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Abstract

Simulation of large circuit networks is a CPU-time and memory consuming task.

Computer clusters and multi-core processors have become common but algorithms

must be parallelizable to fully take advantage of these architectures. Therefore,

it is of great interest to find efficient parallel algorithms for circuit simulation.

In this thesis an algorithm based on a Wave digital Filter (WDF) model of the

circuit combined with waveform relaxation is presented for the first time. The new

approach is tested with the simulation of a nonlinear transmission line. Several

variations of the algorithm and the potential for parallelization are analyzed.

Topics relevant for the work in this thesis are presented first followed by tran-

sient simulation results using a Jacobi-like algorithm applied to two different WDF

models of a nonlinear transmission line. The simulation results are shown to be

in agreement with the results obtained using a traditional method. The Waveform

Relaxation implementation is presented next followed by a set of simulation results

and a discussion. Simulation results indicate that the approach requires more CPU

time than traditional methods. Some suggestions for future improvements are given

in the last chapter of this thesis.
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Chapter 1

Introduction

1.1 Motivation and Objectives of This Study

Simulation of a large circuit network is a challenging task. New technologies make

it possible solve complex systems using numerical methods. But without an effi-

cient simulation method, a simulation of nonlinear circuit network still consume lots

of computer time and memory. Since computer cluster and multi-core processors

are widely used now, a parallel computing method can utilize the power of mod-

ern technology. Thus there is great interest to find a efficient parallel simulation

method. A Jacobi-like iteration and a waveform relaxation method for simulating

a nonlinear transmission line are presented in this thesis. These approaches can be

parallelized to improve the efficiency of the computation.

Every numerical solution will bring unavoidable errors during the procedure of

time discretization and solving nonlinear equations. Wave digital filter (WDF) can

preserve important properties such as passivity or losslessness of an analog circuit

in a digital system, and make WDF a good candidate for circuit simulation.

One objective of this thesis is to study transient simulation of circuits based

on WDF principles. A Jacobi-like parallel algorithm based on WDF theory has

been studied, which is implemented using basic WDF adaptors. An improved

1



CHAPTER 1. INTRODUCTION 2

approach using custom WDF adaptors is presented next. This approach tries to

combine several basic WDF adaptors to achieve a simplified and efficient WDF

implementation for improving circuit simulation speed.

The main contribution of this thesis is the combination of Waveform Relaxation

(WR) and WDF techniques. An approach which is a combination of Jacobi-like

iteration method and WR provides advantages for parallel computing. WR is a

relaxation method used in the time domain circuit simulation [21]. In parallel

computing, there are several factors that affect program execution time. Commu-

nication overhead is one of the main ones. The Jacobi-like algorithm studied in this

thesis is easy to implement in a parallel computing program. This algorithm de-

mands frequent data exchange among processors for each sample time step, which

is a bottleneck for parallel program efficiency. Instead of computing each time

step separately the WR calculate a whole time interval at once, which significantly

reduces communication frequency.

1.2 Thesis Overview

This thesis is composed of five chapters. Chapter 2 presents the review of topics

relevant for the work in this thesis. Chapter 3 include the study of Jacobi-like al-

gorithm and its simulation results based on WDF. An improvement with combined

WDF adaptor is also included in this chapter. A WR approach based on WDF is

studied in Chapter 4. A set of simulations based on WR and a “window” technical

are discussed. The possibility of increasing parallel computing efficiency is also

presented. The final chapter presents the conclusions of this study and suggestions

for future work.



Chapter 2

Literature Review

2.1 Introduction

This chapter summarizes topics relevant to this thesis. The basic concept of Wave

Digital filter Theory (WDF) is introduced first, which includes the derivation of the

basic WDF elements, the concept of WDF interconnections and modeling of non-

linear elements. A parallel algorithm based on the WDF is presented subsequently.

Message-Passing Interface (MPI) and Waveform relaxation are summarized at the

end of this chapter.

2.2 WDF Theory

2.2.1 Introduction

WDF(Wave Digital Filter) theory [1] was developed in 1960’s by Alfred Fettweis and

is extensively used to digitize analog circuit network. WDF attempt to translate

analog filters into the digital model and preserve as much of the underlying physics

of analog filters as possible. Particularly, through Fettweis’s procedure the digital

counterpart of a analog filter keeps the same precise network topology and energetic

properties of analog filter.

3



CHAPTER 2. LITERATURE REVIEW 4

Basic concept of WDF theory can be fairly simple [2]; In time domain, the

characteristics of analog circuit components are commonly represented by a voltage-

current relationship, while in WDF domain, the characteristics of circuit component

are represented with a relationship between incident and reflected wave. Thus a

circuit element definition in WDF domain is based on a equivalent characterization

of voltage-current relationship. Although it can be regarded as a transformation of

variable, it has the advantage to describe the dynamic behavior of a circuit network.

Consider an analog circuit element ( N-port device or basic element), energy com-

ing from the network (connected with the element through a port) incident on the

circuit element, the circuit element may store energy within itself, transmit energy

through other port or ports to the network, or only reflect energy back by the same

port. Incident wave and reflected wave are called wave variables and energy is car-

ried by these waves. An arbitrary constant called port resistance is assigned to each

individual port, and port resistance determine the reflectances and transmittances

of ports. Reflectance and transmittance of wave port construct coefficient, and

the coefficient parametrizes the entire network. For a passive network, these coef-

ficient are bounded independently of inductances, capacitances, and resistances etc.

Wave Variables

Wave variables, also known as wave quantities from classical circuits [1, 3],

characterize the one-ports elements or generally N-ports in WDF. In the work of

Fettweis [1], for realizability, he mentioned that the voltage wave quantities from

scattering parameter theory [3] are more suitable than power-wave quantities. In

this thesis, voltage wave quantities will be adopted as follows in Figure 2.1 ( N

denotes circuit element or circuit network) and Equation (2.1) :
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Figure 2.1: Voltage wave variables

A = V + IR

B = V − IR (2.1)

In z domain A is defined as incident wave, B is defined as reflected wave which

reflect back from the same port; or more precisely, A and B represent the wave

transmitted in the forward and backward directions, respectively, for a port. R,

which is an arbitrary positive constant, is called a port resistance for certain port.

As wave variables are linear combinations of voltages and currents, the Voltage-

current relationship can be described in the form of wave variables.











V =
A +B

2

I =
A−B

2R

(2.2)

Considering the impedance, Z = V/I the reflection coefficient can be obtained

A = IZ + IR

B = IZ − IR

}

⇒
A

B
=
Z +R

Z − R

Z 6= R (2.3)
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Using S to denote the transfer function which only depend on the port resistance

R and Impedance Z. Rewrite the function (2.3) in the form shown below.

B = SA S =
Z − R

Z +R
(2.4)

2.2.2 WDF Elements

WDFs can be considered to be digital models of their continuous-time reference net-

work. Mathematically, a digital filter which has a continuous-time reference filter

can be described using difference equations [1]. These difference equations should

be ordered sequentially, thus digital filter can be implemented by the arithmetic

operations which are fully described by difference equations.

Bilinear Transformation

The simplest and most appropriate method for implementing a digital filter is

bilinear transformation [1].To achieve discretization [2], a kind of spectral mapping

should be carried out between the analog complex frequency variable s and an

appropriate discrete frequency variable z, and z = esT .

z = esT =
e

sT

2

e−
sT

2

≈
1 + sT

2

1− sT
2

(2.5)

s→
2

T

1− e−sT

1 + e−sT
=

2

T

1− z−1

1 + z−1
(2.6)

Bilinear transformation has an important property [19]: If a transfer function of

a LTI (linear, time-invariant) system is stable and causal in s domain, it could be

mapped to the z domain with the discrete variable z by the bilinear transformation,

and the transfer function in z domain is still stable and causal. This is shown in

Figure 2.2 [2, 19].
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Rs(s) Rs(z)

Im(s) Im(z)

Figure 2.2: Spectral mapping corresponding to the trapezoidal rule

The trapezoidal rule for numerical integration is used for time domain interpre-

tation of bilinear mapping [2]. z−1 is regarded as the unit delay, then the righthand

side of (2.6) serves as an approximation to the derivative in discrete-time setting.

Thus the derivative in discrete-time can be writen in the form T/(1 − δt)/(1 + δt)

where δt is a unit shift defined by δtx(t) = x(t− T ). In this form some basic linear

element could be easily written in difference equation with voltage-current relation-

ship.

