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ABSTRACT

Features are an important part of machine learning. Features are often the

reduced-dimensional representation of input data, feature calculation, extraction, and

fusion directly affect the final result of the network. This thesis proposes a total of 3

feature learning methods, and all of them have achieved good results.

In the chapter four of this thesis, the method of video feature extraction is mainly

introduced. In this thesis, 3D pre-trained CNN model is used to extract features

from continuous video frames, and the feature data is input into the classifier with

subnetwork node, and good results are obtained. And the experimental results show

that the pre-trained model effectively reduces the training time and improves the

testing accuracy. 3D CNN can fully extract the temporal and spatial features of

objects. For the subsequent classification accuracy has played a good effect.

Chapter three and five are mainly focus on EEG-based signal emotion recognition.

EEG data is a one-dimensional signal, but because the human cerebral cortex has

different feedback areas for different emotions, the data of EEG data on different

electrode channels are spatially related. And different channels of data have a positive

impact on different emotional states. Therefore, this chapter improves the accuracy

of the test results by converting the one-dimensional data of the EEG into a two-

dimensional matrix and adding weights to the corresponding electrodes to extract

spatial features and fuse them with frequency-domain features.

Since the EEG signal is continuous in time, the time-domain features also have

a great effect on the final sentiment classification result. Therefore, the fifth chapter

adds the extraction of time-domain features based on the fourth chapter. The final

accuracy of emotion recognition has been significantly improved.
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Chapter 1

Introduction

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Overview

This article focuses on neural network-based feature extraction techniques and tech-

niques. So I start with a question: What are features? Generally speaking, features

are low-dimensional descriptions of training or testing objects. Features usually de-

scribe a region so that they can be distinguished. The quality of the features directly

determines whether the subsequent classification and recognition will get a good re-

sult. Features should have the characteristics: repeatability, distinguishability, accu-

racy, effectiveness (number of features, efficiency of feature extraction), robustness

(stability, invariance). The significance of feature extraction lies in choosing rele-

vant and information-rich functions, but it can have other motivations, including:

1. general data reduction, limiting storage requirements, and improving algorithm

speed; 2. reducing feature sets to save the next round of data collection or Utilize re-

sources during the period; 3. Improve performance and improve forecast accuracy; 4.

Data understanding, gain knowledge about the process of generating data or simply
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visualize the data.

There are many traditional feature extraction methods which are widely used,

for example, Scale Invariant Feature Transformation (SIFT), Direction Gradient His-

togram (HOG) and other traditional feature extraction methods. With the develop-

ment of neural networks, especially deep neural networks, feature extraction based

on neural networks has achieved good results. The biggest difference between deep

learning and traditional pattern recognition methods is that deep learning method

automatically learns features from big data, rather than features designed by hand.

Good features can greatly improve the performance of the pattern recognition system.

In various applications of pattern recognition in the past few decades, the features of

hand-design are in the same dominant position. It mainly relies on the prior knowl-

edge of the designer, and it is difficult to take advantage of big data. Due to the

manual tuning parameters, only a few parameters are allowed in the design of the

feature. Deep learning can automatically learn the representation of features from

big data, which can contain thousands of parameters. Designing effective features

by hand is a fairly lengthy process. Looking back at the history of computer vision

development, it often takes five to ten years for a widely recognized good feature to

appear. And deep learning can quickly learn new and effective feature representa-

tions from training data for new applications. Features and classification. Traditions

are separated and then optimized. The neural network is a combination of both. It

is possible to initially set 60 million feature parameters and then learn millions of

samples. Traditional image classification, such as the recognition of local facial areas,

also extracts a small area, then advances a texture feature, and then classifies.

There are many ways to extract features based on neural networks, such as ex-

tracting features through convolutional neural networks or using unsupervised learn-

ing models, auto-encoder, etc. In this thesis, I used 3D volumes and neural networks

and auto-encoder to extract features. In recent studies, these models have achieved

very good results.

This thesis uses three applications to test and verify the reasonable extraction of

features and the positive impact of fusion on recognition results [see Fig. 1.1]. At

first I chose to process the simpler 1D data, so I chose emotion recognition based

on EEG signal data. I achieved the state-of-the-art result by fusing spatial domain

and frequency domain features extracted by 2D CNN autoencoder and hierarchical

network with sub-network. Later, to verify the effectiveness of feature learning on

high-dimensional data, I choose video-based action recognition. Features Ire extracted
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by a pre-trained 3D ResNet, and then use a single-layer classifier with sub-network

nodes to classify actions, I achieved good results. By processing 3D video data, I

obtained inspiration, and the real-time domain features can improve the recognition

accuracy of signals with time-domain features. Therefore, I reconstruct the time-

domain features of EEG signals and fuse them to the original method and obtain

better recognition accuracy. And, in order to show the generalization performance of

my method, I cited EEG data sets with more classifications, and still achieved good

experimental results. In the three applications I performed, video data and EEG

data were processed separately. Therefore I need to prepossess those datasets. I use

a variety of prepossessing methods, which are discussed in detail in chapters 3 - 5.

Figure 1.1: Overview of three applications.

1.2 Motivation

Computer vision is a hot research topic recently, and action recognition is an im-

portant research direction in the field of computer vision. Therefore, improving the

accuracy rate of action recognition network has a great effect on the field of com-

puter vision. Therefore, I first focused on finding ways to improve the accuracy of

action recognition. I focused my research on feature extraction and transfer learning.

Traditional action recognition is mainly based on 2D CNN networks, and video data

contains a lot of important information and features in the time domain, so how to

effectively extract these time domain features becomes extremely critical. Therefore,
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I first focused on finding ways to improve the accuracy of action recognition. I fo-

cused my research on feature extraction and transfer learning. Traditional action

recognition is mainly based on 2D CNN networks, and video data contains a lot of

important information and features in the time domain, so how to effectively extract

these time domain features becomes extremely critical. Therefore, I conducted the

first experiment, that is, the feature extraction and transfer learning based on the

3D CNN network described in Chapter 4. For the classifier, I chose a single-layer

network with sub-network nodes. My experiments have achieved good results, so I

want to verify whether my method can be applied to 1D data, because traditional

CNN networks are mainly applied to 2D or 3D data. I chose EEG 1D signals as my

next experimental data set. Since EEG signals are measured based on the response

of the cerebral cortex, there is a spatial relationship between different electrodes. So

how to use 2D CNN networks to extract spatial features is the key to my research,

so I preprocess the 1D EEG data. And then use 2D auto-encoder for feature extrac-

tion. And fused with the frequency characteristics extracted through the hierarchical

network with sub-network nodes, and then classified, and obtained state-of-the-art

results. However, EEG data has time-domain information, so I have added extrac-

tion of time-domain features in subsequent experiments, and further improved the

accuracy of classification.

1.3 Problem Description

In the three experiments carried out here, the main problems to be solved are as

follows:

• The scale of video datasets is often small, so 3D CNN networks do not have

enough data to train.

• The performance and effect of traditional classifiers are not very good, so I need

to find a classifier with better performance and training.

• How to perform feature extraction in the frequency domain, space domain, and

time domain on one-dimensional data.

• How to fuse multiple features more effectively.
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1.4 Contribution

This article focuses on the extraction of focus on features. Therefore, through my

experiments, this thesis has made the following contributions:

• I verified that transfer learning is effective in 3D CNN networks, and that the

3D Bag of Visual Words (BoVW) network structure has a positive effect on

improving the accuracy of network recognition.

• I propose an unsupervised learning method that uses DCNN model to extract

spatial features of EEG data and fuse them with those extracted through HNSN.

Experimental results show that my proposed framework could provide roughly

94.05% accuracy, that is superior to other approaches.

• Based on spatial characteristics of EEG signals, I propose an EEG-based sig-

nal for the matrix algorithm, which can convert any type of features into a

two-dimensional matrix.I map the EEG signals to a two-dimensional coordi-

nate space according to the relative coordinates of the electrodes. The spatial

relationship between electrodes is well expressed.

• Effect of specific channels of DE features: Previous studies [] have shown that

specific channels of DE features may influence the result of EEG-based emo-

tion recognition. Motivated by these experiments, I add weights to the 12

corresponding channel values, while I generate EEG images. After many exper-

iments, I adjusted weight values and obtained a good performance.

• I propose a multi-stream hierarchical network framework learning behaviors of

features combined from multi networks. Each stream can extract temporal, spa-

tial and frequency features respectively, which significantly improve accuracy.

I adopted an early fusion method that is better than later fusion by fusing

different features into one super vector.

• Superb generalization performance. My method is evaluated on two datasets

(SEED and SEED-V), I tested my framework by using original EEG signals, DE

features and PSD features and compared with several state-of-the-art methods

and I got the best performance.
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Chapter 2

Literature Review

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Hierarchical Network with Subnetwork Nodes . . . . . . . . . . . . . 7

2.2.1 Feature Extractor . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Overview

Previous studies have proposed several state-of-the-art classifier including SVM, ELM,

etc. These classifiers have very good performance in different fields. In order to

more effectively improve classification accuracy and reduce training time and improve

recognition speed, I adopted several methods that have been proved to be effective,

including a hierarchical network with subnetwork nodes (HNSH) [51]. [5] proposed a

solution for transfer learning in 3D CNN based on Kinetics video dataset, and solved

the problem that during the 3D CNN training process, because the video data often

has a small scale, it is not enough to train the 3D CNN network. In this chapter I

will introduce HNSH network and transfer learning.
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2.2 Hierarchical Network with Subnetwork Nodes

I adopted an architecture proposed by [51] called the hierarchical network with sub-

network nodes (HNSN). The subnet node of this network contains a number of hidden

nodes with various functions, which can be used for dimension reduction, feature

extraction etc. Firstly, the network has an encoder/decoder structure, and each sub-

network node can increase or decrease the dimension of data. Second, each neuron

does not fully link to the output of each neuron, such as the neural representation

in the mammalian cortex. Third, the output of each sub-network node is a partial

feature of the input data. By merging these features, the complete features of the

data can be obtained. The network consists of three parts: 1) local feature extraction

2) feature layer fusion and 3) classifier [See Fig. 2.1].

Figure 2.1: Hierarchical Network with Subnetwork Nodes.

2.2.1 Feature Extractor

Training a Backpropagation based autoencoder needs several iterations to adjust

it’s weight and bias, which consume a lot of time. Though ML-ELM reduces time

consumption, hidden nodes used in the encoding layer are randomly generated that

can deteriorate useful features. Instead of using several random layers, a two-layer

autoencoder has been introduced, [50] where only the encoding layer weight has been

generated randomly, based on which the decoding layer weight has been calculated.
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The autoencoder aims is to minimize the reconstruction loss, which is the squared

error between the input X and the neural network output Ŷ .

