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Abstract 

The digital data in this modern world is vulnerable to copying, altering and claiming 

someone else’s work as their own. Performing the same activity in programming 

assignments can be referred to as source-code theft or e-plagiarism. Despite years of 

efforts, the already existing similarity detection engines perform pretty well in detecting 

plagiarism for novice programmers, but provides insufficient results when a student uses 

complex and smart plagiarism hacks such as word substitution, structure change, line 

spacing placeholder comments. This thesis research aims to deliver an assistive forensic 

engine named ‘SimDec’, for the evaluators to help detect similar assignments to address 

the aforementioned issues. The system's primary objective is to aid the assignment 

evaluators to get closer to the code thieves and abide by the university's dishonesty 

regulations. The forensic engine has been developed in Java programming language to 

detect C and C++ source code's similarities. The research has been split into two modules 

labelled as ‘software forensic engine development’ and ‘Similarity level classification with 

machine learning’. The proposed system has a workflow of three stages starting with 

lexical analysis, tokenizer customization and the final stage displaying similarity 

percentage and the corresponding level of ‘Low’, ‘Average’ and ‘High’.  The combination 

of similarity algorithms integrated in the engine are Levenshtein distance, Jaro & Jaro-

Winkler measure, Dice coefficient and Cosine similarity. The workflow of lexical analysis 

and implementing the set of similarity measures on token categories is defined as the first 

module. The machine learning algorithms selected for performing the classification task 

are multi-class SVM, logistic regression and a simple neural network. In this second 

module, the data gathered and generated by the similarity detection engine is fed to the 

ML algorithms to train the models and make them efficient for predicting the plagiarism or 

similarity level of newly entered data. This hybrid approach would be impactful in reducing 

the time complexity and processing speed for the software engine.  

 

Keywords: Plagiarism, lexer, ANTLR, distance algorithm, similarity, forensic engine 
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Chapter 1.  
 
Introduction 

 

1.1 Problem Context 

According to the University Academic Dishonesty Regulations, stealing others' ideas or 

not giving credits to the original author is considered misconduct and an act of plagiarism. 

Source-code theft often happens in the assignments given to the students in their 

academia. Since it is difficult to track down thousands of assignment documents while 

reviewing one, there arises a need for an assistive tool or web application, which aids the 

teaching assistants, or the professors get closer to the sophisticated code 

thieves.This research study aims to explore several options for tracking similarities betw

een 'N' number of targets, also known as 'documents,' in response to this problem. 

Several algorithms in the basket from which a few or a combination of string similarity 

algorithms could be constructed according to the need. The algorithms are chosen from a 

wide range of distance similarity algorithms as well. The model can be trained and tested 

on a dataset of choice.  The research will consider vital resources, less data consumption 

algorithms to mitigate some or all of the problems noted above or in the later sections of 

the thesis.    

1.2 Thesis Statement 

The available source code similarity detectors provide unsatisfactory results when 

students use complex strategies such as word substitution or reordering programming 

constructs. This thesis research proposes an assistive forensic engine for the professors 

and teaching assistants to evaluate the similarities in the student’s assignments to 

overcome the above-mentioned challenges. This research’s primary objective is to help 

the evaluators get closer to the sophisticated code thieves and abide by the university's 

academic dishonesty regulations. The proposed forensic similarity detection engine 

named ‘SimDec’ has a constructive methodology that is specially designed for studies 

where C and C++ programming languages are majorly used in academic assignments. 
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After selecting the ATM (Attribute counting metrics), the system implementation is divided 

into two phases, where phase one consists of lexical analysis, tokenizer customization 

and visual representation on web GUI. The similarity elements and observations recorded 

could be represented to the evaluators in the form of visualizations for ease of 

understanding and efficient decision-making. The second phase involves of performing 

supervised machine learning algorithms such as multi-class SVM, logistic regression and 

neural networks on the systems data for executing classification / prediction task for newly 

entered data. The algorithms after successful training could be capable of classifying the 

data records according to plagiarism level such as ‘low, ‘medium’ and ‘high’ and result in 

reduced computation time.  

1.2.1 Methodology 

To develop a similarity detection forensic engine based on lexical analysis, a systematic 

approach was followed. This allowed rigorous testing and implementation of various 

mathematical equations and computations. The steps undertaken in developing the 

system in the methodological approach are given below as follows:  

 Setting up the ANTLR tokenizer with the C and C++ grammar for performing lexical 

analysis. Implementation of ANTLR tokenizer and integrating it to function with the 

platform of choice. Initially, eclipse IDE was chosen as the development environment 

but because of incompatibility issues, there was a switch made to Intellij IDEA later. 

 Extract and encode the downloaded IEEE Homework Programming dataset (IEEE 

Dataset weblink) into the java source code snippet. 

 Secure the full-stack communication connectivity for java code with MySQL database 

and front end. 

 Ensure the comparison of one source code assignment with others in the folder and 

breakdown formation for lexemes. 

 Configuring smart decision making in the code to refer to the extension of the file 

(whether C or C++) 

We are implementing the system's code starting from lexical analysis to token grouping 

followed by applying distance similarity algorithms on the token groups for computing 

score. Implementation of distance-based, token-based and sequence-based algorithms 

on the lexemes of the source codes for recording observations. The scores are generated 

http://ieee-dataport.org/open-access/programming-homework-dataset-plagiarism-detection
http://ieee-dataport.org/open-access/programming-homework-dataset-plagiarism-detection
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as results for all algorithms, and a conclusion is made by observation of all scores to justify 

if the two source code assignment files are similar / plagiarized or not.  

 We are storing the experimentation results in the database for analytics and 

knowledge representation in the form of visualizations. Implementation of a web 

graphical user interface to display all the scores in form of visual representations like 

charts and graphs for ease of understanding. 

 
 Second module of the thesis research – Implementation of supervised and 

unsupervised algorithms on the generated dataset from the system for advanced 

machine learning indicators. This module has been experimented on a different 

platform for ease of coding and low latency. 

In addition to this section, a serial java code was developed to validate the new features' 

logic at each step of development. The below-listed platforms and software plugins were 

used for the successful implementation of the forensic engine: 

Intellij IDEA 

Integrated development environment developed by jet Brains on the pillars of java 

programming language. This IDE provides coding assistance for other languages such as 

C++, C, C#, PHP, web with community edition, and various plugins support. 

ANTLR 

ANTLR is a lexer and a parser generator for reading, processing and executing text files. 

ANTLR has programming language support for all languages such as C, C++, Java, 

python, Ruby, and Grammar Construction. 

JAVA  

Java is a class-based object-oriented language used to design the similarity detection 

engine and encode all the other plugins. Being architecture-neutral and quite flexible, Java 

is the best-suited language for building software systems 

Appendix A and B gives more details about the coding environment and integration 

systems mentioned in this research. The implementation of these different tasks and the 
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analysis of the results using distance similarity algorithms are presented in this paper's 

following sections. 

1.3 General Thought on Prior Work 

Previous exciting research in the past 13 years about source code plagiarism and several 

software have been developed for the same. Matija Novak [2] in the latest 2019 research 

on source code plagiarism recited a systematic review on the plagiarism and source-code 

detection methods, obfuscation methods, definitions of plagiarism and algorithms used in 

the existing tools. The popular databases such as SCOPUS, ACM, IEEE, SD, and WOS 

were filtered with in-depth queries for searching plagiarism relevant papers. The results 

underwent several checks such as Medley tool passing, checking for duplicate options, 

removing duplicated manually, after removing covers and all others you can see in the 

below-mentioned figure: 

Table 1: Latest 2019 research- Matija Novak [2] Database Querying 

 

The authors mentioned that 120 out of 150 finalized papers report some new tool or 

algorithm for similarity detection. After deep research, a ‘table of tools’ in the article was 

concluded, which specified the year of birth, last year of upgrade, number of times 

compared, number of times used and developed. The common point to note here is that 

not a single tool invented is available for public use (Not FOSS). There were only five 

tools, which were compared at least two times, out of which MOSS, and JPlag are the top-

two tools, followed by the others shown in the table embedded in the figure given below: 
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Figure 1: Number of Similarity detectors developed from 1980-2015 

Table 2: Overview of top plagiarism detection tools according to the SEO of internet 

Tools Last Year First Year Compared Used developed 

SIM- Grune 2014 2010 4 2 NA 

Plaggie 2016 2006 6 0 1 

Sherlock-
Warwick 

2016 1999 4 4 1 

MOSS 2016 1999 29 9 NA 

JPlag 2016 2002 37 5 1 

 

Referring to the table and figure above, the existing tools such as MOSS, JPlag and 

Plaggie have not been updated since 2016 and this acts as a primary motivation for 

potential innovation in the proposed forensic engine. Adding to the already existing tools' 

flaws, no graphical user interface was proposed or built for the previous devices. A 

graphical UI presented with our forensic engine eases the process of knowledge 

representation in the form of visualizations, displaying results, analytics and clusters of 

plagiarized and unique student source code assignments. A few things not present in the 

previous tools add a novelty feature to the proposed system. Not to mention the thesis of 

Daniel Heres in 2017 [3]. He built a system for source code similarity detection based on 

mathematical measures such as n-grams, tf-idf and cosine similarity. ‘InfiniteMonkey’, 
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was the system built that could identify suspicious similarities between the source code 

documents using two methods. The second part mostly focuses on applying complex 

neural network models on the synthetic dataset created from the source code documents 

parameters. The methods were compared on several datasets and accuracy was 

measured. It was concluded that the deep neural network model does not generalize well 

to the evaluation tasks. A few visualization techniques are also displayed using the tool 

‘InfiniteMonkey’.  

1.4 Need for the System 

We often hear about the words ‘Plagiarism’ and ‘Prevention’ from the teachers or 

professors at high school as a pre-measure before submitting any assignment or 

homework whatsoever. ‘Plagiarism’ can simply be defined as an act of cloning someone’s 

idea or concept and sticking it to our own with or without others' consent. When it comes 

to a large of the class, it is very complicated to traverse and keep checking all the 

assignments while checking any one. One can’t just keep track of all the programming 

methods, concepts, and logic students use in their assignments. There is a need for an 

assistive tool that can help the teachers or their assistants check the assignments and 

visualize the contents with analytical results. Source code duplication has been increased 

over the years and is problematic for the future of innovations. The similarity detection 

system proposed in this thesis research is a mixture of multiple computer science streams 

such as software engineering, program analysis, programming language constructs, 

compiler design theory and web technology. The three-tier forensic engine makes use of 

a tokenization – lexical analysis approach in which a large dataset of C and C++ source 

codes will be under experimentation. The system will have a code for comparing two files 

under an interactive loop, which will keep comparing one source code assignment with 

others in the folder and then go on to the next one. The distance similarity algorithms such 

as Levenshtein distance, Jaro and Jaro-Winkler, cosine similarity and dice coefficient are 

applied to compare source code files. The results deduced from the system will get the 

evaluator closer to the plagiarized assignments to make an intelligent decision. 

Considering all the advantages of the forensic engine, there arises a need for such a 

system that could detect similarities in assignments consisting of object-oriented 

programming constructs. Succeeding the current chapter, chapter 2 delivers a critical 

survey on the researches that have been accomplished previously. Moreover, the next 

chapter describes the evolution of plagiarism detection software’s over the years 2007 – 
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2019 and different categories of plagiarism tools. Chapter 3 illustrates the implementation 

of the forensic similarity detection engine labelled ‘SimDec’ along with the details of 

system working, three-layer architecture and software engineering process. Chapter 4 and 

5 sheds light on mathematical similarity algorithms used for similarity detection and 

supervised ML algorithms implementation on the file-comparison data generated by the 

system. Chapter 5 will discuss the details of ML algorithms with their performance 

evaluation parameters such as accuracy, loss and a comparative study amongst them. 

The thesis is concluded with the conclusion and future works in chapter 6. Appendix A 

after the last chapter shows the necessary steps for installing ANTLR jars and plugins in 

the development environment with the help of screenshots. Appendix B shows the main 

‘file comparison loop’ java programming language source code in a structured format. 
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Chapter 2. Scientific Background 

2.1 Similarity Detection as a Solution 

Source code plagiarism in the education sector is a grave concern for educators and 

students because of online assignment submissions and dividing the marking work 

between multiple teaching assistants to evaluate the students. The incapability of 

comparing one assignment with others has led to an increasing case of plagiarism in 

education. From the recent survey from teachers across schools in the world, it was 

mentioned that the novice programmers have evolved with time and due to shuffling code 

blocks, adding comments and tapping space frequently. Such obfuscation techniques 

make the evaluator impossible to detect similarities in multiple assignments, and therefore, 

there arises a need for plagiarism checker software for the evaluators. The similarity 

detectors could also serve to protect the ‘Copyright Infringement’ policy under copyright 

law. Student copying another student’s work can face guilty charges of going against the 

anti-plagiarism rule of the university’s dishonesty regulations and could face suspension/ 

temporary term extension. The guilty charges rained on the student for submitting 

plagiarized work can hamper the progression early and reflect negatively on the school 

transcript. 

 

Figure 2: Solution elements of similarity detection 

Similarity 
Detection 
Solution

Copyright 
infringement

Dishonesty 
Policy

Innovation

Novel Logic



9 

2.2 Evolution of Plagiarism Detector Software 

Several researches have shown traces of similarities between the student assignments 

where digital submission platform is involved in the past few years. In the year 1986, J. A. 

