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ABSTRACT 

Cellulases and pectinases are the major cell wall degrading enzymes. The 

microorganisms producing these enzymes have a wide range of industrial applications. 

In this research, 17 bacterial isolates from rotting wood samples were screened for their 

cellulase activity by carboxymethyl cellulose (CMC) plate assay. Similarly, a bacterial 

strain isolated from the gut of western honey bee (Apis mellifera L.) showed 

polygalacturonase activity by pectin agar plate assay. The bacterial isolates showing 

higher region of depolymerisation were further assayed for their activities for producing 

the enzymes quantitatively and they were identified on the basis of 16S rDNA sequence 

analysis. The protein gel was run using SDS-PAGE for molecular weight determination 

of the cellulase and polygalacturonase. The sequences of two isolates producing 

cellulase (Bacillus sp K1 and Bacillus sp. A0) and one isolate producing 

polygalacturonase (Bacillus sp. HD2) were successfully uploaded to the NCBI data 

base. The enzymes produced by isolates K1 and HD2 were characterized. The isolate 

K1 produced the maximum CMCase at pH 6 and 50 oC in presence of peptone (1%) as 

a source of nitrogen. The enzyme activity was stimulated by Ca2+ (2 mM) by 20% over 

the control. Agave biomass was fermented by using two cellulase producing isolates 

K1 and A0 and ethanol was detected by using micro-dichromate method. Both the 

strains produced ethanol using untreated Agave biomass. Similarly, the 

polygalacturonase produced by HD2 strain exhibited enzyme activity in a wide range 

of pH from pH 5-12. The production was enhanced by using yeast extract (3%) in the 

production medium and the enzyme activity was stimulated by Ca2+ (2 mM) and SDS 

(200 mM). In SDS-PAGE gel, the molecular weights of cellulase enzymes produced by 

K1 and A0 were ~36 kDa and ~40 kDa respectively and the two clear bands of 

polygalacturonases produced by isolate HD2 were found at ~36 kDa and ~72 kDa.  
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LAY SUMMARY 

Faculty and students in the Department of Biology are bound together by a 

common interest in explaining the diversity of life, the fit between form and function, 

and the distribution and abundance of organisms. The present research shows the 

isolation and characterization of industrially important cellulase and pectinase 

(polygalacturonase) producing bacterial strains. Two bacterial isolates (Bacillus sp K1 

and Bacillus sp. A0) isolated from rotting wood samples and one bacterial isolate 

(Bacillus sp HD2) isolated the gut of western honey bee (Apis mellifera L.) efficiently 

produced cellulase and polygalacturonase respectively. This research characterized the 

working parameters of these enzymes showing their possible applications in different 

industries.  Further, the production of bioethanol by using untreated Agave biomass 

demonstrated these cellulase producing Bacillus strains’ ability for the efficient use in 

biofuel production.  
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CHAPTER I 

General introduction: cellulose and pectin degrading enzymes and 

their applications 

Abstract 

Cellulose and pectin are the major plant polysaccharides. These polysaccharides 

provide structural integrity to the plant cell. The enzymatic hydrolysis of plant polymers  

using cellulases and pectinases has received attention in the last decades because of 

their possible uses in different industries such as pulp and paper, food and feed, 

agriculture, bioconversion, textile and others. However, it is challenging to develop low 

cost effective enzymes for saccharification of the polysaccharides. Many 

microorganisms including fungi and bacteria are capable of producing the enzymes 

such as cellulases and pectinases for the degradation of cellulose and pectin 

respectively. So, it is very important to isolate and characterize the bacteria producing 

such industrially important enzymes as they offer several benefits over other 

microorganisms.  Further, the induction of enzymes under different conditions will also 

be useful for the potential industrial applications of these enzymes. 

Key words: Cellulase, pectinase, microorganisms, applications 
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1. Introduction 

Plant cells contain a number of polysaccharides. The major polysaccharides 

include starch, cellulose, hemicelluloses and pectin. These polysaccharides provide 

structural integrity to the plant cell. Their degradation is important for different 

industries including textile, paper and pulp, food, feed, beverage, as well as several 

other industrial processes. The plant cell wall polysaccharides such as lignocellulose 

and its derivatives have been shown as a major  feedstock for the sustainable production 

of environmentally friendly fuels and chemicals (Knauf and Moniruzzaman 2004). 

Moreover, the plant carbohydrate polymers can also be used as substrates for important 

enzymes such as cellulases and pectinases. Recently, enzymatic degradation of these 

polymers has received attention as they have been found more attractive alternative to 

chemical and mechanical processes. There has been some progress in identifying and 

characterizing the microorganisms which produce the enzymes for the degradation of 

plant polysaccharides. Mainly the fungal and bacterial strains are commonly used for 

the production of polysaccharide-degrading enzymes as these microorganisms encode 

a wide spectrum of cell wall-degrading enzymes (Juturu and Wu 2014). Due to this, 

there is an increasing demand for replacing the traditional physical and chemical 

processes with advanced biotechnological processes involving microorganisms and 

enzymes like cellulases and pectinases (Bajpai 1999).  

1.1 Cellulose 

The lignocellulosic materials in plants are mainly composed of cellulose, 

hemicellulose and lignin.  Cellulose is the major constituent of plant cell wall. It is a 

water insoluble polysaccharide composed of repeated units of glucose (Fig. 1) which 

are linked with β-1, 4 glycosidic bonds (Heredia et al. 1995). The number of the glucose 

monomers in the cellulose molecules varies and the degree of polymerization ranges 
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from 250 to over 10,000 depending upon the source and method of treatment (Klemm 

et al. 2005). Cellulose is a crystalline polymer and the chains in the crystal are 

connected together by intra and inter chain hydrogen bonds. The adjacent sheets are 

held together by Van-der Waals force. In most of the cases in nature, cellulose fibers 

are present together with the matrix of other biopolymers, mainly hemicellulose and 

lignin (Lynd et al. 1999), where glucose units are embedded in a hemicellulose, pectin 

and lignin matrix. In polymeric structure of cellulose, it has crystalline and amorphous 

regions along with several surface irregularities (Cowling 1975; Fan et al. 1980). This 

feature makes the cellulosic fibers capable of swelling when hydrated partially forming 

the micro pores and cavities sufficiently large enough for the penetration of large 

molecules like enzymes.  

The cellulosic fibers are most abundantly found in the biomass of plants. For 

the utilization of plant’s cellulosic material, depolymerisation of cellulose to glucose 

units is a prerequisite. The cellulose is resistant to degradation due to its crystalline 

nature, however this can be achieved by physical, chemical or enzymatic hydrolysis. 

Physical and chemical hydrolysis  requires expensive equipment and energy and has 

environmental concerns and nonselective by products formation (Palmqvist and Hahn-

Hangerdal 2000). To overcome these hurdles, enzymatic hydrolysis is the best 

alternative for the hydrolysis of lignocellulosic biomass.  

 

Figure 1 Schematic representation of cellulose 

The main sources of cellulose with the potential application are the agricultural 

wastes which are the residues left after the processing, production and harvest of 
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cereals, fruits, vegetables and trees. Every year they are produced in a large amount 

throughout the world and generally either used for animal feed or burnt in the fields. 

These agricultural wastes are used as effective substrates for enzyme production by 

solid-state fermentation (Martin et al. 2004) and for the production of value added 

products such as organic acids, biofuels, protein rich feed, aroma compounds and 

bioactive secondary metabolites (Nigam and Pandey 2009). Due to the consumption of 

petroleum based fuels, plant lignocellulosic biomass is obtained as agricultural by 

products and industrial residues is the best alternative to produce renewable, abundant, 

environmentally friendly feedstock for the production of biofuels through biorefinery 

process (Menon and Rao 2012). However, it is very competitive and challenging to 

liberate the sugars from lignocellulosic biomass for the production of biofuels and value 

added bio-based chemicals because the lignocellulosic biomass is recalcitrant to 

microbial action. This problem can be solved by suitable pre-treatments by disrupting 

the lignin structure which increases the enzymes accessibility and enhance the rate of 

biodegradation (Lynd et al. 2002).  

1.1.1 Cellulose degrading enzymes 

Since cellulose is the major structural polysaccharide in plant cell and the most 

abundant organic material on the earth (Brown 2004), the enzymes degrading cellulose 

or the microorganisms releasing such enzymes play an important role in global carbon 

cycle. Microbial degradation of the cellulose in lignocellulosic biomass and organic 

waste is accompanied by an action of several enzymes, the most important of which are 

the cellulases. These enzymes help to breakdown the β-1, 4 glycosidic bonds in 

cellulose polysaccharide. Mechanistically, there are three types of cellulases which act 

synergistically for the complete hydrolysis of cellulose. These enzymes are endo-(1,4)-

β-D-glucanase (EC 3.2.1.4), exo-(1,4)-β-D-glucanase (EC 3.2.1.91), and β-
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glucosidases (EC 3.2.1.21) ( Deswal et al. 2011; Kuhad et al. 1997). The endoglucanase 

randomly breaks the internal O-glucosidic bonds which results the formation of glucan 

chains of different lengths; the exo glucanase acts on the ends of the cellulose chains 

resulting the formation of β-cellobiose as end products and the β-glycosidase attacks 

the β-cellobiose or small polysaccharides (Fig. 2) to produce glucose  molecules (Bayer 

et al. 1994; Perez et al. 2002). These cellulases have been used for both academic 

research and industrial production. 

 

Figure 2 Cellulose degrading enzymes; cited from (Karmakar and Ray 2010) 

1.2 Pectin 

Pectin is a high molecular weight polysaccharide present as the major 

component of middle lamella and primary cell walls of higher plants. It is also present 

in the junction zone between cells with secondary walls. It provides firmness and 

structural integrity to the tissues (Ridley et al. 2001) and is composed of D-galacturonic 

acid units linked together by α- 1-4 glycosidic bonds (Fig. 3). Some of these units are 

Endogluca
nase 

Exoglucanase 
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modified by methyl esterification which occurs at the carboxyl groups at O-6 or acetyl 

esterification at hydroxyl groups at O-2 or O-3 position (de Vries and Visser 2001). In 

plant cell, pectin is embedded in cellulosic microfibrils and provides rigidity to cell 

walls. During fruit ripening, the pectin is structurally altered by naturally occurring 

pectinase enzymes which breakdown the chains of pectin; as a result of this pectin 

becomes more soluble and its cementing ability to the surrounding cell wall is loosened 

and the tissue becomes soft. The pectic substances account for 0.5-4.0% of the fresh 

weight of plant material (Sakai et al. 1993); and when the tissue is ground, the pectin 

becomes soluble which increases the viscosity and pulp particles where as other pectin 

molecules remain bounded with hemicellulose and facilitate water retention.  

 

Figure 3 Schematic representation of pectin 

In addition to its roles in plant growth, development and plant defense, pectin 

functions as a gelling and stabilizing agent in many food and cosmetic products and has 

many applications in pharmaceutical industries producing a variety of products 

including surface modifier for medical devices and materials for biomedical 

implantation (Mohnen 2008). Also, there has been tremendous progress in 

understanding of the pectin structure with the application of techniques such as 

enzymatic fingerprinting, mass spectrometry, NMR and molecular modelling which 

indicate the possible plant agronomical properties of this polymer (Mohnen 2008; 

Willats et al. 2006). 
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1.2.1 Pectin degrading enzymes 

Pectin degrading enzymes are known as pectinases or pectinolytic enzymes. 

These enzymes are heterogeneous groups of related enzymes that hydrolyse pectin or 

pectic substances. They mainly occur in higher plants and microorganisms (Whitaker 

1990). Microbial pectinases play important role in plant pathogenesis, symbiosis and 

breaking down of plant pectin for nutritional purposes of pathogens (Lang and 

Dornenburg 2000). They also help in cell wall extension  and softening of plant tissues 

during maturation and storage (Sakai and Winkelmann 1992). Pectinases are produced 

by many microorganisms like bacteria, fungi and yeasts using submerged culture 

fermentation and solid-state fermentation.  

The hydrolysis of pectin backbone is obtained by the synergistic action of 

several enzymes (Table 1). On the basis of their mode of action, pectinases are 

classified into three major groups: polygalacturonase (PG), pectin lyase (PL) and pectin 

esterase (PE) (Fig. 4). Polygalacturonase hydrolyses α -1, 4 glycosidic linkages by both 

exo and endo mechanisms and are the most abundant among all the pectinases. They 

are further classified into endo polygalacturonase (EC 3.2.1.15) and exo 

polygalacturonase (EC 3.2.167) which hydrolyse the internal and external (1, 4) 

glycosidic linkages of pectin respectively. Pectin lyase (EC 4.2.2.10) splits (1,4) 

glycosidic bonds by trans elimination, which results in galacturonate with double bond 

between C-4 and C-5 at the non-reducing end, while pectin esterase (EC 3.1.1.11) 

catalyses the hydrolysis of methyl group to produce pectin and methanol (Gummadi 

and Panda 2003; Sharma NR 2011). 
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Table 1. Enzymes for pectin degradation 

Source- Modified from (Biz et al. 2014) 

 

 

 

Enzymes EC 
Number 

Mechanism 

Pectin lyase 
 
 
 
 
 
Pectate lyase 
 
 
 
 
Pectate disaccharide 
lyase 
 
 
 
Pectate trisaccharide 
lyase 
 
 
Endo-
polygalacturonases 
 
Exo-
polygalacturonases 
 
 
Pectin methyl 
esterases 
 
Pectin acetyl esterases 

4.2.2.10 
 
 
 
 
 
4.2.2.2 
 
 
 
 
4.2.2.9 
 
 
 
 
4.2.2.22 
 
 
 
3.2.1.15 
 
 
3.2.1.67 
 
 
 
3.1.1.11 
 
 
3.1.1.6 
 

Random eliminative cleavege of (1-4)-α-D-
galacturon methyl ester to give 
oligosaccharides with 4-deoxy-6-O-methyl- 
α-D-galact-4-enuronosyl groups at their non-
reducing ends 
 
Random eliminative cleavege of (1-4)-α-D-
galacturon to give oligosaccharides with 4-
deoxy-α-D-galact-4-enuronosyl groups at 
their non-reducing ends 
 
Eliminative cleavege of 4-(4-deoxy-α-D-
galact-4-enuronosyl)-D-galacturonate from 
the reducing end of pectate (i.e. de-esterified 
pectin) 
 
Eliminative cleavage of unsaturated 
trigalacturonate as the major product from the 
reducing polygalacturonic acid/pectate 
 
Random hydrolysis of 1-4)-α-D-galacturonic 
linkages in pectate and other galacturonans 
 
Hydrolysis of D-galacturonic acid residues 
from the reducing ends of polygalacturonate 
chains 
 
Demethoxylation of pectin, forming pectate 
 
 
Deacetylation of pectin, forming pectate 
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Figure 4 Mode of action of pectinases 

The production of microbial pectinases became prominent for many decades.  

Among all the pectinases, polygalacturonases are widely used in different industries. 

At a commercial scale, usually fungal polygalacturonases have been used. The 

pectinases with novel properties from bacterial origin have advantages over the fungal 

pectinases because the enzyme production is achieved in less time due to fast bacterial 

growth compared to fungi.  

1.3 Industrial applications of the cellulases and pectinases 

Cellulases and pectinases have wide applications in different industries. These 

enzymes help to degrade the plant polysaccharides producing reducing sugars. Further, 

the reducing sugars are converted to different value added products. These enzymes 

also help in the processing different industrial products. Because of this feature, 

currently cellulases and pectinases have been used in pulp and paper industry, textile 

industry, washing powder industry, food and animal feed (Table 2). 