Example for Element Derivation

Using an inductor as an example, we can represent circuit elements using wave

digital equivalents. The inductor as an one-port element can be described using a

voltage-current relationship. In time domain it is:

v = L
di

dt
(2.7)

Or for the WDF reference domain

V = sLI (2.8)
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Z = sL is used as the impedance. Applying bilinear transformation

V =
2L

T

1− z−1

1 + z−1
I (2.9)

Using wave variables, the voltage-current relationship is changed to the wave

relationship. Substituting Equation (2.1) into (2.9) , the inductor can be described

in term of wave quantities as follows:

B

A
=

2L

T

1− z−1

1 + z−1
− R

2L

T

1− z−1

1 + z−1
+R

, (2.10)

if the port resistance is chosen to be R = 2L/T , then

B = −z−1A . (2.11)

In time domain, applying the trapezoidal rule could get an equivalent result;

according to the trapezoidal rule, voltage-current relationship of inductor can be

expressed as

i(t) = i(t− T ) +
1

L

∫ t

t−T

v(τ)dτ (2.12)

i(t) ≈ i(t− T ) +
T

2L
(v(t) + v(t− T )) (2.13)

As mentioned in equation (2.2), wave variables can be described in voltage-

current relationship in time domain like this

v(t) =
a(t) + b(t)

2

i(t) =
a(t)− b(t)

2R
(2.14)
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Here a(t) and b(t) denote the wave variables in time domain. Substituting

Equation (2.14) into (2.13), results in the following

a(t)− b(t)

2R
=
a(t− T )− b(t− T )

2R
+

T

2L

(

a(t) + b(t)

2
+
a(t− T ) + b(t− T )

2

)

Using a port resistance equal to R = 2L/T , the difference equation in time

domain can be obtained as follows:

b(t) = −a(t− T ) (2.15)

Comparing Equation (2.11) and Equation (2.15), the incident wave on the in-

ductor will be observed and the product of a minus unit delay and incident wave is

the reflected wave. These two equations are the same but in different domain. It

is easy to tell reflected wave B or b(t) (in time domain) value from the trapezoidal

derivation which shows clearly reflected wave is the negative value of incident wave

of previous time step.

WDF Model of Major Circuit Elements

A similar derivation can be made for other circuit elements. Major one port

element realizations in WDF domain are summarized in the Table 2.1
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Elements Chart

Difference Equation Circuit Elements Analog and WDF Model

B = −z−1A b(t) = −a(t− T )

B = z−1A b(t) = a(t− T )

B = 0 b(t) = 0

B = E b(t) = e

B = 2E −A b(t) = 2e− a(t)

B = A b(t) = a(t)

B = −A b(t) = −a(t)

Table 2.1: Major Circuit Elements WDF Realization
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Circulators

A circulator has n ports (n ≥ 3) [1]. For an ideal n-port circulator, the waves

of its ports must satisfy the following:

B1 = An, B2 = A1, . . . Bn = An−1

For a realistic circulator, wave variables do not exactly follow the equations as

B1 = An, B2 = A1, etc.. For the ideal three ports circulator, realization is shown

in Figure 2.3.

Figure 2.3: WDF Realization of Circulator

Delay-Free Directed Loop

In a signal-flow diagram, if each of the branches of a loop has the same orien-

tation with respect to a given loop orientation, the loop is called directed. In a

loop, the sum of delays in branches which are oriented in the same way minus the

sum delays in oriented oppositely branches is the total delay of a given loop. If

there is no delay elements in a branch, path, or loop, then it is called delay-free

[1]. Thus a Delay-Free Directed Loop (DFDL) is a directed loop without delay in

it (Figure 2.4). In other words, if a reflected wave depends simultaneously on its

incident wave, a DFDL occurs in WDF realization. Basic WDF model like ideal
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source, short circuit and open circuit are often considered as elements without de-

lay. Nonlinear capacitor and inductor, whose reflected wave is depends on their

incident wave simultaneously, are often treated as elements without delay.

Figure 2.4: Delay free directed loop

In Fettweis’s work [1], he gave the theorem for full-synchronic circuit realization:

“the signal-flow diagram of a proper digital filter is realizable at a rate F = 1/T if

and only if it satisfies the following conditions:

• It does not contain delay-free directed loops.

• The total delay in any loop (directed or not) is equal to a multiple (zero,

positive, or negative) of T .”

Therefore, in the procedure of WDF realization a circuit it is important to avoid

or cut DFDLs

2.2.3 Interconnections and Adaptors

From the last section, basic circuit elements and sources could be simulated in the

digital wave domain. But the circuit topology and topological rules (Kirchoff’s laws)

should be present in WDF domain too, hence interconnections between different

parts of the circuit network should also be simulated to establish the whole reference

circuit in digital wave domain [1]. The digital representations of interconnections

between circuit network parts are called adaptors, memory-less devices which pass

energy carried by waves among different parts of circuit.
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Series and Parallel Adaptors Derivation

The most common adaptors are series and parallel adaptors, which describe the

most important connections in Kirchhoff’s laws, series and parallel connections.

Here we consider a series connection which has n ports and each port resistance

Rj > 0, j = 1, . . . , n is shown in Figure 2.5.

Figure 2.5: Series connection and series adaptor

According to Kirchoff’s laws, we have:

n
∑

j=1

vj = 0

i1 = i2 . . . = in

In terms of wave variables, the equation could be written as follows
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n
∑

j=1

aj + bj
2

= 0

a1 − b1
2R1

=
a2 − b2
2R2

. . . =
an − bn
2Rn

= i

As at all ports, the currents are all equal to i, obviously reflected wave at port

j can be written in the form of:

bj = aj − 2Rji

So the KVL equation can be rewritten as shown below:

n
∑

j=1

2aj − 2Rji

2
= 0

i =
1

∑n
j=1Rj

n
∑

j=1

2aj

Thus the input wave and output wave variables relation for series adaptor at k

port can be expressed in the form of

bk = ak −
2Rk

∑n
j=1Rj

n
∑

j=1

aj k = 1, . . . , N (2.16)

Equation (2.16) is shown in matrix form:

















B1

B2

...

Bn

















=

















(1− β1) −β1 . . . −β1

−β2 (1− β2) . . . −β2
...

...
. . .

...

−βn −βn . . . (1− βn)

































A1

A2

...

An

















βk =
2Rk

(R1 +R2 + . . .+Rn)
k = 1, 2, . . . n (2.17)
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The A and B denote vectors of incident and reflected waves, respectively. Define a

matrix S as shown below,

S =

















(1− β1) −β1 . . . −β1

−β2 (1− β2) . . . −β2
...

...
. . .

...

−βn −βn . . . (1− βn)

















,

S is called scattering matrix [2]. The series adaptor equations can be described in

the same form as ( 2.4 )

B = SA.

There are two properties to be mentioned here, first is dependent port, second

is the reflection-free port. Since
∑n

k=1 βk = 2, the coefficient of one of ports can

be eliminated. Choose port n as an example, the coefficient of port n can be

determined from βn = 1−
∑n−1

k=1 αk, so port n is called dependent port. It will help

in calculating WDF parameter of the adaptor.

Reflection-free port is any one port of a series adaptor in which the reflected

wave is independent from its incident wave. As the port resistance can be chosen

arbitrarily, one port resistant of the series adaptor ports can be expressed as follows

Rn =
n−1
∑

k=1

Rk

So the coefficient of the corresponding port n is equal to 1, and port n is called

reflection-free port. From the scattering matrix shown below we can clearly observe

the behavior of the reflection-free port.

















B1

B2

...

Bn

















=

















(1− β1) −β1 . . . −β1

−β2 (1− β2) . . . −β2
...

...
. . .

...

−1 −1 . . . 0

































A1

A2

...

An
















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The schematic of a parallel adaptor is show in Figure 2.6, and adaptor equations

are shown below:

Figure 2.6: Parallel connection and parallel adaptor

bk = −ak +
2

∑n
j=1Gj

n
∑

j=1

Gjaj k = 1, . . . , N

















B1

B2

...

Bn

















=

















(α1 − 1) α2 . . . αn

α1 (α2 − 1) . . . αn
...

...
. . .

...

α1 α . . . (αn − 1)

































A1

A2

...

An

















αk =
2Gk

(G1 +G2 + . . .+Gn)
k = 1, 2, . . . n. Gk = 1/Gk (2.18)

This is the same as series adaptor with α instead of β and G instead of R, any

one port of a parallel adaptor can be chosen as a reflection-free port or dependent

port.
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Circuit interconnection Analysis Based on Graph Theory

Network topology theory is a very important concept for circuit simulation. Using

WDF requires a way to handle the arbitrary network topologies. For topologies

different from series or parallel connections, graph theory is used to derive the

adaptor equations.

Some Graph Theory concepts are reviewed first [16, 17, 18].

Graph: A graph of an electrical network is a set of branches and a set of nodes.

Branches are two-terminal elements, and the ends of elements are represented by

nodes.

Path: A path in a graph is a sequence of nodes such that from each of its nodes

there is an branch to the next node in the sequence.

Connected Graph: If there is at least one path between each pair of nodes,

the graph is called a connected graph.

