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ABSTRACT 
 
Wick, Ian E. 2020. Connection between global conservation status, geographical range 

size, midpoint latitude, female carapace length, and clutch size of Testudines. 
 
Keywords:  Carapace, clutch, conservation, distribution, family, habitat loss, IUCN, 
latitude, range, road mortality, status, Testudines, turtle 
 
 The need for species conservation is only magnified with each passing day.  
Testudines are one of the taxonomic orders most at risk of extinction on Earth.  Over 
70% of Testudines are globally listed on the IUCN Red List and over 60% of those are 
at risk of extinction.  Testudines face many threats including habitat loss and 
degradation.  At time of data collection there were 258 turtles globally listed on the 
IUCN Red List.  Following justified additions there were recognized to be 266 turtle 
species globally listed on the IUCN Red List for the purpose of this study.  I collected 
data for 357 turtle species and examined the association of conservation status with 
geographic range size, midpoint latitude, female carapace length, and clutch size to 
determine if any of these attributes would be useful for determining extinction risk.  
IUCN status rank for species was most highly correlated with mean female carapace 
length.  IUCN status rank for species was most highly correlated with mean female 
carapace length.  The positive association of risk with increasing body size supports 
concerns about the impact of harvesting or poaching of turtles and tortoises by humans.  
Testudines are clearly in need of conservation efforts. 
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INTRODUCTION 
  

 With each passing day, the importance of conservation worldwide becomes 

increasingly salient.  As human population growth continues, pollution and resource 

consumption increase while the resources and habitat available for other species 

decreases.  The resulting impact on various organisms may differ in connection with 

their biological attributes.  It is estimated the cost of conserving biodiversity globally 

could be over 75 billion USD annually (McCarthy 2013).  According to Rhodin et al. 

(2018), Testudines (turtles and tortoises) are one of the orders of vertebrates most at risk 

of extinction similar to that of Caudata (salamanders) and Primates.  Currently 62.8% of 

Testudine species on the IUCN Red List are at risk of extinction, while 50.8% of 

Caudata and 59.8% of Primates listed are at risk of extinction (IUCN 2019a; IUCN 

2019b; IUCN 2019c).  Without conservation efforts, Testudine diversity could suffer 

significantly within the next century (Buhlmann et al. 2009).  Behler (2000) stated, 

“there is no vertebrate group facing greater survival problems today”.   

Testudines face numerous threats that vary in severity.  The most serious threat 

to Testudines is habitat loss and fragmentation (Lesbarréres et al. 2014).  Another major 

threat is poaching for both meat and medicines, and the exotic pet trade (Rhodin et al. 

2018).  The shell and bones are used for some traditional Chinese medicines and as 

Rhodin et al. (2018) notes “Asia is at the epicentre of the global turtle extinction crisis”.  

Road mortality is another major threat to some species of Testudines (Ashley et al. 

2007).  However, road mortality is not always accidental, as Ashley et al. (2007) found 

that 2.7 out of every 100 drivers will intentionally hit a turtle that is on the road.  Other 

threats include climate change, pollution, infectious diseases, invasive species, and nest 

predation (Rhodin et al. 2018).  Plastic pollutants found in the oceans are a major threat 



 2 

to Sea Turtles as they can ingest them or become entangled (Assuncao Ivar do Sul et al. 

2010).  A turtle found floating near Melbourne Beach in Florida defecated 74 foreign 

objects, requiring over a month to do so, following the removal of a gastrointestinal tract 

obstruction (Stamper et al. 2009).  These threats are all very real and require human 

attention, as they are something the evolution of the nomadic turtle home more often 

referred to as the shell cannot protect them against. As Rhodin et al. (2011) stated 

“turtles are in serious trouble”.   

The unfortunate plight facing Testudines may be further expedited via taxonomic 

bias.  Although in terms of species richness herpetofauna comprise over 40% of 

terrestrial vertebrates, Christoffel and Lepczyk (2012) found they were given less than 

6% of the space in six wildlife journals over the last 30 years.  Library holdings of post-

secondary educational institutions and reintroduction projects have also displayed 

taxonomic bias (Seddon et al. 2005; Hecnar 2009).     

Testudines play important roles in the functioning of the ecosystems they inhabit 

(Stanford et al. 2018).  They can act as cleaners by scavenging and eating carrion 

(Langley 2018).  They can also act as important agents of seed dispersal or create homes 

for other organisms (Braun and Brooks 1987; Langley 2018).  Sometimes seeds can be 

reliant on turtles for germination (Rhodin et al. 2018).  The Gopher Tortoise (Gopherus 

polyphemus) is considered a keystone species, as the burrows they create are shared with 

over 350 other species (Florida Fish and Wildlife 2019).  

 Over 250 of 360 extant species of Testudines are listed on IUCN’s Red List 

(Rhodin et al. 2018).  The International Union for Conservation of Nature (IUCN) was 

established in 1964 and provides critical information regarding status of the world’s 

biodiversity (IUCN 2019d).  The Species Survival Commission (SSC) is responsible for 
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completing Red List assessments (Campbell 2012).  According to IUCN (2019d) 28,000 

of the 105,700 species from all taxa listed on the Red List are threatened with extinction.  

In order to be considered threatened a species must be listed as “Vulnerable”, 

“Endangered”, or “Critically Endangered” (IUCN 2019e).  Of the 258 currently listed 

Testudine species on the global IUCN Red List, 162 are at risk of extinction, 76 are 

described as decreasing, and only seven have a population trend described as increasing 

(Figure 1) (IUCN 2019f). 

 

 
Figure 1. Population trend of the 258 Testudine species listed on the IUCN Red List 
               (Adapted from IUCN 2019f). 
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LITERATURE REVIEW 

The Order Testudines encompasses all the turtles and tortoises on Earth (Rhodin 

et al. 2018).  Testudines can be found on land and in water, both fresh and salt, in every 

continent in the world excluding Antarctica (Zug 2019).  All existing Testudines are 

considered in the suborders Pleurodira or Cryptodira, which are side-neck turtles and 

hidden neck turtles respectively (Pough et al. 2018).  Some Cryptodires however lack 

the ability to fully retract their head into the shell, as seen in some members of the 

Chelydridae, Cheloniidae, and Dermochelyidae families (Pough et al. 2018; Boyer and 

Innis 2019).  Pleurodires often have very long necks and are unable to retract their neck 

or head into their shell altogether, instead folding them sideways (Pough et al. 2018; 

Boyer and Innis 2019).  There are only three families of Pleurodires as they are not as 

common as Cryptodires (Pough et al. 2018).    