 

Methyl group 

Galacturonic acid 

Carboxylic acid 

Pectin Lyase (PL) 

Pectin methylesterase (PME) 

Polygalacturonase (PG) 

De-esterification of pectin  

Trans-elimination reaction 

Hydrolysis α -1, 4 glyocosidic 
bonds  
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Table 2. Industrial applications of cellulases and pectinases 

Enzymes Industry Applications 

Cellulases 
and 
Pectinases 

Agriculture Biocontrol of plant pathogens and diseases, production 
of plant and fungal protoplasts, enhancing seed 
germination and improvement of root system, enhancing 
plant growth and flowering, improvement of  soil quality 

Cellulases 
and 
Pectinases 

Animal feed Improvement of the nutritional quality of animal feed, 
improvement in feed digestion and absorption, 
production and preservation of high quality fodder  

Cellulases Bioconversion Conversion of cellulosic materials to ethanol, other value 
added products, organic acids and lipids 

Cellulases Detergents Cellulase based washing powders have superior cleaning 
action without damaging fibers with improved color 
brightness and dirt removal, removal of rough 
protuberances in cotton fabrics, bio stoning of denim 
fabrics, bio polishing of cotton and non-denim fabrics, 
production of high quality fabrics 

Cellulases 
and 
Pectinases 

Fermentation Improvement of malting and mashing, maceration and 
color extraction of grapes, improvement of primary 
fermentation, aroma and quality of beer, improvement 
and clarification of wine, improvement of filtration rate 
and wine stability, pectinases are used in tea and coffee 
fermentation 

Cellulases 
and 
Pectinases 

Food Improvement of maceration, extraction of juices from 
fruits and vegetables, decreasing the viscosity, 
clarification of fruit/vegetables juices, improvement in 
yields of starch and protein, increasing the texture, 
quality and shelf life of bakery products 

Cellulases 
and 
pectinases 

Pulp and Paper Co-additive in pulp bleaching, biomechanical pulping, 
modification of fibre properties, bio characterization of 
pulp fibers, enzymatic deinking, reduced energy 
requirement, reduced chlorine requirement, improve 
fiber brightness, strength properties and pulp freeness 
and cleanliness, production of biodegradable cardboard, 
paper towels and sanitary paper 

Cellulases 
and 
Pectinases 

Textile Bio-stoning of jeans, bio-polishing of textile fibers, 
improve fabrics quality, improve absorbance property of 
fibers, softening of garments, improve stability of 
fabrics, excess dye removal from fabrics, restoration of 
color brightness 

Cellulases 
and 
Pectinases 

Others Production of hybrid molecules of various applications, 
improvement of extraction and quality of olive oil, 
reducing risk of biomass waste, production of designer 
cellulosomes 

 
Source: Modified from (Bhat 2000; Kuhad et al. 2011) 
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The use of cellulase at the commercial level began in early 1970s where the 

cellulase produced by Trichoderma was sold for the research. During mid 1980s 

cellulases were used for stonewashing denim and for animal feed which was 

accompanied by the commercial use of cellulase produced by fungal strains mainly 

Aspergillus, Panicillum and Humicola (Bhat 2000).  

Pectinases have been used in many processes such as fruit juice and alcoholic 

beverage production, wastewater treatment, vegetable oil extraction, tea and coffee 

fermentation, poultry feed production, textile product production, and paper production 

(Favela-Torres et al. 2006; Jayani et al. 2005). Mainly, the  polygalacturonases are 

widely used in food industries and facilitate maceration, liquefaction and extraction as 

well as filtration process of fruits and vegetables juices, processing of wine, coffee and 

tea fermentation (Hoondal et al. 2002; Soares et al. 2001). Aspergillus niger is mainly 

used for the commercial production of polygalacturonase (Maldonado et al. 2002). 

There are only a few studies available on the production of polygalacturonase by 

bacteria (Ahlawat et al. 2008; Jayani et al. 2010; Kashyap et al. 2000). 

1.3.1 Cellulases and pectinases pulp and paper industry 

In pulp and paper industry, cellulases help to improve the drainage of recycled 

fibers, de-inking of recycled fibers and help to characterize the fibers by increasing the 

solubilisation of pulps (Pere et al. 1995; Prasad et al. 1992). They are useful in the 

manufacture of cardboard paper, soft papers including paper towels and sanitary papers 

(Hsu and Lakhani 2000; Salkinoja-Salonen 1990).  

Pectinases have also been used in pulp and paper industries due to their 

macerating activity which is helpful for retting of blasts. In paper making process, 

pectinases depolymerize pectins (Ricard and Reid 2004).  
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1.3.2 Cellulases and pectinases in textile industry 

In textile industry, cellulases are used in bio stoning of denim by removing the 

excessive dye from the fabric (Belghith et al. 2001). They help in softening the fibers 

resulting in the faded look of denim. Cellulases have been used in softening and  

defibrillation of the fibers ( Kvietok et al. 1995; Videbaek and Andersen 1993). They 

are also helpful in softening of the textile without fiber damage.  

Pectinases are helpful in the removal of primary cell wall pectin from cotton 

fiber. The fiber is composed of 95% cellulose and 5% non-cellulosic. The non-

cellulosic compounds are found in the primary cell wall are the lattice of pectin 

(partially methoxylated polygalacturonic acid), protein, and waxes. Pectinases 

hydrolyse pectin from cotton fiber maintaining the integrity and strength of the fiber. 

Pectinases with amylases, lipases, cellulase and hemicellulases help to remove sizing 

agents from cotton by replacing toxic caustic soda. Similarly they also help in bio-

scouring which is a novel process for removal of non-cellulosic impurities without 

cellulose degradation (Jayani et al. 2005). 

1.3.3 Cellulases in detergent industry 

In the detergents industry, cellulases improve the performance of washing 

powders by restoring the softness and brightness, uniformity, smoothness of cotton 

fiber by selectively removal of small and fuzzy fibrils. They are used to produce 

environmentally friendly detergents as these enzymes help in softening the fibers. They 

improve the color brightness. The species of Trichoderma, and Aspergillus are mainly 

used in detergent industries (Kottwitz and Schambil 2004).  
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1.3.4 Cellulases and pectinases in food industry 

Cellulases and pectinases have a wide application in food biotechnology. 

Cellulases are helpful for color extraction, clarification, production of fruit purees and 

quality improvement (Galante et al. 1998). Similarly, pectinases are also added to fruit 

and vegetable juices after processing for depectinization which helps to increase the 

concentration of the sugar in  juice, increase the storage capacity and avoids microbial 

contamination (Dey et al 2014; Kashyap et al. 2001). Pectinases reduce the viscosity 

and increase the absorption in feed by hydrolysis of non-biodegradable fibers or by 

releasing the nutrients blocked by the fibers (Jayani et al. 2005). A combination of 

cellulases and pectinases are used in the efficient extraction and clarification of fruit 

and vegetable juices. They help to decrease the viscosity and increase the yield. 

In the brewing industry, cellulases and pectinases are used to improve the 

brewing process of poor quality barley. They mainly remove the gel formation which 

causes poor filtration leading to low extract yields. In wine industries, these enzymes 

help to obtain better skin degradation, improve color extraction, better extraction and 

improve the quality of the end product (Bhat 2000). 

1.3.5 Cellulases and pectinases in animal feed 

The animal feed industry plays an important role in agro business. Up to 90% 

of total feed production is taken by poultry, pigs and ruminants and pet foods and fish 

farming accounts for 10% (Bhat 2000). Cellulases and pectinases are mainly useful as 

ruminant feed because they degrade the cereal and cellulosic material to improve the 

nutritional value and help to supplement the digestive enzymes of animals (Beauchemin 

et al. 1995; Hoondal et al. 2002). Likewise, in monogastric ruminant feed, these 

enzymes remove the anti-nutritional factors from grains and vegetables. Further, these 
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enzymes supplement the digestive enzymes of animals when those are inadequate and 

improve the overall feed conversion rate (Galante et al. 1998). 

1.3.6 Cellulases in bioconversion 

Cellulases are being investigated actively in the conversion of lignocellulosic 

biomass for the production of biofuel. For this the cellulosic biomass is converted to 

fermentable sugars which can be utilized by microbial cellulase to produce bioethanol 

and other value added products (Xiong et al. 2014). 

1.3.7 Pectinases in degumming/retting of plant bast fibers  

Retting is a fermentation process in which pectinase releasing microorganisms 

decompose the pectin of bark and release fiber. Alkaline pectinase are mainly used in 

degumming and retting of fiber crops such as jute, flax, hemp, ramie, kenaff (Hibiscus 

sativa) and coir from coconut husks (Kashyap et al. 2001).  

1.3.8 Pectinases in waste water treatment 

Different industries such as vegetables and fruit processing release pectin 

containing waste water as by product. When this waste water is pre-treated with 

pectinases, it is helpful to remove the pectinaceous materials and makes the water more 

suitable for the decomposition by activated sludge treatment (Jayani et al. 2005).  

1.3.9 Pectinases in coffee and tea fermentation 

Alkaline pectinases are helpful for coffee and tea fermentation. The 

fermentation of coffee using pectinase releasing microorganisms removes the mucilage 

coat from coffee beans and enhances the tea fermentation and foam forming properties 

of tea (Murthy and Naidu 2011).  Since the large scale treatment of tea and coffee with 

the commercial enzymes is costly, inoculate disregard waste mucilage is used as a 

source of pectinases during fermentation. 
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1.3.10 Cellulases and pectinases in purification of plant viruses 

Cellulases and alkaline pectinases are helpful to liberate the viruses from the 

plant tissues and are helpful for pure virus preparations (Jayani et al. 2005). 

1.3.11 Cellulases and pectinases in oil extraction 

Plant cell wall polymers degrading enzymes have begun to be used in oil 

preparations. The pectinases with low level of cellulase which are added during 

grinding of the olives help to release the oil easily during extraction (West 1996). The 

addition of these enzymes during olive oil extraction helps to increase the extraction 

with the overall improvement of plant efficiency. The macerating enzymes could be 

beneficial in the extraction of oils from other agricultural crops. 

1.4 Microbial cellulases and pectinases  

A large number of microorganisms mainly the fungi and bacteria are capable of 

producing cellulases and pectinases. Carboxymethyl cellulose and pectin containing 

agar plates have been used for the qualitative assay of cellulase and pectinase producing 

bacteria respectively. The ability of microorganisms to produce large amounts of 

extracellular proteins makes them more suited for the production of these enzymes. The 

cellulases and pectinases produced by the microorganisms are helpful in the 

degradation of cellulose and pectin respectively (Vatanparast et al. 2012). 

Microorganisms are preferred for the production of industrial enzymes because of low 

production cost. 

1.4 .1 Cellulase production by microorganisms  

Cellulases are produced by many microorganisms in nature (Table 3). These 

microorganisms generally degrade carbohydrates and cannot use protein or lipids as a 

source of energy (Lynd et al. 2002). Many bacteria and fungi are the major sources of 
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microbial cellulases (Watanabe and Tokuda 2010). The fungi, mainly the species of 

Trichoderma and Aspergillus, produce extracellular cellulases in comparatively  higher 

amounts than bacteria and have been used industrially (Kumar et al. 2008). While the 

most commonly studied cellulases producing bacterial strains include the species of 

Bacillus, Pseudomonas and Cellulomonas and the actinomycetes strains include 

Stretomyces and Actinomucor (Sukumaran et al. 2005). The cellulases from these 

bacteria have a wide application in the conversion of cellulosic biomass to ethanol, 

organic acids, single cell protein and lipids.  

Table 3. Microorganisms producing cellulases 

Cellulase producing microorganisms 

Fungi Aspergillus, Melanocarpus, Penicillium, Trichoderma, 
Coniophora, Lanzites,  Poria, Fomitopsis Phanerochaete, 
Sporotrichum Trametes 

Bacteria Aerobic bacteria 
Acinetobacter, Bacillus, Cellulomonas, Paenibacillus, 
Pseudomonas Salinivibrio, Rhodothermus  
Anaerobic bacteria 
Acetivibrio Butyrivibrio, Clostridium, Fibrobacter,  Ruminococcus  

Actinomycetes Streptomyces, Thermomonospora  

Source: Modified from Kuhad et al. (2011) 
 

The production cost of cellulases can be optimized by comparing the production 

medium and using an alternative carbon source such as municipal solid waste residues 

which could be an advantage as the enzyme production rate is normally higher by some 

microbial species (Gautam et al. 2011; Rastogi et al. 2010). Recently, the bacterial 

cellulases have received more attention over the fungal cellulases because of their high 

growth rates. Aerobic bacteria produce cellulases in a free form whereas the anaerobic 

bacteria produce cellulases as a cell associated enzyme complex known as cellulosome 

which is a multienzyme complex consisting of many subunits (Bayer et al. 2007). The 
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bacteria isolated from different sources such as sea water (Kim et al. 2009), landfill 

(Korpole et al. 2011), organic fertilizers and paper mill sludges (Maki et al. 2011) are 

capable of hydrolysing carboxymethyl cellulose (CMC). Similarly, cellulase producing 

bacteria have been isolated from some other sources such as the digestive tracts of 

insects  like termite, snail, caterpillar, and bookworm (Gupta et al. 2012) and digestive 

juices of crab (Bui and Lee 2015). Such bacterial isolates are the ideal candidates for 

the production of cellulases. Also, the species of Pseudomonas, Bacillus and 

Paenibacillus strains can degrade lignocellulosic biomass and they  have good potential 

for industrial use (Maki et al. 2012). There are some reports of cellulase production by 

the species of Geobacillus, Thermobacillus, Cohnella, and Thermus which would 

facilitate development of more efficient and cost-effective forms of the simultaneous 

saccharification and fermentation process to convert lignocellulosic biomass into 

biofuels (Rastogi et al. 2010). Sometimes the cellulase production can also be increased 

by using different substrates like barley and wheat straws which are better suited for 

the cellulase production by some bacteria like Geobacillus sp. T1 (Assareh et al. 2012). 

Such microorganisms are potential candidates for conversion of agricultural biomass to 

biofuels. Further, the microorganisms growing on rotting wood samples also produce 

cellulases in nature and the isolation and identification of such microorganisms might 

be useful to characterize their enzymes. 

1.4.2 Pectinase production by microorganisms  

Pectinases are naturally produced by the microorganisms mainly the fungi and 

bacteria (Table 4). The microbiota present in decomposing fruits (Kumar and Sharma 

2012), the gut of insects (Engel et al. 2012) and rumen of sheep (Yuan et al. 2012a) 

also produce pectinases and help in the digestion of pectin. Microbial pectinases are 

important in phytopathogenic process, plant microbe symbiosis, and degradation of 
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pectic substances. Pectolytic enzymes are abundantly produced by fungi and have been 

used for the industrial applications. The important pectinases producing fungi are the 

species of Aspergillus (Dey et al. 2014; Heerd et al. 2014; Yannam et al. 2014) and the 

bacteria are the species of Bacillus (Gupta et al. 2012; Kashyap et al. 2000; Tepe and 

Dursun 2014). Most of the fungal pectinases are optimal at the acidic conditions and 

the bacterial pectinases have optimum activity in alkaline conditions (Kashyap et al. 

2001). Some of these microorganisms produce enzymes outside of their cell and release 

to the medium.  