Loop: If a pair of nodes have more than one path, there is a loop.

Tree: In a connected graph, remove loops until there is only one path between

any two nodes which don’t have a loop, the result connected graph is called tree.

Any branch in the tree is called one twig of a tree. The rest of branches form a

cotree and are called chords.

Cut set: A cut divides the graph into two separate parts and only contains

one twig of tree and as many chords as necessary. a set of branches included in a

cut is called cut set.

Fundamental theorem of graphs: a connected graph with n nodes and b

branches called Γ and Tr is a tree of Γ [16]:

• There is a unique path along the tree between any pair of nodes;

• There are n− 1 tree branches and l = b− (n− 1) links;

• Every tree branch of Tr together with some links defines a unique cut set;
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• Every link of Tr and the unique path on the tree between its two nodes defines

a unique loop.

Kirchhoff’s Current law and Kirchhoff’s Voltage law are based on cut sets and

loops, respectively. Using graph theory to make a set of hybrid (KVL and KCL)

network equations for circuit network is described below [17] :

• For a particular tree, Kirchhoff’s voltage law is applied to all of the basic

loops, constructing a set of network equations by the form of KVL.

• For a particular tree, Kirchhoff’s current law is applied to all of the basic cut

sets, constructing a set of network equations by the form of KCL.

For a circuit network, a non-directed graph could express the topological infor-

mation, but when KCL and KVL are applied, a directed graph is introduced to

include the reference directions which are required by Kirchhoff’s law.

A bridge structure showed in Figure 2.7 [4] is analyzed next. From graph theory

and Kirchhoff’s laws a scattering matrix can be derived. Nodes are named with

letters A, B ,C ,D
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Figure 2.7: Diagram of a bridge structure

The basic loops and cut sets for the bridge structure are showed in Figure 2.8.

Figure 2.8 illustrates the cut sets and loop sets where L1, L2 and L3 are loop sets,

and C1, C2and C3 are cut sets. The thicker lines indicate the tree twigs. From the

illustration tree branches and links can be calculated by equations b = n − 1 = 3

and l = b− (n− 1) = 3. Equations of KCL and KVL can be expressed as such:
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Figure 2.8: Basic loops and cut sets of the bridge structure



















V1 − V2 − V6 = 0

V1 − V3 + V5 = 0

V2 − V4 + V5 = 0


















I1 + I3 + I6 = 0

I2 + I4 − I6 = 0

I3 + I4 + I5 = 0

Defined voltage vector and current vector

−→
V = [V1, . . . , V6]

T

−→
I = [I1, . . . , I6]

T

KCl and KVL equations can be expressed in the matrix form:
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









1 −1 0 0 0 −1

1 0 −1 0 1 0

0 1 0 −1 1 0







































V1

V2

V3

V4

V5

V6





























=
−→
0











1 0 1 0 0 1

0 1 0 1 0 −1

0 0 1 1 1 0







































I1

I2

I3

I4

I5

I6





























=
−→
0

Define MV , MI to be matrices for voltage and current equations, respectively.

MV =











1 −1 0 0 0 −1

1 0 −1 0 1 0

0 1 0 −1 1 0











⇐⇒MV
−→
V =

−→
0

MI =











1 0 1 0 0 1

0 1 0 1 0 −1

0 0 1 1 1 0











⇐⇒MI
−→
I =

−→
0

Define wave variables below

−→
A = [A1, . . . , A6]

T

−→
B = [A1, . . . , B6]

T

G = diag

(

1

R1
, . . . ,

1

R6

)
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KVL and KCL equation can be written as

−→
V =

−→
A +

−→
B

2
⇒MV (

−→
A +

−→
B ) =

−→
0

−→
I = G

−→
A −

−→
B

2
⇒MI(

−→
A −

−→
B ) =

−→
0

From the preceding, we can obtain the bridge structure adaptor, which like series

and parallel adaptors could use a scattering matrix S to describe the relationship

between incident and reflected waves:





MV

MIG





−→
A +





MV

−MIG





−→
B =

−→
0

−→
B = S

−→
A ⇒ S = −





MV

−MIG





−1 



MV

MIG



 (2.19)

From the above derivation, circuit network topological information in voltage-

current domain can be transformed to the WDF domain, and network equations

can be expressed with a scattering matrix S. The derivation of scattering matrix

S of the bridge structure is one example.

2.2.4 Wave description for Nonlinear Element

In “Wave Digital Filters: Theory and Practice” [1], Alfred Fettweis gave essential

WDF elements blocks, which represent linear circuit elements and sources. Consid-

ering nonlinear elements, a nonlinear circuit element characteristic can be described

by WDF theory under some conditions. In many works [6, 7, 8], nonlinear elements

have been discussed, and several methods have been proved. Hence not only re-

sistances having a continuous piecewise-linear voltage-current characteristic [6] can

be described by WDF theory, but also an extended method of WDF principles can

be used for modeling nonlinear dynamic elements [7, 8].
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Nonlinear Resistor

ANonlinear resistor voltage-current relationship can be defined by the form F (v, i) =

0. This constitutive relation function can be converted into a wave variables form

function f(a, b) = 0 (Figure 2.9).

Figure 2.9: Model of nonlinear capacitance

f(a, b) = F (
a+ b

2
,
a− b

2R
) = 0

Function f(a, b) = 0 is a implicit function. Thus the reflected wave (b) can be

described by an explicit function b = f̃(a). If the nonlinear resistor wave function,

b = f̃(a), and its derivatives are continuous, for a point (a0, b0) belonging to the

range of the characteristic of resistor, the condition ∂f
∂b
|a0,b0 6= 0 guarantees that in

a neighborhood of a0 there is a function f̃(•) such that f(a, f̃(a)) = 0 [6, 7].

Using the current-controlled resistor F (v, i) = v − v(i) = 0 as an example, the

voltage-current relationship can be mapped onto wave domain.

f(a, b) =
a + b

2
− v(

a− b

2R
) = 0

Checking the condition for existence of f̃(•).
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∂f

∂b
=

∂

∂b

{

a+ b

2
− v(

a− b

2R
)

}

(2.20)

=
1

2
−
∂v

∂i

∂i

∂b
=

1

2
+

1

2R
v′
(

a− b

2R

)

(2.21)

v′(i) =
dv

di
(2.22)

Clearly under the condition v′(i) 6= −R, it is guaranteed that a function for

reflected wave can be written in b = f̃(a). The voltage-controlled nonlinear resistor

can be treated in the same way. When invertibility is satisfied, the form of b = f̃(a)

can be used for nonlinear resistor and be implemented into the wave domain.

Nonlinear Elements with Memory

In several works [7, 8], an extension of WDF principle is used to model a class

of nonlinear elements with memory in wave domain. This extension of the WDF

principle introduces a new class of wave variables, and use the concept of mutator

to treat nonlinear elements with memory as a nonlinear resistor [7].

Consider a scattering junction shown in Figure 2.10, which shows the transfor-

mation between two different classes of wave variables. Consider R(z) and R′(z)

are reference transfer function (RTF) [7] in z domain, A(z) A′(z) are incident

waves of junction, B(z) B′(z) are reflected waves. And let

A(z) = V (z) +R(z)I(z)

B(z) = V (z)−R(z)I(z)

A′(z) = V ′(z) +R′(z)I ′(z)

B′(z) = V ′(z)− R′(z)I ′(z)

As V (z) = V ′(z) and I(z) + I ′(z) = 0, reflected waves can be described like
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Figure 2.10: Scattering junction

B(z) = A′(z) +K(z)(A(z) −A′(z))

B′(z) = A(z) +K(z)(A(z)− A′(z))

K(z) =
R′(z)−R(z)

R′(z) +R(z)

Signal flow chart shown in Figure 2.11 .

Figure 2.11: Signal flow of scattering junction

When considering the realization of the scattering junction, a key point is to

avoid delay free loops when it connects with other circuits. In other words, incident

waves entering the two port scattering junction do not depend on reflected waves of

it. Thus K(z) does not have instantaneous input/output connection is a necessary

and sufficient condition for realization, for example, K(z) = z−1k̂(z) when K̂(z) is

causal and stable.



CHAPTER 2. LITERATURE REVIEW 26

Figure 2.11 shows a structure that can transform a nonlinear capacitor into a

nonlinear resistor, meanwhile still preserve the capacitor’s nonlinear characteristic.

A class of two port element called mutator has been discussed in L.O.Chua’s work

[10]. This class of element can be used to transform nonlinear capacitor into a

nonlinear resistor in Kirchhoff domain. In wave domain similar counterpart of

mutator is present by the wave digital mutator [11]. This mutator reduces the

difficulty of realization of nonlinear element with memory.

