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Abstract 

There is great interest in the conversion of carbon dioxide (CO2) to useful chemicals and 

fuels toward addressing the increasingly serious impacts of global climate change. The 

electrochemical reduction of CO2 has garnered keen and broad interest due to the development of 

efficient electrocatalysts. In this thesis I initially demonstrated a facile approach for the synthesis 

of a novel nanostructured thin film comprised of Cu nanoparticles (NPs) and reduced graphene 

oxide (rGO) on a glassy carbon electrode (GCE), via the direct electrochemical reduction of a 

mixture of copper and graphene oxide (GO) precursors. The effects of an applied potential on the 

electrochemical reduction of CO2 was investigated using linear sweep voltammetric (LSV) and 

chronoamperometric (CA) techniques. Carbon monoxide (CO) and formate were found as the 

primary products based on gas chromatograph (GC) and high performance liquid 

chromatography (HPLC) analysis. The electrochemical reduction of CO2 at the Cu/rGO thin film 

was further studied using in situ electrochemical ATR-FTIR spectroscopy to identify the liquid 

products that were generated at different applied cathodic potentials. Our experimental 

measurements revealed that the nanostructured Cu/rGO thin film exhibited excellent stability and 

superb catalytic activity for the electrochemical reduction of CO2 in an aqueous solution, with a 

high current efficiency of 69.4% at -0.6 V vs. RHE. 

To enhance the catalytic activity for the reduction of CO2 on the rGO and Cu thin film, I 

further synthesized a unique nanocomposite that consisted of Cu NPs and rGO, which were 

supported on a Cu substrate. This nanocomposite was optimized in terms of the composition of 

the Cu NPs and rGO, as well as the overall quantity. A GC was employed to analyze the gaseous 

products, whereas a chemical oxygen demand (COD) method was proposed and utilized to 

quantify the overall liquid products. The optimized nanocomposite had the capacity to 
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effectively reduce CO2 to CO, HCOOH, and CH4 with a Faradaic efficiency (FE) of 76.6% at -

0.4 V (vs. RHE) in a CO2 saturated NaHCO3 solution.  

Subsequently, I electrodeposited Cu NPs on a Ti substrate as an electrocatalyst for the 

reduction of CO2, where the catalytic performance of the deposited Cu was further enhanced via 

a thermal treatment wherein different chemicals were used. Novel Cu nanodendrites were 

formed when treated with a mixture of CuSO4 and H2SO4. These Cu nanodendrites exhibited 

superior catalytic activity for the electrochemical reduction of CO2. The instant current 

efficiency (ICE) and steady-state current efficiency (SSCE) for CO2 reduction were determined 

at different applied electrode potentials by employing LSV and CA, respectively. The highest 

ICE (84.3%) and SSCE (82%) were obtained on the formed Cu nanodendrites at -0.4 V (vs. 

RHE) in a CO2-saturated 0.1 M NaHCO3 over 6 h of electrolysis. The mechanisms of the CO2 

reduction were further investigated using in situ electrochemical ATR-FTIR spectroscopy, which 

confirmed the formation of formate and hydrocarbons at electrode potentials of lower than -0.2 

and -0.5 V (vs. RHE), respectively. The facile approach for the synthesis of the unique Cu 

nanodendrites, their superior catalytic activity and high FE, made these Cu nanodendrites a 

promising electrocatalyst for the efficient reduction of CO2 to fuels.   

Finally, I designed and prepared three-dimensional (3D) nanoporous gold (Au), resulting 

from a facile electrochemical alloying/dealloying technique, for the efficient electrochemical 

reduction of CO2 to CO. The formed nanoporous Au was further thermally treated with H2SO4, 

whereupon a significant enhancement of its electrocatalytic activity was achieved. The treated 

nanoporous Au exhibited a current density that was over 65 times higher than a polycrystalline 

Au surface, with a threefold higher current density than untreated nanoporous Au at -0.6 V vs. 

RHE in a CO2-saturated 0.1 M NaHCO3 solution. Further, the FE of the treated nanoporous Au 
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at applied potentials of -0.6 V for 10 h was extremely high (95.9%), which revealed that the 

surface structure played a critical role in the electrochemical reduction of CO2. The superior 

catalytic activity, high production rate, excellent FE, and high stability made this acid treated 

nanoporous Au a promising electrocatalyst for the selective conversion of CO2 to CO to address 

pressing environmental and energy challenges. 
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Chapter 1: Introduction 

Over the last century, the expansion of the global population coupled with technology 

advances has increased energy consumption to an unprecedented level. The combustion of fossil 

fuels by industry, automobiles, and other human activities has increased continuously to meet 

ever higher demands. Unless the significant expansion of alternative and sustainable energy 

sources is implemented, there could well be an energy crisis that will be a common feature of life 

in the future. Considerable efforts are currently being invested to research and develop suitable 

pathways that will minimize the overall crisis. Carbon dioxide (CO2) is the primary product that 

is generated by the burning of fossil fuels. It is also produced from the Earth's oceans, as well as 

through soil respiration, biological decomposition, and volcanoes. The level of CO2 in the 

atmosphere is ~400 ppm today, which is approximately 25% higher than it was 100 years ago [1, 

2].  

CO2 is odorless, tasteless, colorless, and appears to be harmless and non-toxic to humans; 

however, it is also known to be one of the primary greenhouse gases, which absorbs infrared 

radiation. If the concentration of CO2 in the ambient atmosphere is unbalanced by anthropogenic 

activities, it will initiate increases in average global temperatures. The rise of the average 

temperature in the environment is referred to as global warming that could cause widespread 

climate change. Therefore, significant efforts are being invested in research worldwide to 

investigate how we might prevent and reduce CO2 emissions into the environment, including the 

conversion of CO2 into fuels and usable chemicals to avert potential global catastrophe [1-3]. 

Presently, it is very challenging to prevent the release of CO2 emissions, due to the increasing 

consumption of energy in daily human life, which entails fossil fuel combustion for the most 

part. The transformation of CO2 to alternative energy sources might serve as a viable pathway for 
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its reduction in the ambient atmosphere. Catalytic conversion is a potential efficient strategy for 

converting CO2 to fuels and value-added products such as carbon monoxide (CO), hydrocarbons, 

acids, alcohols, and more [4,5,6].  

1.1 Chemical nature of CO2 

CO2 is known as a fully oxidized inert molecule, which is non-combustible, and 

thermodynamically stable. This small nonpolar linear molecule consists of a carbon atom that is 

covalently double-bonded to two oxygen atoms, with a C-O bond length of 1.16 Å. Although 

CO2 is nonpolar overall, it contains polar bonds due to the electronegative difference between O 

and C atoms. The electronic structure of CO2 could be O--C+2-O-, which indicates the 

possibility of an electrophilic attack at the oxygen, and a nucleophilic attach at the carbon. As the 

ionization potential of CO2 is 13.78 eV, it might weakly interact with only Bronsted and Lewis 

acids [7,8]. The solubility of CO2 in water is higher than H2, N2, and O2, and the concentration of 

CO2 in solution is 0.033 M at 25 oC under 1 atm CO2. It can be hydrated and reversibly forms 

carbonic acid (H2CO3) when in water and is stabilized at equilibrium (CO2 + H2O ↔ H2CO3). 

The equilibrium constant for hydration (Kh) of H2CO3 at 25 oC, [H2CO3] / [CO2], is 1.70 x 10-3. 

Hence, the majority of the CO2 is not converted into H2CO3, but remains as a CO2 molecule 

known as dissolved CO2; however, it does not affect the pH of the solution. Equilibrium is 

obtained slowly in the absence of a catalyst, and the rate constants for the forward reaction (CO2 

+ H2O → H2CO3) and reverse reaction (H2CO3 → CO2 + H2O) are 0.039 and 23 s-1, respectively. 

Being diprotic, H2CO3 is initially dissociated into the bicarbonate ion (HCO3
-), which can be 

further dissociated to a carbonate ion (CO3
2-) [7,9,10]:   

                       H2CO3 ↔ H+ + HCO3
- ……………………………………. (1) 

                       HCO3
- ↔ H+ + CO3

2- ………………………………………. (2) 
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Figure 1.1 World energy consumption by fuel, based on BP Statistical Review of World Energy 
2015 [11].  

 
 
 
 

Figure 1.2 Global greenhouse gas emissions by energy sectors [1]. 
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Figure 1.3 (A) Global anthropogenic CO2 emissions from forestry and other land uses, as well as 

from fossil fuel combustion, cement production, and flaring, (A) Atmospheric concentrations of 

CO2 determined from ice core data (dots) and from direct atmospheric measurements (lines) [1].  

The dissociation constants are pK1 = 6.37 and pK2 = 10.25 for reactions (1) and (2), respectively, 

where the first is calculated to include dissolved CO2 in solution.  

1.2 Energy consumption and CO2 emissions  

As the world population is growing faster, energy consumption is also gradually 

increasing. Since the industrial revolution, to mitigate the daily human energy demands, the 

burning of fossil fuels such as coal, gas, oil, petroleum, etc. have been the primary sources. 

According to the British Petroleum (BP) Statistical Review of World Energy 2015 [11], Figure 

1.1 displays the world energy consumption, from 1965 to 2013, on the basis of oil use 

A

B
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equivalents, which shows that the overall global energy consumption rate is increasing. The 

consumption of fossil fuels (oil, coal, and gas) is increasing in parallel, whereas other energy 

production sources are growing at a relatively slow rate; however, not as rapidly as required 

(Figure 1.1). Based on available data in 2014, only 2.5% of the total world energy supply was in 

the form of renewable energy. Moreover, if the rate of fossil fuel consumption continues to rise, 

global fossil fuels reserves will soon be depleted. Hence, the world will undoubtedly face a 

severe energy crisis in the future, which would significantly disrupt everyday life, unless new 

alternative energy sources can be implemented.   

          Anthropogenic activities, particularly the burning of fossil fuels, result in the greenhouse 

gas emissions. Fossil fuels are widely used in industry, vehicles, electricity production, 

agriculture, and for other purposes. Figure 1.2 shows the global greenhouse emissions by 

different energy sectors according to the Intergovernmental Panel on Climate Change (IPCC) 

based on global emissions from 2010 [1]. The highest levels of global greenhouse gases are 

released from of the burning of coal, natural gas, and oil, where approximately 35% of 

greenhouse gases are contributed by the transportation and industry sectors. Deforestation and 

cultivation comprise the second largest source of greenhouse gas emissions (Figure 1.2).  

According to the International Energy Agency (IEA) 2013, close to 22 million tons of 

coal, 10 billion m3 of natural gas, and 12 million tons of oil are used every day to fulfill ~82% of 

the world’s energy needs [3,13]. As the result of the burning of these fossil fuels, CO2 is the 

primary waste gas. Figure 1.3 displays global annual anthropogenic CO2 emissions and 

atmospheric CO2 concentrations, showing that both gradually increased after 1950 [1]. Over the 

last 100 years, cumulative CO2 emissions have increased by about 25%, whereas annual global 

CO2 emissions have recently reached about 36 billion tons in 2013 which comprises 78% of the 
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total current greenhouse gas emissions [1,2]. The rate of CO2 emissions is continuously rising as 

shown in Figure 1.3A, which is projected to be equivalent to 43 billion tons annually by 2030 

[2,13]. The corresponding CO2 concentrations in the atmosphere is also increasing, as seen in 

Figure 1.3B, which has recently surpassed 400 ppm currently, which was measured at the Mauna 

Loa Observatory, Hawaii [1,14]. Therefore, the level of CO2 in the earth’s atmosphere has now 

surpassed its maximum level over the last 800,000 years. The natural carbon cycle has thus been 

severely affected due to the vast amount of anthropogenic CO2 emissions, which can be observed 

as occurring via several increasingly destructive climate change phenomena [3,15]. Several 

adverse effects of climate change include increasing global average temperatures, ocean 

acidification, rising sea levels, melting of the polar ice caps, and the depletion of the ozone 

layers. More frequent and stronger storms, the spread of diseases and high rates of species 

extinctions are the result of high levels of greenhouse gases in the atmosphere caused by the 

unprecedented levels of fossil fuel combustion. For instance, the average global surface 

temperature and sea level have risen by about 1.1 oC and 8 inches over the last century, 

respectively [16]. Therefore, even though it represents an immense challenge, it is essential that 

we control CO2 emissions into the atmosphere. A potential pathway toward the utilization and 

control of CO2 emissions might be to turn this gas into fuels or value-added chemicals. 

1.3 Technologies for CO2 conversion  

Great efforts are being applied to the conversion and utilization of CO2 for the purpose of 

the minimization of CO2 emissions to balance the global carbon cycle. Different technologies 

have been used to convert CO2 into fuels and usable chemicals. For example, CH4, methanol, etc. 

can be produced from the CO2 by employing electrochemical and chemical methods. Further, a 

process known as CO2 capture and storage could control the massive emissions that emanate 
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from thermal power plants, industries, and coal-fired plants, as these are responsible for around 

40% of total emissions. This process could then convert CO2 to a liquid under high pressure, 

which might be transported to a storage sites or could be buried underground [17]. Some of the 

CO2 conversion technologies, and those that can efficiently produce value-added products are 

listed and discussed briefly below [18,19]:  

(a) Inorganic process: carbonates (Na2CO3, CaCO3, etc.) 

(b) Chemical conversion: carbamates, synthesis gas (CO + H2), hydrocarbons, methanol, 

ethanol, etc.  

(c) Photochemical reduction: carbon monoxide, formic acid, methane, etc. 

(d) Biological conversion: sugar, acetic acid, etc. 

(e) Electrochemical reduction: carbon monoxide, formic acid, methanol, ethanol, etc. 

(a) Inorganic process: Inorganic base absorbents may be used to capture CO2 from the 

atmosphere. Carbonate salts are formed from basic compounds such as CaCO3, which can be 

obtained by absorbing CO2 in Ca(OH)2 [20]. More than 7 Mt of synthetic CaCO3 is produced 

annually from limestone, where CO2 is used in the process that forms CaCO3 [21]. Moreover, 

CO2 is employed to synthesize SrCO3, Na2CO3, NaHCO3, and other carbonates. However, the 

reverse process of carbonate formation is endothermic. To recover the base from the formed 

carbonate salts requires a significant amount of energy. Hence, additional efforts are yet to be 

employed to discover suitable absorbents to capture CO2 from the atmosphere that can be easily 

recycled. 

(b) Chemical conversion: As O atoms possess higher electronegativity than C atoms, the C-

O bond is polar; hence, CO2 molecules show a high affinity toward nucleophiles. CO2 is also 

known as an anhydrous carbonic acid, which has a high attraction to basic compounds. 
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Therefore, CO2 is used as a viable chemical feedstock in industry to manufacture various 

chemicals on a large scale, such as urea, salicylic acid, copolymers, polycarbonates, etc.. 

Approximately 130 megatons of CO2 are used annually to prepare chemicals under suitable 

experimental conditions. For instance, urea is the most commonly produced chemical that 

consumes huge volumes of industrial CO2. Ammonia reacts with CO2 at about 185-190 oC under 

high pressures of 180-200 atm to produce urea [5,22]. Moreover, the hydrogenation of CO2 is 

widely used to synthesize methanol and hydrocarbons through heterogeneous catalysis [19]. 

Besides, CO2 and CH4 are used to produce synthetic gas (CO + H2) at around 800-1000 oC using 

a nickel-based catalyst (Ni/MgO) [23,24]. Synthetic gas is used for long-chain alkanes 

production by Fischer-Tropsch process, iron ore reduction, and is a crucial intermediate resource 

for organic synthesis [19]. However, these chemical technologies require high temperatures and 

pressures with limited catalysts to transform CO2 into value-added chemicals.  

(c) Photochemical reduction: Solar energy, utilized with photocatalysts to convert CO2 into 

fuels and chemicals is known as the photochemical reduction of CO2. Intense efforts have been 

invested to develop efficient CO2 photocatalysts, considering their high catalytic activity, long-

term stability, and low cost [25-27]. Therefore, semiconductors (e.g., TiO2), transition metal 

complexes (e.g.  Ru(Me)–C2–Re{P(FPh)3}2), and other composite materials (e.g., Mg-doped 

CuFeO2) have been used as catalysts for the photochemical conversion of CO2 using solar light 

as the energy source and H2O as an electron and proton source [28-30]. The photocatalytic 

conversion of CO2 is carried out at normal temperatures under atmospheric pressure, and the 

typical products are CO, HCOOH, CH4, and CH3OH. However, the quantity of CO2 in the 

solvent is low; hence, photochemical reduction technologies are not energy efficient with the use 
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of current photocatalysts, and the production rate is very slow, which is quite distant from 

practical applications [6]. 

(d) Biological conversion: The biological conversion of CO2 refers to the production of 

chemicals from CO2 by living organisms through photosynthesis and respiration processes. 

Nature has evolved sophisticated mechanisms for the conversion of CO2 into complex 

molecules, and has adopted carbon fixation over billions of years [31-33]. For instance, trees 

absorb CO2 and convert it to glucose via the process of photosynthesis; moreover, many 

organisms such as algae, cyanobacteria, clostridia, etc. show an excellent ability to produce 

value-added chemicals through the utilization of CO2 [33]. Natural processes involve energy 

consuming or releasing reactions to produce biomass. Classical photosynthesis reactions use 

solar radiation, where CO2 reacts with H2O to produce glucose as shown below:  

                             6CO2 (aq) + 6H2O (l)  
  
   C6H12O6 (aq) + 6O2 (g) 

Approximately 200 Gt glucose (C6H12O6) is naturally formed by trees annually through the 

photosynthesis process [32]. Hence, the development of biomimetic processes to emulate 

biological CO2 conversion may be used to synthesize bioplastics, biodiesel, and other valuable 

chemicals. However, the reaction rate in the biological CO2 conversion process is very slow, and 

prototypes of this biological conversion have been developed, which is an ongoing process and 

more research is yet to be done to reach an ultimate goal for practical applications. 

(e) Electrochemical reduction: The use of electrical energy by employing electrocatalysts 

to synthesize fuels and value-added chemicals from CO2 is known as the electrochemical 

reduction of CO2. To produce thermodynamically more stable molecules from CO2, proton-

couple electron steps and multi-electron reductions are more favorable than the single electron 

step process [34]. Electrochemical methods might provide an easy pathway to multielectron 
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reduction steps, using unreactive metals, or other materials, to transform CO2 into usable 

chemicals. Active electrocatalysts serve as an electron provider to CO2, which possess active 

sites on their surfaces where reaction intermediates can stabilize. Therefore fuels and chemicals 

such as CO, CH4, CH3COOH, and more, can be produced during the electrochemical reduction 

of CO2.  

Among these current technologies, the conversion of CO2 into fuels using 

electrochemical reduction technologies could serve as a viable approach for renewable energy 

generation [35,36]. The electrochemical reduction of CO2 it is rapidly becoming more popular as 

electrochemical technologies have several advantages [37,38]:  

(i) The technology is greener, and it does not produce any new CO2. 

(ii) The electrode potentials can easily control the electrochemical reduction systems. 

(iii) The electrical energy can be used directly for the conversion of CO2 into fuel without 

harming the environment. 

(iv) The electrolyte solution can be recycled by isolating the generated liquid CO2 

reduction products. 

(v) The electrochemical technology is compact, simple to operate and can easily be scale-

up for industrial applications.  

Moreover, the electrocatalytic reduction of CO2 is highly energy efficient toward 

acquiring target products, which could be integrated with renewable energy resources. 

Furthermore, the use of electrolyte solutions with electrocatalysts can lower the overpotential, 

increase the reaction rates, and can improve the selectivity of the CO2 electrolysis [34,39]. Over 

the last few decades, scientists have developed various electrocatalysts to reduce CO2 that are 

active in aqueous and non-aqueous solutions [9,37,40,41]. For instance, Cu and Au are well 
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known catalysts that can produce hydrocarbon fuels and CO from CO2 in a NaHCO3 aqueous 

solution under low applied potentials, respectively [42,43]. Transition metals and other metal-

based materials are commonly explored as CO2 electrocatalysts, which might be because they 

possess vacant d orbitals and active electrons that facilitate an easy pathway for the formation of 

reduction products by establishing bonds between CO2 and the metal, which stabilizes the 

reaction intermediates [37]. Typical reduction products from the reduction of CO2 on different 

electrocatalysts include carbon monoxide, hydrocarbons (CH4, C2H4), alcohols (CH3OH, 

CH3CH2OH), organic acids (HCOOH, CH3COOH), and other oxygenates (HCHO, CH3COCH3). 

For instance, the electrochemical reduction of CO2 on a Cu metal electrode in 0.1 M KHCO3 

solution at -1.41 V (vs. NHE) gives CH4, C2H4, CH3CH2OH, CH3CH2CH2OH, CO, and HCOO- 

with an overall Faradaic efficiency (FE) of ~81% as shown below [44]:  

  CO2     
              

              
   CH4 + C2H4 + CH3CH2OH + CH3CH2CH2OH + CO + HCOO- 

29.4   30.1           6.9                      3                      2         9.7           (%)                               

Several carbon and carbon-based materials have also been explored as electrocatalysts for the 

reduction of CO2.  

1.4 Challenges in the electrochemical reduction of CO2  

The electrocatalytic conversion of CO2 has drawn wide attention over the last few 

decades. The ultimate goal is to balance the global carbon cycle by recycling CO2 into fuels and 

useful chemicals. Electrochemical reduction is considered as one of the most feasible 

technologies due to several advantages as the process is practical, controllable, compact, 

modular, and scalable. The process is highly energy efficient using suitable catalysts, and can be 

operated by renewable energy, or integrated into the renewable energy systems. Moreover, there 

is no new CO2 evolved during the electroreduction of CO2; hence, the CO2 electrolysis method is 
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a green technology [37,38]. However, several challenges remain that should be considered and 

overcome to achieve the potential rewards. CO2 is a small inert, fully oxidized, and 

thermodynamically stable molecule, where the appropriate electrocatalysts for selective high 

throughput production via energy inputs is still unknown. The CO2 reduction kinetics are slow 

even when a large electrode potential is employed, the energy efficiency of the process in 

aqueous solutions is low due to hydrogen evolution at high cathodic potentials, and the 

technology consumes high energy. The primary challenges for the reduction of CO2 as relates to 

the electrocatalysts are low catalytic activity and stability. To overcome these challenges, 

researchers have considered thermodynamic and kinetic factors, as well as technological barriers 

to subjugate their limitations for the CO2 conversion to carbon products [34,37].   

 

Figure 1.4 The minimum potential requirement with a sufficient number of electrons for the 

formation of different products resulting from the electrochemical reduction of CO2 calculated 

according to thermodynamic reactions. 
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Table 1.1 Selected standard potentials of CO2 in aqueous solutions (V vs. SHE) at 1.0 atm and 

25 oC, calculated according to the standard Gibbs energies of the reactants in reactions. 

Reprinted with permission from ref. [45]. Copyright @ 1985 CRC Press. 

 

1.4.1 Thermodynamic issues  

With respect to the electrochemical reduction of CO2, usable chemicals proceeding 

through multiple electron reduction pathways are more favorable than single electron steps to 

obtain thermodynamically more stable molecules. Possible reduction products are carbon 

monoxide (CO), formic acid (HCOOH), acetic acid (CH3COOH), oxalic acid (H2C2O4), 

formaldehyde (CH2O), methanol (CH3OH), ethanol (CH3CH2OH), methane (CH4), ethylene 

Electrochemical thermodynamic  half-reactions 
Electrode potentials 
(V vs. SHE) under 
standard conditions  

CO2 (g) + 4H+ +4e- = C (s) + 2H2O (l) 0.210 
CO2 (g) + 2H2O (l) + 4e- = C (s) + 4OH-  -0.627 
CO2 (g) + 2H+ + 2e- = HCOOH (l)  -0.250 
CO2 (g) + 2H2O (l) + 2e- = HCOO- (aq) + OH- -1.078 
CO2 (g) + 2H+ + 2e- = CO (g) + H2O (l) -0.106 
CO2 (g) + 2H2O (l) + 2e- = CO (g) + 2OH- -0.934 
CO2 (g) + 4H+ + 4e- = CH2O (l) + H2O (l)  -0.070 
CO2 (g) + 3H2O (l) + 4e- = CH2O (l) + 4OH- -0.898 
CO2 (g) + 6H+ + 6e- = CH3OH (l) + H2O (l)  0.016 
CO2 (g) + 5H2O (l) + 6e- = CH3OH (l) + 6OH- -0.812 
CO2 (g) + 8H+ + 8e- = CH4 (g) + 2H2O (l)  0.169 
CO2 (g) + 6H2O (l) + 8e- = CH4 (g) + 8OH-  -0.659 
2CO2 (g) + 2H+ +2e- = H2C2O4 (aq)  -0.500 
2CO2 (g) + 2e- = C2O4

2- -0.590 
2CO2 (g) + 12H+ + 12e- = C2H4 (g) + 4H2O (l) 0.064 
2CO2 (g) + 8H2O (l) + 12e- = C2H4 (g) + 12OH- -0.764 
2CO2 (g) + 12H+ + 12e- = CH3CH2OH (l) + 3H2O (l) 0.084 
2CO2 (g) + 9H2O (l) + 12e- = CH3CH2OH (l) + 12OH- -0.744 
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(C2H4), as well as others. Figure 1.4 reveals the minimum potential required with the sufficient 

number of electrons for the formation of the different reduced products under standard 

conditions from the electrochemical reduction of CO2, calculated according to the standard 

Gibbs energies of the reactants. Table 1.1 summarizes the thermodynamic electrochemical half-

reactions associated with their standard electrode potentials (V vs. SHE) in aqueous solutions. 

Note that the standard potentials mentioned in Table 1.1 are under the conditions of 25 oC, 1 atm 

gas pressure, and 1 M solutes in aqueous solutions; the potentials (V vs. SHE) values might be 

different in non-aqueous solutions. In addition, the reactions given in Table 1.1 are 

thermodynamic, indicating the reactions tendency and possibility, but giving no certainty of the 

kinetics [37,45]. As seen in Figure 1.4, it appears that the formations of some products are easy 

(for example, HCHO and CH3OH) under low electrode potentials and standard conditions, but 

this is not always the case. There are multiple steps involved in the reaction mechanisms, where 

some of them are required to overcome high energy barriers.      

1.4.2 Kinetic concerns 

CO2 is a small, fully oxidized, thermodynamically stable, and linear molecule. Hence, the 

kinetics of the electrocatalytic reduction of CO2 comprises a very complicated reaction 

mechanism and slow reaction rates. One of the key challenges for the conversion of CO2 into 

energetic molecules is the assembly of the nuclei and formation of new chemical bonds to obtain 

more complex molecules than CO2, even in the presence of catalysts. Typically, for 

electrocatalytic reduction, CO2 molecules bind to a catalyst through the electrophilic carbon 

atom, which modifies linear CO2 to a bent structure; hence, requiring a large amount of energy, 

which is even more difficult in the absence of protons. Furthermore, occasionally, a mixture of 

multiple species are formed, rather than a single product, from the electrochemical reduction of 
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CO2, resulting in very tricky kinetics in the reaction mechanism. Further, the number of species 

and their quantity are strongly dependent on the activity and selectivity of the catalyst and the 

applied electrode potentials. Therefore, on a comprehensive basis, the kinetic challenges are 

immense. One of the potential possibilities is to identify specific catalysts that can overcome 

these kinetic barriers to complete all the sequence of steps involved in the reaction mechanism to 

obtain the targeted species. Another possibility toward the formation of a complex molecule, 

might be to identify a group of catalysts, where each catalyst can overcome a specific barrier in 

the reaction mechanism steps, to ultimately transform CO2, [34,37,46].    

1.4.3 Technological challenges 

Over the last few decades, researchers have developed various electrocatalysts for the 

electrochemical reduction of CO2 to produce usable carbon products [9,34-37,47-51]. However, 

several technological challenges remain as relates to catalysts for practical applications, 

including (i) low activity, (ii) poor product selectivity, (iii) poor stability, (iv) lack of 

fundamental understanding, and (v) insufficient knowledge to design systems for industrial-scale 

implementation.   

