
 

Lake  trout  and  their  egg  predators’  ability  to  locate  spawning  

substrate using olfaction 

 

 

 

 

A thesis presented to 

The Faculty of Graduate Studies 

Of 

Lakehead University 

By 

Blair Wasylenko 

 

 

In partial fulfillment of requirements 

For the degree of  

Master of Science in Biology 

 

September 18, 2013 

 

©Blair Wasylenko, 2013



 i 

Abstract 
 

Lake trout spawning sites, and the substrate on these sites, are structurally unique 

in many ways. These sites are generally at the end of the fetch of a lake, close to shore (1 

m) and composed of small to medium sized rubble and cobble. Lake trout and their egg 

predators use the same site(s) annually. It was hypothesized that both lake trout and their 

egg predators utilize olfaction to locate the same sites annually. To test this hypothesis 

trap nets were baited with visually concealed lake trout spawning substrate or non-

spawning substrate that was structurally similar to spawning substrate. Trap nets baited 

with lake trout spawning substrate captured significantly more lake trout and common 

white sucker (an egg predator) than trap nets that contained structurally similar non-

spawning substrate. Spawning substrate-containing traps also caught more spawn-ready 

lake trout.  

In a second experiment, significantly more egg predators were captured in 

unbaited minnow traps on lake trout spawning sites than structurally-similar non-

spawning sites. To test whether smaller egg predators, such as sculpin or crayfish, were 

attracted to visually concealed spawning substrate, two standard minnows traps were 

placed on 8-10 sites on three lakes. One trap was baited with lake trout spawning 

substrate and the other with structurally similar non-spawning substrate.  Traps with 

spawning substrate captured significantly more egg predators as well other opportunists 

than those with non-spawning substrate. These results demonstrate that both lake trout 

and their egg predators are able to locate visually concealed spawning substrate. 
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Lay Summary 
 
Faculty and students in the Department of Biology are bound together by a common 

interest in explaining the diversity of life, the fit between form and function, and the 

distribution and abundance of organisms. This thesis helps to explain how lake trout 

mating systems and their egg predators use olfaction to help locate appropriate spawning 

substrate annually. The ability to locate this substrate using olfaction allows lake trout 

and their egg predators the ability to minimize the amount of time spent searching for the 

appropriate sites.  This research helps to understand the process of lake trout utilizing 

certain areas for spawning even when there are structurally similar sites that are not 

utilized. 
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Chapter 1: Introduction 
 

Within  the  aquatic  environment,  species’  ability  to  interpret  chemical  information  

allows them to increase their chance of survival (Solomon, 1977; Liley, 1982; Brown & 

Smith, 1998; Bryer et al., 2001; Ache & Young, 2005). Chemical information found 

dissolved in water includes biochemical products released from conspecifics, amino acids 

signaling food, and alarm cues (Liley, 1982). The interpretation of these chemical cues 

mediate many fundamental ecological interactions across the taxonomic spectrum, 

including mate selection, foraging, predation, and establishing social hierarchies (Hara, 

1994; Kats & Dill, 1998; Krieger & Breer, 1999; Hansen & Zielinski, 2005). The ability 

to use olfaction also allows many different species the ability to recognize and locate 

areas that are used annually as spawning sites as well as areas that have seasonal food 

sources.  

Spawning areas are unique locations in nature as they are recognized in numerous 

ways as being attractive areas where reproducing members of a population congregate. 

Fish that are spawn-ready are prime examples of individuals being able to utilize their 

senses to coordinate and congregate annually on predetermined areas. The use of 

olfaction during spawning is beneficial as it aids in the ability to discriminate kin as well 

as helps to synchronize the reproductive efforts of the population (Brown & Brown, 

1996; Olsen et al., 1998; Ward & Hart, 2003). The ability to discriminate kin allows the 

population to minimize the amount of inbreeding occurring and in turn increases the 

genetic diversity of the population as a whole. The ability of the reproducing population 
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to synchronize their reproductive efforts at a certain location increases the reproductive 

success of the population (Knowlton, 1979; Blanchfield & Ridgway, 1997).  

The role of olfaction in salmonid migration and spawning is well known (Hasler 

& Wisby, 1951; Banks, 1969; Hasler & Cooper, 1976; Dittman et al., 1996; Crossin et 

al., 2007). Once anadromous salmonids are ready to spawn, they will converge with other 

conspecifics at their natal river mouth (Royce et al., 1968; Burgner, 1980). Salmon will 

then make their way upriver to their natal sites relying primarily on olfactory 

discrimination of their home stream water (Hasler et al., 1978; Hasler & Scholz, 1983; 

Dittman & Quinn, 1996). Juvenile salmon are believed to imprint on characteristic natal 

river odours during their time there as young parr (Hasler & Wisby, 1951). One 

hypothesis on how salmon are able to imprint these olfactory cues is linked to different 

hormone levels at different stages in their development (Hasler & Scholz, 1983). During 

the parr-smolt transformation, levels of plasma thyroxine will be elevated (Dickhoff et 

al., 1989).  This peak corresponds with a developmentally significant time, and may be 

associated with smolts imprinting key olfactory cues and relating them to landmarks. 

Thyroid hormones have also been associated with migration and juvenile migrating 

salmon have been found to have higher levels of plasma thyroxine than their non-

migrating counterparts (Hoar, 1976).  If thyroid hormones are associated with imprinting 

and migration then juvenile salmon may be able to imprint multiple waypoints on their 

journey to the ocean and later recall these waypoints on their ascension back upriver to 

natal spawning sites (Dittman & Quinn, 1996).  

Orientation to suitable spawning habitat is equally important in non-anadromous 

salmonids. Lake trout (Salvelinus namaycush) are generally not anadromous, though 
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there are arctic populations that will travel to salt water (Swanson et al., 2010). They 

spawn nocturnally, en masse, and at relatively few sites within a lake in mid-October 

(DeRoche, 1969; Martin & Olver, 1980; Gunn, 1995). Spawning sites may be influenced 

by numerous factors including olfactory cues, visual cues (recognition of substrate type), 

reef location with respect to the shoreline, water depth, proximity to deeper water, 

contour, substrate size and shape, depth of interstitial spaces, water temperature, water 

quality in interstitial spaces, and the presence or absence of other species (Marsden et al., 

1995a).  Ideal lake trout spawning beds are composed of cobble, rubble, or boulders with 

abundant interstitial spaces (Martin & Olver, 1980). During spawning, males congregate 

on spawning shoals 10-15 days before females (Gunn, 1995). While on the spawning 

shoals,  males  will   exert   “tail-whip”  movement   over   spawning   beds   to   clear   interstitial  

spaces of organic debris (Martin & Olver, 1980). Once spawning occurs, negatively 

buoyant eggs will disperse into the interstitial spaces and incubate for a 5 – 7 month 

period (Gunn, 1995). Since lake trout do not construct redds (like other salmonids), the 

deposition of eggs into interstitial spaces is suspected to be an anti-predator strategy that 

is used to protect over-wintering eggs and fry from potential predators (Greeley, 1932; 

Martin & Olver, 1980; Edsall et al., 1992).  