Structure of wave digital mutator, for nonlinear capacitor could be called R−C

mutator, is a scattering junction connected with a capacitive RTF and a resis-

tive RTF. For the structure shown in Figure 2.10 , using R(s) = R and R′(s) =

1/(sC), C > 0, the scattering junction can be rewritten by bilinear transformation

K(z) =
R′(z)− R

R′(z) +R

R′(z) =
T

2C

1 + z−1

1− z−1

When choosing R = T/2C, we got K(z) = z−1, which means for both ports of

mutator instantaneous reflections have been eliminated. The signal flow chart for

mutator is shown in Figure 2.12, where K(z) is substituted by a unit delay z−1.

Figure 2.12: RC mutator

With the R − C mutator, a nonlinear capacitor can be treated as a nonlinear
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resistor, and A′ B′ could be written in the form below

A′(z) = V ′(z) +
T

2C

1 + z−1

1− z−1
I(z) = V ′(z) +

1

C
Q(z)

B′(z) = V ′(z)−
T

2C

1 + z−1

1− z−1
I(z) = V ′(z)−

1

C
Q(z)

Where Q(z) is associated with the electrical charge q(t), q̇(t) = i(t). A nonlinear

capacitor can be described by an algebraic relationship in form of P (v, q) = 0. C

is the reference capacitance, and it plays a role for mapping nonlinear capacitor in

Kirchhoff domain onto the wave domain. In Wave domain, R−C mutator connects

with the nonlinear map with a form b = f̃(a).

For the nonlinear inductor, a R − L mutator could be derived using the same

procedure, and a similar signal flow chart can be found, Figure 2.13 shows its signal

flow in z domain.

Figure 2.13: RLmutator

2.3 WDF in Circuit Simulation

Simulation is a well-known technique to study complex circuit systems. For many

years WDF has been used for substituting classical analog filter by digital circuits

[1, 2, 4, 6, 7, 8, 9, 11, 13, 14]. For the linear and passive systems, the WDF is

stable and shows advantage compared with other simulation methods. Therefore
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the WDF is a good candidate for transient simulation. In many works [6, 7, 8],

several approaches made it possible for describing nonlinear elements by WDF

structure. Simulation based on WDF is possible for a circuit combined with linear

and nonlinear elements [5, 9, 13].

2.3.1 Simulation of a Nonlinear Transmission line

A Jacobi-like method that can be applied to a nonlinear transmission line is pre-

sented in this section. The well-known Jacobi method has a strong local property,

in other words, data for computing can be divided in many blocks which can be

calculated independently [20](Appendix B).

Using a nonlinear transmission line which has been discussed by M. Toda [12] as

an example, we can find out how DFDLs are introduced in WDF realization. A non-

linear transmission line model is shown in Figure 2.14 where linear inductor value

is 1.38µH . The transmission line has nonlinear capacitors with the characteristic

shown below:

q = c0v0ln(1 +
v

v0
) c0 = 224.9pF, v0 = 3.73V

Figure 2.14: Nonlinear transmission line

Solution of voltage for the each nonlinear capacitor is given by M. Toda [12].

Voltage on kth nonlinear capacitor Ck shown below:

vk(t) = v̂sech2[ω(t∓ k/v)]
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Where v̂ denotes an arbitrary positive constant.

ω =

√

v̂/v0
Lc0

v =
ω

arcsinh
√

v̂/v0

Usually when nonlinear elements are introduced, DFDLs occurs, that means

incident waves instantaneously depend on reflected waves. If there is only one

nonlinear element in a circuit, DFDL can be eliminated using the reflection-free

port of the adaptor (Figure 2.15). But for a complex circuit with more than one

nonlinear element there is no easy way for the full-synchronic circuit realization.

As an implicit equation can be used to describe DFDL, we either have to find a

solution to solve implicit equations, or introduce an iterative formulation to cut

DFDLs [13].

Figure 2.15: DFDL cut by reflection-free port of adaptor

One approach is use an iterative method at each time step to solve implicit

equations which represent DFDLs. This iterative method uses an impedance insert

into the path of the DFDL to remove the DFDL. Figure 2.16 illustrates the model

used in this method.

For each time step a vector is the vector containing all known incident wave,

reflected waves of a is b. a0 vector contain waves incident in DFDLs path, reflected
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Figure 2.16: WD model for iteration

Figure 2.17: Impedance model

wave is b0 vector. Γ is the inserted reflectance. Network could be described as:





b

b0



 =





S11 S12

S21 S22









a

a0





Matrix S where Sij i, j ∈ [1, 2] denote a scattering matrix describes topology

of known wave and DFDLs.

For the iteration, we demand reflectance Γ|ψ=1 = 0 at the beginning of iterations,

where ψ = (1 − z−1)/(1 + z−1) is the frequency . Finally inserted reflectance Γ

achieves steady state, in other words, a0 = b0, reflectance needs to satisfy Γ|ψ=0 = 1.

A network that produces that kind type reflectance is shown in Figure 2.17. We

consider Γ = a0/b0, and let Zc = (R0 − Rx)/ψ, where ψ = (1− z−1)/(1 + z−1).
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a0

b0
= Γ =

Rx +
(R0 − Rx)

ψ
− R0

Rx +
R0 − Rx

ψ
R0

Substituting ψ = (1− z−1)/(1 + z−1) we get:

a0

b0
= Γ =

z−1(R0 − Rx)

R0 − z−1Rx

We can write b0 as a function of a, b0 = S21 × a + S22 × a0 thus we get a

Jacobi-like algorithm shown below

a0(n) = γa0(n− 1) + (1− γ)[S22a0(n− 1) + S21a] γ =
Rx

R0
(2.23)

This Jacobi-like iteration can be described like this: at each time step a linear

R-C circuit and a circulator are inserted into DFDL. The iteration can be treated

as an imaginary time dimension which does not affect reality. In this imaginary

time dimension, linear R-C circuit makes circulator realizable. When R-C circuit

achieves steady state in the imaginary time dimension, DFDL is cut and incident

wave and reflected wave of DFDL achieve real value at this time step.

Thus modified nonlinear transmission line WD realization could be described

as shown in (Figure 2.18)

Figure 2.18: Jacobi-like WD realization model for nonlinear capacitor
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2.4 MPI Introduction

MPI (Message-Passing Interface) is a message-passing library interface specifica-

tion [22, 23], which addresses primarily the message-passing parallel programming

model. Data is transferred from the address space of one process to another pro-

cess through cooperative operations on each process. The MPI standard has been

defined through an open process by a community of parallel computing vendors,

computer scientists, and application developers.

The goal of the MPI is to establish a practical, portable, efficient, and flexible

standard for message passing. A detail list of goals is shown as follows:

• Provide programming interface for application.

• Improve communication efficiency. Avoid memory-to-memory copying,

allow overlap of computation and communication, and offload to com-

munication co-processor, where available

• Allow for implementations that can be used in a heterogeneous environ-

ment.

• Assume a reliable communication interface: communication failures are

dealt with by the underlying communication subsystem.

• Define an interface that can be implemented on many vendors platforms,

with no significant changes in the underlying communication and system

software.

• Semantics of the interface should be language independent.

• The interface should be designed to allow for thread safety.

2.4.1 Basic Schema for MPI Programming

Two basic schema for MPI programming are peer to peer communications schema

and master slave communications schema. Most of parallel programs are based on

either one of two schemas or a combination of two schema.
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Using peer to peer communications schema, every processor sends data to its

adjacent processors or collects data from them. Jacobi iteration for the nonlinear

transmission line is a good example for peer to peer communications schema, as it

calculate a new value based on the values which are adjacent from the last iterative

step [20](Appendix B). Therefore Jacobi iteration can be parallelized, and for each

processor, data is only needed to be exchanged with the adjacent processor. No

dedicated processor is needed to collect and distribute data for all other processors.

Figure 2.19 shows the basic concept.

Figure 2.19: Peer to peer communication

There is a master processor in the master slave schema, which collects data from

other processors and distributes data to them, as shown in Figure 2.20.

Figure 2.20: Master and slave communication
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2.5 Waveform Relaxation

In A.R.Newton and A.L.Sangiovanni-Vincentelli’s work [21], Waveform Relaxation

(WR) is an important part of relaxation techniques for electrical simulation. Com-

pared with timing analysis and iterated timing analysis ,which are at the nonlinear

algebraic equation level, waveform relaxation is applied to differential equation

level. The WR techniques can be explained as an analogue of the Gauss-Seidel

algorithm [20] (Appendix B), where, unknowns are elements of a function space,

rather than real variables.

Consider the first-order two-dimensional differential equation in x(t) ∈ R
2 on

t ∈ [0, T ],

ẋ1 = f1(x1, x2, t), x1(0) = x10 (2.24)

ẋ2 = f1(x1, x2, t), x2(0) = x20 (2.25)

The basic idea of the waveform-relaxation algorithm is to fix the waveform x2 :

[0, T ] → R and solve as a one dimensional differential equation in x1(·). The

solution thus obtained for x1 can be substituted into Equation 2.25 which will then

be reduced to another first-order differential equation in one variable, x2 . Equation

2.24 is then resolved using the new solution for x2(t) , and the procedure is repeated.



