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Abstract

Most healthcare institutions are reorganizing their healthcare delivery systems based on

Clinical Pathways (CPs). CPs are medical management plans designed to standardize

medical activities, reduce cost, optimize resource usage, and improve quality of service.

However, most CPs are still paper-based and not fully integrated with Health Information

Systems (HISs). More CP automation research is therefore required to fully benefit from

the practical potentials of CPs. The common theme of current research in this field is to

connect CPs with Electronic Medical Record (EMR) systems. Such view positions EMRs

at the centre of HISs. A major long-term objective of this research is the placement of CP

systems at the centre of HISs, because within CPs lies the very heart of medical planning,

treatment and impressions, including healthcare quality and cost factors. An important

contribution to the realization of this objective is to develop an international CP-specific

digital coding system, and to fully standardize and digitize CPs based on the Systematized

Nomenclature of Medicine-Clinical Terms (SNOMED CT) medical terminology system.

This makes CPs digitally visible and machine-readable. In addition, to achieve semantic

interoperability of CPs, we propose a CP knowledge representation using ontology engi-

neering and HL7 standard. Our proposed framework makes CP systems smoothly linkable

across various HISs. To show the feasibility and potential of the proposed framework,

we developed a prototype Clinical Pathway Management System (CPMS) based on CPs

currently in use at hospitals. The results show that CPs can be fully standardized and

digitized using SNOMED CT terms and codes, and the CPMS can work as an independent

healthcare system, performing novel CP-related functions including useful decision-support

tasks. Furthermore, CP data were captured without loss, which contributes to reducing

missing patient data and improving the results of data mining algorithms in healthcare.

Standardized CPs can also be easily compared for auditing and quality management. The

proposed framework is promising, and contributes toward solving major challenges related

to CP standardization, digitization, independence, and proper inclusion in today’s modern

computerized hospitals.
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Chapter 1

Introduction

Health informatics is the branch of science that deals with computerization and automa-

tion in healthcare systems. In health informatics, health data are managed through in-

formation technology and Healthcare Information Systems (HISs) to record, organize, and

analyze healthcare data in order to facilitate healthcare operations and improve health-

care outcomes. The global health informatics market has an estimated annual growth rate

of 13.74%, and is expected to reach US$123 billion by 2025 [1]. The benefits of health

informatics include the following [2, 3, 4].

� Cost and time savings: Inefficient processes of healthcare result in unnecessary or

wasted spending, which is estimated at 50% of all healthcare dollars spent [4]. Effi-

cient application of health informatics can save costs, increase efficiency, and accel-

erate healthcare operations.

� Increase in quality of care: Patient treatment can be quicker and improved, raising

levels of health and avoiding malpractice claims.

� Increase the safety of healthcare: Health informatics helps reduce human errors and

can link information across HISs to keep healthcare on track for providing safer

patient healthcare.
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� Geographical independence: The internet has made it possible for patients to ac-

cess digital data across the globe from the comfort of their locations. This creates

geographical independence and allows of experts to cooperate remotely.

� Improved patient education: Many healthcare organizations now make the education

of patients a key part of their healthcare IT strategy. Health informatics can facilitate

the creation and distribution of patient education using a variety of rich media.

� Patient autonomy: Patients can see their own health records and medical informa-

tion, make appropriate decisions and changes, and better manage their own health

and well-being.

The increasing demand for information management and automation in healthcare

made the field of health informatics a rapidly-growing domain [5, 6]. Our literature re-

view revealed that the rapid advance in health informatics has been progressing without

adequate organization in the field. Few studies were directed towards organizing the way

health information systems are interconnected and designed. This has resulted in less ef-

ficient health informatics systems, and degradation in quality of healthcare data. This

can be observed through various domains in HISs such as the existence of missing data in

healthcare.

The ultimate long-term objective of this research is to re-structure the field of health

informatics and to modify its norm, which has been followed for years. The norm is

that Electronic Medical/Health Record (EMR/EHR) systems are considered as the central

component of HISs. We show in our framework that standardizing and digitizing clinical

pathways enable CP systems to be positioned at the centre of HISs. This helps in the

exploitation of the full potential of computerization in healthcare, and makes it possible

to achieve the intended benefits of health informatics. Below, we consider automation and

data research challenges in healthcare.
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1.1 Automation and Data Research Challenges in Health-

care

The automation of healthcare facilities represents a challenging task of streamlining a

highly information-intensive sector. Modern healthcare processes produce large amounts

of data that has great potential for health policymakers and data science researchers.

However, the current situation in health informatics is that a great portion of such data

is not properly captured, missing in electronic format, and hidden inside paperwork and

forms. For years, EMR/EHR systems were at the centre of HISs. It was hoped that EMR

systems could store that vast amounts of data in digital format. However, that target has

never been achieved despite the fact that EMR systems acted as the central component of

HISs for decades.

An important study on missing clinical and behavioral health data in a large EMR sys-

tem revealed that EMRs inadequately capture various healthcare data such as diagnosis,

visits, specialty care, hospitalizations, nursing services, and medications [7]. The study

concluded that missing data undermine many central functions of EMR and that “missing

clinical information raises concerns about medical errors and research integrity”[7]. The

authors stressed that “given the fragmentation of health care and poor EHR interoperabil-

ity, information exchange and usability, priorities for further investment in health IT will

need thoughtful reconsideration” [7].

This is not the only study regarding the vast amounts of missing healthcare data in

HISs. In [8], the authors presented multiple cases that revealed how missing data in HISs

would likely result in medication errors and other issues that could cause harm to patients.

Missing data creates obstacles for big data research in healthcare. In [9], the authors in-

dicate that missing patient data are prevalent in HISs, and are “an impedance to utilizing

machine learning for predictive and classification tasks in healthcare”. The authors pre-

sented an imputation method, however, imputation methods only approximate the missing

data, whereas our objective in this research is to address the original source (root cause) of

missing data in healthcare. This will result in providing improved patient care and in the

reduction of missing data in the datasets that are used in data mining applications. For

example, hospital Length of Stay (LOS) prediction methods found in machine learning lit-
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erature operate without considering rehabilitation nursing interventions. This degrades the

accuracy of rehabilitation LOS prediction. Although documented in papers, rehabilitation

data are rarely captured electronically in patient records [10]. In [11], the authors indicate

that “missing data is a frequent occurrence in medical and health datasets. The analysis

of datasets with missing data can lead to loss in statistical power or biased results.” They

also present an imputation method that approximates missing data. As mentioned above,

it is the root cause of missing data that must be addressed in order to reduce missing data

in healthcare.

Our literature review revealed that the field of health informatics is growing without

proper design and organization of HISs. We also discovered that the major sources of

missing data in healthcare institutions is paper-based forms and unstructured data. In [7],

the authors describe health informatics systems as fragmented systems with poor inter-

operability. Also, in [12], the authors listed medical data written in an unstructured text

format as one of the major sources of missing data in HISs. This is because EMRs are

not designed to capture non-standardized data. In support to this analysis, and upon

analyzing the literature, we found that an important reason for missing data in HISs is

that a primary source of healthcare data is still paper-based and has not yet been fully

automated. By this primary data source we mean Clinical Pathways (CPs).

CPs have been defined as optimal sequencing and timing of medical interventions by

doctors, nurses, and other caregivers for a particular procedure or diagnosis, developed

to minimize delays and resource utilization and to improve the quality of healthcare [13,

14, 15]. Despite the fact that CPs are becoming globally popular in hospitals as main

components for patient treatment and follow-up, CPs are still circulated in hospitals as

paper-based documents with local ambiguous text that is difficult to computerize. Paper-

based CPs have many disadvantages, including difficulty of storing and retrieving CP

documents, difficulty of sharing CP data among caregivers and institutions, and the fact

that manual CP input is prone to human errors. Human error in hospitals can cause harm

(and even death) to patients. In addition, the paper-based nature of CPs forms a great

barrier between CPs and their integration with today’s automated hospitals. Thus, CP

automation is a challenging research topic that remains to be investigated.

Our literature review revealed that the common theme of current research in this field

4



is to consider computerized CP systems as side components in HISs that need only to be

connected to EMRs. This view has resulted in partially standardized or digitized CPs

which is a major limitation of the research found in the literature. Such view of CP

computerization positions EMRs (not CP systems) at the centre of HISs.

CPs are the most important sources of data in hospitals, and must therefore be central-

ized in HISs. However, centralizing CPs in HISs is a major challenge because of their highly

unstructured, non-digitized nature. One of our objectives in this research is to propose a

framework that can serve as a base for centralizing CPs in HISs.

A research gap in existing research studies is that the non-standardized nature of CPs

has been ignored and was not the focus of research. Research studies also ignored the de-

tails of CPs such as local CP terms. This is also a main reason for the fact that only limited

CP data is stored in EMR systems, resulting in missing data in healthcare. Even research

studies that represented CPs using ontological modeling have done so while keeping the

non-standardized nature of CPs. This resulted in non-standardized ontologies that can

only be used locally. To achieve the required semantic interoperability with existing HISs,

CP ontologies must be internationally standardized so that their vocabulary matches in-

ternational terminology systems. Standardized ontologies support the ability of computer

systems to exchange data with unambiguous, shared meaning. This is the core of semantic

interoperability. Thus, standardized ontologies support centralizing CP systems in HISs.

Developing a standardized ontological framework is an objective of this research. In ad-

dition, CPs lack a digital coding system. Developing a coding system to identify CPs

is a challenge because it needs to comply with existing terminology systems which were

developed years ago without considering CPs. Without this compliance with established

systems, such a coding system might not be accepted in the industry and would eventually

fail. The literature review revealed that there was no reported work on establishing a CP-

specific coding system. One of the objectives of this research is to develop a CP-specific

coding system.

Our research addresses the above-mentioned challenges and as such can be considered

a major milestone towards achieving the ultimate objectives of restructuring health infor-

mation systems by positioning fully digitized CP systems at the centre.
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1.2 Motivation and Thesis Contribution

The importance of CP automation in improving healthcare systems and patient treatment

in hospitals around the world, as well as the research challenges mentioned above, have

motivated us to conduct this research and contribute to this important research area. We

hope that our contribution will have a positive impact on the wellness of people and society

as a whole, as well as the future of HISs. The summary of our contributions in this thesis

includes:

� Proposing a novel CP automation framework that can serve as a base for positioning

CPs at the centre of HISs. The modeling of the framework is based on a top-level

meta CP ontology that models generic CP knowledge using standardized vocabulary

to support semantic interoperability.

� Developing a new and internationally compatible CP identification code by expanding

the well-accepted SNOMED CT terminology system with full compliance with its

structure.

� A CP standardization method in which CP data are SNOMED CT standardized and

computerized disease-specific CPs are independently extended and specialized from

the meta CP ontology. CP term standardization helps to eliminate lexical ambiguity

and to ensure lexical interoperability (i.e., term-to-term interoperability) between CP

systems and existing standardized health information systems.

� A method for merging the CP identification code with the standardized CP data to

form a CP-specific digital coding system. This method allows to maintain the link

between diseases or medical procedures and their interventions. The digital coding

system facilitates CP-based decision support in healthcare, and improves CP data

collection, sharing, auditing and quality management.

� Proposing a conceptual design of a model CPMS that integrates CPs with HISs

through SNOMED CT and HL7 standards, and ensures the independence of CP

management systems by including a data repository and decision-support/data ana-

lytics component.
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Our research contributes towards a futuristic vision for the field of health informatics

because (i) for decades, EMRs occupied the central position of HISs, while in this research,

we promote a CP-centric architecture; and (ii) this research addresses an important re-

search challenge related to digitization and full automation of CPs to enable advanced

data analytics in healthcare. We consider this research as a starting milestone in CP au-

tomation, hoping that it will encourage health informatics researchers around the world to

participate in advancing this field through more research efforts.

1.3 Thesis Organization

The thesis is organized as follows. Chapter 2 “Background and Related Work” provides ad-

ditional details on CPs and their role in healthcare, and presents the literature review along

with critical analysis of the literature review. Chapter 3 “Proposed Framework” describes

the details of the proposed CP framework through its contributions in CP automation,

CPMS integration with HISs, and CPMS independence. Chapter 4 “Prototype Design

and Architecture of the Proposed Framework” describes the prototype system that is pro-

posed to realize the CP framework with its structure and components. Chapter 5 “Data

Analytics and Decision Support Scenarios” presents various applications and algorithms

related to the proposed framework in the field of health informatics, particularly how our

framework supports CP-based data analytics and hospital resource management (HRM).

Chapter 6 “Conclusions and Future Work” presents concluding remarks, limitations, and

directions for future research work.
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Chapter 2

Background and Related Work

2.1 Clinical Pathways

Since clinical pathways are at the core of this thesis, this section presents additional details

on CPs and their application and importance in formalized healthcare systems.

2.1.1 History, Evolution and Definitions of CPs

CPs first emerged in healthcare in the mid-1980s in the USA when Karen Zander, Kathleen

Bower, and Mary Etheredge first coined the term at the New England Medical Centre in

Boston, USA [16]. The concept itself was not a new one because it has its roots in manage-

ment theories, and deals with improving the quality of business processes such as Critical

Path Method (CPM), Program Evaluation and Review Technique (PERT), and Business

Process Reengineering (BPR). These successful management theories were not applied in

healthcare; thus, the concept of CP was an initiative to adopt effective management con-

cepts in hospitals [17, 18, 19, 19]. Following the USA, CPs were adopted first in the UK,

and then the concept was used internationally with -unfortunately- different views about

their development, implementation and evaluation with different CP definitions [20, 21].

Table 2.1 presents some definitions of CPs found in the literature. As noticed from Table
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Table 2.1: Definitions of CP in the literature.
Definition Reference

Methodology for the mutual decision making and

organization of care for a well-defined group of patients

during a well-defined period.

[22, 23, 24]

Optimal sequencing and timing of interventions by

physicians, nurses, and other staff for a particular diagnosis

or procedure, designed to minimize delays and resource

utilization and to maximize the quality of care.

[13, 14, 15]

“Comprehensive methods of planning, delivering and

monitoring different healthcare services provided to

patients.”

[25]

Criteria for an operational definition of CP: (1) A structured

multidisciplinary plan of care; (2) Translating guidelines or

evidence into local structures; (3) Showing the steps in a

course of treatment or care in an inventory of actions (i.e.

time-frames or criteria-based progression); and

(4) Standardizing care for a specific population.

[21, 26]

2.1, CP is described as “methodology”, “comprehensive method”, “structured multidisci-

plinary plan”, and the like. These definitions show the importance of CPs in healthcare

provision. This is because applying CPs as successful management practices in healthcare

has great benefits as addressed below.

2.1.2 Benefits of CP Applications in Healthcare

Clinical pathways are becoming popular in healthcare organizations because their use has

been recognized as having several benefits. CP benefits listed in the literature include: re-

ducing patients’ Length of Stay (LOS) in hospitals [27], reducing healthcare cost, reducing

variations in medical practice [21], optimizing the use of resources [21], improving patient

outcomes and reducing treatment complications [28, 29, 30, 31, 32], increasing patient sat-
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Figure 2.1: Expected increase in expenditures of healthcare data analytics.

isfaction [33, 34], increasing patient participation in health procedures [35], and improving

communication between physicians and nurses [36]. CPs are also considered to be an im-

portant tool for ensuring that the latest evidence in clinical guidelines is used in the care of

patients [37, 38]. It is estimated that healthcare organizations could cut costs by 30% [39]

or by 30% to 50% [4] if they adopt the best IT and quality management practices that

eliminate waste and discontinue the overuse of resources. To achieve this cost saving, the

proper application of CPs is a key factor, since CPs are at the centre of best management

practices in healthcare.

CPs are a major source of data in healthcare. Healthcare big data analytics is a growing

field [40]. The overall market for healthcare data analytics is expected to reach US$50.5

billion by 2024 from US$14.0 billion in 2019 (see Figure 2.1) [41].

2.1.3 Development of Clinical Pathways

CPs help in optimizing healthcare and reducing costs, however their development is time-

consuming and requires commitment and effort from both healthcare staff members and

healthcare administrators [42, 43]. The development of CPs undergoes four phases: (1)

11



2. Collecting medical information
       Evidence
       Patient/user views
       Critical incidents
       Examples

Implementation

Planning

6. Arrange the
modifications in the

medical process

7. Training healthcare
staff members

8. Testing the CP

9. Finalize and sign-off
the current version of

the CP

1. Overall plan of CP development

Maintenance

10. Collecting
feedback and
evidence for
maintenance 

11. Continuing
maintenance

Development

3. Scope the CP

4. Process mapping

5. CP Documentation

Figure 2.2: CP development phases and steps.

planning phase; (2) development phase; (3) implementation phase; and (4) maintenance

phase, with the steps shown in Figure 2.2 [42].

CPs are often developed locally inside hospitals to serve local staff members, which

creates challenges in the face of CP computerization, as addressed below.

In Canada, CPs are viewed as a tool to ensure that patients receive the best available

care and that they are well-informed about their treatment journey [21, 44, 45]. The 30%

saving expected from quality practices and efficient use of CPs [39] means a saving amount

of about $72.6 billion Canadian dollars per year, considering that the total health spend-

ing in Canada is estimated at $242 billion in 2017 according to the Canadian Institute

for Health Information (CIHI) [46]. Provincial health authorities in Canada have indepen-

dently adopted CPs, and the number of developed CPs is increasing. In order to analyze

sample CPs, we contacted Thunder Bay Regional Health Sciences Centre and The Ottawa
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Figure 2.3: Part of an ischemic stroke clinical pathway.

Hospital to request sample CPs. An example CP for stroke is shown in Figure 2.3. We also

teamed-up with the Regional Stroke Unit in Thunder Bay. We refer to the cooperating

stroke doctors and nurses from the stroke unit as the “domain experts” in this thesis. The

Ottawa Hospital states in their Model of Care that CPs “are used to describe and imple-

ment clinical standards. They help to provide quality and efficient patient care. The CP

documents are part of the patient’s permanent record and are integrated into the clinical

documentation. Most patients on CPs will receive a patient education booklet explaining

their disease or condition and providing them with teaching around their diagnosis” [47].
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2.2 The Need for CP Computerization and Automa-

tion

The proper automation of paper-based CPs brings great advantages to healthcare because

we consider it as the backbone behind the true realization of many of the benefits expected

from applying CPs in hospitals. In fact, the advantages of CPs cannot be fully realized

without automation. Studies on CPs and CP computerization reveal the following benefits

if CPs are correctly practiced and properly computerized [48, 49, 50, 51, 52, 53, 54].

� Benefits of CPs:

– Reducing Length of Stay (LOS) in hospitals.

– Optimizing the use of resources.

– Reducing healthcare costs.

– Improving patient outcomes.

– Reducing treatment complications.

– Encouraging patient participation in health procedures.

– Improving communication between physicians, nurses, and patients.

– Increasing patient satisfaction.