Table 4. Pectinase producing microorganisms 

Microorganisms producing pectinases 

Acidic 
pectinases (PG) 

Aspergillus niger CH4, Penicillium frequentans, Sclerotium 
rolfsii, Rhizoctonia solani, Mucor pusilus 

Alkaline 
pectinases (PG)           

Bacillus sp. RK9, Bacillus sp. NT-33, Bacillus polymyxa, Bacillus 
pumilis, Amucola sp., Xanthomonas compestris, Bacillus No. P-
4-N, Bacillus stearothermophillus, Penicillium italicum CECT 
22941, Bacillus sp. DT 7, Bacillus subtilis, Bacillus sp. MG-cp-2                   

Source: Modified from Kashyap et al. (2001) 

These microorganisms can use different organic substrates like lemon peel 

(Rashad et al. 2010) for the extracellular pectinases like polygalacturonase production. 

In addition, polygalacturonases produced by  some bacteria such as Klebsiella sp. and 

Bacillus licheniformis KIBGE-IB21 are active in a broad range of pH (Yuan et al. 

2012b; Rehman et al. 2015) showing their potential applications in feed and food 

industry. 
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1.5 Research rationale 

Microorganisms have importance for the large-scale processes of fermentation 

for the commercial production of industrially important enzymes such as proteases, 

cellulases and pectinases. Cellulases and pectinases have potential applications for 

hydrolysing polysaccharides in biorefining industries which are based on agro 

industrial wastes. However, the cost of the production of these enzymes should be 

lowered significantly. Further, there is a major problem for industrial production of 

different value added products by using these enzymes due to the high production cost. 

Other problems are related with the slow growth rates, long induction period for 

enzyme expression and the low specific activity of enzyme producing fungi which have 

been widely used in the industrial sector (Kadam 1996). It is therefore important to 

screen novel enzyme producing microorganisms, optimize the production and improve 

the effectiveness of the enzymes.  

Several microorganisms including fungi and bacteria produce enzymes for the 

degradation of cell wall polysaccharides. Still, the selection of a particular strain of 

interest for the commercial production of enzymes is tedious. Bacterial strain producing 

commercial enzymes have received preference over the fungal strains as they are easy 

to grow during fermentation process for enzyme production. Also, the strain 

improvement techniques are quicker for increasing the yield of production. The 

isolation and characterization of the bacterial strains is helpful to identify the isolates 

producing important enzymes including cellulases and pectinases with unique 

properties and such isolates might be potential candidates for many industrial processes 

(Gaur and Tiwari 2015; Ghani et al. 2013). 
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Enzyme characterization is important for its potential application. It is important 

to develop the methodologies to increase the enzyme stability. The characterization of 

cellulases and pectinases help to understand the mechanisms of action of these 

enzymes. So, it will be economically feasible identifying the novel cellulase and 

pectinase bacterial strains and optimization of enzyme production parameters during 

fermentation.  

1.6   Research objectives 

The aim of this study was to isolate bacterial strains capable of producing cellulase 

and pectinase like polygalacturonase and optimize fermentation conditions for 

maximum production of these enzymes. Agave biomass was also used as substrate for 

the bioethanol production by the cellulase producing bacteria. The main research 

objectives are as follows: 

1. Isolation and characterization of cellulase and polygalacturonase producing 

bacteria 

2. Optimization of enzyme production by using different parameters 

3. Use of biomass as substrates for enzymes production 

4. Application of cellulase on biomass for bioethanol production 

 

 

 

 

 

 

 

 

 



21 
 

References 

Ahlawat,S., Mandhan,R.P., Dhiman,S.S., Kumar,R., and Sharma,J. 2008. Potential 
application of alkaline pectinase from Bacillus subtilis SS in pulp and paper industry. 
Appl Biochem Biotechnol. 149: 287-293. 
Assareh,R., Zahiri,H.S., Noghabi,K.A., and Aminzadeh,S. 2012. Characterization of 
the newly isolated Geobacillus sp. T1, the efficient cellulase-producer on untreated 
barley and wheat straws. Bioresour Technol. 120: 99-105. 

Bajpai,P. 1999. Application of enzymes in the pulp and paper industry. Biotechnol 
Prog. 15: 147-157. 

Bayer,E.A., Lamed,R., and Himmel,M.E. 2007. The potential of cellulases and 
cellulosomes for cellulosic waste management. Curr Opin Biotechnol. 18: 237-245. 

Bayer,E.A., Morag,E., and Lamed,R. 1994. The cellulosome-a treasure-trove for 
biotechnology. Trends Biotechnol. 12: 379-386. 

Beauchemin,K.A., Rode,L.M., and Sewalt,V.J.H. 1995. Fibrolytic enzymes increase 
fiber digestibility and growth rate of steers fed dry forages. Can J Anim Sci. 75: 641-
644. 

Belghith,H., Ellouz-Chaabouni,S., and Gargouri,A. 2001. Biostoning of denims by 
Penicillium occitanis (Pol6) cellulases. J Biotechnol. 89: 257-262. 

Bhat,M.K. 2000. Cellulases and related enzymes in biotechnology. Biotechnol Adv.  18: 
355-383. 

Biz,A., Farias,F.C., Motter,F.A., de Paula,D.H., Richard,P., Krieger,N., and 
Mitchell,D.A. 2014. Pectinase activity determination: an early deceleration in the 
release of reducing sugars throws a spanner in the works! PloS one 9: e109529. 

Brown,R.M. 2004. Cellulose structure and biosynthesis: what is in store for the 21st 
century? J Poly Sci A1 42: 487-495. 

Bui,T.H. and Lee,S.Y. 2015. Endogenous cellulase production in the leaf litter foraging 
mangrove crab Parasesarma erythodactyla.  Comp Biochem Phys B 179: 27-36. 

Cowling,E.B. 1975. Physical and chemical constraints in the hydrolysis of cellulose 
and lignocellulosic materials. Biotechnol Bioeng Symp. 5. 163. 

de Vries,R.P. and Visser,J. 2001. Aspergillus enzymes involved in degradation of plant 
cell wall polysaccharides. Microbiol Mol Biol Rev. 65: 497-522. 

Deswal,D., Khasa,Y.P., and Kuhad,R.C. 2011. Optimization of cellulase production by 
a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour 
Technol. 102: 6065-6072. 

Dey,T.B., Adak,S., Bhattacharya,P., and Banerjee,R. 2014. Purification of 
polygalacturonase from Aspergillus awamori Nakazawa MTCC 6652 and its 
application in apple juice clarification. LWT-Food Sci Technol. 59: 591-595. 



22 
 

Engel,P., Martinson,V.G., and Moran,N.A. 2012. Functional diversity within the 
simple gut microbiota of the honey bee. P Natl Acad Sci. 109: 11002-11007. 

Fan,L.T., Lee,Y.-H., and Beardmore,D.H. 1980. Mechanism of the enzymatic 
hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic 
hydrolysis. Biotechnol Bioeng. 22: 177-199. 

Favela-Torres,E., Volke-Sepulveda,T., and Viniegra-Gonzalez,G. 2006. Production of 
hydrolytic depolymerising pectinases. Food Technol Biotechol. 44: 221. 

Galante,Y.M., De Conti,A., and Monteverdi,R. 1998. Application of Trichoderma 
enzymes in the food and feed industries. In: Harman GF, Kubicek CP, editors. 
Trichoderma and Gliocladium—Enzymes, biological control and commercial 
applications. Vol. 2. London: Taylor & Francis, 2: 327-342. 
 
Gaur,R. and Tiwari,S. 2015. Isolation, production, purification and characterization of 
an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-
07. BMC Biotechnol. 15: 19. 

Gautam,S.P., Bundela,P.S., Pandey,A.K., Khan,J., Awasthi,M.K., and Sarsaiya,S. 
2011. Optimization for the production of cellulase enzyme from municipal solid waste 
residue by two novel cellulolytic fungi. Biotechnol Res Intl. 1-8. 

Ghani,M., Ansari,A., Aman,A., Zohra,R.R., Siddiqui,N.N., and Qader,S.A.U. 2013. 
Isolation and characterization of different strains of Bacillus licheniformis for the 
production of commercially significant enzymes. Pak J Pharm Sci. 26: 691-697. 

Gummadi,S.N. and Panda,T. 2003. Purification and biochemical properties of 
microbial pectinases-a review. Process Biochem. 38: 987-996. 

Gupta,P., Samant,K., and Sahu,A. 2012. Isolation of cellulose-degrading bacteria and 
determination of their cellulolytic potential. Int J Microbiol. 1-5. 

Heerd,D., Tari,C., and Fernandez-Lahore,M. 2014. Microbial strain improvement for 
enhanced polygalacturonase production by Aspergillus sojae. Appl Microbiol 
Biotechnol. 98: 7471-7481. 

Heredia,A., Jimenez,A., and Guillen,R. 1995. Composition of plant cell walls. Z  
lebensm- Untersuchung und Forschung 200: 24-31. 

Hoondal,G., Tiwari,R., Tewari,R., Dahiya,N., and Beg,Q. 2002. Microbial alkaline 
pectinases and their industrial applications: a review. Appl Microbiol Biotechnol. 59: 
409-418. 

Hsu,J.C. and Lakhani,N.N. 2000. Production of soft paper products from coarse 
cellulosic fibers. U.S. Patent No. 6,074,527. U.S. Patent and Trademark Office. 

Jayani,R.S., Saxena,S., and Gupta,R. 2005. Microbial pectinolytic enzymes: a review. 
Process Biochem. 40: 2931-2944. 



23 
 

Jayani,R.S., Shukla,S.K., and Gupta,R. 2010. Screening of bacterial strains for 
polygalacturonase activity: Its production by Bacillus sphaericus (MTCC 7542). 
Enzyme  Res.1-5 

Juturu,V. and Wu,J.C. 2014. Microbial cellulases: engineering, production and 
applications. Renew Sust Energ Rev. 33: 188-203. 

Kadam,K.L. 1996. Cellulase production. Handbook on bioethanol: Production and 
utilization. CRC press. 213-252. 

Karmakar,M. and Ray,R.R. 2010. Current trends in research and application of 
microbial cellulases. Res J Microbiol. 6:41-53. 

Kashyap,D.R., Chandra,S., Kaul,A., and Tewari,R. 2000. Production, purification and 
characterization of pectinase from a Bacillus sp. DT7. World J Microb-Biot. 16: 277-
282. 

Kashyap,D.R., Vohra,P.K., Chopra,S., and Tewari,R. 2001. Applications of pectinases 
in the commercial sector: a review. Bioresour Technol. 77: 215-227. 

Kim,B.K., Lee,B.H., Lee,Y.J., Jin,I.H., Chung,C.H., and Lee,J.W. 2009. Purification 
and characterization of carboxymethylcellulase isolated from a marine bacterium, 
Bacillus subtilis subsp. subtilis A-53. Enzyme Microb Technol. 44: 411-416. 

Klemm,D., Heublein,B., Fink,H.-P., and Bohn,A. 2005. Cellulose: fascinating 
biopolymer and sustainable raw material. Angewandte Chemie International Edition 
44: 3358-3393. 

Knauf,M. and Moniruzzaman,M. 2004. Lignocellulosic biomass processing: a 
perspective. Int Sugar J. 106: 147-150. 

Korpole,S., Sharma,R., and Verma,D. 2011. Characterization and phylogenetic 
diversity of carboxymethyl cellulase producing Bacillus species from a landfill 
ecosystem. Indian J Microbiol. 51: 531-535. 

Kottwitz,B. and Schambil,F. 2004. Cellulase and cellulose containing detergent. U.S. 
Patent no. 10/897,898. U.S. Patent and Trademark Office. 

Kuhad,R.C., Gupta,R., and Singh,A. 2011. Microbial cellulases and their industrial 
applications. Enzyme Res. 1-10. 

Kuhad,R.C., Singh,A., and Eriksson,K.E. 1997. Microorganisms and enzymes involved 
in the degradation of plant fiber cell walls. Biotechnology in the pulp and paper 
industry. Springer 57: 45-125. 

Kumar,A. and Sharma,R. 2012. Production of alkaline pectinase by bacteria (Cocci 
sps.) isolated from decomposing fruit materials. J Phytol. 4: 1-5. 

Kumar,R., Singh,S., and Singh,O.V. 2008. Bioconversion of lignocellulosic biomass: 
biochemical and molecular perspectives. J Ind Microbiol Biot. 35: 377-391. 



24 
 

Kvietok,L.L., Trinh,T., and Hollingshead,J.A. 1995. Cellulase fabric-conditioning 
compositions. U.S. Patent No. 5,445,747. U.S. Patent and Trademark Office. 

Lang,C. and Dornenburg,H. 2000. Perspectives in the biological function and the 
technological application of polygalacturonases. Appl Microbiol Biotechnol. 53: 366-
375. 

Lynd,L.R., Weimer,P.J., Van Zyl,W.H., and Pretorius,I.S. 2002. Microbial cellulose 
utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 66: 506-577. 

Lynd,L.R., Wyman,C.E., and Gerngross,T.U. 1999. Biocommodity engineering. 
Biotechnol Prog. 15: 777-793. 

Maki,M.L., Broere,M., Leung,K.T., and Qin,W. 2011. Characterization of some 
efficient cellulase producing bacteria isolated from paper mill sludges and organic 
fertilizers. Int J Biochem Mol Biol. 2: 146. 

Maki,M.L., Idrees,A., Leung,K.T., and Qin,W. 2012. Newly isolated and characterized 
bacteria with great application potential for decomposition of lignocellulosic biomass. 
Int J Biochem Mol Biol. 22: 156-166. 

Maldonado,M.C., Caceres,S., Galli,E., and Navarro,A.R. 2002. Regulation of the 
production of polygalacturonase by Aspergillus niger. Olia Microbiol. 47: 409-412. 

Martin,N., Souza,S.R.d., Silva,R.d., and Gomes,E. 2004. Pectinase production by 
fungal strains in solid-state fermentation using agro-industrial bioproduct. Braz Arch 
Biol Techn. 47: 813-819. 

Menon,V. and Rao,M. 2012. Trends in bioconversion of lignocellulose: biofuels, 
platform chemicals & biorefinery concept. Prog Energy Combust Sci. 38: 522-550. 

Mohnen,D. 2008. Pectin structure and biosynthesis. Curr Opin Plant Biol. 11: 266-277. 

Murthy,P.S. and Naidu,M.M. 2011. Improvement of robusta coffee fermentation with 
microbial enzymes. Eur J Appl Sci. 3: 130-139. 

Nigam,P.S. and Pandey,A. 2009. Biotechnology for Agro-industrial Residues 
Utilisation: Utilisation of Agro-residues. Springer Science & Business Media. 

Palmqvist,E. and Hahn-Hangerdal,B. 2000. Fermentation of lignocellulosic 
hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 74: 25-
33. 

Pere,J., Siika-aho,M., Buchert,J., and Viikari,L. 1995. Effects of purified Trichoderma 
reesei cellulases on the fiber properties of kraft pulp. Tappi journal (USA). 
www.agris.fao.org 

Perez,J., Munoz-Dorado,J., de la Rubia,T.D.L.R., and Martinez,J. 2002. 
Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an 
overview. Int Microbiol. 5: 53-63. 



25 
 

Prasad,D.Y., Heitmann,J.A., and Joyce,T.W. 1992. Enzyme deinking of black and 
white letterpress printed newsprint waste. Progress in Paper Recycling 1: 21-30. 