We briefly describe the Autoencoder algorithm in the following steps. Step-1:

Randomly initialize the encoding layer weights α. After initializing the encoding

layer, obtain the encoding layer output H Through Eq. 2.8.

H = g(Xα + b) (2.1)

Step-2: Calculate the decoding layer weights β through Eq. 2.9

β = H†g−1(Y) (2.2)

where g−1(·) is the inverse function of g(·). For instance, if g(·) = sin(·), then

g−1(·) = arcsin(·); if g(·) is sigmoid function, then g−1(·) = −log(1/(·) − 1). It is

worth nothing that, the pseudo inverse H† is calculated by Eq.2.10.

H† = (HTH + Im×m/c)
−1HT (2.3)

Though training time has reduced multiple times,randomized weight in the encod-

ing layer for whole dataset increases the computation cost. Thus, it requires more

memory.

2.2.2 Classifier

A network with sub-network nodes can be formed by a single hidden node or several

nodes and focused on reaching the smallest training error as well as the smallest norm

between the output weight and hidden nodes. Based on Bidirectional ELM [48], this

network residual error will help to select an appropriate number of neurons or the

sub-network itself. N numbers of distinct samples of (xi, t
N
i ) and a sigmoid or sine

activation function h , the input weight and output weight of nth subnetwork would

be

α̂n = h−1(u(en−1)) · xT (Id×d/c+ xxT )−1 (2.4)

β̂n = H†g−1(en− 1) (2.5)

where h−1(·) has been used as the inverse function of h(·); u is used as normalized

function which processes the input and target data by mapping from original range
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to (0,1]; This functions applied on the residual network error of previous subnetwork;

xT (I/c+xxT )−1 = x−1 is the Moore-Penrose generalization inverse of training samples.

Meanwhile, Eq. 2.10 can be used in Eq. 2.12 to get the output weight of that

subnetwork. The residual error of nth subnetwork can be defined by 2.13

en = t− h · β (2.6)

2.3 Transfer Learning

With the emergence of more and more machine learning application scenarios, and

the existing well-supervised learning requires a large amount of labeled data, labeling

data is a boring and costly task, so transfer learning is subject to more attention.

Traditional machine learning (mainly referred to as supervised learning) is based

on the same distribution assumption and requires a large amount of labeled data.

However, in actual use, there may be some problems with different data sets, such as

differences in data distribution, expired labeled data or expired training data, that

is, it is difficult to calibrate Data will be discarded, the distribution of data in some

applications will change over time. How to make full use of the previously marked

data (waste utilization) while ensuring the accuracy of the model on new tasks? Based

on such problems, there is research on transfer learning.

Transfer learning is a machine learning method that uses the model developed for

task A as an initial point and reuses it in the process of developing the model for task

B. Transfer learning is a new task to improve learning by transferring knowledge from

related tasks that have been learned. Although most machine learning algorithms are

designed to solve a single task, the development of algorithms that promote transfer

learning is a continuous concern of the machine learning community topic of. Transfer

learning is very common to humans. For example, we may find that learning to

recognize apples may help to recognize pears, or learning to play the electric piano

may help to learn piano. To find the similarity of the target problem, the transfer

learning task is to apply the model learned in the old domain to the new domain,

starting from the similarity.

Transfer learning is divided into Homogeneous transfer learning and Heteroge-

neous transfer learning according to the feature space. Transfer learning is divided

into Inductive transfer learning, Transductive transfer learning and Unsupervised

transfer learning according to the transfer scenario. Transfer learning is divided
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into Instance based transfer learning and Feature based transfer learning, Param-

eter based transfer learning, and Relation based transfer learning according to the

transfer method [See Fig. 2.2].

Figure 2.2: Classification of transfer learning.

The general idea of transfer learning can be summarized as: developing algorithms

to maximize the use of knowledge in labeled fields to assist in the acquisition and

learning of knowledge in the target field. The core of transfer learning is to find the

similarity between the source domain and the target domain and use it reasonably.

With this similarity, the next step is how to measure and use this similarity. The goal

of the measurement work has two points: One is to measure the similarity of the two

fields, not only tell us qualitatively whether they are similar, but also give the degree

of similarity more quantitatively. The second is to take the metric as the criterion,

and increase the similarity between the two fields through the learning methods we

want to use to complete the transfer learning.

The most useful occasion for transfer learning is if you try to optimize the per-

formance of task B, usually this task has relatively little data. For example, in the

radiology department, you know that it is difficult to collect a lot of radiographic

scans to build a radiology diagnostic system with good performance, so in this case,

you may find a related but different task, such as image recognition, in which you It

may have been trained with 1 million pictures and learned a lot of low-level features,
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so that may help the network to do better in the task of radiology, although the task

does not have so much data.

If the difference between the two fields is particularly large, transfer learning

cannot be used directly, because in this case the effect is not very good. In this case,

the above method is recommended to migrate step by step between two domains with

low similarity

In deep learning, deep learning is often combined with transfer learning. Deep

learning requires a large amount of high-quality annotated data. Pre-training + fine-

tuning is a very popular trick in deep learning, especially in the field of images. Many

times, pre-trained ImageNet will be selected to initialize the model [See Fig. 2.3].

Figure 2.3: Transfer learning in Deep Learning.
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3.1 Overview

One-dimensional data is the most common form of data in my lives, and the processing

of one-dimensional data is also simpler than that of high-dimensional data. Therefore,

we chose to process one-dimensional data as my first experiment. Emotion is one of

the peculiar characteristics of human beings; it affects human behavior. Therefore, in

this chapter we choose emotion recognition based on one-dimensional EEG signals,

and we proposes a new method of emotion recognition, which uses convolutional

neural network (CNN) auto-encoder and hierarchical network with sub-network node

(HNSN) to extract features and classify emotions. Using the convolutional neural

network to process electroencephalography (EEG) signal matrix can fully consider the

spatial relationship of the EEG signal, such as the active and inactive areas of a certain

emotion in the cerebral cortex. Combining these CNN auto-encoder deep features

with features generated from HNSN, the network can give a more reliable cognition.

After experimenting with the proposed method, it was found that compared with

other methods, the proposed method gives better results.

3.2 Introduction

Emotion recognition has always been a hot research topic in the past three decades. It

is the process of identifying human emotion, most typically from facial expressions, as

well as from verbal expressions, but also from bio-signals, including electrocardiogram,

ocular electricity, myoelectricity and EEG. Compared with these signals, EEG is

widely used for its high accuracy and stability [27]. Emotional recognition based on

EEG can be traced back to 1985 [1]. In the past 20 years, with the rapid development

of machine learning, the use of machine learning to identify human emotions has

achieved good results [20].

The most prominent methods are based on statistics, waves and fusions. Machine

learning methods have been proposed for emotion recognition. The early classifica-

tion methods (single-layer feed-forward network, fuzzy k-means and support vector

machine (SVM)) achieved moderate results in experiments with multiple emotional

states [12] (2 intermediate or above). For example, [24] used the f-score index, based

on the ratio of emotion recognition between and within classes. By classifying four
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emotion states at 26 electrodes, they achieved an average accuracy of 82.29%. [7]

used time frequency data to identify three emotions, obtaining 63% accuracy, and

fused different features and samples, achieving 80% mean accuracy. [53] preprocessed

EEG signals by differential entropy (DE) [9] method, grouped all electrodes, selected

the characteristic data of 12 electrodes and classified them by SVM. They obtained

best accuracy of 86.65%. Their experimental results show that the corresponding

channel features affect the accuracy of emotion recognition. Later, [51] proposed a

hierarchical network with sub-network nodes and got mean accuracy of 91.51% on

DE features from full channels.

Although the above research uses the traditional shallow model as the classifier,

the deep learning method has recently been introduced in emotion recognition based

on EEG data. Deep belief network (DBFs) is used to analyze human emotions. For

example, [55] used DE features to train a DBF and achieved a mean accuracy of

87.62%. Unsupervised learning methods, for example, auto-encoder, are also used for

extracting deep features from EEG signals. The limitation of previous studies is that

Figure 3.1: Proposed learning system from EEG data to features which is used for
emotion recognition.

they did not consider the spatial connections between electrodes. In the neuroscience

field, EEG signals usually contain five frequency bands, such as delta (δ: 1–3 Hz),

theta theta (θ: 4–7 Hz), alpha (α: 8–13 Hz), beta (β: 14–30 Hz), and gamma (γ:

31–50 Hz) [28] to examine their relationship with the emotional states. Alpha power

asymmetry is a common indicator for evaluating emotional states, and there are

spectral differences in asymmetric pairs of electrodes in the anterior regions of the

brain [19]. Emotion states were also associated with spectral changes in other parts

of the cerebral cortex, such as right parietal alpha changes, theta power changes in
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the right parietal [33], frontal-midline (FM) theta power [32], power asymmetry in

the beta-parietal region, and gamma spectrum changes in the right parietal region

[3]. Motivated by these limitations, this chapter proposed an unsupervised deep

convoluational neural network (DCNN) method that combines with HNSN for EEG-

based emotion recognition [see Fig. 3.1]. Particularly, this chapter makes the following

contributions.

• I propose an unsupervised learning method that uses DCNN model to extract

spatial features of EEG data and fuse them with those extracted through HNSN.

Experimental results show that my proposed framework could provide roughly

94.05% accuracy, that is superior to other approaches.

• Based on spatial characteristics of EEG signals, we propose an EEG-based sig-

nal for the matrix algorithm, which can convert any type of features into a

two-dimensional matrix. I map the EEG signals to a two-dimensional coordi-

nate space according to the relative coordinates of the electrodes. The spatial

relationship between electrodes is well expressed.

• Effect of specific channels of DE features: Previous studies [9, 27, 53] have

shown that specific channels of DE features may influence the result of EEG-

based emotion recognition. Motivated by these experiments, we add weights

to the 12 corresponding channel values, while we generate EEG images. After

many experiments, we adjusted weight values and obtained a good performance.

3.3 Method

3.3.1 Differential Entropy Features

[9] proposed the effective features called differential entropy (DE) extend the con-

cept of Shannon entropy and are used to measure the complexity of continuous ran-

dom variables. Since EEG data has high low-frequency energy in high-frequency

energy, DE has the ability to distinguish the EEG mode between low-frequency and

high-frequency energy. This is the first time that [9] introduced EEG-based emotion

recognition.