Within the Laurentian Great Lakes, lake trout populations have not been self-

sustaining since over fishing, and sea lamprey (Petromyzon marinus) predation in the 

1950s (Evans & Olver, 1995). Currently, Lake Superior is the only Great Lake that has a 

self-sustaining, reproducing lake trout population (Hansen et al., 1995). Since lake trout 

are a long-lived, slow maturing species, they are susceptible to any changes or effects to 

their annual recruitment. One of the factors affecting restoration of a self-sustaining lake 
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trout population is egg predation (Krueger et al., 1995; Savino et al., 1999). At certain 

spawning sites in the Great Lakes, egg predation can have significant detrimental effects 

on the survivorship of lake trout embryos (with egg consumption rates reaching as high 

as 80% of available eggs) (Fitzsimons et al., 2002). Most egg predators are attracted to 

other salmonid eggs though olfaction, though this has not been tested with lake trout eggs 

directly (Dittman et al., 1998; Mirza & Chivers, 2002). Lake trout spawning takes place 

over a short period (approx. two weeks) every year, and egg predators would benefit from 

being at lake trout spawning sites during the onset of spawning activities in order to 

maximize the number of eggs they ingest. It is unknown how egg predators locate these 

spawning sites annually.  

What allows lake trout and their egg predators to locate traditional perennial 

spawning sites? Spawning sites have certain physical attributes that make them attractive 

for spawning. However, searching for these areas annually would be an energy intensive 

process and would probably limit the amount of synchronization that occurs within the 

population. If olfaction was used to locate spawning sites then the amount of time spent 

by lake trout and egg predators searching for appropriate sites would be reduced. Though 

olfaction is suspected to play a role in lake trout and egg predators locating spawning 

locations, it has never been formally tested (Foster, 1985; Marsden et al., 1995b; Muir et 

al., 2012). 

This thesis attempts to identify if lake trout and their egg predators use olfaction 

to locate spawning substrate annually. I hypothesized that lake trout and their egg 

predators use olfaction and would be attracted to visually concealed spawning substrate 
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over visually concealed structurally similar non-spawning substrate. The objectives of 

this project were to determine if:  

 

1) Lake trout were attracted to chemosensory cues associated with the substrate 

found at spawning sites;  

2) Lake trout egg predators are more abundant on spawning sites when compared 

to structurally similar non-spawning sites; and if they are, then 

3) Are lake trout egg predators attracted to visually concealed spawning 

substrate? 

 

The objectives for this study were addressed over the course of two field seasons and 

have been compiled into two manuscripts. 

 In Chapter 2, trap nets were baited with visually concealed spawning substrate 

and structurally similar non-spawning substrate to observe whether lake trout and large 

egg predators were attracted to spawning substrate. This experiment was conducted 

adjacent to lake trout spawning shoal during the lake trout spawn. 

In Chapter 3, the abundance of egg predators was compared on a lake trout 

spawning site and structurally similar non-spawning sites. Unbaited minnow traps were 

placed on spawning and non-spawning sites to compare the abundance of egg predators 

between the two types of sites. This experiment was conducted in two different lakes. 

The following field season, two baited minnow traps were placed away from a lake trout 

spawning site, with one trap containing lake trout spawning substrate and the other with 

structurally similar non-spawning substrate. Species abundance was compared between 
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the treatments. This experiment was conducted on three different lakes and was 

conducted over the course of seven to ten days.  
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Chapter 2: Chemosensory cues attract lake trout Salvelinus namaycush, 
and an egg predator to spawning substrate 1  

                                                 
1  Wasylenko, B. A., Blanchfield, P. J. & Pyle, G. G. (2013). Chemosensory cues attract lake trout Salvelinus 

namaycush and an egg predator to the spawning substratum. Journal of Fish Biology 82, 1390-1397 
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2.1 Abstract 
 
Lake trout Salvelinus namaycush return to the same spawning locations annually, despite 

the availability of local sites that are structurally similar. A field experiment was 

conducted to determine whether chemosensory cues emanating from lake trout spawning 

substrate attract breeding fish. Substrates from either a spawning site or a control site 

were randomly placed in trap nets around an isolated spawning shoal. Trap nets that 

contained spawning substrate caught significantly more lake trout, as well as a greater 

proportion of lake trout in breeding condition, than nets with control substrate. White 

sucker Catostomus commersoni were a predator of lake trout eggs and were also captured 

in greater numbers in nets with spawning substrate. 
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2.2 Introduction 
 

Many fish species rely on chemosensory cues to locate perennial spawning sites 

(Horrall, 1981; Miller et al., 2001; Døving et al., 2006).  Salmonids in particular have 

certain chemical characteristics or odourants emanating from their natal streams that are 

imprinted in their young and later recalled to guide the fish back to their natal spawning 

locations (Wisby & Hasler, 1954; Hasler & Cooper, 1976; Johnsen & Hasler, 1980). 

Chemical cues associated with spawning sites may be especially important for 

long-lived salmonid species, such as lake trout, Salvelinus namaycush (Walbaum 1792). 

Lake trout spawn on rocky, windswept shoals in late fall, where fertilized eggs fall into 

the interstices of cobble substrate and remain there for several months before hatching 

(Gunn, 1995). Large-scale movements of lake trout to spawning sites and travel between 

spawning sites during the breeding season have been documented (MacLean et al., 1981), 

although factors that influence site selection are not well defined. Spawning sites are 

thought to contain chemical cues (odours) that promote perennial spawning site fidelity 

(McCrimmon, 1958; Martin, 1960; Foster, 1985; Muir et al., 2012). The identity of these 

chemical cues is currently unknown; however, they are likely renewed annually during 

spawning events. Foster (1985) suggested that lake trout are attracted to spawning sites 

due to the accumulation of juvenile feces on these sites. The olfactory systems of lake 

trout also contain multiple bile-acid receptors and lake trout have  a preference for water 

containing bile acids (Zhang & Hara, 2009). In addition to spawning fish being attracted 

to these cues, egg predators may be attracted to similar cues, as they indicate the 

possibility of an available food source. 
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Although it has been hypothesized that lake trout find and congregate on 

spawning habitat using chemosensory cues, whether chemosensory cues play a role in the 

selection of natural, perennial spawning shoals by lake trout remains untested.  This 

hypothesis predicts that lake trout use chemosensory cues to find spawning substrates 

previously used by conspecifics.  Here, the experimental design used spawning substrate 

from a known lake trout spawning shoal and non-spawning substrate from a structurally 

similar non-spawning shoal (control) as a treatment in trap nets placed near an isolated 

lake trout spawning site during breeding season. The primary objective of this experiment 

was to test whether trap nets with concealed lake trout spawning substrate would catch 

more lake trout than those that contained concealed non-spawning substrate. A secondary 

objective was to test whether lake trout breeding condition differed between treatments. 