Rashad,M.M., Abdou,H.M., Shousha,W.G., Ali,M.M., and El-Sayed,N.N. 2010. 
Purification and Characterization of Extracellular Polygalacturonase from Pleurotus 
ostreatus Using Citrus limonium Waste. J Appl Sci Res. 6: 81-88. 

Rastogi,G., Bhalla,A., Adhikari,A., Bischoff,K.M., Hughes,S.R., Christopher,L.P., and 
Sani,R.K. 2010. Characterization of thermostable cellulases produced by Bacillus and 
Geobacillus strains. Bioresour Technol. 101: 8798-8806. 

Rehman,H.U., Aman,A., Nawaz,M.A., and Qader,S.A.U. 2015. Characterization of 
pectin degrading polygalacturonase produced by Bacillus licheniformis KIBGE-IB21. 
Food Hydrocolloid. 43: 819-824. 

Ricard,M. and Reid,I.D. 2004. Purified pectinase lowers cationic demand in peroxide-
bleached mechanical pulp. Enzyme Microb Technol. 34: 499-504. 
 
Ridley,B.L., O'Neill,M.A., and Mohnen,D. 2001. Pectins: structure, biosynthesis, and 
oligogalacturonide-related signaling. Phytochem. 57: 929-967. 

Sakai,T., Sakamoto,T., Hallaert,J., and Vandamme,E.J. 1993. Pectin, Pectinase, and 
Protopectinase: Production, Properties, and Applications. Adv Appl Microbiol. 39: 213-
294. 

Sakai,T. and Winkelmann,G. 1992. Degradation of pectins. In: Microbial degradation 
of natural products, Winkelmann, G. (Eds.), VCH, Weinheim, Germany. 57-81. 

Salkinoja-Salonen,M. 1990. Method for manufacturing paper or cardboard and product 
containing cellulase. U.S. Patent No. 4,980,023. Washington, DC: U.S. Patent and 
Trademark Office. 

Sharma NR,S.S.A.S.G. 2011. Production of polygalacturonase and pectin methyl 
esterase from agrowaste by using various isolates of Aspergillus niger. Insight 1: 1-7. 

Soares,M.M.C.N., Da Silva,R., Carmona,E.C., and Gomes,E. 2001. Pectinolytic 
enzyme production by Bacillus species and their potential application on juice 
extraction. World J Microb-Biot. 17: 79-82. 

Sukumaran,R.K., Singhania,R.R., and Pandey,A. 2005. Microbial cellulases-
production, applications and challenges. J Sci Ind Res. 64: 832. 

Tepe,O. and Dursun,A.Y. 2014. Exo-pectinase production by Bacillus pumilus using 
different agricultural wastes and optimizing of medium components using response 
surface methodology. Environ Sci Pollut Res. 21: 9911-9920. 

Vatanparast,M., Hosseininaveh,V., Ghadamyari,M., and Sajjadian,S.M. 2012. 
Pectinase and cellulase activity in the digestive system of the elm leaf beetle, 
Xanthogaleruca luteola Muller (Coleoptera: Chrysomelidae). J Asia Pac Entomol. 15: 
555-561. 



26 
 

Videbaek,T. and Andersen,L. 1993. A process for defuzzing and depilling cellulosic 
fabrics. PCT Int Appl. WO9320278. 

Watanabe,H. and Tokuda,G. 2010. Cellulolytic systems in insects. Annu Rev Entomol. 
55: 609-632. 

West,S. 1996. Olive and other edible oils. In: Godfrey T, West S (Eds.), Industrial 
enzymology, 2nd edn. Stockholm Press, New York, pp 293–300. 
 
Whitaker,J.R. 1990. Microbial pectolytic enzymes. Microbial enzymes and 
biotechnology. Springer. 133-176. 

Willats,W.G., Knox,J.P., and Mikkelsen,J.D. 2006. Pectin: new insights into an old 
polymer are starting to gel. Trends Food Sci Tech. 17: 97-104. 
 
Xiong,L., Maki,M., Guo,Z., Mao,C., and Qin,W. 2014. Agave Biomass is Excellent for 
Production of Bioethanol and Xylitol Using Bacillus Strain 65S3 and Pseudomonas 
Strain CDS3. J Biobased Mater Bio. 8: 422-428. 

Yannam,S.K., Shetty,P.R., and Obulum,V.S.R. 2014. Optimization, Purification and 
Characterization of Polygalacturonase from Mango Peel Waste Produced by 
Aspergillus foetidus. Food Technol Biotechol. 52: 359-367. 

Yuan,P., Meng,K., Wang,Y., Luo,H., Huang,H., Shi,P., Bai,Y., Yang,P., and Yao,B. 
2012a. Abundance and genetic diversity of microbial polygalacturonase and pectate 
lyase in the sheep rumen ecosystem. PloS one 7: e40940. 

Yuan,P., Meng,K., Wang,Y., Luo,H., Shi,P., Huang,H., Bai,Y., Yang,P., and Yao,B. 
2012b. A protease-resistant exo-polygalacturonase from Klebsiella sp. Y1 with good 
activity and stability over a wide pH range in the digestive tract. Bioresour Technol. 
123: 171-176. 
 
 

 

 

 

 

 

 

 

 

 



27 
 

CHAPTER II 

Characterization of novel cellulase producing bacteria isolated from 

rotting wood samples 

Abstract 

Seventeen bacterial isolates were screened for their cellulase activity by 

carboxymethyl cellulose (CMC) plate assay. The bacterial strain K1 showed the largest 

depolymerized region in CMC plate assay and was further studied for quantitative 

cellulase activity. On the basis of 16S rDNA sequence analysis, the strain K1 was found 

to be Bacillus sp. This strain produced the maximum CMCase at pH 6 and 50 oC in 

presence of peptone (1%) as a source of nitrogen. The CMCase activity was stimulated 

by Ca2+ (2 mM) by 20% over the control. The CMCase activity of this Bacillus sp. K1 

was highly induced when lactose was used as a source of carbon during fermentation. 

Key words: Cellulase, Bacillus, optimization 
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1. Introduction 

Due to the high rates of consumption of fossil fuel, there is an increase need for finding 

a new alternative source of renewable energy. Agricultural biomass is the best 

alternative source of biofuel (Mussatto et al. 2010; Perlack et al. 2005; Zambare et al. 

2011). On average, the biomass of plants contains 30-35% cellulose, 20-35% 

hemicellulose and 5-30% lignin (Lynd et al. 1999). Cellulose is composed of glucose 

units joined together by β-1, 4 glycosidic linkages. Hemicellulose is a heterologous 

polymer of 5 and 6 carbon sugars and lignin is a complex aromatic polymer. Cellulose  

is the major component of plant cell wall and is one of the most fascinating renewable 

energy sources (Demirbas 2007; Kim et al. 2006). However, cellulose is not easily 

amenable to the fermentation which is essential for lignocellulosic biorefineries. For 

this, the degradation of cellulose to glucose is an important step. This can be achieved 

by cellulase which is produced naturally by microorganisms mainly bacteria and fungi 

(Immanuel et al. 2006).  

Cellulases are responsible for breaking down the glycosidic linkage in a 

polysaccharide cellulose (Saha et al. 2006) and hydrolyse cellulose into glucose units. 

There are 3 types of cellulases which act synergistically. These enzymes are 

exoglucanase (cleaving β-1,4 glycosidic bonds from chain ends), endoglucanase 

(randomly cleaving β-1,4 internal linkages) and β-glucosidase (cleaving final β-1,4 

linkage of cellobiose or small polysaccharides) (Perez et al. 2002). Most of the 

cellulases currently used in industrial scale are produced by fungi because of their 

ability for high enzyme secretion. Bacteria may be considered more ideal candidates 

for cellulase production as they are fast growing and culturable (Nagendran and Hallen-

Adams 2009). Cellulases have several industrial applications including biofuel 

production, cotton softening, denim finishing, adding to detergents and washing 
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powders (Cherry and Fidantsef 2003; Vyas and Lachke 2003). The cellulase producing 

bacteria have been isolated from different sources over the past decades. These sources 

include soil, decaying wood samples, faeces of  rumnants and insect guts (Doi 2008). 

The present study concentrates the isolation and characterization of efficient cellulase 

producing bacteria from rotting wood samples which are one of the abundantly 

available lignocellulosic sources with the possible presence of the cellulase producing 

bacteria and optimization of the enzyme activity for the possible use in industrial scale. 

2. Materials and methods 

2.1 Bacterial strains isolation and identification  

The samples were collected from the premises of Lakehead University Thunder 

Bay, ON, Canada. One gm sample of the rotting was suspended in 100 ml of distilled 

water and was homogenized by vortexing. Serial dilutions of 10X were made by adding 

autoclaved distilled water. One hundred μl of each dilution was spread by using 

standard spread plate method over LB agar plates containing peptone 10 gl-1, yeast 

extract 5 gl-1, NaCl 5 gl-1 and agar 15 gl-1. The plates were incubated for 24 h before 

sampling. From the plates, different colonies of bacteria were selected based on their 

morphological features like size and color. The pure cultures were streaked out in 

carboxymethyl cellulose (CMC) agar plates containing CMC 0.5 g, NaNO3 0.1 g, 

K2HPO4 0.1 g, KCl 0.1 g, MgSO4 0.05 g, yeast extract 0.05 g and agar 1.5 g w/100 ml. 

2.2 Screening for carboxymethyl cellulose activity 

The pure bacterial strains were cultured overnight in 7 ml of LB liquid media at 

30°C along with Cellulomonas xylanilytica and Escherichia coli JM109 which were 

used as a positive and negative controls respectively. Five μl of each isolate was 

dropped in a petri plate containing CMC agar medium and then incubated at 30 °C for 



30 
 

48 h. Then, the CMC plates of all the isolates including controls were stained using 

Gram’s iodine solution (2.0 g KI and 1.0 g I, per 300 ml ddH2O) for qualitative cellulase 

assay. The iodine solution stains the agar containing CMC forming clear zones in the 

areas without CMC. These clear zones are known as halo regions which indicate the 

cellulase activity by the bacteria.  

2.3 DNA extraction and amplification of 16S rDNA 

The genomic DNA of the cellulase positive isolates was isolated by using 

ultraclean microbial DNA extraction kit. The extracted DNA was amplified using 

primers HAD-1 (5´-GACTCCTACGGGAGGCAGCAGT-3´) and E1115R                   

(5´-AGGGTTGCGCTCGTTGCGGG-3´). The reaction mixture (25 μl) composed of 

each primer 1 μl, PCR master mixture 12.5 μl, ddH2O 8.5 μl and DNA template 2 μl. 

The PCR was used as follows: primary denaturation 3 minutes at 95 °C, followed by 

35 amplification cycles consisting of denaturing at 95°C for 1 minute, annealing for 1 

minute at 63 °C, and extension at 72 °C for 1 minute, upon completion of 35 

amplification cycles; a final extension step was done at 72 °C for 10 minutes. The PCR 

products were visualized in 1% gel electrophoresis. The DNA from gel was purified by 

using Geneaid PCR/Gel purification kit (FroggaBio, Canada) by following the 

manufacturer’s protocol. Then the purified samples were sent for sequencing to 

Euroffins Genomics (USA). 

2.4 Isolates identification and phylogenetic relationship 

The sequencing results were inputted to NCBI database 

(http://blast.ncbi.nlm.nih.gov/) for possible identification of bacterial genera using 

Basic Local Alignment Sequencing Tool (BLAST). The phylogenetic relationship was 

http://blast.ncbi.nlm.nih.gov/
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analysed by using a sequence alignment program Clustal X (Larkin et al. 2007) and 

Treeview (Page 1996). 

2.5 Bacterial growth and Carboxymethyl cellulase (CMCase) assay 

The isolate showing the highest activity in plate assay was further screened for 

quantitative cellulase assay. Its growth was observed at different time intervals. 

CMCase activity was determined by measuring the release of reducing sugars from 

CMC. A modified microplate based assay using 3, 5- dinitro salisalic acid (DNS) 

method was used to measure the reducing sugar (Miller 1959). For this, 20 μl of cell 

free enzyme supernatant was prepared and mixed with 80 μl solution of 0.5% CMC and 

0.5 M citrate buffer of pH 6 and was incubated for 30 min at 50 oC. The reaction mixture 

was terminated by adding 200 μl DNS and the mixture was boiled for 5 min. The 

absorbance was determined at 540 nm.  

2.6 Optimization of cellulase  

For the optimization of cellulase activity, in most of the experiments 20 μl of 

enzyme supernatant was mixed with 80 μl solution of 0.5% CMC and 0.5 M citrate 

buffer and the mixture was incubated for 30 min at 50 oC 

2.6.1 Effect of incubation period in cellulase production 

The culture tubes containing minimal salt medium (NaNO3 0.1 gl-1, K2HPO4 

0.1 gl-1, KCl 0.1 gl-1 and MgSO4.7H2O 0.05 gl-1) and 1% CMC were cultured and 1 ml 

of sample was harvested on each day starting from the first day of inoculation. The cell 

free supernatant was used for enzyme assay. 
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2.6.2 Effect of pH and temperature on cellulase activity 

The CMCase activity was measured at different acidic, neutral and basic pH. 

Similarly, the effect of temperature on cellulase activity was carried out at different 

temperatures from 30 oC to 70 oC. 

2.6.3 Effect of metal ions and surfactants  

The effect of different metal ions, Ca2+, Co2+, Mg2+, Mn2+ and Zn2+ in their 

chloride salts, on the activity of cellulase was determined by performing the CMCase 

assay in the presence of these metal ions (2 mM) at 50 °C for 30 min. For this assay, 

the reaction mixture contained 20 μl enzyme supernatant, 10 μl metal ion, 70 μl 0.5 M 

citrate buffer (pH 6) and 1% substrate (CMC). Further, different concentrations of the 

most effective metal ion was used. The effects of detergents Sodium Dodecyl Sulphate 

(SDS, 10 mM) and Triton X-100 (10%) were observed on the CMCase activity. 

2.6.4 Effect of different nitrogen sources on cellulase production 

Nitrogen sources (0.5% w/v) used were yeast extract (YE), peptone, urea and 

ammonium sulphate [(NH4)2 SO4] in the enzyme production medium to determine their 

effects in enzyme production. For determining the best concentration of the most 

effective nitrogen source, the activity was tested under the same optimal pH and 

temperature. 

2.6.5 Effect of carbon sources on cellulase production 

Various carbon sources (1% w/v) were used to determine the effect of carbon 

source on cellulase production medium. The carbon sources used were CMC, glucose, 

sucrose, sorbitol, lactose, mannose and galactose. 
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2.7 SDS-Polyacrylamide gel electrophoresis (PAGE) 

For the determination of molecular weight of the cellulase from the isolated 

bacterial strain K1, the crude enzyme was first incubated at 50 oC for five minutes and 

was run along with standard protein markers in 10% SDS PAGE according to Laemmli 

(1970). For this, the electrophoresis was carried out with the constant supply of 200 V 

current. The gel was stained with Coomassie Brilliant Blue R-250 solution for one hour 

and destained with decolor buffer for proteins and markers bands. The SDS gel 

containing 0.25% CMC was used for the detection of cellulase activity and was washed 

with Triton X-100 for 15 minutes, then it was incubated at pH 6 buffer at 50 oC for 30 

minutes. Following this, the gel was washed and stained with 0.1% Congo red for 30 

minutes and destained with 1M sodium chloride solution for zymogram analysis. 

