 samples ... 70

x

Figure 38: PCA features X variance for system data ... 71

Figure 39: PCA transformation with two features ... 71

Figure 40: Logistic Regression Confusion Matrix ... 73

xi

List of Acronyms

LU Lakehead University

LAC Library and Archives Canada

ANTLR Another tool for Language Recognition

SIMDEC Similarity Detection Forensic Engine

ML Machine Learning

SVM Support Vector Machine

NN Neural Networks

CNN Convolutional Neural Networks

ReLU Rectified Linear Unit

SGD Stochastic Gradient

IEEE Institute of Electrical and Electronics Engineer

LL1 Left-to-right, leftmost derivation

xii

Preface

This research basis initially stemmed from my passion for developing better

program analysis and knowledge representation methods. As the world moves further into

the coding age, generating vast amounts of source code information, there will be a

greater need to access original content for innovation and not reuse the labelled content.

How will we use our logic to create our code? It is my passion to investigate this issue and

develop tools to break down barriers of accessibility for future generations. In truth, I could

not have achieved my current level of success without a strong support group. First of all,

my parents, who supported me with love and understanding. Secondly, my committee

members and colleagues, each of whom has provided patient advice and guidance

throughout the research process. Thank you all for your unwavering support.

1

Chapter 1.

Introduction

1.1 Problem Context

According to the University Academic Dishonesty Regulations, stealing others' ideas or

not giving credits to the original author is considered misconduct and an act of plagiarism.

Source-code theft often happens in the assignments given to the students in their

academia. Since it is difficult to track down thousands of assignment documents while

reviewing one, there arises a need for an assistive tool or web application, which aids the

teaching assistants, or the professors get closer to the sophisticated code

thieves.This research study aims to explore several options for tracking similarities betw

een 'N' number of targets, also known as 'documents,' in response to this problem.

Several algorithms in the basket from which a few or a combination of string similarity

algorithms could be constructed according to the need. The algorithms are chosen from a

wide range of distance similarity algorithms as well. The model can be trained and tested

on a dataset of choice. The research will consider vital resources, less data consumption

algorithms to mitigate some or all of the problems noted above or in the later sections of

the thesis.

1.2 Thesis Statement

The available source code similarity detectors provide unsatisfactory results when

students use complex strategies such as word substitution or reordering programming

constructs. This thesis research proposes an assistive forensic engine for the professors

and teaching assistants to evaluate the similarities in the student’s assignments to

overcome the above-mentioned challenges. This research’s primary objective is to help

the evaluators get closer to the sophisticated code thieves and abide by the university's

academic dishonesty regulations. The proposed forensic similarity detection engine

named ‘SimDec’ has a constructive methodology that is specially designed for studies

where C and C++ programming languages are majorly used in academic assignments.

2

After selecting the ATM (Attribute counting metrics), the system implementation is divided

into two phases, where phase one consists of lexical analysis, tokenizer customization

and visual representation on web GUI. The similarity elements and observations recorded

could be represented to the evaluators in the form of visualizations for ease of

understanding and efficient decision-making. The second phase involves of performing

supervised machine learning algorithms such as multi-class SVM, logistic regression and

neural networks on the systems data for executing classification / prediction task for newly

entered data. The algorithms after successful training could be capable of classifying the

data records according to plagiarism level such as ‘low, ‘medium’ and ‘high’ and result in

reduced computation time.

1.2.1 Methodology

To develop a similarity detection forensic engine based on lexical analysis, a systematic

approach was followed. This allowed rigorous testing and implementation of various

mathematical equations and computations. The steps undertaken in developing the

system in the methodological approach are given below as follows:

 Setting up the ANTLR tokenizer with the C and C++ grammar for performing lexical

analysis. Implementation of ANTLR tokenizer and integrating it to function with the

platform of choice. Initially, eclipse IDE was chosen as the development environment

but because of incompatibility issues, there was a switch made to Intellij IDEA later.

 Extract and encode the downloaded IEEE Homework Programming dataset (IEEE

Dataset weblink) into the java source code snippet.

 Secure the full-stack communication connectivity for java code with MySQL database

and front end.

 Ensure the comparison of one source code assignment with others in the folder and

breakdown formation for lexemes.

 Configuring smart decision making in the code to refer to the extension of the file

(whether C or C++)

We are implementing the system's code starting from lexical analysis to token grouping

followed by applying distance similarity algorithms on the token groups for computing

score. Implementation of distance-based, token-based and sequence-based algorithms

on the lexemes of the source codes for recording observations. The scores are generated

http://ieee-dataport.org/open-access/programming-homework-dataset-plagiarism-detection
http://ieee-dataport.org/open-access/programming-homework-dataset-plagiarism-detection

3

as results for all algorithms, and a conclusion is made by observation of all scores to justify

if the two source code assignment files are similar / plagiarized or not.

 We are storing the experimentation results in the database for analytics and

knowledge representation in the form of visualizations. Implementation of a web

graphical user interface to display all the scores in form of visual representations like

charts and graphs for ease of understanding.

 Second module of the thesis research – Implementation of supervised and

unsupervised algorithms on the generated dataset from the system for advanced

machine learning indicators. This module has been experimented on a different

platform for ease of coding and low latency.

In addition to this section, a serial java code was developed to validate the new features'

logic at each step of development. The below-listed platforms and software plugins were

used for the successful implementation of the forensic engine:

Intellij IDEA

Integrated development environment developed by jet Brains on the pillars of java

programming language. This IDE provides coding assistance for other languages such as

C++, C, C#, PHP, web with community edition, and various plugins support.

ANTLR

ANTLR is a lexer and a parser generator for reading, processing and executing text files.

ANTLR has programming language support for all languages such as C, C++, Java,

python, Ruby, and Grammar Construction.

JAVA

Java is a class-based object-oriented language used to design the similarity detection

engine and encode all the other plugins. Being architecture-neutral and quite flexible, Java

is the best-suited language for building software systems

Appendix A and B gives more details about the coding environment and integration

systems mentioned in this research. The implementation of these different tasks and the

4

analysis of the results using distance similarity algorithms are presented in this paper's

following sections.

1.3 General Thought on Prior Work

Previous exciting research in the past 13 years about source code plagiarism and several

software have been developed for the same. Matija Novak [2] in the latest 2019 research

on source code plagiarism recited a systematic review on the plagiarism and source-code

detection methods, obfuscation methods, definitions of plagiarism and algorithms used in

the existing tools. The popular databases such as SCOPUS, ACM, IEEE, SD, and WOS

were filtered with in-depth queries for searching plagiarism relevant papers. The results

underwent several checks such as Medley tool passing, checking for duplicate options,

removing duplicated manually, after removing covers and all others you can see in the

below-mentioned figure:

Table 1: Latest 2019 research- Matija Novak [2] Database Querying

The authors mentioned that 120 out of 150 finalized papers report some new tool or

algorithm for similarity detection. After deep research, a ‘table of tools’ in the article was

concluded, which specified the year of birth, last year of upgrade, number of times

compared, number of times used and developed. The common point to note here is that

not a single tool invented is available for public use (Not FOSS). There were only five

tools, which were compared at least two times, out of which MOSS, and JPlag are the top-

two tools, followed by the others shown in the table embedded in the figure given below:

5

Figure 1: Number of Similarity detectors developed from 1980-2015

Table 2: Overview of top plagiarism detection tools according to the SEO of internet

Tools Last Year First Year Compared Used developed

SIM- Grune 2014 2010 4 2 NA

Plaggie 2016 2006 6 0 1

Sherlock-
Warwick

2016 1999 4 4 1

MOSS 2016 1999 29 9 NA

JPlag 2016 2002 37 5 1

Referring to the table and figure above, the existing tools such as MOSS, JPlag and

Plaggie have not been updated since 2016 and this acts as a primary motivation for

potential innovation in the proposed forensic engine. Adding to the already existing tools'

flaws, no graphical user interface was proposed or built for the previous devices. A

graphical UI presented with our forensic engine eases the process of knowledge

representation in the form of visualizations, displaying results, analytics and clusters of

plagiarized and unique student source code assignments. A few things not present in the

previous tools add a novelty feature to the proposed system. Not to mention the thesis of

Daniel Heres in 2017 [3]. He built a system for source code similarity detection based on

mathematical measures such as n-grams, tf-idf and cosine similarity. ‘InfiniteMonkey’,

6

was the system built that could identify suspicious similarities between the source code

documents using two methods. The second part mostly focuses on applying complex

neural network models on the synthetic dataset created from the source code documents

parameters. The methods were compared on several datasets and accuracy was

measured. It was concluded that the deep neural network model does not generalize well

to the evaluation tasks. A few visualization techniques are also displayed using the tool

‘InfiniteMonkey’.

1.4 Need for the System

We often hear about the words ‘Plagiarism’ and ‘Prevention’ from the teachers or

professors at high school as a pre-measure before submitting any assignment or

homework whatsoever. ‘Plagiarism’ can simply be defined as an act of cloning someone’s

idea or concept and sticking it to our own with or without others' consent. When it comes

to a large of the class, it is very complicated to traverse and keep checking all the

assignments while checking any one. One can’t just keep track of all the programming

methods, concepts, and logic students use in their assignments. There is a need for an

assistive tool that can help the teachers or their assistants check the assignments and

visualize the contents with analytical results. Source code duplication has been increased

over the years and is problematic for the future of innovations. The similarity detection

system proposed in this thesis research is a mixture of multiple computer science streams

such as software engineering, program analysis, programming language constructs,

compiler design theory and web technology. The three-tier forensic engine makes use of

a tokenization – lexical analysis approach in which a large dataset of C and C++ source

codes will be under experimentation. The system will have a code for comparing two files

under an interactive loop, which will keep comparing one source code assignment with

others in the folder and then go on to the next one. The distance similarity algorithms such

as Levenshtein distance, Jaro and Jaro-Winkler, cosine similarity and dice coefficient are

applied to compare source code files. The results deduced from the system will get the

evaluator closer to the plagiarized assignments to make an intelligent decision.

Considering all the advantages of the forensic engine, there arises a need for such a

system that could detect similarities in assignments consisting of object-oriented

programming constructs. Succeeding the current chapter, chapter 2 delivers a critical

survey on the researches that have been accomplished previously. Moreover, the next

chapter describes the evolution of plagiarism detection software’s over the years 2007 –

7

2019 and different categories of plagiarism tools. Chapter 3 illustrates the implementation

of the forensic similarity detection engine labelled ‘SimDec’ along with the details of

system working, three-layer architecture and software engineering process. Chapter 4 and

5 sheds light on mathematical similarity algorithms used for similarity detection and

supervised ML algorithms implementation on the file-comparison data generated by the

system. Chapter 5 will discuss the details of ML algorithms with their performance

evaluation parameters such as accuracy, loss and a comparative study amongst them.

The thesis is concluded with the conclusion and future works in chapter 6. Appendix A

after the last chapter shows the necessary steps for installing ANTLR jars and plugins in

the development environment with the help of screenshots. Appendix B shows the main

‘file comparison loop’ java programming language source code in a structured format.

8

Chapter 2. Scientific Background

2.1 Similarity Detection as a Solution

Source code plagiarism in the education sector is a grave concern for educators and

students because of online assignment submissions and dividing the marking work

between multiple teaching assistants to evaluate the students. The incapability of

comparing one assignment with others has led to an increasing case of plagiarism in

education. From the recent survey from teachers across schools in the world, it was

mentioned that the novice programmers have evolved with time and due to shuffling code

blocks, adding comments and tapping space frequently. Such obfuscation techniques

make the evaluator impossible to detect similarities in multiple assignments, and therefore,

there arises a need for plagiarism checker software for the evaluators. The similarity

detectors could also serve to protect the ‘Copyright Infringement’ policy under copyright

law. Student copying another student’s work can face guilty charges of going against the

anti-plagiarism rule of the university’s dishonesty regulations and could face suspension/

temporary term extension. The guilty charges rained on the student for submitting

plagiarized work can hamper the progression early and reflect negatively on the school

transcript.

Figure 2: Solution elements of similarity detection

Similarity
Detection
Solution

Copyright
infringement

Dishonesty
Policy

Innovation

Novel Logic

9

2.2 Evolution of Plagiarism Detector Software

Several researches have shown traces of similarities between the student assignments

where digital submission platform is involved in the past few years. In the year 1986, J. A.

W. Faidhi and S. K. Robinson [4] in their research provided an in-depth analysis of

program similarity and reported plagiarism for ‘Pascal’ programming language. The

authors mentioned two metrics (ATM: Attribute Counting Metrics), such as the first metric

was intended towards a novice programmers approach, and the second one focused more

on program structures and how programming blocks can be modified or altered by a

sophisticated programmer. Al-Khanjari et al. [5] in their research development on a

software entitled ‘PlagDetect’ referred to various ATM’s before designing the final system

for finding similarities between java source codes. As discussed in chapter 1, SM’s

(Structure methods) perform efficiently well than ATMs as they deal with spotting

similarities by observing the program structures such as loops (for, if, while), class

structure, functions identifier positioning. PlagDetect tool was based on a similarity

coefficient and a combination of ATM’s and equivalence ratio for investigating java

assignments. The other invented similarity detectors such as YAP3, MOSS, Plaggie and

Deckard make use of tokenization or winnowing with string similarity or distance similarity

measures such as n-grams, cosine and Karp Robin GST (Greedy String Tilling). Other

Software tools such as ccfx and iclones make use of suffix tree matching for finding

similarities between parse trees. Given below, the table 1 provides the audience with a

detailed comparison of all categories of similarity detectors such as plagiarism detection

tools (PD), clone detector tools (CD) and others (O), which also includes compressors and

mini-tools. In addition to comparing the tools with their similarity measurement calculation,

we have added details, default parameters and year of the invention along with the

research paper reference in the columns of the same table.