(i) Low catalytic activity: In general, the activities of the electrocatalysts that have 

currently been developed for the reduction of CO2 are still not sufficient for practical 

applications. The developed catalysts presently being employed normally show a large reaction 

overpotential for the electroreduction of CO2. Although some electrocatalysts are able to produce 

low hydrocarbon fuels under low electrode potentials, the rate of the reactions is very poor 

[35,36,46]. The production rate might be made higher by increasing the electrode potential; 

however, the possibility of the generation of hydrogen gas may also increase in aqueous 

solutions, due to the high affinity for H+ reduction, rather than solvated CO2, at the cathode. 
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Hence, the activity of current catalysts is inadequate for actual applications in terms of energy 

efficiency. 

(ii) Poor product selectivity:  In most cases, the developed catalysts produce a 

mixture of products (e.g., CO, HCHO, HCOOH, CH3CH2OOH, CH3OH, CH3CH2OH, CH4, 

CH2CH2, and so on) rather than a single species during the electrolysis of CO2. Although some of 

the catalysts show desirable product selectivity, unfortunately, the stability is very low for 

practical applications [38,52,53]. Applied electrode potentials also play a critical role in the 

formation of different products, and the quantity of each species on the catalyst surface. The 

separation of the generated products from the electrolyte solution, as well as the gaseous 

component, may be counted as an additional challenge. Studies suggest that the majority of the 

electrocatalysts explored to date have insufficient product selectivity.  

(iii) Poor catalyst stability: Catalyst stability comprises the single most significant 

challenge for the electrochemical reduction of CO2. Most of catalysts typically lose their activity 

within few hours while performing electrolysis. Some of them are able to survive for longer, but 

never more than 100 hours [54,55], which is quite distant from the requirements for industrial 

applicability; hence, further long-term testing is required. The deactivation of the active sites of 

the catalysts by blocking and poisoning, dissolution of particles from catalyst surfaces, and the 

deposition of reaction intermediates and byproducts on the electrode surface, may lead to the 

rapid degradation of catalytic activity as CO2 electrolysis proceeds [52]. 

(iv) Lack of fundamental understanding: Present CO2 electroreduction technologies 

are still quite distant from industrial applicability, due to unsatisfactory catalysis, requirement of 

high overpotentials, low selectivity, slow reduction rates, and poor stability. Therefore, further 
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efforts are required to elucidate fundamental kinetics, and to tailor high-performance 

electrocatalysts for CO2 conversion.     

(v) Insufficient knowledge to design systems for industrial-scale implementation:  

The combustion of fossil fuels at an unprecedented scale has caused CO2 concentrations in the 

ambient atmosphere to increase rapidly; recently reaching its highest level at ~400 ppm. Hence, 

the conversion of CO2 to fuels using electrocatalysts would be a remarkable renewable energy 

path to balance the global carbon cycle. Although several current electrocatalysts are promising 

for the conversion of CO2 to fuels, systems for scaled-up electrochemical reduction remain 

infeasible for industrial applications; thus, necessary steps should be urgently taken to ensure the 

success of these electrochemical technologies [56]. Therefore, additional research should focus 

on the development of system designs to overcome the above challenges for practical 

applications. 

1.5 The objectives and outline of this thesis 

 Studies have shown that nanostructured materials have unique surface morphologies, 

extensive surface areas, higher populations of active sites, and different crystal facets. Moreover, 

they have gained a wide attention for the development of CO2 electrocatalysts. Therefore, the 

main intent of this study will be to develop various novel nanostructured materials with enhanced 

catalytic performance, such as high activity, high product selectivity, and excellent stability. 

Moreover, the reaction kinetics on the synthesized nanocatalyst surfaces toward the 

electrochemical reduction of CO2 in aqueous solutions will be investigated. The primary research 

objectives of this thesis are: 

(a) To synthesis a reduced graphene oxide (rGO)/Cu nanoparticle (NP) thin film and 

their nanocomposites, uniquely structured Cu nanodentrites, and novel three 

dimensional nanoporous Au.  
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(b) To characterize the synthesized materials via scanning electron microscope (SEM), 

energy dispersive X-ray (EDX), X-ray diffraction (XRD), and X-ray photoelectron 

spectroscopy (XPS). 

(c) To electrochemically study of the fabricated catalysts for the reduction of CO2. 

(d) To identify the liquid products, and to determine the mechanisms of the CO2 

reduction using in situ electrochemical ATR-FTIR spectroscopy. 

(e) To develop a COD analysis technique to determine the Faradaic efficiency (FE) of 

the formed liquid products derived from the electroreduction of CO2.   

(f) To qualitatively and quantitatively determine the CO2 derived products by gas 

chromatography (GC), high performance liquid chromatography (HPLC), and nuclear 

magnetic resonance (NMR). 

This thesis is divided into seven chapters. The present chapter briefly discussed current 

anthropogenic energy consumption and CO2 emissions on a global scale. The technologies that 

are presently applied for the transformation of CO2 to value-added chemicals were also briefly 

described. Moreover, current challenges facing the electrochemical reduction of CO2 were 

sketched out.    

In the next chapter, an overview of the electrochemical reduction of CO2 on various 

metal electrodes, nanostructured metals, and carbon-based nanomaterials will be conveyed, as 

well as the reaction mechanisms, catalyst stability, and perspectives in this field.  

In chapters 3 and 4, a one-pot approach will be described for the synthesis of a novel 

nanostructured thin film, and a unique nanocomposite comprised of Cu NPs and rGO, on a 

glassy carbon electrode (GCE) and Cu plate, respectively. The surface morphologies and 

compositions of the synthesized samples were characterized using field-emission scanning 
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electron microscopy (FE-SEM) equipped with an energy dispersive X-ray spectrometer (EDX) 

(Hitachi SU70) and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activity of the 

formed catalysts was studied by employing linear sweep voltammetry (LSV), whereas 

chronoamperometry (CA), and attenuated total reflection Fourier transform infrared 

spectroscopy (ATR-FTIR) techniques were used to identify the liquid products at the electrode 

surface. Moreover, the formed products from the reduction of CO2 were analyzed by gas 

chromatography (GC), high-performance liquid chromatography (HPLC), and a chemical 

oxygen demand method. 

Chapter 5 will discuss a facile approach for the synthesis of novel Cu nanodendrites 

under thermal treatment, where a mixture of CuSO4 and H2SO4 was used that exhibited superior 

catalytic activity over a Cu thin film, particles, and nanoparticles for the electrochemical 

reduction of CO2. Detailed structural and electrochemical characterization was carried out by 

SEM, XRD, XPS, LSV, and CA. The electrochemically active surface area (EASA) of the 

formed Cu nanodendrites was estimated relative to the polycrystalline Cu electrode by 

determining double-layer capacitances in a 0.1 M HClO4 electrolyte, which showed the highest 

roughness factors among the synthesized Cu materials. In order to obtain the highest catalytic 

activity for the Cu nanodendrites, the annealing temperatures, duration, and quantity of treating 

agents were optimized. Further, in situ electrochemical ATR-FTIR spectroscopy was employed 

to investigate CO2 consumption and the formation of intermediates and products at different 

applied electrode potentials on the synthesized Cu nanodendrites during the electrochemical 

reduction of CO2. This confirmed the formation of formate and hydrocarbons at electrode 

potentials of lower than -0.2 V (vs. RHE).  
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Chapter 6 will report on the superb catalytic performance of three-dimensional 

nanoporous Au for the highly selective production of CO from the electroreduction of CO2, 

which was synthesized via a simple electrochemical alloying/dealloying, associated with an acid 

treatment. The EASA, surface structure, elemental composition, electrocatalytic activity, and the 

charge-transfer resistance for the electrochemical reduction of CO2 of the formed nanoporous Au 

were studied in detail. The Faradaic efficiency and production rate under different applied 

electrode potentials were calculated and determined through gas chromatography analysis. The 

pore dimensions of the formed 3D network structures might play a vital role in increasing the 

catalytic activity of the Au, and we proposed a mechanism for the accessibility of the solvated 

CO2 into the pore cavities, which enabled the efficient utilization of localized electric fields. 

Finally, a summary of the results will be provided in Chapter 7, as well as a discussion of 

corresponding future work. 
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Chapter 2: Literature Review 

2.1 Introduction 

Several potential metal-based catalysts have been used for the electrochemical reduction 

of CO2 in aqueous solutions [1-3]. Generally, CO2 is converted to CO or formate during the first 

step of the electrochemical reduction of CO2 on every catalyst, and is a primary product on some 

electrocatalysts. However, it can further be reduced to oxygenates and hydrocarbons while 

continuing the electroreduction reaction on various catalysts [4-6]. For example, metals such as 

Au, Ag, Zn, Pd, and Ga form CO as the primary product, whereas hydrocarbons, aldehydes, and 

alcohols can be obtained on Cu. The metals Pb, Hg, In, Sn, Cd, Tl, and Bi give formate ions as 

the major product. The group 4 element, Ni, Fe, and Pt, do not show catalytic activity for the 

reduction of CO2, but hydrogen evolution does occur [7]. Moreover, studies have shown that 

catalytic activity and selectivity may be enhanced by forming alloys of different metals [8,9]. 

Bimetallic alloys such as Cu-Ni, Ni-Cd, Sn-Cd, Zn-Sn, Cu-Sn, Pb-Cu, Cu-Au, Cu-Fe, and so on, 

are potential electrocatalysts that can yield CH4, HCOO-, CO, and C2H4 [10-14]. Further, carbon-

based metal catalysts have been investigated for the electroreduction of CO2. For example, 

carbon-supported Cu nanoparticles [15] carbon nanotube/copper sheets [16], graphene-supported 

Cu nanoparticles [17], Pd-Cu/graphene [18], and graphene confined Sn quantum sheets [19] 

exhibit promising catalytic properties for the reduction of CO2 due to their large surface areas, 

good specific conductivity, and high chemical stability. These carbon materials also have 

synergistic interactions with metal particles [20,21]. In this chapter, progress and prospects for 

the electrochemical reduction of CO2 are classified and discussed on the basis of currently 

investigated electrocatalysts. 
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2.2.1 Copper (Cu) catalysts 

Cu is the most studied material as an electrocatalyst for the reduction of CO2. Different 

types of Cu electrodes have been investigated and developed as CO2 electrocatalysts, such as 

bulk Cu electrodes, thin Cu metals, Cu coated gas diffusion electrodes, Cu electrodeposited 

glassy carbon electrodes, nanostructured Cu such as nanoparticles, nanowires, nanoflowers, 

nanofoams, and nanoporous and copper-based nanomaterials [11,21-30]. According to the 

literature, among explored electrocatalysts, Cu is unique material that can break the C-O bonds 

of CO2 molecules during electrochemical reduction, resulting the formation of hydrocarbons 

(CH4, C2H4, HCOOH, CH3COOH), alcohols (CH3OH, C2H5OH), esters, and several high 

hydrocarbons that contain up to six carbon atoms [31]. A number of these products and Faradaic 

efficiencies were significantly dependent on operating conditions, such as the concentration, 

type, and pH of the electrolytes, applied electrode potential, particle size, purity, crystal faces, 

and physical state of the Cu electrode surface. For example, in terms of Faradaic yields for the 

electrochemical reduction of CO2, products measured at the Cu sheet electrode as a function of 

electrolyte concentration have been reported by Hori et al. [32], as shown in Figure 2.1. 

Electrolysis was performed at a constant cathodic current density of 5 mA cm-2, revealing that 

the Faradaic efficiency (FA) of C2H5OH and C2H4 was high in dilute KHCO3 solutions, whereas 

CH4 yields were higher with increased electrolyte concentrations, which then dropped after 

reaching a maximum. The FA of HCOO- and CO did not strongly depend on the KHCO3 

electrolyte concentration; however, the formation of H2 increased with the electrolyte 

concentration. In addition, Hori’s group found that the changing trend of FA did not follow the 

altered electrode potentials. Figure 2.2 displays the dependence of the FA of the products of CO2 

electrolysis with an applied controlled electrode potential, showing that the FA of CO and  
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Figure 2.1 Faradaic yields of the products in the electrochemical reduction of CO2, at 19 oC in 

KHCO3 aqueous solutions of various concentrations. Current density = 5 mA cm-2. Bottom: Δ, 

C2H4; Ο,CH4; Top: □, H2; ◊, EtOH; Δ, PrnOH. Reprinted with permission from ref. [32]. 

Copyright @ 1989 The Royal Society of Chemistry. 

HCOO- increased at -0.9 V (vs. NHE), reaching the maximum at ~-1.25 V and then dropped at 

more negative potentials. The FAs for C2H4 and CH4 increased steeply with the rise of the 

cathode potential, beginning at -1.1 and -1.2 V, respectively. The formation of hydrocarbons and 

alcohols was prevalent in KCl, KClO4, and KHCO3, whereas H2 was found to be the main 

product in the K2HPO4 solution [32].  
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Figure 2.2 Variation of the Faradaic efficiencies of the products in the electrochemical reduction 

of CO2 obtained in controlled potential electrolysis, 0.1 mol dm-3 KHCO3 at 19 oC. Reprinted 

with permission from ref. [32]. Copyright @ 1989 The Royal Society of Chemistry. 

To enhance the catalytic performance of Cu for the electroreduction of CO2, efforts have 

been invested in tailoring the formation of supernanostructures, modifying the surface 

morphology of the Cu electrodes, increasing the electrochemical surface area and crystal facets, 

and reducing the particle dimensions [33-36]. Studies have found that nanostructured Cu 

materials possess large geometric surface areas, a high surface roughness factor, large 

electrochemically active surface areas, and have the capacity to form different crystal facets. 
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Several studies endeavored to understand the effects of these properties on the electrochemical 

reduction of CO2, and reports have shown that significant improvements in catalytic performance 

were achieved through the use of nanostructured Cu materials, over the typical Cu metal 

electrodes as electrocatalysts for the reduction of CO2 [34-37]. Tang et al. studied the effects of 

surface morphology by synthesising three deferent types of polycrystalline Cu electrodes for the 

electrochemical reduction of CO2 [38], with the corresponding SEM images of the electrodes 

displayed in Figure 2.3. The results revealed that the Cu nanoparticles (Ø50-100 nm) covered the 

electrodes, and had a 10 times higher current density than that of an electropolished Cu surface 

and an argon sputtered Cu electrode at -0.75 V (vs. RHE) measured through a CV technique in a 

CO2-saturated 0.1 M KClO4 solution. Moreover, hydrocarbon fuels were the primary products of 

reduced CO2 on the nanoparticle covered Cu surface compared with the other two electrodes, 

which indicated that surface morphology played a vital role in enhancing catalytic activity   

beyond solely increasing the surface area. Similar phenomena were observed when comparing  

 

Figure 2.3 Scanning electron microscopy of three surfaces: (a) Sample A (electropolished 

surface), (b) Sample B (copper nanoparticle covered surface) and (c) Sample C (sputtered 

surface). Reprinted with permission from ref. [38]. Copyright @ 2012 The Royal Society of 

Chemistry. 
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Figure 2.4 (A) CO2 reduction current as a function of time for catalysts A (Cu mesocrystals), B 

(Cu nanoparticles), and C (electropolished Cu). Potential applied: −0.99 V. The inset is a 

zoomed-in picture of the reduction currents at the start of the CO2 reduction process. (B) 

Faradaic efficiencies of the CO2 electroreduction products of catalyst A as a function of 

potential. A comparison of the (C) Faradaic efficiencies and (D) production rates of CO2 

electroreduction products on catalysts A, B, and C at −0.99 V. Reprinted with permission from 

ref. [39]. Copyright @ 2015 The Royal Society of Chemistry. 

the catalytic performance of Cu mesocrystals with Cu nanoparticles and electropolished Cu 

electrodes for the electrochemical reduction of CO2 in 0.1 M KHCO3, as shown in Figure 2.4 

[39]. For instance, the current density obtained at -0.99 V (vs. RHE) on the Cu mesocrystals was 

approximately twice and three times higher than those of the Cu nanoparticles and 
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electropolished Cu, respectively (Figure 2.4A). Selective C2H4 formation was observed to have a 

significant preference for Cu mesocrystals catalysts, with a FA of 27.2% at -0.99 V, as shown in 

Figure 2.4B. The FA of C2H4 was ~81% using Cu mesocrystals of the total carbonaceous 

product yields, which was much higher than the C2H4 yields of 45% and 40% obtained on Cu 

nanoparticles and electropolished Cu catalysts (Figure 2.4C). Moreover, the Cu mesocrystals 

exhibited much higher hydrocarbon production rates than the other catalysts (Figure 2.4D). All 

of the results in Figure 2.3 also revealed that the surface structure of the Cu mesocrystals played  

a significant role in the selective electroreduction of CO2 to C2H4. 

Several studies have reported that oxide derived Cu nanomaterials (OD-Cu) have a much 

better catalytic performance for the electrochemical reduction of CO2 [33,35,40]. The OD-Cu 

nanomaterials electrodes were prepared by the annealing of Cu2O, which was obtained by the 

ambient air oxidation of Cu foils, whereafter OD-Cu was formed followed by the reduction of 

Cu2O, either electrochemically, or through annealing in the presence of H2. The annealing 

process alters the surface structure of polycrystalline Cu, where the derived nanomaterials form 

interconnected nanocrystalline networks among nanocrystallites and exhibit small crystallite 

sizes, as well as a large electrochemical surface area and high roughness factor, which favors C-

C coupling formation during electrochemical reduction of CO2 [33,35,40,41]. Li et al. initially 

prepared OD-Cu electrodes by annealing Cu foils in the presence of air at different temperatures, 

followed by the electrochemical reduction of the formed Cu2O layers [35]. The resulting OD-Cu  
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Figure 2.5 Determination of double-layer capacitance for an electrode annealed at 500 °C for 12 

h and subsequently reduced in 0.5 M NaHCO3 at –0.5 vs. RHE. a) CVs taken over a range of 

scan rates in a potential window where only double-layer charging and discharging is relevant. b) 

Current due to double-layer charge/discharge plotted against CV scan rate. Reprinted with 

permission from ref. [35]. Copyright @ 2012 American Chemical Society. 

electrodes exhibited large roughness factors and their catalytic performance was 

indistinguishable from than that of polycrystalline Cu for the electroreduction of CO2 and the 

formation of hydrocarbons at very low overpotentials. The electrochemical surface area of the 

formed OD-Cu electrodes was determined by measuring double layer capacitances through the 

performance of CVs in a 0.1 M HClO4 electrolyte (Figure 2.5). The OD-Cu obtained from Cu 
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foil annealed at 500 oC for 12h exhibited the highest double layer capacitance of 13.9 mF cm-2 

and had a considerably large roughness factor (RF ~475) among the synthesized electrodes. The 

FA of the CO2 electroreduction of these OD-Cu electrodes were also consistent with RF values; 

the electrode had a higher RF value that exhibited a high catalytic performance and favored the 

formation of hydrocarbons. For instance, the main product on the polycrystalline Cu electrode 

was H2 (>90% current density) with a very small FA of CO and HCO2H at -0.5 V (vs. RHE) in a 

CO2-saturated 0.5 M NaHCO3 solution. The OD-Cu electrode obtained from the annellation of 

the Cu foil at 300 oC for 5 h improved a small RF of 69, and exhibited noticeable effect on the 

catalysis for the reduction of CO2 under these conditions, which showed a FE of 35% and 24% 

for CO and HCOOH under the same applied electrode potential, respectively. Annealing at 500 

oC for 15 min. resulted in a current density of ~2 mA cm-2 with stable CO production over 7 h of 

electrolysis. Further increasing the annealing temperature to 500 oC for 5 h resulted in a thicker 

Cu2O layer. The formed OD-Cu was followed by the electrochemical reduction of Cu2O, which 

formed interconnected Cu nanoparticles that obtained the highest RF of 475, and demonstrated a 

superior catalytic performance for the reduction of CO2. A current density of 2.7 mA cm-2 at -0.5 

V with a CO production of ~40% FE throughout the electrolysis, 33% FE of HCOOH within a 

few percentage points of CH4 and C2H4 (at electrode potential < -0.5 V) were obtained over the 7 

h analysis. These results revealed that the morphology and high degree of roughness of the Cu 

electrodes provided a path for CO2 reduction over H2O in aqueous solutions.     

              The atomic configurations of the Cu crystal orientations on the electrode surface had an 

extreme influence on activity and selectivity during the electroreduction of CO2. Various single-

crystal studies have investigated the effects of the different types of Cu crystals and their 

orientations for the electrochemical reduction of CO2 [7,31,36,42-45]. Frese found that the   
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Table 2.1 Calculated free energies of adsorption, in eV, of key adsorbates on the (111), (100), 

and (211) crystal facets, shown with their optimized binding geometries, where a lower number 

indicates stronger binding. Reported energies are referenced to the electronic energy of a clean 

slab and reference atoms for H, C, and O of 1/2 H2, graphene, and (H2O−H2), respectively. 

Reprinted with permission from ref. [36]. Copyright @ 2011 Elsevier 

 H O OH COOH OCHO CO CHO OCH3 

(111) 0.20 1.16 0.66 2.21 1.34 1.42 2.22 1.40 

(100) 0.19 0.83 0.46 1.92 1.03 1.31 2.09 1.23 

(211) 0.06 1.01 0.25 1.75 0.76 1.19 1.86 1.06 

(111) 

 

(100) 

(211) 

 

Formation of CH4 was favored in the order of Cu(111), Cu(110), and Cu(100) [46], whereas C-C 

coupling was prompted on Cu(100) terrace surfaces [7]. Higher than C2 products are abundantly 

yielded products on Cu(S)-[n(111) × ((111)], while oxygenated hydrocarbons such as 

CH3COOH, CH3CHO, and C2H5OH are formed in large volumes on the Cu(110) electrodes [47]. 

Hence, a number of theoretical studies were further undertaken to understand the fundamental 

facts involved in the electrochemical reduction of CO2 on different Cu crystal facets [36,48]. 

Durand et al. calculated the adsorption free energies of different intermediate species on several  
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Figure 2.6 Oxygenate/hydrocarbon ratios for >2e− reduction products as a function of potential 

for Cu (111), (751), and (100). Reprinted with permission from ref. [42]. Copyright @ 2017 

Proceedings of the National Academy of Sciences of the United States of America.  

Cu crystal facets, listed in Table 2.1 [36]. As seen in the table, all of the intermediates, except for 

O, showed low optimized binding energies on the Cu(211) facet, which indicated strong binding 

by the Cu(211) facet, which was followed by Cu(100) and Cu(111). The O binds rather more 

strongly to the three-fold sites of the (211) terrace. This study indicated that the Cu(211) facet 

might be the most active crystal surface, which may produce low hydrocarbons with H2 and CO 

as the byproducts of CO2 electroreduction. Recently, Hahn et al. engineered Cu surfaces to 

selectively obtain hydrocarbons and oxygenates from the electrochemical reduction of CO2 [42]. 

They found that both Cu(100) and Cu(751) films showed higher catalytic performance with an 

excellent selective C-C coupling formation than the Cu(111) surface. Moreover, oxygenate 
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formation was increased on the Cu(751) facet at low overpotentials. Figure 2.6 compares the 

ratio between oxygenate and hydrocarbon on different Cu crystal facets under variously applied 

electrode potentials. The oxygenate/hydrocarbon ratio was higher on both Cu(751) and Cu(100) 

than that of Cu(111), at a low cathodic potential of -0.89 V (vs. RHE), which revealed the 

formation of more oxygenates at the Cu surfaces at this potential. Further, there was a gradual 

increase of the cathodic potentials on all of the Cu facets, whereas oxygenate/hydrocarbon values 

decreased continuously, which indicated the formation of lower oxygenate populations under 

higher cathodic potentials. Therefore, these results suggested that the orientation of the Cu 

crystals played important roles for the enhancement of catalytic performance, and the selective 

formation of products during the electrocatalysis of CO2.  

 Moreover, efforts over the last few years have been focused on the formation of 

supernanostructures of Cu and the synthesis of different types of Cu nanostructures as advanced 

catalysts for the electrochemical reduction of CO2 [21,25-27,33,40,49-52]. Highly dense Cu 

nanowires were synthesized through the oxidation of Cu mesh, which were then reduced by 

following either electrochemical treatment, or annealing in a hydrogen environment as 

electrocatalysts for the reduction of CO2 [33]. The Cu nanowires obtained by electrochemical 

treatment exhibited the highly active and selective formation of CO, at overpotential of only 0.3 

V with a FA of ~60% from CO2 electrolysis in a 0.1 M KHCO3 solution. A Cu nanoparticle 

ensemble on carbon paper exhibited the selective formation of C2H4, CH3CH2OH, and 

CH3CH2CH2OH at an onset potential of -0.53 V (vs. RHE). An overall FE of 50% was attained 

under an electrode potential of -0.75 V at as current density of 10 mA cm-2 over 10 h of stable 

catalysis, which suggested that the proper decoration of Cu nanoparticles would be a promising 

electrocatalyst for the efficient reduction of CO2 [49]. Xie et al. synthesized Cu nanoflowers as 
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an efficient CO2 electrocatalyst from CuO, where Cu foils were electropolished in a mixture of 

H3PO4 and H2SO4, followed by electrochemical anodic oxidation in composite solutions of 

NaOH and NaCl to obtain CuO [26]. The formed Cu nanoflowers effectively reduced CO2 to 

HCOOH, CH4, and C2H4 at only 0.4 V of overpotential over 9 h in contrast to regular Cu foils. 

Cu nanofoams with pore diameters of 20-50 m were synthesized as electrocatalysts for the 

reduction of CO2 through the manipulation of Cu foils, where copper nanoparticles were 

electrodeposited on a polished Cu foil, which was used as a cathode, by applying a high current 

density (>500 mA cm-2) in a mixed 1.5 M H2SO4 and 0.2 M CuSO4 solution [27]. The Cu 

nanofoams demonstrated the efficient electrochemical reduction of CO2 to HCOOH, and 

hydrocarbons at a low cathodic potential with a high FE. Dutta et al. synthesized oxide derived 

mesoporous Cu foams, which were identified as electrocatalysts for the reduction of CO2, which 

was highly selective toward C2H4 and C2H6, attaining a FA of 55% at -0.9 V (vs. RHE) [40]. 

Their study found that the surface sites Cu(100), and pore diameters (50-100 m) played 

important roles in the formation of C2 during the CO2 electrolysis. The thickness of the Cu 

nanoparticle (NP) film had a significant influence on the formation of CH4, as the thickness of 

the Cu NPs had an immense impact on the surface morphology [25]. The study reported that a 

thin film (3 nm) of Cu nanoparticles with average diameters of 52 ± 21, supported on glassy 

carbon exhibited excellent methanation with high FE of 80%. Robust CO2 electrolysis at high 

rates was performed by developing a three-dimensional (3D) Cu porous hollow fiber, where the 

CO formation rate was 10 times higher than nanocrystalline Cu with a FE of 75% at -0.4 V (vs. 

RHE) [51]. It was observed that the hollow 3D structures provided a large surface area and a 

three-phase boundary assisted with gas-liquid reactions. A recent study was focused on the 

development of nanodendritic Cu via an in situ electrodeposition method under a high electrode 
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potential. This nanocatalyst exhibited excellent selectivity in the formation of C2H4, 57% FE, at a 

cathodic current density of 170 mA cm-2 during CO2 electrolysis, which proved that the Cu 

electrode surface structure had a significant impact on hydrocarbon selectivity [50]. 

Additionally, in order to enhance the electrocatalytic activity of the nanostructured Cu with rapid 

catalyst preparation, oxide derived Cu catalysts were synthesized using tunable O2 plasma 

treatments. The plasma-treated Cu achieved lower onset potentials for CO, HCOO-, and C2H4, as 

well as 60% FE, for C2H4 at a applied potential of -0.9 V (vs. RHE) [52].  

2.2.2 Gold (Au) catalysts 

Gold (Au) is one of the promising electrocatalysts for efficient CO2 reduction, when the 

appropriate experimental conditions are employed. Generally, Au electrodes are highly active 

and selectively form CO with high yields from CO2 electrolysis in aqueous solutions [7,47,53]. 