This experiment was also used to determine if egg predators were attracted to concealed 

lake trout spawning substrate.  

 

2.3 Methods 
 

Lake  468  (49º  40’  N,  94º  45’  W)  is  located  within  the  Experimental  Lakes  Area  

(ELA), a pristine area set aside for aquatic research in northwestern Ontario, Canada (Fig. 

2.1a). It is a medium-sized lake (292 ha) with a maximum depth of 29 m (Fig. 2.1b). 

Lake 468 is located within the Boreal Shield Ecozone and has a simple fish community 

that consists of lake trout, lake whitefish Coregonus clupeaformis (Mitchill, 1818), 

common white sucker Catostomus commersoni (Lacépède 1803), yellow perch Perca 

flavescens (Mitchill, 1814), Slimy sculpin Cottus cognatus (Richardson, 1836) and five 

cyprinid species (Sellers et al., 1998) (Table 3.1).  
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An isolated lake trout spawning site was selected that was located beside a small 

island, where historically lake trout were known to spawn (Fig. 2.1c). Use of the site for 

spawning was confirmed visually by the presence of lake trout and deposited eggs 

(October 13, 2011). Substrate was collected with a shovel, directly from the spawning 

shoal (spawning substrate), while the control substrate (non-spawning substrate) was 

taken from a structurally similar non-spawning site in Lake 468 with no known or 

observed spawning activity (approx. 600 m from spawning shoal). Substrate was 

collected during the lake trout spawn and was chosen based on cobble size typically 

selected by breeding lake trout (~4–10 cm diam.). Approximately 22 rocks were used in 

each substrate sample, for a mean sample weight of 5.2 kg (S.E. = ± 0.2 kg; n=4, 2 

samples of each substrate type). Each substrate sample was wrapped in fine mesh netting 

to allow water to infiltrate the  

Figure 2.1 - Location of (a) the Experimental Lakes Area in northwestern Ontario, Canada (star), 
and (b) study site within Lake 468 (box).  (c) Trap nets (1-4) were set around an island with a known 
lake trout spawning shoal (S). 
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sample, but visually conceal the substrate from the fish. All four substrate samples were 

used daily throughout the entire experiment (October 12-21, 2011). The central leads 

were removed from four trap nets (183 cm x 345 cm trap; 25 cm x 25 cm opening; 6.4 cm 

mesh size) and deployed them in approximately 3 m of water, each set at a different 

corner of the island (Fig. 2.1c). The habitat over which trap nets were deployed was 

similar and consisted of medium to large cobble mixed with small boulders. One wing of 

each net was tied to the shore and the other anchored to the lake bottom. Each net had 

either spawning substrate or non-spawning (control) substrate contained in the trap 

portion and each side of the island had one of each type of substrate throughout the 

experiment. All fish were removed from the trap nets daily (0900 and 1200 h) and from 

each net fish species, total and fork length (mm), mass (g) and sex were recorded from 

each fish when possible. All fish were returned to the lake on the opposite side of the bay, 

~400 m away from the study site. After all nets were sampled, non-spawning substrate 

was exchanged with spawning substrate, and vice versa for all locations. Each substrate 

sample was placed in a different net following a sequential order (a sample would go into 

each net once before returning to the original net it was placed in). 

2.4 Results 
 

In total, 96 lake trout, 93 common white sucker and 17 lake whitefish and a single 

yellow perch were captured. The large mesh size did not permit the capture of small- 

bodied fish species present in the lake, such as cyprinids and sculpin. Catches were not 

distributed equally among the four nets. Trap nets 1 and 2 were located on either side of 

the spawning shoal (Fig. 2.1c) and captured the least (n=29), and the most (n=91) fish, 

respectively. Catches in the nets furthest away from the spawning shoal (net 3: n=55; net 
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4: n=32) were intermediate to nets in close proximity. A chi-square analysis of the 

median daily catch numbers for each trap suggests that there is no significant difference 

in catch among the four nets (2=4.85, DF=3, P > 0.05).  Further analysis was restricted 

to lake trout and common white sucker, as lake whitefish and yellow perch were caught 

in insufficient numbers for meaningful interpretation.  

Overall, catches of lake trout were highly variable within and among the four 

traps (Table 2.1). Only net 2, when containing spawning substrate, consistently caught 

lake trout, all other nets had at least one instance of no fish capture. Similar catch 

variability was observed for white sucker and can be partially attributed to natural 

fluctuation in fish recruitment to spawning sites as well as the limited number of trials 

(n=3) for which treatments were placed in each net. Because of this variability, non-

parametric analysis (Pearson Chi-square) was used to examine total catch. In total, a 

greater number of lake trout was attracted to the spawning substrate than to control 

substrate (2=6.58, DF=1, P=0.01, Fig. 2.2). Similar results were observed with white 

 

Table 2.1: Median daily catch numbers (and range) of lake trout and white sucker caught in 
individual trap nets (1-4; see Fig. 1c) placed near a lake trout spawning shoal when 
containing lake trout spawning substrate versus non-spawning substrate (control). 
 

Trap Lake Trout White Sucker 

net spawning control spawning control 

1 1 (0-5) 4 (0-4) 2 (1-3) 4 (0-7) 

2 4 (4-8) 1.5 (2-13) 13 (5-23) 0.5 (1-4) 

3 8.75 (0-29) 0(0-2) 4.25 (0-15) 1 (0-1) 

4 2 (0-4) 2.75 (0-5) 0 (0-4) 2.5 (0-10) 
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sucker, which were also found in a higher number in the nets containing spawning 

substrate (2=18.08, DF=1, P<0.0001, Fig. 2.2). For both lake trout and common white 

sucker, trap nets containing spawning substrate captured roughly twice the number of fish 

relative to nets with control substrate (Fig. 2.2). 

The overall sex ratio of captured lake trout was similar to the ratio expected at 

most spawning sites, which is approximately 55–60% males to 40–45% females 

(spawning substrate nets: 58% males, 37% females, 5% unknown, n=60; non-spawning).  

Although there was no difference in sex ratios between treatments, a significantly greater 

proportion of lake trout in breeding condition (i.e. fish that could be sexed based on the 

expression of gametes) were captured in nets with spawning substrate (95%) relative to 

those captured in nets with control substrate (81%; one-tailed proportion test, t(1, 94)=2.42, 

P = 0.01). 
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Figure 2.2 - Total number of lake trout (solid bars) and white sucker (open bars) captured in trap 
nets  containing  spawning  substrate  versus  those  with  “control”  (non-spawning) substrate. Asterisks 
indicate a significant difference between numbers of fish caught between treatments. 