W. Faidhi and S. K. Robinson [4] in their research provided an in-depth analysis of 

program similarity and reported plagiarism for ‘Pascal’ programming language. The 

authors mentioned two metrics (ATM: Attribute Counting Metrics), such as the first metric 

was intended towards a novice programmers approach, and the second one focused more 

on program structures and how programming blocks can be modified or altered by a 

sophisticated programmer. Al-Khanjari et al. [5] in their research development on a 

software entitled ‘PlagDetect’ referred to various ATM’s before designing the final system 

for finding similarities between java source codes. As discussed in chapter 1, SM’s 

(Structure methods) perform efficiently well than ATMs as they deal with spotting 

similarities by observing the program structures such as loops (for, if, while), class 

structure, functions identifier positioning. PlagDetect tool was based on a similarity 

coefficient and a combination of ATM’s and equivalence ratio for investigating java 

assignments. The other invented similarity detectors such as YAP3, MOSS, Plaggie and 

Deckard make use of tokenization or winnowing with string similarity or distance similarity 

measures such as n-grams, cosine and Karp Robin GST (Greedy String Tilling). Other 

Software tools such as ccfx and iclones make use of suffix tree matching for finding 

similarities between parse trees. Given below, the table 1 provides the audience with a 

detailed comparison of all categories of similarity detectors such as plagiarism detection 

tools (PD), clone detector tools (CD) and others (O), which also includes compressors and 

mini-tools. In addition to comparing the tools with their similarity measurement calculation, 

we have added details, default parameters and year of the invention along with the 

research paper reference in the columns of the same table. 

Table 3: Table displaying tool names with similarity calculation method, year of invention and 

reference to the publication 

Tool category Similarity Calculation Details Year and Reference 

(PD) simtext  Tokens  and string 
alignment 

Min. run size 1999 
Gitchell and Tran [6] 

(PD) Simjava  Tokens  and string 
alignment 

Min. run size 1999 
Gitchell and Tran [6] 

(PD) Sherlock  Digital signatures Chain length, zero bits 2002 
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Pike R and Loki [7] 
(PD) Jplag-
text  

Tokens, GST(Greedy 
String Tiling), Karp-
Rabin 

Min. no. of tokens 2002 
Prechelt et al. [8] 

(PD) Jplag-
java  

Tokens, GST(Greedy 
String Tiling), Karp-
Rabin 

Min. no. of tokens 2002 
Prechelt et al. [8] 

(CD) ccfx Tokens and suffix tree 
matching 

Min. no. of tokens 2002 
Kamiya et al. [9] 

(CD)  YAP  Tokens, GST(Greedy 
String Tiling), Karp-
Rabin 

Tokenization and GST 
matching 

1996 
Michael J. Wise [10] 

(PD)  plaggie N/A (Not disclosed) Min. no. of tokens 2006 
Ahtanein et al. [11] 

(CD)  deckard Characteristic vectors 
of AST optimized by 
LSH 

Min. no. of tokens 
Sliding window size 
Clone similarity 

2007 
Jiang et al. [12] 

(CD)  nicad TXL and string 
matching (LCS) 

Percentage of unique 
code 
Min. no. of lines 
Code abstraction 
Variable renaming 
 

2008 
Roy and Cardy [13] 
 

(CD)  iclones Tokens and 
generalized suffix tree 

Min. of tokens 2009 
Gode and Koschke [14] 

(O) cosine Cosine similarity from 
machine learning 
library 

N/A 2011 
Pedregosa et al [15] 

(O)  
fuzzywuzzy 

Fuzzy string matching Similarity calculation 2011 
Cohen [16] 

(O) ngram Fuzzy search using n-
gramme 

N/A 2012 
Poulter [17] 

(CD)  simian Line based string 
comparsion 

Min. no. of lines 
Ignoring variables, 
whitespaces, identifiers 

2015 
Harris [18] 

(O) Difflib Gestalt pattern 
matching 

Ignoring whitespace, 
autojunk heuristic 

2016 
Python Software 
Foundation [19] 

(O) diff Equation N/A 2016 
(O) bsdiff Equation N/A 2017 
(O) jellyfish Approximate and 

Phonetic String 
matching 

Edit distance algorithm 2016 
Turk and Stephens [20] 

(C) 7zncd NCD with 7z Compression level N/A 
(C) Bzip2ncd NCD with bzip2 Compression level N/A 
(C) gzipncd NCD with gzip Compression level N/A 
(C) xz-ncd NCD with xz Compression level N/A 
(C) icd Regular NCD 

(Normalized 
Compression 
Distance) 

Compression level, 
block size 

N/A 

(C) ncd Regular NCD Compression level 2015,Cilibrasi et al. [21] 
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The evolution of similarity detection engines ranges from the one’s using ATM’s to one 

using SM methods. There are other systems mentioned in the table above, which uses 

the suffix tree-matching algorithm. 

2.3 Types of Plagiarism Tools 

2.3.1 Inter-Document Plagiarism with Internet Context 

There are two different ways of detecting similar content in student assignments. The 

existing tools can be classified into two different categories: ones that compare the source 

codes with each other in one directory and the other category of tools compare the source 

code with all others available on the internet. The phenomenon occurring in the second 

category of tools is called as ‘Inter-Document Plagiarism with internet context’. The 

software tools are web applications with register, login, and purchase feature where the 

user gets to upload the source codes to the application's cloud storage and then the same 

document is checked for similarities with other forms on the internet. 

The plagiarism tools for this category, which are available for public use on the internet, 

are as follows: 

• PlagScan1 – PlagScan is an online plagiarism checker that uses an undisclosed 

algorithm to check the inserted or uploaded text by automatically scanning billions of texts 

online. The tool is not an open-source software under GPL and is for private or subscribed 

use only. The tool offers an option to detect differences in writing styles, checking the 

source code against billions of source codes available on the internet, ghostwriting 

detection, stylometry analysis. PlagScan is easy to integrate with a learning management 

system (LMS) and allows import from other sources such as Google, Dropbox and 

Microsoft OneDrive. PlagScan is currently working on text translation and comparing the 

text from the documents with other texts online.  

• CopyLeaks2 – Copyleaks is an inter-document plagiarism checker with AI capabilities 

for detecting similar contents in text documents and other media. Plagiarism checking 

facility is available in multiple languages and equipped with machine learning technology 

and extensive multi-layered search capabilities. Copyleaks has many advantages over 

PlagScan. A few to include would be aesthetic report making, multiple language detection, 
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and comprehensive source code plagiarism and integration ability with other existing 

IDE’s.   

• UniCheck3 – Unicheck plagiarism reporting software prefers results over numbers by 

combining technological excellence and initiative design. Unicheck is exclusively made for 

to be used in the education sector. Unicheck is capable of handling extensive data at a 

time due to cloud storage and other features. Just like grammarly, Unicheck has the 

‘recommendation’ or ‘advice’ giving feature where there are alternative word being 

suggested by the software to replace the current word if it’s repetitive in the text. With 

unicheck, the evaluator can get an accurate similarity score and see the amount of 

borrowed text.  Unicheck has customizable search settings, real-time checking features, 

smooth integration and setup, and statistics for students. 

• Codequiry4 – Codequiry is the best source code detection platform available for public 

use in today’s world. There is no other competitive web application to stand against 

advantages of Codequiry. Codequiry looks beyond the cosmetics, finding similarities in 

logic patterns and unique style of code. Codequiry is possible of dodging minor 

obfuscation techniques such as whitespaces, comments, and function names. User has 

the facility of choosing the programming language for similarity detection such as java, c, 

c++ or python and then can upload a bunch of files to check the similarity. Codequiry is 

the only existing similarity detector that performs intra as well as inter-document 

plagiarism. The uploaded files can be compared with other billions of files on the internet 

and one another, depending on the option chosen by the user. 

2.3.2 Intra-Document Plagiarism  

 Codequiry4 - As mentioned in the section above, Codequiry is exceptionally efficient 

for intra-document plagiarism. The software gives out detailed reports with analysis 

and visualization to inform the statistics (Results and numbers). Codequiry is well 

known for peer checks with the internet against 20 billion documents, a 2D graph of 

student similarity by distance and pie charts of source codes used in the code. The 

only disadvantage of Codequiry that excludes it from the outer world and innovation is 

proprietary usage. The individual pricing for educators or students is 29$ per month 

and the educational institutes' custom amount.  
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 MOSS – MOSS stands for ‘Measure of Software Similarity’ and is an automatic system 

for determining source codes' similarity [22]. From 1994 to today’s date, MOSS is 

being utilized to top-notch quality by some educational institutions to spot similarities 

between source code documents. The algorithm used by MOSS is ‘winnowing’ and 

involves of specific n-gram technique measures. MOSS is just an assistive tool that 

gets the evaluator closer to the cheaters, just like our proposed system. MOSS is 

available as a Windows GUI and lets users upload files by specifying the subfolders' 

directory path. MOSS simply computes and gives out a matching number of lines in 

front of the two filenames as output. A user could then click on the filenames and view 

the source code comparison highlighted in red or blue color. Relating it closely with 

beyond compare, MOSS is a child of the principles of beyond compare tool.  

 

2.4 IEEE Homework Programming Dataset 

Generating source code dataset using artificial techniques is a challenging task and 

indirectly reflects various realistic situations. Referring to figure 4, the new homework 

programming dataset is presented in this research to work with the proposed system, as 

there is a lack of description of standard datasets in existing researches. The 

‘Programming Homework Dataset for Plagiarism Detection’ was uploaded on IEEE-

Dataport by Vedran Ljubovic, University of Sarajevo [23]. The dataset is developed from 

the students' assignments for the subject – Introduction to C in one semester and 

assignments of C++ in other for the year 2016 and 2017. All the final source codes 

submitted by the students are available at the 5website and on AWS for comparison by 

the already existing plagiarism detection tools like JPlag, YAP3, MOSS and PlagDetect. 

The homework assignment zip extract consists of full traces of student activity and 

keystrokes generated by setting the IDE to a time limit autosave during homework 

development. The IDE also helped passing out the output information from the compiler, 

debugger, and student assignment to a safe corner of the repository. The instructions for 

the dataset goes as an archive folder having three subparts in it as follows: 

Source codes – The actual source code assignments submitted by the students are 

stored in the /src folder inside the archive. The subfolders under ‘src’ are named as A2016, 

A2017, B2016, and B2017. Each subfolder listed above contains more subfolders inside 
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for individual assignments. Students were required to solve 16-22 assignments in each 

course, labelled as “Z1/Z1”, “Z1/Z2”, and “Z2/Z1” and so far till the end. The C/C++ source 

codes solved by the students are stored in these subfolders with an anonymous name. All 

the traces AutoSaved after every few seconds by the IDE are saved in the archive's stats 

folder. This folder is again segregated into subfolders named after courses, and the 

subfolder contains files ending with extension '.stats' for every student (name stays 

anonymous). The .stats information is stored in JSON format (Key = value pairs).  Figure 

2 shown below gives a concept map view of the IEEE dataset where there are four 

courses- A2016, A2017, B2016, B2017 and assignments for each course is described as 

Z1/Z1..Z5/Z2 for each course.  

 

Figure 3: Structure and Composition of IEEE Homework Programming Dataset 

Ground Truth- The instructions and format for JSON files is described in the readme.txt 

file present in the folder as shown in figure 5 below. The ground truth files list the individual 

and group of students involved in plagiarism due to code similarities detected in their 

assignments. The three ground truth files starting from 'ground-truth-anon.txt' contain a 

full list of plagiarisms, ground-truth-static-anon.txt based on source code similarity ground-

truth-dynamic-anon.txt based on only failures due to 'oral defence'. Some statistics 

generated by V. Ljubovic and E. Pajic [24] for the course ‘A’ in 2016 and 2017 i.e. A2016 

& A2017 in their latest research published and accepted at IEEE in the year 2020 is shown 

below in  Table 2 as follows:  
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Figure 4: Dataset Folder representation 

Table 4: Statistics for folder A2016 and A2017 

Course A2016 A2017 
Student enrolled 607 488 
Number of assignments 18 20 
Submitted files 5655 5733 
Files per assignment 41-503 125-444 
Average file size (bytes) 1567.08 1317.23 
Changes per file 1-13821 1-7740 
Plagiarized Solutions 746 (13.2%) 699 (12.2%) 

 

Referred to the observations provided in tabl2 1 by the authors [24], we started taking 

readings and observations for all the C++ source codes based folders, i.e. B2016 and 

B2017. The courses from ‘B’ consists of all ‘.cpp’ files, and all the assignments subfolders 

were tested with this proposed system for finding out plagiarized assignment pairs and 

validate it against the ground truth file. The observations given below in table 3 are the 

same as from table 2, but associated with folders B2016 and B2017.  

Table 5: Statistics for folder B2016 and B2017 

Course B2016 B2017 
Student enrolled 607 488 
Number of assignments 30 38 
Submitted files 12,196 11,192 
Files per assignment 41-530 120-300 

Average file size (bytes) 6792 Bytes 3692.30 Bytes 
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We all know that in a three-four-year-long course, the degree of homework participation, 

in the beginning, is way more than the involvement in the end. If the participation is 90% 

initially, it closes up to 10-15% in the final semester of the course. As the willing 

participation increases, the plagiarism decreases, and it’s vice versa in a long-term 

graduation program. The technique used to overcome the plagiarism index and balance 

out the proportion was to make 20% of the total students to deliver oral-defense of their 

homework. The ground truth files were constructed on a marking system where the 

students who failed to defend their homework defense were marked as 'Plagiarized' in the 

file. Proper classification of homework is a must needed feature in a similarity detector 

tool, but every tool handles the situation differently. Some tools have defined a threshold 

on assignment length. Some have pre-defined heuristics, and a few tools will simply mark 

all the students as plagiarized and leave unsupervised decisions to a human evaluator. A 

decent approach for avoiding overfitting with the proposed system in this paper would 

divide the dataset into training and testing datasets for the underlying machine learning 

algorithm. As explained at the beginning of this section, the normal ground truth file 

contains all the plagiarized files. In addition to the normal file, two more ground truth files 

have been added, such as static for similar homework documents and dynamic ones. 