Chapter 3

Nonlinear Transmission line

Simulation

3.1 Introduction

In this chapter, a nonlinear transmission line is simulated by WDF principles. In

simulations, all the incident and reflected waves are represented by lower case.

First, a simple nonlinear RLC circuit simulation result is presented. Simula-

tion results are compared with differential equation solution solved by using the

ODE45 Matlab function. Second, nonlinear transmission line is simulated by WDF

principles. WDF analysis based on a parallel algorithm is discussed. Finally a

different set of adaptors are applied on the WDF analysis for the transmission line

and parallel algorithm.

The simulation results are compared with an circuit simulator named Carrot

[25]. Carrot is a circuit simulator based on C++ developed by Dr Carlos E. Christof-

fersen.

35
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3.2 Simulation of Nonlinear RLC Circuit

When a circuit has one nonlinear elements, delay-free direct loops occurs. By the

theorem for full-synchronic circuit realization [1], these kind of circuits can not be

realized. To simulate circuit with nonlinear elements, DFDL must be cut. There

are several methods that can be used for cutting DFDL.

3.2.1 Cutting DFDL with Reflection-free Port

For a simple RLC circuit with one nonlinear element shown in (Figure 3.1), the

common method is to use an important property of WDF interconnection adaptor

to cut DFDL, which is the reflection-free port. By matching port resistance of the

port which is connected with nonlinear element, the incident wave to the adaptor

port is not affected by reflected wave at the same port. This method can be

applied not only on series or parallel adaptor, but can also be applied on arbitrary

interconnection adaptors which can be described by a scattering matrix [5].

Figure 3.1: Nonlinear RLC circuit

The nonlinear RLC circuit condition are given by:
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e(t) =







E t 6 200ns

0 t > 200ns

L = 1.38µH, Rs = 10Ω

Nonlinear capacitor equation is as follows:

q = c0v0ln(1 +
v

v0
), v > −v0 c0 = 224.9pF, v0 = 3.73V

Figure 3.2 shows the voltage-charge controled nonlinear capacitor characteristic

in WDF domain. The x-axis represent voltage on capacitor, y-axis represent the

wave variable value corresponded with voltage. Implementation of the RLC circuit

in WDF domain can be described in two parts: linear and nonlinear element.
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Figure 3.2: Nonlinear capacitor WDF characteristic correpsoned with voltage

The linear inductor and voltage source with resistor can be connected with a

series adaptor directly. With wave digital mutator, the nonlinear capacitor connects

with the series adaptor. WDF implementation is shown in (Figure 3.3)

Port three is chosen to be a reflection-free port, the reflected wave of it does not

depend on incident wave coming from nonlinear capacitor. T is the unit delay, and

R1 = Rs is the internal resistance of voltage source, R2 = 2L/T . Reference capaci-

tance of the mutator is C, reflection-free port resistance and reference capacitance
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Figure 3.3: WDF implement of nonlinear RLC circuit

can be found by

R1 +R2 = R3 =
T

2C
⇒ C =

T/2

Rs + 2L/T

Scattering matrix of series adaptor can be described as follows:
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









b1

b2

b3











=











(1− β1) −β1 −β1

β1 − 1 β1 β1 − 1

−1 −1 0





















a1

a2

a3











β1 =
2Rs

2(Rs + 2L/T )

To implement the nonlinear capacitor and mutator, wave variables can be de-

scribed as follows:

b(t) = f̃(a(t))







a(t) = a4(t) + a4(t− T )− b(t− T )

b4(t) = b(t) + a4(t− T )− b(t− T )







a4 = b3

b4 = a3

Simulations are implemented in Matlab. For WDF simulation, T = 1ns, and use

linear interpolation method (table lookup) for finding solution of function b = f̃(a).

RLC circuit is also simulated with Kirchhoff’s voltage-current equations, while the

Runge-Kutta method (ODE45) is used for solving differential equation. ODE45

result compares with the result of WDF shown as (Figure 3.4). From result we

only observe little difference between these two methods. A possible reason for the

difference between ODE45 and WDF simulation is that error of linear interpolation

accumulates during the WDF calculation. In next section, Newton method will be

applied on nonlinear function to achieve higher efficiency and accurate error result.
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Figure 3.4: Voltage of Nonlinear capacitor by WDF and ODE45

3.2.2 Cutting DFDL with Jacobi Method

DFDL can be described as an implicit function, it can be cut by an iterative for-

mulation [13]. Using the same nonlinear RLC circuit in (Figure 3.1) as an example,

WDF analysis using Jacobi-like method to cut the DFDL is shown in Figure 3.5.
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Figure 3.5: WDF implement of RLC circuit by Jacobi-like iteration

Let Port 3 of the series adaptor to be a normal port, R3 as port 3 resistance can

be assigned any arbitrary resistance. Mutator reference capacitance is chosen to be

C0/10. Circulator port resistance is chosen to be R. Condition of WDF analysis

shown as follows:

C = C0/10 Rc = T/(2× C)

R =
√

L/C0 Rx = R/5 Cx = T/(2× (R0 − Rx))
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Scattering matrix of series adaptor shown below:











b1

b2

b3











=











(1− β1) −β1 −β1

−β2 1− β2 −β2

−β3 −β3 1− β3





















a1

a2

a3











β1 =
2Rs

R +Rs +Rl

β2 =
2Rl

R +Rs +Rl

β3 =
2R

R +Rs +Rl

A Jacobi-like iterative formulation is applied on the circulator at each time

step, in other words, b3 is calculated by iteration to achieve an accurate value. So

at each time step, a linear R-C circuit and a circulator are inserted between the

series adaptor and the mutator. The iteration can be treated as an imaginary time

dimension which does not effect reality. In this imaginary time dimension, linear

R-C circuit makes circulator realizable. When R-C circuit achieves steady state in

the imaginary time dimension, b3 and a3 achieve real values at this time step. The

Jacobi-like equation for circulator shown below:

a0 = (1− γ)b0 + γa0 (3.1)

b3 = b0; a4 = a0

Simulation results shown in Figure 3.6. Both of them are implemented in Mat-

lab, two results are compared with each other. One result is based on reflection-free

port (matched port resistance), while another one is based on unmatched port resis-

tance. From these results we can observe that two methods are perfect matched, in

other words, Jacobi-like iteration can be used in WDF implementation for cutting

DFDL.

Table 3.1 shows simulation time between two method. From the table we can

observe that Simulation time based on Jacobi-like iteration is affected by value of
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Figure 3.6: Voltage on Nonlinear Capacitor

γ. When γ = 0.5 is chosen, simulation time difference between matched port and

Jacobi-like iteration is small. When γ = 0.2 and γ = 0.8 are chosen, the difference

of simulation time are quite large.

Simulation Time and Jacobi Iteration Step Comparison of

Matched and Unmatched port

Methods Matched Port
Unmatched Port

γ = 0.2 γ = 0.5 γ = 0.8

Simulation Time (second) 10.525 72.245 12.878 72.864

Jacobi Iteration Steps
Min — 27 4 32

Max — 46 9 54

Table 3.1: Simulation time and Jacobi-Iteration step comparison
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3.3 WDF Analysis and Simulation for Transmis-

sion Line

3.3.1 Simulation of A Circuit Containing Two Ideal Voltage

Sources

The Jacobi-like iteration can be used for a circuit which has more than one DFDL.

If a circuit contains an ideal voltage source, DFDL is introduced into the circuit’s

WDF implementation. From the WDF implementation of ideal voltage source

b(t) = 2e − a(t), it clearly shows that reflected wave is simultaneously dependent

on the incident wave.

A WDF implementation of a circuit with ideal voltage sources and nonlinear

capacitor proves that Jacobi-like iteration can cut more than one DFDL. The circuit

shown in (Figure 3.7).

Figure 3.7: Circuit with ideal voltage source

This circuit has two ideal voltage sources and one nonlinear capacitor. Circuit

condition shown as follow:

e1(t) = e2(t) =







E t 6 200ns

0 t > 200ns

L1 = L2 = 1.38µH
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Nonlinear capacitor equation is as follow:

q = c0v0ln(1 +
v

v0
), v > −v0 c0 = 224.9pF, c0 = 3.73V

(Figure 3.8 ) shows that more than one DFDLs exist in WDF implementation.

Figure 3.8: DFDLs in WDF implement of circuit

WDF Implementation

From Figure 3.8 we find DFDL occurs not only on the nonlinear port, but also it

occurs on the interconnection ports between the two adaptors as well. In “Wave

digital filters: Theory and practice” [1], to implement a fifth-order Cauer structure

in WDF, every interconnection between two adaptors has to match the port resis-

tance to achieve a reflection-free port. As the fifth-order Cauer structure only has

linear elements, using reflection-free port is an easy method for realization. As for

the circuit Figure 3.7, it is not easy to find reflection-free port.