 

2.5 Discussion 
 

This field experiment is the first to demonstrate that lake trout are attracted to 

natural spawning substrate when the substrate is visually concealed. The catches per net 

were highly variable, but overall there was significantly greater numbers of both lake 

trout and an egg predator, white sucker, in nets containing substrate taken directly from a 

known spawning site. Also, nets that contained spawning substrate had more lake trout in 

breeding condition than nets that contained control substrate, suggesting that spawning 

substrate attracts more lake trout that are ready to spawn. Traditionally, selection of 

spawning sites by lake trout has been considered in terms of physical habitat features; 
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specifically, the presence of appropriately-sized cobble located in areas of the lake 

receiving sufficient fetch (Flavelle et al., 2002). Our findings indicate that physical 

structure and location are not the only aspect of spawning site selection. The attraction of 

both species to the visually concealed spawning substrate confirms their ability to locate 

spawning substrate using olfaction. 

The use of chemical cues to locate spawning sites may allow lake trout the ability 

to limit the amount of time searching for suitable spawning habitat annually (an energy 

intense process) (Goodenough et al., 2009). Odourants from conspecific juvenile 

salmonid feces may be the initial cue that reproducing fish recognize during spawning 

and allows them to return to successful spawning locations (Foster, 1985; Stabell, 1987). 

The intensity of chemical cues is predicted to be directly related to numbers of spawning 

fish (or eggs hatched), and therefore declines in lake trout populations would be expected 

to reduce the annual renewal of that cue. The missing olfactory cues may be partially 

responsible for the lack of success with stocking programs in the Laurentian Great Lakes, 

where lake trout populations have been declining (Krueger et al., 1995). For example, 

stocked lake trout are more likely to return to their release sites during spawning season 

in Lake Michigan rather than historical spawning sites (Bronte et al., 2007). Similar to 

other salmonids, the initial cue that lake trout recognize may be what is recalled during 

their earliest life stages, meaning that instead of imprinting on suitable spawning sites 

(i.e., where native fish would hatch), they instead imprint with the smell of the first site 

they encounter when stocked to a lake (Hasler & Cooper, 1976). If young lake trout 

follow a similar model to other salmonids, it can be expected that odour imprinting is 

occurring in hatching lake trout as well.  
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Egg predation can drastically reduce lake trout reproductive potential (Jones et al., 

1995; Chotkowski & Marsden, 1999; Savino et al., 1999; Fitzsimons et al., 2007). 

Common white sucker has generally not been included in the interstitial egg predation 

guild on lake trout eggs; however, during this study, there was a significant response by 

common white sucker to trap nets that contained spawning substrate. Furthermore, visual 

observations confirmed common white sucker consumption of lake trout eggs in our 

study (P. Blanchfield, pers. obs.). Our experimental design did not allow us to test 

whether common white suckers were attracted to spawning site by olfaction or the 

presence of lake trout already in the trap nets. Nonetheless, common white suckers have 

been known to predate on other fish eggs, which is most likely via olfactory cues 

(Roseman et al., 2006). Consumption of lake trout eggs by a variety of predators is a 

major concern to the maintenance of lake trout populations in the Laurentian Great Lakes 

and elsewhere (Fitzsimons et al., 2002). An additional concern is that egg predators 

eliminate the potential for developing lake trout embryos to impart cues during the 

months of incubation within the interstices of the spawning shoal. Our findings suggest 

that egg predators may indirectly decrease lake trout spawning success by depressing 

chemical cues at spawning sites. At present, the extent to which white sucker contribute 

to reduced recruitment of lake trout through egg predation is unknown and requires 

further examination. 

Lake trout spawning locations are inherently identified in some way. The ability 

of lake trout to select the same site annually is not an anomaly. These sites have unique 

characteristics that make them suitable and successful for viable reproduction: coarse 

cobble, well-aerated water through ample fetch that is relatively shallow but close to 
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deeper areas (Gunn, 1995). Here is the first field evidence that olfaction may play a role 

in the choice of spawning location, in addition to these general physical and limnological 

features of lake trout spawning habitat. Currently, the lake trout reproductive model 

discusses olfaction’s  role  in  site  fidelity  but  does  not  contain  any  evidence  in  its  support  

(Esteve, 2005). This study is the first to demonstrate that lake trout are preferentially 

attracted to visually concealed spawning site substrate over non-spawning substrate, and 

that this is true for both the spawning fish, as well as its egg predators. 
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Chapter 3: Lake trout (Salvelinus namaycush) spawning substrate attracts 
egg predators and opportunists through chemosensory cues 
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3.1 Abstract 
 

Lake trout egg predators are able to locate the same sites annually when lake trout 

spawning is occurring. Though these sites have certain structural characteristics that 

make them unique and ideal for egg incubation, these characteristics do not explain the 

ability of egg predators to return annually. To test whether egg predators were attracted to 

lake trout spawning sites, five unbaited minnow traps were placed on lake trout spawning 

sites and structurally similar non-spawning sites in two lakes. Species abundance was 

recorded for each site. Traps on spawning sites captured significantly more sculpin, 

shiners and crayfish than structurally similar non-spawning sites. To test whether egg 

predators were attracted to substrate located on these sites, a field experiment was 

conducted the following year during the lake trout spawn. Visually concealed substrates 

from either a lake trout spawning site or a structurally similar non-spawning site were 

placed in a minnow trap on 10 sites on three lakes in the Experimental Lakes Area. Each 

site, on each of the lakes, had two minnow traps; one with lake trout spawning substrate 

and one with non-spawning substrate. For all lakes, minnow traps that contained 

spawning substrate captured more fish over the course of the study, than those that 

contained non-spawning substrate as well as had higher average daily catches.  
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3.2 Introduction 
 

In aquatic environments, chemical cues mediate many fundamental ecological 

interactions across taxa, including recognizing conspecifics, evaluating predation risk, 

finding food, and establishing social status (Hara, 1994; Kats & Dill, 1998; Krieger & 

Breer, 1999; Huertas et al., 2007). Chemosensory cues allow aquatic organisms to 

interpret their environment (Ache & Young, 2005). The olfactory system of fish responds 

to an array of diverse molecules including amino acids (Hara, 2006), bile acids (Døving 

& Stabell, 2003), peptides (Hara, 1992), and steroidal compounds (Sorensen et al., 2005). 

The interpretation these compounds can help coordinate different actions for different 

members of the aquatic community. Spawning shoals are unique locations that can 

contain chemical cues that can be interpreted as either spawning cues to conspecifics, or 

food cues to egg predators. 