2.8 Statistical Analysis 

All the experiments were performed in triplicates and the results are expressed 

in terms of mean ± SD (standard deviation). The statistical analysis of data was 

performed to test the significant difference by one way analysis of variance (ANOVA) 

followed by Tukey’s HSD test (p<0.05) using Statistical Package for the Social 

Sciences (SPSS) system. 

3 Results and Discussion 

3.1 Isolation and identification 

Sixty bacterial samples were collected from different locations around Thunder 

bay, Ontario, Canada. Seventeen strains showed cellulase activity in CMC agar plate 

assay (Fig. 1). This method of isolation was found easy for preliminary screening of 

cellulolytic bacteria. The strains were compared with a cellulase producing positive 

control (Cellulomonas xylanilytica) and negative control (E. coli JM109) with no 
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cellulase activity (Maki et al. 2011). The bacterial strain K1 showed the largest diameter 

of halo region and was selected for further enzyme assay (Fig 1). The morphological 

examination showed the colonies of the strain K1 as a rough opaque and grey. The other 

bacterial colonies also exhibited similar morphological features. As there are wide 

varieties of cellulase producing bacteria in the environment, their morphological 

features make the isolation of bacteria easier from different sources. 

 

 

 

 

 

 

 

 

 

 

Figure 1 Seventeen cellulase-producing isolates and a positive and negative control, C. 
xylanilytica and E. coli JM109. 

 

3.2 DNA extraction and amplification of 16S rDNA 

The genomic DNA of all the seventeen isolates was successfully extracted. The 

PCR primers successfully amplified 16S rDNA fragments. 1% agarose gel showed the 

clear bands of about 800 bp.  
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3.3 Isolates identification and phylogenetic analysis of 16S rDNA sequences 

The sequences of all the 17 isolates were analysed by using nucleotide blast of 

NCBI database. The genera of 17 isolates were identified on the basis of DNA 

sequences homology. The isolates are related to Bacillus (12), Pseudomonas (3) 

Rahnella (1) and Buttiauxella (1). The sequence for K1 was successfully uploaded to 

NCBI gene bank database (Accesion no. KP987117). 

For the phylogenetic analysis, the sequencing results of all the seventeen 

cellulase producing bacterial isolates were aligned using ClustalX UPGMA algorithm. 

The sequences were uploaded into TreeView for phylogenetic relationship analysis 

(Fig. 2). The phylogenetic analysis revealed that the isolates belong to two groups 

Firmicutes and Proteobacteria. The Bacillus strains are related to Gram positive 

Firmicutes and the strains Pseudomonas, Rahnella are Buttiauxella related to Gram 

negative Proteobacteria. Both the groups of bacteria can degrade the cellulosic 

materials.  

 

 

 

 

 

 

Figure 2 Phylogenetic tree depicting the evolutionary relationships between the seventeen 
cellulase positive bacterial isolates (displayed using Tree view) and halo diameter (cm). The 
isolates outlined in black belong to Firmicutes and those dashes outlined isolates belong to 
Proteobacteria. The numbers represent the halo diameters produced by the cellulase producing 
bacteria in CMC agar plates. 
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3.4 Growth of strain K1 and enzyme production 

A time course of the bacterial strain and enzyme production was performed over 

a period of 120 h. The strain K1 showed maximum growth after three days of 

incubation. Also, the cellulase yield reached a maximum at 72 h of incubation (Fig. 3) 

which was significantly different to the cellulase production at 24 h, 96 h and 120 h. 

The fermentation period is an important factor for enzyme production by 

microorganisms (Gautam et al. 2011). Similar results of maximum production of 

cellulase at 72 h of incubation were found by other researchers. The B. pumulis 

EWBCM1 and B. sp. B21 showed maximum endoglucanase after 72 h incubation 

(Amritkar et al. 2004; Shankar and Isaiarasu 2011). However, this enzyme production 

time was different from other researchers who reported the maximum endoglucanase 

after 24 h in Pseudomonas sp. HP207 (Sheng et al. 2012) and Pseudomonas flourescens 

NCIB (Dees et al. 1994), 96 h in Bacillus circulans and Bacillus subtilis , 142 h 

incubation for Clostridium cellulolyticum (Guedon et al. 2002). The Bacillus strains 

produce cellulase at different time intervals and are regarded as the important cellulase 

producers in enzyme industry (Priest 1977). 

 

Figure 3 Growth of strain K1 and CMCase production by Bacillus sp. K1                
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The CMCase activity of strain K1 was compared with positive control 

Cellulomonas xylanilytica and negative control E. coli JM 109. The CMCase activity 

of strain K1 was 5.21 ± 0.21U/ml (Fig. 3) whereas this activity for C. xylanilytica  was 

2.28± 0.51U/ml and E. coli JM 109 exhibited no CMCase activity. One unit (U) of 

cellulase activity is defined as the amount of enzyme necessary to release 1 μ mol 

reducing sugar per minute per ml. This enzyme activity of strain K1 was found higher 

than those of widely studied bacteria and some fungi, which have received wide 

attention for commercial production of cellulase (Kang et al. 2004). Sheng et al. (2012) 

reported endoglucanse activity by Pseudomonas sp. under optimized conditions to be 

1.432 U mL−1. Under different nutritional and environmental factors, the endoglucanase 

activity of Bacillus pumilus, Aspergillus niger, and Trichoderma harzianum Rut-C 

8230 did not exceed 1.0 U mL-1 (Ariffin et al. 2008; Kocher et al. 2008; Kotchoni and 

Shonukan 2002; Narasimha et al. 2006). Similarly, CMCase activity  was only 0.12 

U/ml by Bacillus sp.(Rastogi et al. 2010) and  0.8U/L by Geobacillus sp.(Abdel-Fattah 

et al. 2007). 

3.4.1 Effect of pH and temperature on cellulase activity  
                The CMCase activity of strain K1 was found maximum at pH 6 (Fig. 4A) which 

was significantly different to other pH tested during the experiment (p<0.05). The 

enzyme showed significant decrease after this pH retaining 38% of its activity at pH 8. 

Similar result was also reported in Bacillus sp. CH43 (Robson and Chambliss 1989). A 

pH of 6.5 was found to be optimal in other Bacillus strains (Kim et al. 2009; Robson 

and Chambliss 1989). The Bacillus strains CH43 and HR68 showed stable cellulase 

activity in pH 6-8 (Mawadza et al. 2000). 
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Figure 4 Effect of pH (A) and temperature (B) on CMCase activity by Bacillus sp. K1 
 
               Microbial cellulase activity has been influenced by temperature. The optimal 

temperatures are different in different bacteria. The bacterial strain K1 showed cellulase 

activity from 30 oC to 70 oC. The maximum enzyme activity was found at 50 oC and 

this activity was significantly different to the CMCase activity at 30 oC, 60 oC  and 70 

oC (p<0.05). At 70 oC, the enzyme showed 19% of its relative enzyme activity (Fig. 

4B). Similar results have been found in other Bacillus spp. ( Kim et al. 2009; Lee et al. 

2008; Sadhu et al. 2014). 

3.4.2 Effects of Metal ions and surfactants on cellulase activity  

         The CMCase activity by Ca2+ was significantly different (p<0.05) to control, other 

metal ions and detergents used in the experiment (Fig. 5A). Fu et al. (2010) also 

reported that Ca2+ Mg2+ and Mn2+ had positive effect on endoglucanase activity of 

Paenibacillus sp. BME-14. Ca2+ ions have been found essential for enhancing the 

substrate binding affinity of the enzyme (Mansfield et al. 1998). Maximum enzyme 

activity was observed at 2 mM Ca2+ (Fig. 5B). 

         The cellulase produced by strain K1 was not tolerant to the common detergents 

SDS and Triton X-100. The enzyme was reduced to about 60% while using these 

surfactants (Fig. 5A) which was significantly lower than the control (p<0.05). It might 
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be because of the interaction of detergents with the hydrophobic group of amino acids. 

The surfactant like SDS has been found to reduce the endoglucanase activity (Aygan 

and Arikan 2008). 

 Figure 5 Effect of metal ions and surfactants (A) and Ca 2+ on CMase activity (B) by Bacillus 
sp. K1 
 

3.4.3 Effect of different nitrogen sources in culture medium during cellulase 

production 

              The production of cellulase is sensitive to source of nitrogen. The maximum 

CMCase activity was found by using peptone as a source of nitrogen (Fig. 6A) which 

was significantly different to ammonium sulphate and urea (p<0.05). The Bacillus 

strain could utilize the source of organic nitrogen. The reduction in the production of 

inorganic nitrogen source might be due to the medium acidification which affected the  

Figure 6 Effect nitrogen source (A) and peptone concentration (B) on CMCase production by 
Bacillus sp. K1  
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cellulase production. The Bacillus sp. isolated by Yang et al. (2014) and Bairagi et al. 

(2007) showed similar results of organic nitrogen source for cellulase production. 

However, the Bacillus subtilis could utilize both the inorganic and organic nitrogen 

source for cellulase production (Acharya and Chaudhary 2011). The use of 1% of 

peptone enhanced the production of cellulase by 12%. On increasing the concentration 

of peptone after 1%, the enzyme activity was decreased significantly (Fig. 6B). 

3.4.4 Effect of different carbon sources in culture medium during cellulase 

production  

               In this experiment, the results showed that the strain K1 could utilize various 

carbon sources in the production medium and the  use of lactose in the culture medium 

showed significantly different and higher CMCase activity (p<0.05) to that of other 

source of carbon used in the experiment (9.96 ± 0.23 U/ml) (Fig. 7A). While using 

different concentrations of lactose, the maximum cellulase was produced when 1% 

lactose was used in the medium (Fig. 7B). Since the cellulase is an inducible enzyme, 

the production of enzyme is enhanced sometimes by some sources of carbon in the 

medium.  

 Figure 7 Effect of carbon source (A) and lactose concentration (B) on CMCase production by 
Bacillus sp. K1  
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                Lactose in the production medium was quickly taken up by the isolated 

Bacillus strain and the CMCase was produced. It might be due to the lactose induced 

enzyme activity or increased the rate of penetration through the cell membrane 

(Miyamoto et al. 2000). Also, lactose enhances the cellulase yield by stimulating the 

secretion of various proteins with cellulase. Other researchers also reported the 

maximum CMCase production by using lactose as a source of carbon by 

Microbacterium sp. (Sadhu et al. 2011), Aspergillus hortai (El-Hadi et al. 2014), 

Trichoderma reesei (Karaffa et al. 2006). 

3.5 SDS- PAGE and zymogram analysis 

Based on the zymogram which was run under the conditions of SDS-PAGE, the 

molecular weight of the crude cellulase was estimated ~36 kDa (single band of K1, Fig. 

8). This is similar to the findings of many researchers who reported the molecular 

weight of cellulases from 37-43 kDa in Bacillus species (Bischoff et al. 2006; 

Hakamada et al. 2002; Ozaki and Ito 1991).  

 

 

 

 

 

Figure 8 SDS-PAGE and zymogram of crude cellulase enzyme. (K1- cellulase zymogram, P- 
protein in supernatant and M- marker; Based on the gel, the molecular wt. of the enzyme was 
estimated about 36 kDa) 

However, this molecular weight of cellulase was lower than the other species of 

Bacillus from which cellulases had molecular weight of 53–78 kDa (Christakopoulos 

et al. 1999; Li et al. 2006; Okoshi et al. 1990). 
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4. Conclusions 

Seventeen cellulase producing bacterial isolates were isolated from different 

rotting wood samples. The isolate K1 produced higher cellulase in plate assay than 

other isolates. Similarly, the quantitative CMCase activity of this strain (5.21 ± 

0.21U/ml). On the basis of 16S rDNA sequence analysis, the strain K1 was found to be 

Bacillus sp. This strain produced maximum CMCase at pH 6 and 50 oC after 72 h of 

incubation. The cellulase produced by this strain was enhanced by Ca 2+ ions. In the 

production medium, 1% peptone enhanced the cellulase production by 12% over the 

control. Similarly, lactose induced the CMCase nearly doubling the enzyme production 

(9.96 ± 0.23 U/ml). So, this strain is of particular interest for enzyme induction for 

producing maximum cellulase which might be valuable for biorefining industries. 

Based on SDS-PAGE analysis, the molecular weight of the cellulase was found ~36 

kDa. 
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CHAPTER III 

Two Bacillus species isolated from rotting wood samples are good 

candidates for the production of bioethanol using Agave biomass 

Abstract 

The biorefining of crop and plant organic matter represents a promising route 

to produce renewable fuels and bioproducts. Agave americana is a xerophytic plant.The 

high contents of cellulose and hemicellulose with low content of lignin make Agave 

americana an ideal candidate to produce value-added products. In this study, two 

different cellulase producing Bacillus strains, isolated from rotting wood samples, were 

incubated and cultivated to examine their ability to decompose Agave and produce 

ethanol. The results showed the transparent zones called halos on the plates containing 

Agave as the sole carbon source after iodine staining for these two isolates and positive 

control Cellulomonas xylanilytica ; while, no halo was detected for negative control; 

Escherichia coli BL21. The Bacillus species K1 and A0 displayed hydrolysis ability 

greater than that of positive control based on halo diameter. Moreover, the quantitative 

ability to decompose agave was studied for the same two bacterial strains using minimal 

salt media containing 5% Agave biomass. Dinitrosalicylic acid (DNS) method was used 

to detect cellulase and reducing sugars. Ethanol was detected by using micro-

dichromate method. The results showed that both of the bacterial strains produced 

ethanol using lignocellulosic biomass of Agave.  

Key words: Agave, lignocellulosic biomass, cellulase, bioethanol 
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1. Introduction 

With the exhaustion of non-renewable fossil fuels leading to environmental 

pollution and energy crisis, there is a demand for new renewable sources of energy. 

Biofuels are the renewable source of energy which are environmentally friendly with 

low carbon dioxide emission.  

Bioethanol is the biofuel mostly useful for transportation worldwide. It can be 

produced from different raw materials such as simple sugars, starch, agricultural 

products, and lignocellulosic biomass. Recent production of bioethanol is dependent on 

starch and sugars from existing food crops (Smith 2008). Although it might be 

beneficial to use renewable plant materials for bio-fuel, the use of crop residues and 

other biomass for bio-fuels raises many concerns about major environmental problems 

such as food shortages and serious destruction of vital soil resources (Pescatori 2010). 

This makes the availability of raw materials one of the major problems associated with 

the bioethanol production. To overcome this problem, lignocellulosic biomass 

constitutes the world’s largest bioethanol renewable source. The production of 

bioethanol from lignocellulosic biomass is one way for reducing the consumption of 

petroleum oil and environmental pollution. Also, the lignocellulosic biomass is the 

most promising feedstock considering its great availability and low cost. However, the 

large-scale commercial production of fuel bioethanol from lignocellulosic materials has 

not been implemented. The main reason for this is the production cost of bioethanol 

from lignocellulose is too high because of high production cost of enzymes.  