The original calculation formula of differential entropy is defined as

H(x) = −
∫
x

f(x)log(f(x))dx (3.1)
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If the time series X obeys the Gauss distribution N(µ,δ), the DE features can be

obtained by

H(x) = −
∫ +∞

−∞

1√
2πδ2

e−
(x−µ)2

2δ2 log

(
1√

2πδ2
e−

(x−µ)2

2δ2

)
dx

=
1

2
log 2πδ2

(3.2)

where the time series x obeys the Gauss distribution N(µ, σ2). Experiments show

that for fixed-length EEG signal sequences,, DE is equivalent to the logarithm energy

spectrum in a certain frequency band [36]. I use this method to extract the DE

features of 5 corresponding frequency bands.

DE features can be converted to 5 different frequency bands (delta: 1-3 Hz, theta:

4-7 Hz, alpha: 8-13 Hz, beta: 14-30 Hz, gamma: 31-50 Hz) with time complexity

O(K N log N) where N is the size of samples, and K is the number of electrodes.

To test the generalization performance of my architecture, we also extracted tra-

ditional power spectral density (PSD) features. For both the DE and PSD features,

we use the linear dynamic system (LDS) method to further filter out irrelevant com-

ponents, and consider the temporal dynamics of emotional state [37].

3.3.2 Making Images from EEG Features

EEG signals are similar to other signals in time and frequency domains, but the most

prominent features are in frequency domain. EEG data are collected at different

spatial locations in the cerebral cortex and consists of multiple time series. However,

as has been pointed out, EEG signals have additional spatial dimensions.

The one-dimensional data obtained by analyzing this measurement method is the

standard method in EEG data analysis. However, this approach obviously ignores

the relationship between space and frequency. Therefore, we convert the measured

values into a two-dimensional matrix to preserve the spatial structure and use multiple

channels to represent the spectrum of bands with different frequencies.

Both DE and power spectral density (PSD) features contains the values of 62

electrodes in five frequency bands. The detailed order of the channels is included in

the dataset. The EEG cap according to the international 10-20 system for 62 channels

and based on previous studies [9, 53], 12 channels [FT7, FT8, T7, T8, C5, C6, TP7,

TP8, CP5, CP6, P7 and P8] are selected in my experiment.

Filters in convouational neural networks (CNNs) can learn patterns of adjacent
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Figure 3.2: Converting EEG-based signals to matrix.

values in the connectivity matrix, which enables CNN to learn spatial features of a

two-dimensional matrix. In order to generate the input matrix data of CNN, we need

to convert the EEG feature data as two-dimensional matrices. I converted the EEG

data into a 9×9 matrix, for the boundaries of the matrix and positions of the null

electrodes are padding with zeros. The matrix can be defined as

M(n) =


0 0 0 FP1 FPZ FP2 0 0 0
0 0 0 AF3 0 AF4 0 0 0
F7 F5 F3 F1 FZ F2 F4 F6 F8
FT7 FC5 FC3 FC1 FCZ FC2 FC4 FC6 FT8
T7 C5 C3 C1 CZ C2 C4 C6 T8
TP7 CP5 CP3 CP1 CPZ CP2 CP4 CP6 TP8
P7 P5 P3 P1 PZ P2 P4 P6 P8
0 PO7 PO5 PO3 POZ PO4 PO6 PO8 0
0 0 CB1 O1 OZ O2 CB2 0 0

 (3.3)

Where n represents frequency bands. Previous studies [9, 27, 53] have proved

that 12 selected channels have a positive impact on emotion recognition. In order

to increase the impact of the 12 special electrodes on the EEG signal analysis, we

added weights to the values of these corresponding 12 electrodes. These weights are

adjustable, and the weights of these 12 channels are equal.

Weight =


...

W W
W W W W
W W W W
W W

...

 (3.4)
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The weight is also a two-dimensional matrix and has the same dimension as the EEG

data matrix. W in the matrix represents the weight of the corresponding electrode

data. Here, we totally have 12 weights to 12 corresponding electrodes in total. I

multiply the EEG matrix data by the weight

T (n) = M(n)×Weight (3.5)

So the EEG data meshes D is created as follows:

D(n) = [T1, T2, ..., T5] (3.6)

In a later section of the experiment, we will list the data of the influence of

weights on the accuracy of emotional recognition. I used this method for five differ-

ent frequency bands to get five two-dimensional matrices corresponding to different

frequency bands. The five two-dimensional matrices are then combined to form a 2D

matrix with five channels [See Fig. 5.2] with the size of 9 × 9× 5.

3.3.3 CNN Auto-Encoder with ResBlock

Encoder decoder network is a symmetric CNN structure. the input data is gradually

reduced in dimension, converted to a feature map with a smaller space and more

channels (encoders), and then converted back to the input shape (decoders). In the

auto-encoder, the encoder part is composed of multiple convolution layers, which usu-

ally have filters with different steps, and the decoder part is composed of a series of

deconvolution layers or by adjusting the size. To add further depth, an additional

convolution layer is usually inserted after each layer. Skip connections between cor-

responding feature maps are widely used to combine different levels of information,

which can effectively enhance the transmission of features and are also conducive to

gradient propagation and accelerated convergence. Additional convolution layers are

usually inserted after each layer to further increase the depth.

Previous experiments [29, 43] have shown that the encoder and decoder structure

is effective, especially in the field of image processing. However, considering the

following factors, the direct use of encoder-decoder structure in my experiment cannot

achieve the best results.

First of all, filters in CNNs try to learn patterns from a given dataset, a larger area

can better learn the EEG signal perception of spatial relationships, however, larger
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area awareness can lead to more encoder decoder module stack up, because many

elements between channels rapidly increase the number of parameters, and greatly

increase the computational complexity, and second, the middle-figure features of the

space are too small and are not a very good reserve for the space information signal.

Finally, adding more convolution layer drops to the encoder and decoder module will

slow down the network convergence.

Figure 3.3: My proposed CNN Auto-encoder network.

I have made some modifications to adapt the auto-decoder network to my frame-

work. First, we tried the shallow autoencoder, which has positively improved my

experimental results. As the number of network layers increases, my method per-

formance also improves. However, as the number of network layers increases, the

network convergence is slow and the stability was getting worse. In order to improve

my encoder/decoder network structure, we introduce the residual learning block [14].

According to [29] and my experimental results, the original building blocks in ResNet

[14] (without batch normalization) could not bring about a better structure, so we

chose to use ResBlock. As shown in Fig. 3.3, the encoder we used encoder ResBlocks

(EBlocks) which contains a convolution layer followed by several ResBlocks. Each

of the following ResBlocks contains two convolutional layers. Several dense layers

followed by the last convolutional layer of encoder part reduce the feature dimensions

greatly. Decoder part is the mirror of the encoder part. So, we extract deep features
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from the last dense layer of the encoder part. The modified network is expressed as

e = NetE(I),

f = DenseE(e),

g = DenseD(f),

D = NetD(g),

(3.7)

where, NetE and NetD are encoder and decoder CNNs, and DenseE and DenseD are

encoder and decoder dense layers. EBlocks and DBlocks are used in NetE and NetD,

respectively. The value f represents deep features, used to do the classification.

My network contains total 45 layers. There are three EBlocks, two dense layers

in my encoder, and three DBlocks, one dense layer in my decoder. The number of

kernels is 32, 64 and 128 in EBlocks. For DBlocks, they are 128, 64 and 32. The

first dense layer has 1024 units, while the second one has 500 units, meaning that my

extracted deep features have the shape of n × 500 (n is the number of samples). I also

tested different number of nodes of the second dense layer. While the number of 500,

my classifier achieved the best performance. I use the activation function rectified

linear units (ReLU), and all kernels are set to size five.

3.3.4 Hierarchical Network with Subnetwork Nodes

I adopted an architecture proposed by [51] called the hierarchical network with sub-

network nodes (HNSN). The subnet node of this network contains a number of hidden

nodes with various functions, which can be used for dimension reduction, feature

extraction etc. Firstly, the network has an encoder/decoder structure, and each sub-

network node can increase or decrease the dimension of data. Second, each neuron

does not fully link to the output of each neuron, such as the neural representation

in the mammalian cortex. Third, the output of each sub-network node is a partial

feature of the input data. By merging these features, the complete features of the

data can be obtained. The network consists of three parts: 1) local feature extraction

2) feature layer fusion and 3) classifier.

3.3.5 Feature Fusion

I extracted the spatial and frequency characteristics of EEG data in my experiment,

and we needed to find a way to fuse those two features. [35] and [52] shows that early
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fusion (by simply combining different features into super-vectors) can achieve better

results if the data contains correction information. For example, we have two different

features extracted from two different networks. I define those features extracted from

the first network as H1 =
{
H1

1,H
1
2, ...,H

1
c

}
, and features extracted from the second

network as H2 =
{
H2

1,H
2
2, ...,H

2
c

}
. After early fusion, we can generate composite

features.

H1
⊕

2 = [H1
1,H

1
2, ...,H

1
c ,H

2
1,H

2
2, ...,H

2
c ]

T (3.8)

Given that several features H1, ...,Hc, K represent combinatorial operators, combi-

national features can be expressed as

H1
⊕

2 = K(H1,H2),

H1
⊕

2
⊕

3 = K(K(H1,H2),H3),

...

H1
⊕

2···
⊕

c = K(. . . K(K(H1,H2),H3) . . . ).

(3.9)

In the field of biology, hybrid neurons play an important role in the realization

and coding of brain functions [31]. The brain screens the sub-space features, pro-

duced by neurons to remove relevant factors. However, at the same time, the brain

reconstructs sub-space features and generates complex and stable behaviors. Similar

to brain behavior, spatial feature dimensions decrease gradually in the layered HNSN

architecture. Finally, the training data is used for training classifier by early fusion

method.

My proposed framework supports the extraction and combination of arbitrary

types of data and has multiple capabilities, which we will summarize in later sections.

3.4 Experiments

3.4.1 Dataset

Previous studies [9, 55] have shown that raising human emotions through movie clips

[see Table. 3.1 and Fig. 3.4] is reliable. In this chapter, we adopted the SEED dataset

[53], one of the largest databases, which has been popularly used for EEG-based emo-
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No. Emotion label Film clips sources

1 negative Taangshan Earthquake

2 negative Back to 1942

3 positive Lost in Tailand

4 positive Flirting Scholar

5 positive Just Another Pandora’s Box

6 neutral World Heritage in China

Table 3.1: Details of film clips used in the experiment.

Figure 3.4: Procedure of the stimuli playing.

tion recognition. 15 Chinese film clips were chosen as stimuli used in the experiments.