More interestingly, the formation of CO on the Au electrodes is independent of the electrolyte 

pH during the reduction of CO2 [54,55]. Various types of Au electrodes have been developed as 

catalysts for the electrochemical reduction of CO2 including polycrystalline Au, porous Au film 

[56], and nanostructured Au including nanoparticles [57], nanowires [53], nanoneedles [58], and 

other gold based nanomaterials [59-62]. Noda et al. reported that pure polycrystalline metal Au 

electrodes produced CO with a FE of 81.5% at -1.6 V (vs. Ag/AgCl) in a 0.1 M KHCO3 

electrolyte [63]. In an attempt to synthesize Au nanoparticles, sputtering and vapor deposition 

techniques were employed to prepare Au electrodes as the CO2 electrocatalysts [56,64]. The 

results revealed that the surface morphology and surface area of the Au electrodes affected 

reduction potentials in aqueous solutions. Recent studies have focussed mainly on the 

preparation of nanostructured Au electrodes, which can impart much higher catalytic activity 

compared to typical Au electrodes toward the electrochemical reduction of CO2 [65,66]. This  
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Figure 2.7 (a) Linear sweep voltammetry of CO2 electroreduction over Au NP catalyst samples. 

Data were acquired at room temperature in 0.1 M KHCO3 with a −5 mV/s scan rate, and were 

normalized by the respective Au surface areas after the subtraction of a background signal 

measured on clean glassy carbon. (b) Faradaic current densities at E = −1.2 V vs RHE as a 

function of Au NP size, with error bars indicating NP size distributions. Reprinted with 

permission from ref. [57]. Copyright @ 2014 American Chemical Society. 

may be attributed to large electrochemically active surface areas (EASAs) and different crystal 

facets [11,67,68]. Experimental results have also shown that the structures and morphologies of 

these nanocatalysts play a significant role in the enhancement of catalytic activity, for instance, 
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lowering the overpotential, improving the Faradaic efficiency, and accelerating the reaction rate 

for the electrochemical reduction of CO2 [8,9,11,69-73]. 

With respect to increasing the surface area of polycrystalline Au foils, island-like 

nanostructured Au catalysts were prepared by treating Au foils with oxygen plasma, which 

demonstrated a higher current density and lowered the onset potential to 100 mV, compared to 

bare Au foils, for the selective electrochemical reduction of CO2 to CO with a FE of 95% at -

1.73 to -1.93 V (vs. NHE) [74]. The electrocatalytic activity of the Au nanoparticles was also 

observed by varying the nanoparticles on a layered film [75]. It was noticed that the catalytic 

activity and selectivity of the CO2 electroreduction varied with the surface morphology of the Au 

electrodes. The thin Au layer with an average nanoparticle size of 4.4 ± 0.2 nm exhibited a 

remarkable CO formation with a FE of ~78% at -0.59 V (vs. RHE) in contrast to the tiny layered 

and thick layered Au. Mistry et al. synthesized different types of Au nanoparticles, varying their 

size from ~1-8 nm in diameter toward the electroreduction CO2 to understand the role of particle 

size during CO2 catalysis [57]. As can be seen in Figure 2.7a, decreasing the particle sizes 

resulted in a drastic increase in the current density measured by linear sweep voltammetry, which 

indicated that the catalytic activity relied on the size of the Au nanoparticles. For instance, at -1.2 

V (vs. RHE), Au nanoparticles of 1.1 ± 1.0 nm displayed over 100 times the catalytic activity for 

the CO formation than did the largest nanoparticles (Figure 2.7b). Oxide derived Au 

nanoparticles, resulting of the reduction of thick Au oxide films, obtained a high electrochemical 

surface area with a large number of active sites that remarkably enhanced the electrocatalytic 

activity, while exhibiting high selectivity for CO formation from CO2 reduction, with excellent 

stability at a very low overpotential of 140 mV [67].        
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 Other than Au nanoparticles, attempts have also made to synthesize different types of 

nanostructured Au materials to increase electrocatalytic activity and selectivity for the robust 

reduction of CO2. For example, ultrathin Au nanowires (2 nm wide) were prepared from Au salts 

using a facile chemical reduction method, which electrocatalyzed CO2 to CO at an onset 

potential of -0.2 V (vs. RHE), where the FE of CO achieved was 94% at -0.35 V [53]. Another 

effort showed that the deposition of Au nanoparticles on a mesostructured template may enhance 

the catalytic activity of Au for CO2 electrolysis [76]. The results revealed that the formed 

mesostructured Au film electrode could catalyze the CO2, with CO2 formation selectivity of 

almost 100% at an overpotential of 0.4 V. Furthermore, to compare the catalytic performance of 

the different nanostructured Au for the electrochemical reduction of CO2, Liu et al. synthesized 

Au nanoneedles, nanorods, and nanoparticles [58]. They discovered that the Au nanoneedles had 

superior catalytic activity among the studied catalysts, which achieved a current density of 22 

mA cm-2 for selective CO production at an overpotential of only 0.24 V in a CO2-saturated 0.5 M 

KHCO3 solution. The extremely high catalytic activity of the formed Au nanoneedles was 

explained by the proper utilization of localized electric fields by the sharp tip of the nanoneedles. 

Therefore, these studies showed that formed nanostructures, surface morphologies, increasing 

the surface area, and the introduction additional active sites on the electrode surface play vital 

roles toward the enhancement of the electrocatalytic performance of the Au electrodes for CO2 

conversion and utilization.       

2.2.3 Ag catalysts 

Similar to Cu and Au, Ag electrodes also show good catalytic activity for the 

electroreduction of CO2. When using Ag metal as an electrocatalyst in aqueous media, CO is the 

primary product of CO2 reduction [63,77,78]. Some studies have reported that HCOO- 
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accompanied with CO were also obtained as CO2 reduction products on a single crystal (fcc) of 

Ag [79,80]. Recent reports have mainly focused on the preparation of nanostructured Ag as 

efficient electrocatalysts for the reduction of CO2 [81-85]. Salehi-Khojin et al. studied the effects 

of Ag nanoparticle size in the electroreduction of CO2and found that superior catalytic activity 

was obtained with nanoparticles having dimensions of 5 nm, which exhibited ~10 times higher 

catalytic activity than both a bulk Ag electrode and a single crystal Ag electrode [81]. This study 

also observed that nanoparticles smaller than 5 nm exhibited a strong binding affinity with 

reaction intermediates. Similar phenomena were also observed by Kim et al. who noticed that 

immobilized carbon supported Ag nanoparticles at  Ø5 nm showed the highest current density of 

1 mA cm-2 at an overpotential of 0.3 V for CO production with a FE of 79.2% at -0.75 V (vs. 

RHE) [83]. With the hint of OD-Cu nanoparticles, synthesized nanostructured Ag following the 

reduction of Ag2O was also tested for the electroreduction of CO2 [84]. This nanocatalyst 

exhibited a 0.4 V overpotential, which was lower than polycrystalline Ag electrodes in the 

formation of CO. Moreover, the OD-Ag achieved a 80% FE of CO at about 0.5 V of 

overpotential, and the study concluded that surface morphology played a critical role in the 

enhancement of the catalytic activity. With the preparation of mesostructured electrodes 

containing Ag nanoparticles (Ag-IO), Yoon et al. synthesized a mesostructured Ag inverse opal 

electrode for the electrochemical reduction of CO2 [82]. The formed Ag-IO showed an excellent 

CO2 reduction activity to CO and established that the formation of a mesostructure of 

nanostructured Ag is a good strategy for the abundant production of CO. Furthermore, in order to 

further increase the catalytic performance of Ag, Lu et al. synthesized nanoporous Ag, which 

obtained a 150 times larger electrochemical surface area and exhibited a 3000 times higher 

current density than a polycrystalline Ag electrode for CO production with a FE of 92% at an 
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overpotential of >0.5 V [85]. All of these studies revealed that formation of supernanostructures 

by altering surface morphologies extended the catalytic performance of Ag with excellent 

selectivity for the electroreduction of CO2.             

2.2.4 Other metal catalysts 

Several other metal based electrodes such as cobalt (Co), tin (Sn), palladium (Pd), zinc 

(Zn), indium (In), led (Pb), gallium (Ga), cadmium (Cd), mercury (Hg), and more, have also 

been studied and tested as electrocatalysts for the reduction of CO2 [86]. Many of these metal 

electrodes have proved to be poor catalysts as they could produce either CO or HCOOH, and 

were not able to form new C-C bonds during the electroreduction of CO2. The metallic Zn 

electrocatalysis of CO2 produced HCOO- as the primary reduced product. A number of studies 

showed that CO was obtained as the main product on Zn metal [80,86,87].  However, nanoscale 

Zn prepared by electrochemical anodization, followed by reduction, exhibited very high selective 

CO formation with a FE of 93% at -1.6 V (vs. SCE) in a CO2-saturated NaCl solution [88]. 

Electrodeposited Zn produced HCOOH as the primary product with a FE of 78.4% at -1.5 V 

during the CO2 electrolysis in a KHCO3 solution; however, the stability was very poor as it was 

not active for more than 10 min. [89]. Hence, the reported results still kept the discrepancy alive, 

that this might have been due to the application of different experimental conditions during 

electrolysis. Both Sn and Pb metal electrodes produced HCOOH as the predominant product of 

CO2 electrolysis in a KHCO3 electrolyte, but required very high overpotentials [90]. The 

nanostructured Pb synthesized from PbO2 obtained a high roughness factor, which was ~100% 

for HCOO- for the reduction of CO2 in the potential range of from between -1.0 to -0.75 V (vs. 

RHE) in a 0.5 M NaHCO3 solution [91]. CO and HCOO- were the major products of CO2 

electrolysis on a Pd metal electrode in an aqueous solution [87,92]. Carbon supported Pd 
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nanoparticles exhibited high activity in the electrochemical reduction of CO2 for HCOO- 

production with a current density of 50-80 mA g-1 at overpotential of 0.2 V in a bicarbonate 

solution, revealed that the formation of Pd nanostructures favored increasing catalytic 

performance [93]. Metallic Cd and Hg electrodes reduced CO2 to HCOOH with a FE of 39% and 

94%, respectively [63]. A Co metal electrode also produced HCOO- from CO2 electrolysis. A 

recent study by Gao et al. reported that atomically thin layers of Co had higher catalytic activity 

in the formation of HCOO- at a lower overpotential than did bulk layers of Co. Moreover, 

partially oxidized atomically thin layers of Co exhibited significantly enhanced catalytic 

performance, with a current density of 10 mA cm-2 at 0.24 V overpotential, with high stability 

over 40 h of electrolysis in the generation of HCOO- [71]. The researchers pointed out that the 

creation of atomic-scale catalyst structures might serve as a new pathway to elucidate the 

fundamental facts, reaction mechanisms, and scale up of electrolysis, as well as to give further 

insights into the electroreduction of CO2.  

2.2.5 Alloy catalysts 

Toward the development of electrocatalysts for the reduction of CO2, different alloys 

have been synthesized and investigated. The alloying of different metals has shown to enhance 

catalytic performance by lowering overpotentials, and increasing production rates, increasing 

selectivity, stability, and FE as well, in contrast to pure metal electrodes. Different Cu, and Au 

alloys and their nanoalloys, such as Cu-Au, Cu-In, Cu-Pd, Cu-Pt, Au-Cd, Au-Pd, and others, 

have been synthesized as efficient electrocatalysts for the reduction of CO2 [11,29,61,62,94-97]. 

For instance, Kim et al. synthesized different compositions of bimetallic Au-Cu nanoparticles via 

the co-reduction of metal precursors to understand their catalytic activity, and found that the 

electronic and geometric effects of the formed alloys were involved with the binding of reaction 
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intermediates, which influenced the overall catalytic performance in CO2 electrolysis [11]. The 

size-dependence of Au-Cu nanoparticles alloys as catalysts for the electrochemical reduction of 

CO2 revealed that the selectivity of the products was minimally dependent on the nanoparticle 

sizes; however, the activity significantly increased with at smaller sizes [94]. A Cu-In alloy, as a 

CO2 electrocatalyst, was synthesized by the in situ electrochemical reduction of Cu2O and InSO4, 

where In was distributed on rough Cu surfaces, which selectively produced CO at a low 

overpotential with a high FE and stability [96]. A bimetallic nanocluster film of Cu and Pd was 

synthesized as a CO2 electrocatalyst, revealing that a synergistic effect was present within the 

nanoalloy, which exhibited the enhanced formation of CH4 from the CO2 electrolysis, in contrast 

to that of pure Cu catalysts [97]. An Au-Pd alloy was also designed and synthesized to catalyze 

CO2, which had the capacity to produce up to C5 hydrocarbons [62]. The formation of 

hydrocarbons began at -0.8 V (vs. RHE) on the formed Au-Pd alloys. Furthermore, the 

selectivity for hydrocarbon increased with the increase of Pd on Au electrode, which indicated 

that Pd-rich Au-Pd alloy favors the production of hydrocarbon fuels. Additionally, several 

theoretical studies indicated that nanoalloys of Au-Cd, Cu-Pt, Cu-Ni, Cu-Co, and Cu-Rh could 

be designed as electrocatalysts for the reduction of CO2 with enhanced catalytic activity, high 

selectivity, low overpotentials, and excellent stability [29,61].     

2.2.6 Carbon and carbon-based electrocatalysts  

           Aside from metal-based catalysts, carbon-based materials have also garnered noticeable 

attention as electrocatalysts for the efficient electrochemical reduction of CO2. For example, 

carbon nanofibers [98], nitrogen-doped graphene quantum dots [99], nitrogen-doped carbon 

coated multi-walled carbon nanotubes [100], nitrogen-doped carbon nanotubes [101], nitrogen-

doped nanodiamond [102], boron-doped diamond [103], nitrogen-doped graphene foam [104], 
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boron-doped graphene [105], nitrogen-doped carbon [106] copper nanoparticle/nitrogen-doped 

graphene [107], carbon nanotube/copper sheets [15], graphene-supported Cu nanoparticles [16], 

Pd-Cu/graphene [17], carbon-supported Cu nanoparticles [14] and more, have recently been 

identified as promising catalysts for the electrochemical reduction of CO2. These carbon-based 

materials have a high surface area, high electronic conductivity, high-temperature stability, 

resistance to acids and bases, extremely high mechanical strength, are environmentally 

compatible, and have high natural abundance as well, in comparison to metal-based 

electrocatalysts [108]. Hence, carbon materials are under serious consideration for the 

development CO2 electrocatalysts.  

Recently, Kumar et al. synthesised carbon nanofibers (CNFs) through the carbonization 

of poly-acrylnitrile (PAN) nanofibers, via the electrospinning of a PAN solution, which is metal 

free, which showed a very low overpotential of 0.17 V for the reduction of CO2 and exhibited 

~13 times higher current density than a bulk Ag electrode at -0.573 V (vs. RHE) for selective CO 

production from CO2 electrolysis [98]. Systematic studies also revealed that the binding energies 

between CNF surfaces and reaction intermediates was high, which raised the possibility of 

replacing metal electrodes with carbon materials. The introduction of heteroatoms such as N, B, 

and S in carbon materials (e.g., black carbon, CNFs, carbon nanotube, graphene, etc.) through 

doping, which can alter the electronic nature of carbon platforms, might exhibit efficient CO2 

reduction catalytic activities [109]. For instance, (graphene-like) nitrogen doped carbon showed 

a six fold higher activity than did Cu electrodes with an extremely high FE (93.5%) for CH4 in a 

[Bmim]BF4 electrolyte at an applied potential of -1.4 V vs. Ag/Ag+ (0.01 M AgNO3 in 0.1 M 

TBAP-MeCN) [106]. Wu et al. synthesized N-doped carbon nanotubes (NCNTs) with a 5% N 

atom content via a liquid chemical vapor deposition method as electrocatalysts for the reduction 
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of CO2 [101]. The formed NCNTs showed a higher catalytic activity over pristine CNTs by 

displaying some unique features, including a low free energy for CO2 activation during the 

reduction process and a low affinity for hydrogen evolution by enhancing energy barriers. 

Further, it possessed preferable catalytic sites that facilitated reduction reaction rates, resulting in 

a 80% FE of CO at a very low overpotential of 0.26 V [101]. A N-doped nanodiamond on Si rod 

array substrate was found to be a catalyst for the selective formation of acetate from CO2 

electrolysis, with a FE of 91.2-91.8% at -0.8 to -1.0 V (vs. RHE) [102]. Formaldehyde was 

formed with high yields (FE 74%) as a CO2 reduction product on a boron-doped diamond 

electrocatalyst using seawater as an electrolyte solution at -1.7 V (vs. Ag/Ag+) [103]. 

Graphene, by itself, does not have any intrinsic electrocatalytic activity for the reduction 

of CO2; however, heteroatom (N and B)-doped graphene exhibits good catalytic performance for 

the electroreduction of CO2 [99,104,105,109,110]. Graphene with nitrogen defects exhibits 

enhanced activity for the catalytic reduction of CO2 by lowering the free energy barrier to 

generate a high level of CO formation in contrast to pristine graphene [104]. Three-dimensional 

graphene with N defects has shown CO formation potential only at -0.19 V (vs. RHE), which 

further attained ~85% FE for CO generation at an overpotential of 0.47 V with 5 h of stability 

[104]. Multi-carbon products such as ethylene and ethanol were formed on a nitrogen-doped 

graphene quantum dot (NGQD) catalyst during CO2 electrolysis [99]. The NGQD catalyst favors 

the formation of C-C bonds beyond the cathodic potential of -0.61 V (vs. RHE), and the overall 

FE attained was 90% at -0.75 V, with an ethylene and ethanol formation of 45%. Moreover, this 

metal-free NGQD catalyst had an affinity for the generation of C2 and C3 products at a higher 

cathodic potential [99]. Aside from N-doped graphene, boron-doped graphene also showed 

enhanced catalytic activity for the electrochemical reduction of CO2, where formate was 
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comparatively synthesized at a low overpotential, leading to a major reduced product, and it 

attained significant stability compared to pristine graphene [105]. 

 The creation of a composite consisting of nanostructured metals (Cu, Sn, Pd) and carbon 

materials (carbon nanotubes, graphene oxide, graphene), or carbon material-supported metal 

nanostructures could combine the characteristics of both materials to enhance the catalytic 

activity of the formed catalysts for the electrochemical reduction of CO2. Baturina et al. studied 

the electrocatalytic nature of different types of carbon materials, such as carbon black-, single-

wall carbon nanotubes- and Ketjen Black carbon-supported Cu nanoparticles toward the 

reduction of CO2 [14]. Their study found that a homogeneous dispersion and smaller Cu 

nanoparticles were obtained on carbon materials than on electrodeposited Cu. The formed Cu 

nanoparticles supported on these carbon materials exhibited a large number of electrochemically 

active sites versus electrodeposited Cu, which attained a low onset potential and the highly 

selective formation of C2H4 [14]. Catalysts comprised of CNT/Cu sheets also produced CO, CH4, 

and C2H4 as CO2 reduction products [15]. The catalytic activity of the CNT/Cu was further 

increased by an oxygen plasma treatment, which exhibited a higher production rate than did 

pristine CNT/Cu and CNT sheets. Defective graphene-supported Cu nanoparticles might also 

exhibit improved catalytic activity for the electrochemical reduction of CO2 than pristine Cu 

nanoparticles, which has been studied by density function theory. It was demonstrated that the 

surface morphology and electronic properties of Cu might be modified by incorporating Cu 

nanoparticles into graphene. This would allow for the geometrical flexibility to have interactions 

with CHO* intermediates, which might be a key step in the conversion of CO2 into hydrocarbon 

fuels, such as CO, HCOOH, and CH4 [16,111]. Composites comprised of Pd nanoparticles with 

graphene, Cu nanoparticles with graphene, and Pd and Cu nanoparticles with graphene have 
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been investigated for the electroreduction of CO2, and showed that bi-metal nanoparticle loading 

on graphene had a higher catalytic activity than mono-metal loading on graphene [17]. Different 

quantities (in wt%) of Cu, Pd, and both of them together were loaded onto graphene and their 

activity was compared by employing cyclic voltammograms in a CO2- and N2-saturated 0.5 M 

KHCO3 solution. The current densities in the CO2-saturated solution were higher than the N2-

saturated solution, indicating that all of the catalysts had CO2 reduction activity. In contrast, 1% 

Pd nanoparticles attained a current density of -1.88 mA, which was superior compared to other 

loading contents of Pd on graphene. Similarly, the highest current density (-2.25 mA) was 

obtained with 1% Cu nanoparticles among the other loadings of Cu on graphene. Loading both 

1% Pd and 1% Cu together on graphene showed a lower current density than the mono-metallic 

nanoparticle loading. Surprisingly, the activity suddenly increased to -2.80 mA while increasing 

the Cu loading by 1% on the bi-metallic nanoparticle catalyst sample; however, it decreased 

further with higher Cu loading. Hence, among the studied composites, the optimal catalytic 

performance was achieved at 1% Pd-2% Cu supported on graphene. Lei et al. synthesized Sn 

nanoparticles (15 nm) supported on graphene, and Sn quantum sheets, which were restricted in 

graphene via a spatially confined reduction process as electrocatalysts for the reduction of CO2 

[18]. The highest catalytic activity was obtained on Sn quantum sheets confined in graphene, 

compared to the 15 nm Sn nanoparticles supported on graphene, 15 nm Sn nanoparticles, and 

bulk Sn electrodes. For instance, graphene confined Sn quantum sheets achieved a current 

density of 21.1 mA cm-2 with more than 85% FE of formate generation at -1.8 V (vs. SCE) over 

50 h of electrolysis. The results indicated that other metal quantum dots confined in graphene 

might have a higher catalytic activity for the electroreduction of CO2 than that of metal 

nanoparticles supported on graphene. Reduced graphene oxide (rGO) synthesized through a 
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chemical or electrochemical reduction process, possessed similar characteristics to graphene. 

Combining rGO and metal nanoparticles might obtain synergistic effects that may enhance the 

catalytic performance of metal nanoparticle catalysts. Recently, rGO supported Cu nanoparticles 

were used as electrocatalysts for the reduction of CO2 [112]. A large cathodic current density and 

low onset potential were obtained on a Cu NP supported rGO nanosheets compared to a Cu film 

and Cu NPs. For instance, the Cu film attained a current density of -0.24 mA cm-2 at -1.54 V (vs. 

NHE), which was four times smaller than that of the CuNPs/rGO electrode. Moreover, the 

formed CuNPs/rGO exhibited high stability and no Cu NP degradation from the electrode 

surface during the electrolysis of CO2.  

2.3 Reaction pathways of CO2 electroreduction 

Over the last three decades, a large number of research articles have been published that 

focus on the electrochemical reduction of CO2. Different types of efficient electrocatalysts have 

been developed to synthesize usable chemicals as the reduction products of CO2. In addition, 

substantial efforts have been invested in the determination of reaction mechanisms to elucidate 

the fundamental kinetics of the electrochemical reduction of CO2, both experimentally and 

theoretically [9,29,69,113-117]. The reaction kinetics are contingent on the types of catalyst and 

product selectivity. Several researchers have proposed different reaction mechanisms for 

selective production formation, even using same the electrocatalyst following identical 

experimental conditions. For instance, the proposed mechanisms for the formation of CH4 on Cu 

electrodes are still under debate. Hori et al. proposed that hydroxymethylidyne (CHO*) is the 

reaction intermediate and the rate-determining step might be the further reduction of the formed 

intermediate of CHO* [118], whereas the Gattrell group have suggested that CO is the 

intermediate of the CO2 reduction reaction, and rate-determining step occurs during CO 
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formation, but the mechanism goes through CHO* formation, followed by breaking the C-OH 

bond to form CH4 on Cu electrodes [31]. However, it is highly challenging to determine the 

proper reaction mechanisms in aqueous media by obtaining the experimental products, which 

could lead to the proposal of various intermediates and pathways, even arriving at the identical 

reduced species. Theoretical studies might provide a proper pathway to identify the reaction 

intermediates and kinetics of the electroreduction of CO2. For example, density function theory 

(DFT) calculations might provide a better idea to study the reaction paths on specific catalyst 

surfaces. Several research groups have demonstrated CO2 reduction reaction mechanisms by 

conducting DFT studies on Cu, defective graphene supported Cu, Cu-based alloys, and other 

catalyst surfaces [16,29,113,116,119]. In this section, we will discuss recent progress in the 

design of reaction mechanisms for CO2 reduction to attain various products on different catalyst 

surfaces by both theoretical and proposed pathways that have been sketched on the basis of 

experimental results.  

2.3.1 Theoretical insights 

DFT is one of the primary platforms, and a first-principle theoretical study, that could 

provide a unique tool to model the possible reaction pathways on different catalyst surfaces for 

the electrochemical reduction of CO2. The reaction free energies and kinetic barriers involved 

with the formation of bonds to obtain new species depending on applied potentials are the main 

considerations of the DFT study. Among the studied CO2 electrocatalysts, Cu has been the most 

investigated material, both experimentally and theoretically. A broad range of products 

(approximately 16 species) mostly hydrocarbon and oxygenate fuels can be formed on Cu 

electrodes with high efficiency during the electrolysis of CO2 within the function of potentials 

[69]. Although some research groups have proposed several reaction mechanisms based on the 
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experimental results, the reaction intermediates and rate determining steps for products 

selectivity are still under debate. Peterson et al. have used DFT calculations coupled with a 

computational hydrogen electrode (CHE) model to elucidate different reaction pathways at 

different cathodic potentials on a Cu (211) surface [115]. They have examined this considering 

41 different intermediate steps as pathways to the major products such as CO, HCOOH, CH4, 

and C2H4. Their results indicated that the formation of absorbed CHO via the protonation of 

absorbed CO is the initial key step to obtain hydrocarbons from the reduction of CO2. The 

activation barrier can be reduced if the absorbed CHO is stabilized on the electrode surface  

 

Figure 2.8 Proposed reaction paths for electrochemical CO2 reduction on Cu(111), producing 

methane (CH4), methanol (CH3OH), and ethylene (C2H4). The (H+ + e-) reactants and H2O 

product are left off the scheme. Reprinted with permission from ref. [116]. Copyright @ 2014 

Elsevier. 
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compared to absorbed CO; hence, a more efficient process will take place at low overpotentials. 

Figure 2.8 displays the possible reaction paths to CH4, C2H4, and CH3OH from CO2 on a Cu 

(111) surface, which was studied by Nie and co-workers [114,116]. They found that the adsorbed 

H* with no H2O involvement formed C-H bonds on the Cu surface, whereas, CO2* reduction to 

COOH* occurred through the formation of O-H bonds due to the solvated H2O, which reduces 

the kinetic barrier. The formation of the products progresses through the two primary pathways, 

either forming the CHO* intermediate (Path I) or a COH* (Path II). As shown in Figure 2.8, both 

CH4 and CH3OH are formed following Path I through the intermediate of CHO*. The overall  

 

 

Figure 2.9 (A) The lowest energy pathways of CO2 reduction on the Cu55–defective graphene. 

(B and C) Relative free energy diagrams without (B) and with (C) applied potential for CO2 

reduction on Cu(111) (empty rectangle with dashed lines), Cu55–defective graphene (filled 

rectangle with solid lines), and Cu55 cluster (empty rectangle in the inset). Reprinted with 

permission from ref. [16]. Copyright @ 2014 Royal Society of Chemistry. 
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path for the formation of products according to CO2* → COOH* → CO* → CHO* → CH2O* 

→ CH3O* → CH4 + O* or CH3OH* where, the first formed H2O and the reactants H+ and e- are 

left off. Path II provides another path though the intermediate of COH* to form CH4 by 

proceeding as CO2* → COOH* → CO* → COH* → C* → CH* → CH2* → CH3* → CH4* 

(leaving off the formed H2O and H+ + e-). Moreover, the production of C2H4 occurred in the 

presence of a CH2* intermediate in this path (Path II). Hasan and co-workers also suggested that 

the presence of CH2* intermediate favours the formation of CH4 and C2H4 on a Cu (211) surface 

[120]. The hydrogenation of CO* to CHO* and CO* to COH* are the key selectivity steps to 

obtain the target products of Path I and Path II, respectively [114,116]. However, several studies 

have suggested that HCO* is the key intermediate leading to CH4 formation by breaking the C-O 

bond, whereas, the formation of a CO dimer is the key first step to obtain C2H4 and CH3CH2OH 

[4,121].  