� Benefits of CP Computerization:

– Help medical staff members to share large amounts of medical information which

is difficult with paper-based CPs.

– Easier modification of CPs when required.

– CP management systems facilitate the automation of CP variance records, which

allows for analysis and statistical decision making based on deviations from

standardized CPs.

– Monitoring of CP execution in real-time.

– Automated error checking for the steps of the treatment.
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– Automated time management and temporal data saving.

– Improvement of the efficiency and quality of CP application and patient care in

general.

– Integration of Electronic Medical Records (EMR) and CP execution.

The two groups of benefits listed above are interconnected, which implies that CP

benefits are better realized when CPs are properly computerized. For example, healthcare

errors impact patient safety and are very costly. Automated error checking, provided by

computerized CPs, helps prevent medical errors. This improves patient outcomes, decreases

cost, and helps reduce the length of stay of patients in hospitals. All these are benefits

from the previous lists.

The literature review shows several studies to computerize CPs, however, the existing

gap in this research area is that the proper and full computerization has not yet been

achieved. In addition, CPs lack a proper coding system. This Ph.D. work fills this research

gap.

2.3 Literature Review

Literature review reveals that there are several studies that addressed computerization of

CPs. Some research was based on traditional information systems (i.e., non-semantic web

approach), while most recent studies adopted a knowledge based approach, relying mainly

on semantic web in which CPs were modeled following ontology engineering approaches.

Studies found in the literature review have addressed various models and diseases (e.g.,

chronic kidney disease, breast cancer, diabetes, human papillomavirus, and prostate can-

cer). Semantic modeling is a relatively recent methodology in software engineering for

knowledge representation and is widely used for data management in biomedical informat-

ics [55]. Ontology, Web Ontology Language (OWL), and Semantic Web Rule Language

(SWRL) are core components of semantic models [56, 57]. Semantic web components help

in using semantic web statements and rules in order to define classes, relationships, and

domain constrains in order to model a particular domain (e.g. an ontology to model dia-

betes) [58, 59]. Literature review revealed that various medical conditions were considered
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in CP computerization papers. Since, ontology-based articles share similar principles, be-

low is a discussion of selected articles among them, followed by discussing articles among

the non-semantic approach. Finally, we discuss literature review related to standardization

in healthcare.

2.3.1 Semantic Based Methods

Fudholi et al. [60] proposed a CP ontology model that consists of the following major

classes: clinical pathway, person, organizational structure, record, and clinical category.

The model is proposed to check whether or not the treatment processes comply with

the CP requirements. For example, by querying both the CP ontology and the patient’s

recorded data, the model checks if the recorded data (e.g., lab tests and assessments)

comply with the interventions specified in the CP. To evaluate their model, they developed

a dengue fever and typhoid fever CP ontologies and queried them through an ontology

query language to perform various compliance checks. Their results show that they have

not considered CP standardization in their approach. For example, they refer to the lab

tests on the clinical pathway by non-standardized terms like HB, HT, and trombocyt. This

shows that they have used a local terminology approach in their model.

Tehrani et al. [61, 62, 63, 64] suggested that the development of CPs in situations

where processes are complex, needs to combine ontology-based modeling and organiza-

tional semiotics. Organizational semiotics treats organizations (e.g., hospitals and clinics)

as information systems in which information is created, processed, distributed, stored and

used [65, 66]. In their approach, they interviewed medical staff members and used semantic

analysis to develop an ontology that represents the semantics of the CP concepts, their re-

lationships and patterns of behavior of physicians and staff members (see Figure 2.4). They

then used norm analysis method to extract and analyze patterns of healthcare activities

and informal safety norms that affect CP outcome and patient safety.

Norms in semiotic approaches specify the possible patterns of behaviors. For example,

the nurse is “obliged”, “permitted”, or “prohibited” to do an action (called deontic oper-

ators). Norms are described formally using the format:
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Figure 2.4: The ontology developed by Tehrani, et al. [63]

Whenever 〈condition〉 If 〈state〉 Then 〈agent〉 Is 〈deontic operator〉 To 〈action〉
For example, Norm N1 can be defined as:

Whenever 〈the patient is assessed for venous thromboembolism〉
If 〈there is bleeding risk〉
Then 〈doctor〉 Is 〈permitted〉 To 〈give prophylaxis〉
The authors argue that, generating a CP ontology that is enhanced by formal patterns of

human behavior and by rules that govern the actions identified in the ontology reduces hu-

man errors associated with complex situations that require patient-specific customization

and human decisions. The ontology can then be linked to an EMR. Their formal approach

is useful to reduce medical errors, however, their ontology development was mainly based

on local terminology, through internal staff interviews, without considering terminology

standardization.

Wang et al. [67] proposed an EMR-CP integration method that supports EMR systems

with a CP system through SNOMED CT linking between equivalent terms. By this way,

the CP system can be integrated programmatically with different EMRs. The programmers
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Figure 2.5: Illustration of the system structure of Liu et al. [48]

at a hospital need to generate RDF statements from the EMR database and then use an

ontology editing tool to write the statement of relations between EMR terms and basic CP

terms. A limitation of their work is the tedious programming work needed to achieve the

EMR-CP linking. In addition, future modifications to the EMR dictionary would cause

the EMR-CP linking to be lost, which would require the programming tasks to be repeated

again. Also, they consider the EMR as the central component, not the CP system.

Liu et al. [48] proposed an ontology-based approach for monitoring of CPs. The main

objective was to establish communication between the CP and EMR with the ability to

monitor the CP execution and display reminders to clinicians about CP activities. The

CP used in their prototype was for unstable angina from the cardiology department of a

hospital in China. They could build a CP component that feeds data/reminders to EMR,

however, the system was not standardized and did not act as an independent system. It

could communicate only with the EMR, and functioned to serve EMR operations, see

Figure 2.5.

Abidi et al. [68, 69] proposed an ontology-based prostate cancer CP computeriza-

tion model and discussed the merging of prostate cancer CPs from different hospitals. In

their approach, they represented hospital-specific CPs using an ontological model and then

aligned the common activities between multiple CPs from different hospitals to have a com-
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Figure 2.6: A unified CP with merging nodes and branching nodes [68, 69].

mon or unified CP. The resulting care model merges common care activities whilst allowing

to have unique hospital-specific activities. For example, Figure 2.6 shows their approach

for a merged clinical pathway featuring common-task nodes and institution-specific nodes

for prostate cancer CPs in three different hospitals. Their model is useful for performance

analysis, however, their method can work only for small-scale unification and is not prac-

tical for larger scale multi-hospital approach.

Daniyal et al. [70] followed a similar approach to develop an ontology based prostate

cancer CP that integrates multiple localized CPs to have a unified CP for prostate cancer.

In addition, they integrated the resulting CP in a prostate cancer computerized system that

automated a combined CP flowchart for three different CPs (see Figure 2.7). The system

enabled physicians to follow patients as specified, however the computerized CPs were

kept local and were not checked for terminology compliance with international reference

terminologies.
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Figure 2.7: Combined CP flowcharts at a branching node [70].

Hu et al. [49] proposed a semantic-based method in which ontology was used to model

CPs and SWRL was used to model CP rules. In this way, the application could reason over

the rules and information collected. They based their modeling on a CP general ontology

that defines common concepts necessary in disease-specific CPs. To evaluate their method,

they built a lobectomia pulmonalis CP, and realized it based on an EMR system called

IZANAMI such that the CP is noticeable to healthcare providers through the EMR. An

illustration of the structure of their system is shown in Figure 2.8. The model was successful

in presenting CP steps to healthcare providers; however, the limitation of their approach is

that their meta-ontology was a hospital-specific local ontology since its modeling was based

on the terms available on local CPs without standardization. In addition, the used CPs

were not checked for terminology compliance with international reference terminologies.

In addition, their CP system was totally embedded inside the EMR system as shown in

the structure of their system (Figure 2.8).

Alexandrou et al. [71] presented a CP ontology model that comprises three parts in

a single ontology: the CP part, the quality assurance part, and the business part. They

20



EMR
Database

Connection
Component

Ontological
Knowledge Base

Knowledge
Extraction

Knowledge
Maintenance

User Interface (EMR)
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applied their model on human papillomavirus patients, however, standardization of CPs

was not considered in their work. Ye et al. [53] proposed a clinical pathway ontology

model in which they included time intervals between tasks using the entry sub-ontology of

time. In their case study, they used a CP for cesarean section from a hospital in Shanghai,

China, which does not use standard clinical terminologies, and nothing mentioned in the

paper related to standardizing and encoding of CP contents.

Hu et al. [50] modeled CP based on an ontology schema with four main units: time-

line, category of care, variance record, and outcome criteria. They also showed that the

ontology-based approach is suitable to model CPs by conducting a comparison between

the concepts of ontology and CP. For example, both ontology and CP are formalization

methods (i.e., ontology formalizes concepts in a domain and CP formalizes clinical care

processes in healthcare). Their work was limited to ontology-based modeling of CPs and

showing that it is a successful modeling technique. No system was built to use the ontology,

but their future work was to embed the ontology inside an EMR system.

2.3.2 Non-Semantic Based Methods

Studies that followed the non-semantic modeling approach were mainly adding selected

data fields from the CPs programmatically to the EMR/EHR systems to computerize

them and to act as reminders of CP steps to medical staff members.

Hoelscher et al. [72] integrated a computerized infectious disease CP within an EMR

system. The purpose of the study was to implement an improved rapid-deployment deci-

sion support strategy for the detection and treatment of emerging and re-emerging infec-

tious diseases. Using the Plan-Do-Study-Act (PDSA) rapid cycle improvement model, the

computerization process was implemented and monitored.

Smulowitz et al. [73] developed an electronic clinical decision support tool within an

emergency department system. The goal was limited to flagging patients who were required

to follow a chest pain CP called ”HEART pathway”.

Gibbs et al. [74] presented a framework for developing an online clinical pathway that

can be used by patients. They applied their model successfully on a CP for chlamydia

infection. However, their approach was limited in scope to only the considered disease.
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Blaser et al. [75] developed a prototype system by using an embedded tool within

Orbis/OpenMed-system (which is an EMR/EHR system used in Germany). They could

add basic CP elements into the EMR, however, the CP functionality worked only within

the EMR/EHR and could not be utilized as an independent CP management system.

Bernstein et al. [76] pointed out that clinical pathways are not well integrated with

electronic health records. They proposed an integration method that made the patient po-

sition in the pathway visible to relevant parties such that each CP would have a SNOMED

CT link to the EMR system. Their SNOMED CT linking was limited to a top-level linking

between the major steps of the CP and the EMR system. For example, the ‘laboratory

tests’ stage in the CP was considered as a single node linked to the EMR to show that the

patient has reached this stage without considering the CP contents or the details of the

lab tests. Such top-level linking might help to determine the position of the patient in the

CP, however, it cannot help in capturing all CP data to reduce missing data and improve

data mining results, as will be addressed in our framework.

Katzan et al. [77] developed, through a collaboration with a company called Epic, an

electronic stroke CP program that was integrated within their Epic EMR (which is a com-

mercial EMR developed by Epic Systems Corporation [78]. Epic programming contractors

were involved in this project to develop the program and to customize the inpatient Epic

EMR screens to include CP-specific options. The modified interface saved time for clin-

icians by reducing unnecessary data entry based on the CP. Integrating the CP within

the EMR also helped to remind healthcare providers (especially trainees) of certain CP

guidelines that might have been forgotten, which reduced possible human errors. They re-

ported that the integration of CP with EMR was overall successful, however, not all data

fields were captured and not all features worked as planned. For example, an anatomic

diagram for stroke location did not function inside the program despite extensive efforts

by the programmers to make it work. In addition, some of the discharge checklist items

did not auto-populate correctly so care providers were not using them uniformly [77]. The

system was programmatically integrated within the EMR, so it was not an independent

CP system. In addition, the issues related to standardization of the CP or developing a

coding system for CPs were lacking in this work.
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2.3.3 SNOMED CT in Healthcare Systems

SNOMED CT is a fast-growing terminology system in healthcare. Many research studies

found in the literature have considered SNOMED CT as the adopted terminology for their

systems, however, the focus of these studies was on EMR/EHR systems, or other healthcare

systems (not on clinical pathways). This is because clinical pathways are mainly paper-

based, non-standardized documents that are written in free text formats.

In [79], the authors surveyed the use of SNOMED CT clinical coding in EMR/EHR

and Clinical Decision Support Systems (CDSS). Their study focused on preventive care

domain, and they found that CDSS built on SNOMED CT support the creation of a high-

quality healthcare systems for preventive care. The authors also found that SNOMED CT

is a powerful and effective clinical terminology within EHR systems that can be used to

reduce medical errors, save lives, advance patient safety, and improve overall quality of

healthcare services.

Rai et al. [80] described a large SNOMED-CT project under the supervision of the

Ministry of Health and Family Welfare in India to integrate existing EHR with SNOMED-

CT. The project started in July 2016 and is still ongoing. Many accomplishments have

been achieved including a national drug library database containing 169,000 drugs mapped

with SNOMED CT codes. In addition, SNOMED-CT coding for 4000 nationalized lab

investigations given from ministry were completed. The project is still ongoing and has

been described by the authors as successful.

Hwang et al. [81] described a project for mapping Korean Electronic Data Interchange

(EDI) medical procedure to SNOMED CT. EDI is the system used for health insurance

claims in Korea. To date, 82.5% of the EDI codes have been mapped to SNOMED CT,

and the project is progressing successfully.

Lee et al. [82] considered encoding the terms of a clinical palliative care EMR using

SNOMED CT. There were 20 pre-defined diagnoses (e.g., melanoma) and 14 pre-defined

problems at referral (e.g., delirium) that could be selected from drop down menus in the

EMR interface. Other information was saved as free text entered in an “additional infor-

mation”. Pre-defined values could be encoded in SNOMED CT by mapping them directly

to appropriate SNOMED CT terms. Free text values were noisy text that required pre-
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processing and cleaning in order to extract meaningful clinical terms, and subsequently

matching them with standardized terms. For example, processing the free text “Bone

mets.” resulted in the clinical term “Bone Metastasis” after extending the abbreviation

“mets.” into “metastasis”. After preparing all the clinical terms, some of them had a

complete match with SNOMED CT, whereas others had partial match, or no match at all.

Partially matched terms could be further analyzed by domain experts to try to map them

to SNOMED CT terms, if possible.

Giannangelo et al. [83] used a web-based survey to identify (among other things)

the potential and future of SNOMED CT in EMR/EHR systems. They found that sur-

vey respondents who were using SNOMED CT indicated an expected future increase in

EMR/EHR applications that use SNOMED CT. That expectation is currently being real-

ized, as more EMR systems are adopting SNOMED CT.

2.3.4 Critical Analysis of Literature Review

Most CP studies reported in the literature review, as described in the previous section,

consider the CP system as a secondary component in HISs. This is because the final target

of the computerization process was the EMR (as the central component) and how to

enhance EMR with CPs. This view has resulted in only partially standardized or digitized

CPs, which is a major limitation of the research found in the literature.

Unlike research studies available in the literature, our philosophy in this research is that

CPs should be fully digitized and positioned at the centre of HISs. This is because CPs are

the disease management and treatment plans for patients, thus within CPs lies the very

heart of medical planning, including quality and cost factors in healthcare. In addition,

CP use is increasing and CPs are becoming popular in health organizations around the

world, therefore, we envision that in the future health systems will need to be designed

based on the vision that computerized CPs, not EMRs, should be at the centre of HISs,

see Figure 2.9. This research is a milestone towards achieving that vision.

Another research gap is that the nature of CPs being ambiguous, non-standardized
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Figure 2.9: Futuristic vision for the future of Health Informatics.

documents was not the focus of research studies. Even for the few studies that have

partially used standard terminologies for CP data, the purpose was for programmatically

linking basic CP data with EMRs (i.e., programming need). Research studies also ignored

the details of CPs such as CP terminology that are country-specific or local to the hospital

(i.e., national and local CP terms). The drawback of such approaches is that only limited

CP data is stored in EMRs, resulting in missing data in healthcare.

As mentioned in Chapter 1, there are many missing data in HISs and the non-standardized

nature of CPs is a main source of missing data. We add here more concerns specific to

missing CP data. For example, one of our domain experts estimates that only 60-70% of

CP data are captured in EMR systems. This means that 30-40% of CP data are lost and

not available in health information systems. Lin et al. [84] mentioned that healthcare ac-

tivities that are executed on daily basis are not collected from CPs. Therefore, linking such

healthcare activities to a particular disease is not possible. Huang et al. [85] addressed the

problem related to missing CP traces due to incomplete CP data in EMR, so a complete

CP could not be obtained or retrieved from EMR data. Therefore, missing CP data is a

major challenge facing the utilization of CPs to their full potential.

An objective of our framework is to make CPs “digitally visible” and to enhance their

semantic operability among HISs, thus, the data resulting from CP applications are not lost

and can be used whenever needed. This also improves CP data communication between
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healthcare professionals which reduces human errors in hospitals.

CPs are developed as ambiguous text lines that do not match standard clinical termi-

nologies. In this thesis, we propose a framework that can address this challenge by adopting

SNOMED CT for the complete standardization of CPs. Our framework considers various

levels of CP data standardization (i.e., global, national and local CP terminology levels).

Aside from standardization of CP content, the present gap between CPs and their in-

tegration with various types of HISs can also be linked to the fact that CPs do not have

any international digital identifiers to identify and recognize them both digitally and in

real life. Therefore, we developed in this research a digital CP identification code (CPID)

that is generated by introducing a new SNOMED CT partition identifier. Through the

CPID, every CP will have its own digital international identification number. Furthermore,

we merged both the standardization of CP data and the CPID to develop a new digital

“hyphenated coding system” in healthcare with a novel link between CPs and their data

to facilitate data analytics and decision support. The new coding system was developed by

extending the SNOMED CT system without violating its logical model which facilitates

its acceptance at the international level.

We propose a conceptual design and architecture for a CPMS to realize the framework

such that the CPMS has an HL7 engine to communicate with existing HISs (besides the

ability to communicate through SNOMED CT standard). The CPMS is an independent

system in the sense that it has its own CP-specific database for CP data, and includes

data analytics and decision support algorithms. The conceptual design of the system helps

in achieving the centralizing of CPs, independence of CPMS, and advancing CPs digital

visibility and machine readability.

2.4 Conclusion

This chapter addressed the concept of clinical pathways, their history, development, and

benefits in healthcare. Clinical pathways are still used in hospitals as paper-based doc-

uments and the need for their proper computerization is addressed. The chapter also
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discussed the literature review which was divided into three parts: semantic based meth-

ods, non-semantic based methods, and SNOMED CT in healthcare systems. The chapter

concluded with the critical analysis of the literature review. In the critical analysis, we

showed that the common theme in the current clinical pathway research is that computer-

ized CPs are considered as secondary components developed mainly to support electronic

medical record systems in their operations. In addition, researchers in this field achieved

only partial computerization of CPs because the concepts of standardization, digitization,

coding system, and centralizing CPs in health information systems were not addressed.