Understanding the connection between current conservation status and biological 

attributes may aid in understanding how Testudines become threatened as well as how 

conservation efforts can be better directed.  Literature on conservation status and 

biological attributes of Testudines individually is abundant, however the connection 

between them is not often examined.  Interestingly, of all extant reptiles, Testudines 

offer the most complete fossil record, however they are also possibly the most 

threatened vertebrate on earth (Lovich 2018; Pough 2018).  Orentstein (2012) introduced 

readers to one of the earliest accounts of the devastation of turtles at the hands of 

humans, as the story of William Dampier and the Galapagos Islands is briefly reviewed.  

William Dampier is described as an “explorer and some-time pirate” and was the first to 

describe the tortoises of the Galapagos Islands, noting their abundance and size while 

also discussing the tortoises of Madagascar, the West Indies, and the Mascarenes 
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(Orenstein 2012).  As Orenstein (2012) noted, unfortunately Dampier was not 

acknowledging them with admiration, respect, preservation or conservation in mind, 

instead merely thinking of the sustenance they could provide.    

CONSERVATION 

As of 2018, 14.9% of Earth’s terrestrial area was protected (UNEP-WCMC et al. 

2018).  Testudines are in need of conservation as over 50% are threatened with 

extinction (Lovich 2018).  They often have, or ideally have, what could be described as 

odd age structures within populations, and this is an important consideration in turtle 

conservation (Klemens 2000).  As Klemens (2000) noted, the ideal proportion of eggs 

and juveniles in comparison to adults can vary greatly depending on species, however 

this proportion should greatly favour the eggs and juveniles.  Rhodin et al. (2018) 

examined the IUCN conservation status for every extant Testudine species, while also 

including any recently extinct members, and noted, that ongoing evaluation of turtle 

species status and the efforts of the IUCN are essential components of future 

conservation efforts.  There could be a significant reduction in turtle diversity in the near 

future (Buhlmann et al. 2009).  Potential priority areas for turtle conservation and the 

need for conservation planning are outlined by Buhlmann et al. (2009) while examining 

tortoises and freshwater turtles.  Iverson (1991) noted the importance of understanding 

that turtles followed a Type III survivorship curve and its importance in conservation.  

Rodrigues et al. (2006) discussed the importance and value of the IUCN Red List to 

conservation.  In addition to designations provided by the IUCN there is useful data that 

can aid in conservation planning (Rodrigues et al. 2006).  The IUCN is not without its 

critics though, as noted by Mrosovsky (1997), as he explored the importance of sound 
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and open science.  Campbell (2011) explored the political side of the IUCN while 

examining the Hawksbill Sea Turtle (Eretmochelys imbricata).   

ATTRIBUTES 

Turtles date back over 200 million years, with the oldest known fossil being that 

of a carapace-lacking turtle known as Odontochelys semitestacea (Orenstein 2012).  

Absence of a carapace (dorsal shell) indicates it evolved after the plastron (ventral shell) 

(Pough et al. 2018).  Turtles vary in size, as Orenstein (2012) noted, the largest turtle of 

all time was the Cretaceous sea turtle Archelon ischyros, weighing up to approximately 

2040 kg and measuring up to approximately 4.5 m from snout to tail. Today, the largest 

turtle in the world is the last remaining member of the Family Dermochelyidae, the 

Leatherback Sea Turtle (Dermochelys coriacea), with a carapace length of up to two 

metres (Government of Canada 2019).  Likely the smallest Testudine is the endangered 

Speckled Dwarf Tortoise (Chersobius signatus), which is endemic to South Africa and 

has a maximum carapace length of 110 mm (Orenstein 2012; Hofmeyr et al. 2018).   

Turtles are well known for having a shell, although the origin of this conspicuous 

adaptation is somewhat controversial (Scoch et al. 2019).  The shell is comprised of the 

carapace and plastron, which are the top and bottom of the shell respectively.  The 

carapace and plastron are connected on each side by what is called the bridge and inside 

the shell the vertebrae are fused to the carapace (Pough et al. 2018).  Most Testudines 

have a bony shell, but there are three families that possess a shell covered by leathery 

skin (Pough et al. 2018).  Testudines rely on their shells as a means of protection from 

predators (Balani et al. 2011).  Although there were once turtles that had teeth, such as 

Odontochelys semitestacea, all extant turtles lack teeth, instead having a keratinous beak 

(Orenstein 2012; Pough et al. 2018).     
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Turtles are oviparous (lay eggs), and clutch size refers to the number of eggs laid 

at one time (Shine 1983).  Clutch size is associated with maternal body size and this 

notion of positive correlation is supported by a substantial amount of evidence (Ford and 

Seigel 1989; Ashton et al. 2007).  Shine and Iverson (1995) explored the connection 

between maximum body size and age of sexual maturation, finding that much like other 

reptiles, the majority of turtles reach sexual maturity at approximately 70% of their 

maximum body size.  Sexual dimorphism, reproductive strategies, and the size of male 

and female turtles were explored by Berry and Shine (1980), finding that terrestrial and 

aquatic species often have differing comparable sizes between sexes.  Berry and Shine 

(1980) found that males tend to be larger in terrestrial species and females are likely to 

be larger in aquatic species.  Body size of Testudines is significant, not simply age, as 

size often determines age of maturity (Iverson 1992a).  This is evident in Snapping 

Turtles (Chelydra serpentina) in Ontario, where they hibernate for multiple months 

annually and do not reach maturity for 15-20 years, however in Florida, where 

hibernation is not required, they can reach maturity in as little as four to eight years 

(Government of Canada 2016; Government of Ontario 2019).  Therefore, clutch size is 

also associated with geographical location.  A study by Ashton et al. (2007), found that 

mean clutch size in Gopher Tortoises (Gopherus polyphemus) decreased with increasing 

latitude.  This study also found that clutch size increased with increasing productivity, 

was positively correlated with temperature, and negatively correlated with seasonality.  

Ashton et al. (2007) also noted that a decrease in clutch size in the largest individuals 

can be attributed to the senescence hypothesis.  Collins and Crump (2009) suggested that 

low clutch sizes can be associated with population declines in amphibians. 
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Rhodin et al. (2017) provided detailed distribution maps for almost every extant 

member of the Testudines Order.  Life histories of Testudines make populations more 

susceptible to threats (Gibbs and Shriver 2002).  Siliceo and Diaz (2010) explored the 

connection between conservation status and clutch and range sizes of lacertid lizards, 

showing there was a connection between range size and conservation status, as well as 

clutch size and conservation status.  Hero et al. (2005) explored a similar topic relating 

to the decline of amphibians in eastern Australia, finding that conservation status was 

correlated with both clutch size and geographic range and could aid in predicting a 

species vulnerability to extinction. According to Rapoport’s rule range size increases 

with increasing latitude (Stevens 1989).  Hecnar (1999a) provided evidence that 

Rapoport’s rule is a local effect rather than a general rule.  According to Harris and 

Pimm (2008) “small geographical range size is the best predictor of threat of extinction 

in terrestrial species”.    