With help from Jacobi-like iteration, it is possible to realize this nonlinear cir-

cuit. Combined with Jacobi-like iteration method and reflection-free port, there

are several WDF implement configurations to cut DFDLs. as shown in Figure 3.9,

Figure 3.10 and Figure 3.11.
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Figure 3.9: Configuration 1

Figure 3.10: Configuration 2

Figure 3.11: Configuration 3
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In Configuration 1 (Figrue 3.9), the parallel adaptor port connected with non-

linear capacitor is chosen as a reflection-free port. Circulators are inserted between

adaptors to cut DFDLs caused by adaptor interconnection. To achieve a symmet-

ric WDF structure, circulators are inserted between ideal voltage sources and series

adaptor port.

Configuration 2 is shown in Figure 3.10. Between the nonlinear capacitor and

the parallel adaptor, a circulator is inserted to cut DFDL, which is cut by inserting

a circulator between the left voltage source and the series adaptor. Every adaptor

port which connects the next adaptor is chosen to be a reflection-free port, where

port resistance is matched. The last series adaptor port connected with voltage

source is a reflection-free port to cut DFDL.

The Configuration 3 is shown in Figure 3.11, where each DFDL is cut by in-

serting circulator.

Comparing these three configurations, the first configuration appears to be the

best choice for simulation. In the second configuration, each adaptor port connect

with another adaptor has to be a reflection-free port, in other words, scattering

matrix of each adaptor are different and have to be calculated separately. In third

configuration, there are five circulators. Actually, each circulator is a loop in simula-

tion program, thus the efficiency of simulation is weaker than the first configuration

WDF analysis of configuration 1 is shown here, where the inserted network

condition is:

R =
√

L/C0 G = 1/R Rx = R/2 Cx = T/(2× (R− Rx))

Mutator reference capacitance matched the parallel adaptor port resistance to

get a reflection-free port:

C =
T

√

L/C0
Rc =

T

2× C
=
R

2
Gc =

1

Rc

Scattering matrix of series adaptor shown below, where Rl1 = Rl2 = 2L/T :
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
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1− β1 −β1 −β1

−β2 1− β2 −β2

−β3 −β3 1− β3
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







a1

a2

a3











β1 =
2R

R +R +Rl
(3.2)

β2 =
2Rl

R +R +Rl

β3 =
2R

R +R +Rl

Parallel adaptor scattering matrix is:











b1

b2

b3











=











α1 − 1 1 1− α1

α1 0 1− α1

α1 1 −α1





















a1

a2

a3











α1 =
2G

2G+ Gc

Simulation Result

According to the definition of series adaptors, the voltage reference direction is

not the same on every port. When a series adaptor connects to a parallel adaptor

as seen in Figure 3.9, scattering matrix of series and parallel adaptor has to be

calibrated for suiting the correct voltage reference direction.

For the example circuit, the first series adaptor and parallel adaptor need to be

revised. After changing the scattering matrix of the parallel adaptor, the voltage

reference direction change to the same direction as the next series adaptor, so that

the last series adaptor does not need to be revised. Revised scattering matrices are

shown below:

Scattering matrix of first series adaptor
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

Scattering matrix of parallel adaptor:




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






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



WDF implementation of nonlinear capacitor is a function of the incident wave

b = f̃(a). The solution of this nonlinear function is found by linear interpolation

in Section 3.2. This method is not a best choice for numeric simulation, as it is

slow to get an accurate result. Newton method is a fast convergence method for

numeric simulation, which can reduces simulation time and error for simulation.

From the nonlinear capacitor characteristic function q = c0v0ln(1 + v
v0
), a

voltage-charge function can be found:

q(v) = c0v0ln(1 +
v

v0
)⇒ v(q) = v0(e

q

c0vo − 1)

A function of F (v, v(q)) = 0 can be found. To find the root of this function, an

error function v − v(q) = 0 has to be constructed. Using the R-C mutator, which

is described in Chapter two, voltage and charge can be described in wave variables

as follows:

a = v +
1

C
q ⇒ v =

a+ b

2

b = v −
1

C
q ⇒ q =

a− b

2

Error function in WDF domain shown below:

err = a+ b− 2v0(e
(a−b)×C

2c0v0 − 1) = 0
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To solve the error function, by Newton method [20] the iterative equation is as

follows:

b = b0 −
a+ b0 − 2v0e

C(a−b0)/2C0v0 + 2v0

1−
C

C0

× eC(a−b0)/2C0v0

Where b0 is the initial value for iteration, C is the mutator reference capacitance.

Simulation results are shown in (Figure 3.12, 3.13, 3.14). Voltage on capacitor

is shown in Figure 3.12 which compares with circuit simulator Carrot [25]. Voltage

on nonlinear capacitor shows behavior of a loss less circuit, an oscillation happens

and no energy is lost. Simulation result shows perfect matching at a 200ns wide

voltage impulse. At the edge of voltage impulse, current on capacitor clearly shows

the response of linear inductor in the circuit.
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Figure 3.12: Voltage on Nonlinear capacitor
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3.3.2 Simulation of Nonlinear Transmission Line

The circuit shown in (Figure 3.7) can be regarded as a part of a nonlinear transmis-

sion line (Figure 3.15) [12, 13]. The WDF implementation of the circuit (Figure 3.9)

can be used for implementation of a nonlinear transmission line and it is suitable

for parallel computing. The transmission line parameters are the following:

e1(t) = e2(t) =







E t 6 200ns

0 t > 200ns

L1 = L2 = Ln = 1.38µH

q = c0v0ln(1 +
v

v0
), v > −v0, c0 = 224.9pf, v0 = 3.73v, for all capacitors

Figure 3.15: Nonlinear transmission line

WDF Implementation

WDF implementation of nonlinear transmission line is shown in Figure 3.16. The

whole transmission line can be divided in to small sections, which only include a lin-

ear inductor and a nonlinear capacitor. Inductors and capacitors are connected by

a series and a parallel adaptor. Between adjacent sections, circulators are inserted.

This WDF implementation can be regard as an extension of WDF configuration 1

(Figure 3.9) in section 3.2.2. For each section at certain time step, the circulator

isolate the incident wave from adjacent sections, and this make it possible for each
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section to be calculated independently. Other configurations as shown in last sec-

tion can be used for simulating this nonlinear transmission line, but they do not

lend to a parallel implementation or as efficiently as this configuration.

Figure 3.16: WDF implementation of Nonlinear transmission line
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WDF simulation of transmission line implementation in a parallel algorithm

shown in Algorithm 3.1.

Algorithm 3.1 Parallel computing
set tor

set t ∈ (0, tend)

repeat

calculate each section separately

Initialize guess for Jacobi-like

repeat

a0(n) = γa0(n− 1) + (1− γ)[S22a0(n− 1) + S21a(t)]

error = |a0(n)− a0(n− 1)|

exchange adjacent section value

calculate each section separately

until error < tor

until t = tend

Simulation Results

WDF simulation is implemented in a C program and the simulation results are

compared with Carrot, a circuit simulator [25]. The C program is a series code

program running on single processor, but the code and subroutines are designed in

a pattern for parallel computing: calculation on different transmission line sections

are individual, data exchange only happens when each section has completed its

calculation.

The simulated transmission line has 99 nonlinear capacitors, voltage impulse

from both sides pass through transmission line and show solitons traveling and

colliding on this transmission line. Table 3.2 shows the simulation compare between

Carrot and WDF method.
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Simulation Time and Comparison of

Carrot and WDF

Methods Carrot WDF γ = 0.5

Time Step (seconds) 1× 10−10 1× 10−10

Time Interval 2.5µs 2.5µs

Simulation Time (second) 30.30 47.94

Jacobi Iteration Steps
Min — 4

Max — 6

Table 3.2: Simulation time comparison of two method

Figure 3.17 shows comparison of voltage on first capacitor between the two

simulations. Figure 3.18 shows the voltage of twentieth nonlinear capacitor. The

two simulators get same voltage waveform. On this figure the soliton that travels

through the transmission line can be observed. Comparing the voltage on different

nonlinear capacitors, WDF simulation match the result of Carrot.
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Figure 3.17: Voltage on first capacitor
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Figure 3.18: Voltage on 20th capacitor

To observe the soliton traveling and colliding on the transmission line, Figure

3.19 shows the voltage of 99 capacitors on one plot. To distinguish each voltage

waveform, each capacitor’s voltage is added additional voltage

vn = v + n× 5, n ∈ (0, 1, . . . 98)

From Figure 3.19, two rectangular impulses of ideal voltage sources have been

separated into solitons of different amplitude, and travel with different velocities,

finally solitons collide in the middle of transmission line.
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Figure 3.19: Collision of solitons
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Effect of γ on the convergence rate

The Jacobi method convergence rate is affected by parameter γ. Choosing an

appropriate value for γ would increase simulation speed dramatically. The number

of Jacobi iteration step with different γ values is shown in Table 3.3. From this

table γ = 0.5 is the best choice for simulation for this circuit. Figure 3.20 shows

change of different γ value in simulation time interval.

value of γ Iteration steps

0.1 80

0.2 35

0.3 20

0.4 12

0.5 5

0.6 11

0.7 18

0.8 29

0.9 60

Table 3.3: Jacobi iteration steps comparison for γ
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Figure 3.20: Jacobi iteration steps for different values of γ

3.4 WDF Simulation Based on Combined Adap-

tor

A parallel WDF implementation of the nonlinear transmission line, divides the

transmission line into independent sections which contain one series and one parallel

adaptor. For each section, the simulation program has to calculate two adaptors in

turn, which means two matrix operations has to be implemented. Combining two

different adaptors into one adaptor to reduce matrix operations can be attempted

to improve efficiency of the simulation program.