They exclude original authors and keep those who have no similar pairs. In the ground 

file, the assignments are represented in similar files, such as triplets and quadruplets. 

When it comes to evaluating a newly developed plagiarism tool, one does not need to 

identify identical document pairs but should count false positives and false negatives 

inclusive of detected pairs. 

For the system under development for this research, the entire assignment folder could 

be given as an absolute path to the main java program to compare and identify similar 

assignments. The java program could be tweaked in a possible way of running a big loop 

by iterating on all the folder assignments of the leading course directory – such as A2016, 

A2017, B2016 or B2017. This approach has a probability of 90%, resulting in complex 

challenges like massive processing speed of the CPU/GPU, large storage space and 

memory and, nonetheless, hours of running time.  

2.5 The Software System Compilation Model 

As mentioned in the section above, the IEEE homework programming dataset comprises 

of four folders such as A2016, A2017, B2016 and B2017. Each folder consists of subfolder 
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assignments and each sub-folder assignment further has around 400-500 source code in 

it. This count is nothing but the number of students taking the particular course ‘A’ or ‘B’ 

and the course within the same boundary. The assignment subfolder path is fed to the 

program, and source code files are compared with others for results. As shown in figure 5 

below, the source codes are given to the ANTLR (Another tool for Language Recognizer). 

ANTLR is a powerful Lexer and parser generator and breaks down the ‘C’ and ‘C++’ 

source codes into tokens such as identifiers, keywords, arithmetic operators, logical 

operators and other operators. The entire software system using compiler design concepts 

is explained in three stages or a three-tier system. To give an example of a software 

engineering design pattern for a system, MVC is quite popular when it comes to web 

programming or full-stack development. The authors [25] explain the detailed working of 

a web app and database based on MVC architecture. MVC stands for Model-View-

Controller design in which there are three layers defined as follows: 

Model – The model layer represents the business layer of the application. The model layer 

is a set of java classes representing the state of the system at the given time. The model 

layer has a bidirectional flow from and to View and controller layers. 

View – View is the presentation layer where the information processed and store by the 

model and controller is displayed to the front-end user. 

Controller – The controller layer is an interface between Model and View layers. Users 

can make a fetch or access request from the View layer and the controller fulfills the 

request. The request has to pass the processing from the model layer before reaching the 

view layer.  

Advantages of MVC architecture: 

1. Multiple developers can work with the three layers on individual machines. 

2. Scalability and Flexibility to expand and extend the scope of the application 

3. Components of the model are less dependent on each other 

4. Application following MVC architecture is easy and convenient to understand 

5. Software and web testing of an application becomes easy 
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Refer to figure 5 given below, which shows the exact flow of an MVC system by keeping 

the user at the center of the system. The controller mostly acts as an interface between 

model and view and therefore involves of servlets. The proposed system replaces the 

controller by an interacting database object that triggers the running code at frequent 

intervals to store the information processed in the relational database at the back-end.  

 

 

 

Figure 5: Working of a MVC software Design Framework 

The system of interest developed for this thesis follows the MVC design pattern but 

replacing the controller class by database objects. The authors [26] [27] for code-

reusability in small applications invented a lightweight MVC. Our system simply has 

model- view design architecture where model and controller are located together in one 

model layer. In other words, our system seems to be running on and following the Model-

View architecture as shown in the figure below: 
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Figure 6: Software System Architecture - Model-Controller and View Architecture 
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Chapter 3. Forensic Engine Implementation 

3.1 ANTLR Tokenizer 

The general introduction of ANTLR is given in subsection 1.2.1 methodology of chapter 1. 

To dive deep into the tool, ANTLR uses a left-to-right, leftmost derivation (LL1) parser for 

reading and processing textual files. The plugin for ANTLR is available from its website 

(https://www.antlr.org/) and can be installed in the IDE environment, such as eclipse or 

IntelliJ IDEA. The ideal IDE platform preferred for developing this kind of system with 

heavy data handling and building grammars for parsing is Intellij IDEA. This tokenizer in 

the series is supposed to break down the stream of code into lexemes by referring to the 

‘c’ or ‘c++’ grammar. The program has been constructed in such a way that it can detect 

the extension of source codes in the given path such as ‘.c’ or ‘.cpp’ and choose the 

grammar file accordingly. The second tokenizer has exclusive use for detecting new lines, 

comments and line numbers for the corresponding printouts. The lexical tokenizer, which 

is ANTLR, generates tokens in clusters of identifiers, keywords, arithmetic operators, 

logical and other operators for both the files and list out the count for each collection, 

including multiples. The clusters/sets obtained from the source codes are compared with 

each other based on similarity distance algorithms in the mainframe system. ANTLR can 

take a piece of text and transform it into AST (Abstract Syntax Tree). We will not be 

focusing on AST development for the proposed system because of heavy computation 

and multiple file comparison.  ANTLR is strictly used for this system for lexical analysis 

purposes, where the lexer takes individual characters from the code and transforms them 

into tokens. A simple example of C/C++ code is broken down into tokens is shown below: 

 

Figure 7: ANTLR LEXER working 

https://www.antlr.org/
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The lexer can only identify the language and separate tokens because we program the 

lexer to do the task. The code snippet given below is a lexer rule example that tells the 

program to identify a number and space characters, as shown below: 

* Lexer Rules 

 */ 

NUMBER     : [0-9]+ ; 

WHITESPACE: ' ' -> skip; 

 

The complete grammar for C and C++ is embedded with the code as the system is 

detecting similarities in the same programming language assignments. As we can see that 

all lexer rules are uppercase, and the parser rules could be lowercase in some cases. 

They can be ambiguous and are analyzed in the order of appearance. The approach of 

writing a grammar for any programming language highly depends on the approach of the 

programming language or the code. A java code can be divided into three sections, such 

as imports, main structure and type definitions. The basic and preferred approach for 

writing a java code is the ‘Top-down approach’ where the code's symmetry is retained. 

The programming approach used for developing our system is the ‘top-down approach’ 

as java and formatting knowledge are well acquired. The requirements are satisfied from 

high-level elements to low-level in ascending order. The ‘bottom-up approach’ is only 

efficient when the main intention is to design a parser because it starts from low-to-high 

element attention construction.  

3.2 C & C++ Grammar 

Designing a grammar for C and C++ programming languages is difficult, as it needs to be 

intuitive for the user and unambiguous to make the user manageable. The initial copy of 

‘C’ grammar is available on https://github.com/antlr/grammars-v4/blob/master/c/C.g4 and 

open for the public to download and do modifications. We will start by defining our 

grammar for ‘C’ in this paragraph and focus on ‘C++’ later. The description of our ‘C’ 

grammar designing is as follows: 

https://github.com/antlr/grammars-v4/blob/master/c/C.g4
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Figure 8: C grammar- Defining primary expressions 

In figure 8, the ‘C’ grammar starts with defining the identifiers, constants and strings under 

the ‘Primary Expression’ following by generic selection, generic AssocList, and ‘typename’ 

under genericAssociation.  
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Figure 9: C grammar- Defining Operator grammar 

Referring to figure 9, the unary and binary operators are defined in the C grammar. Not 

shown in the picture, the other logical operators such as AND, OR, NOR and other 

operators including brackets (round and square), and ternary operators are defined in the 

C grammar as well. 
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Figure 10: C grammar- Declaring all the keywords and operators 

As shown in the figure above, the declaration list declares all the keywords and math 

operators for C programming Language. The model given below uses rule fragments 

which are reusable for lexer rules. They are no harm even if defined and not been used in 

the system. The second half of the figure declares the lexer grammar to skip whitespaces, 

newlines, line comments and block comments. 
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Figure 11: C Grammar - Defining text fragments and line comments, whitespaces 

C++ Grammar Explanation 

The grammar for C++ is pretty much the same as C grammar except for a few additional 

keywords and constants. C++ has the involvement of class methods and functions, and 

therefore, the grammar is slightly different than that of C programming language. The 

fragment elements, including the line comments, whitespaces, block comments and 

fragment constructs, remain the same for this grammar. Below given are the fragments 

for nonzerodigit, octaldigit, hexadecimaldigit and binarydigit. 

fragment NONZERODIGIT: [1-9]; 

 

fragment OCTALDIGIT: [0-7]; 

 

fragment HEXADECIMALDIGIT: [0-9a-fA-F]; 

 

fragment BINARYDIGIT: [01]; 
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Figure 12: C++ Grammar- Defining literals and constants 

As shown in the figure above, the literals defined for C++ grammar are integer literal, 

character literal, floating literal, a string literal, Boolean literal and pointer literal. The 

additional keywords are declared right after the literals. 
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Figure 13: C++ Grammar- Defining fragments 

Figure 14 shows the declaration of literals with respect to the suffix and fragments. The 

fragment elements declared include whitespaces, newline and block comment. 

3.3 First Phase – Lexical Analysis 
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Lexical analysis is defined as the first phase of the compiler in which the source code is 

analyzed and broken down into tokens, of which sentences are formed. The lexer or the 

lexical analyzer could be modified so that the whitespaces block comments and comments 

could be removed from the source code. 

Finding invalid tokens highly depends on the configuration of the tokenizer. Let us say 

there is a bag of words that is organized in the lexer’s spectrum (code). The tokenizer will 

validate the source code against that bag of words, where the matching words will be 

accepted as valid tokens and given as output/ store according to the user convenience. 

Adding to the acceptance of valid tokens, some pre-defined rules for every lexeme are 

identified as valid. Grammar rules define these rules with the help of patterns. A pattern is 

a mixed entity of regular expressions and is used to define a token. As shown in the above 

given figure 7, ANTLR is used as a tokenizer in this system and accepts valid tokens in 

form of identifiers, keywords, math operators, logical operators and other operators 

besides math and logic. 

 

Figure 14: Tokenization: Lexical Analysis 

Specifications of Tokens: 

Alphabets: Any finite set of {0, 1} symbols is a set of binary alphabets and {A, B, C, D, E, 

F to Z} is a set of hexadecimal alphabets. [a-z, A-Z] is a set of English language 

alphabets. 
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Strings: A finite set of alphabets from the above-mentioned alphabets is called a string. 

For the given lexer, the examples of strings can be given as ‘hello’, ‘world’, ‘print’ and etc. 

Special symbols 

The special symbols from a specific high-level language are mentioned in the table given 

below: 

Table 6: Symbol Table Specification 

Arithmetic operators Addition(+), subtraction(-), multiplication(*), division(/), modulus (%),  

Logical operators And (&&), Or (||), Not (!) 

Relational operators Less than(<), less than equal (<=), more than(>), more than equal(>=), 
equal equal (==), not equal (!=) 

Other Operators  ! ,  comma(,), semicolon(;), dot(.), arrow(->) 

Location specifier & 

Assignment  = 

Shift Operator >>, >>>, <<, <<< 

Preprocessor # 

 

3.3.1 Tokenizing the source codes 

In this subsection, we will discuss the procedure of tokenizing the source code, i.e. 

breaking down the source code into tokens or lexemes. The overview for lexical analysis 

using ANTLR is given in the above sections, but the system implementation for ‘SimDec’ 

forensic engine stage 1: Lexical analysis will be presented in this subsection, as shown 

below for a source code example of ‘C’ and ‘C++.’ 

Table 7: Tokenization Implementation for 'C' file 

#include <stdio.h> 

#include <math.h> 

#define epsilon 0.000001 

int main() { 

 float a1,a2,b1,b2,x,y; 
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 printf("Unesite a1,b1,a2,b2: "); 

 scanf("%f, %f, %f, %f",&a1,&b1,&a2,&b2); 

 x=(b2-b1)/(a1-a2); 

 y=a1*x+b1; 

 if(fabs(a1-a2)<epsilon && fabs(b1-b2)>epsilon) 

printf("Paralelne su"); 

 else if( fabs(a1-a2)<epsilon && fabs(b1-b2)<epsilon) 

printf("Poklapaju se"); 

 else printf("Prave se sijeku u tacci (%.1f,%.1f)",x,y); 

 

 

 return 0; 

} 

 

 

 

 

 

 

The ‘C’ source file – ‘student4959.c’ shown above is tokenized or put through lexical 

analysis in the proposed system, and then tokens/lexemes obtained are given below as 

follows: 

 
"C:\Program Files\Java\jdk-14.0.1\bin\java.exe" "-

javaagent:C:\Program Files\JetBrains\IntelliJ IDEA Community Edition 

2020.2.1\lib\idea_rt.jar=61954:C:\Program Files\JetBrains\IntelliJ 

IDEA Community Edition 2020.2.1\bin" -Dfile.encoding=UTF-8 -

classpath 

C:\Users\batma\IdeaProjects\demoHello\out\production\demoHello;C:\Us

ers\batma\Downloads\antlrjar\antlr-4.8-

complete.jar;C:\Users\batma\Downloads\commons-io-

2.7.jar;C:\Users\batma\Downloads\commons-text-

1.8.jar;C:\Users\batma\Downloads\mysql-connector-java-8.0.20\mysql-

connector-java-8.0.20\mysql-connector-java-8.0.20.jar 

com.company.com.company.Runner 

 

 

 

Table 8: Tokens of 'C' source code 

epsilon 0.000001 int main ( 
) { float a1 , 
a2 , b1 , b2 
, x , y ; 
printf ( "Unesite a1,b1,a2,b2: 

" 
) ; 

scanf ( "%f, %f, %f, %f" , & 
a1 , & b1 , 
& a2 , & b2 
) ; x = ( 
b2 - b1 ) / 
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( a1 - a2 ) 
; y = a1 * 
x + b1 ; if 
( fabs ( a1 - 
a2 ) < epsilon && 
fabs ( b1 - b2 
) > epsilon ) printf 
( "Paralelne 

su" 
) ; else 

if ( fabs ( a1 
- a2 ) < epsilon 
&& fabs ( b1 - 
b2 ) < epsilon ) 
printf ( "Poklapaju se" ) ; 
else printf ( "Prave se sijeku u tacci 

(%.1f,%.1f)" 
, 

x , y ) ; 
return 0 ; }  
 

 

The lexical analysis identifies a string text as a complete string in between the double-

quotes. For example, print statement printing text in double-quotes. According to our 

context, the ANTLR tokenizer is configured in particular way and, therefore, difficult to alter 

the default configurations. For example, the word "Prave se sijeku u tacci (%.1f,%.1f)" has 

operators in it, but being enclosed in double-quotes, the entire string is detected as an 

‘Identifier’. This cannot necessarily be seen as a disadvantage because the detection 

strength is not weakened due to this one flaw. 