Each film clip is about four minutes long, and carefully selected important clips en-

able it to create coherent emotions, which can well trigger the corresponding human

emotions. There are 15 clips. Each clip has five seconds of prompts before and 45

seconds of feedback after each clip. All movie clips are sorted according to different

emotions to ensure that the same emotional movie clips are displayed discontinuously.

In order to ensure the accuracy of emotional records, each participant completed the

questionnaire immediately after watching. In order to eliminate the influence of gen-

der on emotional recognition, seven males and seven females (a total of 14 subjects)

participated in data collection. Each participant added three data acquisitions at

different times to test the temporal stability of emotion. So we had a total of 3×14

experimental data. All movie clips are divided into three emotions (positive, neutral

and negative). Each emotional data is divided into five different frequency bands,

and DE and PSD features are extracted [9]. According to the international 10-20

system, the EEG NeuroScan system Fig. 3.5 was used to record EEG signals at a
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Table 3.2: Network Configuration

Methods parameter details

SVM Linear Kernel, search space 2[−10:10] with a step of one.
KNN Baseline k equals 5.
ELM 1000 hidden neurons, search space 2[−10:10] with a step of one.

H-ELM N1=N2=300, N3=1000, search space for C1 and C2 is 2[−10:10] with a
step of one.

GELM the number of hidden layer neurons is fixed as 10 times of the dimensions
of input and we adopt a 5-fold cross-validation scheme.

DBN first and second layer of DBN is selected from the ranges of [200:200]
and [150:500], respectively.

HNSN search space for C1 and C2 is 2[−10:10] with a step of one. Three subnet-
work nodes.In each subnetwork node, 500 hidden nodes are used.

OURS CNN part: we use 100 epochs, learning rate of first 30 epochs is 0.1,
from 30 to 70 epochs we use 0.01, from 70 to 100 we use 0.01. HNSN
part: search space for C1 and C2 is 2[−10:10] with a step of one. Three
subnetwork nodes.In each subnetwork node, 500 hidden nodes are used.

sampling rate of 1000 Hz. There are 62 active AgCl electrode channels for recording

EEG signals. The impedance of each channel in the cap was controlled to less than

5 KΩ.

3.4.2 Environment Setting

In this section, we systematically compare the performance of nine methods for emo-

tion recognition: 1) SVM; 2) Extreme Learning Machine (ELM); 3) Graph regular-

ized Extreme Learning Machine (GELM) [54]; 4) Hierarchical ELM (H-ELM) [42];

5) DBNs [53]; 6) Bimodal Deep Auto-Encoder (BDAE) [22]; 7) HNSN [51]; and 8)

Logistic regression (LR); 9) the proposed method. These methods use the above two

features (DE and PSD) as input. For SVM and ELM, parameters are set up from

space [2−10, 2−9,..., 210] in each experiment. For GELM, we set the number of hidden

layer neurons to 10 times the input data dimension, and adopted the cross-validation

scheme [54]. For H-ELM, we used 300 hidden neurons in the first and second layers,

and 1000 hidden neurons in the third layer. (N1 = N2 = 300, N3 = 1000). In

DBN, two hidden layers are used. I trained 1000 epochs with batch size of 201. I set

unsupervised and supervised learning rates of 0.1 and 0.5. In each experiment, the

number of neurons in the first layer of DBN network was selected from [200 : 500],
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Figure 3.5: EEG neuroScan system.

and the number of neurons in the second layer was selected from the range of [150 :

500]. For HNSN, to compare fairly with ELM/SVM, we selected the same values of

C1 and C2, which all choose regularization parameters from space [2−10, 2−9, ..., 210].

For my method, in CNN auto-encoder part, we use epoch 100 and learning rate equals

to 0.1 for first 30 epochs, 0.01 for 30 to 70 epochs and 0.001 for rest epochs, we chose

the batch size of 128, and use SGD optimizer, totally trained 100 epochs. For HNSN

part, in order to be consistent with other methods mentioned above, we choose the

same parameters C1 and C2. My proposed method includes early fusion. Table 3.2

shows the specific settings for different methods.

3.4.3 Weight Coefficient Test

In my approach, weights are added to 12 channels. In order to prove the influence

of weight factors on emotion recognition, we conducted the following experiment. I

selected multiple different weights and performed multiple experiments and compared

the test results. I selected weights from the range of [1:1.4]; when the weight is 1, it

means that no weight is added. It is obvious from the experimental results that when
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Figure 3.6: Comparison experiment results using different weight.

the weight is 1.25, we get the highest accuracy [see Fig. 3.6].

3.4.4 Deep Features Analysis

I used a weight of 1.25 to generate EEG matrices and train the CNN network. Deep

features are extracted from the last dense layer of CNN encoder part, which has the

shape of 1 × 500 (that layer has 500 neurons). To see benefits of deep features,

extracted by my proposed method, we run a t-distributed stochastic neighboring

embedding algorithm (t-SNE) to find two-dimensional embeds of high-dimensional

feature space and plot them as colored points, according to semantic categories in a

particular hierarchy, as shown in Fig. 3.7.

Data from each emotion can be gathered in the potential space, and the generated

data is close to the corresponding actual data, meaning that the generated data

reflects enough realistic information. The generated data complements the training

manifold, bringing better margin for the classifier.
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Figure 3.7: Deep features visualization.

3.4.5 Subject Dependent Test

Subject dependence means use a person’s emotional responses, stimulated from dif-

ferent film clips to predict this person’s emotions. In my dataset, we have total 14

subjects’ data in three time periods or sessions. So in my experiment, we choose first

nine EEG data from each session as training data, while the testing data is from the

last six sessions. The training and testing data are from different sessions of the same

subject. For consistency with other methods, we used only the first and last sessions

in the SEED dataset.

I compared the accuracy of my proposed methods with SVM, ELM, H-ELM, DBNs

[53], LR, Adaptive Subspace Feature Matching (ASFM) [6], Dynamical Convolutional

Neural Networks (DGCNN) [39], BDAE [22], GELM [54] and HNSN [51] to show

the advantages of my proposed method. Table 5.2 and Fig. 5.5 show the results

of comparative experiments. From the table, we can see that the accuracy of my

proposed method is significantly higher than that of other methods. In addition, my

results are consistent with previous studies [53] and [9]. In EEG-based emotional

recognition, DE features have the best performance.

3.4.6 Cross Session Test

Cross session refers to the prediction of a person’s emotions through the corresponding

emotions of the same person at different times. This tests the stability of emotion

recognition model in time domain. As we know that we have total 14 subjects’ data

in three time periods or sessions, there is a week or longer interval between each
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Methods DE PSD

SVM 89.99 59.60
ELM 82.92 60.80
LR 82.70 -
DBNs [53] 86.08 61.90
ASFM [6] 83.51 -
DGCNN [39] 90.40 81.73
BDAE [22] 91.01 85.10
GELM [54] 91.07 72.75
HNSN [51] 91.51 73.81
OURS 94.05 83.34

Table 3.3: Mean Accuracy of Subject Dependent Test

session. This is the novelty of SEED that we developed, compared to my existing

emotional EEG data set. By doing cross session test, my goal is to assess whether the

performance of my emotional recognition model is stable over time. For the dataset,

each subject has three sessions, conducted on different dates. In this test, we use the

first two sessions as input to train my network, and last session is used for testing data.

For all the other methods, the way of parameter selection is the same as mentioned

in the previous session.

Methods DE PSD

SVM 60.95 48.10
ELM 77.62 62.86
H-ELM 80.67 59.05
DBNs [53] 76.57 62.98
ASFM [6] 84.64 -
DGCNN [39] 79.95 64.27
BDAE [22] 66.08 66.23
GELM [54] 79.28 -
HNSN [51] 80.84 61.43
OURS 88.45 68.21

Table 3.4: Mean Accuracy of Cross Session Test

I compared the accuracy of my proposed methods with ELM, H-ELM, SVM, DBN,

ASFM, DGCNN, BDAE, GELM, HNSN to show the advantages of my proposed

method. Table 5.5 and Fig. 5.6 show the performance evaluation of the proposed

method and other methods. As can be seen from Figure 7, the profit of the proposed
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Figure 3.8: Comparison experiment results of Subject Dependent Test.

test accuracy method is obvious.

The results suggest that the relationship between changes in emotional state and

EEG signals is stable for a person over time. The stability of EEG signal decreases

with time. The stability of EEG signals in time domain needs to be studied in the

future.

3.5 Conclusion and Future Work

This chapter presents a CNN auto-encoder combined with a hierarchical network with

sub-network nodes for EEG-based emotion recognition. I can get the following three

conclusions: 1) Convert EEG-based signals to images with spatial location weight

makes features stronger and 2) features extracted from both nonlinear and linear

multi-layer network, rather than extracted from a single linear network and 3) we

use early fusion to combine multiple features. The experimental results show that

my method is suitable for all kinds of EEG data and has good performance. In the

future, in order to test the effect of cerebral cortex on emotion recognition, we intend

to add different weights to EEG data in different frequency bands and select different

electrodes. Currently the classifier we use is not online sequential; we plan to improve

my network structure to make it online sequential, which can be trained by several

epochs and the network performance will be significantly improved.
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4.1 Overview

In the previous chapter we processed one-dimensional EEG signals, so in this chapter

we chose to process 3D data, namely video, to verify the effect of features on the



31

recognition results. Due to human action recognition plays a crucial role in the video

analysis framework. However, a given video may contain a variety of noises, such

as an unstable background and redundant actions, completely different from the key

actions. These noises pose a great challenge to human motion recognition. So, in

order to show the accuracy of feature learning for 3D data recognition, we propose a

new method based on the 3D Bag of Visual Words (BoVW) framework. My method

includes two parts: The first part is the video action feature extractor, which can

identify key actions by analyzing action features. In the video action encoder, by

analyzing the action characteristics of a given video, we use the deep 3D CNN pre-

trained model to obtain expressive coding information. A classifier with sub-network

nodes is used for the final classification. The extensive experiments demonstrate that

my method leads to an impressive effect on complex video analysis. My approach

achieves good performance on the datasets of UCF101 (85.3%) and HMDB51 (54.5%).

4.2 Introduction

Video action recognition is the basic building block in various applications such as

video retrieval, natural human-machine interaction, video surveillance, and digital

entertainment [16, 25, 40]. In action recognition, there are two important and com-

plementary aspects: appearance and dynamics. Video often has some complex fac-

tors, such as camera motion, scale change and viewpoint change. Therefore, whether

the action recognition system can extract and utilize the relevant feature information

is the key to its performance. However, it is not easy to extract features effectively.