These concepts will be detailed in the next chapter.
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Chapter 3

Proposed Framework

The automation revolution in modern healthcare systems has mandated that hospital pro-

cesses be computerized to streamline healthcare, reduce paperwork, collect digital data,

and control costs. CPs are no exception in this regard. Although healthcare has greatly

benefited from the introduction of CPs, these benefits cannot be fully realized without

properly computerizing CP systems in order to automate their applications within health-

care systems.

3.1 Overview of the Proposed Framework

In order to address the research gaps mentioned in the previous chapters, we propose

an ontological framework for standardizing and digitizing clinical pathways in healthcare

information systems. In the sections below we address the proposed framework in terms of

its contributions to CP automation, CPMS integration with HISs, and the independence

of CP management systems. In addition, the framework addresses the issue that CPs are

expressed in ambiguous local textual instructions. This not only renders them difficult

to understand by medical staff members, but it also creates a digital barrier or “digital

divide” between CPs and HISs.

Fig. 3.1 illustrates how unstructured, partially-computerized CPs create a digital divide

between CPs and other HISs. This digital divide is a main reason behind the challenge

29



.

.

.

Clinical Pathway

EHR

PIS

RIS

LIS

Health Information Systems

.
.
.

Digital Divide

Physician

Pathologist

Paramedic

Surgeon

Nurse

Figure 3.1: Digital Divide caused by unstructured CPs.

of CP automation. To date, CP computerization research has ignored the presence of this

digital divide, and most efforts were directed towards “programmatically” linking basic

CP data with EMR systems while leaving CPs digitally invisible and distanced from the

digital age.

3.2 CP Automation

CPs are populated with data that can be only partially transferred to other HISs. A key

factor that impedes the transfer of full CP data is that CPs are prepared in hospitals

without attention to standardizing their medical terms. After a thorough review of CP

research found in the literature, and from discussions with our domain experts at Thunder

Bay Regional Health Sciences Centre, it was clear that most CPs are currently developed

using ambiguous local medical terms and abbreviations [86, 87, 88, 89, 90, 91, 92, 93, 94, 95].

This situation makes CPs prone to human errors and creates a challenge of exchanging

them across medical institutions. It also causes the loss of valuable CP data because
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existing HISs use standardized terminology systems in their encoding of medical terms.

The solution for this in our framework is that we strongly recommend that CPs be encoded

with an international terminology system such as SNOMED CT. The sections below present

further details on medical classification and terminology systems and SNOMED CT.

3.2.1 Medical Classification and Terminology Systems

Medical classification is the process of converting descriptions of medical procedures and di-

agnoses into world-wide standardized codes. During classification, diseases are categorized

based on similar properties. A terminology is a group of terms representing the concepts

in a domain. Standard reference clinical terminology is crucial for the interoperability

between various information systems in healthcare [96, 97, 98].

There are currently several international standards being applied, including System-

atized Nomenclature of Medicine-Clinical Terms (SNOMED Clinical Terms terminology, of-

ficially abbreviated as SNOMED CT) and the International Statistical Classification of Dis-

eases and Related Health Problems (ICD classification), both widely used systems [99, 100].

In this research, we selected SNOMED CT to be the base terminology for the proposed CP

standardization and coding framework because it is considered to be the world’s largest

and most comprehensive multilingual clinical healthcare terminology [96, 97, 98]. Below is

a description of SNOMED CT.

3.2.2 Systematized Nomenclature of Medicine-Clinical Terms

The Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) is a system-

atically organized computer-processable collection of medical terms consisting of codes,

terms, synonyms and definitions used in clinical documentation and reporting. According

to Canada Health Infoway, “SNOMED CT is the largest and most comprehensive medical

terminology in the world. The international release of SNOMED CT contains interna-

tional content and is maintained by SNOMED International” [101]. “The SNOMED CT

Canadian Edition contains concepts that are specific to use in Canada and is maintained

by Canada Health Infoway” [101].
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Figure 3.2: The summary of ischemic stroke on SNOMED CT Browser.

The primary purpose of SNOMED CT is to encode the meanings that are used in

health informatics, and to support the effective clinical recording of data with the aim of

improving patient care. SNOMED CT provides the core general terminology for electronic

health records. SNOMED CT comprehensive coverage includes clinical findings, symp-

toms, diagnoses, procedures, body structures, organisms and other etiologies, substances,

pharmaceuticals, devices and specimens. To give SNOMED CT examples from its main

repository, Figures 3.2 and 3.3 show the ‘summary’ and ‘diagram’ of ischemic stroke as

they appear on the SNOMED CT Browser [98]. Table 3.1 lists the names of the nine-

teen (19) top classes in the structure of SNOMED CT ontology. Top classes have is-a

relations with the root class “SNOMED CT Concept” (refer to Figure 3.4). Besides is-a

relations, SNOMED CT concepts have many other relations/attributes such as associated-

with, contained-in, due-to, finding-site, has-ingredient, and is-about.

The release of the SNOMED CT International Edition on January 31, 2020 includes

352,567 concepts that provide the core general terminology for Electronic Health Records.

The SNOMED CT logical model (Figure 3.5) defines the way in which each type of compo-

nent and derivative is related and represented in SNOMED CT. The core component types

are concepts, descriptions and relationships. The logical model therefore specifies a struc-

tured representation of the concepts used to represent clinical meanings, the descriptions
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Figure 3.3: The diagram of ischemic stroke on SNOMED CT Browser

Table 3.1: SNOMED CT Structure.
Top classes of SNOMED CT Hierarchy

Body Structure Qualifier Value

Clinical Finding Record Artifact

Environment or Geographical Location Situation with Explicit Context

Event SNOMED CT Model Component

Observable Entity Social Context

Organism Special Concept

Pharmaceutical/Biologic Product Specimen

Physical Force Staging and Scales

Physical Object Substance

Procedure
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used to refer to them, and the relationships between the SNOMED CT concepts [98].
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(b) Part of the hierarchy of Stroke (SCTID 230690007)

Figure 3.4: Top classes of SNOMED CT taxonomy.

3.2.3 Clinical Pathways Compliance with Terminology Systems

As mentioned earlier, the compliance of CPs with reference terminology systems is a key

factor for the integration of computerized CPs with other systems in health informatics.

However, our literature review revealed that the compliance is low. It is a well-known fact

that “If you cannot measure it, you cannot improve it” [102]. Therefore, there is a need to

measure CP compliance with terminology systems. To measure the compliance numerically,

we have introduced a metric called Clinical Pathway Compliance Ratio (CPCR), defined
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Figure 3.5: SNOMED CT Logical Model.

as follows:

CPCR =

N∑
i=1

CPTF

N
, (3.1)

where:

N : The number of clinical terms in the CP, CPTF : The CP Term Factor, defined as:

CPTF =

1, if CP term complies with terminology

0, otherwise.

In the above definition, CPTF is equal to one if the CP term complies with a corre-

sponding term used in the selected reference terminology system (SNOMED CT in our

case); otherwise, CPTF is set to zero. This definition agrees with our final objective to

standardize CP terms and to make CPCR approach one. Note that partial matching with

SNOMED CT is not considered in the above formula because the benefits of terminology

standardization are realized only with standardized terms. Our standardization is flexible
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Table 3.2: Analyzing terms from Stroke CP

CP Term SNOMED CT Term SNOMED CT ID CPTF

Urinary tract infection Urinary tract infection 68566005 1

Swallowing screen Screening for dysphagia 431765005 0

regarding the preferred terms in the sense that the exact matching with SNOMED CT pre-

ferred terms is not strictly required to achieve the full CP digitization (although preferred).

Terminology compliance (not only the exact match) is considered in our framework. For

example, the preferred SNOMED CT term ‘indwelling urinary catheter’ with SNOMED

CT Identifier (SCTID) 23973005 has another acceptable term in SNOMED CT system,

called ‘indwelling bladder catheter’. For both terms, CPTF = 1. For an illustrative term

compliance example, Table 3.2 considers few terms from the stroke clinical pathway that

is used in Ontario hospitals.

We analyzed the main components of the stroke CP and obtained a CPCR close to 61%.

This result agrees with our finding (in the critical analysis of the literature review) that

non-standardized clinical pathways are a major source of missing data in healthcare infor-

mation systems. Therefore, there is a need to improve the CP compliance with terminology

systems. In our vision, this CP non-compliance with standard terminologies is one of the

main reasons to consider CP computerization as still at its infancy. To address the holis-

tic framework for standardization of CPs and making them machine-readable, additional

definitions and concepts are introduced below.

3.2.4 Standardization of CP Terminology

In general, CP terms can be classified into the following categories:

� Standardized terms (or initially standardized terms): Clinical terms in the CP that

comply with SNOMED CT. These are terms with CPTF = 1.

� Non-Standardized terms: Terms in the CP that do not comply with SNOMED CT.

These are terms with CPTF = 0, and can be further classified into the following:
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Figure 3.6: Standardization of CP terms as a key step to increase the digital visibility.

– Standardizable terms: Terms that have equivalent terms in SNOMED CT.

– Local terms: Terms that are local to the organization or country/region. Note

that whenever possible, it is preferred to use international standardized terms

over local terms.

CP term standardization requires the use of standardized terms during new CP develop-

ments, or updating the terms for existing CPs. For already developed CPs, term standard-

ization can be achieved by retaining standardized terms and replacing non-standardized

terms by their equivalent standardized terms (Figure 3.6). When performing this stan-

dardization process, the CP ends up having only two types of terms: Standardized terms

and local terms.

This term standardization step can be best performed by physicians and healthcare

providers themselves since they are the domain experts. Alternatively, several techniques

and resources have been used to achieve term standardization based on methods from

Natural Language Processing (NLP) such as studies in [103, 104, 82, 105]. Even when

the focus of such studies was not CP standardization, relevant parts can be adopted in

the CP domain. For example, in CP domain, we noticed that the use of abbreviations

is common, specifically nursing abbreviations in CPs. In such cases, the study by [103]
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is relevant in the CP domain, whereby the authors proposed an NLP-based abbreviation

disambiguation method for nursing notes through an abbreviation normalization module.

Using a Python-based web crawler (called Scrapy 1.5), they automatically collected com-

mon nursing abbreviations in medical notes from Tabers Medical Dictionary and Nurselabs,

and stored them in an abbreviation database together with their complete forms. Conse-

quently, the abbreviation normalization module tokenized the free text in medical notes to

single words, and then replaced any occurrences of detected abbreviations with the com-

plete term by consulting with the abbreviation database. For example, if the free text

(after tokenization) includes the abbreviation word “CT”, then that abbreviation is auto-

matically replaced by “computerized tomography” from the database. In our CP domain,

“computerized tomography” is a SNOMED CT term with the identifier 77477000.

It is important to mention that since CPs are treatment plans of interventions and pro-

cedures applied on patients, extreme caution should be exercised when utilizing automatic

standardization of medical terms in CPs for safety reasons. Therefore, machine-based

standardization methods should be considered as decision-support methods rather than

decision-making techniques. The final decision makers in medical CP term standardiza-

tion are terminology-knowledgeable human physicians and domain experts.

Another application of NLP in the field of clinical pathway standardization is using

semantic similarity and relatedness to help domain experts in the CP standardization pro-

cess. Semantic similarity is a metric that can be defined as a quantitative measure of

likeness between terms based on their hierarchical distribution within an ontology [106].

Semantic relatedness is a form of measurement that quantitatively identifies the level of

connectedness between two concepts based on existing semantic relations [107]. Thus,

semantic relatedness is also a metric over the terms; however, semantic relatedness in-

cludes any relation between the terms, while semantic similarity includes only “is-a” rela-

tions [106, 107]. For example, in SNOMED CT, “ischemic stroke” with SNOMED CT ID

(SCTID) 422504002, is similar to “cerebrovascular accident” with SCTID 230690007, but

is also related to “ischemia” with SCTID 52674009 (refer to Figure 3.7) [108].

When domain experts have limited time to work on the CP standardization process,

junior members of the standardization team can propose an initial SNOMED CT term for
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Figure 3.7: Part of the ischemic stroke concept hierarchy in SNOMED CT.

a local CP term. If the domain experts disagree on the accuracy of the proposed term, then

in most of the cases the accurate term is a term similar to the chosen one. To automate

the process of finding the correct term among similar terms, proper semantic similarity

algorithms can be used to find other candidate terms similar to the proposed one.

The goal of algorithm 3.1 is to retrieve the list of candidate SNOMED CT terms. The

algorithm limits the list of candidate terms to those that are most semantically similar to

the initial term. The input to algorithm is the initial term and the output is the term

approved by the domain experts. In steps 5 to 9, the algorithm searches the SNOMED CT

ontology starting from the root of the initial term, and retrieves the sibling terms of the

initial term based on a similarity threshold 1. All siblings that are similar to the initial term

are stored in the array SL. The terms in the array are then presented to domain experts

who can either approve a sibling term or expand a sibling term to check its children. This

is performed in steps 10 to 16. The “if statement” in step 11 evaluates to “true” only if

a sibling term has been approved. The else part in step 13 allows the domain experts to

expand a sibling term (ci). The term ci becomes the new root term, and the repeat cycle

loops again to explore new possible terms.

It is worth mentioning that the metric (CPCR) is a type of metric that we call a

1The similarity threshold will be evaluated based on the selected semantic similarity measure. We are

currently experimenting with different similarity measures.
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Algorithm 3.1: CP SNOMED CT standardization using semantic similarity

Input : SCTIDinit: Initial SCTID

Output: SCTIDapproved: SCTID approved by domain experts

1 Data Structures:

2 SL: An array to store the suggested SNOMED CT terms, initially empty

3 root : A variable to store the parents of(SCTIDinit) based on is a relation,

initially null

4 repeat

5 foreach child ci ∈ child of(root) do

6 if ((ci 6= SCTIDinit) ∧ (similarity(SCTIDinit, ci) < Threshold)) then

7 SL← ci ; // Append ci to SL

8 end

9 end

/* Display SL to domain experts. Domain experts can either:

expand a child node to check its children OR approve child

node as a standardized term */

10 foreach child node ci ∈ SL do

11 if (ci is approved) then

12 SCTIDapproved ← ci

13 else if (expand ci) then

14 root← ci

15 end

16 end

17 until (SCTIDapproved 6= null) ∨ (SL = ∅);
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CP “digital quality” metric because it helps evaluate the “digital visibility” of existing or

proposed CPs. A CP with SNOMED-CPCR = 1 is a totally standardized CP (all CP

terms could be made comply with SNOMED CT terms).

3.2.5 Development of a Coding System for Clinical Pathways

The era of computers brought with it the concept of digital coding systems to almost all

products and services. A closer look at CPs currently in use reveals that they lack any

type of coding system to identify them. In our vision, this is another key reason behind the

low machine readability of CPs. The present gap between CPs and their integration with

various types of HISs can be linked with this because CPs do not have any digital identifiers

to recognize them. Therefore, we propose the development of a coding system specific for

CPs to further advance their digital visibility, machine readability, and integration with

other information systems.

Furthermore, a proper coding system applicable to CPs facilitates the mathematical

modeling of CP data as will be addressed later in this thesis. In order for the suggested stan-

dardized coding system to form a foundation for CP digitization, to be accepted by health-

care professionals, and to be operational within existing information systems in health

informatics, we propose that it be based on accepted international medical terminology

systems. Our proposed universal CP coding system is introduced below.

3.2.6 Coding System of International Data

In the SNOMED CT system, each component has an identification number known as

SNOMED Clinical Term Identifier (SCTID). For example, the SCTID for stroke is 230690007,

the SCTID for Carotid Artery Disease is 371160000, and so on. A SNOMED CT compo-

nent can be a concept, a description, or a relationship that conforms to the SNOMED CT

logical model (see Figure 3.8).

The SCTID has a structure that includes information about the nature and source of

the identified component, as well as the validity of the identifier. This structure supports
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Figure 3.8: SNOMED CT Components.

Figure 3.9: SCTID format for international SNOMED CT components.

many features, including the following (see Figure 3.9):

� Item identifier: Used to identify a component so that it is uniquely identified by the

complete SCTID.

� Partition identifier: A two-digit identifier that distinguishes the code of different

SNOMED CT component types and prevents the identical identifier from being allo-

cated to different components. Thus, when an SCTID is read from a record or other

resource, it is possible to determine whether it represents a concept, a description, or

a relationship, before searching for the component being identified. Table 3.3 outlines

SNOMED CT international partition identifiers (also called short format identifiers).
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Table 3.3: SNOMED CT partition identifiers

Partition ID Component Type

00 Concept

01 Description

02 Relationship

� Check-digit: The last digit of SCTID is generated from the other existing digits,

and is used to validate the identifier to minimize errors from human input such as

incomplete copy-paste actions.

Based on the structure of SNOMED CT, we propose a CP coding system that adopts

the following rules. Every CP should have its identifying code with a CP-specific partition

identifier. The new identifier is proposed as follows: There are currently three partition

identifiers used (see Table 3.3) for which the values ‘00’, ‘01’, and ‘02’ are allocated to

concept, description, and relationship, respectively. Therefore, we propose the use of an

agreed-upon, unallocated partition identifier for specifying CP identifiers (CPID). Cur-

rently, the next unallocated value is ‘03’; thus, we present our examples using this value.

This agrees with the SNOMED CT logical model for future expansion because it is stated

by SNOMED CT international that “all other partition-identifier values are reserved for

future use” [98].

As an illustrative example under this proposed coding system, since the SCTID for

ischemic stroke is given as 422504002, then the CPID allocated to the ischemic stroke CP

is formed by the ischemic stroke item identifier 422504, the new partition identifier 03, and

a corresponding check digit 9, to yield a CPID for ischemic stroke CP as 422504039.

For the medical components and terms inside CPs, we propose using the same SCTID

codes for each component, and when reporting or communicating a CP component to

external computer systems, we propose a code that consists of two SCTIDs separated by

a hyphen, as explained in the following example. Considering the ischemic stroke CP, one

of the medical steps is to check for the “Screening for dysphagia” of the patient because

stroke often causes a swallowing disorder called dysphagia. If not identified and managed

properly, it can cause pneumonia, poor nutrition, and increased disability [109].
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Table 3.4: Description of medical data coded using the developed framework.

Code Description

1539035-418426008 X-ray of fingers in the CP of acquired trigger finger

1539035 CPID for acquired trigger finger

73211032 CPID for diabetes mellitus

93870037-418733007 Ultrasound scan of abdominal vessels for CP of liver cancer

We propose the code of screening for dysphagia reported from the CP of stroke to

be 422504039-431765005, where 422504039 represents the CPID for ischemic stroke, and

431765005 is the SCTID for screening for dysphagia. Therefore, the general format of the

standardized coding system of CP components can be represented by the hyphenated code

CPID-SCTID, where the CPID to the left of the hyphen refers to the CP itself (i.e. the

international CP identification code), and the SCTID to the right of the hyphen refers to

a component inside that CP. The hyphenated coding system for CP contents would be a

very novel and useful concept in digital databases because the link between the medical

interventions and their associated CPs and diseases is always present and stored in digital

format. This facilitates the use of CP data analytics for decision-support. Table 3.4

describes sample medical data that is represented using the developed coding system.
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Figure 3.10: SCTID long format - Applicable to components originating from a SNOMED

CT extension for local use.