Table 3: Table displaying tool names with similarity calculation method, year of invention and

reference to the publication

Tool category Similarity Calculation Details Year and Reference

(PD) simtext Tokens and string
alignment

Min. run size 1999
Gitchell and Tran [6]

(PD) Simjava Tokens and string
alignment

Min. run size 1999
Gitchell and Tran [6]

(PD) Sherlock Digital signatures Chain length, zero bits 2002

10

Pike R and Loki [7]
(PD) Jplag-
text

Tokens, GST(Greedy
String Tiling), Karp-
Rabin

Min. no. of tokens 2002
Prechelt et al. [8]

(PD) Jplag-
java

Tokens, GST(Greedy
String Tiling), Karp-
Rabin

Min. no. of tokens 2002
Prechelt et al. [8]

(CD) ccfx Tokens and suffix tree
matching

Min. no. of tokens 2002
Kamiya et al. [9]

(CD) YAP Tokens, GST(Greedy
String Tiling), Karp-
Rabin

Tokenization and GST
matching

1996
Michael J. Wise [10]

(PD) plaggie N/A (Not disclosed) Min. no. of tokens 2006
Ahtanein et al. [11]

(CD) deckard Characteristic vectors
of AST optimized by
LSH

Min. no. of tokens
Sliding window size
Clone similarity

2007
Jiang et al. [12]

(CD) nicad TXL and string
matching (LCS)

Percentage of unique
code
Min. no. of lines
Code abstraction
Variable renaming

2008
Roy and Cardy [13]

(CD) iclones Tokens and
generalized suffix tree

Min. of tokens 2009
Gode and Koschke [14]

(O) cosine Cosine similarity from
machine learning
library

N/A 2011
Pedregosa et al [15]

(O)
fuzzywuzzy

Fuzzy string matching Similarity calculation 2011
Cohen [16]

(O) ngram Fuzzy search using n-
gramme

N/A 2012
Poulter [17]

(CD) simian Line based string
comparsion

Min. no. of lines
Ignoring variables,
whitespaces, identifiers

2015
Harris [18]

(O) Difflib Gestalt pattern
matching

Ignoring whitespace,
autojunk heuristic

2016
Python Software
Foundation [19]

(O) diff Equation N/A 2016
(O) bsdiff Equation N/A 2017
(O) jellyfish Approximate and

Phonetic String
matching

Edit distance algorithm 2016
Turk and Stephens [20]

(C) 7zncd NCD with 7z Compression level N/A
(C) Bzip2ncd NCD with bzip2 Compression level N/A
(C) gzipncd NCD with gzip Compression level N/A
(C) xz-ncd NCD with xz Compression level N/A
(C) icd Regular NCD

(Normalized
Compression
Distance)

Compression level,
block size

N/A

(C) ncd Regular NCD Compression level 2015,Cilibrasi et al. [21]

11

The evolution of similarity detection engines ranges from the one’s using ATM’s to one

using SM methods. There are other systems mentioned in the table above, which uses

the suffix tree-matching algorithm.

2.3 Types of Plagiarism Tools

2.3.1 Inter-Document Plagiarism with Internet Context

There are two different ways of detecting similar content in student assignments. The

existing tools can be classified into two different categories: ones that compare the source

codes with each other in one directory and the other category of tools compare the source

code with all others available on the internet. The phenomenon occurring in the second

category of tools is called as ‘Inter-Document Plagiarism with internet context’. The

software tools are web applications with register, login, and purchase feature where the

user gets to upload the source codes to the application's cloud storage and then the same

document is checked for similarities with other forms on the internet.

The plagiarism tools for this category, which are available for public use on the internet,

are as follows:

• PlagScan1 – PlagScan is an online plagiarism checker that uses an undisclosed

algorithm to check the inserted or uploaded text by automatically scanning billions of texts

online. The tool is not an open-source software under GPL and is for private or subscribed

use only. The tool offers an option to detect differences in writing styles, checking the

source code against billions of source codes available on the internet, ghostwriting

detection, stylometry analysis. PlagScan is easy to integrate with a learning management

system (LMS) and allows import from other sources such as Google, Dropbox and

Microsoft OneDrive. PlagScan is currently working on text translation and comparing the

text from the documents with other texts online.

• CopyLeaks2 – Copyleaks is an inter-document plagiarism checker with AI capabilities

for detecting similar contents in text documents and other media. Plagiarism checking

facility is available in multiple languages and equipped with machine learning technology

and extensive multi-layered search capabilities. Copyleaks has many advantages over

PlagScan. A few to include would be aesthetic report making, multiple language detection,

12

and comprehensive source code plagiarism and integration ability with other existing

IDE’s.

• UniCheck3 – Unicheck plagiarism reporting software prefers results over numbers by

combining technological excellence and initiative design. Unicheck is exclusively made for

to be used in the education sector. Unicheck is capable of handling extensive data at a

time due to cloud storage and other features. Just like grammarly, Unicheck has the

‘recommendation’ or ‘advice’ giving feature where there are alternative word being

suggested by the software to replace the current word if it’s repetitive in the text. With

unicheck, the evaluator can get an accurate similarity score and see the amount of

borrowed text. Unicheck has customizable search settings, real-time checking features,

smooth integration and setup, and statistics for students.

• Codequiry4 – Codequiry is the best source code detection platform available for public

use in today’s world. There is no other competitive web application to stand against

advantages of Codequiry. Codequiry looks beyond the cosmetics, finding similarities in

logic patterns and unique style of code. Codequiry is possible of dodging minor

obfuscation techniques such as whitespaces, comments, and function names. User has

the facility of choosing the programming language for similarity detection such as java, c,

c++ or python and then can upload a bunch of files to check the similarity. Codequiry is

the only existing similarity detector that performs intra as well as inter-document

plagiarism. The uploaded files can be compared with other billions of files on the internet

and one another, depending on the option chosen by the user.

2.3.2 Intra-Document Plagiarism

 Codequiry4 - As mentioned in the section above, Codequiry is exceptionally efficient

for intra-document plagiarism. The software gives out detailed reports with analysis

and visualization to inform the statistics (Results and numbers). Codequiry is well

known for peer checks with the internet against 20 billion documents, a 2D graph of

student similarity by distance and pie charts of source codes used in the code. The

only disadvantage of Codequiry that excludes it from the outer world and innovation is

proprietary usage. The individual pricing for educators or students is 29$ per month

and the educational institutes' custom amount.

13

 MOSS – MOSS stands for ‘Measure of Software Similarity’ and is an automatic system

for determining source codes' similarity [22]. From 1994 to today’s date, MOSS is

being utilized to top-notch quality by some educational institutions to spot similarities

between source code documents. The algorithm used by MOSS is ‘winnowing’ and

involves of specific n-gram technique measures. MOSS is just an assistive tool that

gets the evaluator closer to the cheaters, just like our proposed system. MOSS is

available as a Windows GUI and lets users upload files by specifying the subfolders'

directory path. MOSS simply computes and gives out a matching number of lines in

front of the two filenames as output. A user could then click on the filenames and view

the source code comparison highlighted in red or blue color. Relating it closely with

beyond compare, MOSS is a child of the principles of beyond compare tool.

2.4 IEEE Homework Programming Dataset

Generating source code dataset using artificial techniques is a challenging task and

indirectly reflects various realistic situations. Referring to figure 4, the new homework

programming dataset is presented in this research to work with the proposed system, as

there is a lack of description of standard datasets in existing researches. The

‘Programming Homework Dataset for Plagiarism Detection’ was uploaded on IEEE-

Dataport by Vedran Ljubovic, University of Sarajevo [23]. The dataset is developed from

the students' assignments for the subject – Introduction to C in one semester and

assignments of C++ in other for the year 2016 and 2017. All the final source codes

submitted by the students are available at the 5website and on AWS for comparison by

the already existing plagiarism detection tools like JPlag, YAP3, MOSS and PlagDetect.

The homework assignment zip extract consists of full traces of student activity and

keystrokes generated by setting the IDE to a time limit autosave during homework

development. The IDE also helped passing out the output information from the compiler,

debugger, and student assignment to a safe corner of the repository. The instructions for

the dataset goes as an archive folder having three subparts in it as follows:

Source codes – The actual source code assignments submitted by the students are

stored in the /src folder inside the archive. The subfolders under ‘src’ are named as A2016,

A2017, B2016, and B2017. Each subfolder listed above contains more subfolders inside

14

for individual assignments. Students were required to solve 16-22 assignments in each

course, labelled as “Z1/Z1”, “Z1/Z2”, and “Z2/Z1” and so far till the end. The C/C++ source

codes solved by the students are stored in these subfolders with an anonymous name. All

the traces AutoSaved after every few seconds by the IDE are saved in the archive's stats

folder. This folder is again segregated into subfolders named after courses, and the

subfolder contains files ending with extension '.stats' for every student (name stays

anonymous). The .stats information is stored in JSON format (Key = value pairs). Figure

2 shown below gives a concept map view of the IEEE dataset where there are four

courses- A2016, A2017, B2016, B2017 and assignments for each course is described as

Z1/Z1..Z5/Z2 for each course.

Figure 3: Structure and Composition of IEEE Homework Programming Dataset

Ground Truth- The instructions and format for JSON files is described in the readme.txt

file present in the folder as shown in figure 5 below. The ground truth files list the individual

and group of students involved in plagiarism due to code similarities detected in their

assignments. The three ground truth files starting from 'ground-truth-anon.txt' contain a

full list of plagiarisms, ground-truth-static-anon.txt based on source code similarity ground-

truth-dynamic-anon.txt based on only failures due to 'oral defence'. Some statistics

generated by V. Ljubovic and E. Pajic [24] for the course ‘A’ in 2016 and 2017 i.e. A2016

& A2017 in their latest research published and accepted at IEEE in the year 2020 is shown

below in Table 2 as follows:

15

Figure 4: Dataset Folder representation

Table 4: Statistics for folder A2016 and A2017

Course A2016 A2017
Student enrolled 607 488
Number of assignments 18 20
Submitted files 5655 5733
Files per assignment 41-503 125-444
Average file size (bytes) 1567.08 1317.23
Changes per file 1-13821 1-7740
Plagiarized Solutions 746 (13.2%) 699 (12.2%)

Referred to the observations provided in tabl2 1 by the authors [24], we started taking

readings and observations for all the C++ source codes based folders, i.e. B2016 and

B2017. The courses from ‘B’ consists of all ‘.cpp’ files, and all the assignments subfolders

were tested with this proposed system for finding out plagiarized assignment pairs and

validate it against the ground truth file. The observations given below in table 3 are the

same as from table 2, but associated with folders B2016 and B2017.

Table 5: Statistics for folder B2016 and B2017

Course B2016 B2017
Student enrolled 607 488
Number of assignments 30 38
Submitted files 12,196 11,192
Files per assignment 41-530 120-300

Average file size (bytes) 6792 Bytes 3692.30 Bytes

16

We all know that in a three-four-year-long course, the degree of homework participation,

in the beginning, is way more than the involvement in the end. If the participation is 90%

initially, it closes up to 10-15% in the final semester of the course. As the willing

participation increases, the plagiarism decreases, and it’s vice versa in a long-term

graduation program. The technique used to overcome the plagiarism index and balance

out the proportion was to make 20% of the total students to deliver oral-defense of their

homework. The ground truth files were constructed on a marking system where the

students who failed to defend their homework defense were marked as 'Plagiarized' in the

file. Proper classification of homework is a must needed feature in a similarity detector

tool, but every tool handles the situation differently. Some tools have defined a threshold

on assignment length. Some have pre-defined heuristics, and a few tools will simply mark

all the students as plagiarized and leave unsupervised decisions to a human evaluator. A

decent approach for avoiding overfitting with the proposed system in this paper would

divide the dataset into training and testing datasets for the underlying machine learning

algorithm. As explained at the beginning of this section, the normal ground truth file

contains all the plagiarized files. In addition to the normal file, two more ground truth files

have been added, such as static for similar homework documents and dynamic ones.

They exclude original authors and keep those who have no similar pairs. In the ground

file, the assignments are represented in similar files, such as triplets and quadruplets.

When it comes to evaluating a newly developed plagiarism tool, one does not need to

identify identical document pairs but should count false positives and false negatives

inclusive of detected pairs.

For the system under development for this research, the entire assignment folder could

be given as an absolute path to the main java program to compare and identify similar

assignments. The java program could be tweaked in a possible way of running a big loop

by iterating on all the folder assignments of the leading course directory – such as A2016,

A2017, B2016 or B2017. This approach has a probability of 90%, resulting in complex

challenges like massive processing speed of the CPU/GPU, large storage space and

memory and, nonetheless, hours of running time.

2.5 The Software System Compilation Model

As mentioned in the section above, the IEEE homework programming dataset comprises

of four folders such as A2016, A2017, B2016 and B2017. Each folder consists of subfolder

17

assignments and each sub-folder assignment further has around 400-500 source code in

it. This count is nothing but the number of students taking the particular course ‘A’ or ‘B’

and the course within the same boundary. The assignment subfolder path is fed to the

program, and source code files are compared with others for results. As shown in figure 5

below, the source codes are given to the ANTLR (Another tool for Language Recognizer).

ANTLR is a powerful Lexer and parser generator and breaks down the ‘C’ and ‘C++’

source codes into tokens such as identifiers, keywords, arithmetic operators, logical

operators and other operators. The entire software system using compiler design concepts

is explained in three stages or a three-tier system. To give an example of a software

engineering design pattern for a system, MVC is quite popular when it comes to web

programming or full-stack development. The authors [25] explain the detailed working of

a web app and database based on MVC architecture. MVC stands for Model-View-

Controller design in which there are three layers defined as follows:

Model – The model layer represents the business layer of the application. The model layer

is a set of java classes representing the state of the system at the given time. The model

layer has a bidirectional flow from and to View and controller layers.

View – View is the presentation layer where the information processed and store by the

model and controller is displayed to the front-end user.

Controller – The controller layer is an interface between Model and View layers. Users

can make a fetch or access request from the View layer and the controller fulfills the

request. The request has to pass the processing from the model layer before reaching the

view layer.

Advantages of MVC architecture:

1. Multiple developers can work with the three layers on individual machines.

2. Scalability and Flexibility to expand and extend the scope of the application

3. Components of the model are less dependent on each other

4. Application following MVC architecture is easy and convenient to understand

5. Software and web testing of an application becomes easy

18

Refer to figure 5 given below, which shows the exact flow of an MVC system by keeping

the user at the center of the system. The controller mostly acts as an interface between

model and view and therefore involves of servlets. The proposed system replaces the

controller by an interacting database object that triggers the running code at frequent

intervals to store the information processed in the relational database at the back-end.