3.4.1 Combined Adaptor and WDF Implementation

The divided section is shown in Figure 3.21.
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Figure 3.21: Divided section for parallel computing

From the loop set and the cut set, KCL and KVL equation can be found:

v3 − v2 = 0

v4 − v1 − v2 = 0

i1 + i4 = 0

i2 + i3 + i4 = 0

Constructing the scattering matrix by Equation 2.19, MV , MI and G are as

follows:

MV =





0 −1 1 0

−1 −1 0 1





MI =





1 0 0 1

0 1 1 1





G = diag

(

1

Rl

,
1

Rc

,
1

R
,
1

R

)

Let the port connected with the nonlinear capacitor to be reflection-free port,

port resistance Rc = ((Rl + R) ∗ R)/(Rl + 2R). The WDF implementation of the

adaptor shown in Figure 3.22. The transmission line WDF implementation shown

in (Figure 3.23 )
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Figure 3.22: WDF implementation of adaptor

Figure 3.23: WDF implementation of rransmission line
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3.4.2 Simulation Results of Combined Adaptor

The WDF implementation using the combined adaptor was implemented in a C

program and simulation results compared with Carrot. The transmission line for

simulation has 99 nonlinear capacitors. Using same error tolerance criterion as

Section 3.3, the combined adaptor achieves the same results as expected. The C

program is implemented in same pattern as last section: series code with parallel

computing pattern. When γ = 0.5 the maximum number of iteration steps is 45.

Simulation time are compared in Table 3.4. WDF and WDF with Combined

Adaptor both use γ = 0.5. Although Jacobi iteration step of using combined

adaptor is more than WDF, but simulation time is not increased much. The main

reason is that combined adaptor method simplified scattering matrix, therefore

computing time of matrix calculation is reduced.

Simulation Time and Comparison of

Carrot, WDF and WDF with Combined Adaptor

Methods Carrot WDF Combined Adaptor

Time Step (Seconds) 1× 10−10 1× 10−10 1× 10−10

Time Interval 2.5µs 2.5µs 2.5µs

Simulation Time (seconds) 30.30 47.94 79.37

Jacobi Iteration Steps
Min — 4 37

Max — 6 45

Table 3.4: Simulation time comparison of three method

Figure 3.24 shows collision and traveling of solitons. Each capacitor voltage is

treated same as in section 3.3.2. As we expected, using combined adaptor we get

same result as using basic WDF adaptor.

Figure 3.25 and Figure 3.26 show voltage waveforms on different capacitors.

Figure 3.25 shows voltage waveform of first capacitor in transmission line, results are

matched. Figure 3.26 shows voltage wave form of fiftieth capacitor in transmission
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Figure 3.24: Collision of solitons with combined adaptor

line. In this result the split solitons can be observed clearly.
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Figure 3.25: Voltage on first capacitor
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Chapter 4

Waveform Relaxation Simulation

4.1 Introduction

With addition of MPI, the Jacobi-like parallel algorithm for the nonlinear trans-

mission line can be implemented on a parallel computing environment, such as a

computer cluster or a multi-core processor computer. Performance of a parallel

computing program is not only dependent on well-organized program code, but

also on an efficient parallel algorithm.

Comparing with a series program, the execution time of a parallel program is

composed of several parts shown as follows [23, 24]:

• Computing time: the CPU time spent on executing processor instructions,

include running time of program instructions code (user time) and neces-

sary system kernel code running time (system time). Usually system time is

negligible.

• Communication time: CPU time spent on communication between processors

• Synchronization time: time spent on synchronizing different processors.

• Processor idle time: a processor waits for other processor’s message during

blocking communication.
66
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Define a series application program execution time as Ts, and the execution time

of its parallel counterpart as Tp. Therefore the acceleration rate can be defined by

Sp =
Ts
Tp

If there are P processes running on P processors, the efficiency of a parallel program

is defined by

Ep =
Sp
P

Parallel execution time can be expressed as below:

Tp = Ci +Di , i = 1, 2, . . . P

where Ci is the execution time for i processor, Di is the idle time of i processor, P

is the total processors number of parallel program. Ci is composed by

Ci = Li +Oi , i = 1, 2, . . . P

where Li is the computing time of i processor, andOi is the communication time and

synchronization time of i processor. Defined CT =
∑P

i=1(Li +Oi), DT =
∑P

i=1Di,

then CT +DT = P × Tp. Thus efficiency is presented as follows:

Ep =
Sp
P

=
Ts
CT
×

CT
CT +DT

When the parallel program is well load balanced, which means computing load is

well-distributed on each processor, the DT is small comparing with CT . To improve

parallel efficiency, parallel program has to reduce communication overhead.

Oi is composed by two parts, first part is the overhead of MPI communica-

tion function; second part is the data transfer time which can be approximated as

1/bandwith. So if communication frequency can be reduced, the efficiency Ep will

increase.

A simple parallel pseudo code for the Jacobi-like algorithm is shown below:

From the algorithm, we can find that data has to exchange in every Jacobi-

like iteration. Thus waveform relaxation can help to reduce the data exchange
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Algorithm 4.1 Pseudo code for Jacobi-like algorithm
t← 0

Begin of parallel computing

initialize each processor

For each processor execute codes below

repeat

t = t+ Tstep

Calculate section wave variables

n← 0

repeat

n = n+ 1

a0(n) = γa0(n− 1) + (1− γ)[S22a0(n− 1) + S21a(t)]

Send data to adjacent section

Receive data from adjacent section

Calculate section wave variables

until |a0(n)− a0(n− 1)| ≤ ε

Wait for other sections converge

until t = tend

End of parallel computing

frequency of Jacobi-like iteration. Applying waveform relaxation on the Jacobi

iteration, each Jacobi iterative step calculates a time interval, which significantly

increases the proportion of Li in Ci. Thus waveform relaxation can be applied on

the parallel algorithm to improve Ep of the parallel program.

4.2 Implementation of Waveform Relaxation

WDF implementation of waveform relaxation has same WDF structure as Jacobi-

like iteration, which is shown in Figure 3.16. The algorithm used in this simulation
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is similar to Jacobi iteration, but for each Jacobi iteration, wave variables vector

of a time interval will be computed (instead of wave variables for one time step).

Equation (2.23) can be written as follows:

a0(n)wr+1 = γa0(n− 1)wr + (1− γ)[[S22]a0(n− 1)wr + [S21]awr]

Where, wr denotes the iteration steps of waveform relaxation, and a0 denotes

a vector containing wave variables of a time interval. The Algorithm for waveform

relaxation is shown in Algorithm (4.2).

Algorithm 4.2 WR on Jacobi iteration
n← 0

guess waveform a0(t), t ∈ [0, Tw]

repeat

n = n+ 1

for each t in [0, Tw] do

an0 (t) = γan−1
0 (t) + (1− γ)[S22a

n−1
0 (t) + S21a(t)]

end for

exchange results with adjacent sections

until |an0 − a
n−1
0 (t)| ≤ ε

For a time interval containing many time steps, waveform relaxation may cause

Jacobi iteration to converge slowly. A technique can be used to reduce this disad-

vantage, as the time interval of waveform relaxation can be broken into “windows”

[21], [0, T1], [T1, T2], . . . [Tn, Tn+1], so that for each window wave relaxation converge

faster. Waveform relaxation is applied to the first window, [0, T1] and the values of

the wave variables at T1 are then used as the initial conditions for the analysis of the

second window. This procedure is repeated until all windows have been simulated.

This approach will be denoted as “windows” technique.
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4.3 Simulation Results

All simulation were performed on a computer with dual-core processor, the code is

single-thread and was writren with C. The Waveform relaxation results show similar

behavior as other simulations. Solitons travel and collide on the transmission line.