Organisms in the aquatic environment are able to distinguish, mark and recall 

areas that are significant to them (Odling-­‐Smee & Braithwaite, 2003). In many species, 

spawning locations are recognized annually by olfactory cues (Johnsen & Hasler, 1980; 

Horrall, 1981; Miller et al., 2001; Døving et al., 2006). Salmon in particular, are able to 

migrate hundreds of kilometers to their natal streams using olfactory cues (Dittman & 

Quinn, 1996). In many instances, salmon that have had their olfactory systems occluded 

are unable to locate spawning sites (Wisby & Hasler, 1954; Hansen et al., 1987). The 

ability to locate these areas using olfaction, can help to limit the amount of time spent 

searching for suitable spawning locations and help to coordinate the reproducing 

population (Goodenough et al., 2009). 
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Lake trout, Salvelinus namaycush (Walbaum, 1792), specifically, use the same 

spawning sites annually even though there may be other structurally similar sites 

available (Gunn, 1995). A recent study demonstrating that lake trout are attracted to 

visually concealed substrate found on spawning sites suggests chemical cues may play a 

role in the selection of spawning sites in addition to physical features (Wasylenko et al., 

2013). It is hypothesized that spawning lake trout are attracted to the accumulation of 

juvenile feces and discarded egg membranes that are found on successful reproductive 

sites (Foster, 1985). Typically these sites are on rocky, windswept shoals, where fertilized 

eggs fall into the interstices of cobble substrate where they remain for several months 

before hatching (Gunn, 1995). These locations are ideal for lake trout to successfully 

deploy their negatively buoyant eggs and keep them well oxygenated during incubation. 

Though these sites generally have characteristics that aid in the development of the 

embryos, they do not offer complete protection from egg predators. 

Lake trout eggs are especially vulnerable to predation because, unlike all other 

salmonid species, the eggs are not buried in a redd for protection. As such, predators can 

consume up to 80% of eggs found on spawning sites (Fitzsimons et al., 2002). Lake trout 

eggs are a protein rich, highly abundant prey item for predators such as slimy sculpin 

Cottus cognatus (Richardson, 1836), crayfish (genus Orconectes (Cope, 1872)), and 

common white sucker (Catostomus commersoni (Lacépède 1803)) (Savino et al., 1999; 

Wasylenko et al., 2013).  Predator densities on spawning sites increase as eggs become 

abundant on spawning sites (Fitzsimons et al., 2002). Some initial studies have shown 

that different sculpin species are attracted to salmonid eggs, but have not shown whether 

they are attracted directly to spawning sites (Dittman et al., 1998; Mirza & Chivers, 
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2002). Since the same spawning sites contain eggs annually and over a short period of 

time, it would be to the  predator’s  advantage  to  locate  these areas quickly. 

This experiment was conducted through a series of replicated field trials to 

determine whether egg predators can locate visually concealed lake trout spawning 

substrate. The experimental design tested whether egg predators showed a preference for 

spawning substrate compared to structurally similar non-spawning (control) substrate. 

The initial objective was to determine if, in fact, egg predators were attracted to spawning 

locations, as determined by the abundance and diversity of species found on natural 

spawning shoals versus habitat-matched control sites. The second objective determined 

whether native species were preferentially attracted to lake trout spawning substrate by 

comparing the abundance of, and diversity of, species captured in traps with and without 

(control) spawning substrate. 

3.3 Methods 
 

3.3.1 Attraction to spawning shoals 
 

My initial study examined whether egg predators were more abundant on 

spawning sites when compared to structurally similar non-spawning sites. The abundance 

of egg predators on the two types of sites was tested to determine whether structure of a 

spawning site  played  a   role   in   the  egg  predator’s  decision   to  be  on  the  site.   If  structure  

were the determining factor in their decision then we would see no significant difference 

in the abundance of egg predators on spawning sites and structurally similar non-

spawning sites.  
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Egg predator attraction to spawning sites and structurally similar non-spawning 

sites was examined at two lakes; L020 (49°  07’  N, 92° 08' W) and L042 (49°  05’  N,  92°  

09’  W) within the Coldwater Lakes Area (CLA) north of Atikokan, ON from October to 

November 2011 (Fig. 3.1). The lakes were chosen based on the known location of lake 

trout spawning sites from previous long-term research on these lakes related to 

deforestation (Steedman, 2000; Steedman & Kushneriuk, 2000).  

Lakes 020 and 042 have similar fish species compositions, with lake trout and 

common white sucker, as the only large fish species present (Table 3.1). Three sites were 

chosen on each lake: one lake trout spawning site, and two structurally similar non- 

spawning sites. Structure of non-spawning sites was based on previous published criteria 

(Martin, 1955; Martin & Olver, 1980; Gunn, 1995). Structurally similar non-spawning 

sites were assessed based on cobble size and on the lack of spawning lake trout captured 

during previous netting programs. Each lake had one predominant lake trout spawning 

location, which was used for this study. The spawning site on Lake 042 was located 

approximately 6 - 8 m offshore on a shoal that was approximately 2 - 3 m in depth. All 

other sites in both lakes were located in the littoral zone in approximately 1 – 2 m of 

water and adjacent to shore. 

Once sites were selected, five unbaited standard wire mesh minnow traps (6.4 mm 

mesh, 42 cm L x 23 cm W with a 22 mm opening) were placed on each of the three sites 

on each lake. Sampling was conducted on nine different occasions for each lake from 

October 3rd to November 23, 2011. During each sampling event, species abundance was 

recorded and traps were placed back on the site.  All fish captured were released 

approximately 10 m from the sampling site. 
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Figure 3.1 - Locations of study lakes used through out this experiment. Lakes 224, 260, and 468 are 
located in the Experimental Lakes Area (ELA). Lake 042 and lake 020 are located in the Coldwater 
Lakes Area (CLA). 

 

3.3.2 Attraction to spawning substrate 
 

The second part of this study was to determine whether egg predators were 

attracted to visually concealed spawning substrate. We examined whether native species 

were preferentially attracted to spawning substrate in three lakes at the Experimental  
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Table 3.1: Characteristics of study lakes.  
 

Lake 
characteristics 

Lake 
020 042 224 260 468 

Lake area (ha) 57 28 26 34 292(100*) 

Maximum 
lake depth (m) 32 19 27 14 29 

Littoral fish 
species1 1-9 1,2,5-7,9 1,2,5-7,9 1,2,5,6,9,11 1,2,4,6,9,10,12, 

13 
*Size of basin used for study. 
1Littoral fish species are coded as follows: 1) Common white sucker; 2) Northern 
redbelly dace Phoxinus eos (Cope 1862) and finescale dace Phoxinus neogaeus (Cope 
1869); 3) Comnmon shiner Luxilus cornutus (Mitchell 1870); 4) Blacknose shiner 
Notropis hetetolepis (Eigenmann & Eigenmann 1893); 5) Fathead minnow Pimephales 
promelas (Rafinesque 1820); 6) Pearl dace Marariscus margarita (Cope 1869); 7) Brook 
stickleback Culaea inconstans (Kirtland 1841); 8) Iowa darter Etheostoma exile (Girard, 
1860); 9) Slimy sculpin; 10) Yellow perch; 11) lake chub Couesius plumbeus (Agassiz 
1850); 12) Bluntnose minnow Pimephales notatus (Rafinesque, 1820); 13) Longnose 
dace Rhinichthys cataractae (Valenciennes, 1842) 
 

Lakes Area (ELA) 50 km east - southeast of Kenora, ON. The ELA is a pristine area that 

encompasses 58 research lakes that have been set aside for research purposes 

(Blanchfield et al., 2009). Lakes 260 (49° 41' N, 93° 46' W), 224 (49° 41' N, 93° 43' W) 

and the northeastern basin of 468 (49º  40’  N,  94º  45”  W)  (Fig.  2.1) were chosen based on 

the known locations of lake trout spawning sites as well as the accessibility of these sites. 