Figure 5: Working of a MVC software Design Framework

The system of interest developed for this thesis follows the MVC design pattern but

replacing the controller class by database objects. The authors [26] [27] for code-

reusability in small applications invented a lightweight MVC. Our system simply has

model- view design architecture where model and controller are located together in one

model layer. In other words, our system seems to be running on and following the Model-

View architecture as shown in the figure below:

19

Figure 6: Software System Architecture - Model-Controller and View Architecture

20

Chapter 3. Forensic Engine Implementation

3.1 ANTLR Tokenizer

The general introduction of ANTLR is given in subsection 1.2.1 methodology of chapter 1.

To dive deep into the tool, ANTLR uses a left-to-right, leftmost derivation (LL1) parser for

reading and processing textual files. The plugin for ANTLR is available from its website

(https://www.antlr.org/) and can be installed in the IDE environment, such as eclipse or

IntelliJ IDEA. The ideal IDE platform preferred for developing this kind of system with

heavy data handling and building grammars for parsing is Intellij IDEA. This tokenizer in

the series is supposed to break down the stream of code into lexemes by referring to the

‘c’ or ‘c++’ grammar. The program has been constructed in such a way that it can detect

the extension of source codes in the given path such as ‘.c’ or ‘.cpp’ and choose the

grammar file accordingly. The second tokenizer has exclusive use for detecting new lines,

comments and line numbers for the corresponding printouts. The lexical tokenizer, which

is ANTLR, generates tokens in clusters of identifiers, keywords, arithmetic operators,

logical and other operators for both the files and list out the count for each collection,

including multiples. The clusters/sets obtained from the source codes are compared with

each other based on similarity distance algorithms in the mainframe system. ANTLR can

take a piece of text and transform it into AST (Abstract Syntax Tree). We will not be

focusing on AST development for the proposed system because of heavy computation

and multiple file comparison. ANTLR is strictly used for this system for lexical analysis

purposes, where the lexer takes individual characters from the code and transforms them

into tokens. A simple example of C/C++ code is broken down into tokens is shown below:

Figure 7: ANTLR LEXER working

https://www.antlr.org/

21

The lexer can only identify the language and separate tokens because we program the

lexer to do the task. The code snippet given below is a lexer rule example that tells the

program to identify a number and space characters, as shown below:

* Lexer Rules

 */

NUMBER : [0-9]+ ;

WHITESPACE: ' ' -> skip;

The complete grammar for C and C++ is embedded with the code as the system is

detecting similarities in the same programming language assignments. As we can see that

all lexer rules are uppercase, and the parser rules could be lowercase in some cases.

They can be ambiguous and are analyzed in the order of appearance. The approach of

writing a grammar for any programming language highly depends on the approach of the

programming language or the code. A java code can be divided into three sections, such

as imports, main structure and type definitions. The basic and preferred approach for

writing a java code is the ‘Top-down approach’ where the code's symmetry is retained.

The programming approach used for developing our system is the ‘top-down approach’

as java and formatting knowledge are well acquired. The requirements are satisfied from

high-level elements to low-level in ascending order. The ‘bottom-up approach’ is only

efficient when the main intention is to design a parser because it starts from low-to-high

element attention construction.

3.2 C & C++ Grammar

Designing a grammar for C and C++ programming languages is difficult, as it needs to be

intuitive for the user and unambiguous to make the user manageable. The initial copy of

‘C’ grammar is available on https://github.com/antlr/grammars-v4/blob/master/c/C.g4 and

open for the public to download and do modifications. We will start by defining our

grammar for ‘C’ in this paragraph and focus on ‘C++’ later. The description of our ‘C’

grammar designing is as follows:

https://github.com/antlr/grammars-v4/blob/master/c/C.g4

22

Figure 8: C grammar- Defining primary expressions

In figure 8, the ‘C’ grammar starts with defining the identifiers, constants and strings under

the ‘Primary Expression’ following by generic selection, generic AssocList, and ‘typename’

under genericAssociation.

23

Figure 9: C grammar- Defining Operator grammar

Referring to figure 9, the unary and binary operators are defined in the C grammar. Not

shown in the picture, the other logical operators such as AND, OR, NOR and other

operators including brackets (round and square), and ternary operators are defined in the

C grammar as well.

24

Figure 10: C grammar- Declaring all the keywords and operators

As shown in the figure above, the declaration list declares all the keywords and math

operators for C programming Language. The model given below uses rule fragments

which are reusable for lexer rules. They are no harm even if defined and not been used in

the system. The second half of the figure declares the lexer grammar to skip whitespaces,

newlines, line comments and block comments.

25

Figure 11: C Grammar - Defining text fragments and line comments, whitespaces

C++ Grammar Explanation

The grammar for C++ is pretty much the same as C grammar except for a few additional

keywords and constants. C++ has the involvement of class methods and functions, and

therefore, the grammar is slightly different than that of C programming language. The

fragment elements, including the line comments, whitespaces, block comments and

fragment constructs, remain the same for this grammar. Below given are the fragments

for nonzerodigit, octaldigit, hexadecimaldigit and binarydigit.

fragment NONZERODIGIT: [1-9];

fragment OCTALDIGIT: [0-7];

fragment HEXADECIMALDIGIT: [0-9a-fA-F];

fragment BINARYDIGIT: [01];

26

Figure 12: C++ Grammar- Defining literals and constants

As shown in the figure above, the literals defined for C++ grammar are integer literal,

character literal, floating literal, a string literal, Boolean literal and pointer literal. The

additional keywords are declared right after the literals.

27

Figure 13: C++ Grammar- Defining fragments

Figure 14 shows the declaration of literals with respect to the suffix and fragments. The

fragment elements declared include whitespaces, newline and block comment.

3.3 First Phase – Lexical Analysis

28

Lexical analysis is defined as the first phase of the compiler in which the source code is

analyzed and broken down into tokens, of which sentences are formed. The lexer or the

lexical analyzer could be modified so that the whitespaces block comments and comments

could be removed from the source code.

Finding invalid tokens highly depends on the configuration of the tokenizer. Let us say

there is a bag of words that is organized in the lexer’s spectrum (code). The tokenizer will

validate the source code against that bag of words, where the matching words will be

accepted as valid tokens and given as output/ store according to the user convenience.

Adding to the acceptance of valid tokens, some pre-defined rules for every lexeme are

identified as valid. Grammar rules define these rules with the help of patterns. A pattern is

a mixed entity of regular expressions and is used to define a token. As shown in the above

given figure 7, ANTLR is used as a tokenizer in this system and accepts valid tokens in

form of identifiers, keywords, math operators, logical operators and other operators

besides math and logic.

Figure 14: Tokenization: Lexical Analysis

Specifications of Tokens:

Alphabets: Any finite set of {0, 1} symbols is a set of binary alphabets and {A, B, C, D, E,

F to Z} is a set of hexadecimal alphabets. [a-z, A-Z] is a set of English language

alphabets.

29

Strings: A finite set of alphabets from the above-mentioned alphabets is called a string.

For the given lexer, the examples of strings can be given as ‘hello’, ‘world’, ‘print’ and etc.

Special symbols

The special symbols from a specific high-level language are mentioned in the table given

below:

Table 6: Symbol Table Specification

Arithmetic operators Addition(+), subtraction(-), multiplication(*), division(/), modulus (%),

Logical operators And (&&), Or (||), Not (!)

Relational operators Less than(<), less than equal (<=), more than(>), more than equal(>=),
equal equal (==), not equal (!=)

Other Operators ! , comma(,), semicolon(;), dot(.), arrow(->)

Location specifier &

Assignment =

Shift Operator >>, >>>, <<, <<<

Preprocessor #

3.3.1 Tokenizing the source codes

In this subsection, we will discuss the procedure of tokenizing the source code, i.e.

breaking down the source code into tokens or lexemes. The overview for lexical analysis

using ANTLR is given in the above sections, but the system implementation for ‘SimDec’

forensic engine stage 1: Lexical analysis will be presented in this subsection, as shown

below for a source code example of ‘C’ and ‘C++.’

Table 7: Tokenization Implementation for 'C' file

#include <stdio.h>

#include <math.h>

#define epsilon 0.000001

int main() {

 float a1,a2,b1,b2,x,y;

30

 printf("Unesite a1,b1,a2,b2: ");

 scanf("%f, %f, %f, %f",&a1,&b1,&a2,&b2);

 x=(b2-b1)/(a1-a2);

 y=a1*x+b1;

 if(fabs(a1-a2)<epsilon && fabs(b1-b2)>epsilon)

printf("Paralelne su");

 else if(fabs(a1-a2)<epsilon && fabs(b1-b2)<epsilon)

printf("Poklapaju se");

 else printf("Prave se sijeku u tacci (%.1f,%.1f)",x,y);

 return 0;

}

The ‘C’ source file – ‘student4959.c’ shown above is tokenized or put through lexical

analysis in the proposed system, and then tokens/lexemes obtained are given below as

follows:

"C:\Program Files\Java\jdk-14.0.1\bin\java.exe" "-

javaagent:C:\Program Files\JetBrains\IntelliJ IDEA Community Edition

2020.2.1\lib\idea_rt.jar=61954:C:\Program Files\JetBrains\IntelliJ

IDEA Community Edition 2020.2.1\bin" -Dfile.encoding=UTF-8 -

classpath

C:\Users\batma\IdeaProjects\demoHello\out\production\demoHello;C:\Us

ers\batma\Downloads\antlrjar\antlr-4.8-

complete.jar;C:\Users\batma\Downloads\commons-io-

2.7.jar;C:\Users\batma\Downloads\commons-text-

1.8.jar;C:\Users\batma\Downloads\mysql-connector-java-8.0.20\mysql-

connector-java-8.0.20\mysql-connector-java-8.0.20.jar

com.company.com.company.Runner

Table 8: Tokens of 'C' source code

epsilon 0.000001 int main (
) { float a1 ,
a2 , b1 , b2
, x , y ;
printf ("Unesite a1,b1,a2,b2:

"
) ;

scanf ("%f, %f, %f, %f" , &
a1 , & b1 ,
& a2 , & b2
) ; x = (
b2 - b1) /

31

(a1 - a2)
; y = a1 *
x + b1 ; if
(fabs (a1 -
a2) < epsilon &&
fabs (b1 - b2
) > epsilon) printf
("Paralelne

su"
) ; else

if (fabs (a1
- a2) < epsilon
&& fabs (b1 -
b2) < epsilon)
printf ("Poklapaju se") ;
else printf ("Prave se sijeku u tacci

(%.1f,%.1f)"
,

x , y) ;
return 0 ; }

The lexical analysis identifies a string text as a complete string in between the double-

quotes. For example, print statement printing text in double-quotes. According to our

context, the ANTLR tokenizer is configured in particular way and, therefore, difficult to alter

the default configurations. For example, the word "Prave se sijeku u tacci (%.1f,%.1f)" has

operators in it, but being enclosed in double-quotes, the entire string is detected as an

‘Identifier’. This cannot necessarily be seen as a disadvantage because the detection

strength is not weakened due to this one flaw.

Going ahead and executing the set of commands for grouping the tokens into categories

for ‘C’ source codes by referring the ‘C’ grammar is represented as follows:

==

student4959.c

student1326.c

==

The Lexemes for file1: [0.000001, int, main, (,), {, float, a1, ,, a2, ,, b1, ,, b2, ,, x, ,, y, ;,

printf, (, "Unesite a1,b1,a2,b2: ",), ;, scanf, (, "%f, %f, %f, %f", ,, &, a1, ,, &, b1, ,, &, a2, ,,

&, b2,), ;, x, =, (, b2, -, b1,), /, (, a1, -, a2,), ;, y, =, a1, *, x, +, b1, ;, if, (, fabs, (, a1, -, a2,

), <, epsilon, &&, fabs, (, b1, -, b2,), >, epsilon,), printf, (, "Paralelne su",), ;, else, if, (,

32

fabs, (, a1, -, a2,), <, epsilon, &&, fabs, (, b1, -, b2,), <, epsilon,), printf, (, "Poklapaju se",

), ;, else, printf, (, "Prave se sijeku u tacci (%.1f,%.1f)", ,, x, ,, y,), ;, return, 0, ;, }, <EOF>]

129

Others: [(,), {, (,), (,), (,), (,), (, (,), (,),), (,), (, (,), (,),), (,), (,), }]

Numerical Values: [0.000001, 0]

Keywords: [int, float, if, if, else, else, return]

Logical Operators: [<, <, <, >, &&, &&, &, &, &, &]

Math Operators: [=, =, -, -, -, -, -, -, +, *, /]

Identifiers: [main, a1, a2, b1, b2, x, y, printf, scanf, fabs, epsilon, "Paralelne su", "Poklapaju

se"]

The java codes for grouping of lexemes in the ‘tokenizer customization’ phase have been

described in the appendix for java programming at the end of the thesis. The ‘C++’ source

file – ‘student1044.cpp’ shown below is tokenized or put through lexical analysis in the

proposed system, and then tokens/lexemes obtained are given below as follows

 NAPOMENA: i javni ATo-vi su dio postavke

 Autotestovi by Berina Cocalic. Sva pitanja, sugestije

 i prijave gresaka saljite na mail: bcocalic1@etf.unsa.ba

*/

#include<iostream>

#include<vector>

#include<string>

using namespace std;

 void IzbaciDuple (vector<string>&v){

 for(int i(0);i<int(v.size());i++){

 for(int j(i+1);j<int(v.size());j++){

 if(v[i]==v[j]){

 v.erase(v.begin()+j);

 j--;

 }

 }

 }

33

int main ()

{

 vector<string>v{"Ja","se","Lejla", "Lejla","se", "zovem",

"Lejla", "Lejla"};

 IzbaciDuple(v);

 for(int i(0);i<v.size();i++)

 cout<<v[i];

 return 0;

}

The tokens given out after processing the ‘C++’ source code file are large and, therefore,

difficult to accumulate in a table for display. The cut-short version of all the lexemes is

shown below as follows:

"C:\Program Files\Java\jdk-14.0.1\bin\java.exe" "-javaagent:C:\Program Files\JetBrains\IntelliJ