OBJECTIVE   

My objective was to determine if the global conservation status of Testudine 

species was associated with body size, clutch size, geographical range size, and latitude.  

To do so I compared IUCN conservation status of turtle species with biological attribute 

data of interest collected from numerous sources.   

NULL HYPOTHESIS   

Conservation status of Testudines is not correlated with the attribute of interest.  
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MATERIALS AND METHODS 
 

  I gathered information regarding the global conservation status and biological 

attributes of Testudines from a wide variety of sources including peer-reviewed journal 

articles, books, and online resources.  I used the IUCN Red List to collect all available 

information regarding global conservation status and population trends for each listed 

Testudine.  Rhodin et al. (2017) was used to complete the list of Testudines to be 

examined in my study.  Information regarding Testudines both listed and not listed on 

the IUCN Red List was collected via the aforementioned resources.  A table featuring 

data for all 357 turtle species within this study can be found in the Appendix.     

I calculated midpoint latitude for all 357 turtle species within this study using 

maps contained within Rhodin et al. (2017).  Midpoint was determined as the 

intersection of lines connecting the most northern and southern extent with the most 

eastern and western extent.  I then used a conspicuous geographical feature, border, or 

recognizable point to determine the precise midpoint latitude on Google (2019).    

I calculated geographical range size using maps contained within Rhodin et al. 

(2017), Iverson (1992b), with unpublished data used for maps in Hecnar (1999b).  I 

calculated the area (km!) of each species range using a dot grid applied to the range map 

(Iverson 1992b, Hecnar 1999b, or Rhodin et al. 2017) and determined the scale from 

geographic features and Google (2019).   

I collected mean female carapace length and clutch size data from multiple peer-

reviewed journal articles, books, and online resources.  If mean clutch size or female 

carapace length could not be located, but a range could be, I used the midpoint of the 

range as the mean.  For example, an estimated mean clutch size of 15.5 corresponds to 

the range of 6-25 for Cyclanorbis senegalensis (IUCN 2020).  A clutch size for 
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Cyclanorbis elegans could not be found, so I used a published count of 27 oviductal 

eggs (Demaya et al. 2019).  In the case of Actinemys pallida the clutch size and mean 

female carapace length was found using distribution maps in correlation with two 

journal articles.  It is believed a journal article regarding Clemmys marmorata which 

offered clutch size and mean female carapace length was in fact A. pallida.  A later 

journal article referenced this paper and discussed the turtle by the name A. pallida, 

therefore the information provided for C. marmorata was used for A. pallida (Lovich 

and Meyer 2002; Rhodin et al. 2017; Cummings et al. 2018).  The clutch size and mean 

female carapace length within Iverson et al. (1993) for Chelodina oblonga was not used.  

Kennett et al. (2014) describes this as “a fairly large freshwater turtle”.  The data 

contained within Iverson et al. (1993) for C. oblonga comes from Clay (1981).  The map 

used in Clay (1981) does not match the updated geographical range of C. oblonga 

provided in Rhodin et al. (2017).  Being that Chelodina siebenrocki is a synonym for C. 

oblonga, the data provided for C. siebenrocki was used for C. oblonga.  In Iverson et al. 

(1993) Chelodina novaeguineae has a clutch size listed as 10 based on Kennett et al. 

(1992).  Based on distribution maps from Rhodin et al. (2017), as well as the distribution 

map provided in Kennett et al. (1992) and a journal article by McCord and Thomson 

(2002) it is believed this was in fact the Chelodina canni.  Therefore, the provided mean 

female carapace length and clutch was used for C. canni.  The carapace lengths obtained 

from Powell et al. (2016) were not all stated as female.  However, it is presumed the 

book showed differing lengths for males and females when there was a notable 

difference.   

According to Rhodin et al. (2017) Actinemys pallida is listed under Actinemys 

marmorata, Amyda ornata is listed under Amyda cartilaginea, Chrysemys dorsalis is 
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listed under Chrysemys picta, Cuora cyclornata is listed under Cuora trifasciata, 

Graptemys sabinensis is listed under Graptemys ouachitensis, Kinosternon 

steindachneri is listed under Kinosternon subrubrum, and Pseudemys floridana is listed 

under Pseudemys concinna.  Therefore, these turtles were given the same global IUCN 

status and population trends for which they were listed.  According to IUCN (2020a) 

Chelodina colliei is listed under Chelodina oblonga, therefore it was given the same 

global IUCN status and population trend as well.  For the purpose of this study, this 

brings the total turtle species globally listed on the IUCN Red List from 258 to 266. 

I constructed a database and did some initial analyses using Microsoft Excel.  I 

initially tested data for normality and calculated basic descriptive statistics using 

Microsoft Excel and SYSTAT 13.  To determine the relationship between global IUCN 

status and biological variables I calculated Pearson correlation coefficients using JASP 

and SYSTAT 13.  I then conducted a Spearman’s non-parametric test when 

transformation did not normalize data for comparison.  T-tests were run using Microsoft 

Excel and SYSTAT 13.  To explain the association between IUCN status and biological 

attribute variables I constructed complete and stepwise (forward and backward) 

multivariate regression models.  For descriptive models and comparison, I also used 

Akaike Information Criterion (AIC) analyses.  Regressions and AIC models were 

analysed using SYSTAT 13.   

Pearson correlation tests were run for six differing sets of data (Table 2 and 3).  

The first included all turtle species with the global IUCN status given an ascending rank 

from one through eight (not listed = 1, not defined or data deficient = 2, least concern = 

3, near threatened = 4, vulnerable = 5, endangered = 6, critically endangered = 7, and 

extinct in the wild or extinct = 8).  The second test included the same data and was run 
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using the same ranking system however the seven extant sea turtles were removed.  For 

the third run, “Not Listed”, “Not Defined”, and “Data Deficient” were removed as only 

species with a defined conservation status and the remaining turtle species were given an 

ascending rank (least concern = 1, near threatened = 2, vulnerable = 3, endangered = 4, 

critically endangered = 5, and extinct in the wild or extinct = 6).  The fourth test 

included the same data and ranking system as the third however the sea turtles were 

removed.  For test five “Not Listed”, “Not Defined”, “Data Deficient”, “Extinct in the 

Wild”, and “Extinct” were removed, with the remaining species given an ascending rank 

based on conservation status (least concern = 1, near threatened = 2, vulnerable = 3, 

endangered = 4, and critically endangered = 5).  The sixth test had the same parameters 

as the fifth, however sea turtles were removed. 