Going ahead and executing the set of commands for grouping the tokens into categories 

for ‘C’ source codes by referring the ‘C’ grammar is represented as follows: 

============================================ 

student4959.c 

student1326.c 

============================================ 

The Lexemes for file1: [0.000001, int, main, (, ), {, float, a1, ,, a2, ,, b1, ,, b2, ,, x, ,, y, ;, 

printf, (, "Unesite a1,b1,a2,b2: ", ), ;, scanf, (, "%f, %f, %f, %f", ,, &, a1, ,, &, b1, ,, &, a2, ,, 

&, b2, ), ;, x, =, (, b2, -, b1, ), /, (, a1, -, a2, ), ;, y, =, a1, *, x, +, b1, ;, if, (, fabs, (, a1, -, a2, 

), <, epsilon, &&, fabs, (, b1, -, b2, ), >, epsilon, ), printf, (, "Paralelne su", ), ;, else, if, (, 
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fabs, (, a1, -, a2, ), <, epsilon, &&, fabs, (, b1, -, b2, ), <, epsilon, ), printf, (, "Poklapaju se", 

), ;, else, printf, (, "Prave se sijeku u tacci (%.1f,%.1f)", ,, x, ,, y, ), ;, return, 0, ;, }, <EOF>] 

129 

Others: [(, ), {, (, ), (, ), (, ), (, ), (, (, ), (, ), ), (, ), (, (, ), (, ), ), (, ), (, ), }] 

Numerical Values: [0.000001, 0] 

Keywords: [int, float, if, if, else, else, return] 

Logical Operators: [<, <, <, >, &&, &&, &, &, &, &] 

Math Operators: [=, =, -, -, -, -, -, -, +, *, /] 

Identifiers: [main, a1, a2, b1, b2, x, y, printf, scanf, fabs, epsilon, "Paralelne su", "Poklapaju 

se"] 

 

The java codes for grouping of lexemes in the ‘tokenizer customization’ phase have been 

described in the appendix for java programming at the end of the thesis. The ‘C++’ source 

file – ‘student1044.cpp’ shown below is tokenized or put through lexical analysis in the 

proposed system, and then tokens/lexemes obtained are given below as follows 
 
 NAPOMENA: i javni ATo-vi su dio postavke 

  

 Autotestovi by Berina Cocalic. Sva pitanja, sugestije 

 i prijave gresaka saljite na mail: bcocalic1@etf.unsa.ba 

  

*/ 

#include<iostream> 

#include<vector> 

#include<string> 

using namespace std; 

 

        void IzbaciDuple (vector<string>&v){ 

   

    

   for(int i(0);i<int(v.size());i++){  

   for(int j(i+1);j<int(v.size());j++){ 

    if(v[i]==v[j]){ 

    v.erase(v.begin()+j); 

    j--; 

    } 

     

   } 

        } 
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int main () 

{ 

 vector<string>v{"Ja","se","Lejla", "Lejla","se", "zovem", 

"Lejla", "Lejla"}; 

 IzbaciDuple(v); 

 for(int i(0);i<v.size();i++) 

 cout<<v[i]; 

 return 0; 

} 

The tokens given out after processing the ‘C++’ source code file are large and, therefore, 

difficult to accumulate in a table for display. The cut-short version of all the lexemes is 

shown below as follows: 

"C:\Program Files\Java\jdk-14.0.1\bin\java.exe" "-javaagent:C:\Program Files\JetBrains\IntelliJ 

IDEA Community Edition 2020.2.1\lib\idea_rt.jar=53361:C:\Program Files\JetBrains\IntelliJ IDEA 

Community Edition 2020.2.1\bin" -Dfile.encoding=UTF-8 -classpath 

C:\Users\batma\IdeaProjects\demoHello\out\production\demoHello;C:\Users\batma\Downloads\a

ntlrjar\antlr-4.8-complete.jar;C:\Users\batma\Downloads\commons-io-

2.7.jar;C:\Users\batma\Downloads\commons-text-1.8.jar;C:\Users\batma\Downloads\mysql-

connector-java-8.0.20\mysql-connector-java-8.0.20\mysql-connector-java-8.0.20.jar 

com.company.com.company.Runcpp 

Table 9: Tokenization of a 'C++' source code file 

#include 
<iostream
> 

#include 
<vector> 

#include 
<deque> 

#include 
<iterator> 

#include 
<algorithm> 

#include 
<iomanip> 

using 

std :: cout ; using std :: 
cin ; int suma ( int n 
) { int sumacif = 0 ; 
while ( n != 0 ) { 
sumacif += ( n % 10 ) 
; n /= 10 ; } return 
sumacif ; } int SumaDjelila

ca 
( long 

long int x ) { int suma 
( 0 ) ; if ( x 
< 0 ) x = - x 
; for ( int i = 1 
; i <= x ; i ++ 
) { if ( x % i 
== 0 ) suma += i ; 
} return suma ; } bool Prost 
( int x ) { for ( 
int i = 2 ; i < 
x ; i ++ ) { if 
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( x % i == 0 ) 
return false ; } return true ; 
} int BrojProstihF

aktora 
( long long int 

x ) { int br ( 0 
) ; if ( x < 0 
) x = - x ; for 
( int i = 2 ; i 
< x ; i ++ ) { 
if ( x % i ==  

 

The lexeme grouping for C++ source code file into categories such as others, numerical 

values, logical operators, math operators and identifiers is shown as follows: 

============================================ 

student1044.cpp 

student1029.cpp 

============================================ 

Others: [(, ), {, (, (, ), (, (, ), ), ), {, (, (, ), (, (, ), ), ), 

{, (, [, ], [, ], ), {, (, (, ), ), }, }, }, }, (, ), {, {, }, (, ), 

(, (, ), (, ), ), [, ], }] 

Numerical Values: [0, 1, 0, 0] 

Keywords: [int, int, int, int, int, int, if, return, for, for, for, 

void, using, namespace] 

Logical Operators: [<, <, <, <, <, >, >, <<, &] 

Math Operators: [+, +, ++, ++, ++, --] 

Identifiers: [std, IzbaciDuple, vector, string, v, i, size, j, 

erase, begin, main, "Ja", "se", "Lejla", "zovem", cout] 

The two files under comparison go through the lexical analysis process, and tokenization 

for both the files takes place before the later phases. In the next section, the details 
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regarding the implementation of string similarity or distance similarity algorithms have 

been illustrated.  

3.4 Second Phase – Computations 

This is the second phase of our ‘SimDec’ forensic engine. The string similarity techniques' 

actual mathematical calculations are executed on the data extracted from the ‘C’ or ‘C++’ 

source codes. The distance & string similarity algorithms chosen for this experimentation 

are as follows: 

Levenshtein Distance Measure 

Jaro Distance Measure 

Jaro-Winkler Distance Measure 

Cosine Similarity 

Dice Coefficient 

Least Common Substring (LCB) 

All the similarity measures mentioned above have been applied to the data extracted from 

the source codes such as keywords, math operators, logical operators, other operators 

and numerical are mentioned in chapter 4 of this book. 

3.4.1 Execution of Distance, Token, Sequence Similarity Algorithms 

Several kinds of similarity algorithms, such as edit distance, token-based and sequence 

algorithms, are used in defining the statistical model of ‘SimDec’ forensic engine. The 

figure below describes how, where and when the similarity algorithms are applied to the 

data extracted from the C/C++ source code corpus. When we say extracting data from the 

corpus, comparison is information obtained from lexical analysis. The information primarily 

being in form of tokens / set of tokens such as sets of keywords (file 1, file 2 in the figure), 

sets of identifiers, sets of numerical values and other as illustrated in figure 15. 
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Figure 15: Execution of Similarity techniques on extracted data 

Here, the techniques used for similarity measures are cosine similarity, Levenshtein 

distance, and Jaro-Jaro Winkler and dice coefficients. In the SimDec engine, two files from 

a folder are under evaluation at the moment (in a loop) and do the same for other files 

once it exits the loop after evaluating two files in a queue. The information for keywords 

score, identifier score, arithmetic operators score and others is stored in different MySQL 

tables of the same database at first. The scores are further aggregated as one whole 

number, and the final computation takes following the first. Let’s review all the table singles 

for each token category starting with keywords score, as shown below: 
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Figure 16: Screenshot of ‘Keywords score’ table with Similarity Techniques 

 

Figure 17: Screenshot of ‘Identifiers score’ table with Similarity Techniques 

 

Figure 18: Screenshot of ‘Logical score’ table with Similarity Techniques 
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Figure 19: Screenshot of ‘Math Score’ table with Similarity Techniques 

 

Figure 20: Screenshot of ‘Numerical score’ table with Similarity Techniques 

 

Figure 21: Screenshot of ‘Other Operators’ score table with Similarity Techniques 

Given all the figures of single tables of token categories, it is observed that all similarity 

algorithms have been executed on a set of keywords, set of identifiers and all other sets. 

Further computation involves the aggregation of current values to derive an average score 

for a single comparison of two files.  
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3.4.2 Data Aggregation and Results 

Referring to the last subsection about similarity algorithm execution, all the individual score 

columns for each token category is aggregated to achieve a final aggregated score for a 

token category. For example, all the single keyword score table columns can be 

aggregated to form one ‘keyword’ score for the two files. All other token categories follow 

the same aggregation procedure.  A simple representation of aggregating similarity 

measures for one token category is shown below as follows: 

 

Figure 22: Aggregation of similarity measures for a token category (TC) 

The aggregated scores for all the token categories include keywords, identifiers, numerical 

values, math operators, logical operators, and other operators. In the figure given above, 

TC stands for token category and can be any of the abovementioned. The snapshot of the 

average scores for the files is shown below as follows: 
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Figure 23: Screenshot of ‘Average scores’ table for student assignments 

The classification or the process of determining whether the two assignments are 

plagiarized or not can be verified by the average score. The results decided were in the 

favor of plagiarism and the range for classification is given in the table below: 

Table 10: Classification rules for Plagiarism detection 

Average score Class (Plagiarism level) 

If average score < 0.70 Low Plagiarism 

If average score between 0.70 AND 0.85 Average Plagiarism 

If average score > 0.85 High Plagiarism 

If average score == 1 Full Plagiarism 

If average score == 0 No Plagiarism 

 

The last two classification rules, which say that two assignments are said to be ‘exactly 

similar’ or ‘fully plagiarized’ if the average score is ‘1’ and the last rule where average 

score is found out to be ‘0’, indicates that two assignments are unique and have no similar 

content at all. 
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It would be inappropriate to conclude that assignments attaining an average score of ‘0.40’ 

share similar content / plagiarized. This decision usually depends on the assignment 

evaluator or the professor of the subject to declare a 10% similarity as a ‘cheating case’. 

In many cases use of one word multiple times could result in 10-15% similarity with an 

average score of around 0.40 to 0.50 and could lead to a cheating case even though the 

assignments have not been copied. There is an equal level of certainty between the 

boundaries of ‘unique’ and ‘smartly plagiarized’ assignments. There are cases where a 

student can smartly alter his/her assignment according to another student’s assignment 

by following obfuscation techniques such as changing program blocks (up, down), 

spamming spaces between lines, adding single and multiple line comments, moving 

indentations in the code and other non-novice programmer approaches. It is highly 

advised that the evaluator should personally view the codes for the Low and Average 

plagiarism level assignments and make a decision accordingly. The proposed ‘SimDec’ 

similarity detector forensic engine overpowers the novice programmer techniques such 

as: 

 Flooding whitespaces in the code for a quick escape from plagiarism 

 Block comments 

 Renaming variables 

 Shifting the Indentation of the code 

 Changing positions of program blocks 

 Other minor approaches 

 

3.5 Third Phase – Representation 

This last phase of the system development in which the information or data acquired is 

displayed to the end-users in the form of analysis and visualizations. The visuals of 

information such as average score, similarity measures result, and other computations 

represented on the front screen aids the user’s decision-making process. The software 

system’s architecture is primarily based on a three-tier model such as database, model-

driven code and front-end GUI. More details about the development is defined in the next 

section. 
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3.5.1 Full-stack Development 

Full-stack system development is a development process in which there is an involvement 

of client and server as well. Through a user interface component, the client queries or 

orders a fetch operation to and from the database, and server processes the request. The 

basic understanding of programming languages required for full-stack development are 

HTML, CSS and PHP. There are other client and server programming languages such as 

ASP, Node.js, Angular.js and others, but the knowledge of basic concepts helps to 

understand the advanced languages.  

WAMP / XAMP - The XAMP / WAMP stack stands for Windows-Apache Server – MySQL 

– PHP. This is the best suitable stack for our proposed system in this research because 

of its benefits such as compatibility with Java Programming Language (JPL) and 

environment integration. The web application has been developed using HTML, CSS, 

JSP, PHP, and other client & server side languages like JQuery and AJAX. For the local 

instance, the systems front-end is connected to the IDE through server side PHP and 

MySQL intermediate layers. The input is given in the code and the computed values are 

stored in the MySQL database (JDBC connection/ plugin). The front-end queries and 

fetches values from the same database and that’s how the full-stack development is 

successfully achieved.  