IDEA Community Edition 2020.2.1\lib\idea_rt.jar=53361:C:\Program Files\JetBrains\IntelliJ IDEA

Community Edition 2020.2.1\bin" -Dfile.encoding=UTF-8 -classpath

C:\Users\batma\IdeaProjects\demoHello\out\production\demoHello;C:\Users\batma\Downloads\a

ntlrjar\antlr-4.8-complete.jar;C:\Users\batma\Downloads\commons-io-

2.7.jar;C:\Users\batma\Downloads\commons-text-1.8.jar;C:\Users\batma\Downloads\mysql-

connector-java-8.0.20\mysql-connector-java-8.0.20\mysql-connector-java-8.0.20.jar

com.company.com.company.Runcpp

Table 9: Tokenization of a 'C++' source code file

#include
<iostream
>

#include
<vector>

#include
<deque>

#include
<iterator>

#include
<algorithm>

#include
<iomanip>

using

std :: cout ; using std ::
cin ; int suma (int n
) { int sumacif = 0 ;
while (n != 0) {
sumacif += (n % 10)
; n /= 10 ; } return
sumacif ; } int SumaDjelila

ca
(long

long int x) { int suma
(0) ; if (x
< 0) x = - x
; for (int i = 1
; i <= x ; i ++
) { if (x % i
== 0) suma += i ;
} return suma ; } bool Prost
(int x) { for (
int i = 2 ; i <
x ; i ++) { if

34

(x % i == 0)
return false ; } return true ;
} int BrojProstihF

aktora
(long long int

x) { int br (0
) ; if (x < 0
) x = - x ; for
(int i = 2 ; i
< x ; i ++) {
if (x % i ==

The lexeme grouping for C++ source code file into categories such as others, numerical

values, logical operators, math operators and identifiers is shown as follows:

==

student1044.cpp

student1029.cpp

==

Others: [(,), {, (, (,), (, (,),),), {, (, (,), (, (,),),),

{, (, [,], [,],), {, (, (,),), }, }, }, }, (,), {, {, }, (,),

(, (,), (,),), [,], }]

Numerical Values: [0, 1, 0, 0]

Keywords: [int, int, int, int, int, int, if, return, for, for, for,

void, using, namespace]

Logical Operators: [<, <, <, <, <, >, >, <<, &]

Math Operators: [+, +, ++, ++, ++, --]

Identifiers: [std, IzbaciDuple, vector, string, v, i, size, j,

erase, begin, main, "Ja", "se", "Lejla", "zovem", cout]

The two files under comparison go through the lexical analysis process, and tokenization

for both the files takes place before the later phases. In the next section, the details

35

regarding the implementation of string similarity or distance similarity algorithms have

been illustrated.

3.4 Second Phase – Computations

This is the second phase of our ‘SimDec’ forensic engine. The string similarity techniques'

actual mathematical calculations are executed on the data extracted from the ‘C’ or ‘C++’

source codes. The distance & string similarity algorithms chosen for this experimentation

are as follows:

Levenshtein Distance Measure

Jaro Distance Measure

Jaro-Winkler Distance Measure

Cosine Similarity

Dice Coefficient

Least Common Substring (LCB)

All the similarity measures mentioned above have been applied to the data extracted from

the source codes such as keywords, math operators, logical operators, other operators

and numerical are mentioned in chapter 4 of this book.

3.4.1 Execution of Distance, Token, Sequence Similarity Algorithms

Several kinds of similarity algorithms, such as edit distance, token-based and sequence

algorithms, are used in defining the statistical model of ‘SimDec’ forensic engine. The

figure below describes how, where and when the similarity algorithms are applied to the

data extracted from the C/C++ source code corpus. When we say extracting data from the

corpus, comparison is information obtained from lexical analysis. The information primarily

being in form of tokens / set of tokens such as sets of keywords (file 1, file 2 in the figure),

sets of identifiers, sets of numerical values and other as illustrated in figure 15.

36

Figure 15: Execution of Similarity techniques on extracted data

Here, the techniques used for similarity measures are cosine similarity, Levenshtein

distance, and Jaro-Jaro Winkler and dice coefficients. In the SimDec engine, two files from

a folder are under evaluation at the moment (in a loop) and do the same for other files

once it exits the loop after evaluating two files in a queue. The information for keywords

score, identifier score, arithmetic operators score and others is stored in different MySQL

tables of the same database at first. The scores are further aggregated as one whole

number, and the final computation takes following the first. Let’s review all the table singles

for each token category starting with keywords score, as shown below:

37

Figure 16: Screenshot of ‘Keywords score’ table with Similarity Techniques

Figure 17: Screenshot of ‘Identifiers score’ table with Similarity Techniques

Figure 18: Screenshot of ‘Logical score’ table with Similarity Techniques

38

Figure 19: Screenshot of ‘Math Score’ table with Similarity Techniques

Figure 20: Screenshot of ‘Numerical score’ table with Similarity Techniques

Figure 21: Screenshot of ‘Other Operators’ score table with Similarity Techniques

Given all the figures of single tables of token categories, it is observed that all similarity

algorithms have been executed on a set of keywords, set of identifiers and all other sets.

Further computation involves the aggregation of current values to derive an average score

for a single comparison of two files.

39

3.4.2 Data Aggregation and Results

Referring to the last subsection about similarity algorithm execution, all the individual score

columns for each token category is aggregated to achieve a final aggregated score for a

token category. For example, all the single keyword score table columns can be

aggregated to form one ‘keyword’ score for the two files. All other token categories follow

the same aggregation procedure. A simple representation of aggregating similarity

measures for one token category is shown below as follows:

Figure 22: Aggregation of similarity measures for a token category (TC)

The aggregated scores for all the token categories include keywords, identifiers, numerical

values, math operators, logical operators, and other operators. In the figure given above,

TC stands for token category and can be any of the abovementioned. The snapshot of the

average scores for the files is shown below as follows:

40

Figure 23: Screenshot of ‘Average scores’ table for student assignments

The classification or the process of determining whether the two assignments are

plagiarized or not can be verified by the average score. The results decided were in the

favor of plagiarism and the range for classification is given in the table below:

Table 10: Classification rules for Plagiarism detection

Average score Class (Plagiarism level)

If average score < 0.70 Low Plagiarism

If average score between 0.70 AND 0.85 Average Plagiarism

If average score > 0.85 High Plagiarism

If average score == 1 Full Plagiarism

If average score == 0 No Plagiarism

The last two classification rules, which say that two assignments are said to be ‘exactly

similar’ or ‘fully plagiarized’ if the average score is ‘1’ and the last rule where average

score is found out to be ‘0’, indicates that two assignments are unique and have no similar

content at all.

41

It would be inappropriate to conclude that assignments attaining an average score of ‘0.40’

share similar content / plagiarized. This decision usually depends on the assignment

evaluator or the professor of the subject to declare a 10% similarity as a ‘cheating case’.

In many cases use of one word multiple times could result in 10-15% similarity with an

average score of around 0.40 to 0.50 and could lead to a cheating case even though the

assignments have not been copied. There is an equal level of certainty between the

boundaries of ‘unique’ and ‘smartly plagiarized’ assignments. There are cases where a

student can smartly alter his/her assignment according to another student’s assignment

by following obfuscation techniques such as changing program blocks (up, down),

spamming spaces between lines, adding single and multiple line comments, moving

indentations in the code and other non-novice programmer approaches. It is highly

advised that the evaluator should personally view the codes for the Low and Average

plagiarism level assignments and make a decision accordingly. The proposed ‘SimDec’

similarity detector forensic engine overpowers the novice programmer techniques such

as:

 Flooding whitespaces in the code for a quick escape from plagiarism

 Block comments

 Renaming variables

 Shifting the Indentation of the code

 Changing positions of program blocks

 Other minor approaches

3.5 Third Phase – Representation

This last phase of the system development in which the information or data acquired is

displayed to the end-users in the form of analysis and visualizations. The visuals of

information such as average score, similarity measures result, and other computations

represented on the front screen aids the user’s decision-making process. The software

system’s architecture is primarily based on a three-tier model such as database, model-

driven code and front-end GUI. More details about the development is defined in the next

section.

42

3.5.1 Full-stack Development

Full-stack system development is a development process in which there is an involvement

of client and server as well. Through a user interface component, the client queries or

orders a fetch operation to and from the database, and server processes the request. The

basic understanding of programming languages required for full-stack development are

HTML, CSS and PHP. There are other client and server programming languages such as

ASP, Node.js, Angular.js and others, but the knowledge of basic concepts helps to

understand the advanced languages.

WAMP / XAMP - The XAMP / WAMP stack stands for Windows-Apache Server – MySQL

– PHP. This is the best suitable stack for our proposed system in this research because

of its benefits such as compatibility with Java Programming Language (JPL) and

environment integration. The web application has been developed using HTML, CSS,

JSP, PHP, and other client & server side languages like JQuery and AJAX. For the local

instance, the systems front-end is connected to the IDE through server side PHP and

MySQL intermediate layers. The input is given in the code and the computed values are

stored in the MySQL database (JDBC connection/ plugin). The front-end queries and

fetches values from the same database and that’s how the full-stack development is

successfully achieved.

 Intellij IDEA – The integrated development environment (IDE) used for building the

similarity detector engine was Intellij IDEA and not Eclipse because of a few advantages

of Intellij such as productive Java coding experience, smart coding features, smooth

integration of ANTLR plugin, convenient connection establishment with the MySQL

database and millions of built-in tools and supported frameworks.

Plugins – The external plugins imported in the java project were ANTLR and JDBC

connectors for tokenization and connectivity with MySQL purposes. Other apache plugins

such as common text was kept for alternative approaches. ANTLR Plugin available at

https://plugins.jetbrains.com/plugin/7358-antlr-v4-grammar-plugin. JDBC plugin available

at https://dev.mysql.com/downloads/connector/j/

https://plugins.jetbrains.com/plugin/7358-antlr-v4-grammar-plugin
https://dev.mysql.com/downloads/connector/j/

43

MySQL Database – The relational MySQL database, which is also a part of XAMPP

package is chosen as the database for storing and loading values. The data extracted

from source codes is stored in the Db tables and accessed by the user at the front-end.

3.5.2 Visualization on the Web GUI

The visual infographics of the data acquired from the comparison is stored and displayed

on the front-end via a web application. Figure 24 represents the main homepage of the

SimDec web application. The figure following the first one below is navigated through

‘Analysis’ page from the homepage’s menu bar. The analysis page shows the paginated

views for displaying low, average and high student assignments score.

Figure 24: SimDec Web application - HomePage

44

Figure 25: Assignment Level- Low, Average, High Display

The figure given below displays the assignments having ‘Severe’ or ‘Critical’ plagiarism

score. That is, average score above 0.85 to 1.

Figure 26: SimDec Engine - Severe Similarity Display

The end of the ‘Analysis’ page shows the bar-graph, pie-chart and scatterplot representing

‘Low’, ‘Average’ and ‘High’ percentages (quantity) student assignments.

45

 Figure 27: SimDec Web App Visualization - Bar Graph & Charts

Figure 28: SimDec Token Categories

46

The ‘Similarity Checker’ page, accessible from all the website pages, shows a set of div

tags for each of the token categories such as keyword score, identifier score, numerical

score, logical operator score, other, math operator score. Every token category has a page

within displaying low, average and high for respective token category score. The token

category analysis is shown by visual representations using visualization tools such as

Google charts, ChartJs, trial version of FusionCharts. A new advanced feature added to

the search facility is the dropdown listing all the student file records. Upon selecting, the

similarity measures such as Levenshtein distance, Jaro, Jaro-W inkler and dice

coefficient for all token categories on the respective pages. Figure 30 shows the dropdown

feature and display of similarity measures upon accessing the submit button for any

student assignment pair.

Figure 29: Token Category Percentage with Visualization

47

Figure 30: Similarity Measures scores representation to users

We have discussed the systematic workflow of our ‘SimDec’ forensic engine for ‘C’ & ‘C++’

source code plagiarism detection in this chapter with the help of block diagrams and

system architecture. The above given figures in section 3.5.2 of this chapter represents

the web user interface prototype for our system. The dashboard intends to display the

findings or analytics of the experimentation in form of visualization and eases the process

of identifying source-code thieves for the user evaluating the assignments. The next

chapter focuses on the mathematical algorithms or similarity measures embedded in our

system to calculate the similarity percent in the source codes.

48

Chapter 4. Mathematical Similarity Algorithms

In this chapter, we are going to emphasize on the mathematical similarity detection

algorithms or techniques that are favorable for finding similarities between two words or

strings. A token in general, could be a word like ‘hello’, number like ‘9’, or just a character

like ‘<’. There are different categories of tokens as mentioned in section 3.1 and section

3.3 respectively. The types of similarity measures mentioned in this chapter are embedded

in the ‘SimDec’ systems second phase called ‘Tokenizer customization’ where the

similarity measures are executed on the sets of tokens of two files to find the percent of

similarity. If taken a close observation at table 1 from chapter 2, the previous plagiarism

detection (PD) and clone detection (CD) tools like YAP3, nicad and iclones made use of

Karp Robin, token matching and cosine similarity measures for finding similarities in

source codes. These previous tools used one or a combination of maximum two existing

techniques to detect similarities and therefore, leading it to a weak detection strategy. In

our proposed system, we have used multiple similarity measures to gather enough

evidence to categorize a source-code comparison pair as plagiarized or not plagiarized.

This approach of using multiple measures leads to heavy computing time but that is where

supervised machine learning jumps in to predict the category and reduce time complexity.

This chapter explains the selected similarity algorithms/measures used with our systems

configuration such as levenshtein distance, Jaro and Jaro-Winkler distance measure,

Sorensen dice coefficient and cosine similarity. All these techniques fall in different

categories such as distance based, token based and sequence based methods described

below as individual sections.