Agave can grow in a dry land with limited water supply and the biofuel produced 

from Agave biomass has very low CO2 emissions (35 g/J); whereas there is  higher CO2 

emission from corn based biofuel (85 g/J) (Yan et al. 2011). Agave consists of natural 
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fibers which can be degraded to a large number of bioproducts and value added 

products like bioethanol and xylitol (Xiong et al. 2014). So, this plant has potential 

application for the bioethanol production (Fig. 1). Its fibers are rich source of cellulose 

(68%) and other components are hemicelluloses (15%), lignin (5%), wax (0.26%), and 

moisture (8%) (Mylsamy and Rajendran 2010). Cellulose is a polysaccharide formed 

by D- glucose units linked together by β 1, 4 glycosidic bonds and is insoluble in water 

but can be hydrolysed by acid, hemicellulose is composed of mainly the pentoses and 

hexoses and is not soluble in water but soluble in alkali and easily hydrolysed in diluted 

acids. Lignin is a complex phenolic polymer and is not soluble in water. The main role 

of lignin is to provide structural support, prevent oxidation and protect the cell against 

the microbial invasion. 

 
Figure 1 Diagrammatic representation of bioethanol production from Agave lignocellulosic 
biomass 
 

For the production of bioethanol from lignocellulosic biomass, the cellulose is 

typically hydrolysed by an enzyme called cellulase. Microorganisms mainly the fungi 

and bacteria are the good candidates for lignocellulosic biomass degradation. Fungi 

such as Trichoderma, Aspergillus, Schizophyllum and Penicillium are widely used to 

produce cellulases (Mani et al. 2002). Bacteria belonging to Clostridium, Bacillus, 
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Thermomonospora and Ruminococcus can produce cellulases effectively as well (Sun 

and Cheng 2002). 

Bacteria offer several benefits over the fungi for the degradation process of 

biomass as they have high growth rates as compared with fungi and other 

microorganisms. Also, bacteria can adapt to different types of environmental conditions 

in a wide range of pH and temperature. They can also be genetically engineered to 

increase the catalytic activity for the enzymes degrading lignocellulosic biomass 

(Pandey et al. 2013). This study aims the production of bioethanol from low high 

cellulose and low lignin containing Agave biomass by using two Bacillus strains. 

2. Material and methods 

2.1 Chemicals and bacterial strains    

All the chemicals used in this research were of analytical grade. Agave 

americana biomass (untreated) was obtained our lab at Lakehead University. We 

previously isolated seventeen cellulase producing bacterial strains from rotting wood 

samples around Thunder Bay, Ontario, Canada. The cellulase production of the isolate 

K1 (NCBI Accession no. KP987117) and its molecular weight which was estimated in 

our previous research, was now compared with the bacterial isolate A0 (NCBI 

Accession no. KP974676) which was isolated in our previous research. Both of the 

Bacillus spp. were tested for their activity to degrade Agave biomass. Cellulomonas 

xylanilytica and Escherichia coli BL21 were used as positive and negative controls 

respectively.  
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2.2 Screening of cellulase activity     

For the screening of cellulase producing activity of bacterial strains, each strain 

was grown with positive and negative controls in 5 ml LB broth at 30 oC at 200 rpm 

separately. Five microliters of each sample was inoculated on agar plates which contain 

5.0 gl-1Agave, 1.0 gl-1 NaNO3, 1.0 gl-1 K2HPO4, 1.0 gl-1 KCl, 0.5 gl-1 MgSO4, 0.5 gl-1 

yeast extract, 1.0 gl-1 glucose and 15.0 gl-1 agar. After incubating all the plates for 48 h 

at 30 oC, the plates were checked with Gram’s iodine solution (Kasana et al. 2008). The 

diameter of halo region (D) and bacterial colony (d) were measured to show the 

hydrolysis ability which can be expressed as (D/d)2. 

2.3 Determination cellulase activity and reducing sugar     

For the determination of reducing sugar from the Agave biomass degradation, 

the bacterial strains were grown overnight in LB broth medium. Then 200 µl of the 

overnight LB grown bacteria were transferred to 50 ml Dubois salt medium containing 

0.1 gl-1 NaNO3, 0.1 gl-1 K2HPO4, 0.1 gl-1 KCl,  0.05 gl-1  MgSO4  and 5%  Agave 

biomass. The bacterial strains were incubated at 30 oC, shaking 200 rpm for seven days. 

The reducing sugars and cellulase activity were detected by using 3,5-dinitrosalicylic 

acid (DNS) method (Miller 1959). For this, 1ml of bacterial culture was harvested from 

each samples. It was centrifuged for 2 min at 15000 g. Carboxymethyl cellulose (CMC) 

was used as substrate for cellulase activity. Briefly, 20 μl of enzyme supernatant was 

added to 80 μl of substrate buffer (0.5% CMC in 0.05 M potassium phosphate buffer, 

pH 6.0) and incubated at 50 °C for 30 min. The reducing sugar released as glucose was 

determined. Microtitre plate was used for recording the absorbance at 540 nm using 

Epoch microplate spectrophotometer (BioTek). After seven days, the bacterial strain’s 

survival was confirmed by the drop plate method. 
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2.4 SDS-Polyacrylamide gel electrophoresis (PAGE)     

The molecular weight of cellulase was confirmed by using SDS- PAGE 

according to the method of Laemmli (1970) using Bio-Rad electrophoresis apparatus. 

The protein marker and enzyme were allowed to run simultaneously to determine the 

molecular weight of the enzyme. After completion of the electrophoresis, Coomassie 

Brilliant Blue R-250 was use to stain the gel. The gel containing 0.25% CMC was used 

for detection of cellulase activity. The gel was then washed with 2% Triton X-100 for 

30 min. Then, it was transferred in pH 7 and incubated at 50 o C for 30 min. After that 

the gel was stained with 0.1% Congo Red solution and the over staining was removed 

with 1M NaCl to visualize the clear bands of cellulase activity. 

2.5 Ethanol determination     

The bacterial strains were grown for 7 days in 50 ml of Dubois minimum salt 

medium with 5% Agave biomass at 30 oC, shaking at 200 rpm. One ml aliquot of the 

cultured bacteria was centrifuged for 1 min at 17000 x g. The supernatant was used for 

bioethanol analysis. The samples were then analysed by using micro-dichromate 

method. In this method, there is complete oxidation of ethanol by dichromate in the 

presence of sulphuric acid with the formation of acetic acid. Dichromate Cr2O7 is 

yellowish in color and the reduced chromic product (Cr3+) is intensely green. A standard 

curve of ethanol was made with different concentrations of ethanol the absorbance of 

the samples was read at 584 nm (Caputi et al. 1968).  

2.6 Morphology of Agave fiber     

Scanning Electron Microscope (SEM) was used to observe the morphological 

changes of Agave fiber. The samples treated with bacterial strains up to 7 days were 

collected along with the control (samples without bacterial treatment). Each sample was 
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washed with 0.1M phosphate buffer and dehydrated with ethanol. After this, the 

samples were dried at room temperature and coated with gold in in a Denton-DeskII 

sputter coater (Denton Vacuum USA, Moorestown, NJ). The samples were observed 

on SEM (Hitachi SU-70, Japan). 

2.7 Statistical analysis    

All the experiments were performed in triplicates and the results are expressed 

in terms of mean ± SD (standard deviation). The statistical analysis of data was 

performed by one way ANOVA followed by Tukey’s HSD test (p<0.05) using SPSS 

system.  

3. Results and discussion 

3.1 Cellulase screening using Agave as a source of carbon     

In this research, both the Bacillus strains showed the area of depolymerisation 

which proved their ability for hydrolysis of Agave biomass (Fig. 2). The negative 

control did not have any cellulase activity so there was no halo region. As shown in 

table 1, the hydrolysis ability values for strains K1 and A0 were 19.64±3.98 and 

14.32±0.66 respectively; both of the values were higher than the positive control after 

48 h of incubation. This showed that both the bacteria have better ability than C. 

xylanilytica for hydrolysis of Agave biomass. As reported by other researchers, Bacillus 

strains have potentiality for the degradation of lignocellulose (Howard et al. 2004). 

 
 
 
 
 

 



54 
 

 

 

 

 

 

Figure 2 Agave plate assay  

Table 1. Hydrolysis ability of the bacterial isolates with positive (+ve) and negative (-
ve) control 

 

3.2 Cellulase activity and reducing sugar production     

Since, these bacterial isolates showed maximum growth after three days of 

incubation (Fig. 3). The cellulase activity was assessed at 72 h of incubation by growing 

the bacteria in minimal salt medium with CMC and with Agave biomass respectively. 

The CMCase activity of strains was compared with positive control C. xylanilytica and 

negative control E. coli BL21 (Fig. 4A). The CMCase activity of strain K1 was 5.21 ± 

0.21 U/ml and A0 was 4.3 ± 0.25 U/ml. Similarly, while using the Agave biomass as a 

source of carbon during fermentation the CMCase activities of K1 and A0 were 3.82 ± 

0.24 U/ml and 3.5 ± 0.12 U/ml respectively (Fig. 4B). The enzyme activity of these 

Bacterial 
isolates 

Halo diameter (D, 
cm) 

Colony diameter  
(d, cm) 

Hydrolysis 
ability (D/d)2 

Species 

K1 4.8±0.4 1.1±0.2 19.64±3.98 Bacillus sp. K1 

A0 3.4±0.3 0.9±0.1 14.32±0.66 Bacillus sp. A0 

+ve control 3.3±0.3 0.9±0.1 13.44±0.55 C. xylanilytica 

-ve control - 0.7±0.1 - E. coli. BL21 

K1                                     A0                    

C. xylanilytica           E.coli 
BL21 
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isolates was found higher than those of the most widely studied bacteria and fungi, 

which have received wide attention for commercial production of cellulase (Kang et al. 

2004).  

 

 

 

 

 

 

 Figure 3 Bacterial growth in CMC minimal salt liquid medium  

 Figure 4 CMCase activity Bacillus sp. K1 and Bacillus sp. A0 using CMC (A) and Agave    

 biomass (B) in production medium 
 

No detectable reducing sugars were observed after 7 days of incubation. It might 

be due to the fact that the production of bioethanol requires consumption and 

conversion of sugars during the bacterial growth. The production of reducing sugar 

might have been decreased with the increase in incubation period which could be due 

to the consumption and conversion to other chemicals by these Bacillus strains. Further, 

the consumption of reducing sugars by bacteria prevented the inhibition effect of these 

sugars on enzymatic hydrolysis and ultimately end-product production, producing 
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ethanol. After seven days of incubation, the survival rate of the both the strains was 

100%. 

3.3 SDS-Polyacrylamide gel electrophoresis (PAGE) and zymogram analysis     

The molecular weight of the crude cellulases produced by K1 and A0 were 

estimated ~36 kDa ~40 kDa respectively (Fig. 5). Many researchers reported that the 

molecular weight of cellulases produced by Bacillus species ranges from 37-43 kDa 

(Bischoff et al. 2006; Hakamada et al. 2002; Mawadza et al. 2000; Ozaki and Ito 1991). 

However, other reports show the molecular weight of cellulases by other species of 

Bacillus to be 53–78 kDa (Christakopoulos et al. 1999; Li et al. 2006; Okoshi et al. 

1990). 

 

 

 

 

 

 

 

 
Figure 5 SDS-PAGE and zymogram of crude cellulase enzyme. (A0- cellulase by strain A0, 
PA0- protein in supernatant, K1- cellulase by strain K1, PK1- protein in supernatant and M- 
marker; Based on the gel, the molecular wt. of the enzyme was estimated about ~36 kDa for 
K1 and ~40 kDa for A0)      
                                                                                               
3.4 Production of ethanol by degradation of Agave biomass     

The microorganisms require nutrients for energy generation and enzyme 

production. The source of lignocellulosic biomass functions as the main source of 

carbon. The production of ethanol is influenced by different factors such as carbon 

K1 PK1 M 

28 kDa 

A0 PA0 

72 kDa 

55 kDa 

36 kDa 
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source, nitrogen source, culture conditions etc. (Tsigie et al. 2013). The results showed 

that both the strains produced ethanol efficiently. The maximum bioethanol was 

produced by strain K1 0.435 g/g of Agave fiber and the strain A0 produced 0.397 g/g 

ethanol at the 4th day of incubation which was significantly different to its production 

on the other days by both the strains. The ethanol yield was decreased significantly after 

4 days of incubation by both the bacterial isolates (Fig. 6). It might be due to the toxic 

effect of ethanol to the bacteria or that they are metabolizing it to another product. Both 

the Bacillus strains showed a good yield of ethanol from Agave biomass without pre-

treatment. Further, the strains were able to convert the reducing sugar to ethanol from 

the first day of incubation to day seven. The enzymatic hydrolysis gives better ethanol 

yields  than thermal acid hydrolysis after fermentation (Villegas-Silva et al. 2014). 

During enzymatic hydrolysis, if the biomass is pretreated, the production of ethanol is 

always higher. Also, the hydrolysis ability and ethanol tolerance of microbial strains is 

different.  

 

 

 

 

 

 

 

 

Figure 6 Ethanol yield from degradation of Agave biomass expressed in Ethanol (g/L)/ (50 g 
Agave fiber per liter. 

The development of low cost and high efficiency substrates like Agave in 

industrial scale is very important. However the conversion of Agave lignocellulosic 

biomass to bioethanol and other value added products is limited by several factors such 
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as the complexity in pre-treatment, low conversion efficiency from pentose to ethanol, 

and high production cost of the enzyme. In this research both of the cellulase producing 

Bacillus strains could degrade the untreated Agave biomass and produced ethanol. The 

use of untreated biomass could eliminate the pre-treatment step. Ultimately, it lowers 

the production cost of ethanol by combining the hydrolysis and fermentation steps 

together. Similar reports of ethanol production by Bacillus strains from Agave biomass 

have been found by other researchers (Xiong et al. 2014). Other microorganisms such 

as yeasts generally produce higher ethanol than the present research from Agave 

biomass fermentation (Caceres-Farffn et al. 2008; Lopez-Alvarez et al. 2012; Murugan 

and Rajendran 2013). 

There has been a considerable interest in the production of ethanol using 

biomass fermentation on a large scale. There is a focus towards high yield of ethanol 

with the use of lignocellulosic biomass with the high productivity to reduce the cost of 

production. During the hydrolysis process of biomass using enzymes like cellulase, 

purified enzymes with optimized conditions give better result for degrading cellulose 

and hemicellulose of the biomass (Prasad et al. 2009). 

Currently, one of the major problems with the production of bioethanol from 

lignocellulosic biomass is the high production cost of the cellulolytic enzymes. Most of 

the commercially available cellulytic enzymes are not efficient for simultaneous 

saccharification and fermentation process. The cellulolytic microorganisms possessing 

hydrolytic and fermentative abilities are more efficient for the bioethanol production 

from lignocellulosic biomass (Limayem and Ricke 2012). In this research the two 

Bacillus strains could produce cellulase efficiently by using Agave biomass and helped 

in the hydrolysis and fermentation of this lignocellulosic biomass to produce ethanol. 
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Further, these strains could also be used potentially for the production of bioethanol 

from other lignocellulosic biomass too.  

3.5 Morphology observation of Agave fiber     

The control (untreated) Agave leaf surface was smooth after 7 days of 

incubation which indicates no degradation of the fibers (Fig. 7A & 7A’). The bacteria 

treated images show the broken cell wall with rough surface (7B & 7C). After the 

bacterial treatment, the fiber surface was broken forming a large number of crevasses. 

The degraded cell wall allows more cell wall degrading enzymes. Initially, the fine 

fibers are interwoven into a complex structure.  

 

 

 

 

 

 

 

 

Figure 7 Scanning electron microscopy (SEM) images of agave fibers. (A& A’) Untreated 
agave leaf structure (control) during an incubation period of 7 days (B & C) Bacillus sp. K1 
and Bacillus sp. A0 treated agave leaf structures after 7 days of incubation. 
 