Therefore, the question of how to design a network structure to deal with these prob-

lems and retain classified information becomes crucial.

The recent rise of recurrent neural networks (RNNs) have been successfully applied

to action recognition [8, 22]. Existing 3D motion recognition methods based on

RNN are mainly used for time-domain modeling of long-term context information,

representing the dynamic based on motion. However, in the spatial domain, there are

also strong dependencies between nodes. For 3D action recognition tasks, the spatial

configuration of nodes in video frames may be very recognizable. [26] proposed a

spatial-temporal long short-term memory (ST-LSTM) network and achieved a good

performance.

The BoVW framework has recently been used in motion recognition with good

results. This framework includes two parts, feature extractor and classifier. Most
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of the BoVW models adopt Fisher vectors of improved dense trajectories [11, 46]

or CNN features [47] with a classifier such as support vector machine (SVM), and

achieve reliable results on pre-segmented video datasets, such as UCF-101 [41] and

HMDB51 [21].

In action recognition field, 3D CNNs have recently been more effective than the

CNNs with two-dimensional (2D) kernels [5]. Recently, 3D CNNs has been used in

accurate action recognition. However, the 2D model still has strong associations with

video data. Even well-organized 2D models [44, 45] cannot overcome the advantages

of 2D CNNs combining stacked flow with RGB images [38], mainly because video

datasets usually have small data-scales, preventing optimization of a large number

of parameters in 3D CNNs cannot be optimized. In addition, 3D CNNs can only

be trained on a video data set from scratch, while 2D CNNs can be pre-trained on

ImageNet. Recently, [5] trained 3D CNNs on Kinetics dataset and boomed the per-

formance, which also made it possible for us to use a 3D pre-trained model. Thus, we

can now use a Kinetics datasets pre-trained model to perform my action recognition.

Figure 4.1: Proposed framework including feature extractor and classifier.

In this chapter we propose a BoVW framework. My network contains two parts,

a feature extractor and a classifier [Fig. 4.1]. I use a 3D residual networks (ResNet)

[15] pre-trained model as my feature extractor and for the classifier, we proposed

a Single Layer Feedforward Network with Subnetwork Nodes (SLFN). I tested the

ResNet model of different structures from a shallower to a deeper network model
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using the UCF-101 and HMDB-51 datasets in order to ascertain which structure

has the best performance. Additionally, we also tested the feasibility of the pre-

trained model. I optimized my SLFN parameters to achieve a better performance.

In addition, we evaluated the approach we proposed in terms of accuracy and time

consumption. Furthermore, other classifiers, such as SVM, can be used in the method

as well. My proposed method could use any type of videos. The proposed framework

is summarized in the following section.

4.3 Method

4.3.1 Network structure

The BoVW structure plays a powerful role in image recognition. The general idea

of BOVW is to reduce the dimensions of an image or video and encode it into a set

of features. Features comprise key points and descriptors. The key points are the

”salient points” in the image, so the key points are the same whether the image is

rotated, shrunk, or expanded. A descriptor is a description of the key points. So we

can represent each image in terms of the frequency of its features and by virtue of its

feature frequency, we can predict the category of another image. In order to explore

whether this structure is used in the field of action recognition, we built my network,

see Fig. 1 below, and tested the performance.

4.3.2 3D ResNet

For the extractor, we focused on 3D CNNs that have begun to perform better than 2D

CNNs on large-scale video datasets. Recently, [13] conducted a series of experiments

using different depth 3D ResNet; they also compared the performance between a

base model and a pre-trained model. Their experiments showed that the ResNet-101

pre-trained model demonstrated the best performance.

In my study, based on those experiments results provided by [13], we choose the

3D ResNet pre-trained model as my feature extractor. To ensure the accuracy of the

results, we reevaluated all experiments. I also tested the performance of 3D ResNet

with different depths. The results of my experiment are shown in the following section.
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4.3.3 Feature extraction from 3D ResNet models

As mentioned in the previous subsection, the 3D ResNet models have been considered.

This model was previously trained on a Kinetics dataset with obtained impressive

results. ResNet is known to be a deep CNN model that consists entirely of several

convolution layers but only one fully connected layer. Average-pooling layers are

employed after convolution layers. As shown in Fig. 4.2 we extracted deep features

from the average pool layer.

Figure 4.2: Architecture of the 3D ResNet.

4.3.4 Single-layer classifier with sub-network nodes

Figure 4.3: My proposed classifier.

In video data processing, time cost and computation cost are often relatively high;

so, my proposed new classifier greatly reduces time and computational cost compared
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to traditional classifiers such as SVM and ELM, and iterative training tends to achieve

better results.Fig. 4.3 shows the structure of my classifier.

As we have encoded features data, we will use the proposed SLFN on the encoded

dimension data to classify objects with L numbers of sub-networks. Thereafter, we

will split the data along with target label data with n size and send it to the network

to train it. First, we will use (x0, t0) chunk of data for the initial training of the

network. Thereafter, ei will represent the residual network error and (α̂i, β̂) will

define the input weight and output weight which are going to be updated in every

iteration.

α(0) = x−10 · h−1(e0) = (xT
0 x0 + (Id×d/c))

−1xT
0 h
−1(e0) (4.1)

where h−1(·) has been used as the inverse function of h(·). I would use m0 to

represent xT
0 x0 + (Id×d/c). Now we can write Eq. (3.1) in following way:

α(0) = m0x
T
0 h
−1(e0) (4.2)

After the initial training, we will update the input weight in a sequential manner

with the next batch of training samples (xi, ti), I combine x0 and x1 together as well

as their corresponding residual error e0 and e1, theoretically, we can get the following:

α̂1 = m−11

[
x0
x1

]T [
h−1(e0)

h−1(e1)

]
(4.3)

where 
m1 = Id×d/c+

[
x0
x1

]T [
x0
x1

]
m1 = Id×d/c+ xT

0 x0 + xT
1 x1

m1 = m0 + xT
1 x1

(4.4)

and 

[
x0
x1

]T [
h−1(e0)

h−1(e1)

]
= xT

0 h
−1(e0) + xT

1 h
−1(e1)

= m0m
−1
0 xT

0 h
−1(e0) + xT

1 h
−1(e1)

= m0α0 + xT
1 h
−1(e1)

= (m1 − xT
1 x1)α0 + xT

1 h
−1(e1)

= m1α0 − xT
1 x1α0 + xT

1 h
−1(e1)

(4.5)
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According to Eq. (3.3), (3.4) and (3.5), we derive
α̂1 = m−11 [m1α0 − x−11 x1α0 + xT

1 h
−1(e1)]

= α0 −m−11 xT
1 x1α0 + m−11 xT

1 h
−1(e1)

= α0 + m−11 xT
1 [h−1(e1)− e1α0]

(4.6)

I can generalize Eq. (3.6) to

ˆαi+1 = αi + m−1i+1x
T
i+1[h

−1(ei+1)− xi+1αi] (4.7)

Instead of calculating (α̂n) for each epoch, we can use the previous knowledge and

update it by passing new chunk of encoded. Suppose the chunk of data we send for

initial training is xen init and remaining data will be considered as xen seq. If total

numbers of training epochs are Total Epochs and batch size for sequential data is

BATCH SIZE. I will train my network in the following manner:

Algorithm 1 OS-Subnetwork training algorithm

Result: Update αL sequentially and calculate corresponding βL

Split the dataset for initial and sequential training;

epoch← 0;

For (xen init, ten init), we obtain αLand βL for each subnetwork

while epoch < Total Epochs do
l ← 0;

while l < length(xen seq) do

if l +BATCH SIZE ≤ length(xen seq) then
xbatch ← xen seq[l : l +BATCH SIZE];

tbatch ← ten seq[l : l +BATCH SIZE];

else
xbatch ← xen seq[l :];

tbatch ← ten seq[l :];

end

l ← l +BATCHSIZE;

Update sequentially αL and calculate βL;

end

epoch← epoch+ 1;

end
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The performance of the proposed algorithm depends on both the number of hidden

neurons m (encoding dimension) and the pre-defined constant c. A proper way of

selecting the optimal value of c is chosen by the trial-and-error method [18]. Now,

we will use the Online Sequential-Subnetwork on encoded dimension data to classify

objects with L numbers of sub-networks.

4.4 Experiment results

4.4.1 Dataset

The HMDB-51 [21] and UCF-101 [41] datasets are currently the most successful in the

field of action recognition. UCF101 has a total of 13320 videos, including 101 action

categories. Moreover, video in this dataset have diverse actions, with very different

camera movements and often messy background. It is one of the most challenging data

sets available. The videos in 101 action categories are divided into 25 groups, where

each group can consist of 4-7 videos of an action. The videos from the same group

may share some common features, such as similar background, similar viewpoint and

so on. The HMDB51 dataset contains 6849 clips divided into 51 action categories,

each containing a minimum of 101 clips. Fig. 4.4 shows samples from the video frames

of datasets utilized to evaluate my method performance.

Figure 4.4: The samples of video frames from UCF-101 and HMDB-51 datasets.

In the training and testing process, it is very important to separate the video

belonging to the same group. Since videos within a group are all from a single long

video, sharing videos from the same group in the training set and testing set can

achieve higher performance. So, each of these datasets provide train and test splits

files. I evaluated my network performance based on these splits files and calculated
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average performance.

4.4.2 Environment setting

To test my proposed method, we compare my work with different depth 3D ResNet

and classifiers; we also compare my proposed method with other state-of-the-art meth-

ods. To find the best performance of my extractor, we compared it with pre-trained

3D ResNet with different depth and learning from scratch. I compared the classifier

with Support Vector Machine (SVM), Extreme Learning Machine (ELM), K-nearest

neighbors (KNN) and Random Forest (RF) [4]. For SVM and ELM, parameters were

set up from [2−10, 2−9, . . . , 210] in each experiment. For KNN we set K to 3 and we use

auto algorithm. I selected 100 as my RF estimators. For my proposed classifier, the

regularization parameter C is selected from C ∈ [2−4, . . . , 28]. To test the efficiency

of my algorithm, we run my experiments on 2 datasets, which are conducted on a

machine with an NVidia GTX-1080Ti GPU.

4.4.3 Extractor evaluation

According to a previous study [13], 3D ResNet trained on UCF-101 and HMDB-51

does not achieve high accuracy whereas a Kinetics pre-trained model works well. In

this section, aiming to find the optimal feature extractor, we tried to reproduce the

performance in the experiment. In this process, we trained 3D ResNets with different

depths by UCF-101 and HMDB-51 dataset from scratch and then we trained Kinetics

pre-trained 3D ResNet models as well. Based on previous study [13], we have known

that when we devide the video in to 15 frames, 3D ResNet has the best performance.