4.1 Edit Distance based Algorithms

According to the work-flow explained in the section ‘ First phase: Lexical Analysis’ of the

chapter 3 of this thesis, the source code breaks down into number of lexemes / tokens

and is forwarded to the tokenizers deployed within the lexical analysis phase. The tokens

are mostly strings, integers, characters, and operators stored in separate containers or

cluster sequences after the tokenizers categorize them into keywords, math operators,

numeric operators and others. The distinct sequences from containers in the file

comparison stage are concatenated together in one sequence. They are evaluated with

distance similarity algorithms to compute the similarity distance between the string

49

sequences. In this research, we have used this particular levenshtein distance method to

measure the difference between two strings or two sequences acquired from the

tokenization process. The measure has proven to be effective on two sequences of for

example, keywords extracted from two source codes and find the distance between them.

This section describes the potential distance-similarity algorithm such as Levenshtein

distance taken into consideration for this research because of its adaptability to work with

strings of unequal lengths.

4.1.1 Levenshtein Distance

Levenshtein distance is a distance similarity method invented by mathematician Vladimir

Levenshtein in the year 1965 [28]. Levenshtein distance, also called edit distance, is

defined as the similarity between two string sequences 1' and's 2'. The algorithm focuses

on the minimum number of changes required to convert string's 1' into string's 2' with an

operation such as insertion and deletion in string's 1'. The algorithm can be illustrated in

the programming area as lev (s1, s2) where the value lies between 0 and 1. The values

closer to '0' indicate less similarity and nearer or equal to '1' indicate a greater measure of

similarity. For example, lev (hello, hell) will fall somewhere between 0.8 and 1 as just one

letter of's 1' is missing in's 2'. The mathematical equation for Levenshtein distance is given

below as equation (1):

𝑙𝑒𝑣
𝑎,𝑏

(𝑖, 𝑗) = ∫ min ∫

lev
𝑎,𝑏

(𝑖 − 1, 𝑗) + 1

lev
𝑎,𝑏

(𝑖, 𝑗 − 1) + 1

lev
𝑎,𝑏

(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖≠𝑏𝑗)

max(𝑖,𝑗)

0

In the above equation, 1(ai≠bi) is the indicator function set to zero initially and equal to 1

otherwise. Lev(a,b)(i,j) = distance between first i characters of string ‘a’ and first j characters

of string ‘b’. The best example for Levenshtein distance between 'HONDA' and 'HYUNDAI'

is 3 and edit changes using insertion, substitution, and deletion operations. The wider

applications of Levenshtein distance in string matchings falls under dynamic

programming, and the pseudocode for DP approach for Levenshtein distance is given

below:

int LevenshteinDistance(char s[1..m], char t[1..n])

 // d is a table with m+1 rows and n+1 columns

 declare int d[0..m, 0..n]

 for i from 0 to m

50

 d[i, 0] := i

 for j from 0 to n

 d[0, j] := j

 for i from 1 to m

 for j from 1 to n

 {

 if s[i] = t[j] then cost := 0

 else cost := 1

 d[i, j] := minimum(

 d[i-1, j] + 1, // deletion

 d[i, j-1] + 1, // insertion

 d[i-1, j-1] + cost // substitution

)

 }

 return d[m, n]

4.1.2 Jaro Distance

Jaro edit-distance method is a similarity measure invented by scientist Mathew A. Jaro

[29]. Like any other algorithm, Jaro similarity measures the distance between two string

sequences. The value of Jaro (s1, s2) mostly ranges between 0 to 1, where two strings

are equal when the value is 1 and not equal at all when a value is zero. The mathematical

formula for Jaro proposed by Mathew Jaro [28] and a detailed explanation on value

calculation is given under as follows as equation 2:

𝐽𝑎𝑟𝑜 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = {

0, 𝑖𝑓 𝑥 = 0
1

3
(

𝑥

|𝑠1|
+

𝑥

|𝑠2|
+

𝑥 − 𝑡

𝑥
) , 𝑓𝑜𝑟 𝑥! = 0

From the equation above,

x = number of matching characters,

t = half the number of transpositions,

|s1| and |s2| = lengths of string s1 and s2

The matches are accurate if they are not farther than [
max (|𝑠1|,|𝑠2|)

2
] − 1 and t = half the

number of characters in both strings in a different order.

51

Consider s1 = ‘rover’ and s2 = ‘flower’, here the matching characters is three such as [o,

e, r] in a different order. Number of characters not in order = 4 i.e. In s2 = [f, l, o, w].

Therefore, t = 4/2 = 2. From the above equation 2, Jaro similarity can be calculated as =

1/3 * ((3/5 + 3/6 + (3-2)/3) = 0.4719. The strings ‘rover’ and ‘flower’ have a Jaro similarity

measure of 0 < 0.4719 < 1. The purpose of using Jaro and Jaro-Winkler edit-distance

measure is to support the results obtained from Levenshtein method. Suppose for two

sequences, levenshtein distance result obtained is ‘0.70’ and Jaro and Jaro-Winkler

distance measure give out the score which ranges between 0.60 – 0.75; then we have

multiple measures giving out the similar result for two sequences.

4.1.3 Jaro- Winkler Distance

Following the invention of Jaro distance measure, William Winkler [30] proposed an

upgrade to the Jaro metric called as ‘Jaro-Winkler’. The Jaro-Winkler distance measure is

similar to the Jaro algorithm in most cases; the prefix of both the strings doesn’t match.

They both produce different values when the prefix of both the strings don't match. The

prefix scale 'p' in Winkler gives more accurate answers when strings have a common

prefix of length 'L’. The Jaro-Winkler similarity measure is defined as follows in equation

3:

JW = J + Sf * L*(1 - J)

Where, J = Jaro measure obtained from above block,

Sf = scaling factor (0.1 by default),

L = length of matching prefix (max 4 characters long). Referring to the same string

examples used for Jaro measure in the subsection above this one. Here for ‘rover’ and

‘lower’ we have L = 0.

The computation, JW = 0.4719 + 0.1 * 0 * (1 – 0.4719) = 0.4719. The Jaro-Winkler and

Jaro in this case are equal. The results may be different for strings such as ‘Logitech’ and

‘Lotto’, where L =2.

4.2 Token-based Algorithms

4.2.2 Sorenson Dice Coefficient

52

Thorvald Sorensen [31] and Lee Dice [32] independently developed the ‘Sorensen dice

coefficient’ or ‘dice index’ statistical tool used to gauge the two samples' similarity. This

invention intended to differentiate the similarity between two distinct sequences. Assume

‘1' and ‘2' to be two distinct data sequences and |s1| and |s2| be the same sets'

cardinalities. The dice index /coefficient equals twice the number of elements common to

both the sets divided by the sum of cardinality sets. The mathematical equation for DC or

DI (Dice Index) is given below in equation 4 as follows:

𝐷𝐶𝑆 =
2 |𝑠1 ∩ 𝑠2|

|𝑠1| + |𝑠2|

The only difference between the Jaccard coefficient and DCS is that Jaccard counts the

true positives once in both denominator and numerator. DCS falls in between 0 and 1 for

two discrete sets. The DCS for string similarities is a variance of the normal DCS form and

uses bigrams of the strings for computation, as shown in equation 5:

𝐷𝐶𝑆 𝑓𝑜𝑟 𝑆𝑡𝑟𝑖𝑛𝑔𝑠 =
2𝑛𝑏

𝑛𝑥 + 𝑛𝑦

Here, 'nb' is the number of bigrams found in both the strings and 'nx' & 'ny' denote the

number of bigrams found in string X and Y, respectively. Consider the words' Deer' and

'Dear', the set of bigrams in each word world be as follows:

X = {de, ee, er}, Y = {de, er, ar}

The common bigram between both the strings is {de}. Therefore, the DCS we obtain after

calculation by putting in equation (5) is (2.1) / (3 + 3) = 0.33. The score ‘0.33’ is near to ‘0’

and less than 0.50 therefore, the sequences ‘X’ and ‘Y’ have only one common element

and the severity is not so high, given 0.33 as the dice coefficient gauge score.

4.2.3 Cosine Similarity-Based Method

Cosine similarity can be defined as a document similarity metric that is used to measure

the similarities between two documents irrespective of the size. It measures the cosine of

the angle between two vectors in a 2D multi-dimensional space. The vectors selected for

measurement can be strings, arrays and value objects in a coded algorithm. The core

programming language used for developing the proposed system is Java, and hence,

53

forming the vectors from the tokenization approach is not cumbersome in the procedure.

The main advantage of this method is it can conclude that two documents can be oriented

together even if they're far apart because of size irregularities. Like the other techniques

stated above, the result value of cosine similarity ranges between 0 and 1. The similarity

percentage is less if the cosine angle is big and high when the angle is small. The cosine

similarity is implemented for document similarity in two ways as described below:

Approach 1: Consider 'A' and 'B' as two document vectors and measure the cosine

similarity angle between the two vectors to justify the similarity between two documents in

the range of 0 to 1. This approach is favorable for the research, focusing on occurrences

of a word for checking document similarity.

Approach 2: Tokenize the document to form categories for simplification and then

concatenate the distinct features into one complete vector. Follow this procedure for all

the documents and then calculate the cosine angle between the vectors. The result for

this approach would be more effective than approach one as the vector would contain all

distinct elements from all the categories. The mathematical formula for cosine similarity is

given under as equation 6:

𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos(𝜃) =
𝑋. 𝑌

||𝑋||||𝑌||
=

∑ 𝑋𝑖𝑌𝑖
𝑛
𝑖=1

√∑ 𝑋𝑖
2 𝑛

𝑖=1

.
1

√∑ 𝑌𝑖
2 𝑛

𝑖=1

In the equation above, 'X' and 'Y' are the two vectors of attributes and cosine similarity is

represented as a dot product and magnitude. The result obtained from this formula will be

'1' if the documents are clones and '0' if they're the opposite. In the case of IR (Information

retrieval), the angle between two 'term' vectors cannot be > 90 degrees. Gunawan et al.

[32] in their research on finding text relevance via cosine similarity mentioned the use of

cosine similarity measures to find the relevancy of a suitable topic in multiple documents.

The authors divided the system implementation into three stages such as pre-processing

(removing punctuations from documents, converting all text to lower-case, etc),

intermediate (keyword weighing between 0 and 1) and the last stage involves cosine angle

measure to give out relevancy in terms of '0' or '1'.

4.3 Sequence Based Algorithms

4.3.1 Least Common Subsequence

54

Another Dynamic Programming (DP) approach considered in this proposed similarity

detection engine after Levenshtein distance is the longest common substring (LCS) for

assuring string similarity without any resulting numerical value. David Maier mentioned the

complexity of some problems on subsequences and super sequences in his research [34].

Being a DP implementation, this algorithm has a time complexity of O(nm) where space

is utilized more than time. The definition of LCS is simple as it identifies a substring in is

‘1' and checks for the same in's 2'. The algorithm also has a functionality of keeping track

of the substring's maximum length and displaying it on the console. An example for LCS

detection is given below in words, as there is no exclusive statistical explanation for it in

algorithms. k-common substring problem ϵ LCS (X, Y, m, n) = Max(LCSuff(X,Y,I,j)) where

1 <= i ,j <= m, n. Max(LCSuff) is the equation where both the strings lengths is reduced

by 1 if the last characters match.

4.4 Integration with the System

The selected similarity measures described with details in the above sections have been

implemented in java programming language with our ‘SimDec’ system. The single MySQL

table images shown in figures 16 to 23 in the chapter 3 represent the similarity scores of

each token category sequences such as keywords, identifiers, arithmetic operators, logical

operators and other operators. The solo scores of each of the techniques such as

Levenshtein distance, Jaro, Jaro-Winkler, Cosine similarity and Dice coefficient are

aggregated and displayed as one average score of all token categories as shown in figure

number 23. All these observations are recorded in the relational MySQL database at the

back-end and this data is forwarded to the machine learning module of this research.

SimDec system allocates one plagiarism category to all the files such as Low, Average

and High. Low category could mean no plagiarism at all and should not be considered for

personal evaluation of the source code by evaluators. Records with labels medium and

High could mean that the plagiarism done is more than 50% of similar content and

corresponding action shall be taken by the professors or evaluators. Concluding this

chapter and moving on to the next chapter, we will discuss the computational performance

analysis of all the supervised and unsupervised machine learning algorithms in the next

chapter. Chapter 5 will represent a comparative study of all the algorithms and choose the

technique that has better compatibility with the system-generated data.

55

Chapter 5. Computational Performance Analysis

This chapter focuses on the core concept of machine learning and its categories such as

supervised and unsupervised machine learning. The data recorded on applying the

similarity measures discussed in chapter 4 is stored in the relational database and

exported to the spreadsheet view for working efficiently on the ML and python

environment. The data primarily consists of class labels to each of the records assigned

by our proposed system. The class label helps the supervised models to train and

validation is impacted in a positive way. To deliver clustering and unsupervised analysis,

the class label can be dropped and the process can resume. We have shortlisted a few

ML algorithms to go on with at the beginning such as multi-class SVM, logistic regression

and a simple neural networks for supervised learning and k-means, PCA from the

unsupervised category of ML. Each of these mentioned algorithms with their evaluated

model scores is described in the sections given below.

5.1 Machine Learning Algorithms

Machine learning is the child of artificial intelligence that automatically learns and improves

from the programming experience. Machine Learning is used to develop computer

programs that can access the data fed to it and learn the patterns on every run. The

technology can learn the patterns on one dataset and implement them for another dataset.

In simple terms, the model developed in python programming language can be executed

on a dataset, save the model and then loaded later for testing purposes. The primary aim

of machine learning remains to allow the computer to automatically learn the patterns

without human assistance. Machine learning algorithms are often categorized as

supervised, unsupervised and semi-supervised learning. More details on each of these

categories will be given in the later sections.

5.1.1 Second Module of Research

Implementing machine learning algorithms on the data gathered from mining information

from source code comparison. Our ‘SimDec’ system assigns a label for each comparison

pair such as low, average and high as explained in the chapters above. The main purpose

of making the system do it is to make it compatible with the supervised learning algorithms

for prediction. Because without the class label, the generated data will only be good for

56

unsupervised learning and not suitable for the classification or prediction. This information

is stored in relational database systems and fetched by the users at the front-end. The

labels generated in the dataset is required for applying supervised machine learning

algorithms for achieving classification. The second module of this thesis is to extract and

infiltrate the output of the SimDec software system and give it as an input to the machine

learning algorithms. The development environments and platforms for both the modules

are different and the configuration is independent. Both of the modules are not directly

interlinked with each other and separated by the dataset. Dataset is the middle layer

between software system and machine learning platform. This module involves

supervised and unsupervised learning and the decision is concluded by observing and

analyzing the results.