The damage of cytoderm of the fiber helps to depolymerisation of cellulose and 

hemicellulose of Agave. Both of the Bacillus strains were able to damage the cytoderm 

of Agave fiber which helped to increase the cellulose and hemicellulose 

depolymerisation. This finding was similar with the findings of other researchers who 

A’ 

C B 

A 
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reported that Bacillus species have ability to degrade the cellulose, hemicellulose and 

lignin (Maki et al. 2012). 

4.  Conclusions     

In this research, the two Bacillus species isolated from rotting wood samples 

were assayed for cellulase activity. Both of the strains exhibited the higher activity than 

many other bacterial and fungal species. While using Agave biomass as a source of 

carbon, the CMCase activity of K1 was 3.82 ± 0.24 U/ml and A0 showed this activity 

as 3.5 ± 0.12 U/ml. Based on SDS-PAGE analysis, the molecular weights of the 

cellulases produced by K1 and A0 were found ~36 kDa and ~40 kDa respectively. By 

using untreated Agave biomass, the maximum ethanol production was 0.435 g/g by 

strain K1. Similarly, isolate A0 produced 0.397 g/g ethanol on the 4th day of incubation. 

Both of these strains are of particular interest for producing maximum cellulase which 

might be valuable for biorefining industries for the production of bioethanol. These 

bacterial strains were able to change the morphology of Agave fiber. Also, the Agave 

biomass was found a good source of biomass during fermentation for bioethanol. 

Further research is required for improving the ethanol yield by using different 

fermentation conditions and for detecting the other important chemicals produced 

during the fermentation of Agave biomass.  
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CHAPTER IV 

Characterization of pectin depolymerising exo polygalacturonase by 

Bacillus sp. HD2 isolated from the gut of Apis mellifera L. 

(Published- http://dx.doi.org/10.7243/2052-6180-3-2) 

Abstract 

Polygalacturonase is an important pectin degrading enzyme. The western honey 

bee (Apis mellifera L.) collects pollens from different flowers which are rich sources of 

pectin. The microbiota in the gut of the honey bee release polygalacturonase enzymes 

and help in pectin digestion. This study reports the isolation and characterisation of 

novel polygalacturonase producing Bacillus sp HD2 from honey bee’s gut. This 

bacterial strain showed the maximum growth and enzyme production at 72 h of 

incubation. The exo polygalacturonase produced by this strain of Bacillus was optimal 

at 40 oC and exhibited the enzyme activity in a wide range of pH from pH 5-12. The 

polygalacturonase production was enhanced by using yeast extract (3%) in the 

production medium and the enzyme activity was stimulated by Ca2+ (2 mM) and SDS 

(200 mM). Biomass of apple’s peel (1%) was found as an excellent source of carbon 

for the polygalacturonase production in fermentation medium (17.11 ± 0.46 μMml-

1min-1). The SDS-PAGE analysis confirmed two bands of protein with 

polygalacturonase activity at ~36 kDa and ~72 kDa. Based on its properties, this 

enzyme has potential application for animal feedstock, degumming of ramie and fruit 

juice-processing. 

Key words: Pectin, polygalacturonase, isolation, Bacillus, biomass 
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1. Introduction  

The natural diet of honey bee is mainly plant nectar and pollen. Pectin is an 

important polysaccharide which helps to form different layers in the pollen wall (Aouali 

et al. 2001). The honey bee mid gut bacteria help to facilitate the digestion of pollen by 

releasing pectin degrading enzymes (Klungness and Peng 1984). Engel et al. (2012) 

identified the genes which encode pectin degrading enzymes in bacteria of honey bee’s 

gut. Pectin digestion in the honey bee gut might be helpful in resulting the release of 

nutrients from pollen. Also, pectin has been shown to be toxic to honey bees (Barker 

1977) and its digestion by gut bacteria might help the bees avoiding intoxication. Pectin 

hydrolysing enzymes are known as pectinolytic enzymes or pectinases. There are three 

types of pectinases; pectin methyl esterase, pectin lyase and polygalacturonase. Pectin 

methyl esterase helps in the de-esterification of pectin by breaking ester bond between 

the methyl group and carboxylic acid of galacturonic residues. Pectin lyase breaks the 

glycosidic bonds between galacturonic residues by trans-elimination reaction and 

polygalacturonase (PG) helps in the hydrolysis of α -1, 4 glycosidic bonds of pectin 

polymer converting into its galacturonic acid units (Contreras Esquivel and Voget 

2004). Polygalacturonases have industrial importance since they help to decrease the 

viscosity, increase the fruit juice yield and help to study the crystalline structure of 

fibers (Souza et al. 2003).  

In the industrial sector, acidic pectinases are used in the extraction and 

clarification of fruit juices (Rombouts and Pilnik 1986), whereas, alkaline pectinases 

have great commercial importance in the treatment of effluents discharged from fruit 

processing units (Tanabe et al. 1987), coffee and tea fermentation, oil extraction, 

processing and degumming of plant fibres such as ramie (Baracat et al. 1989; Kashyap 

et al. 2001). The alkaline pectinases have also been used in several biotechnological 
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processes, like purification of plant viruses (Salazar and Jayasinghe 1999) and paper 

making (Reid and Ricard 2000). The major source of acidic pectinases are fungi. The 

alkaline pectinases are produced from bacteria, mainly Bacillus spp. Although many 

fungi produce polygalacturonases (Birgisson et al. 2003), they are slow growing. The 

aim of this study was to isolate the bacterial strain capable of producing 

polygalacturonase from the gut of western honey bee (Apis mellifera L.) and 

optimization for maximum polygalacturonase production by the isolated strain.  

2. Material and methods 

2.1 Growth media            

For the bacterial growth, the media used include pectin agar (pectin 5g l-1, 

NaNO3 l gl-1, K2HPO4 1 gl-1, KCl 1 gl-1, MgSO4 0.5 gl-1, yeast extract 0.5 gl-1, agar 15 

gl-1 and LB (Luria-Bertani) liquid media (10.0 gl-1 peptone, 5.0 gl-1 yeast extract and 

5.0 gl-1 NaCl). 

2.2 Isolation of bacteria using pectin agar medium 

The bacterial strains were isolated from the gut of western honey bee (Apis 

mellifera L.). For the isolation of bacterial strains, the gut sample from a honey bee was 

suspended in 10 ml of sterile potassium phosphate buffer solution (PBS). After 

vortexing the solution, a 10X serial dilution of the suspension was made in 1X PBS (pH 

7). Thereafter, 100 μl of each dilution in the series was spread onto the surface of pectin 

agar using the standard spread plate technique. The plates were incubated at 28 °C for 

24 h. The bacterial colonies were selected based on their morphology (size and color) 

(Holt et al. 1994). Pure cultures were repeatedly sub cultured on pectin agar plates and 

maintained for enzyme studies.  
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2.3 Screening of Isolates for polygalacturonase activity 

The isolates were screened for polygalacturonase activity by culturing it in the 

pectin agar medium. The clear zone around the colony was detected while testing it 

with potassium–iodide solution (Salomao et al. 1996). The strain showing maximum 

zone of hydrolysis was selected for further assay. 

2.4 DNA isolation and 16S rDNA amplification 

The polygalacturonase producing isolate HD2 was grown in LB broth for 24 h 

at 28 oC. Genomic DNA was isolated using Geneaid DNA extraction kit (FroggaBio, 

Canada) by following the manufacturer’s protocol. The DNA was amplified by using 

HAD-1(5´-GACTCCTACGGGAGGCAGCAGT-3´) and E1115R (5´- 

AGGGTTGCGCTCGTTGCGGG-3´) primers. The PCR reaction mixture contained 

Taq buffer (10X), MgCl2 (25 mM), dNTPs (0.4 mM), primers (10 mM), Taq DNA 

polymerase (0.25 U/μl), ddH2O (7.5 μl) and DNA template (3 μl). The PCR program 

used was as follows: primary denaturation 3 minutes at 95 °C, followed by 35 

amplification cycles consisting of denaturing at 95 °C for 1 minute, annealing for 1 

minute at 63 °C, and extension at 72 °C for 1 minute. Upon completion of 35 

amplification cycles, a final extension step was done at 72°C for 10 minutes. The 

amplified DNA was visualized on 1% agarose gel to confirm size, quantity and purity. 

The PCR product was purified by using Geneaid PCR/Gel purification kit (FroggaBio, 

Canada). Then the purified PCR products were sent for sequencing to Eurofins 

Genomics (U.S).          
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2.5 Isolate identification 

BLAST (Basic Local Alignment Search Tool) program of NCBI database 

(http://blast.ncbi.nlm.nih.gov/) was used for identifying the possible genus of the isolate 

from the sequencing result. 

2.6 Polygalacturonase production media  

The polygalacturonase production was assayed using submerged fermentation 

technique in Dubois salt medium (NaNO3 0.1 gl-1, K2HPO4 0.1 gl-1, KCl 0.1 gl-1, 

MgSO4.7H2O 0.05 gl-1) containing 1% pectin (Acros Organics, Practical Grade, Fisher 

Scientific, Canada). For the biomass fermentation, 1% biomass from different 

fruits/vegetables used as a source of carbon in Dubois salt medium. 

2.7 Enzyme Assay and total protein determination 

     The isolate HD2 was further screened for the quantitative polygalacturonase 

activity and total protein estimation by transferring 7 μl of an overnight culture to 7 mL 

of Dubois pectin media (pH 7.0) in a glass culture tube. The cultures were incubated 

for up to five days. The enzyme in the culture medium was harvested in the 1st, 2nd, 3rd, 

4th and 5th days of incubation. The enzyme activity was determined by measuring the 

release of reducing groups using the dinitrosalicylic acid reagent DNS assay (Miller 

1959) using pectin as substrate for polygalacturonase activity. For this, 10 μl of enzyme 

supernatant was added to 90 μl of substrate buffer (0.5% pectin in 0.05 M potassium 

phosphate buffer, pH 6-13) and incubated at 40-50 °C for 15 min. The reducing sugar 

released as galacturonic acid was determined. The cell free supernatant was used to 

evaluate the total protein by Bradford assay (Bradford 1976) using bovine serum album 

as standard. 

 

http://blast.ncbi.nlm.nih.gov/
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2.8 Optimization of polygalacturonase production  

2.8.1 Effect of incubation time on polygalacturonase production  

Effect of incubation time on polygalacturonase was studied by incubating the 

bacteria in production medium for different time intervals (24 h, 48 h, 72 h, 96 h, and 

120 h). Also, the growth of bacteria was monitored by measuring the optical density 

(O. D) at 600 nm and the cell free supernatant was used for the enzyme assay. 

2.8.2 Effect of  pH and temperature on polygalacturonase activity 

The impact of the pH on enzyme activity was determined by performing the 

assay at different pH levels from pH 5.0 to 13.0 with cell free supernatant. For this, 

different pH buffers were used (Citrate buffer pH 5-6, PBS buffer pH 7-8, Glycine + 

NaOH buffer pH 9-11 and KCl + NaOH buffer pH 12-13). Similarly, the 

polygalacturonase activity was assessed at different temperatures ranging from 30 °C 

to 70 °C.  

2.8.3 Effect of different nitrogen source on polygalacturonase Production  

In order to study the impact of nitrogen source on enzyme production, bacterial 

culture was grown in a fermentation medium containing various nitrogen sources (0.5% 

w/v). The different nitrogen sources were yeast extract, peptone, urea and ammonium 

sulphate. Similarly, the effect of concentration of yeast extract on polygalacturonase 

production by bacterial strain HD2 was studied by using different concentrations of 

yeast extract ranging from 1 to 5 % (w/v) in the production medium. 

2.8.4 Effect of metal ions on polygalacturonase activity 

The effect of different metal ions, Ca2+, Co2+, Mg2+, Mn2+ and Zn2+ in their 

chloride and sulphate salts, on the activity of polygalacturonase was determined by 

performing the enzyme assay in the presence of these metal ions (2 mM) at 40 °C for 
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15 min. For this assay, the reaction mixture contained 10 μl enzyme supernatant, 10 μl 

metal ion, 30 μl buffer and 50 μl 1% substrate (pectin). Further, the effect of different 

concentration of Ca2+ from 1 mM to 5 mM, was determined by performing the 

polygalacturonase assay at 40 °C for 15 min. 

2.8.5 Effect of detergents on polygalacturonase activity 

The effects of detergents Sodium Dodecyl Sulphate (SDS, 10 mM) and Triton 

X-100 (10%) were observed on the polygalacturonase activity. The assay conditions 

were same as that of metal ions except the detergents were used instead of metal ions. 

Also, different concentrations of SDS were used ranging from 50 mM to 300 mM to 

determine the effects of these concentrations on polygalacturonase activity. 

2.8.6 Effect of biomass on polygalacturonase production 

For the assay of polygalacturonase production in fermentation state, different 

fruit peels (apple, pomengrate and orange) and vegetables peels (potato and squash) 

were used. The fruit/vegetables’ peels were dried and powdered by a grinding machine. 

The overnight LB broth grown bacterial strain was inoculated in a powdery biomass 

(1% w/v) with Dubois salt medium for the fermentation and the polygalacturonase 

activity was determined at 72 h of incubation. 

2.9 SDS-Polyacrylamide gel electrophoresis (PAGE) 

    The enzyme was confirmed by using SDS- PAGE. Ten percent SDS-PAGE was 

performed on the polygalacturonase by the method described by Laemmli (1970) using 

Bio-Rad electrophoresis apparatus. The protein marker and enzyme were allowed to 

run simultaneously to determine the molecular weight of the enzyme. After completion 

of the electrophoresis, Coomassie Brilliant Blue R-250 was used to stain the gel. The 

gel containing 0.25% pectin was used for detection of PG activity. The gel was then 
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washed with 2% Triton X-100 for 30 min, it was transferred in pH 11 and then 

incubated at 40 o C for 30 min. After that the gel was stained with 0.1% Congo Red 

solution and the stained was removed with 1M NaCl to visualize the clear bands of PG 

activity. 

2.10 Statistical analysis 

All the experiments were performed in triplicate and the results are expressed 

in terms of mean ± SD (standard deviation). The statistical analysis of data was 

performed by one way Analysis of Variance (ANOVA) followed by Duncan’s multiple 

comparison test and Tukey’s HSD test (p<0.05) using SPSS system. Tests for normality 

by Kolmogorov-Smirnov test and Shapiro-Wilk test were performed to check if 

assumptions of ANOVA were met before the analysis. 

3. Results and Discussion 

In this study, four bacterial strains were isolated from the gut of western honey 

bee (Apis mellifera L.). For screening purposes, these bacteria were grown in pectin 

agar plate and pectinolytic activity was detected using plate assay. The isolate HD2 

showed maximum pectinolytic activity on pectin agar plate. Sequencing results were 

successfully obtained for this isolate’s 16S rDNA PCR products. The DNA sequences 

were analysed by the nucleotide BLAST feature of the NCBI database to obtain 

possible identities based on homology. From the BLAST, the isolate was 99% similar 

to genus Bacillus. The sequence of this strain was successfully uploaded to NCBI 

Genbank database (Accession no. KP676929). This strain was further screened for exo 

polygalacturonase activity.  
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3.1 Bacterial Growth, polygalacturonase production and the total protein 

determination 

Bacterial growth is an important factor for the production of the enzymes. The 

growth factors are also of prime importance in industrial production for high production 

of enzymes for different applications. Bacteria show high levels of pectinases in pectin  

supplemented media (Soriano et al. 2005). The pattern of polygalacturonase production 

with reference to incubation period was monitored and the results showed that the 

Bacillus sp. HD2 showed considerable growth and maximum enzyme production 

(12.44± 0.8 μmolml-1min-1) at 72 h of incubation (Fig. 1) which was higher than other 

strains of Bacillus like B. sphaericus MTCC 7542 (Jayani et al. 2010). The production 

of polygalacturonase was decreased gradually after 72 h of incubation. Also, the total 

protein in the supernatant was found maximum (118.22± 5.41 μ/ml) at 72 h of 

incubation (Fig. 2) which was significantly different to that of the PG activity at 24 h, 

96 h and 120 h. The decrease in the growth, supernatant protein and enzyme activity 

after 72 h of incubation might be due to the loss of bacterial vitality which occurs after 

the limited growth.  

