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Abstract

Matthew A. MacDonald. A Mechanism for Simplified Scanner Control with Application to

MRI-guided Interventions (Under the Supervision of Dr. Samuel Pichardo).

Magnetic Resonance Image (MRI)-guided interventions involving percutaneous biopsies of

lesions, or trajectory alignment with prospective stereotaxy are conducted in real time using rapid

image acquisition. A mechanism of passively localizing a device and calculating its orientation

is desired to improve interventional outcomes in these situations. In this work, we propose and

evaluate an image-based technique to determine the position and alignment of a linearly shaped

interventional device within an ex-vivo tissue specimen. Low resolution 3D orientation scan data

is processed to produce a virtual line fitting using principal component analysis. The line fitting

algorithm was incorporated into a biopsy needle tracking system implemented with an MR-

scanner operated using a footswitch. A GUI application was written to collect foot pedal input

and display automated visualization of device placement inside the scanner room. Placement time

trials (N=3) conducted with this system using porcine muscle and phantom samples suspended

in rigid frames with inserted gadolinium-enhanced targets. The mean targeting error across

all directions was 3.6 mm and 5.1 mm for the phantom trials and ex-vivo trials respectively.

The average entry-to-target time was 247 sec. Device localization during trials was adequate to

contain a 11-gauge titanium biopsy needle within a visualization slice volume of 10 mm after

93.8% of alignments over insertion lengths between 30 mm to 110 mm at insertion angles between

1.4◦ to 20◦ from the static magnetic field and frequency encoding axes. Practical considerations

were identified and occupational exposure measurements were collected as part of determining

the system’s overall feasibility.
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Chapter 1

Introduction

1.1 MRI-guided Interventions

Intra-operative image guidance provides a means of verifying treatment and device placement

during interventional procedures [1]. Localization of needles or cannulas with respect to target

regions or critical anatomy is required during procedures of the brain, breast, prostate, liver or

musculoskeletal system such as biopsies or radiation therapy [2]. Endovascular procedures such

as angioplasty require tracking of catheters, guidewires and stents. Thermal therapies such as

high intensity focused ultrasound (HIFU), cryoablation, and radiofrequency, microwave or laser

ablation involve precise placement of probes, transducers and subsequent thermometry measure-

ment to monitor thermal dosage [3, 4, 5, 6, 7]. Real-time imaging methods are advantageous for

visualizing these procedures because they can account for target motion or displacement of the

surrounding tissue during treatment or device placement. MRI-guided interventions in closed

bore MRI scanners can be performed with freehand device placement methods that are con-

ducted in real time during rapid image acquisition [8]. Intraoperative targeting of brain regions

or other organs can be performed using real-time MR-guided prospective stereotaxy [9]. MRI

guidance is a desirable choice among imaging modalities due to real-time capabilities of certain

pulse sequences, potentially improved soft tissue contrast compared to computed tomography

(CT) or ultrasound, multi-planar imaging capabilities, and the lack of ionizing radiation [1, 10].

Technical challenges arise from working within the environment of the MRI scanner suite such

as the requirement for non-ferromagnetic instrumentation, restricted patient access and distrac-

tion to clinicians from various occupational exposure effects such as peripheral nerve stimulation
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(PNS), absorption of radiofrequency energy and high sound pressure levels [11, 12].

1.2 Motivation

This thesis investigates the accuracy of a new image-based localization technique and the fea-

sibility of its implementation for real-time MR scan plane alignment to explore this technique as

an alternative to existing methods. Without hardware or software modification, communication-

prohibitive sound pressure levels interfere with the general MR-guided interventional workflow

shown in Fig. 1.1. Real-time dynamic imaging during device placement can take the form of fixed

scan planes aligned with an immobilized region of interest and planned device trajectory [1] or

iteratively stopping and starting the scanner for manual scan plane realignment [13, 14]. While

a scanner has been stopped, manual alignment of scan planes requires a clinician to either leave

the scan room to adjust scan plane geometry directly or provide blind guidance to a technician

via intercom or headset. A single iteration of this process can take several minutes including

execution of required scout imaging sequences and shimming calibration. Device placement

and/or treatment may progress only when a device, target region and visualization scan planes

are all properly aligned. In practice, there has been limited use of automated interventional

systems which localize and track devices within an MR environment based on optical fiducial

markings, MR-visible patterns, RF tracking coils or fiber optic components [15]. Use of these

systems is hindered by the crowded environment around a patient during an intervention and

requires expensive, time consuming modifications to the scanner hardware and MR-compatible

instrumentation which may pose additional safety risks.

1.3 Thesis Scope and Objectives

The objective of this work is to develop an MR image-based device localization mechanism

for linearly shaped interventional device which meets the following criteria:

1. Based on passive methods i.e. requires no modification to interventional instrumentation

2. Achieves sufficient accuracy for visualization scan plane alignment

3. Technically feasible to implement along with real-time imaging on an MR scanner

4. Engaged with hands-free operation
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Figure 1.1: General MRI-guided intervention visualization workflow without hardware or software mod-

ification.

To realize these objectives, relevant background information is first presented in Chapter 2 to

provide the reader with an understanding of pertinent topics in MR image guidance and technical

considerations there-of. This background is followed by a literature review in Chapter 3 which

describes recent work in the area of real-time imaging platforms, imaged-based localization tech-

niques, and automated scan plane alignment. Chapter 4 sets out the main thesis work describing

two experiments to assess first the preliminary effectiveness of a proposed localization algorithm

and secondly the feasibility of the algorithms incorporation into device tracking system for MR

scanners. Chapter 5 presents results collected from phantom and ex-vivo trails. §5.1 and §5.2

presents results for the effectiveness and feasibility experiments respectively. Chapter 6 explores

the required parameters and accuracy of the localization algorithm, time trial results from the

interleaved scanning experiments along with practical considerations for use of the overall mech-

anism. Example figures are provided to illustrate situations in which these considerations are

relevant. Conclusions about the achievements of this work along with recommendations for its

potential applications are discussed in Chapter 7.