To make the result fairly, we use train and test split file 1; choose batch size of 32,

and train 50 epochs. The performances are shown in Tab. 4.1.

As Tab. 4.1 shows Kinetics pre-trained models perform significantly better then

learning from scratch. 3D ResNet-101 has the best performance both for learning

from scratch and transfer learning. It indicates that the 3D ResNet-101 pre-trained

model can learn optimal features more accurately in less time compared to other

methods. Therefore, we choose it as my extractor and use it in later experiments.
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Model UCF-101 HMDB-51

Learning from scratch
3D ResNet-18 35.9 10.1
3D ResNet-34 33.3 12.5
3D ResNet-50 34.5 12.8
3D ResNet-101 38.1 14.1

Transfer learning
3D ResNet-18 71.4 41.6
3D ResNet-34 76.4 44.3
3D ResNet-50 75.6 46.4
3D ResNet-101 78.9 47.8

Table 4.1: Performances of 3D ResNets

4.4.4 Classifier evaluation

After the experiment above, we choose a 3D ResNet-101 pre-trained model as my

extractor. In this section we evaluated my proposed classifier’s performance. A

performance comparison has been evaluated among SVM, ELM, KNN, RF and my

proposed algorithm. For the accuracy and fairness of the experiment, we first trained

an extractor and extracted deep features; later, the classifier recognized the actions.

Further, we carried out this experiment in Tab. 4.4 to compare my single-layer network

with those learning algorithms. Here, it can be seen that the accuracy of my method

is clearly higher compared that of other classifiers.

Model UCF-101 HMDB-51

3D ResNet-101+SVM 83.3 50.8
3D ResNet-101+ELM 84.7 53.7
3D ResNet-101+KNN 82.3 48.6
3D ResNet-101+Rf 43 39.1
3D ResNet-101+Mys 85.3 54.5

Table 4.2: Performances of different classifiers

I also evaluated the time consumption, and the comparison results of time con-

sumption are shown in Tab. 3, which indicates that my classifier has seen a significant

improvement in testing speed compared to SVM. Further, the ELM testing speed is

similar. However, my classifier supports iterative training, and the corresponding

batch size can be set according to the situation, which is especially important in
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video processing and in especially large video datasets.

Model UCF-101 HMDB-51

SVM 486 116
ELM 10 3.7
KNN 567 85
Rf 18.6 4.8
Mys 2.2 0.96

Table 4.3: Time consumptions of different classifier (s)

4.4.5 Framework evaluation

The above experiments show that a Kinetics dataset can be used to train my network.

Comparisons with other state-of-the-art architectures are shown in Tab. 4.4. As can

be seen from Tab. 4.4, my method achieved higher accuracies compared with 3D

Resnet-101, 3D ResNext-101 [13], C3D [44], P3D [30], and two-stream I3D [5]. I

can also observe that two-stream I3D, which is pre-trained by the Kinetics dataset,

achieves the best accuracy. In addition, we believe that combining the two-stream

architecture with my framework can further improve the accuracy of two-stream I3D.

Model UCF-101 HMDB-51

3D ResNet-101 78.9 10.1
3D ResNext-101[13] 81.4 50.3
C3D[44] 78.1 -
P3D[30] 80.2 -
Two-stream I3D[5] 92.5 63.7
Mys 85.3 54.5

Table 4.4: Performances of different classifiers

4.5 Conclusion

In this chapter, we tested various CNNs architectures of spatio-temporal three-dimensional

convolution kernels on the current video dataset. According to these experimental

results, the following conclusions can be drawn: (1) The BoVW structure is efficient
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on video processing. (2) It is effective for 3D CNNs to pre-train on the Kinetics

dataset, which has sufficient data to optimize the 3D CNN network. (3) Instead of

using randomized input weights, we can approach a classifier where weights would

be configured by calculation and reach to the steepest descent in iterative manner

without configuring the learning rate.
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5.1 Overview

In the previous chapter, we improved the accuracy of motion recognition through 3D

feature extraction, but my method was not state-of-the-art. In the previous chapter,

we cited a novel feature extraction method. That is, two-stream feature extraction

and fusion, achieved the state-of-the-art results in action recognition. I believe that

EEG feature extraction is an important part of emotion recognition and could offer

a significant computational advantage over recognition accuracy. However, based

on two-stream feature extraction method, EEG features can be further encoded or

extracted to have better recognition accuracy and generalization performance. Thus,

this chapter proposes a multi-stream hierarchical network framework that learning

behaviors of features combined from multi networks. Features of EEG signal were

extracted from temporal, spatial and frequency domain respectively, and the impact

of fusion of different features on the recognition accuracy was tested and analyzed. I

evaluated my framework on the SEED dataset and SEED-V dataset and compared

with other methods, we achieved state-of-the-art results.

5.2 Introduction

In the past few years, many good feature descriptors have appeared for target recog-

nition. Many methods divide the input data into dense patches arranged regularly,

and then extract the features of these patches. The characteristics of these patches

are then combined in some way as the characteristics of this input data. In a nutshell,

a large part of these systems is a feature extraction process: the input passes through

a filter bank filter bank (generally an edge detector based on directionality), and then

passes through a non-linear operator non-linear operation (quantization, winner-take-

all, sparsification, normalization, and point-wise saturation), and then use a pooling

operation (pass the value of the real space or feature space neighborhood through

a max, average, or histogramming operator) to The peacekeeping gets a certain in-

variance. For example, the SIFT feature, which we are familiar with, first passes

the directional edge detector for each small patch, and then uses the winner-take-all

operator to obtain the most significant direction. Finally, the histogram of the local

direction is counted on the larger patch, and pooled into a sparse vector.

For a layer of feature extraction system, that is, after extracting the above fea-

ture, such as SIFT, HOG, etc., and then directly connecting a supervised learning
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Figure 5.1: Proposed framework, 1) 1st general layer: feature extraction. 2) 2nd

general layer: early fusion. 3) 3rd general layer: classifier with subnetwork nodes.

classifier, it constitutes a target recognition system. Some models use two or more

levels of feature extractors, and then a supervised learning classifier to form a more

complex target recognition system. The essential differences between these systems

are: there are one or more feature extraction layers, non-linear operators used after

the filter bank, the filter bank is obtained (manual selection, unsupervised learning

or supervised learning), and the selection of the top classifier (A linear classifier is a

more complex classifier.)

Generally, the choice of filter bank is Gabor wavelet, and some people choose some

simple directional detection filter bank, that is, gradient operators, such as SIFT

and HOG. There are also those filter banks that are learned directly from training

data through unsupervised learning methods. When training on natural images, the

learned filters are similar to Gabor edge detection. A benefit of the feature learning

method is that it can learn features hierarchically. Because we have a certain prior

knowledge, for secondary features, humans do not have similar prior knowledge. So

it is more difficult to manually design a better secondary feature extractor. So, the

second-level or multi-level features must let the system learn by itself. There are a

lot of methods now, supervised, unsupervised, or a combination of the two.

In Chapter 3, we improved the accuracy of emotion recognition by fusing spa-

tial features with frequency-domain features. [2] proposed using the Long short-term

memory (LSTM) [17] network for emotion recognition based on EEG signals, and

achieved good results, proving that the EEG signals are continuous in the time do-

main. Their method also proved that EEG EEG signals are time-domain. Based

on [10] method, time-domain features can be extracted for any datasets with time-
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domain features to increase recognition accuracy.

I extract DE features from the EEG 1-dimensional raw data (see 3.3.1 for the

extraction method). I call the DE features a first-level feature. Through the DE

feature extraction algorithm, we can know that the DE features are also continuous

in the time domain, which means that DE features can extract secondary features in

the time domain.

Motivated by these evidences, this chapter proposes an multi-stream method that

fusing temporal, spatial and frequency features for emotion recognition [see Fig. 5.1].

In particular, this chapter makes the following contributions.

1. I propose a multi-stream hierarchical network framework learning behaviors of

features combined from multi networks. Each stream can extract temporal, spa-

tial and frequency features respectively, which significantly improve accuracy.

I adopted an early fusion method that is better than later fusion by fusing

different features into one super vector.

2. My proposed method is based on the extraction of second-level features. The

experimental results prove that the second-level features have better ability to

describe the input data than the first-level features.

3. Superb generalization performance. My method is evaluated on two datasets

(SEED and SEED-V), we tested my framework by using original EEG signals,

DE features and PSD features and compared with several state-of-the-art meth-

ods and we got the best performance.

5.3 Method

5.3.1 First General Layer: Feature Extraction

Two-layers Auto-encoder Network

A two-layer auto-encoder has been introduced [50] where only the encoding layer

weight has been generated randomly, based on which the decoding layer weight has

been calculated. The auto-encoder aims is to minimize the reconstruction loss, which

is the squared error between the input X and the neural network output Ŷ .

I briefly describe the Auto-encoder algorithm in the following steps.
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Step-1: Given M arbitrary distinct training samples (xk,yk)Mk=1,xk ∈ Rn are sam-

pled from a continuous system. Randomly initialize the entrance layer sub-network

node:

Hc
f = g(âc

f , b̂
c

f ,x), (âc
f )T · âc

f = 1, (b̂
c

f )T · âc
f = 1 (5.1)

where âf ∈ Rd×n, b̂f ∈ R is the orthogonal random weight and bias of the entrance

mapping layer. Hc
f is the c-th subspace features. c represents sub-network node index

and initial index c = 1.

Step-2: Given an invertible activation function g, obtain the sub-network node of

the exit feature layer (âc
h, b̂

c

h) by

âc
h = g−1(un(y)) · (Hc

c)
−1, âc

h ∈ Rd×m,

b̂
c

h =
√
mse(âh ·Hc

f − g−1(un(y))), b̂
c

h ∈ R
(5.2)

where H−1 = HT (C1/I + +HHT )−1;C1 > 0 is a regularization value; un is a nor-

malized function un(y) : R→ (0, 1]; g−1 and u−1n represent their reverse function.

Step-3: Update the output error ec as

ec = y− u−1n g(Hc
f , â

c
h, b̂

c

h) (5.3)

I can get error feedback data Pc = g−1(un(ec)) · (âc
h)−1.

Step-4: Update the sub-network node âc
f , b̂

c

f in the entrance layer

âc
f = g−1(uj(Pc−1)) · x−1, âc

f ∈ Rn×d,

b̂
c

f =
√
mse(âc

f · x−Pc−1), b̂
c

f ∈ R
(5.4)

Step-5: obtain the c-th subspace feature data

Hc
f = g(x, âc

f , b̂
c

f ) (5.5)

Step-6: Set c = c+ 1, add a new sub-network node âc
f , b̂

c

f in the feature mapping

layer with orthogonal random initialization.