Figure 1 Absorbance and activity of PG               Figure  2 Total protein in the supernatant 
from (Polygalacturonase) from Bacillus sp. HD2           Bacillus sp. HD2 at different time    
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3.2 Effect of pH and temperature on enzyme activity 

pH plays a significant role in the stability of enzyme activity. The present 

polygalacturonase from Bacillus strain was stable in the broad range of pH. The 

maximum polygalacturonase activity was found at pH 11 which was significantly 

different to the PG activity at pH 5, pH 6, pH 7, pH 8, pH 12 and pH 13 (p<0.05). The 

relative enzyme activity showed that the PG was also active even in acidic pH retaining 

its activity of 56% at pH 5 (Fig.3A). Similar results of different alkaline 

polygalacturonase by different species of Bacillus were reported by other researchers 

(Anam and Zakia 2012; Dave and Vaughn 1971; Karbassi and Vaughn 1980; Nagel 

and Vaughn 1961). Kapoor et al. (2000) also reported that the polygalacturonase 

produced by Bacillus sp. MG-cp-2 was stable in alkaline conditions pH 7-12. Similarly, 

a polygalacturonase from Klebsiella sp. Y1 was reported to be stable in a wide range 

of pH (2-12) in digestive tract of sheep (Yuan et al. 2012). 

Figure 3 Effect of pH (A) and temperature (B) on the relative activity of PG 
(Polygalacturonase) from Bacillus sp. HD2  
 

Like pH, temperature stability of enzyme is important for industrial application 

(Bhatti et al. 2006). The effect of temperature on polygalacturonase production by strain 

HD2 was studied at different temperature ranging from 30 °C to 70 °C. The enzyme 
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was stable in a wide range of temperature and an increased polygalacturonase activity 

was found at 40 °C which was significantly different to the PG activity at 30 °C, 60 °C 

and 70 °C (p<0.05). The PG was stable even at 70 oC retaining 66% of its enzyme 

activity (Fig. 3B). A moderate temperature is important for longer incubation period to 

reduce the cost of enzyme production (Anam and Zakia 2012). The results were similar 

with the temperature optimization for polygalacturonase from Bacillus subtilis DT7 

(Kashyap et al. 2000).  

 

3.3 Effect of different nitrogen source (0.5%) on PG activity 

Maximum polygalacturonase production was achieved when yeast extract (YE) 

was used in culture medium (Fig. 4A). This activity was significantly different to the 

PG activity when urea and ammonium sulphate were used as nitrogen sources (p<0.05). 

It might be because of the fact that yeast extract has essential vitamins, minerals and 

amino acids which are helpful for bacterial growth and enzyme production. Similar 

reports were found in Bacillus sp. by other researchers (Rehman et al. 2012). Yeast 

extract is helpful for exo pectinase expression (Aguilar et al. 1991; Rehman et al. 2012). 

Different concentrations of yeast extract were used for enzyme production and it was 

found that maximum enzyme production was achieved when 3% yeast extract was used 

in the medium. On increasing the concentration of YE over 3%, the PG relative activity 

was decreased gradually (Fig. 4B).  
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Figure 4 Effect of nitrogen source (A) and YE (B) on the relative activity of PG 
(Polygalacturonase) from Bacillus sp. HD2 (YE- Yeast extract, Ammo. Sulphate- ammonium 
sulphate  
 

3.4 Effect of metal ions on PG activity 

The activity of polygalacturonase was enhanced by Ca2+ over Co2+, Mg2+, Mn2+ 

and Zn2+. All of these metal ions had no remarkable inhibition effects on PG activity 

(Fig. 5A). While using different concentrations of Ca2+, maximum polygalacturonase 

was produced at 2 mM of Ca2+. Further, the PG activity was decreased with the higher 

concentrations of Ca2+ (Fig. 5B).  Similar results of polygalacturonase stimulation by 

Ca2+ were found in Bacillus sp. and Klebsiella sp. Y1 (Des Raj et al. 2003; Kobayashi 

et al. 2001; Yuan et al. 2012). The metal ions Mg2+, Ca2+, Zn2+, Co2+  and Mn2+  have 

been found to stimulate the exopectinase activity by Bacillus GK-8 (Dosanjh and 

Hoondal 1996). 
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Figure 5 Effect of metal ions (A) and Ca2+ (B) on relative activity of PG (Polygalacturonase) 
from Bacillus sp. HD2 
 

3.5 Effect of detergents on PG activity 

The polygalacturonase was tolerant to surfactant SDS (Fig. 6A) and was 

reduced by Triton X-100. The activity in SDS was significantly different (p<0.05) to 

that of the activity in Triton X-100. The stimulation of PG activity by SDS might be 

due to the increase affinity of active site of the enzyme to the substrate by lowering the 

surface tension by this detergent. The polygalacturonase activity was found to be most 

active when 200 mM of SDS was used (Fig 6B). The activity of PG from Bacillus sp. 

was stimulated by SDS as reported by other researchers (Kapoor et al. 2000), while 

Kobayashi et al. (2001) reported 10% reduction in polygalacturonase from Bacillus 

strain by SDS. In other reports, the polygalacturonase from Sporotrichum thermophile 

was slightly activated by Triton X-100 but the enzyme activity was completely lost by 

SDS (Kaur et al. 2004). The tolerance of SDS by PG might be helpful in the industries 

which require surfactant tolerant reactions in alkaline conditions. 
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Fig. 6 Effect of detergents (A) and SDS concentration (B) on elative activity of PG  
(Polygalacturonase) from Bacillus sp. HD2  

3.6 Effect of different biomass in PG production during fermentation 

When the enzyme production profile of Bacillus sp. was studied by using 

different fruit and vegetable peels, the enzyme was assayed at 72 h of incubation. The 

biomass of apple peel (1%) was found significantly different to other biomass (p<0.05) 

for the production of polygalacturonase (17.11 ± 0.46 μmolml-1min-1) during 

fermentation (Fig. 7).  

 

 

 

 

 

 
Figure 7 Effect fruits/vegetables biomass as carbon source on the production of PG 
(Polygalacturonase) from Bacillus sp. HD2  
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(2014) reported that orange peel is an effective inducer (carbon source) for alkaline 

polygalacturonase by Bacillus licheniformis SHG10. Pectinases could be used to 

hydrolyse the pectin in pectin-rich agro-industrial wastes. The bacterial strain in its 

optimized conditions could be used to increase the polygalacturonase production at 

industrial scale.           

3.7 SDS-PAGE analysis 

The SDS-PAGE analysis of crude PG showed different protein bands. Out of 

which, two clear bands were found with positive enzyme activity with molecular 

weights of ~36 kDa and ~72 kDa (Fig. 8) indicating the possible presence of two main 

fractions of PGs. These bands could indicate the presence of different proteins or 

impurities.  

 
 
Fig. 8- SDS-PAGE of crude PG (Polygalacturonase) from Bacillus sp. HD2 (HD2-PG, P- 
Supernatant Protein, M-Marker protein; The molecular wt. of PG enzyme was found ~36 kDa 
and ~72 kDa) 
 

This study was supported the findings of several researchers who reported the 

PGs with different molecular weights in different fungal and bacterial strains such as 

38 and 61 kDa; 38 and 65 kDa; 63 and 79 kDa from A. niger, A. japonicas and 

Penicillium frequentans, respectively (Jayani et al. 2005). Similarly, molecular weights 
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of 36, 53 and 68 kDa; 66 kDa and 153 kDa were reported from A. sojae, Bacillus sp. 

MBRL576 and Bacillus licheniformis KIBGE-IB21 respectively ( Bhardwaj and Garg 

2012; Rehman et al. 2015; Tari et al. 2008). Yuan et al. (2014) also reported the 

molecular weight of PG from Klebsiella sp.Y1 to be 72 kDa. 

4. Conclusions 

In this research, a new bacterial strain producing polygalacturonase was isolated 

from the gut of western honey bee (Apis mellifera L.) and identified as Bacillus sp. HD2 

after 16S rDNA sequence analysis. Maximum production of polygalacturonase by this 

strain was achieved at 40 °C after 72 h of incubation (14.31 ± 0.54 μmolml-1min-1). A 

novel, alkaline active and temperature stable polygalacturonase has been produced 

from this Bacillus sp HD2 showing molecular weights of ~36 kDa and ~72 kDa. The 

enzyme activity was enhanced by metal ions Ca2+ and was tolerant to detergent SDS. 

On the basis of these properties, the polygalacturonase from this bacterial strain 

qualifies for use in the depectinization of pectic wastewaters from industries, as 

alkalophilic pectinolytic microbes help in the easy removal of pectic material and 

render it easily decomposed by activated sludge treatment. In addition to these 

properties, some additional features like enhanced production by yeast extract and apple 

biomass in the growth medium (17.11 ± 0.46 μmolml-1min-1) and the activity of enzyme 

in a wide range of pH, indicate the potential use of this organism at commercial level 

for animal feedstock, degumming of ramie and fruit juice-processing. Further, these 

results might be helpful to study the enzymatic pectin degradation mechanism in 

western honey bee (Apis mellifera L.). 
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CHAPTER V 

Conclusions and future directions 

Microorganisms are important sources of industrially important enzymes like 

cellulases and pectinases. Bacteria offer several benefits over other microorganisms as 

their growth is fast and they are easy to culture even in small laboratory settings. Also, 

they have been widely used in the field of molecular biology, so they may easily be 

manipulated for gene transformation. The current study was focussed on the 

characterization of a novel cellulase and pectinase producing bacteria.  

Seventeen cellulase producing bacterial strains were isolated from wood and the 

isolate K1 was further screened for its quantitative production of carboxymethyl 

cellulase. This bacterial isolate produced 5.21 ± 0.21 U/ml of cellulase which was 

higher than several other strains reported by other researchers (Gautam et al. 2011; 

Korpole et al. 2011; Meng et al. 2014; Yang et al. 2014). The working parameters of 

this cellulase were optimized and the maximum enzyme activity was found at pH 6, 50 

oC and after 72 h of incubation. The production media containing 1% peptone and 1% 

lactose were found to increase the enzyme production significantly than other sources 

of nitrogen and carbon used in the experiment. Further, the isolates K1 and A0 

fermented untreated Agave biomass, producing 0.435 g/g and 0.397 g/g of ethanol 

respectively. The SDS-PAGE analysis showed the molecular weights of the cellulases 

produced by K1 and A0 to be ~36 kDa and ~40 respectively. Based on the 16S rDNA 

sequencing analysis, the isolates K1 and A0 were identified and their sequences were 

successfully uploaded to NCBI gene bank data base as Bacillus sp. K1 (Accession no. 

KP987117) and Bacillus sp. A0 (Accession no. KP974676) respectively.  
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Similarly, a polygalacturonase (PG) producing bacterial strain was isolated 

from the gut of western honey bee (Apis mellifera L.). This isolate was identified as 

Bacillus sp. HD2 (Accession no.  KP676929). The PG produced by this strain was 

optimum at pH 11, 40 °C and after 72 h of incubation (14.31 ± 0.54 μmolml-1min-1). 

This PG was active in a wide range of pH (pH 5-12) showing molecular weights of ~36 

kDa and ~72 kDa. The enzyme activity was increased by Ca2+ and was tolerant to 

detergent SDS. Further, this Bacillus isolate could produce polygalacturonase using 

biomass of apple peels (17.11 ± 0.46 μmolml-1min-1). Based on its features, this enzyme 

is useful for several industrial applications and to understand the pectin digestion 

mechanism in the honey bee. 

Future studies can be done in the identification and cloning of the genes like β-

1, 4 endoglucanase in these cellulase producing isolates; which make the industrial 

utilizations of these Bacillus spp K1 and A0. The strain improvement for enhanced 

cellulase production can be achieved by using different techniques such as mutagenesis 

(Abdullah et al. 2014) and metabolic engineering (Lin et al. 2014) for the hyper 

production of multiple cellulolytic enzymes and effective bioconversion of 

lignocellulosic biomass to bioethanol and value added products. There are other 

important bioproducts produced by the fermentation of lignocellulosic biomass that can 

further be detected by using different analytical methods such as GC-MS, LC-MS and 

HPLC. Also, there exist some challenges like enzymatic hydrolysis of biomass due to 

the lack of efficient enzymes. So, it is important for reducing the enzyme production 

cost by developing the organisms which can help in fermentation efficiency and convert 

almost all the fermentable sugars into biofuels and bioproducts. Tremendous focus is 

required for the characterization, understanding and overcoming the barriers for 

enzymatic hydrolysis of different raw material which is essential for developing 
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economically competitive processes using enzymatic treatments. Similarly, improved 

fermentation technology and media optimization also help to improve efficiency of 

cellulases and the yield of end products.  

Most of the organisms degrading the lignocellulosic biomass have end product 

inhibition reducing the rate of enzyme synthesis. This leads to the incomplete utilization 

of the biomass. Co-culture of different strains might be helpful to produce cellulase 

complexes in adequate quantity and helpful for the degradation of biomass efficiently 

(Maki et al. 2014). However, this has achieved limited success because of induced 

feedback inhibition among the species. To overcome this problem, development of 

mutant strains, genetic engineering such as modification of pathways and gene 

expression with desirable pathways may be helpful because this helps to enhance the 

bioethanol and organic acids. 

Like cellulases, pectinases can also be applied to improve the quality and yield 

of final products in different industrial processes. So, it is important for the investigation 

of physico-chemical characteristics of new pectinases. In the future, research should be 

focussed more on the elucidation of the regulatory mechanism of enzyme secretion 

which will be helpful for the mechanism of action of these enzymes on different 

substrates. Cloning and expression of polygalacturonase producing genes always help 

to produce the enzymes for possible industrial applications (Chen et al. 2014). This will 

lead to valuable tool for producing the enzymes efficiently. 

The processing and enzymatic hydrolysis of plant biomass has become the crux 

of future research. The enzymes such as cellulases and pectinases are being produced 

commercially for their wide applications in food, animal feed, fermentation, pulp and 

paper and textile applications. So, the future research should be focussed on the 

microbial production of these enzymes by using biotechnological tools for improving 
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the enzyme activities.  Because the study of biochemical, regulatory and molecular 

aspects by using the molecular biology tools will be helpful in genetic engineering of 

cellulases and pectinases that are robust with respect to their pH and temperature 

tolerance. Additional physical parameters such as aeration and agitation should be 

optimized for the production of these enzymes and their interaction effects are required 

to be addressed. This may play a significant role on the use of these enzymes in 

industrial scale. Also, the enzymatic bioconversion of agro wastes and the identification 

of the end products will be helpful to keep the environment clean and production of 

value added products.  
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