Two-sample t-tests assuming unequal variances were run for four differing sets 

of data (Table 4).  The confidence interval used for all t-tests was 95%.  Each of the 30 t-

tests presented within Table 4 compared means of differing attributes for four differing 

sets of data.  The first set of t-tests examined species at risk of extinction.  For this set 

“Not Listed”, “Extinct in the wild”, and “Extinct” were eliminated from the test, while 

the remaining status’ were listed as either “yes” or “no” (vulnerable, endangered, and 

critically endangered = yes and not defined, data deficient, least concern, and near 

threatened = no).  The second set used every species of turtle and compared the means of 

listed and not listed species for differing attributes (not listed = no and not defined, data 

deficient, least concern, near threatened, vulnerable, endangered, critically endangered, 

extinct in the wild, and extinct = yes).  The third set examined the differences between 

suborders and included their IUCN global status, each given an ascending rank (not 

listed = 1, not defined or data deficient = 2, least concern = 3, near threatened = 4, 
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vulnerable = 5, endangered = 6, critically endangered = 7, and extinct in the wild or 

extinct = 8).  The fourth set of t-tests were the same as the third however excluded sea 

turtles. 

Additional two sample t-tests analyzing suborders (Cryptodires vs. Pleurodires) 

were completed using SYSTAT 13.  An ascending rank for each species status category 

was assigned (least concern = 1, near threatened = 2, vulnerable = 3, endangered = 4, 

critically endangered = 5, and extinct in the wild and extinct = 6).  For a non-parametric 

equivalent, a Mann-Whitney U tests was run comparing the global IUCN status for 

Cryptodira and Pleurodira using the same ascending numbers.  These will help examine 

if there is a significant difference between each suborder. 

The final set of tests was multiple types of regressions using SYSTAT 13.  First 

a complete model was estimated with status rank as the dependent variable and 

geographical range size (km!), midpoint latitude, average clutch size (n), and mean 

female carapace length (mm) were the independent variables.  For each species, negative 

value latitudes (southern hemisphere midpoint) were made positive by first squaring the 

value, followed by square rooting the value so that a global-scale geographic assessment 

was possible.  The first regression run was a linear regression.  This test can help explain 

how much the attribute variables contribute to the dependent variable, which in this case 

was global IUCN status, as well as if this contribution is statistically significant.  This 

test included all turtles listed on the IUCN except “Not Defined” and “Data Deficient” 

and each were assigned an ascending number (1 = least concern, 2 = near threatened, 3 = 

vulnerable, 4 = endangered, 5 = critically endangered, and 6 = extinct in the wild and 

extinct).  The next test run was the backward stepwise regression, which examines each 

variable’s contribution and constructs the best model by eliminating the weakest 
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variable(s) first.  The third test run was the forward stepwise regression, which looks for 

the strongest variable(s) first.  Both of these tests aid in explaining what variables 

contribute to the global IUCN status and whether this contribution is significant.  For 

each of the backward and forward stepwise regression tests the same ascending numbers 

for global IUCN status were used.  Finally, an Akaike Information criterion (AIC) test 

was run.  This test attempts to show the best combination of predictor variables as 

displayed by the lowest score.      
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RESULTS 
 

 Status ranks were available for 266 species (Figure 2).  The category with the 

greatest number of species was “Not Listed” with 91.  Numbers in the global IUCN 

categories ranged from one in the “Not Defined” and “Extinct in the Wild” to 

“Vulnerable” with 69.   

 
Figure 2.  Number of species within each global IUCN Red List category, as well as 
                 number of species not listed.  
 
 Categories with the highest and lowest mean geographical range (km!) are 

“Vulnerable” with 4,350,111 +/- 2,052,324.5 km! (SEM) and “Extinct” with 819 +/- 

362.1 km! (SEM).  Categories with the highest and lowest mean midpoint latitude are 

“Least Concern” with 19.27 (range -32.87 to 43.45º) and “Extinct” with -13.31 (range     

-21.14 to 0.57º).  Categories with the highest and lowest mean clutch size are “Not 
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Defined” with 97.1 and “Near Threatened” with 6.6 +/- 0.89 (SEM).  The “Not Defined” 

category contains one turtle and the category with the second highest mean clutch size is 

“Extinct in the Wild”.  “Extinct in the Wild” also contains one species and the category 

with the third highest mean clutch size is “Vulnerable” with 17.1 +/- 3.16 (SEM).  The 

categories with the highest and lowest mean female carapace length (mm) are “Extinct” 

with 680 mm and “Near Threatened” with 194.7 mm (Figure 3).  

 
Figure 3.  Mean female carapace length (mm) for each category.  Bars indicate standard 
                error of the mean. 
 
 Excluding sea turtles shows their potential effect on data analysis.  The “Data 

Deficient” category drops drastically from 387.33 mm to 119.5 mm.  The “Vulnerable” 

category drops from 327.48 mm to 263.63 mm, dropping below the “Endangered” 

category (Figure 4). 

241.37

660.00

387.33

194.86 194.72

327.48
296.44

371.34
436.00

680.00

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

N
ot
 L
is
te
d

N
ot
 D
ef
in
ed

D
at
a 
D
ef
ic
ie
nt

Le
as
t C
on
ce
rn

N
ea
r T
hr
ea
te
ne
d

V
ul
ne
ra
bl
e

En
da
ng
er
ed

C
rit
ic
al
ly
 E
nd
an
ge
re
d

Ex
tin
ct
 in
 th
e 
W
ild

Ex
tin
ct



 17 

 
Figure 4. Mean female carapace length (mm) for each category excluding sea turtles. 
               Bars indicate standard error of the mean. 
  

There were 231 turtle species with a midpoint latitude in the northern hemisphere 

and 126 in the southern hemisphere.  Forty-five species in the southern hemisphere were 

not listed, while 46 in the northern hemisphere were not listed.  Seven of the eight 

extinct species were from the southern hemisphere.  Sixty-four percent of the southern 

hemisphere species were listed on the IUCN, while 80% of the northern hemisphere 

species were listed.  The mean female carapace length of northern hemisphere species 

was 263 +/- 18.7 mm (SEM) and for southern hemisphere species 296 +/- 26.9 mm 

(SEM).  There was no significant difference in category status (all categories included) 

between hemispheres (t = -1.58, 222 df, P = 0.115). 