Table 3.5: SNOMED CT local partition identifiers.

Partition ID Component Type

10 Concept

11 Description

12 Relathionship

3.2.7 Standardizing and Coding System of Local Data

The application of CPs results in rich data whose capacities are currently unused because

they are not fully captured in digital format. In order to maximize the use of CP data, local

components can also be standardized and digitized. SNOMED CT supports an “extension”

coding format for local use (called long or local format) in which a namespace identifier

is required to indicate the organization responsible for the SCTID long format, such as

hospitals, healthcare authorities, provincial governments, etc. [110]. This local SCTID

supports the structure shown in Figure 3.10. In this structure, the partition identifier

values are shown in Table 3.5.

The namespace identifier is a seven-digit integer number, left padded with zeros as

necessary to ensure there are always seven digits in the value. It is allocated to organizations

by SNOMED International (the International Health Terminology Standards Development

Organization), which is the not-for-profit organization that develops and promotes the use

of SNOMED CT to support safe and effective health information exchange codes [111].
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Table 3.6: Example SNOMED CT namespace identifiers.

Namespace Identifier Organization

1000087
Canada Health Infoway

(English Canadian Extension)

1000112 Alberta Health

1000136 University of Victoria Health Terminology Group

1000038 UK National Health Service

1000026 Cambridge University Hospital

1000032 Australian e-Health Research Centre

Figure 3.11: Region-wide vs. organization-wide local SCTID codes.

Table 3.6 shows example namespace identifiers [112].

Although the long format SNOMED CT code can be used for local CP terms, we rec-

ommend a type of standardization of local terms on a national level for improved semantic

interoperability (see Figure 3.11). For an example from Canada, terms that are local

to a hospital or a province could be standardized to achieve standardized Canadian local

terms (Canada-wide). In cases where this local standardization is not possible, then an

organization-wide local SCTID code can be used. Canada Health Infoway has the respon-

sibility of unifying terms to realize a Canada-wide SCTID coding system. We recommend

that all hospitals and provinces cooperate with Canada Health Infoway. Note that “region-

wide” used in Figure 3.11 could mean city-wide, province-wide, or country-wide, depending

on the level required for standardizing local terms.

The CPID addressed above is an international ID derived from the disease (e.g., stroke)

of that particular CP. However, in cases where a local CPID is required, then the partition
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identifier value ‘13’ can be used (or another agreed-upon value) for local CP identification

using the local format (see Table 3.5). An example code related to a local component

inside the CP of diabetes mellitus would be “73211032-607978811000087105” to denote

“Canadian diabetes education program (607978811000087105) inside the CP of diabetes

mellitus (73211032)”.

Aside from the benefits described above, the standardized terminology and coding

system can facilitate (without ambiguity) many computations related to CP analysis and

application in hospitals. For example, to verify the conformance of a patient treatment

process with the patient’s assigned CP (e.g. if all recommended blood tests have been

ordered), the following equation can be used: Denoting ‘CP blood tests application ratio’

as α, then,

α =
Number of matching blood test codes in EMR

Number of blood tests in CP
. (3.2)

CP conformance analysis is important for both improving the CP itself and for improving

the treatment processes [42].

3.2.8 Ontology-Based Modeling and Description Logic

The proposed framework adopts the ontology engineering and semantic web approach in

modeling CPs and constructing the knowledge base. Semantic web components like SWRL

and Web Ontology Language are based on Description Logic [58, 113, 114]. Description

logic is the formal base of the rules to construct useful and valid knowledge representations

that are widely used in ontological modeling. Description logic is equipped with a formal

semantic that is a precise specification of the meaning of ontologies, which helps in modeling

the relationships between ontology entities in a domain of interest.

There are three types of description logic entities used in web ontology language: con-

cepts (or classes), roles (or properties), and individual names. Concepts represent groups

or sets of individuals, roles model the binary relationship between the individuals, and

individual names represent single individuals in the ontology’s domain of interest.
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An ontology does not fully describe a particular state; rather, it consists of a set of

statements called axioms. Axioms must be a true description of a situation. “These

axioms typically capture only partial knowledge about the situation that the ontology is

describing, and there may be many different states of the world that are consistent with

the ontology.” [115]. It is customary to separate axioms into three groups: assertional

(ABox), terminological (TBox) and relational (RBox) [115].

3.2.8.1 Assertional (ABox) Axioms

ABox axioms capture knowledge about individuals. They represent how named individuals

relate to each other in the domain and the concepts to which they belong. The most

common ABox axioms are concept assertions [115]. For example, in a disease hierarchy,

there are parent classes, super-classes and individual diseases. The following axiom asserts

that the individual named cerebrovascular disease is an instance of the concept or class

Upper level disease.

Upper level disease(cerebrovascular disease). (3.3)

Property or role assertions describe relations between individuals. For example, the asser-

tion

onSameLevel(cell structure, body tissue structure), (3.4)

describes that the individual named cell structure is in the relation represented by on-

SameLevel to the individual body tissue structure. Because description logic does not as-

sume that individual names are unique, different names might refer to the same individual

(unless explicitly stated by axioms). The fact that cell structure and body tissue structure

are different individuals does not logically follow from the previous axiom. To ensure that,

we must add the individual inequality assertion to ensure that cell structure and body tissue structure

are actually different individuals.

cell structure 6≈ body tissue structure. (3.5)

In ontology engineering, individual equality ABox axiom is often needed for ontology

alignment. Two ontologies originating from different sources may have two different indi-

vidual names that refer to the same instance. This causes ontology alignment mismatch.
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For example, cerebrovascular accident is another name for stroke, thus individual equality

can be used to indicate that these two different names refer to the same instance, as follows.

cerebrovascular accident ≈ stroke. (3.6)

3.2.8.2 Terminological (TBox) Axioms

Axioms of type Tbox describe relationships between concepts. For example, every disease

is a clinical finding. This fact can be expressed by the concept inclusion as follows

disease v clinical finding. (3.7)

Asserting that two classes have the same instances can also be performed by concept

equivalence axioms. For example:

disorder ≡ disease. (3.8)

This assertion can be used for synonym classes (i.e., equivalent concepts) which is also

used in ontology alignment.

3.2.8.3 Relational (RBox) Axioms

In semantic web paradigm, roles (or properties in OWL language) can also be organized in

hierarchies, and can have properties. RBox axioms denote properties of roles. For example,

the role parentDiseaseOf can be a sub-role (or “sub-property”) of ancestorDiseaseOf. This

can be denoted as

parentDiseaseOf v ancestorDiseaseOf. (3.9)

The logical inference of (3.9) is that every pair of individuals related by the property par-

entDiseaseOf is also related by the property ancestorDiseaseOf.
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3.2.8.4 Description Logic Constructors

Ontologies can more accurately model domains with complex situations using description

logic constructors by allowing new roles and concepts to be constructed. There are differ-

ent types of constructors (e.g., Boolean concept constructors and role restrictions).

Boolean concept constructors

Examples from this category are listed below.

> v Male patient t Female patient. (3.10)

Male patient u Female patient v ⊥. (3.11)

where the top concept > is a special concept with every individual as an instance, and the

bottom concept ⊥ is the special concept with no individuals (φ) as instances.

Role restrictions

One of the most interesting features of description logic is the ability to link concepts and

roles together. For example:

Parent ≡ ∃parentOf.>. (3.12)

This is a concept equivalence statement that indicate that a parent is someone who is a

parent of at least on individual.

In Protégé, description logic statements are generated using owl statements. For ex-

ample, the axiom that the classes disorder and disease are equivalent can be represented

by using the following statement:

〈owl:Class rdf:about=“http://www.semanticweb.org/.../ontology#Disease”〉
〈owl:equivalentClass rdf:resource=“http://www.semanticweb.org/.../ontology#Disorder”〉
〈/owl:Class〉
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Figure 3.12: Description logic reasoning in Protégé.

The fact that the concepts Patient and Disease are disjoint classes can be expressed

as:

〈owl:Class rdf:about=“http://www.semanticweb.org/.../ontology#Disease”〉
〈owl:disjointWith rdf:resource=“http://www.semanticweb.org/.../ontology#Patient”〉
〈/owl:Class〉

Through description logic reasoning, any attempt to create an individual that belongs

to both disjoint classes would be considered as inconsistency in Protégé.

For example, Since Patient and Disease are declared as disjoint classes, declaring Stroke

(which is a disease) as an individual of the class Patient results in the logic reasoning error

shown in Figure 3.12.

In summary, ontologies, through their formal logic base, define the terms, their seman-

tics, relations, and constraints describing domain knowledge to provide a shared under-

standing that can be communicated between people and heterogeneous applications in a

machine-understandable way, thus facilitating semantic interoperability among information

systems [116, 113].

Another advantage of adopting the ontology-based approach is that ontological mod-

eling facilitates a hierarchical meta-level/disease-level architecture in which the generic

and abstract CP domain concepts are modeled at the meta-ontology or upper-ontology

level, while disease specific CPs are extended and specialized in the disease-specific on-
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tologies. Furthermore, all CP ontology elements (e.g., interventions, events, observations,

outcomes, etc.) are represented textually by SNOMED CT terms, and coded numerically

using SNOMED SCTID numbers. This is achieved by integrating a SNOMED CT ontol-

ogy that enables linking SNOMED CT terms used in CP ontology to their SNOMED CT

codes extracted from SNOMED CT ontology.

3.3 CPMS Integration with HISs

In order to address the proper communication level between clinical pathway management

systems and HISs, we first briefly consider the major subsystems of HISs [117, 118, 119,

120]. We then consider CPMSs, and analyze the relationship between CP data and HISs

data.

3.3.1 Electronic Health/Medical Record Systems (EHR/EMR):

An EMR is a digital version of patients’ paper charts. It is typically used by single-practice

clinics and small hospitals for their local records of patients. An EMR typically contains

the medical history of the patients, diagnoses, and treatments. EMRs provide numerous

advantages over paper records including timely reminders for patient appointments and

checkups, digital data, and improved patient care. An EHR can be viewed as a ‘large-scale’

EMR that stores more data and facilitates the sharing of health records across different

institutions. It is worth mentioning that modern systems in use today are capable of

playing the roles of both EMR and EHR since they are larger systems and offer options

of either keeping the patients’ data local inside the institution, or sharing it with other

systems. Therefore, the terms EMR/EHR or simply EMR (or sometimes EHR) are widely

used today to refer to these systems [10, 121, 122, 123].

3.3.2 Laboratory Information Systems (LIS):

LIS are software systems with features that support modern laboratory operations and

informatics. The main functions of LIS include recording, managing, and storing clinical
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laboratory data for patients. LIS have traditionally been most adept at sending laboratory

test orders to lab instruments, tracking orders, and recording lab test results. In addition,

LIS support the operations of public health institutions and their labs by managing and

reporting critical data concerning immunology and infection [124, 125].

3.3.3 Radiology Information Systems (RIS):

RIS are the core systems for the electronic management of imaging departments, and

are critical to the efficient workflow of radiology practices. The main functions of RIS

can include scheduling of patients, managing resources of radiology departments, image

performance tracking, and distribution of results. A central component of RIS is the

radiology PACS (Picture Archiving and Communication System), which provides storage

and easy access to medical images from various sources (e.g., computed tomography (CT),

medical ultrasound, X-ray, magnetic resonance imaging (MRI), computed radiography

(CR), etc.) [117].

3.3.4 Pharmacy Information Systems (PIS):

PIS (also called Pharmacy Management System) have various functions to maintain the

organization and supply of drugs. A PIS can be a separate system for pharmacy usage, or

it can be coordinated with inpatient hospital order entry systems. PIS are used to increase

patient safety, report drug usage, reduce medication errors, and track costs. Outpatient

PIS have a strong emphasis on medication labeling, drug warnings, and instructions for

administration. The effective and safe dispensing of pharmaceutical drugs is the most

important function of PIS. During the dispensing process, PIS prompt pharmacists to

verify that the medication that they have filled is for the correct patient, that it is of

the right quantity and dosage, and that the information on the prescription label was

accurately printed [10, 126].
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3.3.5 Clinical Pathway Management Systems

The concept of applying CPs in hospitals was a novel initiative to adopt successful manage-

ment practices in healthcare. Therefore, since their introduction to healthcare institutions,

the main objective of CPs was to coordinate and ‘manage’ healthcare processes as central

components. CPs contain all the interventions required to treat patients; thus, within CPs

lies the very heart of medical planning and treatment, including cost and quality factors in

healthcare. The considerations above suggest that CPs were designed to produce all types

of data in healthcare as described above (e.g., EMR data, LIS data, etc.). Fig. 3.13 makes

this point clear by illustrating how CPs generate data for all types of HISs discussed above.

Two CPs for Diabetes Mellitus and Carotid Artery Disease are illustrated. As shown by

the arrows in the figure, both CPs include order instructions that result in data that need

to be transferred to all types of HISs.

Thus, computerized CP management systems should be designed and positioned such

that they are “centralized” (i.e., positioned at the centre of HISs) and allowed to commu-

nicate with all types of HISs (not only EMRs, as was the common theme in CP systems

found in the literature). Besides using ontological modeling and SNOMED CT-based com-

munication with other systems, this positioning and communication level of CPMSs can

be enhanced by equipping CP management systems with Health Level 7 (HL7) messaging

functionality to communicate with existing HISs (Fig. 3.14). HL7 consists of a set of in-

ternational standards for the transfer of clinical data between software applications [127].

This is achieved through standard, machine-readable HL7 messages. Generation of stan-

dard HL7 messages can be automated through application programs in high-level languages

such as the Java-based HL7 Application Programming Interface (API) toolkit [128]. Fig.

3.15 shows an illustration of an HL7 observation result message to communicate the result

of human immunodeficiency virus status using SNOMED CT encoding.

3.4 Independence of CP Management Systems

Without CPMS independence, the potential for utilizing CP data, and for using comput-

erized CP systems as decision-support systems in healthcare, could not be fully exploited.
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Figure 3.13: CPs produce data for all types of HISs.
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Figure 3.14: HL7 enables CPMSs to communicate with all existing HISs.
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Figure 3.15: Illustration of an HL7 observation result message.
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The independence of CP management systems is another contribution of our framework.

Independent CP systems have their own CP-specific algorithms and can perform their own

CP-related functions, support CP data analytics, and act as decision-support systems in

healthcare. One of the core ideas behind CPMS independence is to allocate a specific

repository (or database) for CP outcomes and include useful codes based on customized

algorithms. Since CPs produce patient treatment paths, allowing CPMSs to have their own

customized repository of CP data and paths is a corner-stone to achieve their independence.

CP paths (also called CP traces) can be recorded internally by time-stamping healthcare

events and storing them in sequence as the patient progresses through the CP treatment.

This allows all patient-related CP traces to be recorded in the CP trace repository, and

subsequently used for CP data analytics and other useful decision-support functions.

3.5 Conclusion

In this chapter, details of the proposed CP automation framework are addressed. The main

components of the framework can be divided into three parts: CP automation, CPMS in-

tegration with health information systems, and independence of CP management systems.

In CP automation, the concepts of SNOMED CT standardization, CP coding system, and

ontology-based modeling were addressed. CPMS integration with health information sys-

tems could be realized by using standardized communication methods such as HL7 and

standardized ontologies. The independence of CPMS can be achieved by the addressed

framework’s elements, including a system’s component that includes a customized repos-

itory for CP data. Independence can also be enhanced by CP-specific algorithms that

facilitate data analytics and decision support. Realizing the proposed framework in a

working system requires proposing a system architecture that integrates the various com-

ponents of the framework. This is the topic of the next chapter on the prototype design

and architecture.
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Chapter 4

Prototype Design and Architecture

of the Proposed Framework

The proposed framework is a generic framework in the sense that it can be designed

and implemented using different overall structures, ontology designs, and programming

languages. The framework can be applied within various types of healthcare systems

that are related to CP management. For example, a commercial traditional CP system

can be restructured and modified to implement the proposed framework. This creates

opportunities for healthcare institutions around the world to adopt and benefit from the

framework.

In this chapter, we present our methodology behind developing the proposed frame-

work through addressing the conceptual design of a clinical pathway management system

(CPMS) that realizes the CP standardization and digitization framework, and ensures the

independence of CPMSs. The proposed prototype CPMS that is based on the framework

is conceptually designed in three layers (i) Knowledge Base (KB) layer, (ii) Inference and

Data Analytics layer, and (iii) CP Management Tools layer. Figure 4.1 outlines the major

components of each layer. In addition to the three layers, our methodology integrates the

CPMS with an internal database to store patients’ CP data and traces in an internal CP

repository. Furthermore, the system can produce sample HL7 messages through an HL7

engine, which enables it to communicate with other HISs. To illustrate the basic function-
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alities of the framework, the prototype was implemented based on a stroke clinical pathway

with the help of domain experts from the Regional Stroke Unit at Thunder Bay Regional

Health Sciences Centre (TBRHSC), who thankfully offered to share sample CPs with us

for the purpose of this study [129]. A stroke rehabilitation CP was also shared with us

by The Ottawa Hospital. Below we describe the structure and main functionality of each

layer of the prototype CPMS.

4.1 Knowledge Base

The Knowledge base of the CPMS follows an ontology-based design that includes meta-

CP knowledge, disease-specific knowledge, and rules for ontological reasoning expressed in

SWRL [57]. The meta-CP knowledge is represented by an upper ontology that is built

from three ontologies to represent CPs in a generic meta-level format, namely meta-CP

ontology, SNOMED CT ontology, and Time Ontology, as shown in Figure 4.2. This onto-

logical structure is an important component of our methodology as it allows any CP to be

expressed as a series of clinical interventions over a specific time period, drawing from the

vocabulary and SCTIDs existing in the SNOMED CT standard. The developed knowledge

base of the prototype, being integrated with Protégé, provides easy ontology editing tools

to facilitate clinical pathway modifications over time, as shown in Figure 4.2.

4.1.1 Meta Clinical Pathway Ontology

An ontology is a formal representation of a set of concepts within a specific domain and the

relationships between those concepts. Ontology Engineering is a field of study that focuses

on the methodologies and tools for building ontologies. The meta-CP ontology in our

system serves as the schema for all possible disease-specific CP ontologies (e.g. ischemic

stroke ontology, diabetes mellitus ontology, etc.). The meta-CP ontology is modeled in

consultation with domain experts and CP ontologies available in the literature. A generic

CP ontology should capture all types of CP data and artifacts that can be encountered

in any CP execution regardless of its nature. Therefore, the meta-CP ontology includes

the major type of building blocks that one can use to create disease-specific CPs. We
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Figure 4.1: Conceptual design of the proposed framework based on our methodology.
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Figure 4.2: Parts of the meta knowledge layer shown in Protégé editor.

followed an ontology engineering process which constitutes the following four main phases,

to develop the meta-CP ontology: (A) Domain Understanding, (B) Ontology Design, (C)

Ontology Development, and (D) Ontology Evaluation. Note that “evaluation” is used here

as a generic term for assessing the ontology, which includes ontology validation by domain

domain experts. Figure 4.3 depicts the ontology engineering process, which is described

below along with its utilization in our CP automation framework.