 Metal alloys have also been developed and studied for the electrochemical reduction of 

CO2. Alloying might alter the reaction pathways to obtain selective production, and could reduce 

the kinetic barrier; hence, theoretical study is required. Hirunshit and co-workers used DFT 

calculations to investigate the electrochemical reduction of CO2 to CH4 and CH3OH on Cu-based 

alloys, such as Cu3Ag, Cu3Au, Cu3Co, Cu3Ni, Cu3Pd, Cu3Pt, Cu3Rh, and Cu3Ir [29,30]. These 

studies indicated that CH4 then CH3OH are energetically formed on all of the Cu-based alloys 

except on the Cu3Pd and Cu3Pt catalysts, where they require an overpotential of ~0.7 V for the 

production of CH3OH. The formation of a HOCO* intermediate on the Cu3Au surface is the 

limiting potential step, whereas, H2O formation and COH* protonation are on the Cu3Co. The 

Cu3Co, Cu3Ni, Cu3Pt, and Cu3Rh alloy surfaces thermodynamically favor HCOOH production at 

its equilibrium potential by the protonation of CO2 with electron transfer steps.  
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 Carbon-based materials such as defective graphene-supported Cu NPs have been studied 

as an electrocatalyst for the reduction of CO2 using DFT calculations associated with the CHE 

model [16]. The studied nanocomposite might have a higher electrocatalytic activity than pristine 

Cu NPs for the conversion of CO2 to CO, HCOOH, and CH4, where the nanocomposite might 

obtain a favorable surface morphology and low energy barrier paths for the production of fuels. 

Figure 2.9 compares the lowest energy paths on Cu (111) and the formed Cu55-defective 

graphene surface from CO2 electrolysis. The reaction path proceeded as COOH* → CO* → 

CHO* → CH2O* → CH3O* → O* → OH* → H2Ogas on graphene-Cu nanocomposite during 

gaseous CO2 reduction (Figure 2.9A). The key potential-limiting step was the protonation of 

CO* to CHO* which required an energy barrier of 0.97 eV and 0.68 eV on Cu (111) and Cu55-

defective graphene, respectively (Figure 2.9B). Moreover, the activation barrier for oxygen 

reduction reaction was higher on the Cu-graphene system (0.60 eV) than the Cu surface (0.39 

eV), which indicated that nanocomposite might favors the formation of fuels in the reduction of 

CO2. Figure 2.9C shows that the CH4 formation may occur at the applied potential of -0.97 V 

and -0.68 V on a Cu and Cu-graphene system, as the rate-limiting step in CO* to CHO* requires 

minimum energies of 0.97 eV and 0.68 eV, respectively. Therefore, graphene-supported metal 

nanoparticles could be the promising catalysts for the efficient electrochemical reduction of CO2; 

hence, both extensive theoretical and experimental studies are required.  

2.3.2 Proposed pathways based on experimental results 

On the basis of experimental results, various reaction pathways have been proposed for 

different target products on several catalyst surfaces toward the electrochemical reduction of 

CO2. As Cu is the most studied catalyst for CO2 reduction and potentially produces hydrocarbons 

and oxygenates, different reaction mechanism schemes were proposed by several research 
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groups [27,31,69,113]. For instance, Khul and co-workers identified a total of 16 products, 

including two hydrocarbons (CH4 and C2H4) and 14 oxygenates, where 11 of them were C2 and 

C3 products obtained at different electrode potentials on a Cu electrode surface [69]. The 

formation of CO or HCOOH from CO2 requires a low overpotential due to having lower 

activation barriers, and they are involved with a two-electron reduction process. The more 

complex molecule is obtained at higher overpotentials because of the further reduction of the CO 

intermediate, which is kinetically more complicated. Figure 2.10 displays the possible reaction 

pathways for the C2 and C3 product formation. They have suggested that the key intermediates 

are enol-like species which are transformed into C2+ products with repeating dihydroxylations 

via the electrochemical steps of 2H+ and 2e-. Though it  

 

Figure 2.10 Proposed reaction pathway for C2 and C3 products with enol-like surface 

intermediates. Arrows between overlapping circles indicate changes between the enol, keto, and 

diol forms of each product. Arrows between non-overlapping circles indicate electrochemical 

reduction steps involving the addition of 2H+ and 2e-. For simplification, product names are 

intended to refer to all forms of the product. Reprinted with permission from ref. [69]. Copyright 

@ 2012 Royal Society of Chemistry. 
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is not yet clear what the involvement of C1/C2 is for the formation of C-C coupling, the repeating 

replacements of OH- group by forming H2O molecule might explain the production of many 

more C2 and C2+ products. Thus, after forming a C-C bond, C2H4 is formed by the quick loss of 

OH- groups from the surface-adsorbed enol-like species, where the other products might be 

formed by the desorption of enol-like intermediates. Sen et al. synthesized HCOOH and 

hydrocarbons on their formed Cu nanofoams from the reduction of CO2 [27]. They predicted that 

the F-intermediate (OCHO) pathway leads to the formation of HCOOH whereas the C-

intermediate (COOH) pathway provides for the higher production of hydrocarbons. Furthermore, 

the types of electrolyte and the pH of the solution might have an impact on the reaction 

mechanisms, where the adsorbed anions such as (CO2)- ionic dimer and CO2
•- intermediates may 

form under such conditions, and might also play an important role in the reaction pathways 

toward the formation of C1 and C2 products [113]. Chen et al. discovered an oxide-derived Au 

NPs (OD-Au) electrocatalyst that was highly active and selectively produced CO from CO2 

 

Figure 2.11 Proposed mechanisms for CO2 reduction to CO on polycrystalline Au and oxide-

derived Au. Reprinted with permission from ref. [67]. Copyright @ 2012 American Chemical 

Society. 
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reduction in a CO2-saturated 0.5 M NaHCO3 solution [67]. They proposed that the reaction 

mechanism of CO formation on polycrystalline Au involved the formation of a CO2
•- 

intermediate by a e- transfer to CO2, which was counted to be the rate determining step and 

followed by the protonating of H+ ions and the transfer of another electron with the production of 

a H2O molecule (Figure 2.11). On the other hand, the developed OD-Au involved the formation 

of a CO2
•- ion with a reversible e- transfer to CO2 (which was the initiation step) followed by H+ 

consumption from HCO3
- (rate determining step) and subsequent transfers of another e- and H+ 

to form CO. The mechanism of CO formation from the CO2 reduction on a nanoscale Zn 

catalysts was also involved by forming an intermediate of CO2
•- ion, which had faster reaction 

rate in NaCl solution, but was slow in a NaHCO3 electrolyte, due to competitive H2O reduction 

[88]. However, the formed CO2
•- ion was protonated and further reduced giving HCOOH as a 

reduction product associated with the bicarbonate ion on a polyethyleneimine functionalized N-

doped carbon nanomaterials, which was proposed by Zhang and co-workers [122].  

2.4 Stability and activity degradation of catalysts 

Catalyst stability is generally evaluated by their electrolysis performance over longer 

periods [123]. A good electrocatalyst should acquire low overpotential and high FE with a long-

term durability of reduction catalysis performance. For most catalysts, although some exhibit 

high catalytic activity, they suffer from poor stability and survive for less than 100 h, which is 

not sufficient for practical applications [47]. Studies have reported that a polycrystalline Cu 

electrode quickly lost its activity in the electroreduction of CO2, which might be due to the 

formation of graphitic carbon on its surface [26,35,124]. Stevens et al. observed that the catalytic 

activity of a porous Au film decreased by 40% following 100 min. of electrolysis at an applied 

potential of -2.1 V (Ag/AgCl), which might be due to the further reduction of the formed CO to 
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elemental carbon that blocked the active sites of the porous Au film [56]. Cu nanoflowers 

produced C2H4 from the electroreduction of CO2; however, the production rate gradually 

decreased after 2 h of electrolysis [26]. Moreover, it was observed that corrosion of the particles 

from the electrode surface limited the stability of the electrocatalysts for the reduction of CO2 

[125]. However, obtaining high stability for catalyst remains one of the most significant 

challenges in the development of CO2 electrocatalysts. Several studies have reported on the issue 

of catalyst deactivation, which indicated the formation of pollutant intermediates, the decaying of 

electrode materials, and the deposition of by-products on the electrode surface as being the 

primary causes [47,126]. With respect to catalyst durability, some of the possible factors have 

been summarized below [126-128]: 

(i) Using metal as electrodes, metal impurities interact with the electrolyte solution. 

(ii) A trace amount of organic substance might contaminate the water that is used to 

prepare the electrolyte solution. 

(iii) Contaminants from the ion-exchange membranes that are used as a separator 

between the cathode and anode chamber.  

(iv) Poisonous intermediate species produced during CO2 electrolysis may adsorb on 

the electrode surface. 

(v) Morphology changes of the electrode surface, aggregation of the catalyst 

particles, or corrosion of the particles from the catalyst surface. 

(vi) Adsorption of non-catalytic species on the electrode surface from the 

contaminants. 
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(vii) Deposition of anode material particles on the cathode catalysts and formation of 

gas bubbles on the anode surface that prevents cathodic polarization during 

electrolysis because of large electrode potentials. 

(viii) Increasing the amount of liquid products, and in the meantime decreasing the 

concentration of CO2 in the electrolyte solution due to long running electrolysis. 

In addition to these factors, the electrolysis mode and experimental conditions could also 

affect the stability of the catalysts [35,129,130]. For example, a Cu cathode was deactivated after 

only 3 h of electrolysis at a constant potential mode; however, the activity was retained for 7 h 

once superimposed potential was applied [124].  

2.5 Summary and perspectives 

             The electrochemical conversion of CO2 could be an inexpensive and green source of 

fuels and chemical synthesis. The catalytically mediated electroreduction of CO2 may provide an 

elegant pathway to mitigate the global energy crisis and to balance the global carbon cycle. 

Various electrocatalysts that have been explored for the electrochemical reduction of CO2 over 

the last few decades, as reported in the literature, have been summarized as Cu, Au, Ag, alloys, 

carbon and carbon-based materials in this chapter. The catalytic reaction mechanisms proposed 

by experimental results and theoretical insights into different catalysts were also discussed 

widely in the introduction section. Altogether, due to recent advancements in the field, the 

electrochemical CO2 reduction method is an energy efficient technology, a potential path for the 

synthesis of fuels, and a promising candidate as sustainable energy source. However, the 

transformation of CO2 into fuels on a large scale via electrochemical technology remains 

insufficient as the result of several severe limitations. These persistent constraints include low 

catalytic activity, low production rate, poor product selectivity, and inadequate catalyst stability. 
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Thus, further catalyst and technology development is required to overcome these challenges; 

therefore we propose several emerging research approaches to address these limitations:  

(i) Advancement of nanostructured catalysts. In the development of CO2 

electrocatalysts, various pure metal electrodes, their nanostructured materials, alloys, and 

nanocomposites have been prepared and employed for the electrochemical reduction of CO2, and 

some of them have exhibited pronounced catalytic performance. However, the catalytic activity 

is not energy efficient and sufficient for industrial applications to commercialize the generated 

products. Therefore, intensified efforts are required to achieve excellent catalyst performance. To 

enhance catalytic activity, efforts should continue in the design and synthesis of various new 

nanostructured materials, such as nanoparticles, nanoneedles, nanorods, nanofoams, 

nanodendrites, nanoflowers, and nanoalloys comprised of heavy metals, rare-earth metals, and 

metalloids. Nanostructured materials have unique surface morphologies, large surface areas, 

more active sites, different crystal facets, whereas nanoalloys could have synergistic interactions. 

Hence, the integration of advanced nanostructured materials might provide an optimal condition 

to achieve high catalytic activity.  

(ii) Exploring of carbon-based materials at the nanoscale: Different types of carbon 

materials such as glassy carbon, carbon nanotubes, graphene materials, nanodiamond, and others 

have been identified as promising electrocatalysts for the reduction of CO2. Moreover, 

heteroatom-doped carbon materials, namely N-doped graphene, B-doped diamond, N-doped 

carbon nanotubes, S,N-doped carbon, B-doped graphene, and carbon material supported metal 

nanoparticles have recently garnered significant attention as highly efficient catalysts for the 

electrochemical reduction of CO2. However, redoubled efforts should be invested to achieve the 

extraordinary catalytic performance of carbon based catalysts for CO2 electrolysis. Carbon 
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materials have large surface areas, high electrical conductivity, and could have strong synergistic 

interactions with metal nanoparticles. The incorporation of heteroatoms in the carbon matrix, 

making nanocomposite carbon materials with various metal nanoparticles, and synthesizing 

metal quantum dots might introduce, or significantly increase, the electrocatalytic activity of 

pristine carbon materials. Moreover, carbon materials can stabilize and prevent the 

agglomeration of metal particles upon deposition. Additional carbon-based CO2 electrocatalysts 

could be explored along with the consideration of their superior electrochemical properties. The 

development of single atom-doped or heteroatom-doped carbon materials, heteroatom-doped 

carbon material decorated metal particles, carbon material supported hetero metal particles as 

CO2 electrocatalysts, might provide a novel strategy for improved efficiency for the reduction of 

CO2. Hence, controllable synthesis with desirable structures and the composition of carbon-

based materials are essential requirements to achieve high catalytic performance for the 

electrochemical reduction of CO2. 

(iii) High selectivity: Many CO2 electrocatalysts exhibit low selectivity, though some  

show high catalytic activity. Product selectivity is highly variable among catalysts, where even 

the same catalyst can produce different products under identical experimental conditions. The 

surface morphology, electrochemical active sites, crystal facets, material compositions, 

experimental conditions, such as electrolytes, solution pH, and applied electrode potential play a 

crucial roles in product selectivity and yields. Therefore, the consideration of these properties 

when designing catalysts may overcome poor selectivity in the electroreduction of CO2. For 

example, Cu materials are known as hydrocarbon fuel producing catalysts, whereas some carbon 

materials have been observed to facilitate C-C bond formation; hence, the development of an 



62 
 

optimized composition of nanostructured Cu with graphene might obtain high selectivity in the 

production of hydrocarbons. 

(iv) Long-term stability: Most developed catalysts suffer from poor stability in the 

electrochemical reduction of CO2, where can survive 100 h of electrolysis, which is insufficient  

for industrial applications. Hence, catalyst stability remains one of the severe challenges that 

constrain the development of efficient CO2 catalysts. Therefore, several factors should be 

considered to overcome this limitation, such as a) ensuring the purity of precursor materials 

while synthesizing catalysts, b) ensuring that the electrolyte solution is free of contaminants, c) 

poisonous intermediates should be identified and completely removed, d) optimizing the 

operation conditions such as the electrode potential, pH, and electrolyte solution, e) gently 

circulate the electrolytes in the cathode chamber to prevent the gathering the generated products 

on the catalyst surfaces, f) find a way to prevent the corrosion of catalyst particles on the 

electrode surface, g) increase the concentration of CO2 in the electrolyte solution and find a way 

to maintain the same concentration during the entire electrolysis process, and h) transfer the 

generated products from the reactor and introduce new electrolyte without disturbing the system.  

   (v) Increasing the CO2 concentration in the system: Generally, electrochemical CO2 

reduction is performed in an aqueous solution, where the solubility of CO2 in the aqueous 

solution is typically low. The aqueous solution contains H+, HCO3
- ions, and solvated CO2. The 

affinity of H+ to reduce H2 gas on the cathode surface is high and, therefore, there is a 

competition between protons and solvated CO2 to participate in the reduction on the catalyst 

surfaces upon applying the cathodic potential. By increasing the quantity of solvated CO2 in the 

system there is a high probability of having a sufficient population of CO2 molecules on the 

electrode surface, which could suppress H2 evolution. Hence, to enhance the CO2 reduction rate 
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and stability of the electrode the concentration of solvated CO2 in the electrolyte solution should 

be increased. The utilization of a high-pressure CO2 aqueous/non-aqueous solution system, the 

continuous purging of CO2 into the electrolyte solution, and the design of a system that has he 

capacity to use highly concentrated supercritical CO2-aqueous/non-aqueous system, might be 

potential strategies for supplying sufficient amounts of CO2 to the surfaces of the catalysts.       

(vi) Understanding fundamental insights: As CO2 is a fully oxidized and 

thermodynamically stable molecule; it is energetically expensive to convert CO2 to its 

derivatives. To synthesize complex molecules from CO2, it is critical to overcome activation 

barriers and to form new chemical bonds. However, the determination of the proper reaction 

mechanisms and understanding the roles of intermediates are quite challenging during the 

catalysis of CO2. To enhance catalytic activity, while improving product selectivity and catalyst 

stability; a better understanding of fundamental insights is necessary for both theoretical 

modeling and for obtaining experimental products. Hence, the design and optimization of 

catalyst structures, elucidating the relationships between intermediates and catalyst active sites, 

reaction mechanisms, and the role of operation conditions could be examined through the 

combination of DFT studies and experimental confirmations. More theoretical studies should be 

conducted with various nanostructured materials and different metal crystal facets for improved 

fundamental analysis. Moreover, the synthesis of new nanomaterials, nanocomposites, and 

changing experimental conditions during CO2 electrolysis, will facilitate the acquisition of 

insights for a more complete fundamental understanding. 

(vii) System designs for scale up applications and economic benefits: A vast amount of 

CO2 is available for transformation to fuels and chemicals. Among various technologies, 

electrochemical technologies have strong potential to synthesize fuels and useful chemical 
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powered by renewable energy. However, the current state of CO2 electrochemical reduction 

technologies is not practical for fuel production. Small reactor systems, tiny electrodes, 

insufficient quantities of catalysts, low concentrations of CO2 in the electrolyte solution, low 

catalytic activity, and rapid deactivation of the catalyst performance, are considered to be the 

major limitations to scaled up production. The synthesis of highly active and cheap catalysts, 

increasing the geometric surface areas of the electrode, optimizing operation conditions, 

enlarging the reactor size by interconnecting several cathode chambers in parallel with the 

cathode immersion in each chamber, designing new techniques to properly introduce CO2 gas 

into the system, such as continuous purging with the circulation of gas bubbles into the solution, 

and selecting appropriate ion-exchange membranes as separators might be viable strategies to 

scale up production using CO2 electrochemical technologies.  

In summary, electrochemical CO2 reduction technologies can provide an elegant pathway 

to produce fuels and value-added chemicals; hence, they could serve as sustainable green sources 

for energy production, which could contribute to mitigating the global energy crisis, reducing the 

average global temperature, as well as to balance the global carbon cycle driven by renewable 

energy. Although electrochemical technologies still face a number of severe challenges, these are 

not insurmountable. Recent advances in this field, in particular, the development of various 

highly active nanostructured materials, have strong potential for the development of 

extraordinary catalysts for the electrochemical conversion of CO2, which will serve as an 

efficient strategy for the production of energetic hydrocarbon fuels and value added chemicals at 

industrial scales in the near future.  
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Chapter 3: Electrochemical and FTIR spectroscopic study of CO2 

reduction at a nanostructured Cu/reduced graphene oxide thin film  

3.1 Introduction 

 The combustion of fossil fuels, changes in land-use, and the redundancy of industrial 

activities have been identified as the primary causes for the continuous rise of the CO2 emission. 

CO2 is known as one of the main greenhouse gases; and the utilization and the conversion of 

CO2 to valuable chemicals/fuels have garnered significant interests worldwide [1,2]. Although 

the practical application of the current electrochemical technology for CO2 reduction remains a 

big challenge [3], there are significant fundamental interests to understand the CO2 reduction 

phenomenon at the electrode/electrolyte interface. Electrochemical reduction of CO2 can be 

performed under ambient conditions; and it might provide an alternative approach to the 

utilization of CO2 via the transformation of CO2 to valuable chemicals and fuels in the future 

[4,5]. Various electrocatalysts have been explored for CO2 reduction [6-9]; and Cu is considered 

as a prominent catalyst, which facilitates the formation of low carbon fuels such as CO, 

HCOOH, alcohols and CH4 during the electrochemical reduction of CO2 in an aqueous solution 

[8,10-13]. However, large overpotentials are needed to obtain the target products with the 

energy-efficient conversion because of the high rate hydrogen evolution in an aqueous 

environment  [14,15].  

Graphene and graphene oxide (GO) possess several remarkable electrical, thermal and 

mechanical properties; and they have been widely explored in the development of advanced 

clean technologies, in particular in the areas of sustainable energy storage and conversion [16-

18]. GO contains various oxygen functional groups such as carbonyls and hydroxyls; and 
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graphene-like reduced graphene oxide (rGO) may be prepared by partial removal of these 

functional groups. Recently, rGO decorated with metal nanoparticles have been attracted in 

various sustainable green technologies such as energy storage, water splitting, hydrogen sorption 

and storage etc. due to the high surface area, good electrical conductivity and synergistic 

interaction with metal particles, resulting in a significant enhancement of the catalytic activity 

and stability [19-21]. In the present study, we have demonstrated a facile approach for the 

synthesis of a novel nanostructured Cu/rGO thin film, which exhibits excellent catalytic activity 

and high stability toward the electrochemical reduction of CO2. A significant synergistic effect 

was also observed when Cu nanoparticles were integrated with rGO sheets due to the 

physicochemical interaction between different functional groups of rGO and Cu nanoparticles. 

Further, we have shown that linear sweep voltammetric (LSV) and chronoamperometric (CA) 

techniques could be effectively employed to study the effect of the applied electrode potential 

and to determine the current efficiency of the electrochemical reduction of CO2.   

3.2 Methods 

CuSO4.5H2O (99.999%), graphene oxide (GO), NaHCO3 (≥99.0%), Na2SO4 (≥99.5%) 

and a 10.0 wt.% Nafion solution were purchased from Sigma-Aldrich. Ultra-pure CO2 (99.999%) 

and Ar (99.998%) were obtained from Praxair. A mixture of GO (0.5 mg mL-1), Nafion (0.5%) 

and CuSO4 (15.0 mM) was prepared as the precursor solution. Then a 10.0 L of the precursor 

was cast on a glassy carbon electrode (GCE) (0.07 cm2) and allowed to air dry. The simultaneous 

formation of the nanostructured Cu/rGO thin film was enabled via cyclic voltammetry carried 

out in an Ar-saturated 0.1M Na2SO4 solution in the potential range between 0.0 and -1.2 V (vs. 

Ag/AgCl) at the scan rate of 10 mV s-1 for five cycles. For comparison, Cu and rGO thin films 

were also synthesized using the identical experimental procedure, where GO was absent while in 
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the preparation of Cu nanoparticles (NPs) thin film and vice versa. The surface morphology, 

composition and oxidation states of the formed thin films were characterized using field-

emission scanning electron microscopy (FE-SEM) equipped with energy dispersive X-ray 

spectrometer (EDX) (Hitachi SU70) and X-ray photoelectron spectroscopy (XPS) (Thermo 

Fisher, 400 m X-ray spot size) with an Al Kɑ monochromatic source, where XPSPEAK 4.1 

software was used to analyze the XPS spectra. 

Electrochemical studies were carried out with a CHI 660B workstation (CH Instrument 

Inc. USA) in a one-compartment three-electrode cell. A platinum coil (10 cm2) was utilized as 

the counter electrode, whereas an Ag/AgCl (3.0 M KCl) was used as the reference electrode. The 

electrode potentials quoted in this study was converted to the reversible hydrogen electrode 

(RHE) reference scale using the following equation: 

                       E (vs. RHE) = E ( vs. Ag/AgCl) + 0.210 V + 0.0591 V × pH   

In situ electrochemical ATR-FTIR measurements were performed using an 8700 Nicolet Fourier 

transform infrared spectrometer equipped with a ZnSe window and a liquid N2-cooled MCT 

detector. All interferograms were acquired at a 4 cm-1 resolution for 100 scans. The IR spectra 

were calculated using the following equation [22]: 

R/R = [R(E2)-R(E1)] / R(E1) 

where R(E1) and R(E2) are the reflectivities from the electrode surface recorded at the applied 

electrode potential E1 (+0.1 V vs. RHE) and E2, respectively. 

For the analysis of the products, the electrochemical reduction of CO2 was carried out in 

an air-tight two-compartment cell, where a cationic exchange membrane (CMI-7000S) was 

employed as a separator. Each compartment contained 35.0 ml of a CO2-saturated 0.1M  
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Figure 3.1 SEM images of rGO (a), Cu NPs (b), and Cu/rGO thin film (c); (d) EDX spectra of 

Cu NPs (i), rGO (ii), and Cu-rGO thin film (iii). 

NaHCO3 solution and the pH of the solution was measured to be 6.65.  Gas chromatography 

(GC, Shimadzu GC-2014) was employed to analyze the gas products, while the formed liquid 

Products were qualitatively analyzed using HPLC (Varian Prostar 230). All the experiments 

were carried out at room temperature (20 ± 2 oC).  

3.3 Results and Discussion 

As seen from the FE-SEM images, a graphene-like thin film was formed following the 

electrochemical reduction of graphene oxide (Figure 3.1a), while a crystal-like cluster structure 

of Cu NPs appeared subsequent to the electrochemical reduction of the CuSO4 precursor (Figure  
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Figure 3.2 XPS spectra of the C1s region (a) and the Cu2p region (b) of the precursor mixture 

film before (i) and after (ii) the cyclic voltammetric treatment, where red and blue lines represent 

the raw data and the total fitting curve, respectively. 
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3.1b). The simultaneous formation of the Cu/rGO thin film was achieved following the 

electrochemical reduction of the mixed GO and CuSO4 precursor (Figure 3.1c), where Cu NPs  

with ~20 nm were uniformly distributed on the rGO sheets. Comparison of Figure 3.1b and 3.1c 

reveals that the Cu NPs were much larger in size and aggregated in the absence of the rGO. 

Figure 3.1d depicts the EDX spectra of the formed Cu, rGO, and Cu/rGO thin films, where the F 

peak and S peak were derived from Nafion. The appearance of the strong Cu peak in the Cu and 

Cu/rGO electrodes as well as the strong C peak in the rGO and Cu/rGO electrodes confirmed the 

composition of the prepared three different thin films. The C1s XPS spectra of the precursor 

mixture film before (i) and after (ii) the CV treatment are displayed in Figure 3.2a. The sp2 C 

peak centered at 284.78 eV increased tremendously following the CV treatment, demonstrating 

that the electrochemical reduction had a significant effect on the diminution of oxygen-

containing functional groups of GO to form rGO [23,24]. Figure 3.2b presents the Cu2p XPS 

spectra of the mixture film prior to (i) and following (ii) the electrochemical treatment. The 

strong peak centered at 935.28 eV, corresponding to Cu(II) (Spectrum i), was shifted to 933.88 

eV (Spectrum ii), which may be attributed to Cu(0) [20,25]. All the aforementioned results 

confirm that the facile CV treatment can effectively grow the nanostructured Cu/rGO thin film. 