 There are 94 species within the suborder Pleurodira and 263 species within the 

Cryptodira suborder.  The mean midpoint latitude of Pleurodira was -10.01 (range          

-32.70 to 16.23°) and for Cryptodira 15.37 (range -33.31 to 45.57°), while the mean 
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dropped to 631,700 +/- 72,812.8 km! (SEM) when sea turtles were removed.  Mean 

clutch sizes of Pleurodira and Cryptodira were 14.22 +/- 1.8 (SEM) and 12.04 +/- 1.4 

(SEM) respectively.  The mean clutch size of Cryptodira dropped to 8.9 +/- 0.74 (SEM) 

when sea turtles were removed.  The mean female carapace lengths are shown in Figure 

5.  

 
   Figure 5.  Mean female carapace length (mm) for suborders.  Cryptodira is shown both 
                   including and excluding sea turtles.  Bars indicate standard error of the mean 
 

Geographical range size varied among families (Table 1). The family with the 

largest mean geographical range size is Dermochelyidae, with one extant member, the 

Leatherback Sea Turtle (Dermochelys coriacea).  The family with the second highest 

mean geographical range is Cheloniidae which contains the remaining sea turtles.  The 

family with the lowest mean geographical range was Staurotypidae.  Families with the 

highest and lowest mean midpoint latitudes are Emydidae and Chelidae respectively.  

The families with the highest and lowest mean clutch sizes are Cheloniidae and 

Platysternidae respectively.  Families with the highest and lowest mean female carapace 

length (mm) are Dermochelyidae and Kinosternidae respectively (Table 1).   
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Table 1. Biological attribute means for each family. 

Family 
Mean Geographical Range 

Size (+/- SEM km!) 

Mean 
Midpoint 

Latitude (°) 

Mean Clutch Size 
(+/- SEM n) 

Mean Female 
Carapace Length 
(+/- SEM mm) 

Carettochelyidae 435329 +/- N/A -11.254 15.0 +/- N/A 457 +/- N/A 

Chelidae 551615 +/- 128712 -15.022 10.4 +/- 0.84 229 +/- 13.3 

Cheloniidae 66482194 +/- 28936490 3.476 104.6 +/- 12.28 794 +/- 49.1 

Chelydridae 1197756 +/- 894642  25.784 29.2 +/- 1.98 366 +/- 57.0 

Dermatemydidae 137221 +/- N/A 17.320 17.9 +/- N/A 470 +/- N/A 

Dermochelyidae 86080919 +/- N/A 7.876 79.8 +/- N/A 1470 +/- N/A 

Emydidae 511025 +/- 132055 29.212 9.4 +/- 0.75 199 +/- 10.2 

Geoemydidae 442371 +/- 65366 17.922 6.0 +/- 0.92 242 +/- 24.1 

Kinosternidae 630701 +/- 290664 23.342 3.1 +/- 0.32 114 +/- 4.6 

Pelomedusidae 977539 +/- 194988 -1.943 16.7 +/- 2.91 244 +/- 11.7 

Platysternidae 1120779 +/- N/A 21.501 2.3 +/- N/A N/A 

Podocnemididae 1109829 +/- 369015 -1.906 30.9 +/- 10.60 418 +/- 69.1 

Staurotypidae 124354 +/- 42794 16.900 6.7 +/- 2.02 190 +/- 52.5 

Testudinidae 718761 +/- 181334 -1.914 5.4 +/- 0.72 286 +/- 34.4 

Trionychidae 1040968 +/- 256546 17.223 24.7 +/- 4.53 464 +/- 87.1 

  
There are 15 families within the Testudines order.  The family with the lowest 

rank based on listing and global IUCN status is Pelomedusidae and the highest is 

Dermatemydidae (Figure 6).     

 
Figure 6.  Mean global IUCN status for each family.  For this histogram each turtle 
                 species was given a rank based on global IUCN status and the mean of these 
ranks for each family was calculated (not listed = 1, not defined or data deficient = 2, 
least concern = 3, near threatened = 4, vulnerable = 5, endangered = 6, critically 
endangered = 7, and extinct in the wild or extinct = 8).  Bars indicate standard error of 
the mean. 
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The positive correlation between global IUCN status and both mean female 

carapace length (mm) and LOG mean female carapace length (mm) were highly 

significant in all six tests, regardless of differing data inclusion parameters.  Global 

IUCN status was negatively correlated and significant with geographical range size in 

three of six tests, each of which excluded sea turtles.  The correlation between global 

IUCN status and both average clutch size and square root average clutch size was 

variable in terms of positive and negative and not significant in all but one test, which 

was marginally significant (Table 2).   

Table 2.  Pearson correlation test results for Global IUCN Status vs. biological attributes 
               for test one through six.  The r values are on top of the corresponding shaded 
p-values.  Significant results are bolded. 

Biological Attribute Run One Run Two 
Run 
Three 

Run Four Run Five Run Six 

Range Size (km!) 
0.055 -0.212 0.014 -0.282 0.028 -0.264 
0.296 <0.001 0.0824 <0.001 0.668 <0.001 

LOG Range  
-0.357 -0.406 -0.419 -0.469 -0.332 -0.386 
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Midpoint Latitude (º) 
0.091 0.088 -0.201 -0.203 -0.144 -0.145 
0.087 0.099 0.001 0.001 0.025 0.025 

Average Clutch Size (n) 
0.079 -0.018 0.111 0.042 0.108 0.032 

0.2 0.772 0.108 0.548 0.117 0.645 

SQRT Clutch 
0.034 -0.044 0.068 -0.003 0.061 -0.016 

0.576 0.482 0.325 0.962 0.38 0.815 

Mean Female CL (mm) 
0.229 0.221 0.331 0.345 0.303 0.299 
0.003 0.004 <0.001 <0.001 <0.001 <0.001 

LOG CL 
0.17 0.132 0.318 0.29 0.284 0.244 
0.026 0.09 <0.001 <0.001 <0.001 <0.001 

 
 Average clutch size and mean female carapace length were highly correlated in 

all six tests.  The correlation between geographical range size (km!) and midpoint 

latitude was not significant in any of the Pearson correlation tests (Table 3).   
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Table 3.  Pearson correlation test results for biological attributes for test one through six. 
               The r values are on top of the corresponding shaded p-values.  Significant 
results are bolded. 