4.1.1.1 Domain Understanding

The two major steps of domain understanding include reading about the domain and

working/consulting with domain experts. For our research, communicating directly with

domain experts, reading literature on stroke clinical pathways and LOS, and conducting

relevant research were our major sources for domain understanding. For the domain of

stroke, we had the opportunity to work with stroke domain experts in the research related

to ischemic stroke incidence and risk factors in Northwestern Ontario [130]. For the do-

main of hospital LOS, both communicating with stroke experts on stroke LOS and our
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Figure 4.3: Major phases of our Ontology Engineering process.
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research in [131] were key stages to understanding the LOS domain. To give some ex-

amples, communicating with the domain experts through research meetings allowed us to

ask questions about stroke patients in the database to understand the medical data, learn

more about the nature of stroke disease and the LOS of stroke patients, and understand

the medical vocabulary used in relevant medical domains. This was essential for us to

understand research papers of a medical nature (e.g., stroke ontology papers, CP papers,

etc.) and to improve the design of the ontology (e.g., adding the CP variance class and

variance types). In addition, understanding of vocabulary helped us to understand the

structure of SNOMED CT and to differentiate between some SNOMED CT terms (e.g.,

intracranial hemorrhage (SCTID 1386000), subarachnoid intracranial hemorrhage (SCTID

21454007), and ischemic stroke (SCTID 42250400)).

4.1.1.2 Ontology Design

The first step in designing an ontology is to search for available ontologies, analyze their

design, and see how they fit the domain/application being considered. We performed a

literature review about CP ontologies to investigate their design and main CP concepts.

Our ontology design was inspired by the ontologies already available in the literature. In

addition, our stroke knowledge, as well as, the feedback we received from our domain

experts, helped us to modify and improve the ontology design.

Figure 4.4 presents a term frequency word cloud for the class names used by researchers

on CP ontologies. This text analytics-based visual representation was useful to gain an

insight into which classes are used in literature in the context of CP ontology design. We

noticed that the main common ontology concepts used include: clinical pathway, observa-

tion, patient, intervention, CP trace, event, clinical condition, disease, symptom, outcome,

patient education, and procedure.

Another observation from our literature review was the lack of standardization, which

prompted researchers to use different class names for the same CP concept in their ontology

design (e.g., medical document, health document, or document). This was the main rea-

son that a mismatch was discovered between some ontology classes found in the literature.

For example, the standardized SNOMED CT term to represent documents is “clinical

63



document” (SCTID 423876004). Another example is that some authors used the term

nursing procedure as an ontology class name, whereas the same CP concept was named

nursing care by other researchers. In our framework, standardization is the appropriate

solution to this inconsistency. Thus, we adopted standardized terms in ontology class de-

sign, whenever possible. For instance, the formal SNOMED CT term for the care given by

nurses is nursing service, with the SNOMED CT ID 708170008. Without standardization,

the generated ontology cannot be considered as a meta level ontology, but just a “local top

ontology”, which is the case for CP ontologies found in the literature.

Another observation from the literature review was that although CP variance is an

important concept, few authors included it in their ontology design. In addition, the

major sub-classes of CP variance were not considered. In our ontology design, the variance

was a main ontology class, which we further sub-classed into its main categories: medical

evidence, comorbidity, facility resources, declined by patient, and declined by family.

Figure 4.4: Word cloud of CP ontology classes used in literature.

4.1.1.3 Ontology Development

The ontology was developed using Protégé OWL-based ontology software and knowl-

edge management system. As mentioned earlier, OWL stands for Web Ontology Lan-

guage, which is W3C-approved semantic knowledge representation language for developing

ontology-based systems. A statement in OWL consists of multiple elements that form

64



a triple. A triple consists of a subject, predicate, and object. The predicate indicates

the relationship between the subject and object. For example, in Laboratory test isType

Intervention, the subject is Laboratory test, the object is Intervention, and the predicate

(relationship) is isType, see Figure 4.5. An ontology consists of a collection of these state-

ments that define concepts, relationships, and constraints. Protégé also provides various

supporting tools that we used in our prototype system development, such as SWRL rule

editor for if-then like semantic rules. Java and Java OWL API were also used in Eclipse

Java development environment, to connect the system with the ontology.

Laboratory Test Intervention

Subject Predicate Object

isType

Figure 4.5: An example of an ontology statement (triple-).

4.1.1.4 Ontology Validation

The meta-CP ontology was validated through consultation with domain experts. Figure 4.6

shows the major ontology classes, as well as their child-classes and the relationships between

them. For example, the relationship between “Care Plan” and “Clinical Document” is

“contains document”. The major classes are described below.

� Care Plan: A generic representation of the CP being considered for treatment.

� Trace: All clinical interventions of clinical pathway execution on a specific patient.

� Event: Instructions on CPs to perform an intervention are modeled as medical events.

For example, if the same intervention is to be repeated on different days (e.g., perform

CBC blood test on day 1 and day 3), there will be a different event of the same

intervention for both days.
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Figure 4.6: Major classes of the meta-CP ontology.

66



� Intervention: A medical intervention performed during CP execution (e.g. blood

glucose level intervention). Several different interventions can be performed. These

include single interventions or complex interventions. A single intervention is typi-

cally a single clinical activity, whereas a complex intervention is composed of single

interventions.

� Observation: An observation made during a CP event.

� Outcome: The result of a certain CP event.

� Patient Disease: Disease for which the patient is admitted and for which the CP is

administrated.

� Variance: Deviation from the common CP due to several reasons, such as medical

evidence, facility resources, multiple comorbidity, as well as patient or family prefer-

ences.

� State: Current state of a trace, which may change based on the patient’s progress

through the CP.

� Healthcare Professional: Staff members who perform activities related to healthcare,

as specified on the CP.

4.1.2 SNOMED CT Ontology

The standard SNOMED CT ontology was included in the system to ensure two main

functions. Firstly, to link between standardized CP terms and their equivalent terms in

SNOMED CT ontology. This helps in importing SCTID codes to the CP as shown in

Figure 4.7. Secondly, to assist members of the medical staff and administrators in finding

the correct SNOMED CT terms for non-standardized CP terms. This is essential for

adopting international standards in CP documentation. It also allows for clear and accurate

documentation of patient assessments, care, and outcomes, thus facilitating communication

among caregivers and other healthcare workers.
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Figure 4.7: Retrieving SCTID from SNOMED CT Ontology.

In the developed prototype system, we used a light-weight SNOMED CT ontology

that included only the terms required for stroke CPs. A larger commercial version of the

system would have included the entire SNOMED CT ontology, thus allowing mapping to

any disease specific CP.

The root class of the SNOMED CT ontology that is modeled in the system is “SNOMED

CT Concept”. All other details of the SNOMED CT hierarchy are instantiated from the

root class. Figure 4.8 shows “Assisting with toileting”, which is a descendant of the class

“Assisting with activity of daily living”. Arranging medical terms using this structure

in the system provides additional context to human users to understand the meaning of

terms. It can also allow easier inference by machines. For standardization, interventions

of the CP ontology reference the corresponding class or individual of the SNOMED CT

ontology. This connection is created by using the object property “references SNOMED CT

Concept” whose domain is an intervention and range is SNOMED CT Concept. Figure 4.9

shows this object property, as well as other relationships used in the stroke ontology.

4.1.3 Time Ontology

Since CPs contain interventions carried over time, the timing of events of a CP is required

for its successful execution. In this research, we adopted the W3C-recommended OWL time

ontology to model temporal knowledge [132]. The basic structure of the time ontology is

based on an algebra of binary time relations developed by Allen [133]. Allen’s interval

algebra essentially serves to represent qualitative temporal information and to facilitate

reasoning about such knowledge. Figures 4.10 shows the thirteen elementary possible
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Figure 4.8: A subsection of the SNOMED CT ontology in the prototype.

referencesSNOMEDCTConcept

produceObservation

instance of

Screening for
Dysphagia
(procedure)

i

Screening for
Dysphagia
(procedure)

Screening for
Dysphagia

Observation

Pass

Fail

SCTID: 431765005
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Figure 4.9: Segment of the relationships of screening for dysphagia procedure in the stroke

CP.
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Figure 4.10: Thirteen elementary possible relations between time periods [132].

Figure 4.11: Interval relations defined by endpoints [135].

relations between time periods in Allen’s algebra. Figure 4.11 depicts the interval relations

defined by interval points, where “-” denotes the interval’s start time and “+” denotes the

interval’s end time. The time ontology is an upper level ontology that can be extended

and used across several domains. Using Protégé OWL editor [134], the time ontology

was integrated with the meta-CP ontology to represent time related data. For example,

the CP admission time and discharge time were extended from the “Instant” class of the

time ontology so that they represent the patient’s hospital admission and discharge times

(i.e., year, month, day, and time). The “Instant” class is a subclass of the top class

TemporalEntity in the OWL time ontology as shown in Figure 4.12.
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Figure 4.12: Core model of temporal entities in the OWL time ontology [132].
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4.1.4 Disease-Specific Ontologies

Disease-specific ontologies inherit the components of the meta-CP ontology and instantiate

them with details that are specific to the disease or medical condition under consideration.

The details of disease-specific CPs are achieved through either the instantiation of more

detailed OWL individuals or by the creation of child classes. In accordance with our frame-

work, every modeled CP is identified by its own CPID. In addition, CP ontology elements

are standardized with their SNOMED CT terms. This improves the machine readability of

CP contents and facilitates the integration of CPMS with other HISs. Figure 4.13 presents

a simplified part of the ischemic stroke ontology. It shows how stroke-specific elements are

extended from the meta CP ontology. For example, “Assisting with Toileting”, which is a

task required for stroke patients, is extended from “Nursing Service”. As shown in Figure

4.13, stroke-specific terms are SNOMED CT-compliant. Figure 4.14 shows an OWL code

fragment describing a subclass of “Single Intervention” class, denoted by “Nursing Service”,

and an individual of “Physical Examination”, denoted as “Screening for Dysphagia”.

4.1.5 SWRL Rules

To describe rules in CP execution, we employed SWRL, which uses the rule syntax “An-

tecedent → Consequent”, rendering it more appropriate to model if-then like domain

knowledge than using OWL alone. Both antecedent (if-part) and consequent (then-part)

are conjunctions of atoms. A variable in SWRL is indicated by a question mark (e.g.,

“?z”). Moreover, SWRL provides many useful built-in predicates for comparisons (e.g.,

swrlb:equal, swrlb:greaterThan). SWRL rules are applied on disease-specific CPs using

both CP knowledge and patient data. The inference engine used in this work is Drools [136],

which is a Protégé-embedded rule engine. An example SWRL scenario from the original

stroke CP is when a patient fails the intervention Screening for Dysphagia on admission,

the Neurology Nurse must then consult with the Speech/Language Therapist if available.

This can be represented in SWRL syntax as follows:

Patient(?a) ∧ Screening for Dysphagia(?b) ∧ performed on patient (?b, ?a) ∧ failed test(?b,1)

∧ Neurology Nurse(?d) ∧ Speech Language Therapist(?c) ∧ availability (?c, 1) → con-

sult with (?d, ?c)
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Figure 4.13: An example of disease-specific ontology for stroke.

Figure 4.14: Example OWL code fragments.
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A stroke patient who fails the dysphagia test has to repeat the test within 24 hours.

The following is the corresponding SWRL rule example:

Trace(?T) ∧ State(Repeat Screening for Dysphagia) ∧ CP Event(?e)

∧ time:inXSDDateTimeStamp(?e, ?time) ∧ temporal:durationEqualTo(24, ?time, ”now”,

”Hours”) � hasState(?T, Repeat Screening for Dysphagia)

4.2 Inference and Data Analytics

The inference and data analytics layer is where system processing takes place. The main

functions and the linking between various layers of the system are realized in this layer.

For example, this layer performs the task of generating the patients’ CP traces and storing

them in a SNOMED CT compliant format that can be used for various data analytics and

decision support functions. This layer ensures future interoperability between the proposed

CPMS and other HISs through SNOMED CT and HL7 messages. Furthermore, the layer

includes several algorithms, such as CP cost analysis and CP trace analytics. More details

on this layer and the decision support algorithms are addressed in the next chapter.

4.3 Clinical Pathways Management Tools

CP management tools form the user interface of the proposed clinical pathways manage-

ment system. The Model-View-Controller (MVC) software design pattern was adopted in

developing the interface and dividing the program logic into three interconnected elements

(see Figure 4.15). Dividing the program logic into elements makes it easier to test and

update the code since each modification is organized under its own element. For example,

the model contains the stroke ontology which contains the data related to CP execution.

The controller calls the Java OWL API functions to update the model or infer new knowl-

edge. The graphical user interface is contained within the view, where, for example, the
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(Ontology)

View
(User Interface)
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Figure 4.15: Model-View-Controller design pattern of the prototype.

Figure 4.16: Main Screen of the prototype CPMS.

data from the ontology is presented. This allows the user to navigate through the stroke

ontology events (through the user interface screens) without the need to deeply understand

the semantic structure of the ontology. Figure 4.16 shows the main screen of the system.

The “CP Data Analytics Tools” option provides the user with various CP analytics

and management functions. For instance, the user can search, view and compare CPs.

Comparing CPs enables healthcare providers to compare standardized CP elements of

disease-specific CPs. CP comparison, which is currently a tedious manual task that re-

lies mainly on unstructured text comparison, is made simple by applying the proposed

framework. The CP data analytics algorithms can be used from this component.

The “SNOMED CT CP-Standardization Tools” option enables medical staff members
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Figure 4.17: Standardizing CPs through SNOMED CT Browser.

to use tools that help them find proper SNOMED CT terms for non-standardized terms

appearing in CPs. This option also enables physicians and system administrators to update

existing terms that were modified by SNOMED CT. One of these tools enables a live

connection with SNOMED CT ontology and invokes the SNOMED CT search engine

browser, where up-to-date terminology concepts and codes can be searched by categories

(e.g., disorder, assessment scale, observable entity, procedure, etc.). These CP concepts

can be displayed with diagrams that show relationships between clinical terms as shown

in Fig. 4.17.

Another useful function on the SNOMED CT browser is the check-digit calculator that

helps healthcare providers find the correct check-digit to generate a disease-specific CPID.

All these tools facilitate standardizing and adding new CPs to the system.

The option “Guiding Patient Treatment Using Clinical Pathway” is where CP execution

on patients is realized. Here, the CP-based treatment is recorded through a series of screens

that present the SNOMED CT standardized clinical interventions of the CP and allows

medical staff to save the performed interventions and their outcomes. It should be noted

that CP standardization removes any ambiguity regarding the meaning of the performed

interventions.

Figure 4.18 shows a portion of a CP execution screen where clinical activities are
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Figure 4.18: A screenshot showing CP guided treatment.

Figure 4.19: A sample CP-progress screenshot from the prototype system.

arranged by category of interventions (e.g., assessment, nutrition, elimination, etc.) for

each day in the sample CP. Figure 4.19 illustrates another screen from the system where

the result of the screening for dysphagia for a stroke patient is entered by the caregiver as

either pass or fail.

Since CP terms are standardized, all medical staff members can realize them, thus fa-

cilitating communication and collaboration among the team. As patients progress through

the CP treatment, CP interventions are timestamped and recorded in sequence, allowing

the system to populate the patients’ CP trace repository, which is an output file in our

prototype. The output file could then be pre-processed so that it can be used by CP

decision support algorithms.

An example fragment of CP data in the output file for ischemic stroke CP patients is

shown in Table 4.1. The content of the file is edited and summarized for space limitations.

The actual content is much bigger since for each intervention, the system stores all relevant

data including its SNOMED CT term, SCTID, outcome, start time, end time, etc.

As mentioned, the output file can be pre-processed and then used in different ways

to support decisions and extract useful information. For example, the trace data can be

77



Table 4.1: Ischemic stroke CP Patients’ data (CPID 422504039)
Real patients’ data Guided Simulation Data

Patient ID
Speech and Language disorder

422504039-231543005

Smoking

422504039-365981007

Screening for Dysphagia

422504039-431765005

Computed tomography of chest

169069000

378 No No Successful

491 Yes Yes Failure Nodule of lung (variance reason: Comorbidity)

502 No No Successful

extracted by considering only the ordered sequence of medical interventions without their

times. This can be useful when comparing categories of patients based on the sequence of

medical intervention that they have undergone.

CP variance (if any) is also reported. Table 4.1 shows a case of variance where computed

tomography of chest (SCTID 169069000) is ordered for a patient due to comorbidity. Since

this procedure is not part of the CP, only the SCTID will be displayed without the CPID

hyphenated to it.

4.4 Prototype Validation

The prototype system and its CP algorithms were implemented using the Java program-

ming language in the Eclipse Java development environment, following the prototyping

software development methodology. Ontologies were developed in Protégé and integrated

with the system using Java OWL APIs. Protégé’s Drools inference engine was used for

reasoning. The developed system communicates with an EMR that is used for research

purposes at the Regional Stroke Unit at TBRHSC.

The Stroke Unit EMR (stroke patients file) contains the data of over 500 stroke patients

that were treated and hospitalized at the hospital. Using a medically ‘guided’ simulation

for these patients the output file was generated (see Table 4.1). The left part of the

table labeled ‘real patients data’ represents real data collected inside the hospital, and

the right part labeled ‘guided simulation data’ represent the data resulting from a guided

simulation. By medically guided simulation we mean that domain experts have helped us

generate simulated CP execution results for some data that were not available for us. The

simulation was based on medical insights and knowledge about patient cases (e.g., stroke
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patients with speech problems fail in the screening for the dysphagia test, a certain patient

had a previous stroke incidence, etc.).

Since medical staff members are the potential end users of the system, the prototype

was validated with the help of our domain experts. This was performed through several

interviews with the domain experts. Some interviews were closed interviews (i.e., there was

a pre-defined set of questions) whereas some were open interviews (i.e., open discussion

with the domain experts). The questions asked in the interviews were related to various

aspects of the system (e.g., CP ontology design, user interface design, standardized terms,

clinical pathways, output file, etc.). Appendix A presents sample interview questions.

Domain experts also assisted in evaluating some scenarios using the output file. In the

early developmental stage, we experienced issues with the prototype, which our domain

experts criticized and disagreed with. For example, the CP traces were lacking the admis-

sion and discharge days. Our experts recommended that we include the days in the output

file. In addition, finding the proper standardized SNOMED CT terms was challenging in

some cases and domain experts helped in the standardization process. We also experienced

programming problems related to compatibility issues between Java and Protégé due to

the fact that Java updates occur more frequently than Protégé and OWL API updates.