5.1.2 Programming & Development Environment

The development environment for both of the modules of this research is different,

including programming languages and stack required for successfully achieving the

technology implementation.

The IDE and programming languages for the first module of the research are Intellij IDEA

and Java programming language, whereas, the same for the machine learning module is

Google Colab/ Kaggle and Python programming language. Java is not very helpful and

productive when it comes to data analysis and visualizations. Python was developed to

fulfil the data science criteria and fit in the data visualization circle.

5.1.3 Need of ML in Software Systems

Since the invention of LISP and FORTRAN, ML has played a major role in software

systems. The tools for building low-level and high-level programming languages didn’t

change their layout or appearance, but are essentially the same. Look at the fancy editors,

they have the features such as color highlighting, predicting next word when typing the

current, and different programming styles. A software system is a mixture of source codes

that is formulated in a flow to get a series of output. Adding machine learning and pattern

recognition to the software code can enhance the system in numerous ways by increasing

the code's efficiency. As language changes and usage shifts, new elements are

discovered and the neural network can be revisited and retrained on the new data. To

discuss the scope of machine learning in our thesis research, it is mainly implemented to

57

decrease the running operation's time complexity. The time taken by the program to build

and run the program could be reduced gradually as the number of computations would be

reducing as well. To dive into the details, the number of computations required to assign

a plagiarism level label to one comparison takes substantial time, starting from

mathematical calculation to storing and loading from the dataset. Machine learning could

easily omit the computing time as the model(s) could be trained on huge data and then

can be used to predict the class label if the accuracy is reasonably well. This chapter will

justify the above mentioned hypothesis by covering the machine learning algorithms and

relevant concepts. The dataset selected for this experimentation is gullible with supervised

and unsupervised for predictive and descriptive analysis both. There would be a

comparative study observed in the below given sections and the best suitable technique

for the system would be considered as a final analytical decision in this software

engineering process. The figure given below mentions the features machine learning

provides to enhance the software system code:

Figure 31: Machine Learning for Software systems

58

5.2 Supervised Learning Classification

The name ‘Supervised Learning’ is self-explanatory to mention the need and importance

of this technique. Supervised techniques is like a teacher to guide a student and during

the training process, the algorithms will search for patterns in the data correlate with the

desired outputs. The nature of a supervised learning algorithm is to train on a set of data

to get the patterns right and then predict the label or target variable for the newly presented

data. Supervised learning can be split into two categories such as regression and

classification. The regression approach is undertaken if a prediction is to be made for a

continuous variable such as numerical scores, amount, percentage etc. Regression can

be further sub-divided into linear and logistic where logistic regression is designed for

categorical variable prediction and linear for numerical predictions. Classification

algorithms are for predicting categorical labels such as high/low/medium, 0/1/2 or

true/false in the datasets. The job is to simply take the input and assign a class or category

that fits with the training data provided. A classification problem can be solved with a

plethora of algorithms such as Support vector machines, Naïve Bayes, Decision trees,

Neural Nets and K-Nearest Neighbor algorithms. We have considered three popular and

quality algorithms for conducting our second research module such as SVM’s, Logistic

regression and Neural Networks. The brief description of each one of the above mentioned

is given in the lower sections.

5.2.1 Support Vector Machines (SVM)

Support Vector Machines (SVM) algorithm was developed by the authors [35][36] at the

AT & T Bell laboratories in the year 1992. Support vector machines are supervised

learning algorithms that can solve a classification problem using two-class (high, low) and

multi-class (high, medium, and low). According to the data formulated in our system, a

multi-class SVM was a favorable one as there are three class labels: high, average and

low. The objective of a multi-class SVM is to find a hyperplane in an n-dimensional space

that separates the data points according to their classes. The data points which are

nearest to the hyperplane are called as ‘Support Vectors’. Another reason for SVM’s to be

called kernelized vectors is because they convert input data space into a higher-

dimensional space. The number of classifications required for one vs one multi-class

classification can be found out by the formula given below:

59

𝑛 ∗ (𝑛 − 1)

2

Kernel functions:

The popular kernel functions available in the scikit-learn are linear, polynomial, radial basis

and sigmoid. The equations of the four functions are given below as:

Linear Function - 𝑘(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖 ∗ 𝑥𝑗

Polynomial function - 𝑘(𝑥𝑖, 𝑥𝑗) = (1 + 𝑥𝑖 + 𝑥𝑗)𝑑

Radial Basis function (RBF Kernel) - 𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝(−𝛾||𝑥𝑖 − 𝑥𝑗||)2

Sigmoid function - 𝑘(𝑥𝑖, 𝑥𝑗) = tanh (𝑎𝑥𝑇𝑦 + 𝑐)

We will not discuss SVM's root contents by explaining the mathematical concept behind it

as that knowledge is available on hundreds of websites online. The SVM algorithm

performed efficiently on the SimDec data for multiclass classification and obtained an

accuracy of 99% for both training and testing. The details of multi-class SVM results on

our systems data are mentioned in short in the last section of this chapter.

5.2.2 Logistic Regression

Logistic regression is the simplest type of supervised Regressor used only when the target

variable is categorical. Logistic regression was invented by a popular statician DR Cox as

a binary probability model [37]. For numerical target variable, linear regression is

recommended due to compatibility. An example would be to predict / classify whether the

statement is true or false or yes or no. The function used in logistic regression is the

sigmoid function and ranges from minus to plus variable as shown in the figure below:

60

Figure 32: Sigmoid function for logistic regression

The analysis of hypothesis is the estimated probability used to infer how confident can

predicted value be actual value when the given input is X. There are several types of

logistic regressions such as binary logistic regression for predicting 0 or 1, multinomial

logistic regression for classifying more than two labels such as high, average and low. A

threshold needs to be set to predict the class of the data because the estimated probability

is classified into classes. The cost function is to be considered in the main equation for

linear regression and not logistic regression. MSE (Mean square error) is used with linear

regression and if used with logistic, it will create a non-convex functions of parameters.

The cost function for logistic regression is defined below in which, if y = 1, the output

approaches to O as hՓ(x) approaches to 1. The cost to pay grows to infinity as hՓ(x)

approaches to O. The same situation applies when y = 0, where there are bigger penalties

when the label is y = 0 but algorithm predicts hՓ(x) = 1.

(𝐶𝑜𝑠𝑡(ℎ∅(𝑥), 𝑦) = {
− log(ℎ∅(𝑥)) 𝑖𝑓 𝑦 = 1

− log(1 − ℎ∅(𝑥)) 𝑖𝑓 𝑦 = 0

The logistic regression algorithm implementation on the system data is described in

section 5.4 of this chapter where the accuracy obtained with the same technique on

system data is around 98% for training and testing the model.

61

5.2.3 Neural Networks

Warren McCullough and Pitts [38] at the University of Chicago invented neural networks

as an activity that was derived from the calculus of ideas immanent in nervous activity. To

give a short and simple description, a neural network is constructed with thousands of

neurons and one neuron is a basic unit of the network. Neurons simply take the input,

process the computation and give the output. For example, in a three-neuron neural

network, the three inputs are multiplied with weights and added with a bias ‘b’ as shown

below:

x1 -> x1 * w1, x2-> x2*w2, x3->x3*w3 (where w1,w2,w3 are weights of the network)

Secondly, the inputs are added with a bias and passed through an activation function as

follows:

Y = f(x1 * w1 + x2 * w2 + x3 + w3 + b)

The activation functions can be of 7 varying kinds such as sigmoid, ReLu, Tanh, linear

activation, non-linear activation, softmax and swish. The detailed explanation about all the

activation functions can be found out at https://missinglink.ai/guides/neural-network-

concepts/7-types-neural-network-activation-functions-right/.

Getting back to neuron based neural networks, the setup can be established and coded

in python using keras and tensorflow framework. The neural network could be built of

several layers and activation functions to get the satisfactory result. The neural net model

is supposed to be trained and tested on a dataset before putting it to actual real-world

testing. The model is evaluated like all other machine learning models by standard loss

and error computation. MSE (mean square error) is the loss function used for computing

a neural network evaluation. Neural nets can be configured in three different ways such

as feed-forward networks, backward propagation and ensemble learning (hybrid NN’s).

Lastly, we would like to discuss in brief about the optimizers, the optimizers available for

balancing the weight and minimize the loss. The learning rate encompassed in the

optimizers sleeps up the training time of the model. All these parameters can be altered

and played with for getting an appropriate score. The code for model which we built for

applying on our systems data is shown below as follows:

https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/

62

input_dim = len(data.columns) - 1

model = Sequential()

model.add(Dense(8, input_dim = input_dim , activation = 'relu'))

model.add(Dense(10, activation = 'relu'))

model.add(Dense(10, activation = 'relu'))

model.add(Dense(10, activation = 'relu'))

model.add(Dense(3, activation = 'softmax'))

model.compile(loss = 'categorical_crossentropy' , optimizer = 'adam' , metrics =

['accuracy'])

model.fit(train_x, train_y, epochs = 10, batch_size = 20)

scores = model.evaluate(test_x, test_y)

print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

There has been an imposition of four dense model layers consisting of three ReLu

activation layers and one softmax layer. The loss function for compilation is categorical

cross entropy with Adam optimizer for minimizing loss. The model is trained with training

data (x,y) on 10 epochs and a batch size of 20 and then evaluated on testing data

parameters (x,y) . The testing score achieved with 20 batch size is 93.22 % with a

minimum loss of 0.1619. The model looks good at 93.22% accuracy on the current system

data and therefore, a new data for another student assignment folder is given to the model

for testing. The trained and tested model is saved, loaded back on the environment and

tested on the data without the target variable. The one-hot encoding is done for the target

variable ‘Plagiarism’ that is low, average and high as ‘0’, ‘1’, and ‘2’. The data is given to

the model.predict(datafilename) and a numpy array is obtained as the predictions array.

On printing the list, the predictions obtained for the data is shown below as follows:

finalresult=model.predict_classes(data1)

On printing - finalresult[:30]

63

Figure 33: Predictions for new system data: Neural Networks

5.3 Unsupervised Learning Clustering

Unsupervised machine learning is a type of machine learning technique in which there is

no need to supervise the model. The data is fed to the model to discover the patterns and

explore new information on the basis of the learning. Unsupervised learning mainly deals

with data which has no label/target. Clustering analysis or descriptive mining holds the

major portion of unsupervised ML. Other existing ML techniques are given as association

rules and variation of association rules. There are various types of clustering algorithms

such as Hierarchical clustering, K-means, KNN classification, principal component

analysis, single value decomposition and independent component analysis. The study

conducted on the SimDec system data involves two types of unsupervised clustering such

as K-means and PCA due to the data's simple nature. The coding for both the techniques

has been completed using python programming language in this module. The purpose of

conducting unsupervised studies is to compare it with supervised learning and conclude

the best ML category for the satisfying the second modules intention.

5.3.1 K-means Algorithm

James McQueen [39] proposed an algorithm for dataset instance into groups of clusters

and the algorithm was named as ‘K-means clustering algorithm’. K-means clustering is an

iterative clustering algorithm that helps you find the clustering's highest value by selecting

a centroid / central points. The number of clusters ‘k’ are selected by coding the elbow

method curve where the value of bent curve is selected as the desired number of clusters

for the k-means operation. The entire data is clustered into ‘k’ groups and the output of

the algorithm is a group of ‘labels’. The centroids are the hearts of the clusters and the

bigger the cluster, the lower the granularity and the value of ‘k’. The small clusters often

have large granularity and a bigger value of ‘k’. The techniques have been implemented

64

in two languages such as Python and ‘R’. Implementing the algorithms in ‘R’ programming

language is because of aesthetic and efficient visualizations and easy data analytics. We

are going to discuss a little bit of both the parts in this chapter. Dilpreet Singh and Chanda

Reddy [40] gave a simple pseudocode for k-means algorithm in their paper and reciting

the same as shown below:

 The K-means Clustering Algorithm

1. Input data points ‘D’ and specify number of clusters ‘K’

2. Initialize central points or centroids randomly

3. Associate each data point in ‘D’ with the nearest centroid. This will divide data points

into ‘k’ clusters.

4. Recalculate the position of centroids and repeat the above two steps till final step

5. Represent data points with clusters

K-means with Python

The program starts with declaring imports and reading the data file as ‘data’ variable and

then dropping the categorical attribute from the pandas frame, followed by the assigning

the same categories to a label.

Labels = Data['plagiarism']

Data = Data.drop(['filenames', 'plagiarism'], axis = 1)

Labels_keys = Labels.unique().tolist()

Labels = np.array(Labels)

print('Plagiarism levels: ' + str(Labels_keys))

The labels will print the plagiarism levels as high, medium and low. The data is then scaled

and standardized using scalar.fit_transform(data). The optimal cluster ‘k’ values are

checked using the elbow method and the desired number is calculated (K=2 in this case).

K-means function is computed in the cellblocks and the related scores such as inertia, v-

meas, homo, ARI, AMI and silhouette score are outputted for the given data.

def k_means(n_clust, data_frame, true_labels):

 k_means = KMeans(n_clusters = n_clust, random_state=123, n_init=30)

 k_means.fit(data_frame)

 c_labels = k_means.labels_

65

 df = pd.DataFrame({'clust_label': c_labels, 'orig_label': true_labels.tolist()})

 ct = pd.crosstab(df['clust_label'], df['orig_label'])

 y_clust = k_means.predict(data_frame)

 display(ct)

 print('% 9s' % 'inertia homo compl v-meas ARI AMI silhouette')

 print('%i %.3f %.3f %.3f %.3f %.3f %.3f'

 %(k_means.inertia_,

 homogeneity_score(true_labels, y_clust),

 completeness_score(true_labels, y_clust),

 v_measure_score(true_labels, y_clust),

 adjusted_rand_score(true_labels, y_clust),

 adjusted_mutual_info_score(true_labels, y_clust),

 silhouette_score(data_frame, y_clust, metric='euclidean')))

With k=2 clusters, the silhouette score observed for the system data is 0.349 and 0.21 for

k=3.