In order to compare the electrochemical activity of the prepared electrodes, Figure 3.3a 

presents the LSVs of the bare GCE and the GCEs modified with rGO, Cu and Cu/rGO recorded 

in a CO2-saturated 0.1 M NaHCO3 solution at the scan rate of 20 mV s-1. The highest 

electrocatalytic activity was demonstrated by the Cu/rGO thin film. For instance, at -0.8 V, the 

cathodic current of the Cu/rGO electrode reached 4.40 mA cm-2, which was much higher than 

that of the Cu NPs (1.66 mA cm-2) and the rGO (1.53 mA cm-2); and a strong synergetic effect 

was observed for the nanostructured Cu/rGO thin film. It is well known that both CO2 reduction 
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Figure 3.3 (a) LSVs of the bare GCE and the GCEs modified with rGO, Cu NPs, and Cu/rGO 

thin films recorded in a CO2-saturated 0.1M NaHCO3 solution; (b) LSVs of the Cu/rGO thin film 

measured in the CO2-saturated 0.1M NaHCO3 solution (blue) and in the Ar-saturated 0.05M 

Na2SO4 solution whose pH was adjusted to 6.65 (black) at 20 mV s-1; the insert displays the 

calculated instant current efficiency. 
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and hydrogen evolution might occur under the experimental condition. In order to determine the 

catalytic activity of the Cu/rGO thin film toward CO2 reduction, Figure 3.3b displays two LSVs: 

one was measured in a CO2- saturated 0.1 M NaHCO3 solution (pH 6.65), where CO2 was 

continuously purged into the solution during the measurements; and the other was recorded in an Ar-

saturated 0.05 M Na2SO4 solution whose pH was adjusted to 6.65 by adding a small volume of 

acid, where Ar was constantly purged into the solution during the experiment. The current density 

obtained in the CO2-saturated NaHCO3 was higher than that in the Ar-saturated Na2SO4, 

confirming that the Cu/rGO thin film has the high catalytic activity for CO2 reduction. It is 

worthy to note that the cathodic current density of the synthesized nanostructured Cu/rGO thin 

film for CO2 reduction was higher than that of most electrocatalysts reported in the literature so 

far, for instance nanostructured Cu (~0.8 mA cm-2 at -1.3 V vs. Ag/AgCl) [26],  carbon 

supported Cu nanoparticles (~2.5 mA cm-2 at -1.6 V vs. Ag/AgCl) [27],  Cu NPs/rGO (0.97 mA 

cm-2 at -1.54 V vs. NHE) [20], and copper nanoparticle/N-doped graphene (~1.5 mA cm-2 at -1.2 

V vs. RHE) [28]. The corresponding instant current efficiency (%) for CO2 reduction at different 

potentials was calculated from the LSVs using the following equation: 

                         Current efficiency (%) = [(jA – jB) / jA]  x 100                         (1) 

where jA was the current density measured in the CO2-saturated 0.1M NaHCO3 solution; and jB 

was the current density obtained in the Ar- saturated 0.05 M Na2SO4 solution.  As seen in the 

insert of Figure 3.3b, the instant current efficiency was increased with the increase of the 

cathodic potential from -0.3 to -0.6 V; but it was gradually decreased with the further increase of 

the cathodic potential. The highest current efficiency (64.3%) was achieved at around -0.6 V, 

which could be the optimal potential for the bulk electrolysis of CO2 reduction using the 

nanostructured Cu/rGO thin film. 
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Figure 3.4 In situ electrochemical ATR-FTIR spectra recorded during the electrochemical 

reduction of CO2 at the Cu/rGO thin film at the different applied potentials varied from -0.1 to -

0.6 V vs. RHE in a CO2-saturated 0.1M NaHCO3 solution. 
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In situ electrochemical ATR-FTIR spectroscopy was also employed to understand the 

CO2 reduction at the Cu/rGO thin film in the CO2-saturated 0.1 M NaHCO3. A positive band in 

the spectrum may indicate the consumption of reactants; whereas a negative peak denotes the 

formation of intermediates/products [29,30]. As seen in Figure 3.4, the broad peak centred at 

~1585 cm-1 could be ascribed to the deformation of interfacial water molecules [31]. The 

negative band observed at ~1236 cm-1 might be attributed to the formation of HCO3
-. The 

intensity of the CO2 peak centred at 2343 cm-1 was significantly increased when the applied 

cathodic potential was increased from -0.3 to -0.6 V, indicating the increase of the CO2 

reduction. The appearance of the new peak centred at 1394 cm-1 confirmed the formation of 

formate during the electrochemical CO2 reduction [32,33].   

Chronoamperometry was further employed to determine the steady-state current 

efficiency and to investigate the stability of the formed Cu/rGO thin film. Figure 3.5a and 3.5b 

present four CA curves recorded in an Ar-saturated 0.05 M Na2SO4 solution (pH was adjusted to 

6.65) and in a CO2-saturated 0.1 M NaHCO3 solution for six hours, where Ar and CO2 were 

continuously purged into the solutions during the tests, respectively. Almost constant current 

density was obtained for each applied potential, indicating the high stability of the formed 

nanostructured Cu/rGO thin film. As expected, the cathodic current density measured in the Ar-

saturated Na2SO4 solution, due to the hydrogen evolution reaction, was increased with the 

increase of the cathodic potential from -0.4 to -0.7 V as seen in Figure 3.5a. In contrast, the 

steady- state current densities obtained in the CO2-saturated NaHCO3 solution (Figure 3.5b) were 

much higher at all the applied potentials in comparison to the CA curves displayed in Figure 

3.5a, further confirming that the CO2 reduction occurred at those cathodic potentials. Our GC 

analysis revealed that both H2 and CO were found at all of the applied potentials in the gas  
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Figure 3.5 CA curves of the Cu/rGO thin film recorded in the Ar-saturated 0.05M Na2SO4 

solution (a) and the CO2-saturated 0.1M NaHCO3 solution (b) at the different applied potentials 

of -0.4, -0.5, -0.6 and -0.7 V. 

-0.4 V

-0.6 V

-0.5 V

-0.7 V

(b)

(a)
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Figure 3.6 Corresponding steady-state current efficiency (%) for CO2 reduction calculated from 

the CA curves displayed in Figure 3.5a and 3.5b.  

products; whereas formate was identified as the main liquid product at the applied cathodic 

potentials higher than -0.4 V through HPLC analysis, which is consistent with our in situ ATR-

FTIR study. The steady-state current efficiency for CO2 reduction was calculated from the CA 

curves using Equation (1); and the corresponding plots are presented in Figure 3.6. The overall 

steady-state current efficiency was increased when the cathodic potential was increased from -

0.4 to -0.6 V; but it was decreased with the further increase of the cathodic potential -0.7 V, 

which is consistent with the instant current efficiency calculated from the LSVs (Insert of Figure 

3.3b). The highest steady-state current efficiency of the Cu/rGO thin film for the CO2 reduction 

-0.4 V

-0.6 V
-0.5 V
-0.7 V
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was calculated to be 69.4% at the applied potential of -0.6 V, which is slightly higher than the 

instant current efficiency determined from the LSVs. This is due to the fact that both Faradic and 

non-Faradic currents are involved in LSV; whereas only Faradic current was measured in CA.  

3.4 Conclusions 

A novel nanostructured Cu/rGO thin film was directly formed on the GCE surface via a 

facile one-step electrochemical reduction of their precursor mixture. The SEM images showed 

that Cu nanoparticles were uniformly distributed on the rGO nanosheets. LSV and CA were 

employed to study the effect of the applied potential on the electrochemical reduction of CO2 and 

to determine the instant and the steady-state current efficiency of the Cu/rGO thin film, 

demonstrating that the Cu/rGO thin film was highly efficient for CO2 reduction. The optimal 

potential was determined; and the highest instant and steady-state current efficiencies were 

attained at -0.6 V to be 64.3% and 69.4%, respectively. GC, HPLC and in situ electrochemical 

ATR-FTIR spectroscopy were used to analyze the products, where CO was identified as the gas 

product and formate was detected as the major liquid product. The facile fabrication, high 

catalytic activity and good stability make this novel nanostructured Cu/rGO thin film promising 

for electrochemical conversion of CO2 to valuable chemicals and fuels. In addition, the approach 

described in the present study opens a door to develop myriad graphene supported metal 

nanoparticles for clean and green environmental and energy applications. 
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Chapter 4: Unique copper and reduced graphene oxide nanocomposite 

toward the efficient electrochemical reduction of carbon dioxide 

4.1 Introduction 

Increasing levels of CO2 in the atmosphere have created a highly concerning situation 

that continues to elevate global average temperatures. There is a growing frequency of reports 

related to the impacts of global climate change due to increasing greenhouse gas emissions via 

the continuous combustion of fossil fuels. One of the most notorious of the greenhouse gases is 

CO2, which is released by both natural and anthropogenic processes. There is a great interest in 

capture and sequestration of CO2 emissions prior to their release into the ambient atmosphere, or 

the conversion of this gas to useful products such as fuels [1-5]. Over the last few decades, 

various electrocatalysts have been explored for the electrochemical reduction of CO2 to valuable 

fuels [6-10], and a wide range of gas and liquid products may be formed. Therefore, it is 

essential to accurately determine both the produced gases and the liquid fuels in order to 

precisely assess the FE. On one hand, the primary gas products include CO, methane (CH4), and 

ethane, which may be determined using GC and gas chromatography mass spectrometry (GC-

MS) [11,12]. On the other hand, potential liquid products include formate, acetate, aldehyde, 

alcohols, and so on, which strongly depend on the electrocatalysts employed and the applied 

electrode potentials. Although high performance liquid chromatography (HPLC), ion 

chromatography (IC) and nuclear magnetic resonance (NMR) have been employed to analyze the 

liquid products [11,13-15], it remains quite challenging and time-consuming to quantify the 

various liquid products in order to determine the overall Faradaic efficiency (FE) and assess the 

activity of the catalysts. A chemical oxygen demand (COD) method is commonly used in 

environmental analysis, and is based upon the complete oxidation of all organic species to CO2, 
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which is exactly the reverse of the CO2 reduction process[16,17]. In this study, for the first time 

we propose and employ the COD analysis to determine the overall FE associated with the 

conversion of CO2 to liquid chemicals and fuels.            

 Graphene nanosheets have been widely doped and/or modified for catalytic and energy 

conversion applications [18-22]. The unique electronic and physical properties of graphene may 

augment the reduction kinetics of CO2, and enhance the reaction kinetics of noble metal 

nanoparticles [23,24]. Copper is considered to be one of the eminent catalysts for the 

electrochemical reduction of CO2 to low-carbon fuels for high-density renewable energy storage 

[7,8,11,25]. It has been reported that CO, CH4, C2 hydrocarbon, alcohols, formate, and acetate 

could be formed when Cu was used as an electrode in an aqueous solution [11,12,25-27]. Several 

studies have been reported wherein the selectivity of Cu catalysts for the reduction of CO2 was 

specifically dependent on its crystal facets [7,28,29]. The surface structures of Cu electrodes, in 

conjunction with the applied electrode potential, are of intense interest for product selectivity 

[30-33]. Density Function Theory studies have indicated that defective graphene-supported Cu 

nanoparticles may modify the structural and electronic properties of copper, toward enhancing 

the electrochemical reduction of CO2 to fuels (e.g., CH4, CO, and HCOOH) [23,24,34-38]. 

However, despite the high catalytic activity of such Cu catalysts, they still suffer from low 

stability and large reaction overpotentials. Herein we report on the high-performance CO2 

reduction that is enabled by a unique nanocomposite of Cu nanoparticles (NPs) and reduced 

graphene oxide (rGO) supported on a Cu substrate with high FE and stability for the efficient 

conversion of CO2 to valuable fuels, including CO, CH4, and formate. 

4.2 Methods 

4.2.1 Materials 
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Graphene oxide, CuSO4.5H2O (99.999%), NaHCO3 (≥99.0%), Na2SO4 (≥99.5%) and a 

10 wt.% Nafion solution were obtained from Sigma Aldrich. Copper foil (99.9985%, 0.5 mm 

thick) was purchased from Alfa Aesar; copper wire (99.9%, 1.0 mm diameter) was purchased 

from Sigma Aldrich; and carbon dioxide (99.9%) was purchased from Praxair. All 

electrochemical experiments were conducted in a 0.1 M NaHCO3 electrolyte solution under CO2 

saturation. Double distilled water treated by a Nanopure Diamond water purification system (18 

M cm) was used in the preparation of all the solutions. All chemicals were used directly 

without further treatment. 

4.2.2 Synthesis of Cu-rGO nanocomposites 

To optimize the concentration of Cu precursor, a 50 L mixed solution of Nafion (0.5%), 

GO (0.5 mg mL-1) and CuSO4.5H2O (5.0, 10.0, 15.0, 20.0, and 25.0 mM) was cast on a 1.0 cm2 

Cu foil, which was etched for 30 s in 35% HNO3, washed with deionized water, and dried. To 

optimize the concentration of GO, a 50 L suspension of Nafion (0.5%), CuSO4.5H2O (10 mM), 

and GO (0.25, 0.5, 0.75, 1.0 and 1.50 mg mL-1) was cast onto the etched 1.0 cm2 Cu foil. 

Similarly, to optimize the Cu-rGO thickness, altered volumes of the suspension solution (25, 50, 

75, 100 and 150 L) containing 10.0 mM CuSO4.5H2O, 0.5% Nafion, and a 0.5 mg mL-1 GO 

were cast on the etched 1.0 cm2 Cu substrate.  

 The simultaneous formation of the Cu-rGO nanocomposite was carried out in 0.1 M 

Na2SO4 via cyclic voltammetry in the potential range between 0.0 to -1.2 V (vs. Ag/AgCl) for 

five cycles. The prepared Cu-rGO nanocomposites were subsequently rinsed with a copious 

volume of water and employed for further surface characterization and electrochemical 

measurements.  
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 For comparison, Cu nanoparticles (NPs) were prepared using the same electrochemical 

reduction approach in the absence of GO. Briefly, a mixture of CuSO4.5H2O (10.0 mM) and 

Nafion (0.5%) in water was prepared and sonicated for 20 minutes. Subsequently, 75 L of the 

mixture was cast on the etched Cu foil surface and dried in ambient air at room temperature. The 

rGO sheet electrode was then prepared by applying the identical conditions mentioned above for 

the Cu NPs; however, only GO (0.5 mg mL-1) with Nafion was used. 

4.2.3 Structural characterization 

Morphological surface studies and EDX analysis were carried out using a FE-SEM 

(Hitachi SU-70). XPS spectra were recorded via a Thermo Fisher XPS system, where the size of 

the X-ray spot was 400 mm, with an Al Kɑ monochromatic source. XPSPEAK 4.1 software was 

used for all of the data processing.  

4.2.4 Electrochemical characterization 

Linear Sweep Voltammetry and chronoamperometry were carried out with a CHI660E 

electrochemical workstation (CH Instrument Inc. USA) utilizing a conventional one-

compartment three-electrode cell, whereas a platinum coil (10 cm2) was used as the counter 

electrode. A silver/silver chloride electrode (Ag/AgCl, 3.0 M) was utilized as the reference 

electrode and all the aforementioned electrode potentials were converted to the reversible 

hydrogen electrode (RHE) scale using the following equation: 

E (vs. RHE) = E (vs Ag/AgCl) + 0.210 V + 0.0591 V × pH 

A VoltaLab potentiostat (PGZ-301) was employed for the Electrochemical Impedance 

Spectroscopic (EIS) measurements, and the frequency was varied from 100 kHz to 10 mHz with 

an a.c. voltage amplitude of 10 mV. Data acquisition and analyses were performed using Z-view 

software, which was employed to fit and obtain an equivalent circuit for EIS data. The solution 
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was purged with CO2 in order to achieve a CO2-saturated condition. All electrochemical 

experiments were conducted at ambient room temperature (20 ± 2 0C). 

4.2.5 Product analysis 

A gas-tight two-compartment electrochemical cell was used for the product formation 

and analysis. A cationic exchange membrane (CMI-7000S) was utilized as a separator in the cell. 

Each compartment contained 35.0 ml of the electrolyte; the working electrode and reference 

electrode (Ag/AgCl) were in the same compartment, whereas the counter electrode was in a 

separate compartment. Prior to testing, the electrolyte was purged once again with CO2 gas for at 

least 30 minutes. A gas-tight syringe (HamiltonTM, 50 L) was used to transfer the evolved gases 

into the gas chromatography (Varian 450-GC) to analyze the gas products. The resulting liquid 

products were qualitatively analyzed using HPLC (Varian Prostar 230 with a Symmetry®C8 

column containing dimethyloctylsilyl bonded amorphous silica-acetonitrile). The COD analysis 

was conducted using 174-334 accu-TEST standard range (5-150 mg/l) twist cap vials for 

quantitative determination. The solution (2.0 mL) was then transferred to a vial that contained a 

chromic acid solution, heated to 150 0C for two hours and then allowed to cool. To establish the 

actual COD values, the results were subtracted from the values of a blank solution (CO2 

saturated 0.1 M NaHCO3 solution). The UV absorbance was recorded at 420 nm using an 

HACH-DR 2800 portable spectrophotometer. 

4.3 Results  

4.3.1 Syntheses and characterization of Cu-rGO nanocomposites 

The Cu-rGO nanocomposite was formed directly on a Cu substrate using a facile 

electrochemical reduction method. A mixture of GO and Cu2+ precursors was cast on an etched 

Cu substrate; and the simultaneous formation of Cu-rGO nanocomposite was achieved via cyclic  
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Figure 4.1 SEM images of the formed Cu NPs (a) and the Cu-rGO nanocomposite (b) on a Cu 

substrate. (c) EDX spectra of the Cu NPs (i) and the Cu-rGO nanocomposite electrode (ii). 

b)

a)

b)

c)

Cu

Cu

C
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Figure 4.2 High-resolution XPS spectra of the C1s region (a and c) and the Cu2p region (b and 

d) of the CuSO4-GO thin film before the electrochemical treatment and the formed Cu-rGO 

nanocomposite.  

voltammetry (CV), which was carried out in 0.1 M Na2SO4 in the potential range from 0.62 to -

0.58 V vs. RHE for five cycles. The composition and thickness of the formed Cu-rGO 

nanocomposite were also optimized, with the experimental details described in the Methods. 

Figure 4.1a and 4.1b display the scanning electron microscope (SEM) images of the formed Cu 

NPs in the absence of GO, and the Cu-rGO nanocomposite, respectively. It is evident that large 

grain-sized Cu particles were formed in the absence of GO. In contrast, Cu NPs with an average  

a)

Before reduction

C1s

c) C1s

After reduction

b) Cu2p

Before reduction

d)
Cu2p

After reduction
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Table 4.1 XPS analysis of C1s peak of the CuSO4-GO thin film before the electrochemical 

treatment and the formed Cu-rGO nanocomposite. 

XPS  Peak position / eV Peak assignments At (%) 

Before the  electrochemical treatment 

284.80 sp2 C 2.17 

285.76 C-OH 26.56 

286.69 C-O 11.70 

287.95 C=O 13.06 

290.39 HO-C=O 46.50 

Following the  electrochemical treatment 

284.80 sp2 C 29.49 

285.67 C-OH 9.02 

286.46 C-O 10.41 

287.67 C=O 11.08 

290.29 HO-C=O 36.99 

 

Table 4.2 XPS analysis of the Cu2p3/2 peak of the CuSO4-GO thin film before the 

electrochemical treatment and the formed Cu-rGO nanocomposite. 

 XPS  Peak position / eV Peak assignments 

Before the electrochemical treatment 

934.23 Cu (II) 

937.17 Cu (II) 

942.17 
Cu2+ satellites 

945.60 

Following the electrochemical treatment 

934.06 Cu (0) 

936.69 Cu (II) 

942.49 
Satellites  

944.83 
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diameter of ~10 nm were distributed homogeneously on the rGO. Energy dispersive X-ray 

spectra (Figure 4.1c) exhibited a strong Cu peak for the Cu NPs (Curve i) and an additional 

strong C peak for the Cu-rGO nanocomposite electrode (Curve ii). X-ray photoelectron 

spectroscopic (XPS) measurements were further carried out for mixture of the GO and Cu 

precursor mixture as well as for the formed Cu-rGO nanocomposite electrode. Figure 4.2a and 

4.2c display the high-resolution C1s XPS spectra prior to and following the electrochemical 

reduction, respectively. A series of fitting peaks were observed at 284.80, 285.76, 286.69, 287.95, 

and 290.39 eV, corresponding to sp2 C, C-OH, C-O, C=O, and HO-C=O bonds, respectively, as 

observed in GO [21,22]. The peaks centred at 292.46 and 293.96 eV are due to the C-F3 and C-F2 

groups of Nafion, which was used as the binding material of the nanocomposite to the substrate. 

As seen in Table 4.1, following the electrochemical reduction, the peaks of oxygen-containing 

groups decreased; and the proportion of C=C group increased enormously, revealing that the 

electrochemical treatment had a significant effect on the diminution of oxygen-containing 

functional groups. In the case of Cu, prior to the electrochemical treatment, three Cu2p peaks 

were observed in Figure 4.2b, which might be attributed to the physicochemical interactions of 

Cu(II)  species with the different functional groups of GO [15,39-41]. Subsequent to the 

electrochemical treatment (Figure 4.2d), a strong Cu(0) peak appeared at 934.12 eV and a small 

Cu(I) peak was observed at 931.78 eV. The associated Cu2p peak position,  and assignment 

before and after the electrochemical treatment are listed in Table 4.2. All the aforementioned 

results show that the GO and Cu2+ precursor can be effectively reduced to form the Cu-rGO 

nanocomposite.  

 The electrocatalytic activity of the formed Cu-rGO nanocomposite was initially studied 

using linear sweep voltammetry (LSV) and chronoamperometry (CA) in the presence of CO2 in  
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Figure 4.3 (a) LSV curves of the bare Cu substrate, rGO, Cu NPs and Cu-rGO nanocomposite 

electrodes; and (b) corresponding CA curves of the bare Cu substrate (black), Cu NPs (red), rGO 

(green), Cu-rGO nanocomposite (blue) electrodes recorded at -0.4 V in a CO2-saturated 0.1 M 

NaHCO3 solution.  

a)

b)
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Figure 4.4 Nyquist plots measured at the potential of -0.4 V in a CO2- saturated 0.1 M NaHCO3 

solution on different electrodes. Inset: the equivalent electric circuit used for fitting the EIS data, 

where Rs = solution resistance; CPE = constant phase element; Rct = charge-transfer resistance; 

Ws = Warburg impedance (short). 

0.1 M NaHCO3 (pH 6.65). Figure 4.3a compares the LSV curves of the bare Cu substrate, Cu 

NPs, rGO, and the Cu-rGO nanocomposite recorded at 20 mV s-1. The Cu-rGO nanocomposite 

exhibited a much higher current density and earlier onset potential in contrast to the bare Cu 

substrate, Cu NPs, and rGO. The CA curves of these electrodes were measured at -0.4 V and 

compared in Figure 4.3b, showing that the steady-state current was increased in the following 

order: bare Cu < rGO  Cu NPs < Cu-rGO. It is noteworthy that the current density of the Cu- 

rGO nanocomposite was much higher, and the onset potential was much lower in comparison  



98 
 

Table 4.3 Values of the elements in equivalent electric circuit fitted in the Nyquist plots of 

Figure 4.4 (error percentage for each element is given in parentheses). 

Elements Bare rGO Cu NPs Cu-rGO 

Rs (cm-2
 20.58 (0.46) 7.82 (0.94) 15.58 (0.78) 13.77 (0.67) 

CPE-T (F cm-2) 191.06 (1.60) 781.40 (3.84) 427.38 (1.95) 1817.60 (4.07) 

CPE-P 0.90 (0.75) 0.83 (2.60) 0.89 (2.93) 0.80 (3.61) 

Rct (cm-2
 668.80 (2.67) 624.60 (3.27) 612.90 (2.27) 355.40 (3.12) 

W-R (cm-2
 20.75 (3.89) 14.75 (2.90) 18.29 (9.78) 6.48 (3.02) 

W-T (s) 0.007 (4.44) 0.008 (3.87) 0.007 (6.90) 0.013 (3.54) 

W-P 0.47 (7.08) 0.42 (3.33) 0.42 (1.89) 0.45 (3.67) 

Rs: solution resistance; CPE-T/CPE-P: elements of constant phase element; Rct: charge transfer 

resistance; W-R/W-T/W-P: elements of Warburg impedance associated to diffusion resistance. 

with other copper-based catalysts for the electroreduction of CO2 that have been recently 

reported in the literature [36-38,42-44]. 

Electrochemical impedance spectroscopy (EIS) was employed to determine the charge-

transfer resistance. Nyquist plots (Figure 4.4) of the bare Cu, Cu NPs, rGO, and Cu-rGO 

nanocomposite electrodes were recorded in CO2-saturated 0.1 M NaHCO3 aqueous solutions at -

0.4 V. All of the impedance curves exhibited a semi-circle in the low-frequency region, which 

may correspond to the charge transfer resistance of the CO2 reduction [45]. The equivalent 

electrical circuit displayed in the inset was employed to fit the experimental data using the Z-

view software, and the corresponding fitted results were summarized along with the percentage 

of errors in Table 4.3. All of the solution resistances (Rs) were small, and the low error 

percentages indicated that the employed equivalent circuit fitted the impedance data well. All of 

the CPE-P values were >0.8, which signified that the constant phase element (CPE) behaviours 

were capacitor-like. The Cu-rGO nanocomposite exhibited the highest CPE-T value (1817.60 F  
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Figure 4.5 LSV curves (a) and CA plots (b) of the Cu-rGO nanocomposite electrodes prepared 

with a constant GO concentration (0.5 mg mL-1) while the concentration of the Cu precursor was 

changed from 5 to 25 mM as listed in Figure 4.5a. LSV curves (c) and CA plots (d) for the 

optimization of the GO concentration while the concentration of the Cu precursor was 

maintained at 10 mM. 

cm-2), which was over four-fold larger than that of the Cu NPs (427.38 F cm-2) and over two-

fold greater than that of the rGO (781.40 F cm-2). Moreover, the Cu-rGO nanocomposite 

exhibited much lower charge-transfer resistance Rct (355.40 Ω cm-2), which was almost half of 

the Cu NPs (612.90 Ω cm-2). A short Warburg impedance (Ws) associated with Rct was included  

d)

a)

c)

b)
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Figure 4.6 LSV curves (a) and CA plots (b) of the Cu-rGO nanocomposite electrodes prepared 

with the optimized GO (0.5 mg mL-1) and Cu (10 mM) concentration while the volume of the 

mixed solution was altered from 25 to 150 L as listed in Figure 4.6a. 

in the equivalent circuit in order to effectively fit the impedance spectra, indicating that the 

diffusion resistance also played an important role during the electrochemical reduction of CO2. 

All of the EIS results further demonstrated that the Cu-rGO nanocomposite exhibited much  

b)

a)
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Figure 4.7 Nyquist plots of the optimized Cu-rGO nanocomposite electrode recorded at -0.3, -

0.4, -0.5, and -0.6 V in a CO2 saturated 0.1 M NaHCO3 solution. The symbols denote the 

experimental data and the solid lines correspond to the fitted results using the equivalent 

electrical circuit (inset). The amplitude of the modulation potential was 10 mV and the frequency 

was altered from 100 kHz to 10 mHz. 

higher catalytic activity toward the electrochemical reduction of CO2 in comparison to the Cu 

NPs and rGO. 

In order to optimize the composition and quantity of the nanocomposite, different Cu-

rGO nanocomposites were prepared and studied. Figure 4.5 presents the LSV and CA curves of 

the prepared Cu-rGO nanocomposites, where the concentration of the Cu precursor was altered 

from 5 to 25 mM, and the GO concentration was varied from 0.25 to 1.5 mg mL-1. As shown in 

both LSV (Figure 4.5a) and CA (Figure 4.5b) plots, the highest current density was achieved  
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Table 4.4 Values of the elements in equivalent electric circuit fitted in the Nyquist plots of 

Figure 4.7. (Error percentage of each element is given in the parentheses). 

Elements -0.30 V -0.4 V -0.5 V -0.6 V 

Rs (cm-2) 12.88 (0.36) 13.77 (0.67) 13.87 (0.45) 14.03 (0.45) 

CPE-T (F cm-2) 1907 (4.67) 1817.60 (4.07) 1785.80 (3.24) 1700.34 (4.57) 

CPE-P 0.86 (2.73) 0.80 (3.61) 0.78 (2.61) 0.76 (2.87) 

Rct (cm-2) 976.00 (1.05) 355.40 (3.12) 151.00 (3.78) 70.26 (3.31) 

W-R (cm-2) 20.67 (4.56) 16.48 (3.02) 14.34 (1.90) 10.12 (7.44) 

W-T (s) 0.008 (2.22) 0.013 (3.54) 0.026 (3.42) 0.043 (2.29) 

W-P 0.36 (4.58) 0.45 (3.67) 0.45 (4.07) 0.48 (1.67) 

Rs: solution resistance; CPE-T/CPE-P: elements of constant phase element; Rct: charge transfer 

resistance; W-R/W-T/W-P: elements of Warburg impedance associated to diffusion resistance. 

with the 10.0 mM Cu precursor. In the case of GO, the highest activity was observed when 0.5 

mg mL-1 GO was used, as seen in Figure 4.5c and Figure 4.5d. To study the effects of the 

thickness of the nanocomposite, similar experiments were conducted with the optimized 

composite mixture of the 10 mM Cu precursor and 0.5 mg mL-1 GO, where the volume was 

changed from 25 to 150 L. The highest current density was attained with 75 L of the 

composite mixture, as shown in both the LSV and CA curves (Figure 4.6a and 4.6b). EIS was 

further carried out to investigate the charge-transfer resistance of the optimized Cu-rGO 

nanocomposite (75 L of 10 mM Cu and 0.5 mg mL-1 GO mixture) at four different applied 

electrode potentials (Figure 4.7). The EIS curves were effectively fitted with the electrical circuit 

(inset of Figure 4.7) with the results listed in Table 4.4, revealing that the charge-transfer  
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Figure 4.8 (a) CA curves of the optimized Cu-rGO nanocomposite recorded at the selected 

potentials of -0.4, -0.5, and -0.6 V for product analysis. (b) The corresponding Faradaic 

efficiency of the formed products at the different applied potentials over the six hours. (c) The 

rates of product formation during the electrochemical reduction of CO2 at the applied potentials 

on the Cu-rGO nanocomposite electrode. 

a)

b)

c)
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resistance was significantly decreased from 976.0 to 70.26 cm-2, with the increase of the 

cathodic potential from -0.3 to -0.6 V. 