Furthermore, the initial user interface of the prototype was “crowded with buttons” (as

commented by the domain experts), and based on their feedback, the user interface was

improved throughout the development process by suggesting a less crowded user interface

driven by CP daily activities and independent successive small screens for CP interventions

and messages, as shown in Figure 4.16 and Figure 4.18.

Our domain experts were helpful throughout the development process by providing

advice about various aspects such as the ontology design, SNOMED CT standardization,

and retrieving certain required data from the hospital EMR (in cases where the required

data were not available in the research-based EMR of the stroke unit).

Due to the privacy of patients and their data, besides real patient data shared with us,

we had to perform simulations for data that were not available. Despite this limitation,

the simulations were medically guided by our domain experts, as mentioned above.

All in all, although it was a limited proof-of-concept system, the prototype was success-
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ful in performing its various intended functions such as simulating the progress of patients

through CP sample interventions, timestamping events, storing interventions in the CPMS

database (i.e., the output file), running decision-support algorithms on the processed out-

put file, etc. The output file was the main patient data file (or dataset) in this research.

The output file contained data for the stroke patients who had sustained a stroke due

to Carotid Artery Disease (and other causes). Carotid Artery Disease (CAD) is a chronic

vascular disease caused by the formation of plaque in the wall of the carotid artery, causing

stenosis and impairing the flow of blood to the brain. In the case of plaque rupture, a blood

clot may form and detach, then move with the blood to smaller brain vessels, potentially

leading to an ischemic stroke [137, 130].

In the final patients’ output file, each patient record contained several characteristics

such as demographic data (age, gender, and ethnicity with three categories: Caucasian,

Indigenous and Other), disease history (sleep apnea, atrial fibrillation, diabetes, and hy-

pertension), medical history and habits (e.g., previous carotid artery intervention, alcohol

consumption, smoking, type of stenosis, admission date, length of stay, speech and language

disorder, screening for dysphagia, nicotine withdrawal, assessment of tobacco use, symp-

toms, doppler results), required nursing services, and stroke cause classification. Stroke

cause classification in the dataset was based on the ASCOD phenotyping, whereby A

stands for atherosclerosis, S stands for small-vessel disease, C stands for cardiac pathology,

O stands for other causes, and D stands for dissection. As mentioned above, not all of

the above data were real data since some needed data were simulated to be able to run

simulations using the prototype CPMS.

4.5 Conclusion

In this chapter, the conceptual design and architecture of a CP management system were

addressed. The proposed system components are structured in such a way that they col-

lectively cooperate to operationalize the proposed framework and ensure the independence

of CPMSs. The main components of the prototype system include: The knowledge base,

the inference and data analytics, and the CP management tools components. The next

chapter presents various CP-based data analytics and decision support scenarios.
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Chapter 5

Data Analytics and Decision Support

Scenarios

The proposed CP standardization and digitization framework is extremely useful in al-

lowing the recording of observations, laboratory tests, procedures, medication and other

CP-related data, as well as linking them to their corresponding CPs. This framework not

only enables semantic interoperability among healthcare data, but also provides a rich

data source for data analytics and decision support. In this chapter, we address example

scenarios that highlight the capabilities of the framework from the data analytics and deci-

sion support perspectives. The scenarios cover various health decision support areas (e.g.,

variance analysis, hospital resource management, etc.); therefore, they are preceded by a

background related to the healthcare area under consideration.

5.1 CP Variance Analysis and Action Plan

One of the reasons behind introducing CPs in healthcare is to reduce the variance in med-

ical practice. CPs were successful in this regard because their standardization of patients’

treatment (i.e., reduction of variance) has resulted in homogeneous healthcare practices.

Nevertheless, variance is inevitable in some patients’ cases based on the decision of health-

care specialists. CP variance analysis identifies deviations from the clinical pathway and
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can be used for clinical auditing and quality improvement. Handling CP variance is an

important function of CP management systems. The proposed framework enables health-

care providers to record the variance based on its major reasons. The major reasons are

modeled in the meta-ontology and the variance is reported in the output with the inter-

vention’s SNOMED CT ID only (i.e., without using the hyphenated coding) to indicate

that the intervention is a variance, and not part of the CP.

Recording the variance facilitates the reporting of the statistical analysis required for

supporting decisions related to CP “Action Plans” (e.g., an action plan to modify the

CP by adding/removing an intervention). Since the action plan related to CP variance

affects the safety of patients, action plans are proposed and performed by expert physicians

rather than by machines. Action plans may include analyzing the percentage of variance

and modifying the CP in cases where the variance reaches an agreed-upon threshold (e.g.,

80% of patients deviated from the CP regarding an intervention or procedure). Even in

such cases, action plans typically include careful and extensive literature review for medical

evidence because CPs are patient treatment plans based on proven medical evidence.

A hypothetical scenario related to this area is for a hospital that uses the proposed

framework in their CPMS. Hospital staff can process the output to generate CP variance

analysis reports, similar to the one shown in Table 5.1, which demonstrates the variance

analysis through intervention application rates for a CP that was not recently updated.

Based on analyzing the results and related medical evidence, it was decided to update

the CP by adding intervention 699270006 (cerebrovascular accident annual review) as an

intervention in the CP under consideration (an intervention that was recommended in 70%

of patients).

5.2 Cost Management and Control

The proposed framework allows for improved cost management and control in hospitals.

We present a scenario related to managing costs per patient. Healthcare administrators

are often interested in comparing the average cost per patient for a particular CP in a

single hospital or across several hospitals. This can be determined by tracing all CP-

related interventions for all patients enrolled in that CP. A hypothetical scenario is shown
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Table 5.1: Variance analysis for population of patients (e.g., for 4000 patients).

Interventions Application Rate

230690030-405035003 100%

230690030-432103005 100%

699270006
70%

(Not in CP, but recommended for 70% of patients)

230690030-417986000 100%

Figure 5.1: An example chart for the average CP cost per patient.

in Figure 5.1, which outlines the average cost per patient for Total Thyroidectomy CP in

four different hospitals for a specific period of time, where the average cost per patient

in Hospital B was noted to be higher than that of the other hospitals. To facilitate CP

cost analytics, we developed a CP cost analytics algorithm based on the new proposed

hyphenated coding system. To better illustrate the algorithm, we introduce formal defini-

tions that demonstrate how the framework facilitates the mathematical representation of

CPs. This is because the SNOMED CT-based CP identification code (CPID) differentiates

between CPs without ambiguity, and it can therefore be used in the mathematical notation

of clinical pathways.

Assume that a hospital database has an inventory of n distinct medical interventions

and m adopted CPs. Then, let IHospital be the set of the medical interventions which can
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be defined as:

IHospital = {I1, I2, I3, ..., In}, (5.1)

where I i is the SNOMED CT code (SCTID) of a medical intervention.

Let ICPID be the set of all medical interventions of a particular CP identified by CPID.

This implies that:

ICPID ⊂ IHospital, (5.2)

To give some hypothetical examples:

I422504039 = {I2, I7, I54, ...} denotes the set of medical interventions given in ischemic

stroke CP, and

I73211032 = {I6, I10, I81, ...} denotes the set of medical interventions given in diabetes

mellitus CP.

Let CP trace be the ordered sequence of medical interventions prescribed for a particular

patient enrolled in a CP. Consequently, a CP trace for patient i enrolled in a CP identified

by CPID can be defined by TCPID,i as:

TCPID,i =< I1, I2, I3,..., Ik >, (5.3)

where Ij=1..k represents the ordered sequence of CP interventions from the set ICPID taken

by patient i. Note that TCPID,i is defined mathematically as a sequence, not a set, since

CPs can have the same intervention(s) repeated in a trace at different times.

The cost of trace TCPID,i can be represented as:

CostTCPID,i
=

k∑
j=1

CostIj , (5.4)
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where CostIj is the cost of the medical intervention Ij.

Suppose that there are m patients treated through the CP identified by CPID. Since a

CP trace is generated for each patient, we can therefore represent the total cost of patients’

CP treatments associated to CPID by adding the overall costs of all traces. This can be

expressed as:

CostCPID =
m∑
i=1

CostTCPID,i
. (5.5)

The CP cost analytics algorithm (see Algorithm 5.1) considers all traces within a specific

time period (e.g., the fiscal year) and applies the equations defined above. Furthermore,

the algorithm is generic in the sense that it automatically applies the equations on all

patients for each CP, and outputs the total cost per CP, as well as the average CP cost

per patient. The inputs to the cost algorithm consist of the file that contains the costs for

all interventions, and the file of interventions of patient traces. Patients who have traces

in a specified time period, can be determined, for example, by using SPARQL queries.

Figure 5.2 shows an example SPARQL query to extract patients with traces that took

place within the fiscal year 2018. The costing algorithm differentiates between different

CPs based on their CPID by considering the left part of the hyphenated code; it also differ-

entiates between interventions by considering the right part of the hyphenated code. This

allows the algorithm to easily classify and then aggregate CPs, as well as all interventions

in every CP (refer to steps 7 to 18 in the algorithm).

5.3 Managing Patient CP Traces

The application of CPs in hospitals results in the generation of CP treatment paths that

were followed by patients. In the CP domain, treatment paths are often referred to as “CP

traces”. Knowledge about CP traces, as well as the ability to perform data analytics on

them, provide great support for healthcare decision-makers. In this section, we show how

the framework facilitates the development of decision support algorithms related to CP

traces for better CP management.
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Algorithm 5.1: CP cost analytics

input : Patients’ CP traces file (interventions)

input : Interventions cost file

output: Cost[CPID]: hash-table with CP cost for each CPID

output: Avg Cost[CPID]: Hash-table with average cost per patient for each CPID

1 Data Structures:

2 HC : A variable representing CPID-SCTID hyphenated code for a CP intervention

3 Traces : Hash-table with number of patient traces for each CPID, initialized to zero

4 CP List : List of all CPIDs in CP traces file, initially empty

5 Interventions : Hash-table with list of interventions for each CPID, initially empty

6 begin

7 foreach record ∈ CP traces file do

8 HC← read HC of first intervention

9 CPID ← extract left part of HC

10 if (CPID /∈ CP List) then

11 Add CPID to CP List

12 Traces[CPID] ← Traces[CPID] + 1

13 end

14 foreach intervention ∈ current record do

15 HC← read HC of current intervention

16 SCTID ← extract right part of HC

17 Add SCTID to Interventions[CPID]

18 end

19 end

20 foreach CPID ∈ CP List do

21 Cost[CPID] = 0

22 foreach SCTID ∈ Interventions[CPID] do

23 Cost SCTID ← Cost of SCTID from interventions cost file

24 Cost[CPID] ← Cost[CPID]+ Cost SCTID

25 end

26 Avg Cost[CPID] ← Cost[CPID] / Traces[CPID]

27 end

28 end
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Figure 5.2: An example SPARQL query.

A useful algorithm in this context is an algorithm for determining the longest common

CP trace shared by all patients from their hospital admissions. A common CP trace

from hospital admission starts from hospital admission and extends to the point when

the patients start to deviate from each other. The knowledge of the common CP trace

from admission enables physicians to optimize CP development by studying the causes of

deviations (see Algorithm 5.2). Since all interventions are SNOMED CT standardized,

the algorithm loops over the sequences of interventions (starting from the first patient)

and keeps monitoring the length of the common sequence among all traces (see steps 6-26

in the algorithm). After determining the length of the common trace from admission, the

algorithm retrieves the interventions of the common trace from the trace of the first patient

(see steps 27-31 in the algorithm). It is apparent that CP standardization plays a large

role in facilitating trace-related algorithms.

Another interesting feature of having standardized and digitized CP traces is the ability

to determine the Longest Common Subsequences (LCS) for all patients undergoing a par-

ticular CP trace compared to an agreed-upon ideal CP trace, which is a trace of a typical

patient that goes smoothly through that part of the CP (e.g., no disease complications).

This is performed by Algorithm 5.3, which uses an Apache LCS function (LongestCom-

monSubsequence) in [138] to output a file that contains the LCS for all patients in the

CP traces file. Patients’ traces and LCS can help classify patients into various categories.

Here, we demonstrate patients’ CP classification based on their LCS by testing 503 stroke

patients’ traces and comparing them to an ideal trace from the stroke CP. The sequence
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Figure 5.3: Stroke patients categories.

of an ideal trace would be:

screening for dysphagia (pass)→smoking (no)→patient and family education→...,

whereas a sequence of a non-ideal trace would be:

screening for dysphagia (fail)→speech/language therapist→nasoenteric tube→
smoking (yes)→nicotine replacement therapy→ patient and family education→...

Analysis of the results shows three categories of patterns, as can be seen in Figure 5.3.

Discussions with domain experts revealed that these categories can be explained by CP ar-

tifacts linked to patients’ conditions, mainly those related to Speech and Language Disorder

(SCTID 231543005), Smoking (SCTID 365981007), and Problems with Balance (SCTID

387603000). As shown in Table 5.2, Category 1 consists of 93 patients who did not have

speech and language disorder; did not smoke; and did not have balance problems. Such

patients, for example, passed screening for dysphagia and did not need smoking related in-

terventions. Category 2 consists of 18 patients who had all the complications listed above,

as shown in Table 5.2, and required additional CP interventions. For instance, they failed

screening for dysphagia, and therefore required consultation with a speech language ther-

apist; they were also smokers, which implies that they suffered from nicotine withdrawal.

Finally, Category 3, which is the most dominant one with 392 patients, includes patients

who experienced some (but not all) complications, as shown in Table 5.2.
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Table 5.2: Categories of stroke patients.

Category

Speech and

Language

Disorder

Smoking
Problem with

Balance

Category 1 No No No

Category 2 Yes Yes Yes

Category 3 Yes/No Yes/No Yes/No

Algorithm 5.2: LCS of all patient traces

input : Patients’ CP traces file

input : Ideal Trace: List of ordered interventions of ideal CP trace

output: LCS: Hash table with longest common subsequence for each patient,

initially empty

1 Data Structures:

2 HC : A variable representing CPID-SCTID hyphenated code for a CP intervention

3 PatientID : A variable to store ID of the patient under consideration

4 begin

5 foreach record ∈ CP traces file do

6 PatientID ← Patient ID from current record

7 foreach intervention ∈ record do

8 HC← read HC of current intervention

9 SCTID ← extract right part of HC

10 Add SCTID to Trace[PatientID]

11 end

12 end

13 foreach trace record ∈ Trace do

14 // Calling LongestCommonSubsequence function

15 LCS[PatientID] ← longestCommonSubsequence (Ideal Trace, trace record)

16 end

17 end
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Algorithm 5.3: Longest Common Trace (LCT) from hospital admission

input : Patients’ CP traces file

output: LCT from hospital admission

1 Data Structures:

2 First Patient Trace: An array to store the interventions of 1st trace in patient

trace file, initially empty

3 Patient Trace: An array to store current trace

4 Length: A variable used to store the number of interventions in LCT

5 begin

6 foreach trace array ∈ CP traces file do

7 if (First Patient Trace is empty) then

8 for i← 0 to length of trace array do

9 First Patient Trace[i]←trace array[i]

10 end

11 Length ← length of First Patient Trace

12 else

13 for i← 0 to length of trace array do

14 Patient Trace[i]←trace array[i]

15 end

16 for j ← 0 to length of First Patient Trace do

17 for k ← 0 to length of Patient Trace do

18 if (j = k AND First Patient Trace[j] 6= Patient Trace[k]) then

19 if (Length ¿ j) then

20 Length ← j

21 end

22 end

23 end

24 end

25 end

26 end

27 for x← 0 to Length do

28 LCT [x] ← First Patient Trace[x]

29 end

3131 return LCT

32 end



5.4 Hospital Resource Management (HRM)

Healthcare is a booming sector of the economy in most countries around the world. Many

challenges are associated with the growth of healthcare, including continuously rising costs

and increased pressure on hospitals’ limited resources [139]. In Canada, for example,

according to the Canadian Institute for Health Information (CIHI) [140], total healthcare

costs have been continuously increasing over the years. Figure 5.4 shows the healthcare

expenditure trends in billion dollars between 2010 and 2019. Healthcare spending as a

share of Canada’s Gross Domestic Product (GDP) is also trending upward. In 2019,

healthcare spending represented approximately 11.6% of Canada’s GDP compared to 7%

in 1975. Figure 5.5 compares healthcare expenditures of Canadian provincial governments

per capita between 1975 and 2019. For example, in Ontario, the per capita expenditure

increased from $378 to $4385 (1060% increase), whereas in Alberta, increased from $384

to $5187 (1251% increase).

The situation is similar worldwide. A recent report by the World Health Organization

(Global Spending on Health: A World in Transition, 2019), indicates that global healthcare

costs continue to rise rapidly. Financial figures revealed that global healthcare spending

increased to US$7.8 trillion in 2017, up from US$7.6 trillion in 2016 [141]. This is a

dramatic increase of US$200 billion in just one year. In addition, healthcare spending is

growing faster than GDP. Between 2000 and 2017, the global health spending in real terms

grew by 3.9% a year, while global GDP grew 3.0% [141]. As Figure 5.6 shows, the increase

in healthcare spending was even faster in low-income countries, where it rose 7.8% a year

between 2000 and 2017 while the economy grew by 6.4%. In middle-income countries,

health spending grew more than 6% a year. In high-income countries, the average annual

healthcare spending growth was 3.5%, which is nearly twice as fast as the economic growth

represented by GDP.

The recent in-depth statistics above show that endeavors to solve healthcare problems

on the top “macro” level are not efficient. The proposed framework helps decision-makers

deal in “micro” level by considering the fine details of CP interventions and procedures

inside hospitals. Without this fine level of analysis for hospital resource management,

healthcare would be a soon-to-be-bankrupt sector in many countries around the world.
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Various events and occasions in healthcare uncovered that processes are not optimized,

and stressed the importance of hospital resource management. For example, a recent

study conducted in Alberta, Canada, revealed that 5% of repeated Complete Blood Count

(CBC) tests were repeated inappropriately in Alberta hospitals in 2018 [142]. The same

study showed that approximately 36% of repeated electrolyte panel (EP) tests within a

24-hour period were an unnecessary waste of public money [142]. Researchers estimated

that the annual cost of unnecessary repeat CBC and EP blood tests was $2.42 million CAD

paid by the province of Alberta ($0.52 million CAD in unnecessary CBC tests and $1.90

million CAD in unnecessary EP tests) [142]. The study considered only two types of blood

tests. We strongly believe that if all tests were investigated, the study would reveal that

a substantial amount of money was wasted in a healthcare system that is already under

increasing cost pressure. Such statistics would help convince healthcare practitioners, as

well as decision-makers, to adopt our framework of electronic CPs in their hospitals.