All lakes contained lake trout, and common white sucker as their predominant large fish 

species (Table 3.1).  

Lake 468 and Lake 224 contained ten sampling sites per lake and Lake 260 

contained eight sampling sites. All sites were located approximately 1 m from shore and 

were chosen based on their ability to accommodate two minnow traps, had a relatively 

gradual slope, and were not located close to a known lake trout spawning location. Sites 
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were chosen to encompass as much of the lake as possible except in the case of Lake 468, 

we restricted our study area to the northeastern basin (Fig. 3.1). 

Spawning substrate was collected from known lake trout spawning locations 

(during lake trout spawn) in each lake and separated into 0.25 kg units (approximately 5-

8 pieces of substrate (cobble) per unit). Each substrate sample was wrapped in fine mesh 

netting to allow water to infiltrate the sample, but visually conceal the substrate. This 

method was repeated with substrate from a structurally similar non-spawning site. 

Spawning was confirmed by the presence of lake trout and eggs on the spawning 

location. 

Two minnow traps (6.4 mm wire mesh, 42 cm L x 23 cm W with a 22 mm 

opening) were placed at each sampling site approximately 2 – 3 m apart with the open 

ends facing each other. Each trap contained a fine mesh bag of either spawning substrate 

or non-spawning substrate. Traps were checked daily between 0900 and 1200 hours. 

Species, quantity and total length (TL) were recorded for each individual captured in each 

trap and returned to the lake approximately 15 m from the original capture location. Once 

each trap was sampled at a particular site, trap position was switched with the position of 

the paired treatment (i.e. if spawning substrate was on the right, the next night it would be 

on the left, and vice versa). The same substrate was used continuously throughout the 

experiment and remained within the same trap throughout. Sampling continued for 7 d, 

with the exception of Lake 468, which was sampled for 10 d due to low catch numbers.  
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3.4 Results 
 

3.4.1 Attraction to spawning shoals 
 

Over the course of the study, catches from unbaited traps on spawning and non-

spawning shoals were highly variable resulting in data that failed to meet parametric 

statistical assumptions, despite data transformations intended to reclaim such 

assumptions. Consequently, non-parametric analysis (Pearson Chi-square) was used to 

examine the catch data. Northern redbelly dace and finescale dace were grouped as dace 

due to the common hybridization of the two species. 

In Lake 042, there was significantly more slimy sculpin (SS: n = 27, NS1: n = 4, 

and NS2: n = 10) and northern crayfish Orconectes virilis (Hagen 1870) (SS: n = 19, 

NS1: n = 8, and NS2: n = 6) caught on the spawning site compared to the two non-

spawning sites (slimy sculpin: 2 = 20.83, p <0.0001; northern crayfish:2 = 8.91, 

p<0.01) (Fig. 3.2). The amount of brook stickleback captured at spawning sites (n=11) 

was not significantly different than the amount captured at non-spawning sites (NS1: n = 

25, NS2: n = 21) (2 = 5.47, p > 0.05) (Fig. 3.2). However, the number of dace captured 

at non-spawning sites compared (NS1: n = 254, NS2: n = 120) was greater than the 

number captured at spawning sites (SS = 98) (2 = 90.63, p <0.0001) (Fig 3.2). 

In Lake 020, slimy sculpin (SS: n = 49, NS1: n = 6 , NS2: n = 13) , blacknose 

shiner (SS: n = 106 , NS1: n = 9, NS2: n = 39) and common shiner (SS: n = 117 , NS1: n 

= 5, NS2: n = 16) were more abundant on spawning sites than non-spawning sites (slimy 

sculpin: 2 = 46.97, p <0.0001; blacknose shiner: 2 = 96.09, p<0.0001; common shiner 

2 =165.7, p<0.0001) (Fig. 3.3).  There was no difference in the amount of dace (SS: n = 
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23, NS: n = 17, NS2: n = 11) captured on spawning sites compared to the structurally 

similar non-spawning sites (2 = 4.23, p >0.05)(Fig. 3.3). 
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Figure 3.2 - Total catch from non-baited minnow traps for slimy sculpin, crayfish, brook stickleback, 
and dace in Lake 042 on three sites: S- Spawning site, NS1 – Structurally similar non-spawning site 
1, and NS2 – Structurally similar non-spawning site 2. Asterisks denote a significant difference catch 
between sites. 

Figure 3.3 – Total catch from non-baited minnow traps for slimy sculpin, blacknose shiner, common 
shiner, and dace in Lake 042. Labeling conventions similar to Fig. 3.2  

*

*

*

*
*
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3.4.2 Attraction to spawning substrate 
 

Over the course of the ELA study, catches among traps baited with either 

spawning substrate or non-spawning substrate were highly variable within each 

individual lake such that parametric statistical assumptions could not be met. Therefore, 

non-parametric analysis (Pearson Chi-square) was used to examine the data for each 

individual lake. Parametric assumptions were reclaimed from pooled-lake catch data 

using a log (x+1) data transformation.  

When comparing total catches for all lakes combined over the length of the study 

(7-10 days) there were 327 fish captured in spawning substrate containing traps and 206 

fish captured in non-spawning site containing traps. The average catch per day in 

spawning substrate traps (𝑋ത =13.6) compared to non-spawning substrate containing traps 

(𝑋ത = 8.6) was significantly different (t = -2.12, p = 0.04) (Fig. 3.4a).  However, average 

catch per day between all lakes was significantly different (ANOVA, F-value = 29.72, 

p<0.0001) (Fig. 3.4b). 
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Figure 3.4 – (a) Average daily total catch in the ELA substrate experiment. (b) Average daily catch 
per lake. S- Spawning substrate, and NS – Structurally similar non-spawning substrate. Asterisks 
denote a significant difference catch between sites. 

In Lake 468, traps that contained spawning substrate captured more yellow perch 

(n = 55) than non-spawning substrate containing traps (n = 21) (2 = 15.21, p < 0.001; 

Fig. 3.5).  Slimy sculpin, blacknose shiner and pearl dace were caught in insufficient 

numbers for meaningful interpretation. 