Biological Attributes Run One Run Two 
Run 
Three 

Run Four Run Five Run Six 

Range Size (km!) vs. 
Midpoint Latitude (º) 

-0.025 0.001 -0.04 0.096 -0.048 0.078 

0.632 0.989 0.523 0.131 0.458 0.229 

Range Size (km!) vs. 
Average Clutch Size (n) 

0.602 0.133 0.648 0.22 0.648 0.223 
<0.001 0.032 <0.001 0.001 <0.001 0.001 

Range Size (km!) vs. 
SQRT Clutch 

0.495 0.123 0.547 0.228 0.549 0.232 
<0.001 0.049 <0.001 0.001 <0.001 <0.001 

Range Size (km!) vs. 
Mean Female CL (mm) 

0.5 0.094 0.532 0.147 0.545 0.171 
<0.001 0.227 <0.001 0.091 <0.001 0.051 

Range Size (km!) vs. 
LOG CL 

0.371 0.111 0.401 0.177 0.413 0.197 
<0.001 0.156 <0.001 0.042 <0.001 0.024 

LOG Range vs. Midpoint 
Latitude (º) 

0.126 0.144 0.235 0.268 0.175 0.21 
0.017 0.007 <0.001 <0.001 0.006 0.001 

LOG Range vs. Average 
Clutch Size (n) 

0.357 0.168 0.411 0.213 0.412 0.214 
<0.001 0.007 <0.001 0.002 <0.001 0.002 

LOG Range vs. SQRT 
Clutch 

0.326 0.157 0.392 0.207 0.393 0.209 
<0.001 0.011 <0.001 0.003 <0.001 0.003 

LOG Range vs. Mean 
Female CL (mm) 

0.185 -0.113 0.2 -0.119 0.265 -0.045 

0.015 0.148 0.018 0.172 0.002 0.612 

LOG Range vs. LOG CL 
0.142 -0.063 0.151 -0.073 0.212 -0.011 

0.062 0.425 0.077 0.401 0.013 0.9 

Midpoint Latitude (º) vs. 
Average Clutch Size (n) 

-0.042 -0.025 -0.028 0.024 -0.03 0.022 

0.495 0.683 0.682 0.729 0.671 0.76 

Midpoint Latitude (º) vs. 
SQRT Clutch 

-0.035 -0.016 0.005 0.052 0.003 0.048 

0.568 0.8 0.94 0.462 0.966 0.493 

Midpoint Latitude (º) vs. 
Mean Female CL (mm) 

-0.143 -0.128 -0.134 -0.115 -0.13 -0.109 

0.061 0.102 0.116 0.187 0.131 0.214 

Midpoint Latitude (º) vs. 
LOG CL 

-0.172 -0.156 -0.133 -0.111 -0.131 -0.108 

0.024 0.045 0.118 0.203 0.128 0.221 
Average Clutch Size (n) 
vs. Mean Female CL 

(mm) 

0.777 0.73 0.773 0.748 0.773 0.746 

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
Average Clutch Size (n) 

vs. LOG CL 
0.688 0.641 0.678 0.654 0.679 0.651 
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

SQRT Clutch vs. Mean 
Female CL (mm) 

0.81 0.745 0.812 0.748 0.811 0.745 
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

SQRT Clutch vs. LOG CL 
0.782 0.734 0.777 0.74 0.777 0.736 
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
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None of the geographical range size t-tests showed a statistically significant 

difference between means (Table 4).  The midpoint latitude t-tests showed statistically 

significant differences in three of four tests.  Both t-tests that included global IUCN 

status showed a statistically significant difference.  These tests were also run on the 

suborders, one including all 357 turtles and the other excluding the seven sea turtles 

(Table 4).   

 
Table 4.  Results of various t-tests.  Statistically significant tests are bolded.  For each 
               test the following are listed in descending order: t-value, df value, p-value.  

t-test At Risk of 
Extinction  

Listed  Suborder  
Suborder (no sea 

turtles)  

Geographical 
Range Size 
(km!) 

1.767 1.661 1.878 -0.739 
167 275 269 189 
0.079 0.098 0.061 0.461 

LOG Range 
-3.474 -5.051 -1.360 -1.909 
254 295 200 192 
<0.001 <0.001 0.175 0.058 

Midpoint 
Latitude (º) 

-1.486 4.511 14.806 14.889 
161 182 241 244 
0.139 <0.001 <0.001 <0.001 

Average Clutch 
Size (n) 

2.123 1.476 -0.956 -2.721 
212 180 136 78 
0.035 0.142 0.341 0.008 

SQRT Clutch 
1.750 0.559 -2.720 -4.192 
214 99 127 93 
0.082 0.577 0.007 <0.001 

Mean Female CL 
(mm) 

3.534 1.660 0.569 -0.765 
115 135 102 71 
<0.001 0.099 0.571 0.447 

LOG CL 
3.355 -0.318 -1.194 -2.160 
132 83 82 72 
0.001 0.751 0.236 0.034 

Global IUCN 
Status 

N/A N/A 7.552 7.434 
N/A N/A 161 164 
N/A N/A <0.001 <0.001 

 
 
 Global IUCN status did not differ between orders Pleurodira vs. Cryptodira 

(separate variance t = 1.37, 52.18 df, P = 0.177; pooled variance t = 1.33, 252 df, P = 
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0.186).  A non- parametric equivalent test concurred (Mann-Whitney U = 4,682, 1 df, P 

= 0.57).  

A complete multivariate regression model (geographical range size, midpoint 

latitude, carapace length, and clutch size) explained 14.3% of the global IUCN status 

value (F = 5.44; 4, 130 df; P < 0.001; %! = 0.143).  

 Both forward and backward stepwise multiple regression produced the same 

highly significant model with midpoint latitude and carapace length (F = 12.24; 2, 136 

df; P < 0.001; %! = 0.153).   

 The best AIC model found included latitude, carapace length, and clutch size, 

and explained 13.4% of the IUCN status.  This model produced essentially the same 

level of description (DAIC<2) as the complete model which explained 14.3% (Table 5). 

 
Table 5.  Results of the AIC test.  The individual or combination of attributes with the 
               lowest AIC score indicates the best option.  The R squared value, derived from 
multiple regression, represents the percent the correlating attributes can explain the 
global IUCN status. Note: Lat = midpoint latitude (º), CL = mean female carapace length 
(mm), Clutch = clutch size (n), and Range = geographical range size (km!).  Schwarz 
Criterion also shown (BIC).    