 Intellij IDEA – The integrated development environment (IDE) used for building the 

similarity detector engine was Intellij IDEA and not Eclipse because of a few advantages 

of Intellij such as productive Java coding experience, smart coding features, smooth 

integration of ANTLR plugin, convenient connection establishment with the MySQL 

database and millions of built-in tools and supported frameworks. 

Plugins – The external plugins imported in the java project were ANTLR and JDBC 

connectors for tokenization and connectivity with MySQL purposes. Other apache plugins 

such as common text was kept for alternative approaches. ANTLR Plugin available at 

https://plugins.jetbrains.com/plugin/7358-antlr-v4-grammar-plugin. JDBC plugin available 

at https://dev.mysql.com/downloads/connector/j/ 

https://plugins.jetbrains.com/plugin/7358-antlr-v4-grammar-plugin
https://dev.mysql.com/downloads/connector/j/
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MySQL Database – The relational MySQL database, which is also a part of XAMPP 

package is chosen as the database for storing and loading values. The data extracted 

from source codes is stored in the Db tables and accessed by the user at the front-end. 

3.5.2 Visualization on the Web GUI 

The visual infographics of the data acquired from the comparison is stored and displayed 

on the front-end via a web application. Figure 24 represents the main homepage of the 

SimDec web application. The figure following the first one below is navigated through 

‘Analysis’ page from the homepage’s menu bar. The analysis page shows the paginated 

views for displaying low, average and high student assignments score. 

 

Figure 24: SimDec Web application - HomePage 
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Figure 25: Assignment Level- Low, Average, High Display 

The figure given below displays the assignments having ‘Severe’ or ‘Critical’ plagiarism 

score. That is, average score above 0.85 to 1. 

 

Figure 26: SimDec Engine - Severe Similarity Display 

The end of the ‘Analysis’ page shows the bar-graph, pie-chart and scatterplot representing 

‘Low’, ‘Average’ and ‘High’ percentages (quantity) student assignments. 
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  Figure 27: SimDec Web App Visualization - Bar Graph & Charts 

 

Figure 28: SimDec Token Categories 
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The ‘Similarity Checker’ page, accessible from all the website pages, shows a set of div 

tags for each of the token categories such as keyword score, identifier score, numerical 

score, logical operator score, other, math operator score. Every token category has a page 

within displaying low, average and high for respective token category score. The token 

category analysis is shown by visual representations using visualization tools such as 

Google charts, ChartJs, trial version of FusionCharts. A new advanced feature added to 

the search facility is the dropdown listing all the student file records. Upon selecting, the 

similarity measures such as Levenshtein distance, Jaro, Jaro-W inkler and dice 

coefficient for all token categories on the respective pages. Figure 30 shows the dropdown 

feature and display of similarity measures upon accessing the submit button for any 

student assignment pair. 

 

Figure 29: Token Category Percentage with Visualization 
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Figure 30: Similarity Measures scores representation to users 

We have discussed the systematic workflow of our ‘SimDec’ forensic engine for ‘C’ & ‘C++’ 

source code plagiarism detection in this chapter with the help of block diagrams and 

system architecture. The above given figures in section 3.5.2 of this chapter represents 

the web user interface prototype for our system. The dashboard intends to display the 

findings or analytics of the experimentation in form of visualization and eases the process 

of identifying source-code thieves for the user evaluating the assignments. The next 

chapter focuses on the mathematical algorithms or similarity measures embedded in our 

system to calculate the similarity percent in the source codes.  
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Chapter 4. Mathematical Similarity Algorithms 

In this chapter, we are going to emphasize on the mathematical similarity detection 

algorithms or techniques that are favorable for finding similarities between two words or 

strings. A token in general, could be a word like ‘hello’, number like ‘9’, or just a character 

like ‘<’. There are different categories of tokens as mentioned in section 3.1 and section 

3.3 respectively. The types of similarity measures mentioned in this chapter are embedded 

in the ‘SimDec’ systems second phase called ‘Tokenizer customization’ where the 

similarity measures are executed on the sets of tokens of two files to find the percent of 

similarity. If taken a close observation at table 1 from chapter 2, the previous plagiarism 

detection (PD) and clone detection (CD) tools like YAP3, nicad and iclones made use of 

Karp Robin, token matching and cosine similarity measures for finding similarities in 

source codes. These previous tools used one or a combination of maximum two existing 

techniques to detect similarities and therefore, leading it to a weak detection strategy. In 

our proposed system, we have used multiple similarity measures to gather enough 

evidence to categorize a source-code comparison pair as plagiarized or not plagiarized. 

This approach of using multiple measures leads to heavy computing time but that is where 

supervised machine learning jumps in to predict the category and reduce time complexity. 

This chapter explains the selected similarity algorithms/measures used with our systems 

configuration such as levenshtein distance, Jaro and Jaro-Winkler distance measure, 

Sorensen dice coefficient and cosine similarity. All these techniques fall in different 

categories such as distance based, token based and sequence based methods described 

below as individual sections. 

4.1 Edit Distance based Algorithms 

According to the work-flow explained in the section ‘ First phase: Lexical Analysis’ of the 

chapter 3 of this thesis, the source code breaks down into number of lexemes / tokens 

and is forwarded to the tokenizers deployed within the lexical analysis phase. The tokens 

are mostly strings, integers, characters, and operators stored in separate containers or 

cluster sequences after the tokenizers categorize them into keywords, math operators, 

numeric operators and others. The distinct sequences from containers in the file 

comparison stage are concatenated together in one sequence. They are evaluated with 

distance similarity algorithms to compute the similarity distance between the string 
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sequences. In this research, we have used this particular levenshtein distance method to 

measure the difference between two strings or two sequences acquired from the 

tokenization process. The measure has proven to be effective on two sequences of for 

example, keywords extracted from two source codes and find the distance between them. 

This section describes the potential distance-similarity algorithm such as Levenshtein 

distance taken into consideration for this research because of its adaptability to work with 

strings of unequal lengths.  

4.1.1 Levenshtein Distance 

Levenshtein distance is a distance similarity method invented by mathematician Vladimir 

Levenshtein in the year 1965 [28]. Levenshtein distance, also called edit distance, is 

defined as the similarity between two string sequences 1' and's 2'. The algorithm focuses 

on the minimum number of changes required to convert string's 1' into string's 2' with an 

operation such as insertion and deletion in string's 1'. The algorithm can be illustrated in 

the programming area as lev (s1, s2) where the value lies between 0 and 1. The values 

closer to '0' indicate less similarity and nearer or equal to '1' indicate a greater measure of 

similarity. For example, lev (hello, hell) will fall somewhere between 0.8 and 1 as just one 

letter of's 1' is missing in's 2'. The mathematical equation for Levenshtein distance is given 

below as equation (1): 

𝑙𝑒𝑣
𝑎,𝑏

(𝑖, 𝑗) =  ∫ min ∫

lev
𝑎,𝑏

(𝑖 − 1, 𝑗) + 1

lev
𝑎,𝑏

(𝑖, 𝑗 − 1) + 1

lev
𝑎,𝑏

(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖≠𝑏𝑗)

max(𝑖,𝑗)

0

 

In the above equation, 1(ai≠bi) is the indicator function set to zero initially and equal to 1 

otherwise. Lev(a,b)(i,j) = distance between first i characters of string ‘a’ and first j characters 

of string ‘b’. The best example for Levenshtein distance between 'HONDA' and 'HYUNDAI' 

is 3 and edit changes using insertion, substitution, and deletion operations.  The wider 

applications of Levenshtein distance in string matchings falls under dynamic 

programming, and the pseudocode for DP approach for Levenshtein distance is given 

below: 

int LevenshteinDistance(char s[1..m], char t[1..n]) 

  // d is a table with m+1 rows and n+1 columns 

  declare int d[0..m, 0..n] 

 

   for i from 0 to m 
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       d[i, 0] := i 

   for j from 0 to n 

       d[0, j] := j 

  

   for i from 1 to m 

       for j from 1 to n 

       { 

           if s[i] = t[j] then cost := 0 

                          else cost := 1 

           d[i, j] := minimum( 

                                d[i-1, j] + 1,     // deletion 

                                d[i, j-1] + 1,     // insertion 

                                d[i-1, j-1] + cost   // substitution 

                            ) 

       } 

  

   return d[m, n] 

 

4.1.2 Jaro Distance 

Jaro edit-distance method is a similarity measure invented by scientist Mathew A. Jaro 

[29]. Like any other algorithm, Jaro similarity measures the distance between two string 

sequences. The value of Jaro (s1, s2) mostly ranges between 0 to 1, where two strings 

are equal when the value is 1 and not equal at all when a value is zero. The mathematical 

formula for Jaro proposed by Mathew Jaro [28] and a detailed explanation on value 

calculation is given under as follows as equation 2: 

𝐽𝑎𝑟𝑜 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  {

0, 𝑖𝑓 𝑥 = 0
1

3
(

𝑥

|𝑠1|
+ 

𝑥

|𝑠2|
+  

𝑥 − 𝑡

𝑥
) , 𝑓𝑜𝑟 𝑥! = 0

 

From the equation above, 

x = number of matching characters, 

t = half the number of transpositions, 

|s1| and |s2| = lengths of string s1 and s2 

The matches are accurate if they are not farther than [
max (|𝑠1|,|𝑠2|)

2
] − 1 and t = half the 

number of characters in both strings in a different order. 
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Consider s1 = ‘rover’ and s2 = ‘flower’, here the matching characters is three such as [o, 

e, r] in a different order. Number of characters not in order = 4 i.e.  In s2 = [f, l, o, w]. 

Therefore, t = 4/2 = 2. From the above equation 2, Jaro similarity can be calculated as = 

1/3 * ((3/5 + 3/6 + (3-2)/3) = 0.4719. The strings ‘rover’ and ‘flower’ have a Jaro similarity 

measure of 0 < 0.4719 < 1. The purpose of using Jaro and Jaro-Winkler edit-distance 

measure is to support the results obtained from Levenshtein method. Suppose for two 

sequences, levenshtein distance result obtained is ‘0.70’ and Jaro and Jaro-Winkler 

distance measure give out the score which ranges between 0.60 – 0.75; then we have 

multiple measures giving out the similar result for two sequences. 

4.1.3 Jaro- Winkler Distance 

Following the invention of Jaro distance measure, William Winkler [30] proposed an 

upgrade to the Jaro metric called as ‘Jaro-Winkler’. The Jaro-Winkler distance measure is 

similar to the Jaro algorithm in most cases; the prefix of both the strings doesn’t match. 

They both produce different values when the prefix of both the strings don't match. The 

prefix scale 'p' in Winkler gives more accurate answers when strings have a common 

prefix of length 'L’. The Jaro-Winkler similarity measure is defined as follows in equation 

3: 

JW = J + Sf * L*(1 - J) 

Where, J = Jaro measure obtained from above block, 

Sf = scaling factor (0.1 by default), 

L = length of matching prefix (max 4 characters long). Referring to the same string 

examples used for Jaro measure in the subsection above this one.  Here for ‘rover’ and 

‘lower’ we have L = 0.  

The computation, JW = 0.4719 + 0.1 * 0 * (1 – 0.4719) = 0.4719. The Jaro-Winkler and 

Jaro in this case are equal. The results may be different for strings such as ‘Logitech’ and 

‘Lotto’, where L =2. 

4.2 Token-based Algorithms 

4.2.2 Sorenson Dice Coefficient 
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Thorvald Sorensen [31] and Lee Dice [32] independently developed the ‘Sorensen dice 

coefficient’ or ‘dice index’  statistical tool used to gauge the two samples' similarity. This 

invention intended to differentiate the similarity between two distinct sequences. Assume 

‘1' and ‘2' to be two distinct data sequences and |s1| and |s2| be the same sets' 

cardinalities. The dice index /coefficient equals twice the number of elements common to 

both the sets divided by the sum of cardinality sets. The mathematical equation for DC or 

DI (Dice Index) is given below in equation 4 as follows: 

𝐷𝐶𝑆 =
2 |𝑠1 ∩ 𝑠2|

|𝑠1| + |𝑠2|
 

The only difference between the Jaccard coefficient and DCS is that Jaccard counts the 

true positives once in both denominator and numerator. DCS falls in between 0 and 1 for 

two discrete sets. The DCS for string similarities is a variance of the normal DCS form and 

uses bigrams of the strings for computation, as shown in equation 5: 

𝐷𝐶𝑆 𝑓𝑜𝑟 𝑆𝑡𝑟𝑖𝑛𝑔𝑠 =
2𝑛𝑏

𝑛𝑥 + 𝑛𝑦
 

Here, 'nb' is the number of bigrams found in both the strings and 'nx' & 'ny' denote the 

number of bigrams found in string X and Y, respectively. Consider the words' Deer' and 

'Dear', the set of bigrams in each word world be as follows: 

X = {de, ee, er}, Y = {de, er, ar} 

The common bigram between both the strings is {de}. Therefore, the DCS we obtain after 

calculation by putting in equation (5) is (2.1) / (3 + 3) = 0.33. The score ‘0.33’ is near to ‘0’ 

and less than 0.50 therefore, the sequences ‘X’ and ‘Y’ have only one common element 

and the severity is not so high, given 0.33 as the dice coefficient gauge score.     

4.2.3 Cosine Similarity-Based Method 

Cosine similarity can be defined as a document similarity metric that is used to measure 

the similarities between two documents irrespective of the size. It measures the cosine of 

the angle between two vectors in a 2D multi-dimensional space. The vectors selected for 

measurement can be strings, arrays and value objects in a coded algorithm. The core 

programming language used for developing the proposed system is Java, and hence, 
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forming the vectors from the tokenization approach is not cumbersome in the procedure. 