However error compared with the Carrot increase with the time. Tolerance value

of Jacobi-like iteration is chosen as 10−6.

When WR is used to calculate a whole simulation time interval, results converge

slowly. When the maximum number of iteration steps set to 100 times, result does

not converge and is quite different compared with result of Carrot. Figure 4.1 shows

result after 100 iteration steps. Only in the first 1µs time interval WR has a similar

voltage waveform as Carrot.
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Figure 4.1: Voltage on twentieth capacitors

If the maximum number of iterations is increased to 300, WR results are closer

to Carrot. Figure 4.3 shows that the voltage waveform obtained with WR is similar

to the one obtained with Carrot, but after 1µs error between two results is large
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Figure 4.2: Voltage on twentieth capacitors

(Figure 4.4). Solitons of the WR result can not reach the same amplitude of result

of Carrot. The detail also shows that the WR simulation result has a minor phase

shift.

When the maximum number of iterations is increased to 600, solitons of WR

result reach the same amplitude of Carrot’s result. When this number is further in-

creased to 1000, the result is almost same with 600’s. But even with 1000 iterations,

Figure 4.5 and Figure 4.6 show some discrepancy with Carrot.
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Figure 4.3: Voltage on twentieth capacitors
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Figure 4.4: Voltage error on twentieth capacitors
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Figure 4.5: Voltage on twentieth capacitors
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Figure 4.6: Voltage error on twentieth capacitors
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When “windows” technique is used, the efficiency of simulation is improved, but

improvement of accuracy is minor. Voltage on different capacitors are compared

with results of Carrot. In Figures 4.7, 4.8, 4.9, detailed analyses of the voltage

on first capacitor are shown. In a time interval of 2.5µs, three results of different

methods compared with each other: Carrot, waveform relaxation and waveform

relaxation with a twenty-time-steps window. From the zoom of results of different

time intervals, we can observe that at the interval between 0 to 1.3µs all three

results match perfectly. After 1.3µs both waveform relaxations have approximately

similar phase shift when compared to Carrot. The cause of this phase shift is not

known at this time.
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Figure 4.7: Voltage on first capacitor
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Figure 4.8: Zoom of 0 to 1µs
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Simulation by waveform relaxation with windows is faster than waveform re-

laxation. In the results in above figures, using a maximum number of iterations of

1000 for waveform relaxation, with a tolerance 10−6, not every time step can satisfy

the converge condition. While for a small time interval of twenty time steps, the

maximum iterations number is 85. Simulation times for the different methods is

shown in Table 4.1.

Last column of the Table 4.1 is the program computing time for each iteration

before program exchanges data. We can find that the WDF without WR has to

exchange data only after 0.39µs, but WR and WR with window technique use

much more computing time before exchanging data. From Section 4.1 of this chap-

ter, we know that reduced communication overhead can improve parallel program

efficiency. Using WR with 20 samples window as an example, and assuming the

parallel program only calculate for 20 time steps, the approximate improvement of

efficiency is:

Epwr =
Ts

9.747 +OT +DT

Approximated acceleration rate for WDF without WR is:

Epwdf =
Ts

20× (0.39 +OT +DT )
⇒

Epwdf =
Ts

7.8 + 20× (OT +DT )

We can find that CT of WR is only 1.9µs slower than CT of Jacobi-like iteration, but

communication just happens once. Jacobi-like iteration has to call MPI communi-

cation function 19 times more than WR. Although this performance comparison is

based on an approximate assumption, it shows the potential advantage of WR on

parallel computing.
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Simulation Time and Comparison of

Jacobi-like iteration and WR combined with Jacobi-like iteration

Methods
Time Interval Simulation Samples Maximum Computing Time for 1 section

Time (s) per Window Iterations between data exchange (µs)

WR (100 iterations) 2.5µs 77.32 25000 100 4149.29

WR (300 iterations) 2.5µs 467.87 25000 300 4149.29

WR (600 iterations) 2.5µs 1132.56 25000 600 4149.29

WR (1000 iterations) 2.5µs 2050.08 25000 1000 4149.29

WR window 2.5µs 165.72 20 85 9.747

WR window 2.5µs 332.63 50 156 19.929

Jacobi-like iteration 2.5µs 47.94 1 6 0.39

Table 4.1: Simulation time comparison of Jacobi-like iteration and WR combined with Jacobi-like iteration
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Conclusions and Future Work

5.1 Summary of Research Works

WDF-based transient simulations of a nonlinear transmission line have been studied

in this thesis. Several simulation methods were applied to this circuit. A Jacobi

iteration suited for parallel computing has been studied and verified. For the first

time waveform relaxation method is applied combined with WDF simulation. The

main conclusions are as follows:

• The method presented in [13] has been verified.

• The optimum γ parameter is unpredictable and this limits the application of

this method.

• If circuit topology is not changed, different WDF adaptor implementations

for interconnection do not affect simulation results, but have an important

effect on convergence rate.

• Newton method is suited for nonlinear WDF element simulation.

• Waveform relaxation can be used along withe WDF implementation.

• Using “window” technique for WR improves WR simulation efficiency.
78
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• WR use more CPU time than time-marching Jacobi-like method before data

exchange. This increases acceleration rate of a parallel program. A large

acceleration rate means that a more efficient parallel program can be imple-

mented.

5.2 Future Work

WR has been studied in this thesis. It can improve parallel computing program

efficiency, but the simulation results show that accuracy is need to be improved. A

thorough study on waveform relaxation is left for future work.

In Chapter Four, a window technique is applied on WR, but every window is

independent from other windows. An improved window technique for WR can be

studied in future work. (Figure 5.1) shows the basic concept of this method, where

windows overlap on previous window; thus the next windows will get initial guess

value when first time step converge in previous window. With this method, WR

should obtain a more accurate initial guess value to improve the overall simulation

accuracy.

Figure 5.1: Improved window technique
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Appendix A

Numerical Algorithm

Jacobi iterative Method

The Jacobi iterative method is an algorithm for solving a system of linear equations

in the form of Ax = b, where

A =

















A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

. . .
...

An1 An2 . . . Ann

















, x =

















x1

x2
...

xn

















, b =

















b1

b2
...

bn

















Split matrix A into its diagonal and off-diagonal part, where D denotes diagonal

matrix whose diagonal is same as S , L and U are lower and upper triangular parts

of A. Equation is shown as follow:

A =

















A11 0 . . . 0

0 A22
. . .

...
...

. . .
. . . 0

0 . . . 0 Ann

















−

















0 . . . . . . 0

−A21
. . .

...
...

. . .
. . .

...

−An1 . . . −An,n−1 0

















−

















0 −A12 . . . −A1n

...
. . .

. . .
...

...
. . . −An−1,n

0 . . . . . . 0

















A = D − L− U
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Ax = b is transferred to form of x = D−1(L + U)x + D−1b. Jacobi iterative

method solve the ith equation in Ax = b for xi is

xi =
n

∑

j=1,j 6=i

(−
aijxj
aii

) +
bi
aii
, for i = 1, 2, 3 . . . n

For xk, it is generated of xk−1, where k ≥ 1 by equation shown as follows

xk = D−1(L+ U)xk−1 +D−1b

or for each xki

xki =

∑n
j=1,j 6=i(−aijx

k−1
j ) + bi

aii
for i = 1, 2, 3 . . . n

Jacobi iterative algorithm is shown as follow:

Algorithm A.1 Jacobi iterative algorithm

initial guess value X0

tolerance tor

max number of iteration K

k ← 1

x0 ← X0

repeat

for i = 1 to n do

xki =

∑n
j=1,j 6=i(−aijx

k−1
j ) + bi

aii
end for

if ||xk − xk−1|| < tor then

STOP

end if

k = k + 1

until k > K
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Gauss-Seidel method

A set of linear equation in form Ax = b, for solving the ith equation for xi

xki =
−
∑i−1

j=1(aijx
k
j )−

∑n
j=i+1(aijx

k−1
j ) + bi

aii
for i = 1, 2, 3 . . . n

This is called Gauss-Seidel method, the matrix form of it is shown as follows:

(D − L)xk = Uxk−1 + b

or,xk = (D − L)−1Uxk−1 + (D − L)−1b, where where D denotes diagonal matrix

whose diagonal is same as S , L and U are lower and upper triangular parts of A.

Algorithm is shown as follow:

Algorithm A.2 Gauss-Seidel algorithm

initial guess value X0

tolerance tor

max number of iteration K

k ← 1

x0 ← X0

repeat

for i = 1 to n do

xki =
−
∑i−1

j=1(aijx
k
j )−

∑n
j=i+1(aijx

k−1
j ) + bi

aii
end for

if ||xk − xk−1|| < tor then

STOP

end if

k = k + 1

until k > K
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