4.3.2 Bulk electrolysis of CO2 

In an attempt to achieve the bulk electrolysis of CO2, we selected three potentials (-0.4, -

0.5, and -0.6 V) for six hours of electrolysis using the optimized Cu-rGO nanocomposite in a 

CO2-saturated 0.1 M NaHCO3 electrolyte (pH 6.65). Figure 4.8a shows that the current density 

increased with the elevation of the cathode potentials during the bulk electrolysis of CO2, which 

was indicative of accelerated CO2 reduction reaction rates at more negative potentials. The 

formation of a large quantity of product was also observed at more negative potentials, revealing 

that the Cu-rGO nanocomposite facilitated the charge-transfer for the CO2 reduction, while 

increasing the cathodic potential. Our GC analysis showed that CO and CH4 were the primary 

gas products generated from the electrochemical reduction of CO2. To confirm that whether rGO 

served as the potential carbon source, we have conducted two control experiments: (i) running 

the CA experiment at -0.5 V vs RHE for six hours in an Ar-saturated 0.1 M NaHCO3 solution 

using the rGO electrode; and (ii) performing the same CA test in an Ar-saturated 0.1 M Na2SO4 

solution using the Cu-rGO nanocomposite. Only hydrogen was detected in the GC analysis for 

both cases, confirming that the CO and CH4 products were formed from the electrochemical 

reduction of CO2 using the Cu-rGO nanocomposite as the electrocatalyst. The FE for the 

formation of CO and CH4 at the different applied electrode potentials were calculated and plotted 

in Figure 4.8b, showing that more CO was generated than CH4 and that the FE for the formation 

of the gas products was increased with the raising of the cathodic potential from -0.4 to -0.6 V. 

 



105 
 

Table 4.5 Comparison of some promising Cu-based catalysts for the electrochemical reduction 

of CO2 recently reported in the literature. 

Electrocatalyst Applied potential Products (FE%) Total 
FE% Ref. 

Oxide derived Cu -0.40 V vs. RHE CO (38.5); HCOO– (10.8) 49.3 39 

Cu nanowire -0.795 V vs. RHE 
CO (2.4); C2H4 (7.2); C2H6 

(8.3); HCOO- (9.6); 
CH3CH2OH (10.8) 

38.64 46 

Carbon nanotube/copper sheets 
(CNT/Cu) 

-2.8 V vs. 
Ag/AgCl CO (1.6); CH4 (6.8) 7.6 

43 -5.0 V vs. 
Ag/AgCl 

CO (5.1); CH4 (15.5); 
C2H4 (1.1) 21.7 

Copper nanoparticles supported 
on carbon black (40 wt% 

Cu/VC) 

-1.2 V vs. 
Ag/AgCl CO (~15.0) 15.0 44 

20% Cu/CNT -1.7 V vs. SCE CH3OH (38.4) 38.4 47 

Carbon nanospike electrode with 
electronucleated Cu 

nanoparticles (Cu/CNS) 
-0.7 V vs. RHE CO (23.0); CH4 (12.0) 25.0 36 

Graphene confined Sn 
quantum sheets -1.2 V vs. SCE HCOO– (30.0) 30.0 48 

Cu NPs loaded on glassy carbon 
(Cu NP/GC) -1.3 V vs. RHE 

CO (5.5); CH4 (40.1); 
C2H4 (2.3); HCOOH (1.9); 

CH3COOH (0.7) 
50.5 35 

Oxide derived Cu foam -1.0 V vs. RHE 
CO (~5.0); HCOO- (~5.0); 

C2H4 (~20.0); C2H6 
(~25.0) 

55.0 49 

Copper nanoparticles supported 
on glassy carbon 

(n-Cu/C) 
-0.95 vs. RHE CH4 (~15.0) 15.0 25 

Cu mesocrystals -0.99 V vs. RHE CO (~2.0); CH4 (~3.0); 
C2H4 (~27.0) 32.0 50 

Cu nanoflower -1.6 V vs. RHE HCOOH (~50.0); CH4 
(~5.0); C2H4 (~10.0) 65.0 28 

Cu-rGO 
-0.4 V vs. RHE       

(-1.0 V vs. 
Ag/AgCl) 

CO (21.7); CH4 (8.6); 
Liquid products ( 46.2) 76.6 Present 

work 
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As mentioned in the introduction, the COD analysis is just the opposite of the CO2 

reduction; and this reverse conversion allows us to rapidly determine the total amount of 

electrons that are used in the electrochemical reduction of CO2 to produce the various organic 

liquid fuels as they will be completely oxidized via the following general equation during the 

COD analysis [16,17]:  

         CaHbOc + (a+b/4-c/2) O2 → a CO2 + b/2 H2O                            (1) 

Where a, b, and c represent the stoichiometric ratio of carbon, hydrogen, and oxygen in the 

formed organic compounds, respectively. Since each O2 molecule corresponds to a four-electron 

transfer: 

         O2 + 4H+ + 4e−→ 2H2O                                                             (2) 

We may use the following equation to calculate the total charge (QCOD), which was consumed 

for the formation of the liquid fuels during the electrochemical reduction of CO2: 

            QCOD = COD [mg L−1 O2] × (4 F V / 32000)                            (3)                                                            

Where F is the Faraday constant and V is the volume of the solution. Thus, the Faradaic 

efficiency for the formation of the liquid products may be calculated as follows:  

             FECOD% = QCOD / Q  x 100                                                      (4)                                                                                          

Where Q is the overall charge passed during the electrochemical reduction of CO2. The FECOD at 

the different potentials was calculated and plotted in Figure 4.8b, showing that the FE in the 

formation of liquid chemicals/fuels was decreased when the cathodic potential was raised from -

0.4 to -0.6 V. Our further HPLC analysis confirmed that the primary liquid product was formate 

with a trace amount of acetate. For comparison, the CA experiment was also performed at -0.5 V 

in an Ar-saturated 0.1 M Na2SO4 solution for six hours using the Cu-rGO nanocomposite. The 

subsequent COD analysis was carried out and no COD change of the solution was observed prior  
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Figure 4.9 The stability test of the optimized nanocomposite electrode carried at -0.5 V in a 

CO2-saturated 0.1 M NaHCO3 solution under continuous CO2 purging. 

to and after the CA test, further confirming that the increase of the COD value in the electrolysis 

experiment performed in the CO2-saturated 0.1 M NaHCO3 solution was resulted from the 

electrochemical reduction of CO2. The total FE of the optimized Cu-rGO nanocomposite for the 

reduction of CO2 included two parts (the formation of the gas and liquid products); and it was 

calculated to be 76.6%, 69.2%, and 74.7% at the applied electrode potentials of -0.4, -0.5, and -

0.6 V vs RHE, respectively, and the rest ~25% might be attributed to the hydrogen evolution. 

The rates of the formation of the products at the different applied electrode potentials are 

presented in Figure 4.8c, revealing that all the  production rates were increased with the increase 

of the cathodic potential from -0.4 to -0.6 V and that a significant increase of the CO formation 

was observed in comparison of the formation of the other gas and liquid products. Various Cu-
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based materials have been explored for the electrochemical reduction of CO2, and some of the 

promising results recently reported in the literature are compared in Table 4.5, showing that the 

unique Cu-rGO nanocomposite developed in the present study exhibited excellent FE for the 

efficient electrocatalytic reduction of CO2 at a relative low overpotential.  

 Finally, the stability of the optimized Cu-rGO nanocomposite was tested at -0.5 V in one 

liter of CO2-saturated 0.1 M NaHCO3 over 15 hours, via the chronoamperometric method 

(Figure 4.9), where CO2 was continuously purged into the solution during the course of the test. 

Impressively, the current density was almost identical during the entire CO2 reduction 

electrolyses, which demonstrated the high stability of the Cu-rGO nanocomposite electrode. The 

superior stability was further confirmed by inductively coupled plasma atomic emission 

spectroscopic (ICP-AES) analysis, where no Cu was detected in the electrolyte following the 

electrolysis. 

4.4 Discussion 

A unique Cu-rGO nanocomposite has been developed in the present study as a high-

performance electrocatalyst for the efficacious reduction of CO2 in an aqueous solution, with a 

high current density and a low cathodic potential. The superior electrocatalytic activity and 

stability of the Cu-rGO nanocomposite achieved in our study can be attributed to the uniformly 

distributed small Cu nanoparticles on the rGO and the synergistic coupling effect of the formed 

nanocomposite. The electron transfer between the rGO and Cu nanoparticles may increase 

localized electron concentrations, resulting in significant enhancement of the catalytic activities 

of the nanocomposite for the electrochemical reduction of CO2. The GC measurements indicated 

that CO and CH4 were the primary gas products, while our HPLC analysis revealed that HCOO– 

was the dominant liquid product. In addition, we have employed COD analysis to quantify the 
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overall liquid products, which provides a facile, rapid, and accurate method for the determination 

of the total FE for the conversion of CO2 to liquid products. The COD analysis may become a 

universal approach for quantification of the overall liquid products generated in other CO2 

conversion processes, for instance, photochemical and photoelectrochemical reduction of CO2. 

The easy fabrication, cost-effectiveness, high intrinsic activity, superior stability, and excellent 

FE make the Cu-rGO nanocomposite developed in this study a very promising catalyst for the 

efficient electrochemical conversion of CO2 to valuable fuels. This might enable a new strategy 

for the restoration of the carbon balance, while contributing to the resolution of the climate 

change. 
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Chapter 5: Synthesis, electrochemical and in situ FTIR study of Cu 

nanodendrites toward efficient CO2 reduction 

5.1 Introduction 

CO2 is considered a primary greenhouse gas that plays a central role in raising average 

global temperatures. The emission of CO2 results mainly from the combustion of fossil fuels in 

industry, automobiles, domestic use, and naturally via volcanic eruptions. However, the global 

reserves of fossil fuels will soon be depleted by continuous anthropogenic use, and humanity will 

face intense challenges toward the implementation of viable replacements, along with their 

associated infrastructures. Hence, is an urgent need to discover a new and sustainable energy 

source, and/or to devise strategies for the use of renewable energies. The conversion of CO2 to 

fuel using an electrochemical reduction technology might serve as a feasible approach for the 

generation of renewable energy [1,2]. Over the last few decades, scientists have developed 

various electrocatalytic materials for the reduction of CO2 that are active in aqueous solutions; 

however, their performance has not been sufficient enough for practical use, in terms of energy 

efficiency and stability [3-12]. Metal-based electrodes have been employed extensively for 

electrochemical the reduction of CO2 [6-9]. Among them, copper-based materials have garnered 

particular attention, as these catalysts have the capacity to produce hydrocarbon fuel products, 

such as formic acid (HCOOH), acetic acid (CH3COOH), methanol (CH3OH), methane (CH4), 

and ethane (C2H4), and more. However, they still require a high overpotential, which generates 

significant hydrogen evolution in conjunction with CO2 reduction in aqueous solutions, and have 

a low Faradaic efficiency of CO2-reduced products [10-14]. Moreover, the selectivity and 

stability of CO2 reduction products on these materials is poor [10-12]. For example, 
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polycrystalline Cu requires more than 0.5 V of overpotential to attain a current density of 1 mA 

cm-2 for the conversion of CO2 to CO and HCOOH, and >0.8 V for further reduction  to obtain 

CH4 and C2H4 [13,14].  

Different classes of Cu electrodes have been explored toward the electrochemical 

reduction of CO2, such as bulk Cu, thin Cu metal, Cu coated gas diffusion, electrodeposited Cu 

on glassy carbon, nanostructured Cu such as nanowires, nanoflowers, nanofoams, nanoporous, 

and copper-based alloys, to overcome these boundaries [13,15-22]. Nanostructured Cu materials 

have a high surface roughness factor, large electrochemical surface area, and different crystal 

facets. Several studies have been conducted to understand the effects of these properties on the 

electrochemical reduction of CO2, and reports indicate that significant improvements in catalytic 

performance have been achieved through the use of nanostructured Cu materials over typical 

metal electrodes, as electrocatalyst for the reduction of CO2 [10,23,24]. Recently, oxide-derived 

Cu nanomaterials (OD-Cu) have garnered wide attention and been studied as electrocatalysts for 

the reduction of CO2 and CO [10,13,25-27]. Nanomaterials comprised of OD-Cu are formed 

through the electrochemical reduction of copper oxides, which are synthesised via the thermal 

treatment of typical Cu NPs. The thermal process alters the surface structures of polycrystalline 

nanoparticles that might exhibit enhanced catalytic activity in the reduction of CO2 and CO. The 

derived nanomaterials form interconnected nanocrystalline networks among nanocrystallites, and 

exhibit small crystallite sizes, as well as a large electrochemical surface area and high roughness 

factor that favors the formation of C-C couples during electrochemical reduction of CO2 and CO 

[10,13,25-29]. The formation of CO and HCOOH on these OD-Cu nanomaterials occurs at low 

overpotentials, whereas CH4 and C2 hydrocarbons are comparatively generated at a high 

overpotential for the electrochemical reduction of CO2 [10,26,30].  
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Moreover, significant efforts have been invested in understanding the mechanisms and 

formation of the electroreducible products of CO2 on Cu electrodes [31,32-36]. In situ 

electrochemical attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy 

is a powerful technique for observing the species that are adsorbed on catalyst surfaces, and 

carrying out electrokinetic studies to determine the kinetics of the formation of reduced products. 

Studies have revealed that CO is the primary species that is adsorbed onto Cu electrode surfaces 

during CO2 electrolysis, which serves as an intermediate for the formation of other reduced 

products [32,33,37-39]. However, there remains a gap in understanding of the mechanisms for 

the formation of products and the kinetics of CO2 reduction, between the intimate and bulk 

electrolysis of CO2 on the Cu NP surface.  

Herein, we attempted to develop Cu nanoparticles with a high electrochemically active 

surface area (EASA), as a robust electrocatalyst for the reduction of CO2. The Cu nanocatalyst 

was derived from CuO, where for our approach; Cu nanoparticles were initially deposited on a Ti 

substrate through an electrodeposition method. Subsequently, calcination was performed in the 

presence of different modifying agents to convert the Cu to CuO. To synthesize the most highly 

active catalyst, the quantities of modifying agents, as well as the calcination temperature and 

calcination time were optimized. Finally, the calcinated electrode was electrochemically reduced 

to obtain cedar leaf-like Cu nanodendrites as an electrocatalyst for the reduction of CO2. The 

developed electrocatalyst facilitated the reduction of CO2 at a low overpotential to generate 

different hydrocarbons and oxygenates at cathodic potentials of higher than -0.2 V vs. RHE. The 

oxide-derived nanocrystalline Cu was more favorable for the reduction of CO to produce multi-

carbon oxygenates in the potential range of from between -0.3 V and -0.7 V (vs. RHE) 

[25,27,40], whereas our synthesized tree-like Cu nanodendrites might overcome this barrier (CO 
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reduction), which could catalyze CO2 at those applied potentials, with a remarkable current 

efficiency of up to 82% at -0.4 V. Furthermore, we employed in situ electrochemical ATR-FTIR 

spectroscopy to investigate the consumption of CO2, and the formation of intermediates and 

products, at different applied electrode potentials on the synthesized cedar leaf-like Cu 

nanodendrites during the electrochemical reduction of CO2.  

5.2 Experimental section 

5.2.1 Chemicals and materials 

CuSO4.5H2O (99.999%), Na2SO4 (≥99.5%), H2SO4 (≥99.99%), D2O (99.9 at.%), TMS 

(99.5%) and NaHCO3 (≥99.0%) solutions were obtained from Sigma Aldrich; copper foil 

(99.9985%, 0.5 mm thick) was purchased from Alfa Aesar; the Ti substrates (99.2%, 1.25 cm × 

0.80 cm × 0.5 mm) were purchased from Sigma Aldrich; carbon di*oxide (99.999%) and Ar 

(99.995%) gases were purchased from Praxair. All CO2 reduction analyses were conducted in a 

CO2-saturated 0.1 M NaHCO3 electrolyte solution. Deionized H2O was produced by a Nanopure 

Diamond TM UV ultrapure water purification system (18.2 MΩ cm), and used in the preparation 

of all electrolyte solutions.  

5.2.2 Fabrication of electrodes 

A Ti plate (1.0 cm2), serving as a substrate, was cleaned with acetone using an ultrasonic 

cleaner for 10 min., followed by 10 min. of immersion in deionized H2O, and then etching in 5.0 

M HCl at approximately 85 oC for 20 min.. Meanwhile, copper foils were etched for 1 min. in 

35% HNO3, rinsed with a copious amount of deionized water, and then dried using a flow of N2 

gas. Scheme 5.1 illustrates the formation of the Cu thin film and different oxide-derived 

nanostructured Cu. In an attempt to synthesize different Cu nanostructures, the Ti plate was used 

as a cathode, and copper foil was taken as an anode in a mixture of 0.1 M CuSO4 and 0.5 M  
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nanodendrites (Scheme 5.1). The thickness of the Cu nanodendrites was optimized by changing 

the volume of the treating agent, from 30 to 70 L at 500 oC for 1 h. To study the effects of the 

calcination temperature, it was changed from 400 to 600 oC with 50 L of the treating agent, and 

the effects of the calcination time were studied from 30 to 90 min. at 500 oC using the same 

volume of the treating agent.  

5.2.3 Characterization of electrodes 

Scanning electron microscope (SEM) images were obtained and energy dispersive X-ray 

(EDX) analysis was performed using a FE-SEM (Hitachi SU-70) at 10.0 kV to study the 

morphologies, structures, and surface composition of the prepared electrodes. X-ray 

photoelectron spectroscopic (XPS) characterization was carried out using a Thermo Scientific 

XPS system, where the samples were adjusted to a take-off angle of 90o (relative to the surface). 

The size of the X-ray spot was 400 m using an Al Kɑ monochromatic source and XPSPEAK 

4.1 software was employed for all data processing. Crystalline phase analysis was performed via 

a Phillips PW 1050-3710 with a Cu  α 1 of 1.54060 Å as the radiation source, to record X-ray 

diffraction (XRD) patterns. The full range of 2 data was obtained with a step of 0.01o/2width. 

The Scherrer Equation  cos94.0L  (where, λ stands to the Cu Kα radiation, and β 

corresponds to the full width at half-maximum for a reflection maximum) was used to calculate 

the crystallite size (L) of each sample. PANalytical X’Pert HighScore Plus software was utilized 

to process the raw data and to fit the XRD spectra.  

5.2.4 Electrochemical characterization 

A CHI 660E workstation (CH Instrument Inc. USA) was used for electrochemical 

analysis via cyclic voltammetry (CV), Linear Sweep Voltammetry (LSV), and 

chronoamperometry (CA) in a conventional one compartment three electrode cell system. A 
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platinum coil (10.0 cm2) was used as the counter electrode, which was cleaned via flame 

annealing and quenching with deionized H2O prior to each experiment. The reference electrode 

employed was an Ag/AgCl (3.0 M KCl) electrode, which was converted to a reversible hydrogen 

electrode (RHE) scale (E versus RHE) using the Nernst equation:   

E (vs. RHE) = E (vs. Ag/AgCl) + 0.0591 V × pH + 0.210 V 

A CO2 saturated 0.1 M NaHCO3 solution at pH 6.65 was used as the electrolyte for all 

electrochemical CO2 reduction experiments. 

5.2.5 Electrochemically active surface area (EASA) determination 

Surface roughness factors for the electrodeposited Cu thin film, OD-Cu thin film, and Cu 

nanodendrites were estimated, relative to the polycrystalline Cu electrode, by determining their 

double layer capacitances [27]. The CVs were obtained in the same electrochemical cell as for 

the electrochemical characterization with a 0.1 M  HClO4 electrolyte. No faradaic reactions were 

observed from the selected potential windows of the CVs for each electrode. The geometrical 

current densities versus the scan rates of the CV were plotted for each electrode, where the 

capacitance was estimated from the slope of the linear regression.          

5.2.6 In situ electrochemical ATR-FTIR study 

All in situ attenuated total reflection-Fourier transform infrared spectroscopy (ATR-

FTIR) investigations were carried out using an 8700 Nicolet Fourier transform 8700 infrared 

spectrometer with a ZnSe window and liquid N2-cooled MCT detector. A spectroelectrochemical 

cell, consisting of a Teflon chamber where the synthesized Cu nanodendrites were on the Ti 

substrate, served as the working electrode and was in contact with ZnSe hemispheres associated 

with the spectrometers. The incidence angle of the infrared beam was set to 600 with a 

customized in-house produced variable angle accessory for all experiments. The spectra were 
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recorded using a single potential step procedure in which the electrode potential was controlled 

by a potentiostat and decreased by increments of -0.1 V beginning at +0.2 V. All interferograms 

were acquired at 4 cm-1 resolution for 32 and 8 scans at different applied electrode potentials, 

and at -0.4 V, respectively, which were added and averaged. The interferograms were shown in 

terms of the relative change of the electrode reflectivity, which was calculated using following 

equation [41]: 

    R/R = [R(E2)-R(E1)] / R(E1) 

Where R(E1) and R(E2) are the reflectivities from the electrode surface at E1 and E2 potentials, 

respectively. The spectra recorded at E1 = +0.2 V was employed as background. 

5.2.7 Bulk electrolysis of CO2 

The electrochemical reduction of CO2 was performed in a liquid-tight two compartment 

cell with an installed cationic exchange membrane (CMI-7000S) as a separator at room 

temperature. The working and reference electrodes (Ag/AgCl) were placed together in one 

compartment, and CO2 was continuously purged during electrolysis (to maintain CO2 saturation 

in the 0.1 M NaHCO3 solution), whereas the other compartment contained the counter electrode 

(Pt coil) in the CO2 saturated 0.1 M NaHCO3 solution. The working electrode and counter 

electrode chambers were filled with 160 mL and 40 mL of electrolyte, respectively. To identify 

the formed liquid CO2 reduction products, a Varian Unity Inova 500 was employed to record the 

one-dimensional 1H NMR spectra. A mixture of a 0.07 M sample of the electrolyte solution and 

20% D2O was used to measure the spectrum, where 0.05 L TMS (tetramethylsilane) was added 

to the sample as an internal reference.    
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Figure 5.1 SEM images depict the uncalcined Cu thin film (A); OD-Cu thin film (B); Cu 

particles (C); Cu NPs (D); Cu nanodendrites (E). 
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Figure 5.2 Surface morphology of the formed copper oxides; (A) Low magnification SEM 

image, (B) High magnification SEM images.  

5.3 Results and discussion  

5.3.1 Characterization of electrodes 

Figure 5.1 displays the SEM images of the different Cu nanostructures. In our attempt, 

the Cu thin film was initially electrodeposited on the Ti substrate via an electrodeposition 

method (details can be found in the experimental sections), showing that large particulates were 

formed (Figure 5.1A). The formed Cu thin film was further calcinated at 500 oC for 1 h to form 

copper oxides. A rough surface was obtained for the Cu thin film following the EC treatment of 

the formed oxides (Figure 5.1B). Figure 5.1C depicts the grain sized Cu particles when the Cu 

A

B
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thin film was calcinated with CuSO4, indicating the deposition of Cu particles on the Cu thin 

film, as the result of CuSO4 deposition during calcination. A significant change through the 

formation of Cu NPs (~100 to 200 nm) on the surface of the Cu thin film was observed under the 

treatment with H2SO4 during calcination (Figure 5.1D), where H2SO4 served as an etching agent 

to form the NPs. A thin layer of copper oxides was obtained following the calcination of the Cu 

thin film with 50 L of the treating agent mixture as shown in Figure 5.2, prior to the EC 

treatment. Surprisingly, dendritic segments with tertiary branches were formed following the EC 

treatment of the formed oxides to Cu (0), as shown in Figure 5.1E, which indicated the 

simultaneous formation and etching of Cu nanoparticles, while the CuSO4 and H2SO4 mixture 

was employed during calcination. Moreover, a synergistic interaction between CuSO4 and H2SO4 

might have played a vital role in the formation of the nanodendritic structures. 

Figure 5.3 depicts the EDX spectra of the copper oxides film, which confirmed that the O 

and Cu peaks were associated with a small S peak; the latter resulting due to undissociated 

CuSO4 which remained on the oxide surfaces even after rinsing with water. The crystalline phase  

of the formed Cu electrodes and the copper oxides was determined via XRD analysis, as shown 

in Figures 5.4A and 5.3B, respectively, where Cu2O was specially leveled (Figure 5.3B). Various 

crystallite planes of CuO and Cu2O appeared in the XRD patterns of the formed oxide samples 

prior to their reduction to Cu, as shown in Figure 5.3B, which indicated that the calcination 

temperature of 500 oC for 1 h was sufficient under experimental conditions to form copper 

oxides. The XRD patterns of the variously formed nanostructured Cu indicated that all the 

electrodes were comprised of different Cu crystallites with a small quantity of Cu2O crystallites, 

the latter might have been formed due to the exposure of the samples to ambient air. The peaks   

for Cu in the XRD patterns were observed at the expected position for all of the synthesized  
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Figure 5.3 EDX spectra (A) and XRD pattern of the formed CuO.  

electrodes. All Cu crystallite sizes were calculated using the Scherrer Equation and are listed in 

Table 5.1, revealing that Cu nanodendrites exhibited the smallest crystallite sizes at 27.51, 27.27, 

and 15.23 nm for Cu (111), Cu (200), and Cu (220) planes, respectively. Figure 5.4B depicts the 

high-resolution Cu2p XPS spectra of the copper oxides which were synthesized with the treating 

agent mixture at 500 oC for 1 h. A current density of -10 mA cm-2 was applied for 1000 s in a 
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Figure 5.4 (A) XRD spectrum of the differently formed Cu electrodes, (i) Cu thin film, (ii), OD-

Cu thin film, (iii) Cu particles, (iv) Cu NPs, (v) Cu nanodendrites; XPS spectrum at Cu2p region 

of copper oxides, prior to electrochemical reduction, (B); and Cu nanodendrites, following 

electrochemical reduction (C). 
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Table 5.1 Different crystallite size of Cu and Cu2O of the formed Cu samples. 

Electrode Cu (111) nm Cu (200) nm Cu (220) nm 
Cu thin film 54.18 68.17 56.13 

OD-Cu thin film 47.18 45.46 93.62 
Cu particles 54.20 45.46 46.81 

Cu NPs 33.05 45.42 46.18 
Cu nanodendrites 27.51 27.27 15.60 

 

CO2-saturated 0.1 M NaHCO3 on the formed copper oxide film. Following an initial time period 

stabilization occurred at a certain potential, as shown in Figure 5.5, which verified that the 

formed oxides were reduced to Cu to form the Cu nanodendrites. Figure 5.4C presents the 

corresponding high-resolution Cu2p XPS spectra. Prior to the EC treatment, three Cu2p peaks  

 

Figure 5.5 Reduction of copper oxides to form the Cu nanodendrites applying -10 mA cm-2 

current density for 1800 s in a CO2-saturated 0.1 M NaHCO3 solution. 
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centered at 934.48, 936.04, and two Cu2+ satellites peaks at 941.48, 944.35 eV were obtained, as 

shown in Figure 5.4B, which might be attributed to the formation of the different types of copper 

oxides, while annealing the Cu thin film with the treating agent. A strong Cu(0) or Cu(I) peak 

centered at 932.58 eV was observed to be associated with two Cu(II) oxide peaks, subsequent to 

electrochemical reduction (Figure 5.4C), with the resulting oxides likely being formed via  

 

Figure 5.6 Electrochemical surface area measurement; determination of double-layer 

capacitance by cyclic voltammograms over a range of scan rates for (A) Cu plate, (B) Cu thin 

film, (C) OD-Cu thin film, and (D) Cu nanodendrites in 0.1 M HClO4 solution.  
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Figure 5.7 Corresponding current due to double-layer charging/discharging plotted against 

cyclic voltammetry’s scan rate of Figure 5.6; (A) Cu plate, (B) Cu thin film, (C) OD-Cu thin 

film, and (D) Cu nanodendrites. 

Table 5.2 Determination of capacitance values and surface roughness factors of the different 

nanostructured Cu electrodes using CV. The surface roughness factor for Cu plate is defined to 

be 1. 