The main advantage of this method is it can conclude that two documents can be oriented 

together even if they're far apart because of size irregularities. Like the other techniques 

stated above, the result value of cosine similarity ranges between 0 and 1.  The similarity 

percentage is less if the cosine angle is big and high when the angle is small. The cosine 

similarity is implemented for document similarity in two ways as described below: 

Approach 1:  Consider 'A' and 'B' as two document vectors and measure the cosine 

similarity angle between the two vectors to justify the similarity between two documents in 

the range of 0 to 1. This approach is favorable for the research, focusing on occurrences 

of a word for checking document similarity. 

Approach 2: Tokenize the document to form categories for simplification and then 

concatenate the distinct features into one complete vector. Follow this procedure for all 

the documents and then calculate the cosine angle between the vectors. The result for 

this approach would be more effective than approach one as the vector would contain all 

distinct elements from all the categories. The mathematical formula for cosine similarity is 

given under as equation 6: 

𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos(𝜃) =  
𝑋. 𝑌

||𝑋||||𝑌||
=  

∑ 𝑋𝑖𝑌𝑖
𝑛
𝑖=1

√∑ 𝑋𝑖
2 𝑛

𝑖=1

.  
1

√∑ 𝑌𝑖
2 𝑛

𝑖=1

 

In the equation above, 'X' and 'Y' are the two vectors of attributes and cosine similarity is 

represented as a dot product and magnitude. The result obtained from this formula will be 

'1' if the documents are clones and '0' if they're the opposite. In the case of IR (Information 

retrieval), the angle between two 'term' vectors cannot be > 90 degrees. Gunawan et al. 

[32] in their research on finding text relevance via cosine similarity mentioned the use of 

cosine similarity measures to find the relevancy of a suitable topic in multiple documents. 

The authors divided the system implementation into three stages such as pre-processing 

(removing punctuations from documents, converting all text to lower-case, etc), 

intermediate (keyword weighing between 0 and 1) and the last stage involves cosine angle 

measure to give out relevancy in terms of '0' or '1'. 

4.3 Sequence Based Algorithms 

4.3.1 Least Common Subsequence 
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Another Dynamic Programming (DP) approach considered in this proposed similarity 

detection engine after Levenshtein distance is the longest common substring (LCS) for 

assuring string similarity without any resulting numerical value. David Maier mentioned the 

complexity of some problems on subsequences and super sequences in his research [34]. 

Being a DP implementation, this algorithm has a time complexity of O(nm) where space 

is utilized more than time. The definition of LCS is simple as it identifies a substring in is 

‘1' and checks for the same in's 2'. The algorithm also has a functionality of keeping track 

of the substring's maximum length and displaying it on the console. An example for LCS 

detection is given below in words, as there is no exclusive statistical explanation for it in 

algorithms. k-common substring problem ϵ LCS (X, Y, m, n) = Max(LCSuff(X,Y,I,j)) where 

1 <= i ,j <= m, n. Max(LCSuff) is the equation where both the strings lengths is reduced 

by 1 if the last characters match. 

4.4 Integration with the System 

The selected similarity measures described with details in the above sections have been 

implemented in java programming language with our ‘SimDec’ system. The single MySQL 

table images shown in figures 16 to 23 in the chapter 3 represent the similarity scores of 

each token category sequences such as keywords, identifiers, arithmetic operators, logical 

operators and other operators. The solo scores of each of the techniques such as 

Levenshtein distance, Jaro, Jaro-Winkler, Cosine similarity and Dice coefficient are 

aggregated and displayed as one average score of all token categories as shown in figure 

number 23. All these observations are recorded in the relational MySQL database at the 

back-end and this data is forwarded to the machine learning module of this research. 

SimDec system allocates one plagiarism category to all the files such as Low, Average 

and High. Low category could mean no plagiarism at all and should not be considered for 

personal evaluation of the source code by evaluators. Records with labels medium and 

High could mean that the plagiarism done is more than 50% of similar content and 

corresponding action shall be taken by the professors or evaluators. Concluding this 

chapter and moving on to the next chapter, we will discuss the computational performance 

analysis of all the supervised and unsupervised machine learning algorithms in the next 

chapter. Chapter 5 will represent a comparative study of all the algorithms and choose the 

technique that has better compatibility with the system-generated data. 
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Chapter 5. Computational Performance Analysis 

This chapter focuses on the core concept of machine learning and its categories such as 

supervised and unsupervised machine learning. The data recorded on applying the 

similarity measures discussed in chapter 4 is stored in the relational database and 

exported to the spreadsheet view for working efficiently on the ML and python 

environment. The data primarily consists of class labels to each of the records assigned 

by our proposed system. The class label helps the supervised models to train and 

validation is impacted in a positive way. To deliver clustering and unsupervised analysis, 

the class label can be dropped and the process can resume. We have shortlisted a few 

ML algorithms to go on with at the beginning such as multi-class SVM, logistic regression 

and a simple neural networks for supervised learning and k-means, PCA from the 

unsupervised category of ML. Each of these mentioned algorithms with their evaluated 

model scores is described in the sections given below. 

5.1 Machine Learning Algorithms 

Machine learning is the child of artificial intelligence that automatically learns and improves 

from the programming experience. Machine Learning is used to develop computer 

programs that can access the data fed to it and learn the patterns on every run. The 

technology can learn the patterns on one dataset and implement them for another dataset. 

In simple terms, the model developed in python programming language can be executed 

on a dataset, save the model and then loaded later for testing purposes.  The primary aim 

of machine learning remains to allow the computer to automatically learn the patterns 

without human assistance.  Machine learning algorithms are often categorized as 

supervised, unsupervised and semi-supervised learning. More details on each of these 

categories will be given in the later sections. 

5.1.1 Second Module of Research 

Implementing machine learning algorithms on the data gathered from mining information 

from source code comparison. Our ‘SimDec’ system assigns a label for each comparison 

pair such as low, average and high as explained in the chapters above. The main purpose 

of making the system do it is to make it compatible with the supervised learning algorithms 

for prediction. Because without the class label, the generated data will only be good for 
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unsupervised learning and not suitable for the classification or prediction. This information 

is stored in relational database systems and fetched by the users at the front-end. The 

labels generated in the dataset is required for applying supervised machine learning 

algorithms for achieving classification. The second module of this thesis is to extract and 

infiltrate the output of the SimDec software system and give it as an input to the machine 

learning algorithms. The development environments and platforms for both the modules 

are different and the configuration is independent. Both of the modules are not directly 

interlinked with each other and separated by the dataset. Dataset is the middle layer 

between software system and machine learning platform. This module involves 

supervised and unsupervised learning and the decision is concluded by observing and 

analyzing the results. 

5.1.2 Programming & Development Environment 

The development environment for both of the modules of this research is different, 

including programming languages and stack required for successfully achieving the 

technology implementation. 

The IDE and programming languages for the first module of the research are Intellij IDEA 

and Java programming language, whereas, the same for the machine learning module is 

Google Colab/ Kaggle and Python programming language. Java is not very helpful and 

productive when it comes to data analysis and visualizations. Python was developed to 

fulfil the data science criteria and fit in the data visualization circle. 

5.1.3 Need of ML in Software Systems 

Since the invention of LISP and FORTRAN, ML has played a major role in software 

systems. The tools for building low-level and high-level programming languages didn’t 

change their layout or appearance, but are essentially the same. Look at the fancy editors, 

they have the features such as color highlighting, predicting next word when typing the 

current, and different programming styles. A software system is a mixture of source codes 

that is formulated in a flow to get a series of output. Adding machine learning and pattern 

recognition to the software code can enhance the system in numerous ways by increasing 

the code's efficiency. As language changes and usage shifts, new elements are 

discovered and the neural network can be revisited and retrained on the new data. To 

discuss the scope of machine learning in our thesis research, it is mainly implemented to 
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decrease the running operation's time complexity. The time taken by the program to build 

and run the program could be reduced gradually as the number of computations would be 

reducing as well. To dive into the details, the number of computations required to assign 

a plagiarism level label to one comparison takes substantial time, starting from 

mathematical calculation to storing and loading from the dataset. Machine learning could 

easily omit the computing time as the model(s) could be trained on huge data and then 

can be used to predict the class label if the accuracy is reasonably well. This chapter will 

justify the above mentioned hypothesis by covering the machine learning algorithms and 

relevant concepts. The dataset selected for this experimentation is gullible with supervised 

and unsupervised for predictive and descriptive analysis both. There would be a 

comparative study observed in the below given sections and the best suitable technique 

for the system would be considered as a final analytical decision in this software 

engineering process. The figure given below mentions the features machine learning 

provides to enhance the software system code: 

 

 

Figure 31: Machine Learning for Software systems 
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5.2 Supervised Learning Classification 

The name ‘Supervised Learning’ is self-explanatory to mention the need and importance 

of this technique. Supervised techniques is like a teacher to guide a student and during 

the training process, the algorithms will search for patterns in the data correlate with the 

desired outputs. The nature of a supervised learning algorithm is to train on a set of data 

to get the patterns right and then predict the label or target variable for the newly presented 

data. Supervised learning can be split into two categories such as regression and 

classification. The regression approach is undertaken if a prediction is to be made for a 

continuous variable such as numerical scores, amount, percentage etc. Regression can 

be further sub-divided into linear and logistic where logistic regression is designed for 

categorical variable prediction and linear for numerical predictions. Classification 

algorithms are for predicting categorical labels such as high/low/medium, 0/1/2 or 

true/false in the datasets. The job is to simply take the input and assign a class or category 

that fits with the training data provided. A classification problem can be solved with a 

plethora of algorithms such as Support vector machines, Naïve Bayes, Decision trees, 

Neural Nets and K-Nearest Neighbor algorithms. We have considered three popular and 

quality algorithms for conducting our second research module such as SVM’s, Logistic 

regression and Neural Networks. The brief description of each one of the above mentioned 

is given in the lower sections. 

5.2.1 Support Vector Machines (SVM) 

Support Vector Machines (SVM) algorithm was developed by the authors [35][36] at the 

AT & T Bell laboratories in the year 1992. Support vector machines are supervised 

learning algorithms that can solve a classification problem using two-class (high, low) and 

multi-class (high, medium, and low). According to the data formulated in our system, a 

multi-class SVM was a favorable one as there are three class labels: high, average and 

low. The objective of a multi-class SVM is to find a hyperplane in an n-dimensional space 

that separates the data points according to their classes. The data points which are 

nearest to the hyperplane are called as ‘Support Vectors’. Another reason for SVM’s to be 

called kernelized vectors is because they convert input data space into a higher-

dimensional space. The number of classifications required for one vs one multi-class 

classification can be found out by the formula given below: 
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𝑛 ∗ (𝑛 − 1 )

2
 

Kernel functions: 

The popular kernel functions available in the scikit-learn are linear, polynomial, radial basis 

and sigmoid. The equations of the four functions are given below as: 

Linear Function - 𝑘(𝑥𝑖, 𝑥𝑗) =  𝑥𝑖 ∗ 𝑥𝑗 

Polynomial function - 𝑘(𝑥𝑖, 𝑥𝑗) = (1 +  𝑥𝑖 +   𝑥𝑗)𝑑 

Radial Basis function (RBF Kernel) - 𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝(−𝛾||𝑥𝑖 − 𝑥𝑗||)2 

Sigmoid function - 𝑘(𝑥𝑖, 𝑥𝑗) = tanh (𝑎𝑥𝑇𝑦 + 𝑐) 

We will not discuss SVM's root contents by explaining the mathematical concept behind it 

as that knowledge is available on hundreds of websites online. The SVM algorithm 

performed efficiently on the SimDec data for multiclass classification and obtained an 

accuracy of 99% for both training and testing. The details of multi-class SVM results on 

our systems data are mentioned in short in the last section of this chapter.  

5.2.2 Logistic Regression 

Logistic regression is the simplest type of supervised Regressor used only when the target 

variable is categorical. Logistic regression was invented by a popular statician DR Cox as 

a binary probability model [37]. For numerical target variable, linear regression is 

recommended due to compatibility. An example would be to predict / classify whether the 

statement is true or false or yes or no. The function used in logistic regression is the 

sigmoid function and ranges from minus to plus variable as shown in the figure below: 
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Figure 32: Sigmoid function for logistic regression 

The analysis of hypothesis is the estimated probability used to infer how confident can 

predicted value be actual value when the given input is X. There are several types of 

logistic regressions such as binary logistic regression for predicting 0 or 1, multinomial 

logistic regression for classifying more than two labels such as high, average and low. A 

threshold needs to be set to predict the class of the data because the estimated probability 

is classified into classes. The cost function is to be considered in the main equation for 

linear regression and not logistic regression. MSE (Mean square error) is used with linear 

regression and if used with logistic, it will create a non-convex functions of parameters. 

The cost function for logistic regression is defined below in which, if y = 1, the output 

approaches to O as hՓ(x) approaches to 1. The cost to pay grows to infinity as hՓ(x) 

approaches to O. The same situation applies when y = 0, where there are bigger penalties 

when the label is y = 0 but algorithm predicts hՓ(x) = 1. 

(𝐶𝑜𝑠𝑡(ℎ∅(𝑥), 𝑦) =  {
− log(ℎ∅(𝑥))  𝑖𝑓 𝑦 = 1

− log(1 − ℎ∅(𝑥))   𝑖𝑓 𝑦 = 0
  

 

The logistic regression algorithm implementation on the system data is described in 

section 5.4 of this chapter where the accuracy obtained with the same technique on 

system data is around 98% for training and testing the model.  
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5.2.3 Neural Networks 

Warren McCullough and Pitts [38] at the University of Chicago invented neural networks 

as an activity that was derived from the calculus of ideas immanent in nervous activity. To 

give a short and simple description, a neural network is constructed with thousands of 

neurons and one neuron is a basic unit of the network. Neurons simply take the input, 

process the computation and give the output. For example, in a three-neuron neural 

network, the three inputs are multiplied with weights and added with a bias ‘b’ as shown 

below:  

x1 -> x1 * w1,  x2-> x2*w2,  x3->x3*w3  (where w1,w2,w3 are weights of the network) 

Secondly, the inputs are added with a bias and passed through an activation function as 

follows: 

Y = f(x1 * w1 + x2 * w2 + x3 + w3 + b) 

The activation functions can be of 7 varying kinds such as sigmoid, ReLu, Tanh, linear 

activation, non-linear activation, softmax and swish. The detailed explanation about all the 

activation functions can be found out at https://missinglink.ai/guides/neural-network-

concepts/7-types-neural-network-activation-functions-right/. 