Without evidence-based CPs applied in hospitals, the ordering of unnecessary blood

tests would be based solely on the judgment of physicians. This is clearly an un-optimized

and costly situation. This was the case in the Alberta study mentioned above, where

researchers stated that “residents order routine daily CBC and electrolyte panels (EP)

more frequently than attending physicians” [142]. Our proposed CP automation framework

can contribute positively to improving such situations due to the fact that automated CPs

reduce lack of data in healthcare (i.e., data that are not recorded electronically). Without
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Table 5.3: Intervention/Cost management through communicating CP data digitally from

different hospitals.

Hospital-A Hospital-B Hospital-C ...

422504039-405035003 422504039-405035003 422504039-405035003 ...

422504039-423103005 422504039-405035003 422504039-405035003 ...

422504039-417986000 422504039-417986000 422504039-417986000 ...

422504039-8306009

422504039-273251005 422504039-273251005 422504039-273251005 ...

adequate CP automation, data that are vital for optimizing hospital resources would be lost

under piles of paperwork. The following discussion illustrates three hypothetical scenarios

in which our proposed framework helps in HRM. The scenarios are presented in a top-

down approach, such that the first scenario is related to a country-wide (or province-wide

/ region-wide) HRM, the second scenario is related to a hospital-wide HRM, and the third

scenario addresses an issue at a CP-level HRM.

5.4.1 HRM through communicating best CP practices among

hospitals

SNOMED CT-based standardized CPMSs have all their data recorded in an internationally-

recognized digital format. This enables the automatic retrieval of CP data from different

hospitals from a country or province to perform data analytics on CP data. One important

resource management advantage in this context is controlling CP costs and communicating

best CP practices. An illustrative scenario would be a government authority (e.g., the Min-

istry of Health) initiating an HRM study on CPs from different hospitals to have control

over treatment costs for a certain medical condition. Table 5.3 shows a sample CP report

that can be transmitted and compiled from CP data of different hospitals {Hospital-A,

Hospital-B, Hospital-C, ...}. Such a compiled digital report, using the hyphenated coding

system, would be greatly beneficial in automatically comparing the contents of specific

CPs from different hospitals.

The unified CPID to the left of the hyphen confirms that all interventions originated
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from CPs related to the same disease or procedure. This compiled report helps in identify-

ing the differences or the sources of the inefficiency or higher costs, such as those generated

from unnecessary blood tests or redundant interventions.

For example, Table 5.3 shows an intervention that is administered only in Hospital C.

All other hospitals do not apply this intervention. Such unnecessary medical intervention

can then be discussed with the relevant hospital administration and eliminated (if not

necessary) to improve the efficiency of the CP and achieve cost savings. To roughly estimate

possible cost savings, we can refer to the Alberta study and assume that eliminating two

unnecessary blood tests would save Alberta Health Services $2.42 million CAD per year.

Much greater savings could be realized by initiating a similar CP auditing and quality

control process for other diseases.

This scenario illustrates the importance of the proposed framework in facilitating the

integration of CPs with strategic healthcare decision-making in the context of managing

hospital resources. The objective is to reduce healthcare costs without compromising the

quality of service. In addition, this CP comparison capability allows healthcare decision

makers to detect inconsistencies, exceptions, and inefficient processes in the CPs. This

also helps in detecting health care fraud and abuse (in the case of intentionally adding

unnecessary/redundant costly medical interventions).

Another benefit of CP comparison is the desire to standardize and unify patient care

among different institutions within a region or across a country [68]. The rationale is

that such standardization can lead to (a) transfer of patients between hospitals without

disrupting the care process; (b) equity of care across different healthcare providers; (c)

understanding of clinical outcomes based on a larger sample of patients who were exposed

to similar treatment processes; and (d) uniform implementation of clinical guidelines [68].

This scenario provides a sample HRM advantage of communicating best CP prac-

tices between hospitals. The full spectrum of advantages is actually much wider because

a well-designed and standardized CPMS allows healthcare decision-makers to detect in-

consistencies, poor decisions, and various types of inefficient processes in hospitals’ daily

operations. Such HRM capability, through comparisons of CPs from different medical in-

stitutions, would be a tedious task to realize with today’s paper-based CPs or partially

standardized electronic CPs.
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5.4.2 HRM through blood test/intervention cost and count an-

alytics

The previous scenario was related mainly to HRM across different hospitals within a coun-

try. In this scenario, we consider HRM within a single hospital. CPMSs that are modeled

according to the proposed framework enable better quality and cost management across all

CPs practiced in a single hospital. This facilitates improved cost-savings and budgeting.

Since the hyphenated coding system always keeps the link between medical interventions

in hospitals (e.g., x-rays, blood tests, etc.) and their originating CPs, the costs incurred

across all CPs in a hospital can be traced and analyzed for future budgeting and planning.

As stated by one of our domain experts, many routine blood tests (e.g., CBC) that are

recorded in EMRs could not be easily traced to their source medical conditions in some of

the hospitals in which they worked. The proposed framework helps solve such situations.

Consider, for example, the following simplified dataset of hospital blood tests extracted

from a hospital SNOMED CT-standardized CP system during a particular period of time

(see Table 5.4). In this dataset, SNOMED CPIDs 422504039, 442338038 and 13619038,

refer to three CPs for ischemic stroke, gastric bypass and thyroidectomy, respectively. The

blood tests SNOMED CT codes are as follows: complete blood count - CBC (26604007),

thyroid stimulating hormone measurement (61167004), triiodothyronine free measurement

-T3 (104994008), glucose tolerance test (113076002), and hemoglobin A1c measurement

(43396009). Such hyphenated coding system based blood test output facilitates the com-

putation of the costs of blood tests (or other interventions) per CP in a hospital. Because

each blood test is linked to its CP, every blood test can now be traced to its medical condi-

tion. Considering the actual fees for blood tests from the 2019 Ontario schedule of benefits

for laboratory services [143], the blood tests’ cost per CP can be determined as follows:

thyroidectomy CP (13619038) = CA$ 25.36, ischemic stroke CP (422504039) =$61.74, and

gastric bypass CP (442338038) = $72.26 (see Table 5.5). This facilitates data analytics on

CP costs for improved HRM.

For example, Figure 5.7 clearly shows the high cost of blood tests of CP-B. This would

prompt decision-makers to further investigate the contents of this CP to determine whether

it is a proper and accepted practice, or a source of waste. Besides knowing the total cost of
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blood tests per CP, the frequency of a particular blood test per CP can also be determined.

Figure 5.8 illustrates this ability, considering the frequency of CBC blood test per CP.

By comparing the CBC test count on the approved CP with the number of performed

CBC tests on patient records, healthcare decision-makers could determine if more tests are

warranted, and investigate the relevant cases for improved optimization and cost control.
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Figure 5.7: Comparison between different CPs based on the cost of blood tests.
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Figure 5.8: Comparison between different CPs based on the frequency of a particular blood

test.
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Table 5.4: Sample of a hospital’s CP-related blood tests encoded using the hyphenated

coding system.
August 2019

13619038-61167004 422504039-113076002 442338038-26604007 422504039-26604007 13619038-61167004

442338038-113076002 13619038-104994008 13619038-104994008 442338038-113076002 422504039-43396009

13619038-61167004 442338038-43396009 442338038-43396009 13619038-26604007 442338038-113076002

422504039-113076002 422504039-113076002 422504039-26604007 442338038-43396009 13619038-61167004

Table 5.5: Blood tests costs scenario.
Ischemic stroke

(422504039)

Gastric bypass

(442338038)

Thyroidectomy

(13619038)

113076002 26604007 61167004

113076002 113076002 61167004

113076002 43396009 104994008

26604007 113076002 104994008

26604007 43396009 26604007

43396009 113076002 61167004

43396009 61167004

Cost = $61.74 Cost = $72.26 Cost = $25.36
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5.4.3 HRM through CP intervention time analytics

In this scenario, CP-level HRM (i.e., within CP) is considered. The scenario is related

to time variation analysis of CP interventions. In today’s extremely busy medical work

environments, time management in hospitals is important to control costs and save lives.

Wasted time may deprive other patients from obtaining the required healthcare service

due to lack of nurses and medical staff. This could result in the death of some patients.

Fully standardized and digitized CPs facilitate the recording of the start and end times

of any required intervention in the CP. This can be a great help in discovering inefficient

practices related to time management. For this objective, we developed the CP time analyt-

ics algorithm (Algorithm 5.1). As shown on the algorithm, the Patient CP interventions file

is the file that contains the traces of all patients treated by a particular CP with their in-

terventions (intervention SCTID), intervention startTime, and intervention endTime. The

output of the algorithm is the maximum duration, minimum duration, and average du-

ration of each intervention of the clinical pathway under consideration. Durations are

determined considering all patients who were administered through the clinical pathway

within a certain period of time (e.g., one year).

Figure 5.9 illustrates a graph representing a sample output related to the interven-

tion “Screening for Dysphagia” [144] for ischemic stroke patients (SCTID 431765005).

The figure shows the time optimization frame that should be considered by healthcare

administrators to remove/minimize sources of inefficient time management. The average

(and recommended) time for the screening is approximately 30 minutes. A long time for

screening (e.g., 57 minutes as shown in the figure), results in the testing room being oc-

cupied for longer than necessary, and deprives other patients from getting tested on time.

In this particular case, solutions to manage time could be either by preparing the test

room/equipment prior to the arrival of patients, by analyzing the cases of longer dura-

tion for better control, or by providing more training for nurses on efficient practices in

dysphagia screening.

Time variation analysis of CP interventions for all CPs in a hospital helps healthcare

managers improve healthcare provision and optimize hospital resources. Such detailed

CP analysis is not possible with today’s unstructured paper-based CPs or partially com-
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Max 55 minutes

Avg 30 minutes
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Figure 5.9: CP Intervention time analytics based optimization.

puterized CPs. This shows how fully digitizing CPs could help with hospital resource

optimization.
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Algorithm 5.4: CP time-based data analytics

input : Patient CP interventions file (contains the sequences of:

intervention SCTID, intervention startTime, and intervention endTime

for each patient)

output: max duration[SCTID]: Maximum duration for each intervention

output: min duration[SCTID]: Minimum duration for each intervention

output: avg duration[SCTID]: Average duration for each intervention

1 Data Structures:

2 SCTID : A variable to store an intervention’s SCTID

3 intervention duration[SCTID] : Hash-table with list of all durations for each

intervention (SCTID)

4 total duration[SCTID] : List to store total durations of each intervention (SCTID)

5 begin

6 foreach record ∈ Patient CP interventions file do

7 foreach intervention ∈ record do

8 SCTID← intervention SCTID

9 if (SCTID /∈ intervention duration[SCTID]) then

10 Add SCTID to intervention duration[SCTID]

11 end

12 intervention duration[SCTID] ← intervention endTime -

intervention startTime
13 end

14 end

15 foreach record ∈ intervention duration[SCTID] do

16 total duration[SCTID]=0

17 max duration[SCTID] = min duration[SCTID] = duration [0] (duration of

1st intervention in the record)

18 for i← 0 to length of record do

19 total duration[SCTID]←total duration[SCTID] + duration[i]

20 if (duration[i] > max duration[SCTID]) then

21 max duration[SCTID] ← duration[i]

22 end

23 if (duration[i] < min duration[SCTID]) then

24 min duration[SCTID] ← duration[i]

25 end

26 end

27 avg duration[SCTID] ← total duration[SCTID] / length of record

28 end

29 end



5.5 Hospital Length of Stay Prediction

Data analytics algorithms prefer rich datasets. They work better when data are as complete

as possible [145, 146]. Missing data have always formed a challenge in the face of obtaining

good classification and prediction results through machine learning algorithms. This is

more critical in the field of healthcare data analytics because patient outcomes are sensitive

to data collected in hospitals.

CPs are intended to be the major sources of patient data in hospitals. Since the frame-

work developed in this thesis has the objective of generating computerized CPs that are

fully encoded with the hyphenated coding system, this framework contributes to reducing

missing healthcare data by providing rich CP-based datasets. This is achieved by making

all CP data digitally visible. We illustrate this contribution by an example related to ma-

chine learning experiments from the domain of hospital Length of Stay (LOS) prediction.

LOS refers to the number of days that an inpatient remains in a hospital. LOS has long

been a crucial metric of hospital efficiency and quality of care. The uncertainty of LOS

increases costs and makes it difficult for hospitals to optimize their scheduling process [131].

The clinical and financial consequences of long LOS have made LOS as one of the most

observed measures in healthcare systems [147].

LOS predictions that are related to rehabilitation CPs (i.e., CPs applied to patients in

their rehabilitation stage) suffer from the fact that many rehabilitation interventions are not

stored in EMRs. This makes EMR-based datasets yield less accurate LOS predictions. The

challenge with rehabilitation CPs is that they contain many nursing care interventions. We

refer to these interventions as “soft” interventions, meaning interventions such as assisting

with toileting. Although such interventions are performed on patients and documented

on paper, they are rarely recorded in EMRs compared to what we term as “hard” CP

interventions, such as X-rays, surgical procedures or injections [10].

In stroke patients, soft interventions have an effect on LOS because patients who re-

quire more nursing services show a longer LOS. Thus, we hypothesize that data mining

algorithms that work on datasets which do not include soft interventions (i.e., have missing

data) yield less accurate LOS prediction results than datasets that include soft interven-

tions. Although terminology systems (like SNOMED CT) have progressed in recent years
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to include standardized terms and codes for soft interventions like nursing care tasks,

current CPs in use at hospitals still present most soft interventions as unstructured text

without using their standardized terms and codes. This is a major reason for soft inter-

ventions being missed in EMR-based datasets (i.e., datasets obtained from EMRs without

capturing all interventions specified on CPs). The framework developed in this research

contributes to recording soft interventions by means of SNOMED-CT based standardized

CPs. This results in CP-based datasets that are richer in data. To illustrate this, we

performed machine learning experiments on the prediction of LOS using two versions (two

datasets) of the output dataset (i.e., the output file described in Chapter 4). In the first

dataset, we kept the nursing services, whereas they were removed in the second dataset.

The objective was to compare LOS prediction results between the two datasets. For a fair

comparison between the datasets, we used the same base machine learning algorithm on

both datasets. The LOS values in the datasets were between four and nine days. The

median LOS was five days.

The objective of the data mining model was to predict short versus long LOS. We

used the median LOS as the threshold dividing long vs. short LOS. Thus, patients with

LOS less than or equal to five days were labeled as short LOS, while patients with LOS

greater than five days were labeled as long LOS. Since more patients had short LOS,

the datasets were imbalanced (i.e., contained skewed data). Thus, the median was a

representative measure for the central tendency [148]. Since we decided to select the same

base machine learning algorithm on both datasets, we selected the decision tree algorithm

for the following reasons. Our LOS prediction problem was a non-linear binary classification

problem making decision tree-based methods suitable base algorithms for solving this type

of problem because they are successful in dealing with non-linear classification; furthermore,

many researchers reported that decision tree methods were successful in the domain of LOS

prediction [149, 150, 151, 152, 153]. In general, decision tree algorithms use entropy-based

methods to form tree nodes [154, 155] by selecting the most informative attributes based

on two measures: entropy and information gain, as follows:

� Entropy (H) measures the impurity of a category or class (X), as shown in equation

(5.6).

HX = −
∑
∀x∈X

P (x)log2P (x), (5.6)

103



where P (x) is the probability of label x in X [149].

� Information gain measures the purity of an attribute based on the conditional entropy

determined by equation (5.7) below.

HY |X = −
∑
∀x∈X

P (x)
∑
∀y∈Y

P (y | x)log2P (y | x), (5.7)

where HY |X is the conditional entropy for each attribute (X) relative to base entropy

(Y ) which is the entropy of the output variable, LOS in our case. The information

gain of an attribute X is defined as the difference between the base entropy and the

conditional entropy of the attribute, as shown in equation (5.8).

InfoGainX = HY −HY |X . (5.8)

Information gain compares the degree of purity of the upper node (parent node)

before a split with the degree of purity of the lower node (child node) after a split. At

every split, an attribute (or predictor) with the highest information gain is considered

as the most informative attribute and is chosen for the split [149].

Among the most commonly-used decision tree learning algorithms are ID3 (Iterative Di-

chotomiser 3), C4.5, and C5.0. ID3 algorithm has the drawback of possibly constructing

a complex and deep tree that causes overfitting, leading to poor prediction results. The

C4.5 algorithm is an improved ID3 algorithm that addresses the overfitting problem in ID3

by using the technique of pruning to simplify the decision tree. Pruning is achieved by

removing the tree nodes and branches that do not provide additional information [149].

C5.0 algorithm offers several improvements over C4.5, including faster processing and more

efficient memory usage [156]. Based on the above analysis, we adopted the C5.0 algorithm

in our experiments. As will be detailed in the results section, experimental evaluation

demonstrates that LOS prediction using CP-based datasets outperformed LOS predictions

based on traditional EMR-based datasets.

5.5.1 Results and Discussion

We implemented the experiments using ’RStudio’ integrated development environment for

R programming language [157, 158]. We performed identical processing and experiments
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on both datasets. The datasets were split into training/testing sets. In order to avoid

generalizing the results from a single split, we conducted experiments with 70:30 and

80:20 training/testing split ratios. Furthermore, we diversified the performance metrics by

including multiple major common metrics, including the area under the receiver operating

characteristic curve (AUROC), accuracy, sensitivity, specificity, and precision, as shown in

equations (5.9), (5.10), (5.11) and (5.12). In the equations, TP, TN, FP, and FN represent

True Positive, True Negative, False Positive, and False Negative, respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
. (5.9)

Sensitivity =
TP

TP + FN
. (5.10)

Specificity =
TN

TN + FP
. (5.11)

Precision =
TP

TP + FP
. (5.12)

Figs. 5.10 and 5.11 outline the experimental results. As shown in the figures, the

performance of the prediction model that included the CP nursing services was better

than the model without the nursing services in terms of the considered metrics. The

results show better AUROC for CP-based dataset (≈ 88% and 93%) compared to EMR-

based dataset (≈ 78% and 84%) for split ratios 70:30 and 80:20, respectively. The most

commonly reported measure of a classifier is the accuracy because accuracy evaluates the

overall efficiency. The results showed better accuracy for the CP-based dataset (≈ 85%

and 92%) compared to EMR-based dataset (≈ 77% and 85%) for split ratios 70:30 and

80:20, respectively.

The results also revealed better performance for the CP-based dataset in terms of

sensitivity and equal performance with the EMR-based dataset in terms of specificity.

Sensitivity assesses the effectiveness of the classifier on the positive/minority class. In

our experiments, this is the class of patients with long LOS. Thus, the CP-based dataset
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Figure 5.10: Experimental results: Common metrics, 70:30 split ratio.
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Figure 5.11: Experimental results: Common metrics, 80:20 split ratio.

yielded improved long LOS prediction performance. Specificity, on the other hand, mea-

sures the effectiveness of predicting negative cases (short LOS in our experiments). Since

fewer nursing services were related to short LOS, it was reasonable that both datasets

showed equal specificity, i.e., equal prediction performance on patients with fewer nursing

services. Precision is also called positive predictive value. The results revealed that the

CP-based dataset provided better precision under both training/testing split ratios.