Electrode Capacitance (cm-2) Surface roughness factor 
Cu plate 0.037 F 1 

Cu thin film 0.56 mF 15 
OD-Cu thin film 2.88 mF 78 
Cu nanodendrites 12.34 mF 355 

F

A D

B
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Figure 5.8 LSV recorded on different nanostructured Cu, (A) Cu thin film (i), OD-Cu thin film 

(ii), Cu particles (iii), Cu NPs (iv), Cu nanodendrites (v); (B) Different Cu nanodendrites 

electrodes changing the volume of the mixture of the treating agent during calcination at 500 oC 

for 1 h; (C) Changing the calcination temperature where the volume of the treating agents was 50 

L on etch electrode during 1 hour calcination; (D) Changing the calcination time where the 

volume of the mixture of the treating agents was 50 L on etch electrode during calcination at 

500 0C; in a CO2-saturated 0.1 M NaHCO3 solution.  

exposure to ambient air during the preparation of the XPS sample. The EASA of the formed Cu 

thin film, OD-Cu thin film, and Cu nanodendrite electrodes was determined relative to the 
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polycrystalline Cu foil, by estimating their double layer capacitance in the 0.1 M HClO4 solution 

[27]. The corresponding CV plots and the geometrical current densities against the scan rate are 

shown in Figures 5.6 and 5.7. It was observed that the current densities of all the CVs for the Cu 

nanodendrites at different scan rates achieved the highest values among the studied electrodes. A 

straight double layer capacitance line was obtained by the same electrode as seen in Figure 5.7D. 

The double layer capacitance and electrochemical roughness factors of the different electrodes 

are listed in Table 5.2, which revealed that the Cu nanodendrite electrode achieved the highest 

capacitance value over all of the other electrodes. It exhibited a roughness factor of 355 relative 

to the polycrystalline Cu foil as 1, whereas the Cu thin film and OD-Cu thin film electrodes had 

roughness factors of 15 and 78, respectively, which revealed that the formed Cu nanodendrites 

possessed an extensive surface area.   

5.3.2 Electrochemical characterization 

The electrocatalytic activity of the different synthesized Cu electrodes was initially 

investigated by employing LSV and CA techniques in a CO2-saturated 0.1 M NaHCO3 (pH 6.65) 

solution. Figure 5.8A presents the LSV curves of the Cu-thin film, OD-Cu thin film, and other 

oxide-derived nanostructured Cu at a scan rate of 20 mV s-1. The Cu nanodendrites demonstrated 

the highest current densities and an earlier onset potential, in contrast to the other electrodes. For 

instance, the cathodic current of the Cu nanodendrites was measured to be 12.35 mA cm-2, which 

was much higher than that of the uncalcined Cu thin film (~8 times), Cu particles (~4.5 times), 

OD-Cu thin film (almost double), and Cu NPs (~1.6 times). The steady-state current density of 

these electrodes was measured at -0.4 V and the CA curves were compared (Figure 5.9A), which 

showed that the Cu nanodendrites attained the highest current densities. Both LSV and CA 

studies revealed the superior electrocatalytic activity of the Cu nanodendrites in comparison to  
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Figure 5.9 CA recorded t -0.4 V on different nanostructured Cu, (A) Cu thin film (i), OD-Cu 

thin film (ii), Cu particles (iii), Cu NPs (iv), Cu nanodendrites (v); (B) Different Cu 

nanodendrites electrodes changing the volume of the mixture of the treating agent during 

calcination at 500 oC for 1 h; (C) Changing the calcination temperature where the volume of the 

treating agents was 50 L on etch electrode during 1 hour calcination; (D) Changing the 

calcination time where the volume of the mixture of the treating agents was 50 L on etch 

electrode during calcination at 500 0C; in a CO2-saturated 0.1 M NaHCO3 solution.  

the other formed Cu electrodes, which indicated that the formed Cu nanodendrites might serve as 

efficient electrocatalysts for the reduction of CO2. In order to obtain the best electrocatalytically 

C D

A B
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active electrode using the treating agent mixture, various electrodes were synthesized and studied 

by optimizing the conditions in terms of the volume of the mixture of the treating agents, 

calcination temperature, and annellation duration. Initially, the different volumes of the treating 

agent mixtures deposited on the Cu thin film during calcination at 500 oC for 1 h, was altered 

from 30 to 70 L, which revealed that when 50 L was deposited, comparatively higher current 

densities could be obtained in both the LSV and CA plots (Figures 5.8B and 5.9B, respectively). 

The calcination temperature was further varied from 400 to 600 oC for 1 h following the 

deposition of 50 L of the treating agents. It was observed that 500 oC was the optimal 

calcination temperature toward forming a highly active electrode that achieved the highest 

current densities in the LSV and CA plots, as shown in Figures 5.8C and 5.9C, respectively. 

Moreover, the calcination duration was also modified from 30 to 90 min., using 50L of the 

treating agents at 500 oC. As can be seen in both the LSV and CA plots of Figures 5.8D and 

5.9C, respectively, the highest activity was observed after 60 min.. All of the above studies 

confirmed that the optimal electrocatalytically active electrode was formed with the deposition of 

50 L of the treating agents on the Cu thin film, which underwent calcination at 500 oC for 1h. 

To observe the electrocatalytic performance of the optimized electrode toward the 

reduction of CO2, a LSV was recorded in a CO2-saturated 0.1 M NaHCO3 (pH 6.65) solution, 

where CO2 was continuously purged into the electrolyte during the experiment. A further LSV 

was measured in an Ar-saturated 0.05 M Na2SO4 solution (a small volume of 0.01 M H2SO4 was 

added to adjust the pH (6.65)), where Ar was continuously purged into the electrolyte throughout 

the measurement. Figure 5.10A compares these LSVs, revealing that the current density 

achieved in the CO2-saturated 0.1 M NaHCO3 solution (red curve) was much higher than the Ar-

saturated 0.1 M Na2SO4 solution (blue curve), which indicated that the Cu nanodendrites  
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Figure 5.10 (A) LSV recorded on Cu nanodendrites in an Ar-saturated 0.05 M Na2SO4 solution 

(blue curve), and in a CO2-saturated 0.1 M NaHCO3 solution (red curve); the inset presents the 

corresponding instant current efficiency; and (B) Steady-state current efficiency (%) for CO2 

reduction at different applied potentials.  
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possessed high catalytic performance toward the reduction CO2. The inset of Figure 5.10A 

shows the corresponding instant current efficiency (ICE) (%) for CO2 reduction at different 

potentials, which was calculated from the LSVs using the following equation [42]: 

                           ICE (%) = (jC     jA) × 100 / jC                                                     (1) 

where jC is the current density obtained in the CO2-saturated 0.1 M NaHCO3 solution; and jA is 

the current density measured in the Ar-saturated 0.05 M Na2SO4 solution. The ICE was gradually 

increased with a higher cathodic potential, from -0.25 to -0.4 V; however, it was continuously 

decreased with further increases in the cathodic potential. The highest ICE obtained was 84.3% 

at -0.4 V, which might be the optimal cathodic potential for the bulk analysis of CO2 reduction 

using the Cu nanodendrites. The steady-state current efficiency (SSCE) for the reduction of CO2 

was further determined by employing CAs at an applied potential of from between -0.3 and -0.6 

V over 6 h of electrolysis. The CAs were recorded in both the CO2-saturated 0.1 M NaHCO3 and 

the Ar-saturated 0.05 M Na2SO4 (the pH of this electrolyte was adjusted to 6.65) solutions, 

where CO2 and Ar were continuously purged throughout the analysis, respectively. Figure 5.10B 

presents the steady state current efficiency (SSCE) (%), which was calculated using Eq. (1). The 

overall SSCE was stable at all applied potentials, which was increased from 75.2% to 82% when 

increasing the cathodic potential from -0.3 to -0.4 V; however, it was decreased to 77.8% and 

68.5% with a further increase of the cathodic potential to -0.5 V and -0.6 V, respectively, which 

was similar to the ICE results (inset, Figure 5.10A). All of the above studies characterized the 

formed Cu nanodendrites as a promising catalyst for the electrochemical reduction of CO2, 

which might overcome the boundaries that currently constrain the large scale reduction of CO2, 

while increasing overall Faradaic efficiencies.  

5.3.3 In situ electrochemical ATR-FTIR study 
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In situ ATR-FTIR spectroscopy was employed to detect surface-adsorbed intermediates 

and determine the level of CO2 consumption on the electrode surface during the electrochemical 

reduction of CO2 on the formed Cu nanodendrite surface in CO2-saturated 0.1 M NaHCO3 

solutions [31,43]. Figure 5.11A displays a series of spectra as a function of potential at 0.1 V 

intervals each, where CO2 was continuously purged into the solution, and fresh CO2-saturated 

solution was supplied to the electrode surface in a Teflon chamber prior to performing analyses 

at each applied potential. To obtain each interferogram, 32 scans were added and averaged, and 

the reference spectra were recorded at +0.2 V (vs. RHE). As seen in Figure 5.11A, a positive 

band appeared, centered at 2343 cm-1, at all of the applied potentials due to the solvated CO2 in 

the NaHCO3 solution, and the intensity of the peaks increased with higher cathodic potentials 

[42]. As the centers of the peaks did not shift with the increase of cathodic potential, this 

indicated that the behavior of the solvated CO2 in the bicarbonate solution was identical across 

different electrode potentials on the formed Cu nanodendrite surface. The consumption of CO2 

was determined during electrolysis at different potentials on the Cu nanodendrite electrode 

surface (Figure 5.11C). The CO2 consumption rate increased with higher cathodic potentials, 

indicating that larger quantities of solvated CO2 were involved in the reaction during the 

reduction at higher potentials, as an increased rate of reactions occurred at higher cathodic 

potentials. A small negative peak appeared, centered at 1395 cm-1 at 0.0 V, could be ascribed to 

the formation of HCO3
- ions (Figure 5.11A), which resulted from the interaction between 

solvated CO2 and H2O [42,44,45]. The intensity of HCO3
- ions was increased with higher 

cathodic potential, indicating that additional HCO3
- was formed at higher cathodic potentials. A 

new downward peak centered at ~1633 cm-1 was formed at -0.3 V, which was also observed at 

more negative potentials and could thus be assigned to the asymmetric O-C=O stretching mode 
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Figure 5.11 (A) In situ ATR-FTIR for the electrochemical reduction of CO2 on Cu 

nanodendrites in a CO2-saturated 0.1 NaHCO3 solution under different applied potentials (vs. 

RHE), (B) At -0.4 and -0.6 V (vs. RHE); (C) Integration area of CO2 absorption at these 

potentials. The reference spectra were obtained at +0.2 V (vs. RHE) where all of the spectra were 

collected with 32 co-added scans.  
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Figure 5.12  1H NMR spectra of the formed products from the electrochemical reduction of CO2 

at -0.6 V (vs. RHE) for 2 h on Cu nanodentrites catalysts. TMS is used as the reference.  

 

Scheme 5.2 Schematic representation of CO2 reduction product formation under different 

applied potentials on the formed Cu nanodendrites.    
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from HCOO- ions, as shown in Figure 5.11A [44]. Two further small negative peaks at ~1201 

and ~1132 cm-1 appeared at -0.5 V, which might be attributed to the bending of C=O and C=C 

bonds, which were obtained during the electrochemical reduction of CO2 on Cu nanodendrites 

(Figure 5.11A) [46]. Moreover, a tiny peak down at 2933 cm-1 was observed at -0.6 V, which 

might be the asymmetric stretching of the bonds between C and H of the formed hydrocarbons 

(Figure 5.11B) [46,47]. To identify the formed liquid products, 1H NMR was further recorded 

using CO2 electrolysis at -0.6 V for 2 h. Figure 5.12 displays the one-dimensional 1H NMR 

spectrum, which showed the peaks of HCOO-, CH3COO-, and CH3OH, which confirmed the 

formation of oxygenates on Cu nanodendrites at an applied potential of -0.6 V. A corresponding 

reaction scheme was developed on the basis of both in situ FTIR and NMR results, which 

illustrated that the formation of products at different potentials such as formate, were generated 

at -0.3 V, whereas other oxygenates began to form at -0.5 V with formate (Scheme 5.2). The 

formation of HCO3
- ions was observed at 0.0 V under higher cathodic potentials, which might 

have been due to interactions between solvated CO2 and H2O molecules, where applied cathodic 

potentials could enhance the formation of HCO3
- ions due to the affinity of CO2 molecules for 

the negative cathode. Hence, the results discussed above indicated that hydrocarbons and 

oxygenates might be formed at higher cathodic potentials, resulting in the reduction of CO2.  

Furthermore, the effects of time were investigated to observe the adsorption of CO2 and 

to change of the electroreducible species on the electrode surface during electrocatalysis at -0.4 

V, where 8 scans were added and averaged to obtain the interferograms (Figure 5.13). As the Cu 

nanodendrites had a high FE of CO2 electroreduction at -0.4 V, with both ICE and SSEC, -0.4 V 

was selected to further study the effects of time in a CO2 saturated 0.1 M NaHCO3 solution. A 
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Figure 5.13 Time-resolved ATR-FTIR spectra of CO2 electroreduction on Cu nanodendrites at -

0.4 V (vs. RHE). (A) 6 to 60 s; (B) 66 to 120 s. The reference spectra were obtained at +0.2 V 

(vs. RHE), and all of the spectra were collected with 8 co-added scans.  

sharp upward peak centered at ~2343 cm-1 appeared, and was assigned to CO2, and a HCO3
- peak 

at 1395 cm-1 appeared on each spectrum.  Following 6 s of reduction, a negative peak was 

observed and centered at 1633 cm-1, which was ascribed as being an asymmetric O-C=O 

stretching mode of HCOO- ions and observed to an electrolysis time of 102 s [44]. A small broad 

negative peak centered at ~1642 cm-1, and a broad peak at ~3322 cm-1 were observed at 
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Figure 5.14 Integration area of CO2 adsorption from the figure (5.13A and 5.13B) during the 

electrolysis CO2 on the formed Cu nanodendrites electrode surface at -0.4 V (vs. RHE).  

108 s. This was assigned as being a H2O molecule associated with the formed HCOO- and the 

HO- bond stretching of H2O, which indicated that the Cu nanodendrite thin film consumed all of 

the solvated CO2 that was resident on its surface. Subsequently, it began to reduce H2O due to 

the lack of CO2 on the electrode surface, as the working electrode was in contact with ZnSe 

hemisphere [44,46]. Figure 5.14 shows the corresponding integration area of the CO2 

consumption rate, which sharply increased to 24 s, slowly rose to 102 s, and was finally 

stabilized thereafter. The consumption rate indicated that the Cu nanodendrite thin film quickly 
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absorbed CO2 at the onset of electrolysis, whereas over time the CO2 electrolysis continued to 

102 s, with the formation of products extracting solvated CO2 slowly from the electrode surface. 

Upon further continuing the analysis after 102 s, the consumption rate became constant, which 

indicated that all of the solvated CO2 was converted to products, where the CO2 was practically 

depleted on the electrode surface; hence, it began to reduce H2O molecules.      

5.4 Conclusions 

We demonstrated a facile and novel approach for the synthesis of nanodendrite structured 

oxide-derived Cu that exhibited enhanced catalytic activity for the electrochemical reduction of 

CO2. In our attempt, Cu NPs were thermally treated with the different modifying agents. Unique 

Cu nanodendritic structures were obtained when a mixture of a CuSO4 and H2SO4 solution was 

used during thermal treatment. The formed Cu nanodendrites exhibited the superior 

electrocatalytic activity for the reduction of CO2 in a CO2-saturated 0.1 M NaHCO3 solution. The 

effects of potential were studied for the electrochemical reduction of CO2 on Cu nanodendrites, 

by employing LSV and CA techniques, which revealed that -0.4 V was the optimal electrode 

potential that achieved 84.3% ICE and 82% SSCE. In situ ATR-FTIR was then employed to 

further study the consumption of CO2 and the formation of different electroreducible species 

during the electrocatalysis of CO2 on the formed Cu nanodendrite surface, which indicated that 

hydrocarbons and oxygenates were formed under higher cathodic potentials. The novel approach 

of synthesising uniquely structured Cu nanodendrites, as well as their enhanced catalytic 

performance and high FE make these Cu nanodendrites promising electrocatalysts for the 

efficient conversion of CO2 to usable chemicals. Moreover, it is hoped that this study might 

inspire researchers to study the role of different acids to synthesize various nanostructured 

electrocatalysts for the robust reduction of CO2.  
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Chapter 6: Enhanced catalytic activity of nanoporous Au for the 

efficient electrochemical reduction of carbon dioxide 

6.1 Introduction 

Carbon dioxide (CO2) plays a primary role in climate change, where the concentration of 

CO2 in the atmosphere has been increasing rapidly since the Industrial Revolution, and has 

recently reached its highest level (~405 ppm). Since the average global temperature is rising, and 

the Earth’s climate system is being altered as well, scientists are investing great efforts in the 

identification of strategies to minimize CO2 emissions [1,2]. However, it would be very helpful, 

beyond thinking only of ways to reduce or stop CO2 emissions into the environment, if CO2 

might be transformed into renewable fuels. Among various technologies to convert CO2, the 

electrochemical method is considered a promising pathway to transform CO2 into valuable 

chemicals and fuels. The primary target for the electrochemical technology is to develop an 

efficient electrocatalyst for robust reduction of CO2 with high selectivity, low overpotential, fast 

kinetics, high stability and high energy efficiency.           

 CO2 is recognized as an inert molecule, fully oxidized and thermodynamically stable, 

which represents significant challenges toward its chemical transformation to useful carbon 

based products [3-5]. It is therefore essential to develop an efficient technology that may convert 

CO2 into valuable chemicals via a cost-effective process, while achieving high efficiency. It has 

been reported that the electrochemical reduction of CO2 can produce hydrocarbons, aldehyde and 

alcohols [6-14]. Considerable efforts have been invested in deciphering the fundamental kinetics 

of the electrochemical reduction of CO2, both experimentally and theoretically [8-12]. 

Researchers have identified a wide variety of catalysts that have the ability to reduce CO2 in 
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aqueous electrolytes [9,13,14]. In particular, Au is known as a promising catalyst that exhibits 

high activity and selectivity to form CO from the electrochemical reduction of CO2 [15]. CO 

constitutes an important industrial chemical that may be converted to various synfuels and 

valuable chemicals using the Fischer–Tropsch process [16,17]. Different classes of Au electrodes 

have been reported for the electrochemical reduction of CO2, including nanoparticles [15], 

nanowires [18], nanoneedles [1], porous film [19], and other gold based nanomaterials [20,21], 

revealing that nanostructured Au electrodes can impart much higher catalytic activity compared 

to polycrystalline Au electrodes [22,23]. This may be attributed to large electrochemically active 

surface areas (EASAs) and different crystal facets [12,14,24]. Experimental results have also 

shown that the structures and morphologies of these nanocatalysts play a significant role in the 

enhancement of catalytic activity, for instance, lowering the overpotential, improving the 

Faradaic efficiency (FE), and accelerating the reaction rate for the electrochemical reduction of 

CO2 [8-12,25]. However, current CO2 electroreduction technologies are still quite distant from 

industrial applicability, due to high overpotential, low selectivity, and slow reduction rates. 

Therefore, further efforts are required to elucidate fundamental kinetics, and to tailor high-

performance electrocatalysts for CO2 conversion. In the present study, we demonstrated that 

acid-treated nanoporous Au possessed an extensive EASA, excellent electrocatalytic activity, 

high selectivity, low overpotential, and fast kinetics for the efficient conversion of CO2 to CO. 

6.2 Experimental section 

6.2.1 Chemicals and materials 

Gold microwire (127 μm in diameter, 99.99%), ZnCl2 (≥98.0%), H2SO4 (99.99%), and 

NaHCO3 (≥99.0%) were obtained from Sigma Aldrich; Zn foil (99.98%, 0.25 mm thick) was 

purchased from Alfa Aesar; Ethylene glycol (Analytic grade) and ultrapure carbon dioxide 
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(99.999%) were purchased from ACP Chemical Inc. and Praxair, respectively. All chemicals 

were used directly as received. All of the solutions were prepared using double-distilled water 

(purified by a Nanopure Diamond water purification system, 18.2 MΩ cm). 

6.2.2 Fabrication of nanoporous Au electrodes 

To prepare an Au microelectrode, a 10 cm long copper wire was passed into an 8.0 cm 

glass tube that had its end dipped into a conductive gold paste (Heraeus Inc., USA), which acted 

as conductive adhesive. Subsequently, a 5.0 or 8.0 mm long gold microwire was carefully passed 

through the glass tube until the microwire was gently attached to the copper wire. An epoxy resin 

was employed to wrap the top and end of the glass tube. The prepared electrode was 

subsequently introduced into an oven at 60 ºC for 90 min., followed by being held vertically in 

ambient air to cool. 

The NP Au was fabricated via an electrochemical alloying/dealloying method, which was 

based on a three-electrode system, where the Au microelectrode, Zn foil, and Zn wire served as 

the working electrode, counter electrode, and reference electrode, respectively. The 

alloying/dealloying of the Au microelectrode was carried out in a mixture of ethylene glycol and 

1.5 M ZnCl2 via cyclic voltammetry in the potential range between -0.80 and +1.80 V (vs. Zn) at 

a scan rate of 10 mV s-1 for 20 cycles at 110 ºC. To form the Au/Zn alloy, the last CV cycle was 

scanned from -0.8 and stopped at 0.0 V; whereas the last cycle was stopped at +1.8 V (vs. Zn) to 

obtain the NP Au electrode. The fabricated NP Au was further treated using the procedure as 

follows: the NP Au was soaked in concentrated H2SO4 for 30 min, dried in an oven at 60 ºC for 2 

h, and calcinated at 150 ºC in a furnace for 1 h. After cooling down, the electrode was thoroughly 

washed using pure water; and the obtained electrode was denoted as the acid treated NP Au.   
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6.2.3 Structural characterization 

The surface morphology and EDX analysis of the prepared samples were investigated by 

a field emission scanning electron microscope (FE-SEM, Hitachi SU-70) at 20 kV. X-ray 

diffraction (XRD) patterns were collected using a Phillips PW 1050-3710 with Cu  α 1 of 1.5406 

Å (radiation source) to determine the structural characteristic of the prepared Au electrodes. Data 

was obtained in the range from 10º to 90º of 2θ with a step width of 0.01º /2θ. XRD data analysis 

was performed using X'Pert High Score Plus software. X-ray photoelectron spectroscopy (XPS) 

spectra were recorded via a Thermo Fisher XPS system, where the size of the X-ray spot was 

400 mm, with an Al Kɑ monochromatic source. All of the XPS data was processed using 

XPSPEAK 4.1 software. 

6.2.4 Electrochemical characterization 

A CHI660E electrochemical workstation (CH Instrument Inc. USA) was employed to 

carry out Linear Sweep Voltammetry (LSV) and chronoamperometry (CA) utilizing a three-

electrode cell system. Electrochemical Impedance Spectroscopic (EIS) measurements were 

performed using a VoltaLab potentiostat (PGZ-301), where the frequency was varied from 100 

kHz to 40 mHz with an A.C. voltage amplitude of 10 mV. Z-view software was used to fit the 

data and to obtain an equivalent circuit for the EIS experimental data. A silver/silver chloride 

electrode (Ag/AgCl, 3.0 M) and a platinum coil (10 cm2) were used as the reference electrode 

and the counter electrode, respectively. The solution was initially purged with CO2 for 20 min. in 

order to achieve a CO2-saturated condition, after which it was continuously purged into the 

solution while performing the analysis. All electrochemical experiments were conducted at 

ambient room temperature (20 ± 2 ºC). All of the electrode potentials cited in the present work  
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Figure 6.2 (A) SEM image, (B) EDX spectra and (C) XRD patterns of the formed Au/Zn alloy. 

 

 

A

B
Au

Zn

Au
Zn

Au
Au

C

Au
3Z

n 
(1

11
)

Au
3Z

n 
(0

02
)

Au
3Z

n 
(1

13
)

Au
3Z

n 
(2

22
)

Au
4Z

n 
(0

23
)

Au
4Z

n 
(1

16
)



151 
 

6.2.6 Product analysis 

A three-compartment electrochemical cell, where the working electrode compartment 

was gas-tight, and CO2 was initially purged for 60 min. to obtain the CO2 saturated solution prior 

to electrolysis. The CO2 was continuously purged within a linked working electrode chamber 

that was employed for the product analysis and stability tests. A cationic exchange membrane 

(CMI-7000S) was employed as a separator between the working electrode and counter electrode 

chamber in the cell. The working electrode and reference electrode (Ag/AgCl) were in the same 

compartment, whereas the counter electrode was in a separate compartment. The generated gas 

was transferred into the gas chromatography (GC, Shimadzu GC-2014, Column: Silica gel, 

thermal conductive detector (TCD), the column temperature was raised from 40 to 250 ºC at a 

heating rate of 3 ºC min-1; the injector temperature was set at 70 ºC, with a heating velocity of 25 

ºC min-1; the sampling volume of 50 μL was ta e n by a gas-tight syringe (HamiltonTM, 50 μL) in 

order to analyze the gas products. 

6.3 Results and discussion 

In order to form the nanoporous structure, a polycrystalline Au electrode was 

electrochemically alloyed and dealloyed in a mixture of ethylene glycol and 1.5 M ZnCl2 using 

cyclic voltammetry. The experimental details are described in the experimental section of 6.2.2. 

Figure 6.1 presents a schematic diagram, illustrating the formation of the NP Au and the further 

acid treatment of the NP Au electrode. In electrochemical alloying/dealloying process, Zn was 

first electrodeposited on the gold electrode surface in the cathodic potential scan. In the 

subsequent anodic potential scan, dealloying of Zn took place, resulting in the formation of a 

nanostructured gold film. Performing cyclic voltammetry (CV) for 20 cycles, a 3D nanoporous 

Au was finally produced. Even though controlling the parameters of CV and cycles time, a small 
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amount residual Zn is present on the NP Au. A 3D nanoporous structure was formed as seen in 

the scanning electron microscopic (SEM) image (Figure 6.2A). Strong Zn and Au peaks 

appeared in the energy dispersive X-ray (EDX) spectrum (Figure 6.2B), showing the co-

existence of both Au and Zn. Further X-ray diffraction (XRD) characterization (Figure 6.2B) 

confirmed the formation of Au3Zn and Au4Zn alloys [26,27].  

 

Figure 6.3 Low-magnification SEM images of (A) the NP Au electrode, and (B) the acid-treated 

NP Au electrode; High-magnification SEM images of (C) the NP Au electrode and (D) the acid-

treated NP Au electrode.  

C D
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Figure 6.3A depicts a lower magnification SEM image of the formed NP Au, showing 

that interconnected networks were homogeneously formed on the Au surface. The pore sizes of 

the formed NP Au were from ~250 - 500 nm in diameter as seen in the higher magnification 

SEM image (Figure 6.3C). The formed NP Au was further treated with H2SO4 followed by a  

 

Figure 6.4 (A) EDX spectra and (B) XRD patterns of the three different Au electrodes. 
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mild calcination at 150 ºC for 1 h, resulting in the formation of larger sized nanopores with 

diameters ranging from ~750 to 1000 nm, as shown in the SEM images (Figure 6.3B and Figure 

6.3D). Figure 6.4A presents the EDX spectra of the Au, NP Au, and treated NP Au electrodes. 