Getting back to neuron based neural networks, the setup can be established and coded 

in python using keras and tensorflow framework. The neural network could be built of 

several layers and activation functions to get the satisfactory result. The neural net model 

is supposed to be trained and tested on a dataset before putting it to actual real-world 

testing. The model is evaluated like all other machine learning models by standard loss 

and error computation. MSE (mean square error) is the loss function used for computing 

a neural network evaluation. Neural nets can be configured in three different ways such 

as feed-forward networks, backward propagation and ensemble learning (hybrid NN’s). 

Lastly, we would like to discuss in brief about the optimizers, the optimizers available for 

balancing the weight and minimize the loss. The learning rate encompassed in the 

optimizers sleeps up the training time of the model. All these parameters can be altered 

and played with for getting an appropriate score. The code for model which we built for 

applying on our systems data is shown below as follows: 

 

https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
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input_dim = len(data.columns) - 1 

model = Sequential() 

model.add(Dense(8, input_dim = input_dim , activation = 'relu')) 

model.add(Dense(10, activation = 'relu')) 

model.add(Dense(10, activation = 'relu')) 

model.add(Dense(10, activation = 'relu')) 

model.add(Dense(3, activation = 'softmax')) 

model.compile(loss = 'categorical_crossentropy' , optimizer = 'adam' , metrics = 

['accuracy'] ) 

model.fit(train_x, train_y, epochs = 10, batch_size = 20) 

scores = model.evaluate(test_x, test_y) 

print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) 

 

There has been an imposition of four dense model layers consisting of three ReLu 

activation layers and one softmax layer. The loss function for compilation is categorical 

cross entropy with Adam optimizer for minimizing loss. The model is trained with training 

data (x,y) on 10 epochs and a batch size of 20 and then evaluated on testing data 

parameters (x,y) . The testing score achieved with 20 batch size is 93.22 % with a 

minimum loss of 0.1619. The model looks good at 93.22% accuracy on the current system 

data and therefore, a new data for another student assignment folder is given to the model 

for testing. The trained and tested model is saved, loaded back on the environment and 

tested on the data without the target variable. The one-hot encoding is done for the target 

variable ‘Plagiarism’ that is low, average and high as ‘0’, ‘1’, and ‘2’. The data is given to 

the model.predict(datafilename) and a numpy array is obtained as the predictions array. 

On printing the list, the predictions obtained for the data is shown below as follows: 

finalresult=model.predict_classes(data1) 

On printing  -     finalresult[:30] 
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Figure 33: Predictions for new system data: Neural Networks 

5.3 Unsupervised Learning Clustering 

Unsupervised machine learning is a type of machine learning technique in which there is 

no need to supervise the model. The data is fed to the model to discover the patterns and 

explore new information on the basis of the learning. Unsupervised learning mainly deals 

with data which has no label/target. Clustering analysis or descriptive mining holds the 

major portion of unsupervised ML. Other existing ML techniques are given as association 

rules and variation of association rules. There are various types of clustering algorithms 

such as Hierarchical clustering, K-means, KNN classification, principal component 

analysis, single value decomposition and independent component analysis. The study 

conducted on the SimDec system data involves two types of unsupervised clustering such 

as K-means and PCA due to the data's simple nature. The coding for both the techniques 

has been completed using python programming language in this module. The purpose of 

conducting unsupervised studies is to compare it with supervised learning and conclude 

the best ML category for the satisfying the second modules intention. 

5.3.1 K-means Algorithm 

James McQueen [39] proposed an algorithm for dataset instance into groups of clusters 

and the algorithm was named as ‘K-means clustering algorithm’. K-means clustering is an 

iterative clustering algorithm that helps you find the clustering's highest value by selecting 

a centroid / central points. The number of clusters ‘k’ are selected by coding the elbow 

method curve where the value of bent curve is selected as the desired number of clusters 

for the k-means operation. The entire data is clustered into ‘k’ groups and the output of 

the algorithm is a group of ‘labels’. The centroids are the hearts of the clusters and the 

bigger the cluster, the lower the granularity and the value of ‘k’. The small clusters often 

have large granularity and a bigger value of ‘k’. The techniques have been implemented 
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in two languages such as Python and ‘R’. Implementing the algorithms in ‘R’ programming 

language is because of aesthetic and efficient visualizations and easy data analytics. We 

are going to discuss a little bit of both the parts in this chapter. Dilpreet Singh and Chanda 

Reddy [40] gave a simple pseudocode for k-means algorithm in their paper and reciting 

the same as shown below: 

 The K-means Clustering Algorithm 

1. Input data points ‘D’ and specify number of clusters ‘K’ 

2. Initialize central points or centroids randomly 

3. Associate each data point in ‘D’ with the nearest centroid. This will divide data points 

into ‘k’ clusters. 

4. Recalculate the position of centroids and repeat the above two steps till final step 

5. Represent data points with clusters 

K-means with Python 

The program starts with declaring imports and reading the data file as ‘data’ variable and 

then dropping the categorical attribute from the pandas frame, followed by the assigning 

the same categories to a label. 

Labels = Data['plagiarism'] 

Data = Data.drop(['filenames', 'plagiarism'], axis = 1) 

Labels_keys = Labels.unique().tolist() 

Labels = np.array(Labels) 

print('Plagiarism levels: ' + str(Labels_keys)) 

 

The labels will print the plagiarism levels as high, medium and low. The data is then scaled 

and standardized using scalar.fit_transform(data). The optimal cluster ‘k’ values are 

checked using the elbow method and the desired number is calculated (K=2 in this case). 

K-means function is computed in the cellblocks and the related scores such as inertia, v-

meas, homo, ARI, AMI and silhouette score are outputted for the given data. 

def k_means(n_clust, data_frame, true_labels): 

  k_means = KMeans(n_clusters = n_clust, random_state=123, n_init=30) 

    k_means.fit(data_frame) 

    c_labels = k_means.labels_ 
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    df = pd.DataFrame({'clust_label': c_labels, 'orig_label': true_labels.tolist()}) 

    ct = pd.crosstab(df['clust_label'], df['orig_label']) 

    y_clust = k_means.predict(data_frame) 

    display(ct) 

    print('% 9s' % 'inertia  homo    compl   v-meas   ARI     AMI     silhouette') 

    print('%i   %.3f   %.3f   %.3f   %.3f   %.3f    %.3f' 

      %(k_means.inertia_, 

      homogeneity_score(true_labels, y_clust), 

      completeness_score(true_labels, y_clust), 

      v_measure_score(true_labels, y_clust), 

      adjusted_rand_score(true_labels, y_clust), 

      adjusted_mutual_info_score(true_labels, y_clust), 

      silhouette_score(data_frame, y_clust, metric='euclidean'))) 

 

With k=2 clusters, the silhouette score observed for the system data is 0.349 and 0.21 for 

k=3.  

 

Figure 34: K-means output for k=2 with related scores 

Referring to figure 34, Upon giving the SimDec systems data to the k-means unsupervised 

clustering algorithm, it is observed that the optimal number of clusters for the operation 

would be 2 (k=2) for 15,344 records. The k-means performed in python clusters the data 

into two groups where ‘Average’ and ‘High’ labelled data (Label is dropped as shown in 

the python code above) is allocated to the second cluster and ‘Low’ and ‘Average’ is 
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allocated to the first cluster. As you can see from the figure, the highest number of records 

are labelled as ‘Average’ are 6191 and therefore fluctuate in both the clusters. According 

to the theory of the algorithm, unsupervised k-means is performing well in terms of 

clustering with our systems data. Silhouette score ranges from -1 to 1 and any value closer 

to ‘1’ means that cluster is well separated from each other and value nearby ‘0’ denotes 

that clusters are overlapping. The silhouette scores obtained with our data (0.349) 

indicates that clusters are overlapping and the fact that records with ‘Average’ label tops 

the count supports the overlapping theory.  

K-means with ‘R’ and ‘R-Studio’ 

The perfect explanation of k-means algorithm with visually represented clusters can be 

observed with ‘R’ programming language and R-Studio. ‘R’ and ‘Python’ programming 

languages have been closely associated with data analytics and machine learning, but 

when it comes to supervised classification / prediction, Python is more effective than ‘R’. 

‘R’ is popular for providing interactive visualization packages that support the infographics 

and unsupervised clustering is all about diagrammatical representations. The packages 

which should be installed to perform the k-means clustering in R-studio are ‘cluster’, 

‘devtools’, ‘factoextra’ and other that support visualization such as ‘ggplot2’ and ‘dplyr’. 

Following are the steps to perform k-means in R-studio: 

1. Read csv file into R-studio,  empty the ‘plagiarism’ column OR nullify it 
R-code: 

twentyKdata <- read.csv("C:/Users/batma/OneDrive/Desktop/twentyKdata.csv") 
View(twentyKdata) 
twentyKdata <- data.frame(twentyKdata[,-1], row.names = twentyKdata[,1]) 
twentyKdata[,c("plagiarism")] <- list(NULL) 
twentyKdata <- scale(twentyKdata) 
head(twentyKdata, n = 3) 
 

2. Set seed to 123 and perform the clustering for ‘500’ samples. Including thousands of 

samples can cause abrupt visualizations and unclear analytics. Scale the sampled 

data with Euclidean distance and with Pearson coefficient as well. 

R-code: 

set.seed(123) 
samset <- sample(1:3571, 500) 
df <- twentyKdata[samset,] 
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df.scaled <- scale(df) 
dist.eucl <- dist(df.scaled, method = "euclidean") 
round(as.matrix(dist.eucl)[1:3, 1:3], 1) 
library("factoextra") 
dist.cor <- get_dist(df.scaled, method = "pearson") 
df 
view(df) 
 

3. Load ‘factoextra’ library and visualize the Euclidean distance for all the values present 

in the variable. Find out the optimal number of clusters for the sample set of 500 

records within the large data 

R-code : fviz_nbclust(df, kmeans, method = "wss") + geom_vline(xintercept = 4, linetype 

= 2) 

Output: 

 

Figure 35: K-means: Optimal Number of clusters 

4. Print the values with clusters for k=4 with 25 shuffles and list out the available 

components such as cluster, centers, totss, withinss, betweenss, size, iter and ifault 

R code: 

km.res <- kmeans(df, 4, nstart = 25) 
print(km.res) 
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Output: 
 
student1547.cstudent5413.c student1477.cstudent7735.c student1477.cstudent4804.c 
student1477.cstudent1571.c  

                         2                          1                          1                          1  

student1547.cstudent1738.c student1571.cstudent2234.c student1502.cstudent3442.c 
student1547.cstudent1725.c  

                         3                          4                          2                          3  

student1477.cstudent4163.c student1502.cstudent8069.c student1542.cstudent8187.c 
student1483.cstudent4185.c  

                         1                          3                          1                          3  

 

Within cluster sum of squares by cluster: 

[1] 407.6792 423.1623 501.9302 439.0249 

 (between_SS / total_SS =  46.9 %) 

Available components: 

[1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss" "betweenss"    "size"         

[8] "iter"         "ifault" 

5. Print the size and centers of the cluster and visualize the k-means clusters for 500 

samples 

R code: 

km.res$size 
km.res$centers 
fviz_cluster(km.res, data = df, 
palette = c("#2E9FDF", "#00AFBB", "#E7B800", "#FC4E07"), 
ellipse.type = "euclid", # Concentration ellipse 
star.plot = TRUE, # Add segments from centroids to items 
repel = TRUE, # Avoid label overplotting (slow) 
ggtheme = theme_minimal()) 
 

Output: 
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Figure 36: K-means Clusters for 500 Observations 

As shown in figure 36, the four clusters are visible but the name conventions appear to be 

congested. The congestion is mainly because of the long names and the only way to purify 

it is to reduce the number of samples and try again with 100 or 200 samples.  The best 

possible scenario to cluster and visualize 500 or more sample would be to use the CLARA 

clustering technique. CLARA stands for clustering large applications, which is an 

extension to the k-medoids variation, PAM. To reduce the memory and computation time, 

CLARA approach could be considered for large data. Without diving into command details, 

the cluster visualization obtained with CLARA is shown below as figure 37. The main 

intention behind performing the experimentation in ‘R’ and ‘R-Studio’ was to check if 

unsupervised clustering on SimDec system data could be visualized properly or not. 

Python libraries such as seaborn and matplotlib are incapable of plotting clusters for large 

datasets and therefore, there was a need to check the clustering visualization on another 

platform. As shown in figure 36, k-means clustering for 500 records appears to be 

congested whereas the clustering for large data seems pleasant and clear with CLARA 

clustering technique.  
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Figure 37: CLARA cluster visualization for 500 samples 

5.3.2 Principal Component Analysis 

Principal component analysis (PCA) is another clustering technique that acts as a 

dimensionality reduction mechanism and invented by Karl Pearson in 1901 [41]. PCA 

technique could be used to reduce a large set of variable into a small set that still contains 

most of the information in the large set. PCA for the same dataset as used for k-means 

has been conducted on the python environment. The first step is to find the optimal number 

of features for dimensionality reduction. 

pca = PCA(random_state=123) 
pca.fit(Data) 
features = range(pca.n_components_) 
plt.figure(figsize=(8,4)) 
plt.bar(features[:15], pca.explained_variance_[:15], color='lightskyblue') 
plt.xlabel('PCA feature') 
plt.ylabel('Variance') 
plt.xticks(features[:15]) 
plt.show() 
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Figure 38: PCA features X variance for system data 

Looking at the figure given above, 1-feature seems to be the best fit for our data as ‘0’ is 

default set to the maximum variance. If the PCA feature is equal to 1 and clusters = 2, the 

resulting components, including the silhouette score, are better than those of k-means.  