In Lake 260, slimy sculpin, fathead minnows, and pearl dace were captured in 

abundance. There were significantly more fathead minnows, pearl dace, and slimy 

sculpin caught in spawning substrate-containing traps (fathead: n = 70, pearl dace: n = 

19, slimy sculpin: n = 17) than non-spawning substrate containing traps (fathead: n = 23, 

pearl dace: n = 6, slimy sculpin: n = 2)  (fathead minnow: 2 = 23.75, p< 0.0001; slimy 

sculpin 2 = 11.84, p<0.001; pearl dace: 2 = 6.76, p<0.01; Fig. 3.6).  

*

a) b)

B

A
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In Lake 224, pearl dace was the only species that was caught in higher abundance 

in spawning substrate-containing traps (n = 70) than in non-spawning substrate 

containing traps (n = 35) (2 = 11.67, p<0.001; Fig. 3.7). There was no difference in 

brook stickleback (2 = 0.64, p > 0.05), and fathead minnow (2 = 11.67, p > 0.05) 

catches between the spawning (stickleback: n =72, fathead: n = 24) and non-spawning 

substrate containing traps (stickleback: n =82, fathead: n = 37) (Fig. 3.7).  Slimy sculpin 

were not captured in significant numbers for meaningful interpretation. 

 

Figure 3.5 - Total catch for yellow perch in L 468. Labeling convention similar to Fig 3.4. 

*
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Figure 3.6 - Total catch for fathead minnows, slimy sculpin and pearl dace in L 260. Labeling 
convention similar to Fig 3.4. 

 

Figure 3.7 - Total catch for pearl dace, fathead minnow, and brook stickleback in L 224. Labeling 
convention similar to Fig 3.4. 

*

*

*

*
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3.5 Discussion 
 

This is the first field study to document an attraction by several lake trout egg 

predators to lake trout spawning sites compared to structurally similar non-spawning 

sites. This study also documents the attraction of egg predators to visually concealed lake 

trout spawning substrate. This study demonstrates the attraction of several species to 

substrate from an area of ecological significance and displays that the cues associated 

with spawning sites are interpreted by many species. Known lake trout egg predators as 

well as other species (dace, fathead minnows) were attracted to the same spawning 

substrate.  In this study, an attraction to spawning substrate has been observed but what 

kind of cue each species is associated the substrate with remains to be determined.  

  The initial results of the attraction to spawning shoals study shows that there 

were significantly more egg predators on spawning sites than structurally similar non-

spawning sites. These results suggest that an egg predator is attracted to something other 

than structure on spawning sites. This initial observation led to the testing of whether the 

substrate from a spawning site had an effect on the choice of a spawning site to a 

structurally similar site. During the attraction to spawning substrate study, there were 

significantly more fish on average caught daily in traps that contained spawning substrate 

than those that contained non-spawning substrate. More individuals were attracted to 

substrate taken from a spawning site than substrate taken from a structurally similar non-

spawning site. These results are significant due to the fact that there was no food source 

concealed within the substrate samples and the sites were located away from active 

spawning locations. Most studies to date have looked at an egg  predator’s  attraction to 

eggs but not its attraction to the spawning substrate (Dittman et al., 1998; Mirza & 
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Chivers, 2002). Our study shows an attraction to spawning substrate even when the 

substrate is not located on, or near, a spawning shoal. This study suggests that egg 

predator species are not only attracted to lake trout eggs, they are also attracted to 

substrate that is associated with the annual presence of these eggs.  

Slimy sculpin, a known lake trout egg predator (Stauffer & Wagner, 1979; Martin 

& Olver, 1980), was not only significantly more abundant on spawning sites when 

compared to structurally similar non-spawning sites, but was also attracted to lake trout 

spawning substrate in the absence of eggs. The highest number of slimy sculpin was 

caught in Lake 260 with the majority being captured in traps containing spawning 

substrate (89%, n=19). Though slimy sculpin have been shown to be attracted to 

olfactory cues released by salmon and brook trout Salvelinus fontinalis (Mitchill 1815) 

eggs (Dittman et al., 1998; Mirza & Chivers, 2002), the absence of eggs in this study 

illustrates that they can recognize chemically tagged spawning substrate. Understanding 

how slimy sculpin recognize lake trout spawning sites is ecologically significant. 

Fitzsimons et al. (2002) estimated that for a 30-d period post spawning (beginning from 

the peak spawning period), sculpins were able to consume 0-54% of the estimated egg 

abundance in Lake Ontario. In areas of low egg deposition, sculpin and crayfish were 

estimated to consume almost 100% of the eggs. This amount of predation can have 

negative effects on lake trout populations, especially those with declining populations. By 

understanding the way that sculpin are attracted to these sites, fisheries managers may be 

able to create alternative strategies to aid in recovery efforts. 

Within Lake 468, yellow perch were also caught in significantly higher numbers 

in traps treated with spawning substrate than non-spawning substrate. Yellow perch are 
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not typically associated with lake trout egg predation, but are known to predate on 

smaller walleye, Sander vitreus (Mitchill, 1818) eggs (Wolfert et al., 1975; Roseman et 

al., 2006). Since lake trout eggs are one of the larger salmonid eggs (5-6 mm), certain 

species would be limited by the size of their gape to being to ingest eggs whole. Juvenile 

yellow perch would not be gape-limited and could potentially be an efficient lake trout 

egg predator (Truemper & Lauer, 2005). 

Several fish species that are not normally associated with egg predation were 

captured in significant numbers in spawning site traps at the CLA and in traps containing 

spawning substrate at the ELA. In Lake 020, blacknose and common shiners were more 

abundant on the spawning site as opposed to the non-spawning sites. In Lake 260, both 

fathead minnow and pearl dace were attracted to spawning substrate over non-spawning 

substrate but in Lake 224 only pearl dace was attracted to spawning substrate. Though 

not typically associated with egg predation (there are some instances of spottail shiners 

Notropis hudsonius (Clinton 1824) predating on eggs (Wolfert et al., 1975; Roseman et 

al., 2006)), these cyprinids may be attracted to these sites for other non-egg food 

opportunities. Blacknose and common shiners, fathead minnows and pearl dace generally 

feed on small invertebrates and detritus (Scott & Crossman, 1973). Spawning lake trout 

stir up detritus while cleaning and prepping spawning sites, which may attract 

invertebrates and cyprinids. So though these species may not be predating on lake trout 

eggs (they would be gape limited), they may associate spawning substrate with other 

types of food sources.  