Two weak Zn peaks were observed in the NP Au, which confirmed that a small amount of Zn 

still remained during the electrochemical alloying/dealloying fabrication process. However, the 

incorporated Zn was removed by the acid treatment. The typical face-centered-cubic (fcc) Au 

diffraction peaks, including (111), (200), (220), (311), and (222) planes (JCPDS no. 01-1172) 

[26] were observed for all of the Au electrodes. The additional peaks labelled by asterisks were 

derived from the formed Au/Zn alloy (Figure 6.4B) [27]. It is worth noting that all the Au/Zn 

alloy diffraction peaks disappeared following the acid treatment, indicating that the incorporated 

Zn was removed from the NP Au. This was further confirmed via the X-ray photoelectron 

spectroscopic (XPS) survey scans. A noticeable Zn 2p3/2 peak appeared at 1022.58 eV in the NP 

Au (Figure 6.5A), but disappeared after the acid treatment (Figure 6.5B). Further quantitative 

analysis revealed that the amount of Zn in the NP Au was ~7.0%. The high-resolution Zn 2p3/2 

XPS spectrum is displayed in Figure 6.6A, revealing that its binding energy was slightly higher 

(1022.58 eV) than that of pure Zn (1022.00 eV) [28]. Figures 6.6B and 6.6C present the high-

resolution Au 4f XPS spectra of the NP Au, prior to and following the acid treatment, 

respectively. The Au 4f7/2 and4f5/2 peaks for the untreated NP Au were observed at 84.19 and 

87.86 eV, which shifted toward a lower binding energy of 0.01 and 0.02 eV of the treated NP Au 

(4f7/2, 84.18 eV, and4f5/2, 87.84 eV), respectively. This further confirmed the formation of the 

Au/Zn alloy in the NP Au and the removal of Zn, subsequent to the acid treatment of the NP Au, 

which was consistent with the EDX and XRD results. 
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Figure 6.6 High-resolution XPS spectra of the Zn 2p3/2 region of the formed NP Au (A), the Au 

4f region of the NP Au, (B) the treated NP Au (C) electrodes. 
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Figure 6.7 Cyclic voltammograms of: (A) the smooth polycrystalline Au electrode; and (B) the 

NP Au electrode (red) and the acid treated NP Au electrode (blue). Scan rate: 20 mV s-1; 

Electrolyte: 0.1 M H2SO4. 

Table 6.1 Determination of the EASA of the three different Au electrodes. 

Electrode Geometric area (cm2) Charge (μC) EASA (cm2) Roughness factor 

Au 0.020 7.72 0.021 1.05 

NP Au 0.032 990.95 2.54 79.37 

Acid treated NP Au 0.032 619.50 1.59 49.68 

A

B
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 The EASA of the Au, NP Au, and treated NP Au was estimated by the simultaneous 

formation and reduction of gold oxide. Figure 6.7 depicts the corresponding CVs of the three Au 

electrodes, showing that the untreated NP Au possessed the highest current density. The 

formation of gold oxide started at ~1.10 V; one notable anodic peak was observed for the 

polycrystalline Au electrode; whereas two anodic peaks appeared for the nanoporous Au 

electrodes, indicating that the surface structure was changed during the alloying/dealloying 

process [29]. The reduction charge was calculated by integrating the area of the reduction peak 

centered at ~0.9 V vs. Ag/AgCl [30]. As listed in Table 6.1, the smooth Au electrode had a 

roughness factor (RF) of 1.05; and the formed NP Au possessed the highest EASA (2.54 cm2), 

which was over 79 times higher than its geometric surface area. However, following the acid 

treatment, the EASA was decreased to 1.59 cm2; thus the RF was decreased from 79.37 to 49.68, 

which was consistent with the SEM images displayed in Figure 6.3. After the acid treatment, the 

pore size was significantly increased due to the dissolution of the Zn species incorporated during 

the electrochemical alloying/dealloying process.  

 To study the electrocatalytic activity of the synthesized Au electrodes, linear sweep 

voltammograms (LSV) were recorded from 0.0 to -0.8 V (vs. RHE) in a CO2-saturated 0.1 M 

NaHCO3 (pH 6.65) solution. Figure 6.8A compares the LSV curves of the Au, NP Au, and the 

acid treated NP Au electrodes recorded at 20 mV s-1. The current density was dramatically 

increased from the Au to the treated NP Au electrode. For instance, at -0.8 V, the cathodic 

current of the treated NP Au was 42.79 mA cm-2, which was 26 times higher than that of the Au 

(1.62 mA cm-2), and three times higher than that of the NP Au (14.26 mA cm-2), showing that the 

treated NP Au had superior catalytic activity toward the CO2 reduction.  
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Figure 6.8 (A) LSVs of the three different Au electrodes recorded in a CO2-saturated 0.1 M 

solution. (B) The corresponding Nyquist plots measured at -0.4 V. Inset: the equivalent electric 

circuit used for fitting the EIS data, where Rs = solution resistance; R1 and R2 = charge-transfer 

resistances; CPE1 and CPE2 = constant phase elements; Ws = Warburg impedance (short) 

A

B
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Table 6.2 Values of the elements in an equivalent electric circuit fitted in the Nyquist plots 

shown in Figure 6.8B (error percentage for each element is given in parentheses) 

Elements Au (%) NP Au (%) Treated NP Au (%) 

Rs (Ω cm-2) 11.49 (0.28) 2.77 (0.19) 2.56 (0.12) 

CPE1-T (μF cm-2) 0.45 (1.25) 23.03 (1.56) 50.99 (1.51) 

CPE1-P 0.82 (0.17) 0.84 (0.47) 0.86 (0.41) 

R1 (Ω cm-2) 781.40 (1.19) 32 (1.17) 13.65 (1.24) 

CPE2-T (μF cm-2) 2.19 (4.88) 789.97 (3.78) 1279.40 (3.43) 

CPE2-P 0.80 (4.92) 0.83 (4.51) 0.85 (3.23) 

R2 (Ω cm-2) 399.55 (3.80) 21.56 (4.08) 9.20 (4.23) 

W-R (Ω cm-2) 160.60 (3.95) 11.52 (4.78) 8.13 (4.47) 

W-T (s) 6.16 (4.87) 3.51 (3.90) 1.74 (4.54) 

W-P 0.50 (3.77) 0.50 (4.89) 0.50 (4.05) 

Rs: solution resistance; CPE-T/CPE-P: elements of constant phase element; R1 and R2: charge 
transfer resistance; W-R/W-T/W-P elements of Warburg impedance associated to diffusion 
resistance 

Electrochemical impedance spectroscopy (EIS) was employed to measure the charge-

transfer resistance for the electrochemical reduction of CO2 on the prepared Au electrodes. 

Figure 6.8B displays the Nyquist plots of the Au, NP Au, and acid-treated NP Au electrodes 

recorded in a CO2-saturated 0.1 M NaHCO3 solution at -0.4 V (vs. RHE), where Zre and Zim 

expressed the real and imaginary components, respectively. The impedance curves of the Au and 

NP Au electrodes revealed two semicircles in the full range of frequency, whereas the treated NP 

Au exhibited a semi-circle and a half semi-circle. The two semi-circles corresponded to the two 

charge transfer resistances (R1 and R2) [31,32] that appeared in the equivalent electrical circuit 

(insert, Figure 6.8B), which was employed to fit the EIS spectra. The corresponding fitted results 

for each element, along with the percentage of errors, are listed in Table 6.2. All of the fitting  
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Figure 6.9 The CA curves of the polycrystalline Au electrode (A), the NP Au electrode (B) and 

the acid treated NP Au electrode (C), recorded under different applied electrode potentials in 

CO2 saturated 0.1 M NaHCO3 over the 10 h electrolysis.  
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element errors were less than 5%, indicating that the proposed equivalent electrical circuit 

effectively fitted the impedance data. It was noted that the treated NP Au electrode possessed a 

much lower charge-transfer resistance for both R1 and R2 than did the other Au 

electrodes.Moreover, a short Warburg impedance (Ws) associated with R2, and two constant 

phase elements (CPE1 and CPE2) were included in the equivalent circuit to fit the impedance 

spectra effectively. This indicated that all of the Au electrodes exhibited some capacitor-like 

behavior, and that a diffusion resistance was also involved during the electrochemical reduction 

of CO2.  

To determine the Faradic efficiency (FE) and to assess the stability of the NP Au and the 

acid-treated NP Au electrodes, chronoamperometry (CA) was performed in a CO2-saturated 0.1 

M NaHCO3 solution for 10 h, where CO2 was continuously purged into the solution during the 

entire procedure. Figure 6.9B and Figure 6.9C present the CA curves of the NP Au and treated 

NP Au electrodes under applied potentials of -0.4, -0.5, and -0.6 V, respectively. For 

comparison, the CA curves of the smooth Au electrode are presented in Figure 6.9A. The current 

density was increased with the increase of the applied cathodic potential for all the electrodes, 

where the steady-state curves were obtained during the entire electrolysis, indicating the high 

stability of the electrodes. The current densities of the treated NP Au (Figure 6.9C) were much 

higher than that of the polycrystalline Au (Figure 6.9A) and the untreated NP Au (Figure 6.9B), 

further confirming that the acid treatment significantly enhanced the electrocatalytic activity of 

the NP Au for CO2 reduction. Our GC analysis revealed that CO was produced as the primary 

gas product under all applied potentials during the electrochemical reduction of CO2 on both the 

NP Au and treated NP Au, whereas H2 was the dominant product on the polycrystalline Au.  
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Figure 6.10 (A) FE of the CO formation on the polycrystalline Au (black bar), the NP Au (red 

bar) and the acid-treated NP Au electrodes (blue bar); (B) the CO production rates during the 

electrolysis of CO2 under different applied potentials on  the Au, the NP Au and the acid-treated 

NP Au electrodes. 
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Figure 6.10A and 6.10B compare the FE and CO production rate of the polycrystalline Au, the 

NP Au and the acid-treated NP Au electrodes, respectively; and their corresponding values are 

summarized in Table 6.3, showing that the polycrystalline Au favoured the hydrogen evolution 

reaction with less than 45% FE for CO formation. In contrast, a superb affinity for the selective 

CO generation from the CO2 reduction was attained with ~90% FE at the NP Au and ~95% FE at 

the treated NP Au electrodes. As the CO formation rate at the smooth Au electrode was so low, it 

was enlarged by 10 times in Figure 6.10B for comparison. The rate of the CO generation was 

increased with the increase of the cathodic potential from -0.4 to -0.6 V for all the Au electrodes. 

The rate of the CO formation on the NP Au and the acid treated NP Au electrodes was 

substantial higher than that at the smooth Au electrode, for instance, 49.8 times greater at the NP 

Au electrode and 151.8 times higher at the treated NP Au electrode at the applied potential of -

0.6 V (Table 6.3).  

As shown in Figure 6.10A and 6.10B, the acid treated NP Au electrode exhibited greater 

FE and approximately three times higher CO generation rate than the NP Au electrode at all the 

applied cathodic potentials although it had a smaller EASA compared with the NP Au electrode  

Table 6.3 The FE and production rate of the CO at different Au electrodes at different applied 

electrode potentials.  

Electrode 
-0.4 V -0.5 V -0.6 V 

FE 
(%) 

PR 
(μmol cm-2 h-1) 

FE  
(%) 

PR 
(μmol cm-2 h-1) 

FE  
(%) 

PR 
(μmol cm-2 h-1) 

Au 44.89 0.30 42.68 0.84 40.47 2.03 

NP Au 86.67 21.91 89.98 45.98 90.48 101.19 

Acid treated 
NP Au 

93.79 85.24 94.44 144.33 95.86 308.19 

FE: Faradaic efficiency; PR: production rate  
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Figure 6.11 Schematic diagram of the proposed mechanism for the accessibility of the solvated 

CO2 into the pores of NP Au (left) and treated NP Au (right) during the electrochemical 

reduction of CO2 to CO. 

(Table 6.1). Such a significant increase in the catalytic activity after the acid treatment could be 

attributed to two major factors: the active sites effect and the pore size effect. As shown from the 

EDX, XRD and XPS analysis, the remaining Zn (~7%) in the NP Au was effectively removed by 

the acid treatment, which would create more active sites. This was supported by the EIS study 

(Figure 6.8B), where lower charge-transfer resistances R1 and R2 for the CO2 reduction were 

observed at the acid treated NP Au electrode. In addition, as seen from the SEM images (Figure 

6.1), the pore size was almost doubled after the acid treatment, which facilitated the transfer of 

the solvated CO2 to the double-layer region and the departure of the generated CO gas from the 

pore cavity, as   illustrated in Figure 6.11. In a CO2-saturated 0.1 M NaHCO3 solution, the 

dissolved CO2 molecules and the HCO3
- and CO3

2- ions are the possible electroactive species; 

and they reach equilibrium in the bulk electrolyte. It has been reported that the hydration number 

of CO2, HCO3
- and CO3

2- in a dilute solution is approximately 3.0, 5.5 and 10.2, respectively  
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Figure 6.12 A video clip of CO evolution resulting from CO2 electrolysis at -0.6 V in CO2-

saturated 0.1 M NaHCO3 on the NP Au electrode (A) and the acid treated NP Au electrode (B). 

[33,34]. In addition, Na+ ions could be solvated by CO2 molecules, resulting in a large structured 

electroactive CO2 species [35]. Moreover, the generated CO bubbles could be trapped in the pore 

cavity if the pore size of the NP Au was small, thus reducing the accessibility of the solvated 

CO2 molecule to the active sites. This is consistent with the recent observation of the C2H4 

formation at porous Cu catalysts, where the pore diameter played an important role in the CO2 

reduction [36,37]. As illustrated in Figure 6.11, the accessibility for the solvated CO2 into the 

pores of the NP Au and the treated NP Au played an important role in the electrochemical 

reduction of CO2. This was further supported by a photograph (Figure 6.12) that was captured 

during the electrochemical reduction of CO2 in a CO2-saturated 0.1 M NaHCO3 solution at -0.6 

V, where a much larger CO evolution occurred on the treated NP Au in contrast to the untreated 

NP Au electrode.  

6.4 Conclusions 

CO production @
NP Au

CO production @
treated NP Au

A B
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In summary, we demonstrated a facile electrochemical alloying/dealloying approach in 

conjunction with an acid treatment to fabricate a unique 3D nanoporous Au network structure, 

which served as a high-performance electrocatalyst for the efficient and selective conversion of 

CO2 to CO. The acid-treated NP Au showed a superb FE of 95.86% with an extremely high CO 

production rate at the applied potential of -0.6 V vs. RHE in a CO2-saturated 0.1 M NaHCO3 

solution. Aside from its high EASA, the pore dimensions of the formed 3D network structures 

and the additional active sites played a vital role toward increasing the catalytic activity of the 

Au, due to the high accessibility of the solvated CO2 into the pore cavity, which enabled an 

effective utilization of the localized electric field. The high current density, low charge-transfer 

resistance, large production rate, and high stability make the acid-treated NP Au electrode 

promising for the efficient electrochemical reduction of CO2. Moreover, this study might inspire 

researchers to ponder the significant effects of the pore dimensions of nanoporous structures in 

order to design desirable electrocatalysts for robust CO2 reduction. 
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Chapter 7: Summary and future directions 

7.1 Summary 

There is a great interest in the conversion of CO2 to useful chemicals and fuels toward 

addressing the increasingly serious impacts of global climate change. The electrocatalytic 

reduction method is one of the potential technologies that could be employed to reduce CO2 to 

value-added products under mild conditions. Over the last few decades, researchers have 

developed various electrocatalysts for the electrochemical reduction of CO2 such as Cu, Au, Ag, 

metal alloys, and carbon-based materials. To enhance the catalytic performance of typical 

electrodes for the electroreduction of CO2, efforts have been invested in tailoring the formation 

of supernanostructures, modifying surface morphologies, increasing electrochemical surface 

areas and roughness factors, reducing particle dimensions, and introducing new crystal facets on 

electrode surfaces. Therefore, the possibility of developing highly active nanostructured catalysts 

for the efficient reduction of CO2 is high. However, the synthesis of nanostructured materials 

using the conventional methods requires tedious multiple steps, including dispersion in a solvent, 

reaction, calcination, and drying, which is an intensive and time consuming experimental 

procedure. Hence, the design of facile methods for synthesizing novel nanostructured materials 

and new nanomaterials, while optimizing their surface structures might enhance catalytic activity 

and provide an efficient CO2 electroreduction pathway. Therefore, this thesis project was 

dedicated to the development of new and novel nanostructured materials as CO2 electrocatalysts 

through the application of novel and facile approaches. Herein, we demonstrated facile 

approaches for the synthesis of novel nanocomposites comprised of rGO and Cu nanoparticles, 

their composite thin film, Cu nanodendrites, and three-dimensional nanoporous Au toward the 
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efficient electrochemical reduction of CO2. The significant findings obtained in this Ph. D. 

project are briefly summarized below. 

We successfully synthesized a novel nanostructured thin film consisting of rGO and Cu 

nanoparticles on a GEC surface via the facile one-pot electrochemical treatment of a precursor 

mixture. We also synthesized a unique nanocomposite consisting of Cu NPs and rGO, which was 

supported on a Cu substrate, following the same electrochemical treatment approach. To 

optimize the Cu-rGO catalyst surface structures, the composition and quantity of the 

nanocomposite were prepared and studied. Further, we developed a novel approach to synthesize 

uniquely structured Cu nanodendrites, which were synthesized by the electrodepositing of Cu 

NPs on a Ti substrate, followed by a thermal treatment with a mixed CuSO4 and H2SO4 solution 

and subsequent electrochemical treatment. Moreover, we successfully demonstrated a facile 

electrochemical alloying/dealloying approach, in conjunction with a H2SO4 treatment, to 

fabricate a unique 3D nanoporous Au network structure. The morphology, surface composition, 

crystalline structure, and electronic state of the developed materials were examined by SEM, 

EDX, XRD, and XPS analysis. The SEM analysis revealed that for the optimized Cu-rGO 

nanocomposites, the Cu NPs with an average diameter of ~10 nm were homogeneously 

distributed on the rGO nanosheets. Dendritic segments with tertiary branches were formed 

during the synthesis of the Cu nanodendrites, whereas pore diameters ranging from ~750 to 1000 

nm were obtained in the developed 3D nanoporous Au, which were revealed by SEM analysis. 

The co-existence of both Cu and C on the formed Cu/rGO film and Cu-rGO nanocomposites, 

Zn-free NP Au in the acid treated NP Au, and trace amounts of Cu(II) in the Cu nanodendrites, 

were confirmed by EDX and XPS analysis [1,2].  
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Figure 7.1 Schematic representation of the electrocatalytic conversion of CO2 into fuels on 

different nanostructured materials.   

The electrocatalytic activity of the developed catalysts was initially investigated using 

LSV, CA, and EIS in the presence of CO2 in 0.1 M NaHCO3 (pH 6.65) with the continuous 

purging of CO2 into the solution during the measurements. Figure 7.1 illustrates the 

electrochemical reduction of CO2 on the developed nanostructured catalysts used in this PhD 

study. Very low onset potentials and high current densities on the formed catalysts were 

achieved by LSV and CA, respectively, indicating a high catalytic activity for the 

electroreduction of CO2. A much lower charge-transfer resistance for CO2 reduction was 

observed by an EIS study of the synthesized Cu-rGO nanocomposites, whereas acid treated NP 
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Au revealed much higher catalytic activity toward the electrochemical reduction of CO2 in an 

aqueous solution. Further, the effects of the applied potential on the electrochemical reduction of 

CO2 was studied by both LSV and CA, which identified -0.6 V and -0.4 V (vs. RHE) as being 

the optimal applied electrode potentials for the Cu/rGO and Cu nanodendrites, respectively [1,2].  

The bulk electrolysis of CO2 was achieved on the developed catalysts at potentials of -

0.4, -0.5, and -0.6 V (vs. RHE) in a CO2-saturated 0.1 M NaHCO3 electrolyte (pH 6.65), 

showing that the highest SSCE of the Cu/rGO thin film for the reduction of CO2 was calculated 

to be 69.4% at an applied potential of -0.6 V, whereas 82% SSCE was obtained on the Cu 

nanodendrites at -0.4 V. The GC, HPLC, and in situ electrochemical ATR-FTIR spectroscopy 

analyses revealed that CO, CH4, HCOOH, and oxygenates were the reduction products of CO2 

under the applied electrode potentials on the developed nanostructured catalysts. In addition, to 

the best of our knowledge, for the first time, we developed a COD analysis to quantify the 

overall liquid products, which provided a facile, rapid, and accurate method for the determination 

of the total FE for the conversion of CO2 to liquid products.  This COD analysis may emerge as a 

universal approach for quantification of the overall liquid products generated in other CO2 

conversion processes; for instance, the photochemical and photoelectrochemical reduction of 

CO2. The total FE of the Cu-rGO nanocomposite for the reduction of CO2 included two parts 

(the formation of the gas and liquid products), which was calculated to be ~73.5% at applied 

electrode potentials of from between -0.4 and -0.6 V vs. RHE, whereas the FE for CO was 

calculated to be ~95% at the same applied electrode potentials on the acid-treated NP Au. 

Various metal and C-based materials have been explored for the electrochemical reduction of 

CO2; hence, some of the promising results that have been recently reported in the literature are 

compared in Table 7.1, showing that the Cu-rGO nanocomposite, Cu nanodendrites, and 3D NP  
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Table 7.1 Products obtained on different catalysts from the electrochemical reduction of CO2.  

Electrocatalyst 
Electrode 
potential 

Electrolyte 
(CO2-saturated) 

Major 
product 

Total FE 
(%) Ref. 

Cu NPs/GC -1.25 V vs. RHE 0.1 M NaHCO3 CH4 76 3 

AuCu3 -1.0 V vs. RHE 0.1 M KHCO3 CO 40 4 

Dendritic Cu -2.0 V vs. Ag/AgCl 0.1 M KHCO3 C2H4 80 5 

Cu nanoflower -1.6 V vs. RHE 0.1 M KHCO3 HCOOH 65 6 

N-graphene -0.84 V vs. RHE 0.5 M NaHCO3 HCOOH 73 7 

Cu/CNT -1.7 V vs. SCE 0.5 M NaHCO3 CH3OH 38.4 8 

Ag/C -0.75 V vs. RHE 0.5 M KHCO3 CO 79.2 9 

OD-Cu foam -0.8 V vs. RHE 0.5 M NaHCO3 C2H4, C2H6 55 10 

Au NPs -0.59 V vs. RHE 0.1 M NaHCO3 CO 78 11 

Graphene-Sn 
quantum sheets -1.8 V vs. SCE 0.1 M NaHCO3 HCOOH 89 12 

OD-Cu  -0.6 V vs. RHE 0.1 M NaHCO3 HCOOH 60 13 

Cu-porphyrin -0.976 V vs. RHE 0.5 M KHCO3 CH4 37 14 

B-diamond -1.7 V vs. Ag/AgCl CH3OH HCHO 89 15 

OD-Ag -0.6 V vs. RHE 0.1 M KHCO3 CO 80 16 

Cu2Pd -1.8 V vs. 
Ag/AgNO3 

0.1 M TBAPF6 / 
CH3CN CH4 51 17 

Pd-Au -0.6 V vs. RHE 0.1 M KH2PO4 / 
0.1 M K2HPO4 

CO 30 18 

Cu/rGO -0.4, -0.5, -0.6 V 
vs. RHE 

0.1 M NaHCO3 
CO, 

HCOOH 
76.6, 69.2, 

74.7 
Present 
work 

Cu nanodendrites -0.3, -0.4, -0.5, -0.6 
V vs. RHE 0.1 M NaHCO3 

HCOOH, 
Oxygenates 

75.2a, 82a, 
77.8a, 68.5a 

Present 
work 

Acid treated  

NP Au 
-0.4, -0.5 and -0.6 

V vs. RHE 0.1 M NaHCO3 CO ~95 Present 
work 

a: current efficiency 
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Au developed in the present study exhibited excellent FE for the efficient electrocatalytic 

reduction of CO2 at a relatively low overpotential. The rates of the formation of the products 

under the different applied electrode potentials were increased under higher cathodic potentials, 

from -0.4 to -0.6 V, and a significant increase in CO formation was observed in comparison to 

the formation of the other gas and liquid products on the Cu-rGO nanocomposites. The rate of 

the CO formation on the acid treated NP Au electrodes was substantially higher than that at the 

smooth Au electrode. For instance, it was 151.8 times higher at the treated NP Au electrode at an 

applied potential of -0.6 V, which might have been due to the high accessibility of the solvated 

CO2 into the pore cavities that might enable the efficient utilization of the localized electric field. 

Moreover, the developed catalysts also demonstrated the high stability under different applied 

electrode potentials.  

In situ electrochemical ATR-FTIR spectroscopy was further employed to investigate the 

consumption of CO2and the formation of intermediates and products under different applied 

electrode potentials, which showed that formation of formate was achieved at -0.6 V on the 

Cu/rGO thin film, whereas the formed Cu nanodendrites facilitate the generation of different 

hydrocarbons and oxygenates at an electrode potential of lower than -0.2 V vs. RHE during the 

electrochemical reduction of CO2. Therefore, the facile fabrication, cost-effectiveness, low 

charge-transfer resistance, high catalytic activity, large production rate, excellent FE, and 

superior stability make these materials promising for electrochemical conversion of CO2 to 

valuable chemicals and fuels. The approach described in these studies offers a general technique 

to develop myriad graphene supported metal nanoparticles, to synthesize various nanostructured 

electrocatalysts, and to study the effects of the pore dimensions of nanoporous structures for the 

robust reduction of CO2 [1,2].    
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7.2 Future work 

Several significant achievements were made in this thesis project, including (i) the 

fabrication of new nanostructured catalysts for the efficient electrochemical reduction of CO2, 

(ii) employing a facile, rapid, and accurate COD analysis method to quantify the overall liquid 

products with the determination of the total FE, and (iii) a novel and facile acid treatment 

approach to modify the surface morphology of the metal electrodes that exhibit enhanced 

catalytic activity for the electroreduction of CO2. Therefore, I strongly believe that the developed 

nanostructured materials will be used as promising catalysts for the electrochemical reduction of 

CO2 to value-added products toward addressing humanity’s pressing environmental and energy 

challenges. Moreover, the novel facile synthesis approaches and COD analysis described herein 

may contribute to the development of new nanostructured materials, and facilitate the rapid 

quantitative liquid products analysis of CO2 electrochemical conversions in the field, 

respectively. Since anthropogenic energy consumption is continuously increasing, which results 

in the gradual elevation of atmospheric CO2 concentrations as a consequence; there is an urgent 

need to develop more efficient electrocatalysts and other competent technologies than those that 

currently exist, to balance the global carbon cycle.  

The developed Cu/rGO thin film and its nanocomposites exhibited emarkable catalytic 

activity, high FE, and excellent stability for the electrochemical reduction of CO2. These 

developed nanomaterials may also be employed in various other applications, such as 

photochemical reduction, organic oxidation, organic synthesis, oxygen reduction, water splitting, 

and energy storage. Recently, rGO decorated metal nanoparticles have shown strong potential for 

enabling various sustainable green technologies due to their high surface area, excellent 

electrical conductivity, and synergistic interactions with metal particles, resulting in a significant 
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enhancement of catalytic activity and stability. Moreover, the facile one-step synthesis of Cu and 

rGO nanocomposites as CO2 electrocatalysts opens the door for the development of carbon 

material supported transition metal nanoparticles for the efficient electrochemical reduction of 

CO2, as well as various other catalysis and energy applications. For example, CNT, heteroatom-

doped graphene, or rGO decorated Au, Ag, Cd, Pd, or Fe nanoparticles and their nanocomposites 

may be synthesized following similar synthesis approaches used in this thesis project, toward 

efficient CO2 electrolysis, water splitting, supercapacitors, and other environmental and energy 

applications. Furthermore, the developed COD method, which was employed to quantify the 

overall liquid products in this thesis project, could replace existing techniques such as HPLC, ion 

chromatography (IC) and NMR, for the analysis of the liquid products that are obtained from 

CO2 electrolysis and to determine the FE.   

 We employed a novel and facile acid treatment approach to modify the surface 

morphologies of the Cu NPs and NP Au. The Cu NPs were transformed to Cu nanodendrites, and 

the NP Au acquired larger pores via an acid treatment. The developed of Cu nanodendrites and 

treated NP Au, which exhibited enhanced catalytic activity for the electrochemical reduction of 

CO2, may, due to their versatility, also be utilized for applications spanning the areas of 

biochemical sensing, catalysis, optics, electronics, and spectroscopy. The formed Cu dendrites 

can be combined with Pt, Ag, Au, and Pd to be used as electrocatalysts in fuel cells and in water 

splinting for sustainable energy production. Bimetallic alloyed Cu-Au and Cu-Ag nanodendrites 

can be synthesized, which might be used as the efficient electrocatalysts for the reduction of CO2 

and increase product selectivity. On the other hand, the developed NP Au in this study could be 

used in sensing and actuator applications, such as the monitoring of NO in biological processes. 

Moreover, the facile acid treatment approach may be employed for other heavy metal electrodes 
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to modify their surfaces, form new nanostructures, increase the surface area, and to introduce 

additional electrochemically active sites. Therefore, the synthesis of different nanostructured 

materials using the acid treatment method could be employed to develop efficient 

electrocatalysts for the reduction of CO2, as well as in sensors and other environmental 

applications.  
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