Step-7: Repeat steps 2 to 6 L − 1 times, then obtain the L subspace features

[H1
f , ...,H

L
f ].
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CNN Auto-encoder

In Chapter 3 [see 3.3], we proposed a CNN-based auto-encoder network structure,

which achieved good results. In this chapter, we continue to use the network to

extract spatial and time domain features.

5.3.2 Second general layer: Early fusion

Since we extract features (temporal, spatial, frequency) through multiple streams, we

need to find a way to fuse these features. [35] and [52] show that If there is correction

information between different features, then the simple stitching of features into a

super vector, then early fusion can promote later fusion. For example, we use two

different networks to extract two different features. I define those features extracted

from the first network as H1 =
{
H1

1,H
1
2, ...,H

1
c

}
, and features extracted from the sec-

ond network as H2 =
{
H2

1,H
2
2, ...,H

2
c

}
. After early fusion, we can generate composite

features.

H1
⊕

2 = [H1
1,H

1
2, ...,H

1
c ,H

2
1,H

2
2, ...,H

2
c ]

T (5.6)

Given that several features H1, ...,Hc, K represent combinatorial operators, com-

binational features can be expressed as

H1
⊕

2 = K(H1,H2),

H1
⊕

2
⊕

3 = K(K(H1,H2),H3),

...

H1
⊕

2···
⊕

c = K(. . . K(K(H1,H2),H3) . . . ).

(5.7)

In the field of biology, the brain’s mixed neurons play an important role in the

realization and coding of brain functions. The brain uses subspace features generated

by neurons to eliminate related factors. At the same time, the brain reorganizes

subspace features and fuses them into complex and stable behaviors. Therefore, the

method we use conforms to the biological structure. At the fusion layer, we use the

training samples in the final classifier through the early fusion method.

For my framework, any type of data can be extracted and combined directly. My

approach has multiple features that can be summarized in the following sections.
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5.3.3 Third General Layer: Classifier with Sub-network Nodes

I adopted my previous classifier [49] as my final classifier. Given M distinct feature

samples combined from combination operator (H,t). u(x) : R→ (0, 1] is a normalized

function; g is a sigmoid or sine activation function, and then for any continuous

outputs t, we have limn→+∞‖t− ((g(a1
p,b

1
p,H)) · β1

p + · · ·+ (g(ac
p,b

c
p,H)) · βc

p)‖ = 0

holds with probability one if

ac
p = g−1((ec−1)) ·HT

(
C

I
+ HHT

)−1
,

bcp = sum(ac
p ·H− h−1((ec−1)))/N, b

c
p ∈ R.

(5.8)

g−1(·)

{
arcsin (·) if g(·) = sin (·),
− log

(
1
(·) − 1

)
if g(·) = 1/(1 + e−(·)),

ec = t− u−1n g(H, ac
p,b

c
p),

βc
p =
〈ec−1, u

−1(g(ac
p ·H + bcp))〉

‖u−1(g(ac
p ·H + bcp))‖2

.

(5.9)

where [·]−1 represents its inverse function.

5.3.4 Generate Inputs to CNN Auto-encoder

Spatial Inputs

Figure 5.2: Converting EEG-based signals to matrix.

EEG signals are collected at different spatial locations in the cerebral cortex and
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are composed of multiple time series. Therefore, EEG signals have additional spatial

information.

The one-dimensional data obtained by analyzing this measurement method is the

standard method in EEG data analysis. However, this approach obviously ignores

the relationship between space and frequency. Therefore, we convert the measured

values into a two-dimensional matrix to preserve the spatial structure and use multiple

channels to represent the spectrum of bands with different frequencies.

Both DE and power spectral density (PSD) features contains the values of 62

electrodes in five frequency bands. The detailed order of the channels is included

in the dataset. The EEG cap according to the international 10-20 system for 62

channels.

Filters in convouational neural networks (CNNs) can learn patterns of adjacent

values in the connectivity matrix, which enables CNN to learn spatial features of a

two-dimensional matrix. In order to generate the input matrix data of CNN, we need

to convert the EEG feature data as two-dimensional matrices. I converted the EEG

data into a 9×9 matrix, for the boundaries of the matrix and positions of the null

electrodes are padding with zeros. The matrix can be defined as

T (n) =


0 0 0 FP1 FPZ FP2 0 0 0
0 0 0 AF3 0 AF4 0 0 0
F7 F5 F3 F1 FZ F2 F4 F6 F8
FT7 FC5 FC3 FC1 FCZ FC2 FC4 FC6 FT8
T7 C5 C3 C1 CZ C2 C4 C6 T8
TP7 CP5 CP3 CP1 CPZ CP2 CP4 CP6 TP8
P7 P5 P3 P1 PZ P2 P4 P6 P8
0 PO7 PO5 PO3 POZ PO4 PO6 PO8 0
0 0 CB1 O1 OZ O2 CB2 0 0

 (5.10)

Where n represents frequency bands. So the EEG data meshes D is created as follows:

D(n) = [T1, T2, ..., T5] (5.11)

Temporal Inputs

In this section, we describe a network use temporal recognition stream as input. The

input of the model is generated by stacking the displacement of several consecutive

frames of data, which clearly describes the motion trajectory between signal points.

Therefore, the network itself does not need the ability to learn motion features, so,

we use the same structure as the network that extracts spatial features.

I use df to represent the displacement vector of signal strength from one electrode

at frame f , which moves the point to the corresponding point in the next frame f+1.

Suppose we have a total of M electrode signals for the EEG signal, to represent the
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motion across a series of frames, we stack the stream dMf of N consecutive frames to

form a total of M ×N input image. Therefore the input is well suited to recognition

using a convolutional network. So, the input volume If ∈ RM×N for an arbitrary

frame f can be described as follows:

Imf (k) = dmf+k−1, m = [1 : M ], k = [1 : N ] (5.12)

Furthermore, different structures auto-encoder can be used in my method, other

classifiers, such as SVM or ELM, can also be used in the method as well. The proposed

algorithm could be summarized in the following Algorithm 2.
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Algorithm 2 The proposed method

Given a large training dataset (xk,yk)Mk=1, xk ∈ Rn, an invertible activation function

g, number of hidden nodes in each sub-network node d (d equals number of targeted

dimensionality of the subspace features), regularization coefficient C, and the number

of sub-network nodes L:

First general layer: Subspace feature extraction:

Step 1: Convert EEG-based signal to images and temporal stream by equation (5.10-

5.12)

Step 2: Extract frequency features. Set c = 1, randomly generate the sub-network

node for entrance feature layer by equation (5.1).

while c < L do
Calculate the sub-network node for exit feature layer by equation (5.2);

Calculate the output error and error feedback data by equation (5.3);

Update the sub-network node âc
f , b̂

c

f in the entrance layer by equation (5.4);

Obtain the c-th subspace feature data by equation (5.5);

Set c = c + 1, add a new sub-network node âc
f , b̂

c

f in the feature mapping layer

with orthogonal random initialization (equation (5.1));

Repeat L− 1 times, obtain the L subspace features H1;

end

Step 3: Train CNN auto-encoder by EEG images and extract spacial features H2.

Step 4: Train CNN auto-encoder by EEG temporal stream and extract temporal

features H3.

Second general layer Feature combination

Obtain combined features H as:

H = H1
⊕

2
⊕

3 (5.13)

Third general layer: Pattern learning:

Given combined feature H, set c = 1, e1 = t.

while c < L do
Step 1: Calculate the cth sub-network node (acp, b

c
p), and output weights βc

p as:

ac
p = g−1((ec−1)) ·HT

(
C

I
+ HHT

)−1
, acp ∈ Rn×m

bcp = sum(ac
p ·H− h−1((ec−1)))/N, b

c
p ∈ R

βc
p =
〈ec−1, u

−1(g(ac
p ·H + bcp))〉

‖u−1(g(ac
p ·H + bcp))‖2

(5.14)

Step 2: Calculate ec = ec−1 − β · g(ac
p, b

c
p, β

c
p)

end
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5.4 Experiments

5.4.1 Dataset

Figure 5.3: Experiment protocol.

Previous studies [9, 55] have shown that raising human emotions through movie

clips is reliable. In this chapter, we adopted the SEED [53] and SEED-V [23] dataset,

one of the largest databases, which has been popularly used for EEG-based emo-

tion recognition. Video clips with audio were used to elicit specific emotions of the

subjects’ emotions. Each film clip is about fmy minutes long, and carefully selected

important clips enable it to create coherent emotions, which can well trigger the

corresponding human emotions. There are 15 clips. Each clip has five seconds of

prompts before and 45 seconds of feedback after each clip [see Fig. 5.3]. All movie

clips are sorted according to different emotions to ensure that the same emotional

movie clips are displayed discontinuously. To test the stability of EEG signals for

sentiment analysis over time and the performance of cross-session emotion recogni-

tion, All experimental participants were required to conduct 3 trials, each trial being

more than 3 days. To ensure the accuracy of emotional records, each subject was

asked to complete an Eysenck Personality Questionnaire (EPQ) before the start of

each trial. Extroverts who proved stable were selected as subjects. Therefore, sub-

jects who reported themselves as normal participated in the experiment. According to

the international 10-20 system, the EEG NeuroScan system was used to record EEG

signals at a sampling rate of 1000 Hz. There are 62 active AgCl electrode channels

for recording EEG signals. The impedance of each channel in the cap was controlled

to less than 5 KΩ.
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5.4.2 Environment Setting

In this section, we systematically compare the performance of nine methods for emo-

tion recognition: 1) SVM; 2) Extreme Learning Machine (ELM); 3) Graph regular-

ized Extreme Learning Machine (GELM) [54]; 4) Hierarchical ELM (H-ELM) [42];

5) DBNs [53]; 6) Bimodal Deep AutoEncoder (BDAE) [22]; 7) HNSN [51]; and 8)

Logistic regression (LR); 9) the proposed method. These methods use the above

two features (DE and PSD) as input. In order to be consistent with the previous

experiment, we used the same environment configuration, as shown in the Table 3.2

5.4.3 SEED Dataset

SEED dataset has three emotion status which are positive, negative and neutral. A

total 14 subjects’ (7 males and 7 females) data in three time periods or sessions are

provided in the dataset.