Lake 224 had the most fish caught captured (n=156) but the only species to show 

an attraction to spawning substrate was pearl dace. Though fathead minnows and brook 
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sticklebacks were caught in Lake 224 we did not see a significant difference in catch 

numbers between the substrate types (opposite of the Lake 260 observations). In contrast 

to the other lakes studied at ELA, the spawning substrate in Lake 224 was scattered in 

small and patchy clumps located in two main areas. The dispersal of these sites may 

diminish the strength of a cue on the substrate for egg predators to sense or to locate.  

One interesting tradeoff that has emerged from this study is the persistence of egg 

predators’  attraction  to spawning sites that have high predation risk. With lake trout being 

the top predator in the studied lakes, many baitfish species are prey. Spawning sites can 

be associated with high rewards with an abundance of food sources but can also be risky 

owing to an abundance of predators. Sculpins in particular, make up a large proportion of 

a juvenile lake trout diet (Owens & Bergstedt, 1994). Juvenile lake trout (though not 

sexually mature) are present on most spawning sites (Muir et al., 2012). The attraction to 

the spawning substrate suggests that the reward associated with entering spawning sites 

outweighs the risk of predation from juvenile lake trout.  

My study demonstrates that several species are attracted to visually concealed 

spawning substrate during the lake trout spawn. Chemosensation allows an animal the 

ability to perceive and interpret the risk and reward of entering different habitats. In many 

instances, the ability to locate adequate food sources using olfaction limits the amount of 

energy expended on searching for food and maximizes the gain from the food source 

(Goodenough et al., 2009). The ability of an egg predator to locate seasonal spawning 

areas would allow predators to reduce the amount of energy spent searching for adequate 

food. Chemosensory  “tags”  inform  potential  egg  predators  of  the  location  and  value  of  a  

potential food source, thereby maximizing the reward while minimizing energy invested 
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in foraging. The use and interpretation of chemical tags aids in the egg predator's ability 

to weigh risk and reward in areas that may high in food sources but also high in 

predators. 
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Chapter 4: Conclusion 
 
Chemosensory cues play a vital role in locating spawning substrate for both lake 

trout and their egg predators. In both of these experiments, lake trout and their egg 

predators were caught in significantly higher numbers in treatments with spawning 

substrate than those with structurally similar non-spawning substrate. The ability to locate 

visually concealed spawning substrate allows both the spawner and egg predator the 

ability to locate spawning sites while minimizing the amount of time searching for them 

annually. Knowing that lake trout spawning substrate can be located using olfaction 

creates a number of management options and new research questions that can be 

developed and tested. The Laurentian Great Lakes are excellent candidates for research 

because of the lack of natural recruitment that is occurring in them. 

Great Lakes lake trout populations, with the exception of Lake Superior, no 

longer have self-sustaining populations (Hansen et al., 1995). The populations in all of 

the Great Lakes have been depleted due to overfishing, and sea lamprey predation 

(Hansen et al., 1995). The restoration efforts to date have taken the approach of releasing 

hatchery-raised fish and releasing them into the Great Lakes with little success at 

regaining a self-sustaining population (Eshenroder et al., 1995). My research adds a new 

perspective to understanding the lack of recruitment from hatchery-reared lake trout and 

how egg predators are targeting spawning sites. A problem that has not been adequately 

addressed in studies regarding lake trout recruitment in the Great Lakes is whether 

introduced populations are able to be attracted to chemosensory cues that emanate from 

spawning substrate found on traditional spawning sites. My research has shown that lake 

trout are able to locate visually concealed spawning substrate however it does not 
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indicate when lake trout learn to recognize this scent or if they innately recognize it. 

Research has indicated in other salmonids that this information is imprinted at a young 

age (Hasler, 1978). If hatchery-reared lake trout are released into lakes without 

imprinting of spawning substrate then the population may not adequately synchronize 

their reproductive efforts or choice of location. Furthermore, if reproduction has been low 

for decades then the chemical cue from the substrate may be deteriorating due to lack of 

annual renewal from reproducing fish. A future project could be rearing young lake trout 

in the presence of spawning substrate from the lake that they will be introduced into. If 

they are able to recognize spawning substrate after being exposed to it as a juvenile, they 

may be able to locate these areas more accurately once they reach sexual maturity.  

Another study that could be completed from this work is to determine what the 

attractant is that is found on spawning substrate and how it is able to persist annually. If 

these chemical(s) were able to be isolated, the management implications that could result 

would be ground breaking. The ability to determine the chemicals responsible for the 

attraction to spawning substrate would aid in locating traditional spawning sites as well 

as aiding in deterring egg predators. Similar chemical isolation has been completed on 

sea lamprey chemoattractants to spawning sites and the methods to do so with lake trout 

may be similar (Sorensen et al., 2003; Sorensen et al., 2005). The ability to isolate these 

chemicals  could  allow  managers  or  researchers  the  ability  to  “tag”  appropriate  areas  that  

would be ideal spawning sites or man made structures that would be structurally sound 

for lake trout spawning. Once this type of information is available to fisheries managers, 

the way of understanding, manipulating, and helping lake trout fisheries will be on a 

totally different level than what is used now. Although we have known in the past that 
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lake trout spawn on structurally understood areas within a lake, we are now able to see 

evidence for another aspect of site selection: olfaction.  

Recent eco-toxicological work has centered on the impairment of olfaction in fish 

and how that can relate to specific ecological functions (Tierney et al., 2010). Different 

metals can induce temporary chemosensory impairment and hence affect ecologically-

relevant, olfactory-mediated behaviours, such as mate selection, predator avoidance, or 

foraging. This work demonstrates the importance of how olfaction plays an essential 

ecological activities for lake trout and egg predators. Olfactory impairment from metal 

and chemical contamination could result in the loss of some the basic ecological activities 

seen in this thesis. Measuring the effect of metal impairment is always difficult because 

many ecological interactions (i.e. locating spawning sites annually) do not have 

benchmark behaviours in the wild. This study demonstrates basic uses of olfaction in situ 

in non-metal contaminated lakes. 

In both experiments presented in this thesis, lake trout and their egg predators are 

attracted to visually concealed spawning substrate. Lake trout spawning sites have been 

historically recognized, and managed based on the visual aspects but my research has 

shown that there is an olfactory component that needs to be addressed further. Though 

the structural aspects of spawning sites aids in the development of embryos by protecting 

them, the chemical information that is recognized by numerous species aids in the 

location of these historically successful areas. The reactions of different fish species to 

different chemical cues has been observed in the laboratory, but no data have been 

collected to show that fish species are able to recognize substrate from a site of ecological 

significance. This study adds a new perspective to how fish use olfaction in nature as the 
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data suggests that fish are able to differentiate structurally similar sites from one another. 

The ability of lake trout and numerous egg predators to discriminate substrate based on 

chemical cues adds a new perspective to how managers and biologists view spawning 

sites characteristics. Though structure and temperature play important roles in defining 

spawning sites characteristics and timing, olfaction and chemicals may play the role in 

locating perennial spawning sites. 
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