Attributes AIC AICc BIC %! 
Lat+CL+Clutch 469.4 469.9 483.9 0.134 

Range+Lat+CL+Clutch 470 470.6 487.4 0.143 

Range+CL+Clutch 474.3 474.8 488.8 0.102 

Range+Lat+CL 480.4 480.9 495.1 0.167 

Lat+CL+Clutch 480.8 481.1 492.5 0.153 

CL 485.6 485.8 494.4 0.11 

Range+CL 485.7 486 497.4 0.122 

Lat+Clutch 736.9 737.1 750.3 0.066 

Range+Lat+Clutch 737.9 738.2 754.7 0.071 

Clutch 746.7 746.8 756.8 0.012 

Range+Clutch 748.2 748.4 761.9 0.015 

Lat 899.9 900 910.5 0.074 

Range+Lat 901.6 901.8 915.8 0.075 

Range 919.4 919.5 930 0 
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DISCUSSION 
 

 The results include 91 turtle species not listed on the global IUCN Red List.  

This can be misleading, as this is not an indication of assessment but merely an 

indication of listing.  According to Rhodin et al. (2017) some of the species within the 

“Not Listed” category in this study have been assessed, while others have not.  For the 

purpose of this study, there were considered to be 266 turtle species listed on the global 

IUCN Red List.  This is eight more than were listed on the IUCN Red List at time of 

data collection and reflects taxonomic revisions separating species that were included 

within the global IUCN Red List listing of other species.  Although unlikely, it is 

possible that this was the case for other species as well and it was missed during the 

research process.  There has been a species added to the global IUCN Red List since 

time of data collection.  Elseya rhodini, which was not listed at time of data collection, 

has been added to the “Least Concern” category (IUCN 2020b).  The addition of this 

species as well as the eight species included for the purpose of this study brings the total 

species listed on the IUCN Red List to 267.  This study recognized a total of 357 species 

therefore this would indicate 74.8% of Testudines are listed on the IUCN Red List.  As 

Rhodin et al. (2017) and IUCN (2019f) were used to compile the list of 357 species, the 

newly discovered Pelodiscus variegatus was not included in this study (Farkas et al. 

2019).   

   The results show the “Vulnerable” category having the highest mean 

geographical range size with a value of 4,350,111 km!.  This is misleading as the 

“Vulnerable” category contains three sea turtle species, which undoubtedly inflates the 

mean geographical range size.  The mean geographical range size of non-sea turtle 

Testudines is 657,024.2 km!, but 69,282,011.5 km! for sea turtles.  When removing the 
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sea turtles, the “Vulnerable” category saw its mean geographical range drop to 

807,694.6 km!.  The “Not Listed” category then had the highest mean geographical 

range with a value of 869,328.9 km!.  This begins to show the impact the inclusion or 

exclusion of sea turtles can have on the analyses of data for Testudines.  This was an 

issue recognized by Hecnar (1999a) as sea turtles were not included in a study exploring 

geographic range sizes “because their range sizes are poorly known and they have a 

different mode of life”.  The impact of sea turtles is seen in other attributes as well.  For 

example, the “Vulnerable” category has a mean female carapace length of 327 mm 

including sea turtles but 264 mm excluding sea turtles, dropping below the 

“Endangered” category which falls from 296 mm to 269 mm, as seen in the results 

section in Figures 3 and 4.   

The impact of sea turtles is further exemplified within the results of the Pearson 

correlation tests (Table 2).  Each run excluding sea turtles shows a statistically 

significant correlation between geographic range size and global IUCN status, but each 

run including them shows the opposite.  A similar effect is seen within the Pearson 

correlation tests between midpoint latitude and LOG CL, LOG range and LOG CL, and 

LOG range and mean female carapace length (mm).  In each of these cases, the tests ran 

including sea turtles showed a significant correlation and the test ran excluding sea 

turtles showed no significant correlation.   This difference is once again seen when 

examining the mean clutch size of all species between Cryptodira and Pleurodira.  A t-

test showed no significant difference when including sea turtles but showed a 

significance difference when sea turtles were excluded.   

This however was not the case when examining the global IUCN status of 

suborders using t-tests.  When including all categories involved in this study there was a 



 26 

strongly significant difference between suborders whether sea turtles were included or 

not.  However, when excluding “Not Listed”, “Not Defined”, and “Data Deficient” and 

examining global IUCN status of suborders the separate and pooled variance tests 

showed no significant difference with p-values of 0.177 and 0.186 respectively.  This 

can also begin to exemplify the impact of including and excluding differing categories 

during analyses of data.   

Mean female carapace length appeared to be the attribute most strongly related to 

the global IUCN status.  This can be observed in the Pearson correlation tests as each of 

the six runs show a significant correlation between mean female carapace length and 

global IUCN status.  This connection was again evident when a t-test found a significant 

difference between mean female carapace length of species at risk and not at risk of 

extinction.  Both multiple regression models included mean female carapace length and 

these tests were highly statistically significant (F = 12.24; 2, 136 df; P < 0.001; %! = 

0.153).  The standard coefficient of midpoint latitude and mean female carapace length 

was -0.231 and 0.23 respectively, meaning about 46% of the R squared value can be 

explained by these two variables.  The tolerance values for each was 0.81, meaning these 

two variables are relatively independent of one another. 

This connection was also seen in the AIC test as mean female carapace length 

was included in each of the top seven AIC scores and zero of the remaining seven 

options.  It also had by far the best individual score with 485, with the remaining 

attributes scoring 746.7-919.4 individually.  The same AIC test indicated that mean 

female carapace length (mm) could explain 11% of a species global IUCN status, while 

midpoint latitude, clutch size, and geographical range offered 7.4%, 1.2%, and 0% 

respectively.  If this correlation is correct, it would not be specific to turtles as animals 
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with large body size are often more susceptible to extinction (Cardillo et al. 2005).  As 

expected, there was also a strong connection between mean female carapace length and 

clutch size.  

The connection between global IUCN status and mean female carapace length 

may be related to anthropogenic activities.  There are many places on Earth where 

humans eat turtles and it is logical to deduce that they would prefer to eat habitually 

larger turtles.  Conway-Gomez (2007) examined two species within the Podocnemis 

genus and found that turtle abundance was negatively impacted by hunting pressure and 

this negative impact was positively correlated with proximity to human communities. 

The Podocnemis genus in my study had a mean female carapace length of 442 mm, 

which is high.  Only one of six Podocnemis turtles were not listed on the IUCN Red 

List, one of these is critically endangered.  Conway-Gomez (2007) examined both 

Podocnemis expansa and P. unifilis, which are both listed on the IUCN Red List, P. 

unifilis being vulnerable and thus considered at risk of extinction.  Humans eating turtles 

is by no means a new phenomenon.  Frazier et al. (2018) found evidence of the intense 

exploitation of sea turtles in Oman up to 6,500 years ago, as well as evidence that some 

communities of humans worshipped turtles, finding turtle bones and skulls within 

human graves.  This indicates turtles were not only utilized as a nutritional resource but 

offered cultural significance as well.    