The above-mentioned metrics are the most used performance measures for such classi-

fication problems. However, since our datasets were imbalanced, we decided to investigate

additional metrics that consider imbalanced datasets. This helps in generalizing the re-
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sults by considering performance metrics that combine the previous metrics to account for

imbalanced datasets. Therefore, we considered the balanced accuracy and geometric mean

(G-mean), which are common imbalance-oriented performance metrics [159], as shown in

equations (5.13) and (5.14).

Balanced Accuracy =
1

2
(

TP

TP + FN
+

TN

TN + FP
).

=
1

2
(sensitivity + specificity).

(5.13)

G-mean =

√
TP

TP + FN
× TN

TN + FP
.

=
√

sensitivity× specificity.

(5.14)

Figures 5.12 and 5.13 show the experimental results considering the imbalance-oriented

metrics. The balanced accuracy is the average between the sensitivity and the specificity,

which measures the average accuracy obtained from both majority and minority classes.

“This quantity reduces to the traditional accuracy if a classifier performs equally well on

either classes. Conversely, if the high value of the traditional accuracy is due to the classifier

taking advantage of the distribution of the majority class, then the balanced accuracy will

decrease compared to the accuracy” [159].

Our results showed that both the traditional accuracy and the balanced accuracy had

similar values for both datasets, with the CP-based dataset showing better performance.

This was an indication of good performance of both classifiers on the majority and minority

classes with the CP-based dataset yielding improved performance.

G-Mean is a metric suitable for imbalanced datasets since it measures the balance

between classification performances on both the majority and minority classes [159]. Our

results showed higher G-mean values for the CP-based dataset (≈ 86% and 92%) than the

G-mean values of the EMR-based dataset (≈ 78% and 85%), for both 70:30 and 80:20 split

ratios, respectively.
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Figure 5.12: Experimental results: Imbalance-oriented metrics, 70:30 split ratio.
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Figure 5.13: Experimental results: Imbalance-oriented metrics, 80:20 split ratio.
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As shown in the above analysis, experimental results support the conclusion that CP-

based datasets (i.e., datasets without missing interventions) are rich in data and thus,

using them improves the performance of data analytics algorithms. It is worth mentioning

that there are factors other than nursing services that affect LOS of stroke patients (e.g.,

comorbidity, diabetes, etc.). However, such data are common to both datasets in our

experiments; thus, the only differentiating data are the nursing services available on the

clinical pathway.

5.6 Conclusion

Standardization and digitization of clinical pathways enables the capture of all CP related

data in hospitals. This provides rich data sources and results in rich datasets that can

support healthcare decision making. In this chapter, different data analytics and decision

support scenarios were presented and discussed. The scenarios cover various areas in

healthcare including: CP variance analysis and action plan, cost management and control,

managing patient CP traces, hospital resource management, and hospital length of stay

prediction.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

A Clinical Pathway is a multidisciplinary, structured healthcare plan in which therapeutic

and diagnostic medical interventions performed by doctors, nurses, and other staff members

for a specific disease or procedure are performed in a planned manner [160, 161, 162]. CPs

can reduce physicians’ mental effort and cognitive load to allow them to focus on thought-

provoking, more complex healthcare activities [162]. Therefore, CPs have the potential

to improve patient outcomes and satisfaction. CPs also contribute to reducing healthcare

costs. Being important components of healthcare systems and important sources of data,

CPs deserve more research work towards their automation.

CP automation studies available in the literature have major limitations, such as lim-

iting their role to enhancing EMR functions. In addition, the digital divide between CPs

and other healthcare systems was ignored, and no effort was directed towards the standard-

ization, digitization, or independence of clinical pathways in CPMSs. Furthermore, CPs

lack any appropriate coding system to identify them digitally, as well as across human net-

works. In this research, we proposed an ontology-based framework for standardization and

digitization of CPs in HISs. An important contribution of the proposed framework is our

approach in centralizing CPs in HISs and bridging the digital divide. By centralizing CPs,

we mean positioning CPMSs at the centre of HISs. This central position had been occupied
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by EMRs for decades. The framework would bridge the digital divide by standardizing

CPs to convert them from unstructured entities to standardized medical documents.

The SNOMED CT terminology system was adopted for the standardization process.

In addition, SNOMED CT was expanded to create an international CP identification code

(CPID). The CPID and SNOMED CT coding of the CP data were merged in a hyphenated

coding system for CPs that always keeps the link between CPs and their interventions.

We proposed the conceptual design of a prototype CPMS that ensures the independence

of CPMSs by integrating the components of the framework and allocating CP-specific

repository to store CP traces and data analytics algorithms. The proposed framework is

a generic framework in the sense that it can be implemented using different designs and

programming languages. As a proof of concept, the proposed conceptual design was realized

in an sample prototype ontology-based clinical pathway management system, which was

developed with the assistance of our domain experts in the Stroke Unit at Thunder Bay

Regional Health Sciences Centre.

One major advantage of adopting an ontology-based approach is that ontological mod-

eling facilitates a hierarchical upper-level/disease-level architecture in which abstract CP

concepts are modeled at the upper-level ontology, while disease specific CPs are extended

and specialized. The hierarchical CP knowledge representation not only renders the frame-

work applicable to any disease-specific CP, but also provides a shared CP standard model

that can be communicated among healthcare professionals, as well as through heteroge-

neous applications in a machine-understandable way, thus facilitating semantic interoper-

ability among healthcare information systems. For example, if a hospital decides to adapt

and reuse the CP of another hospital, then what they need to do is to obtain the disease-

specific ontology of the other hospital, link it to the common meta-ontology, and modify

the CP and its execution to account for its local hospital settings (if required). CP mod-

ifications may include changing the CP data (which are SNOMED CT standardized and

understandable by all hospitals) or using the appropriate classes from the meta-ontology

to add hospital-specific CP sub-classes. Furthermore, the proposed CP digitization frame-

work facilitates the mathematical modeling of CPs and enables a quantitative CP analysis

for decision making, CP auditing and quality control.

With respect to big data analytics in healthcare, missing medical data has always
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impeded the full potential of data mining methods. An objective of the framework proposed

in this research is to extract as much data as possible from CPs. This helps in generating

rich datasets and consequently improving the performance of data analytics algorithms in

healthcare.

6.2 Limitation and Future Work

There are some limitations in this work. The developed CPMS was a small prototype

system with basic functionalities implemented to prove that the proposed framework is

feasible. A direction for future work would be the development of a complete and extended

version of the CPMS by improving its functionality, adding more CPs, and expanding the

system’s communication messages, which are presently limited to generating sample HL7

messages. Furthermore, additional data analytics/decision support algorithms, such as

algorithms that concurrently search for interventions across several CPs, can be developed

to benefit from the full digitization of CPs achieved in this research.

SNOMED CT is an enormous terminology system. However, new diseases, procedures,

tests, etc. appear continuously, and many terms are still used as local terms. Thus,

SNOMED CT might not cover all the required terms, however, SNOMED CT is growing

every year and allows the standardization of local terms. Therefore, many new or local

terms today that might not have international terminology coverage under SNOMED CT

could certainly be covered through its growth and new editions. Moreover, SNOMED CT

International (the organization that administers SNOMED CT) always accepts requests

to add new terms to the SNOMED CT system. Another limitation is that our ontologies

have not yet been connected to other medical ontologies, which limits the semantic behind

the used terms. This is a future research direction that will enhance the framework.

At present, only EMR-based datasets are available to researchers. Obtaining CP-based

datasets was a challenge in this research, and it is a challenge in general since most CPs in

use today are paper-based, and CP-based datasets can only be obtained through simulation

or by collaborating directly with cooperating hospitals. Even when a hospital agrees to

cooperate, the privacy of patients and their data makes the data available limited, and
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direct interaction with patients not an option. In order to obtain larger datasets, future

research direction would involve collaborating with multiple hospitals.

Another future work is to apply semantic similarity concepts to introduce some au-

tomation to the process of CP term standardization. We are currently experimenting with

different similarity measures to evaluate their appropriateness for SNOMED CT hierarchy.

It is important to understand that AI applications in CP term standardization should not

replace human experts as the final decision makers for term standardization. CP instruc-

tions are interventions applied on human patients, and therefore extreme caution should

be exercised when utilizing automatic standardization methods for safety reasons.

We consider this research to be a starting milestone towards the international stan-

dardization and digitization of CPs, as well as towards the complete automation in the

CP field, hoping that it will encourage health informatics researchers around the world to

participate in advancing this emerging field through more research.

This research movement could definitely entice healthcare policymakers and hospital

administrators to appreciate and adopt the proposed approach at both national and in-

ternational levels. Achieving an international standardization for CPs used in hospitals

around the world would have an enormous role in improving the field of health informatics

and enhancing the communication of CP practices. It would also help decrease healthcare

costs, improve healthcare outcomes, increase patient satisfaction, and achieve healthier

people and an overall healthier society.

113



References

[1] A. C. Machado, M. Martins, B. Cordeiro, and M. Au-Yong-Oliveira, “Where is the

health informatics market going?,” in World Conference on Information Systems and

Technologies, pp. 584–595, Springer, 2020.

[2] L. R. Hardy, Fast Facts in Health Informatics for Nurses. Springer Publishing Com-

pany, 2019.

[3] M. D. Lytras and A. Sarirete, Innovation in Health Informatics: A Smart Healthcare

Primer. Academic Press, 2019.

[4] “Medicare and Medicaid EHR Incentive Programs.” http://fusionppt.com. Ac-

cessed: 2020-05-16.

[5] A. K. Manrai and I. S. Kohane, “Bioinformatics and precision medicine,” in Key

Advances in Clinical Informatics, pp. 145–160, Elsevier, 2017.

[6] J. P. Palma and P. Tarczy-Hornoch, “Biomedical informatics in neonatology,” in

Avery’s Diseases of the Newborn, pp. 11–19, Elsevier, 2018.

[7] J. M. Madden, M. D. Lakoma, D. Rusinak, C. Y. Lu, and S. B. Soumerai, “Missing

clinical and behavioral health data in a large electronic health record (EHR) system,”

Journal of the American Medical Informatics Association, vol. 23, no. 6, pp. 1143–

1149, 2016.

[8] J. Leviss and P. Charney, HIT or miss: lessons learned from health information

technology implementations. AHIMA Press Chicago, 2013.

114

http://fusionppt.com


[9] J. Codella, H. Sarker, P. Chakraborty, M. Ghalwash, Z. Yao, and D. Sow, “eXITs: An

Ensemble Approach for Imputing Missing EHR Data,” in 2019 IEEE International

Conference on Healthcare Informatics (ICHI), pp. 1–3, IEEE, 2019.

[10] P. A. Potter, A. G. Perry, P. Stockert, A. Hall, B. J. Astle, and W. Duggleby,

Canadian Fundamentals of Nursing. Elsevier Health Sciences, 2018.

[11] S. Phung, A. Kumar, and J. Kim, “A deep learning technique for imputing miss-

ing healthcare data,” in 2019 41st Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), pp. 6513–6516, IEEE, 2019.

[12] H. Hegde, N. Shimpi, A. Panny, I. Glurich, P. Christie, and A. Acharya, “Mice vs

ppca: Missing data imputation in healthcare,” Informatics in Medicine Unlocked,

vol. 17, p. 100275, 2019.

[13] X. Wang, S. Su, H. Jiang, J. Wang, X. Li, and M. Liu, “Short-and long-term effects

of clinical pathway on the quality of surgical non-small cell lung cancer care in china:

an interrupted time series study,” International Journal for Quality in Health Care,

vol. 30, no. 4, pp. 276–282, 2018.

[14] R. J. Coffey, J. S. Richards, C. S. Remmert, S. S. LeRoy, R. R. Schoville, and P. J.

Baldwin, “An introduction to critical paths,” Quality Management in Healthcare,

vol. 14, no. 1, pp. 46–55, 2005.

[15] S. D. Pearson, S. F. Kleefield, J. R. Soukop, E. F. Cook, and T. H. Lee, “Critical

pathways intervention to reduce length of hospital stay,” The American journal of

medicine, vol. 110, no. 3, pp. 175–180, 2001.

[16] K. Zander, K. A. Bower, and M. Etheredge, “Nursing case management: blueprints

for transformation,” Boston: New England Medical Center Hospitals, pp. 1–128,

1987.

[17] E. Rooney, “Developing care pathways–lessons from the Steele Review implementa-

tion in England,” Gerodontology, vol. 31, pp. 52–59, 2014.

115



[18] G. Schrijvers, A. van Hoorn, and N. Huiskes, “The care pathway: concepts and the-

ories: an introduction,” International journal of integrated care, vol. 12, no. Special

Edition Integrated Care Pathways, 2012.

[19] R. S. Russell and B. W. Taylor, Operations and Supply Chain Management, 9th

Edition. John Wiley & Sons, 2017.

[20] K. Vanhaecht, M. Panella, R. Van Zelm, and W. Sermeus, “An overview on the his-

tory and concept of care pathways as complex interventions,” International Journal

of Care Pathways, vol. 14, no. 3, pp. 117–123, 2010.

[21] A. K. Lawal, T. Rotter, L. Kinsman, A. Machotta, U. Ronellenfitsch, S. D. Scott,

D. Goodridge, C. Plishka, and G. Groot, “What is a clinical pathway? refinement of

an operational definition to identify clinical pathway studies for a cochrane systematic

review,” BMC medicine, vol. 14, no. 1, p. 35, 2016.

[22] “European Pathway Association.” http://e-p-a.org. Accessed: 2020-01-30.

[23] M. Donald, K. McBrien, W. Jackson, B. J. Manns, M. Tonelli, K. King-Shier, K. Jin-

dal, R. Z. Lewanczuk, N. Scott-Douglas, T. Braun, et al., “Development and im-

plementation of an online clinical pathway for adult chronic kidney disease in pri-

mary care: a mixed methods study,” BMC medical informatics and decision making,

vol. 16, no. 1, p. 109, 2016.

[24] L. De Bleser, R. Depreitere, K. D. WAELE, K. Vanhaecht, J. Vlayen, and W. Ser-

meus, “Defining pathways,” Journal of nursing management, vol. 14, no. 7, pp. 553–

563, 2006.

[25] M. Khalifa and O. Alswailem, “Clinical pathways: Identifying development, imple-

mentation and evaluation challenges.,” in ICIMTH, pp. 131–134, 2015.

[26] L. Kinsman, T. Rotter, E. James, P. Snow, and J. Willis, “What is a clinical pathway?

development of a definition to inform the debate,” BMC medicine, vol. 8, no. 1, p. 31,

2010.

116

http://e-p-a.org


[27] M. Renholm, H. Leino-Kilpi, and T. Suominen, “Critical pathways: a systematic

review,” JONA: The Journal of Nursing Administration, vol. 32, no. 4, pp. 196–202,

2002.

[28] B. J. Gebhardt, J. Thomas, Z. D. Horne, C. E. Champ, G. M. Ahrendt, E. Diego,

D. E. Heron, and S. Beriwal, “Standardization of nodal radiation therapy through

changes to a breast cancer clinical pathway throughout a large, integrated cancer

center network,” Practical radiation oncology, vol. 8, no. 1, pp. 4–12, 2018.

[29] D. Ogilvie-Harris, D. Botsford, and R. W. Hawker, “Elderly patients with hip frac-

tures: improved outcome with the use of care maps with high-quality medical and

nursing protocols.,” Journal of orthopaedic trauma, vol. 7, no. 5, pp. 428–437, 1993.

[30] M. Panella, S. Marchisio, R. Brambilla, K. Vanhaecht, and F. Di Stanislao, “A

cluster randomized trial to assess the effect of clinical pathways for patients with

stroke: results of the clinical pathways for effective and appropriate care study,”

BMC medicine, vol. 10, no. 1, p. 71, 2012.

[31] M. Panella, S. Marchisio, A. Barbieri, and F. Di Stanislao, “A cluster random-

ized trial to assess the impact of clinical pathways for patients with stroke: ra-

tionale and design of the clinical pathways for effective and appropriate care study

[nct00673491],” BMC health services research, vol. 8, no. 1, p. 223, 2008.

[32] S. Preston, S. Markar, C. Baker, Y. Soon, S. Singh, and D. Low, “Impact of a

multidisciplinary standardized clinical pathway on perioperative outcomes in patients

with oesophageal cancer,” British journal of surgery, vol. 100, no. 1, pp. 105–112,

2013.

[33] L. Stead, C. Arthur, and A. Cleary, “Do multidisciplinary pathways of care affect

patient satisfaction,” Health Care Risk Report, vol. 11, pp. 13–5, 1995.

[34] P. A. Van Dam, G. Verheyden, A. Sugihara, X. B. Trinh, H. Van Der Mussele,

H. Wuyts, L. Verkinderen, J. Hauspy, P. Vermeulen, and L. Dirix, “A dynamic

clinical pathway for the treatment of patients with early breast cancer is a tool for

better cancer care: implementation and prospective analysis between 2002–2010,”

World journal of surgical oncology, vol. 11, no. 1, p. 70, 2013.

117



[35] J. Williams, R. Roberts, and M. Rigby, “Integrated patient records: another move

towards quality for patients?,” Quality in Health Care, vol. 2, no. 2, p. 73, 1993.

[36] C. Mosher, P. Cronk, A. Kidd, P. McCormick, S. Stockton, and C. Sulla, “Upgrading

practice with critical pathways,” The American journal of nursing, vol. 92, no. 1,

pp. 41–44, 1992.

[37] J. MacDermid, “Practice guidelines, algorithms, and clinical pathways,” Evidence-

based rehabilitation: a guide to practice, pp. 227–261, 2008.
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Appendix A

Sample Interview Questions

Q1. Does the meta-ontology represent the generic knowledge about clinical pathways?

Q2. Is there any intervention type that is missing from the ontology design? If yes, what

is the missing intervention type?

Q3. How do you evaluate the system screens in general (e.g., user messages, error mes-

sages)?

Q4. Is the first screen of the user interface well designed?

Q5. Are the instructions on the user screens easy to understand?

Q6. Does the stroke ontology represent the stroke clinical pathway?

Q7. Is there any CP variance type that is missing from the ontology design? If yes, what

is the missing variance type?
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Q8. How do you evaluate the user interface screens related to the progress of the patients

through the clinical pathway? [Excellent, Good, Fair, Poor].

Q9. Do the SNOMED CT terms and codes used on the system screens match the intended

terms on the clinical pathway?

Q10. Questions related to SNOMED CT standardization (e.g., what is the correct SNOMED

CT terms for swallowing screen, hemorrhagic stroke, etc?).

Q11. How do you evaluate the use of the terminology throughout the user interface screens?

[All are correct, Some errors, All require corrections].
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