Figure 34: K-means output for k=2 with related scores

Referring to figure 34, Upon giving the SimDec systems data to the k-means unsupervised

clustering algorithm, it is observed that the optimal number of clusters for the operation

would be 2 (k=2) for 15,344 records. The k-means performed in python clusters the data

into two groups where ‘Average’ and ‘High’ labelled data (Label is dropped as shown in

the python code above) is allocated to the second cluster and ‘Low’ and ‘Average’ is

66

allocated to the first cluster. As you can see from the figure, the highest number of records

are labelled as ‘Average’ are 6191 and therefore fluctuate in both the clusters. According

to the theory of the algorithm, unsupervised k-means is performing well in terms of

clustering with our systems data. Silhouette score ranges from -1 to 1 and any value closer

to ‘1’ means that cluster is well separated from each other and value nearby ‘0’ denotes

that clusters are overlapping. The silhouette scores obtained with our data (0.349)

indicates that clusters are overlapping and the fact that records with ‘Average’ label tops

the count supports the overlapping theory.

K-means with ‘R’ and ‘R-Studio’

The perfect explanation of k-means algorithm with visually represented clusters can be

observed with ‘R’ programming language and R-Studio. ‘R’ and ‘Python’ programming

languages have been closely associated with data analytics and machine learning, but

when it comes to supervised classification / prediction, Python is more effective than ‘R’.

‘R’ is popular for providing interactive visualization packages that support the infographics

and unsupervised clustering is all about diagrammatical representations. The packages

which should be installed to perform the k-means clustering in R-studio are ‘cluster’,

‘devtools’, ‘factoextra’ and other that support visualization such as ‘ggplot2’ and ‘dplyr’.

Following are the steps to perform k-means in R-studio:

1. Read csv file into R-studio, empty the ‘plagiarism’ column OR nullify it
R-code:

twentyKdata <- read.csv("C:/Users/batma/OneDrive/Desktop/twentyKdata.csv")
View(twentyKdata)
twentyKdata <- data.frame(twentyKdata[,-1], row.names = twentyKdata[,1])
twentyKdata[,c("plagiarism")] <- list(NULL)
twentyKdata <- scale(twentyKdata)
head(twentyKdata, n = 3)

2. Set seed to 123 and perform the clustering for ‘500’ samples. Including thousands of

samples can cause abrupt visualizations and unclear analytics. Scale the sampled

data with Euclidean distance and with Pearson coefficient as well.

R-code:

set.seed(123)
samset <- sample(1:3571, 500)
df <- twentyKdata[samset,]

67

df.scaled <- scale(df)
dist.eucl <- dist(df.scaled, method = "euclidean")
round(as.matrix(dist.eucl)[1:3, 1:3], 1)
library("factoextra")
dist.cor <- get_dist(df.scaled, method = "pearson")
df
view(df)

3. Load ‘factoextra’ library and visualize the Euclidean distance for all the values present

in the variable. Find out the optimal number of clusters for the sample set of 500

records within the large data

R-code : fviz_nbclust(df, kmeans, method = "wss") + geom_vline(xintercept = 4, linetype

= 2)

Output:

Figure 35: K-means: Optimal Number of clusters

4. Print the values with clusters for k=4 with 25 shuffles and list out the available

components such as cluster, centers, totss, withinss, betweenss, size, iter and ifault

R code:

km.res <- kmeans(df, 4, nstart = 25)
print(km.res)

68

Output:

student1547.cstudent5413.c student1477.cstudent7735.c student1477.cstudent4804.c
student1477.cstudent1571.c

 2 1 1 1

student1547.cstudent1738.c student1571.cstudent2234.c student1502.cstudent3442.c
student1547.cstudent1725.c

 3 4 2 3

student1477.cstudent4163.c student1502.cstudent8069.c student1542.cstudent8187.c
student1483.cstudent4185.c

 1 3 1 3

Within cluster sum of squares by cluster:

[1] 407.6792 423.1623 501.9302 439.0249

 (between_SS / total_SS = 46.9 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss" "betweenss" "size"

[8] "iter" "ifault"

5. Print the size and centers of the cluster and visualize the k-means clusters for 500

samples

R code:

km.res$size
km.res$centers
fviz_cluster(km.res, data = df,
palette = c("#2E9FDF", "#00AFBB", "#E7B800", "#FC4E07"),
ellipse.type = "euclid", # Concentration ellipse
star.plot = TRUE, # Add segments from centroids to items
repel = TRUE, # Avoid label overplotting (slow)
ggtheme = theme_minimal())

Output:

69

Figure 36: K-means Clusters for 500 Observations

As shown in figure 36, the four clusters are visible but the name conventions appear to be

congested. The congestion is mainly because of the long names and the only way to purify

it is to reduce the number of samples and try again with 100 or 200 samples. The best

possible scenario to cluster and visualize 500 or more sample would be to use the CLARA

clustering technique. CLARA stands for clustering large applications, which is an

extension to the k-medoids variation, PAM. To reduce the memory and computation time,

CLARA approach could be considered for large data. Without diving into command details,

the cluster visualization obtained with CLARA is shown below as figure 37. The main

intention behind performing the experimentation in ‘R’ and ‘R-Studio’ was to check if

unsupervised clustering on SimDec system data could be visualized properly or not.

Python libraries such as seaborn and matplotlib are incapable of plotting clusters for large

datasets and therefore, there was a need to check the clustering visualization on another

platform. As shown in figure 36, k-means clustering for 500 records appears to be

congested whereas the clustering for large data seems pleasant and clear with CLARA

clustering technique.

70

Figure 37: CLARA cluster visualization for 500 samples

5.3.2 Principal Component Analysis

Principal component analysis (PCA) is another clustering technique that acts as a

dimensionality reduction mechanism and invented by Karl Pearson in 1901 [41]. PCA

technique could be used to reduce a large set of variable into a small set that still contains

most of the information in the large set. PCA for the same dataset as used for k-means

has been conducted on the python environment. The first step is to find the optimal number

of features for dimensionality reduction.

pca = PCA(random_state=123)
pca.fit(Data)
features = range(pca.n_components_)
plt.figure(figsize=(8,4))
plt.bar(features[:15], pca.explained_variance_[:15], color='lightskyblue')
plt.xlabel('PCA feature')
plt.ylabel('Variance')
plt.xticks(features[:15])
plt.show()

71

Figure 38: PCA features X variance for system data

Looking at the figure given above, 1-feature seems to be the best fit for our data as ‘0’ is

default set to the maximum variance. If the PCA feature is equal to 1 and clusters = 2, the

resulting components, including the silhouette score, are better than those of k-means.

Figure 39: PCA transformation with two features

72

If we switch the PCA features from ‘1’ to ‘2’, the silhouette and the corresponding scores

will decrease as the number of PCA components/features increase. From the

unsupervised clustering study, it is clear that k-means perform exceptionally well for large

data combined with the PCA technique.

5.4 Experimentation Analysis & Results

To conclude the second module of research, we will discuss the results and

advantages/disadvantages of performing supervised and unsupervised analysis on the

SimDec system data. To describe the dataset selected for experimentation under this

module, the data table shown in figure 23 is concatenated with a class label or target

variable as stated in table 8 in chapter 3 of this thesis. The dataset is typically designed

for supervised learning as it contains a class label. Still, it could be used for unsupervised

learning as all columns are numerical and discard the class label column. The three

algorithms used for this study were logistic regression, multi-class SVM, and simple neural

networks to proceed with the results discussion for supervised learning methods. The

logistic regression was performed on the SimDec data consisting of around 18K records

and a class label with categories such as high, average and low for plagiarism levels. The

records indicate the information obtained from a pair of student assignment under

comparison. The data was split into 80:20 ratios and the model was trained with three

categories in the class label column. The precision, recall, f1-score and support obtained

with logistic regression were 0.96, 0.98, 0.97 and 549. Due to the dataset's simple

schema, the accuracy obtained with logistic regression was 0.98 or 98% with less than 60

false positives. The confusion matrix obtained for logistic regression is shown below as

follows:

73

Figure 40: Logistic Regression Confusion Matrix

Multi-class SVM was trained on the same data in this comparative study with 6 numeric

features. The predictor set was normalized for SVM training at the first and the library used

to build the ensemble model was random forest classifier. The hyperparameter tuning

using grid search and cross validation involved ‘rbf’ and ‘linear’ kernels with varying C from

0 to 1000. The datasets for training and testing were provided as separate files to the SVM

and the scores obtained were 0.99 and 0.99 for training and testing respectively. SVM

performed better than logistic regression at classification in the aspects of training and

model evaluation. The last algorithm to be discussed for supervised learning is simple

neural network algorithm. As mentioned in the solo subsection for neural networks, the

model's architecture is sequential with three ‘ReLU’ activation layers and one softmax.

The model is compiled with a loss function such as' Adam ', such as categorical cross-

entropy and optimizer. The model is trained on 10 epochs with batch size of 20 and

evaluated for the test data. The testing accuracy obtained with neural networks is 93.96%

and could increase if number of epochs are increased with varying batch size and different

optimizers. The neural networks model was saved, loaded back and tested on a different

type of data without the class label. The predictions for the new data were reasonable and

paved the way of success for this research module. All three supervised techniques

perform exceptionally well of the system data and would work fine for the new real-world

74

generated data. This implementation of ML supervised algorithms with SimDec system

could reduce the time complexity and number of computations as the system won’t be

required to generate the class label. Unsupervised techniques help cluster and visualize

the student assignments in groups but are less efficient when it comes to classification or

time complexity reduction. The clustering visualization are not cumbersome to display on

the web interface and is a good-to-have feature with the similarity detector system.

Nonetheless, if it comes to decide one out of the two ML experimentations, supervised

learning algorithms are recommended to collaborate the SimDec system as they can

predict the class label for a student assignment record without the need of the system to

calculate the class label based on some criteria, indirectly resulting in reduced time

complexity. To summarize this chapter, the accuracies obtained from all the supervised

learning algorithms are shown in the table given below:

Table 11: Accuracies of all supervised learning algorithms

Supervised Algorithms Training Accuracy Testing Accuracy

Logistic Regression 98% 98%

Support Vector Machine 99% 99%

Neural Networks 93% 95%

The next chapter would be the end of this thesis as all the experimentation has been

conducted and results are available as shown in the all the other chapters above. Chapter

6 will conclude this thesis research with a short conclusion highlighting important points

and a wide future scope for our proposed ‘SimDec’ system.

75

Chapter 6. Conclusions and Future Work

6.1 Conclusion

In any academic institution, several students submit their assignments electronically and

the primary concern here is the e-plagiarism detection in the student assignments. Given

the current COVID-19 situation where all the courses are being delivered online, students

are asked to submit the practical assignments electronically. The probability of copying

and plagiarizing assignments has increased heavily as there is not much of personal

monitoring involved by the teachers. An act of submitting / copying someone else’s work

is considered as ‘e-identity theft’ or ‘Plagiarism’, which disobeys university dishonesty

regulations and could lead to suspension or detention. The existing similarity detection

tools use inefficient approaches such as attribute counting metrics (ATM) with the

tokenization approach that involves the longest common substring (LCS) search method.

Many similarity detector engines prefer using hashing techniques and syntax tree/AST

modifiers for file matching if the focus is on the line-word comparison. YAP3, JPlag and

MOSS are the current tools being used by many institutions and it is a complicated

decision to make when it comes to recommending a tool above all others. Few notable

disadvantages of these similarity detectors are lack of visual support (GUI), batch file

processing, and a robust assistant tool. The similarity detection engine proposed in this

thesis research addresses the challenges the evaluators and examiners face at

professional institutes where students upload their assignments digitally. The designed

‘SimDec’ system follows a systematic ATM alongside a tokenizer (ANTLR) driven

mainframe controlling system delivering lexical analysis computation with multiple

similarity measures. The experimentation has been performed on the IEEE dataset

consisting of ‘C’ and ‘C++’ corpora. The similarity measures considered for this

experimentation include cosine similarity, n-grams, Levenshtein distance, Jaro & Jaro-

Winkler and coefficients such as Dice, Jaccard, and F-1. The research is divided into two

modules, the first one being the similarity detection process and the second one involves

of machine learning classification and clustering. The data extracted from the source

codes such as token scores and other data is stored in the relational database and the

same data is given to the machine learning module of this research. According to the

results and experimentation illustrated in chapter 5, supervised learning is more favorable

and reliable than unsupervised because of smart prediction and ML indicators to detect

76

the student assignment pair's plagiarism level. Adding a novelty feature to this

implementation over the other existing software’s, a web application has been developed

to represent analysis and visualization conducted throughout the procedure.

6.2 Future Work

The current research can be expanded by extending the detection process to the next

level, which is syntactic analysis. The construction of a parser tree using ANTLR for one

source code is complex and therefore will be more difficult to do the same for a bunch of

files in a parallel processing environment. The expansion will improve the comparison

accuracy as the source code controls, and constructs will be evaluated. Various parse tree

algorithms for recursive descent parser and LR/LL can be used for similarity detection.

The grammar for other programming languages such as Java, Python, COBOL, PASCAL,

LISP etc can be included with the ANTLR tokenizer and the systems code could be

modified accordingly. Adding this feature might increase the scope of the system and

utilization in multiple applications. The current machine learning module of this thesis

states the importance of supervised learning for predicting plagiarism levels for student

assignments and reducing the time complexity of the system. In future, the ML techniques

could be encapsulated in the systems archive and perform computations without the need

of exporting data from MySQL back-end. Diagrammatic representations of critical analysis

and insights within the comparison process will be essential and play the key role in this

kind of research.

77

References

[1] Vedran Ljubovic. (2020). Programming Homework Dataset for Plagiarism Detection.
IEEE Dataport. http://dx.doi.org/10.21227/71fw-ss32

[2] Matija Novak, Mike Joy, Dragutin Kermek. (2019). Source-code Similarity Detection
Tools used in Academia: A systematic Review, ACM 2019

[3] Daniel Heres. (2017). Source Code Plagiarism Detection Using Machine Learning,
Utrecht University.