 

Figure 39: PCA transformation with two features 
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If we switch the PCA features from ‘1’ to ‘2’, the silhouette and the corresponding scores 

will decrease as the number of PCA components/features increase. From the 

unsupervised clustering study, it is clear that k-means perform exceptionally well for large 

data combined with the PCA technique. 

5.4 Experimentation Analysis & Results 

To conclude the second module of research, we will discuss the results and 

advantages/disadvantages of performing supervised and unsupervised analysis on the 

SimDec system data. To describe the dataset selected for experimentation under this 

module, the data table shown in figure 23 is concatenated with a class label or target 

variable as stated in table 8 in chapter 3 of this thesis. The dataset is typically designed 

for supervised learning as it contains a class label. Still, it could be used for unsupervised 

learning as all columns are numerical and discard the class label column. The three 

algorithms used for this study were logistic regression, multi-class SVM, and simple neural 

networks to proceed with the results discussion for supervised learning methods. The 

logistic regression was performed on the SimDec data consisting of around 18K records 

and a class label with categories such as high, average and low for plagiarism levels. The 

records indicate the information obtained from a pair of student assignment under 

comparison. The data was split into 80:20 ratios and the model was trained with three 

categories in the class label column. The precision, recall, f1-score and support obtained 

with logistic regression were 0.96, 0.98, 0.97 and 549. Due to the dataset's simple 

schema, the accuracy obtained with logistic regression was 0.98 or 98% with less than 60 

false positives. The confusion matrix obtained for logistic regression is shown below as 

follows: 
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Figure 40: Logistic Regression Confusion Matrix 

Multi-class SVM was trained on the same data in this comparative study with 6 numeric 

features. The predictor set was normalized for SVM training at the first and the library used 

to build the ensemble model was random forest classifier. The hyperparameter tuning 

using grid search and cross validation involved ‘rbf’ and ‘linear’ kernels with varying C from 

0 to 1000. The datasets for training and testing were provided as separate files to the SVM 

and the scores obtained were 0.99 and 0.99 for training and testing respectively. SVM 

performed better than logistic regression at classification in the aspects of training and 

model evaluation. The last algorithm to be discussed for supervised learning is simple 

neural network algorithm. As mentioned in the solo subsection for neural networks, the 

model's architecture is sequential with three ‘ReLU’ activation layers and one softmax. 

The model is compiled with a loss function such as' Adam ', such as categorical cross-

entropy and optimizer. The model is trained on 10 epochs with batch size of 20 and 

evaluated for the test data. The testing accuracy obtained with neural networks is 93.96% 

and could increase if number of epochs are increased with varying batch size and different 

optimizers. The neural networks model was saved, loaded back and tested on a different 

type of data without the class label. The predictions for the new data were reasonable and 

paved the way of success for this research module. All three supervised techniques 

perform exceptionally well of the system data and would work fine for the new real-world 
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generated data. This implementation of ML supervised algorithms with SimDec system 

could reduce the time complexity and number of computations as the system won’t be 

required to generate the class label. Unsupervised techniques help cluster and visualize 

the student assignments in groups but are less efficient when it comes to classification or 

time complexity reduction. The clustering visualization are not cumbersome to display on 

the web interface and is a good-to-have feature with the similarity detector system. 

Nonetheless, if it comes to decide one out of the two ML experimentations, supervised 

learning algorithms are recommended to collaborate the SimDec system as they can 

predict the class label for a student assignment record without the need of the system to 

calculate the class label based on some criteria, indirectly resulting in reduced time 

complexity. To summarize this chapter, the accuracies obtained from all the supervised 

learning algorithms are shown in the table given below: 

Table 11: Accuracies of all supervised learning algorithms 

Supervised Algorithms Training Accuracy Testing Accuracy 

Logistic Regression 98% 98% 

Support Vector Machine 99% 99% 

Neural Networks 93% 95% 

 

The next chapter would be the end of this thesis as all the experimentation has been 

conducted and results are available as shown in the all the other chapters above. Chapter 

6 will conclude this thesis research with a short conclusion highlighting important points 

and a wide future scope for our proposed ‘SimDec’ system. 
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Chapter 6. Conclusions and Future Work 

6.1 Conclusion 

In any academic institution, several students submit their assignments electronically and 

the primary concern here is the e-plagiarism detection in the student assignments. Given 

the current COVID-19 situation where all the courses are being delivered online, students 

are asked to submit the practical assignments electronically. The probability of copying 

and plagiarizing assignments has increased heavily as there is not much of personal 

monitoring involved by the teachers. An act of submitting / copying someone else’s work 

is considered as ‘e-identity theft’ or ‘Plagiarism’, which disobeys university dishonesty 

regulations and could lead to suspension or detention. The existing similarity detection 

tools use inefficient approaches such as attribute counting metrics (ATM) with the 

tokenization approach that involves the longest common substring (LCS) search method. 

Many similarity detector engines prefer using hashing techniques and syntax tree/AST 

modifiers for file matching if the focus is on the line-word comparison. YAP3, JPlag and 

MOSS are the current tools being used by many institutions and it is a complicated 

decision to make when it comes to recommending a tool above all others. Few notable 

disadvantages of these similarity detectors are lack of visual support (GUI), batch file 

processing, and a robust assistant tool. The similarity detection engine proposed in this 

thesis research addresses the challenges the evaluators and examiners face at 

professional institutes where students upload their assignments digitally. The designed 

‘SimDec’ system follows a systematic ATM alongside a tokenizer (ANTLR) driven 

mainframe controlling system delivering lexical analysis computation with multiple 

similarity measures. The experimentation has been performed on the IEEE dataset 

consisting of ‘C’ and ‘C++’ corpora. The similarity measures considered for this 

experimentation include cosine similarity, n-grams, Levenshtein distance, Jaro & Jaro-

Winkler and coefficients such as Dice, Jaccard, and F-1. The research is divided into two 

modules, the first one being the similarity detection process and the second one involves 

of machine learning classification and clustering. The data extracted from the source 

codes such as token scores and other data is stored in the relational database and the 

same data is given to the machine learning module of this research. According to the 

results and experimentation illustrated in chapter 5, supervised learning is more favorable 

and reliable than unsupervised because of smart prediction and ML indicators to detect 
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the student assignment pair's plagiarism level. Adding a novelty feature to this 

implementation over the other existing software’s, a web application has been developed 

to represent analysis and visualization conducted throughout the procedure. 

6.2  Future Work 

The current research can be expanded by extending the detection process to the next 

level, which is syntactic analysis. The construction of a parser tree using ANTLR for one 

source code is complex and therefore will be more difficult to do the same for a bunch of 

files in a parallel processing environment. The expansion will improve the comparison 

accuracy as the source code controls, and constructs will be evaluated. Various parse tree 

algorithms for recursive descent parser and LR/LL can be used for similarity detection. 

The grammar for other programming languages such as Java, Python, COBOL, PASCAL, 

LISP etc can be included with the ANTLR tokenizer and the systems code could be 

modified accordingly. Adding this feature might increase the scope of the system and 

utilization in multiple applications. The current machine learning module of this thesis 

states the importance of supervised learning for predicting plagiarism levels for student 

assignments and reducing the time complexity of the system. In future, the ML techniques 

could be encapsulated in the systems archive and perform computations without the need 

of exporting data from MySQL back-end. Diagrammatic representations of critical analysis 

and insights within the comparison process will be essential and play the key role in this 

kind of research. 
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Appendix A. 
 
Installation of ANTLR & Other libraries 

1. Open Intellij IDEA and navigate to settings  plugins  

 

2. Type ‘ANTLR’ in the search bar and install the plug-in for direct add-on to the 

environment 
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3. Download MySQL connector from https://dev.mysql.com/downloads/connector/j/ and 

add the jar file to the IDE via external libraries.  

4. Go to File  Project Structure  Modules  Dependencies  Add new jar files

 

5. Now that ANTLR plug-in is added, let’s add ANTLR Complete jar file to the system 

as the final requirement by following step 4. 

6. Download the jar file from ANTLR’s parent site - https://www.antlr.org/download.html 

 

https://dev.mysql.com/downloads/connector/j/
https://www.antlr.org/download.html
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Appendix B. Lexical Analyzer: Java code Samples 

1. System Code: Java for specifying folder path with one to one file comparison and 

ANTLR grammar selection code snippet 

 

String path1 = "F:\\Lakehead 

Subjects\\Thesis_summer_spring_fall2020\\newz1_cpp"; 

 

        File folder1 = new File(path1); 

        System.out.println(folder1.listFiles()); 

        List<File> foldlist1 = Arrays.asList(folder1.listFiles()); 

        File[] filesList1 = folder1.listFiles(); 

 

        for(File f1: filesList1) { 

            System.out.println(f1.getName()); 

            for(File f2: filesList1) { 

                if(!(f1.getName().equals(f2.getName()))) { 

                    //System.out.println(f2.getName()); 

 

                    FileInputStream reader = new FileInputStream(f1); 

                    FileInputStream reader1 = new FileInputStream(f2); 

                    

System.out.println("============================================"); 

                    System.out.println(f1.getName()); 

                    System.out.println(f2.getName()); 

                    

System.out.println("============================================"); 

                    ArrayList<String> lines = new ArrayList<>(); 

                    ArrayList<String> lines1 = new ArrayList<>(); 

                    Map<String, List<String>> symbolTable = new 

HashMap<String, List<String>>(); 

                    Map<String, List<String>> symbolTable1 = new 

HashMap<String, List<String>>(); 

                    //ystem.out.println("yeahhh"); 

                    //System.out.println(f1.getName().matches("\\s$")); 

                    

//System.out.println(f1.getName().substring(f1.getName().length() - 

1)); 

                    //System.out.println(f1.getName().endsWith("c")); 

 

                    if(f1.getName().endsWith("c") && 

f2.getName().endsWith("c")) 

                    { 

 

                        ANTLRInputStream input = new 

ANTLRInputStream((reader)); 

                        ANTLRInputStream input1 = new 

ANTLRInputStream((reader1)); 

                        CLexer lexer = new CLexer(input); 

                        CLexer lexer1 = new CLexer(input1); 

                        //CParser parser = new CParser(input); 
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                        Token token = lexer.nextToken(); 

 

                        while (token.getType() != CLexer.EOF) { 

                            //System.out.println(token.getText()); 

                            token = lexer.nextToken(); 

                            List<String> list = 

Arrays.asList(token.getText()); 

                            lines.addAll(list); 

                        } 

 

                        Token token1 = lexer1.nextToken(); 

 

                        while (token1.getType() != CLexer.EOF) { 

                            //System.out.println(token.getText()); 

                            token1 = lexer1.nextToken(); 

                            List<String> list1 = 

Arrays.asList(token1.getText()); 

                            lines1.addAll(list1); 

                        } 

                    } 

                    else if(f1.getName().endsWith("cpp") && 

f2.getName().endsWith("cpp")) { 

 

                        ANTLRInputStream inputcpp = new 

ANTLRInputStream((reader)); 

                        ANTLRInputStream input1cpp = new 

ANTLRInputStream((reader1)); 

                        cpp lexer = new cpp(inputcpp); 

                        cpp lexer1 = new cpp(input1cpp); 

                        //CParser parser = new CParser(input); 

 

                        Token token = lexer.nextToken(); 

 

                        while (token.getType() != cpp.EOF) { 

                            //System.out.println(token.getText()); 

                            token = lexer.nextToken(); 

                            List<String> list = 

Arrays.asList(token.getText()); 

                            lines.addAll(list); 

                        } 

 

                        Token token1 = lexer1.nextToken(); 

 

                        while (token1.getType() != cpp.EOF) { 

                            //System.out.println(token.getText()); 

                            token1 = lexer1.nextToken(); 

                            List<String> list1 = 

Arrays.asList(token1.getText()); 

                            lines1.addAll(list1); 

                        } 

                    } 
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2. Java Code for MySQL Connection  
 

try { 

                        connect1 = DriverManager 

                                

.getConnection("jdbc:mysql://localhost:3306/demo?" 

                                        + "user=root&password=root"); 

                        statement1 = connect1.createStatement(); 

                        preparedStatement1 = connect1 

                                .prepareStatement("insert into  

demo.scores values (?, ?, ?, ?, ?, ? , ?, ?)"); 

                        //preparedStatement1.setString(1, 

newList.get(i).getName().concat(newList1.get(i).getName())); 

                        preparedStatement1.setString(1, 

f1.getName().concat(f2.getName())); 

                        preparedStatement1.setLong(2, keyocc); 

                        preparedStatement1.setLong(3, math1); 

                        preparedStatement1.setLong(4, numcount1); 

                        preparedStatement1.setLong(5, logcount); 

                        preparedStatement1.setLong(6, opcount); 

                        preparedStatement1.setLong(7, total); 

                        preparedStatement1.setLong(8, dis); 

                        preparedStatement1.executeUpdate(); 

 

                        preparedStatement1 = connect1 

                                .prepareStatement("SELECT filenames, 

keywordscore, mathopscore, numericalscore, logicalscore, otheropscore, 

totalsimilarity, totaldissimilarity from demo.scores"); 

                        resultSet1 = preparedStatement1.executeQuery(); 

                        connect1.close(); 

                    } catch (SQLException e) { 

                        // TODO Auto-generated catch block 

                        System.out.println("error in db"); 

                        e.printStackTrace(); 

                    } 
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