Subject Dependent Test

Methods DE

Frequency Stream 91.67
Spatial Stream 88.9
Temporal Stream 76.59
Multi-Stream 94.84

Table 5.1: Mean Accuracy of Each Stream and Multi-strem Fusion Approaches

Subject dependence means use a person’s emotional responses, stimulated from

different film clips to predict this person’s emotions. In this experiment, the training

sample contains 15 sessions. The training and testing data are from different sessions

of the same subject. For cross validation, we randomly split train/test splits (nine

sessions as training data, while the rest six sessions as testing data) for three times.

For consistency with other methods, we used only the first and last sessions in the

SEED dataset. Table 5.1 shows the performance of each stream and my method.

For emotion recognition using DE feature we obtain an average accuracy of 94.84%,

which is nearly 3% higher than [51] method. I also analyze the confusion matrices

of each stream to investigate the complementary characteristics. Fig. 5.4 present the

confusion matrices of each stream and the fusion approaches.
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Figure 5.4: The confusion matrices of each single stream and three stream fusion
approaches: (a) Frequency stream. (b) Spatial stream. (c) Temporal stream. (d)
Multi-stream.



55

For the performance of multi-stream fusion approaches shown in Fig. 5.4, these

multi fusion methods can significantly improve the classification performance in neg-

ative emotions which improves the accuracies of 6%, compared with a single stream.

However, the fusion of these multi-stream has no advantage over a single stream in

categorizing neutral and positive emotions.

I compared the accuracy of my proposed methods with SVM, ELM, H-ELM, DBNs

[53], LR, Adaptive Subspace Feature Matching (ASFM) [6], Dynamical Convolutional

Neural Networks (DGCNN) [39], BDAE [22], GELM [54] and HNSN [51] to show

the advantages of my proposed method. Table 5.2 and Fig. 5.5 show the results

of comparative experiments. From the table, we can see that the accuracy of my

proposed method is significantly higher than that of other methods. In addition, my

results are consistent with previous studies [9] and [53]. In EEG-based emotional

recognition, DE features have the best performance.

Methods DE PSD

SVM 89.99 59.60
ELM 82.92 60.80
LR 82.70 -
DBNs [53] 86.08 61.90
ASFM [6] 83.51 -
DGCNN [39] 90.40 81.73
BDAE [22] 91.01 85.10
GELM [54] 91.07 72.75
HNSN [51] 91.67 73.81
OURS 94.84 83.34

Table 5.2: Mean Accuracy of Subject Dependent Test

Cross Session Test

Cross session refers to the prediction of a person’s emotions through the corresponding

emotions of the same person at different times. This tests the stability of emotion

recognition model in time domain. As we know that we have total 14 subjects’ data

in three time periods or sessions, there is a week or longer interval between each

session. Compared to other datasets and emotion recognition models, my method is

novel in assessing whether the performance of my emotion recognition model is stable

over time by performing cross-session testing. For the dataset, each subject has three
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Figure 5.5: Comparison experiment results of Subject Dependent Test.

sessions, conducted on different dates. For cross validation test, we randomly split

train/test splits (two time periods data as training data, while the rest one time

period data as testing data) for three times. For all the other methods, the way of

parameter selection is the same as mentioned in the previous session.

I compared the accuracy of my proposed methods with ELM, H-ELM, SVM, DBN,

ASFM, DGCNN, BDAE, GELM, HNSN to show the advantages of my proposed

method. Table 5.5 show the performance evaluation of the proposed method and

other methods. As can be seen from Table 5.5 and Fig. 5.6, the profit of the proposed

test accuracy method is obvious.

The results suggest that the relationship between changes in emotional state and

EEG signals is stable for a person over time. The stability of EEG signal decreases

with time. The stability of EEG signals in time domain needs to be studied in the

future.

5.4.4 SEED-V dataset

In order to show my framework generalization performance and test how my network

performs on datasets with more emotional categories, we adopt SEED-V dataset

which has five emotion status, disgust, fear, sad, neutral and happy. In the experi-

ment, carefully selected film clips are used as the stimuli, which have been explored
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Methods DE PSD

SVM 60.95 48.10
ELM 77.62 62.86
H-ELM 80.67 59.05
DBNs [53] 76.57 62.98
ASFM [6] 84.64 -
DGCNN [39] 79.95 64.27
BDAE [22] 66.08 66.23
GELM [54] 79.28 -
HNSN [51] 80.84 61.43
OURS 88.45 68.21

Table 5.3: Mean Accuracy of Cross Session Test

Methods DE

Frequency Stream 61.50
Spatial Stream 64.29
Temporal Stream 66.27
Multi-Stream 71.48

Table 5.4: Mean Accuracy of Each Stream and Multi-strem Fusion Approaches

to have reliability in eliciting emotions [34]. [23] first proposed and used the SEED-V

dataset, and obtained a recognition accuracy of 69.5%. A total of 45 video clips with

highly emotional contents are used and edited into 3 segments, each of which consists

15 clips (3 for per emotions). For each segment, 15 clips are placed at random, but

for the convenience of subsequent 3-fold cross-validation, the 5 clips in each fold are

guaranteed to have different emotion labels. Sixteen healthy subjects (6 males and

10 females) participant in the experiments and each subject is required to perform

the experiments for three sessions, at an interval of one week or longer. EEG signal

is collected simultaneously when the subjects are watching the film clips.

Experiment results have shown that DE features have the best performance, so

we only DE features in the latter experiments. I use the same way to generate three

train/test splits as mentioned above. I first compared each stream features approach

accuracy [see Tab. 5.4]. As we can see fusing multi stream features achieves the best

performance.

To further analysis the effect of multi-stream features on my final accuracy, I an-

alyze the confusion matrices of each stream to investigate the complementary char-
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Figure 5.6: Comparison experiment results of Cross Session Test.

acteristics. Fig. 5.7 present the confusion matrices of each stream and the fusion

approaches. It can be seen from the Fig. 5.7 that the features of different channels do

not complement emotion recognition, but enhance the recognition accuracy of each

emotion category.

To see benefits of deep features, extracted by my proposed method, we run at-

distributed stochastic neighboring embedding algorithm (t-SNE) to find two-dimensional

embeds of high-dimensionalfeature space and plot them as colored points, according

tosemantic categories in a particular hierarchy, as shown in Fig. 5.8. Data from each

emotion can be gathered in the potential space, and the generated data is close to

the corresponding actual data, meaning that the generated data reflects enough real-

istic information. The generated data complements the training manifold, bringing a

better margin for the classifier.

Methods Subject Dependent Test Cross Session Test

ELM 33.69 31.28
SVM 57.52 42.59
BDAE [? ] 69.50 -
HNSN[51] 61.50 33.3
OURS 71.48 44.29

Table 5.5: Mean Accuracy of Cross Session Test
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Figure 5.7: The confusion matrices of each single stream and three stream fusion
approaches: (a) Frequency stream. (b) Spatial stream. (c) Temporal stream. (d)
Multi-stream.

I also did subject dependent test and cross session test and compared the accuracy

of my proposed methods with SVM, ELM, BDAE and HNSN. Table 5.5 shows the

performance comparison between the proposed method and other methods.

5.5 Conclusion

This chapter presents a multi-stream features combination method for EEG-based

emotion recognition. The problem is approached from three main directions: 1) De-

composing and transforming one-dimensional EEG signals into temporal and spatial
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Figure 5.8: The visualization results of each single stream and three stream fusion
approaches: (a) Frequency stream. (b) Spatial stream. (c) Temporal stream. (d)
Multi-stream.

and frequency features is effective for emotion recognition and 2) features extracted

from both nonlinear and linear multi-layer network, rather than a single linear net-

work and 3) Early fusion incorporates multiple morphological features. Experimental

results show that my method can be used as a local feature extractor, Combiner and

classifier, and its performance is better than other methods.
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Chapter 6

Conclusion & Future Work

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1 Overview

The approaches proposed in this thesis has shown good overall accuracy with room for

improvement. The findings of this research can be used in future for solving similar

problems in polynomial time.

6.2 Main Contributions

I verified the importance of feature learning for machine learning through three exper-

iments described in three chapters. In this thesis we have proposed multiple methods

to select, construct, extract, and fuse data features. And we have applied my method

to one-dimensional and three-dimensional data, and achieved good results.

There are several key contributions of this thesis:

• I propose an algorithm that converts one-dimensional signals with space and

time characteristics into two-dimensional space matrix and time matrix.
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• Effect of specific channels of DE features: Previous studies [9, 27, 53] have

shown that specific channels of DE features may influence the result of EEG-

based emotion recognition. Motivated by these experiments, we add weights

to the 12 corresponding channel values, while we generate EEG images. After

many experiments, we adjusted weight values and obtained a good performance.

• I propose an unsupervised learning method that uses DCNN autoencoder model

to extract spatial features. And it has been proved through experiments that

this feature can well describe the EEG signal data.

• I propose a multi-stream hierarchical network framework learning behaviors of

features combined from multi networks. Each stream can extract temporal, spa-

tial and frequency features respectively, which significantly improve accuracy.

I adopted an early fusion method that is better than later fusion by fusing

different features into one super vector.

• For EEG-based emotion recognition, my proposed method is based on the

extraction of second-level features. The experimental results prove that the

second-level features have better ability to describe the input data than the

first-level features.

• My method proves that transfer learning is effective in 3D CNNs, and the video

features directly extracted through 3D CNNs and used in HNSN-based networks

can improve recognition accuracy.

6.3 Conclusion

There are many methods of feature learning in this problem. I can get the following

three conclusions:

• Splitting EEG data into multiple stream such as space, time, and frequency,

and extracting features separately, can better and more accurately describe

EEG signal data from multiple angles.

• Features extracted from both nonlinear and linear multi-layer network, rather

than extracted from a single linear network.

• Same with 2D transfer learning, 3D transfer learning is effective.
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• Instead of using randomized input weights, we can approach a classifier where

weights would be configured by calculation and reach to the steepest descent in

iterative manner without configuring the learning rate.

• For training data with multi-dimensional features, splitting them by dimensions

and extracting features can effectively improve the recognition accuracy.

6.4 Future Work

In the future, we still have a lot of research to continue to improve and validate my

method.

• For EEG emotion recognition, different emotion features are often expressed in

different frequency bands, so we plan to test different frequency bands. The

impact of data on recognition results, and increase the extraction and fusion of

data features in different frequency bands to improve recognition accuracy.

• For video data, we plan to convert the video data into spatial data (i.e. a single

video frame) and temporal data (generated by my proposed algorithm). These

data are used to extract features respectively, and the features extracted from

the original data are fused to test the recognition accuracy.

• I apply my proposed method to other 1D data to verify the generalization

performance of my method.
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