According to Harris and Pimm (2008) “small geographical range size is the 

single best predictor of threat of extinction in terrestrial species”.  This notion of a 

correlation between risk of extinction and small geographic range sizes is also offered in 

Runge et al. (2015).  My study did not show geographical range size as the most 

significant factor in determining global IUCN status.  The Pearson correlation tests 
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showed a significant correlation between geographic range size and IUCN status for the 

three out of six runs which excluded the sea turtles.  The t-tests examining species that 

are and are not at risk of extinction and the listed vs. non listed turtles both showed no 

significant difference.  This attribute was not included in the forward stepwise multiple 

regression and was eliminated in the backward stepwise multiple regression while also 

having the lowest individual attribute AIC score and R squared value in the AIC test 

results.  As supported by the Pearson correlation tests, the lack of importance in 

determining IUCN status found within this study may be directly tied to the inclusion of 

sea turtles in data analysis.         

It is somewhat surprising that clutch size was not more important in determining 

global IUCN status, as mean female carapace length (mm) and clutch size are so highly 

correlated.  All six Pearson correlation tests showed a highly significant correlation 

between clutch size and mean female carapace length (mm).  Only one of six Pearson 

correlation tests showed a significant correlation between global IUCN status and clutch 

size, however this was marginally significant.  Clutch size even had the second lowest R 

squared value in the AIC test, explaining a mere 1.2% of the global IUCN status.  There 

was however shown to be a significant difference between the clutch sizes of the at risk 

and not at risk of extinction turtles.  This likely stems from its association with mean 

female carapace length (mm) as the mean female carapace length of species that are at 

risk of extinction and not at risk of extinction were 330 +/- 29.5 mm (SEM) and 211 +/- 

16.3 mm (SEM) respectively.  

There are several potential sources of error within this study as well as attributes 

that were not explored.  Because of the process used in calculating geographical range 

size (km!) and midpoint latitude, it is impossible to state the values for each species are 
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100% accurate.  Although minimal, this could impact the geographical range size 

category.  As the range extent was used to calculate geographical range, the calculated 

value could be inflated in comparison to area of occupancy.  Ramesh (2017) noted range 

extent often includes unsuitable habitat resulting in the inflation of a species range.  The 

range extent is found by calculating the area within the boundary whereas area of 

occupancy seeks to eliminate areas of unsuitable or unoccupied habitat and includes the 

areas within the range extent a species occupies (Figure 7) (IUCN 2001).   

 
Figure 7. Range extent (A) vs. area of occupancy (B).  In range extent the area  
               is calculated as the area within the boundary.  For area of occupancy  
the area is calculated by summing the occupied squares (as marked by the  
diagonal lines).  Notice how different results could be produced using each 
method (Adapted from IUCN 2001). 
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The outer boundary of a range also may not always be representative of species 

abundance.  Fortin et al. (2005) stated “it is important to identify internal distribution of 

abundance within range boundaries”.  The shape of polygons used to outline 

distributions can also be a point of controversy.  The issue can be illustrated using the 

distribution map of the Common Snapping Turtle (Chelydra serpentina) provided within 

Rhodin et al. (2017) and used in this study to calculate geographical range size and 

midpoint latitude (Figure 8). 

 
       Figure 8.  Common Snapping Turtle distribution map (Rhodin et al. 2017). 
     

Notice the most northwesterly portion of the distribution has very few 

distribution dots in comparison to much of the map and the range extends beyond 

distribution points.  A study by Palminteri et al. (2011) explored the use of range 

polygons, acknowledging their shortcomings and their potential for overestimation.   
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The process of calculating midpoint latitude would not result in 100% accuracy, 

meaning the midpoint latitude values are not perfect.  The analyses may have been 

impacted by missing data as only 267 clutch sizes and 172 mean female carapace 

lengths were located during the research process.  If there was more available data, it 

could have impacted the results.  For example, only one mean female carapace length 

was found for a species listed as “Extinct”.   

The subject of this paper could have been further explored with the inclusion of 

attributes such as longitude.  Examination of continents could have helped further 

explore the connection between IUCN status and various attributes, as well as exploring 

the connection between continent located and IUCN status.  Analyses of continents may 

help explore regional anthropogenic effects.   

It is interesting to note that four of the top six families in terms of mean global 

IUCN status contained one turtle.  The two that did not were Cheloniidae (mean global 

IUCN status: 5.33) and Testudinidae (mean global IUCN status: 5.25).  Testudinidae is 

the most terrestrial of the Testudine families (Wyneken et al. 2008).  Cheloniidae are 

negatively impacted by fishing practices and plastic pollutants, while also being 

dependent on beaches for nesting (Assuncao Ivar do Sul et al. 2010; WWF 2020).  Over 

33% of the global human population lives within 100 km of an ocean’s coastline (NASA 

2020).  It is fair to wonder if it is their inherent relationship with humans that has caused 

high mean global IUCN status.   
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CONCLUSION 
 

Global biodiversity is currently under attack (Ceballos et al. 2017).  Many 

Testudine species are at risk of extinction and there is a need for increased conservation 

efforts.  Testudines are the subject of taxonomic bias, as they are often underrepresented 

in wildlife journals, post-secondary library holdings, and reintroduction programs 

(Seddon et al. 2005; Hecnar 2009; Christoffel and Lepczyk 2012).  Although facing 

many threats, one of the most serious threats to Testudines is habitat loss (Lesbarreres et 

al. 2014).  My study indicates that there is a positive correlation between female 

carapace length and global IUCN status.  This was supported by Pearson correlation 

tests, forward and backward stepwise multiple regressions, as well as an AIC test.  It is 

possible that poaching and human consumption plays a role in this correlation.  The 

impact of including sea turtles in analyses was evident throughout this study as they 

often have larger clutch and body sizes as well as significantly larger geographical range 

sizes than other Testudines.  The two families containing greater than one turtle with the 

highest mean global IUCN status are Cheloniidae and Testudinidae. There are many 

threats facing Testudines today.  Humans can potentially have a positive impact on the 

current state of Testudines by offering more time and funding to the conservation of 

Testudines while also minimizing or reversing human caused threats such as habitat loss 

or fragmentation, road mortality, and poaching.   
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