[4] J. A. W. Faidhi and S. K. Robinson. 1987. An empirical approach for detecting
program similarity and plagiarism within a university programming environment.
Comput. Educ. 11, 1 (Jan. 1987), 11–19. DOI:https://doi.org/10.1016/0360-
1315(87)90042-X

[5] Al-Khanjari, Zuhoor & Fiaidhi, & Al-Hinai, & Kutti, N.S. (2010). PlagDetect: A Java
Programming Plagiarism Detection Plug-in. ACM Inroads magazine.

[6] Gitchell, David & Tran, Nicholas. (1999). Sim: A utility for detecting similarity in
computer programs. SIGCSE Bulletin (Association for Computing Machinery, Special
Interest Group on Computer Science Education). 31. 266-270. 10.1145/299649.299783.

[7] Pike R, Loki (2002) The sherlock plagiarism detector.
http://www.cs.usyd.edu.au/∼scilect/sherlock/, accessed date: 14 February 2016

[8] Prechelt, Lutz & Malpohl, Guido. (2003). Finding Plagiarisms among a Set of Programs
with JPlag. Journal of Universal Computer Science. 8.

[9] Kamiya T, Kusumoto S, Inoue K (2002) CCFInder: amultilinguistic token-based code
clone detection system for large scale source code. Trans Softw Eng 28(7):654–670

[10] Wise, Michael. (1996). YAP3: Improved Detection of Similarities in Computer Program
and Other Texts. ACM SIGCSE Bulletin. 28. 10.1145/236452.236525.
[11] Ahtiainen A, Surakka S, Rahikainen M (2006) Plaggie: GNU-licensed source code
plagiarism detection engine for Java exercises. In: Baltic sea ’06, pp 141–142

[12] Jiang, Lingxiao & Misherghi, Ghassan & Su, Zhendong & Glondu, Stephane. (2007).
DECKARD: scalable and accurate tree-based detection of code clones. 96-105.
10.1109/ICSE.2007.30.

[13] Roy CK, Cordy JR (2008) NICAD: Accurate detection of near-miss intentional clones
using flexible pretty printing and code normalization. In: ICPC’08, pp 172–181

[14] G¨ode N, Koschke R (2009) Incremental clone detection. In: CSMR’09, pp 219–228

http://dx.doi.org/10.21227/71fw-ss32

78

[15] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P,Weiss R,Dubourg V et al (2011) Scikit-learn: machine learning in python.
J Mach Learn Res 12(Oct):2825–2830.

[16] Cohen A (2011) Fuzzywuzzy: Fuzzy string matching in python.
http://chairnerd.seatgeek.com/ fuzzywuzzy-fuzzy-string-matching-in-python/, accessed
date: 14 March 2016

[17] Poulter G (2012) Python ngram 3.3. https://pythonhosted.org/ngram/, accessed date:
14 February 2016

[18] Harris S (2015) Simian – similarity analyser, version 2.4.
http://www.harukizaemon.com/simian/, accessed date: 14 February 2016

[19] Python Software Foundation (2016) Difflib – helpers for computing deltas.
http://docs.python.org/2/library/ difflib.html, accessed date: 14 February 2016

[20] Turk J, Stephens M (2016) A python library for doing approximate and phonetic
matching of strings. https:// github.com/jamesturk/jellyfish, accessed date: 14 February
2016

[21] Cilibrasi R, Vitanyi PMB (2005) Clustering by compression. Trans Inf Theory
51(4):1523–1545

[22] Schleimer, Saul & Wilkerson, Daniel & Aiken, Alex. (2003). Winnowing Local
Algorithms for Document Fingerprinting. Proceedings of the ACM SIGMOD International
Conference on Management of Data. 10. 10.1145/872757.872770.

[23] Vedran Ljubovic, “Programming Homework Dataset for Plagiarism Detection”, IEEE
Dataport, 2020. [Online]. Available: http://dx.doi.org/10.21227/71fw-ss32.
Accessed.Aug.17.2020

[24] V. Ljubovic and E. Pajic. (2020). Plagiarism Detection in Computer Programming
Using Feature Extraction From Ultra-Fine-Grained Repositories. IEEE Access, vol. 8, pp.
96505-96514, 2020, doi: 10.1109/ACCESS.2020.2996146.

[25] Selfa, Diana & Carrillo, Maya & Boone, Ma. (2006). A Database and Web Application
Based on MVC Architecture. 48 - 48.

[26] X. Li and N. Liu, "Research on L-MVC Framework. (2016) 17th International
Conference on Parallel and Distributed Computing, Applications and Technologies
(PDCAT), Guangzhou, 2016, pp. 151-154, doi: 10.1109/PDCAT.2016.043.

[27] Kembang Hapsari, Rinci & Azinar, Azmuri & Sugiyanto, Sugiyanto. (2017).
Architecture Application Model View Controller (MVC) in Designing Information System of
MSME Financial Report. Quest Journals Journal of Software Engineering and Simulation.
3. 36-41. 10.17605/osf.io/3z9r7.

[28] Levenshtein, V. I. (1996). “Binary Codes Capable of Correcting Deletions, Insertions
and Reversals”, Soviet Physics Doklady, vol. 10, p. 707.

http://chairnerd.seatgeek.com/
http://docs.python.org/2/library/
http://dx.doi.org/10.21227/71fw-ss32.%20Accessed.Aug.17.2020
http://dx.doi.org/10.21227/71fw-ss32.%20Accessed.Aug.17.2020

79

[29] Matthew A. Jaro (1989) Advances in Record-Linkage Methodology as Applied to
Matching the 1985 Census of Tampa, Florida, Journal of the American Statistical
Association, 84:406, 414-420, DOI: 10.1080/01621459.1989.10478785

[30] Winkler, W. E. (2006). "Overview of Record Linkage and Current Research
Directions" (PDF). Research Report Series, RRS.

[31] Sørensen, T. (1948). "A method of establishing groups of equal amplitude in plant
sociology based on similarity of species and its application to analyses of the vegetation
on Danish commons". Kongelige Danske Videnskabernes Selskab. 5 (4): 1–34.

[32] Dice, Lee R. (1945). "Measures of the Amount of Ecologic Association between
Species". Ecology. 26 (3): 297–302. doi:10.2307/1932409. JSTOR 1932409.

[33] Gunawan, Dani & Sembiring, C & Budiman, Mohammad. (2018). The Implementation
of Cosine Similarity to Calculate Text Relevance between Two Documents. Journal of
Physics: Conference Series. 978. 012120. 10.1088/1742-6596/978/1/012120.

[34] David Maier. (1978). The Complexity of Some Problems on Subsequences and
Supersequences. J. ACM 25, 2 (April 1978), 322–336.
DOI:https://doi.org/10.1145/322063.322075

[35] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273-
297.

[36] Ben-Hur, Asa; Horn, David; Siegelmann, Hava; Vapnik, Vladimir N. (2001) . ""Support
vector clustering" (2001);". Journal of Machine Learning Research. 2: 125–137.

[37] Cox, D. (1958). The Regression Analysis of Binary Sequences. Journal of the Royal
Statistical Society. Series B (Methodological), 20(2), 215-242. Retrieved November 18,
2020, from http://www.jstor.org/stable/2983890

[38] McCulloch, W.S., Pitts, W. A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943).
https://doi.org/10.1007/BF02478259

[39] MacQueen, J. (1967) . Some methods for classification and analysis of multivariate
observations. Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif.,
1965/66) Vol. I: Statistics, pp. 281–297 Univ. California Press, Berkeley, Calif.

[40] Singh, Dilpreet & Reddy, Chandan. (2014). A survey on platforms for big data
analytics. Journal of Big Data. 2. 10.1186/s40537-014-0008-6.

[41]

https://doi.org/10.1080/01621459.1989.10478785
https://en.wikipedia.org/w/index.php?title=William_E._Winkler&action=edit&redlink=1
https://www.census.gov/srd/papers/pdf/rrs2006-02.pdf
https://www.census.gov/srd/papers/pdf/rrs2006-02.pdf
https://en.wikipedia.org/wiki/Kongelige_Danske_Videnskabernes_Selskab
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.2307%2F1932409
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/1932409
http://www.jstor.org/stable/2983890
https://doi.org/10.1007/BF02478259

80

Footnotes

1Antonio Meucci, “Online Plagiarism Checking,” PlagScan, 2009,
https://www.plagscan.com/en/.

2Alon Yamin, “Plagiarism Detector: AI Based Anti-Plagiarism Online,” Copyleaks, 2015,
https://copyleaks.com/.

3IT Company Phase One Karma, “Plagiarism Checker for Educators and Students,”
Unicheck, 2014, https://unicheck.com/.

4Anonymous Author, “Code with Integrity,” Codequiry, accessed November 29, 2020,
https://codequiry.com/.

5Vedran Ljubovic, “Programming Homework Dataset for Plagiarism Detection,” IEEE
DataPort (IEEE, May 8, 2020), https://ieee-dataport.org/open-access/programming-
homework-dataset-plagiarism-detection.

https://copyleaks.com/
https://unicheck.com/

81

Appendix A.

Installation of ANTLR & Other libraries

1. Open Intellij IDEA and navigate to settings  plugins

2. Type ‘ANTLR’ in the search bar and install the plug-in for direct add-on to the

environment

82

3. Download MySQL connector from https://dev.mysql.com/downloads/connector/j/ and

add the jar file to the IDE via external libraries.

4. Go to File  Project Structure  Modules  Dependencies  Add new jar files

5. Now that ANTLR plug-in is added, let’s add ANTLR Complete jar file to the system

as the final requirement by following step 4.

6. Download the jar file from ANTLR’s parent site - https://www.antlr.org/download.html

https://dev.mysql.com/downloads/connector/j/
https://www.antlr.org/download.html

83

Appendix B. Lexical Analyzer: Java code Samples

1. System Code: Java for specifying folder path with one to one file comparison and

ANTLR grammar selection code snippet

String path1 = "F:\\Lakehead

Subjects\\Thesis_summer_spring_fall2020\\newz1_cpp";

 File folder1 = new File(path1);

 System.out.println(folder1.listFiles());

 List<File> foldlist1 = Arrays.asList(folder1.listFiles());

 File[] filesList1 = folder1.listFiles();

 for(File f1: filesList1) {

 System.out.println(f1.getName());

 for(File f2: filesList1) {

 if(!(f1.getName().equals(f2.getName()))) {

 //System.out.println(f2.getName());

 FileInputStream reader = new FileInputStream(f1);

 FileInputStream reader1 = new FileInputStream(f2);

System.out.println("==");

 System.out.println(f1.getName());

 System.out.println(f2.getName());

System.out.println("==");

 ArrayList<String> lines = new ArrayList<>();

 ArrayList<String> lines1 = new ArrayList<>();

 Map<String, List<String>> symbolTable = new

HashMap<String, List<String>>();

 Map<String, List<String>> symbolTable1 = new

HashMap<String, List<String>>();

 //ystem.out.println("yeahhh");

 //System.out.println(f1.getName().matches("\\s$"));

//System.out.println(f1.getName().substring(f1.getName().length() -

1));

 //System.out.println(f1.getName().endsWith("c"));

 if(f1.getName().endsWith("c") &&

f2.getName().endsWith("c"))

 {

 ANTLRInputStream input = new

ANTLRInputStream((reader));

 ANTLRInputStream input1 = new

ANTLRInputStream((reader1));

 CLexer lexer = new CLexer(input);

 CLexer lexer1 = new CLexer(input1);

 //CParser parser = new CParser(input);

84

 Token token = lexer.nextToken();

 while (token.getType() != CLexer.EOF) {

 //System.out.println(token.getText());

 token = lexer.nextToken();

 List<String> list =

Arrays.asList(token.getText());

 lines.addAll(list);

 }

 Token token1 = lexer1.nextToken();

 while (token1.getType() != CLexer.EOF) {

 //System.out.println(token.getText());

 token1 = lexer1.nextToken();

 List<String> list1 =

Arrays.asList(token1.getText());

 lines1.addAll(list1);

 }

 }

 else if(f1.getName().endsWith("cpp") &&

f2.getName().endsWith("cpp")) {

 ANTLRInputStream inputcpp = new

ANTLRInputStream((reader));

 ANTLRInputStream input1cpp = new

ANTLRInputStream((reader1));

 cpp lexer = new cpp(inputcpp);

 cpp lexer1 = new cpp(input1cpp);

 //CParser parser = new CParser(input);

 Token token = lexer.nextToken();

 while (token.getType() != cpp.EOF) {

 //System.out.println(token.getText());

 token = lexer.nextToken();

 List<String> list =

Arrays.asList(token.getText());

 lines.addAll(list);

 }

 Token token1 = lexer1.nextToken();

 while (token1.getType() != cpp.EOF) {

 //System.out.println(token.getText());

 token1 = lexer1.nextToken();

 List<String> list1 =

Arrays.asList(token1.getText());

 lines1.addAll(list1);

 }

 }

85

2. Java Code for MySQL Connection

try {

 connect1 = DriverManager

.getConnection("jdbc:mysql://localhost:3306/demo?"

 + "user=root&password=root");

 statement1 = connect1.createStatement();

 preparedStatement1 = connect1

 .prepareStatement("insert into

demo.scores values (?, ?, ?, ?, ?, ? , ?, ?)");

 //preparedStatement1.setString(1,

newList.get(i).getName().concat(newList1.get(i).getName()));

 preparedStatement1.setString(1,

f1.getName().concat(f2.getName()));

 preparedStatement1.setLong(2, keyocc);

 preparedStatement1.setLong(3, math1);

 preparedStatement1.setLong(4, numcount1);

 preparedStatement1.setLong(5, logcount);

 preparedStatement1.setLong(6, opcount);

 preparedStatement1.setLong(7, total);

 preparedStatement1.setLong(8, dis);

 preparedStatement1.executeUpdate();

 preparedStatement1 = connect1

 .prepareStatement("SELECT filenames,

keywordscore, mathopscore, numericalscore, logicalscore, otheropscore,

totalsimilarity, totaldissimilarity from demo.scores");

 resultSet1 = preparedStatement1.executeQuery();

 connect1.close();

 } catch (SQLException e) {

 // TODO Auto-generated catch block

 System.out.println("error in db");

 e.printStackTrace();

 }

86