Chapter 2

Background

Pertinent background information is presented in this chapter to provide the reader with a pre-

cursory understanding of topics in MR image guidance. These topics include passive device

localization and visualization, rapid imaging sequences, noise and artifacts observed in these im-

ages, as well as occupational exposure effects. Where possible, example images and mathematical

descriptions are provided to give both qualitative and quantitative explanations.

2.1 MR Signal and Localization

For the sake of brevity, only a minimal explanation of MRI signal acquisition is provided

and additional information can be found in numerous introductory resources [16, 17, 18]. In

the MR-imaging process, nuclear spins (typically hydrogen nuclei) within subject tissue precess

about an externally applied static magnetic field axis and are targeted with a Radiofrequency

(RF) perturbation. The spins are subsequently spatially encoded according to the superposition

of applied magnetic field gradients. The net magnetization M of each encoded volume element

(voxel) contains a longitudinal component Mq parallel to the static magnetic field, and an or-

thogonal transverse component M⊥ which induces a signal measured after a selected echo time

interval TE. The process is repeated at intervals of a selected repetition time TR as required to

populate a matrix spatial frequency measurements (k -space) which forms a reciprocal domain to

the complex image space where magnitude and phase information is reconstructed graphically by

means of inverse Fourier transform. The processes by which M⊥ and Mq relax after perturbation

into their original state are independent and occur according to respective magnetization recov-

ery time constants T1 and T2 which are properties of the tissues from which signal is collected.
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Figure 2.1: Model of interventional instrument passive visualization.

A main feature of MR-imaging is that contrast is established between tissues by selecting imaging

parameters such as TE, TR and RF excitation flip angle α according to T1 and T2 as well as an

additional tissue property, proton density ρ. This work deals primarily with gradient recalled

echo (GRE) images which do not employ the 180◦ re-focusing pulses characteristic of spin echo

(SE) sequences. For gradient echo imaging of tissues where transverse magnetization is effectively

spoiled between TR periods, a steady-state voxel signal intensity Iss arises during the imaging

process according to the following relation:

Iss ∝
ρ sin (α) (1− E1)

1− cos (α)E1

E∗2 (2.1)

where α is RF excitation angle,E1 = exp (−TR/T1) and E∗2 = exp (−TE/T ∗2 ). T ∗2 is the effective

time constant for relaxation of traverse magnetization accounting for both the time constant of

decay from natural interaction of nuclear spins (T2), as well as the contribution resulting from

average field inhomogeneity across the voxel ∆B [16] which for gradient echo images is given by:

1

T ∗2
=

1

T2

+ γ|∆B| (2.2)

2.2 Model for Passive visualization of Device Artifacts

A simple model for passive visualization of interventional instruments given by Ladd et al.

[19]. is illustrated in Fig. 2.1 as a long cylindrical element of diameter d, positioned at an angle

δ from the main static magnetic field B0 and at an angle β from the frequency encoding gradient

Gf . Spatial distortion and signal dephasing result from differences between the element’s internal

magnetic permeability µi and the permeability of the surrounding tissue µe. The following
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equations give spatially distorted image coordinates (x′, y′, z′) as a function of right-handed

object coordinates (x, y, z),1 frequency and slice-selection gradient strengths Gf and Gs, as well

as magnetic field intensity shift ∆B:

x′ = x+
∆B

Gf

cos β (2.3)

y′ = y +
∆B

Gs

(2.4)

z′ = z +
∆B

Gf

sin β (2.5)

∆B = −B0

(
d

2

)2(
µi − µe
µi + µe

)(
x2 − y2

(x2 + y2)2

)
sin2 δ (2.6)

which for gradient echo images, relates to voxel signal intensity I to needle angle δ according to

Eq. 2.1 by:

I(x, y, δ) ∝ exp
(
−κ (x, y) sin2 δ

)
(2.7)

where

κ (x, y) = TEγB0

(
d

2

)2 ∣∣∣∣(µi − µeµi + µe

)(
x2 − y2

(x2 + y2)2

)∣∣∣∣ ≥ 0 (2.8)

Three characteristics are observed from this model and are exhibited in Fig. 2.2:

• The device element itself generates no signal.

• Even when surrounded by homogeneous tissue, spatial distortion will create asymmetrical

signal pile-up about the device axis as a function of the needles angle from the main magnetic

field δ as well as needle angle from the frequency encoding gradient β.

• Magnetic field inhomogeneity will contribute to signal dephasing in the vicinity of the

element as the result of increased T ∗2 effects, also a function of δ. This dephasing is radially

symmetrical about the needle axis.

Scan parameters for Fig. 2.2 are shown in Table 2.1.

An interventional radiologist must be familiar with these characteristics when performing

procedures under MRI guidance with non-ferromagnetic instrumentation and it is critical from

1Here, x, y and z directions apply only to the device orientation and are distinct from Cartesian coordinate systems

used elsewhere in this work.
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Figure 2.2: Artifacts generated from a 4 mm diameter biopsy needle in water.
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Table 2.1: Parameters selected for scans depicted in Fig. 2.2.

Scan A B C D

TR 3000 ms 3000 ms 3000 ms 3000ms

TE 3 ms 12 ms 3 ms 12 ms

Flip angle 70◦ 90◦ 70◦ 90◦

Slice thickness 10 mm 10 mm 10 mm 10mm

FOV 150× 150 mm2 150× 150 mm2 150× 150 mm2 150× 150 mm2

Acquisition matrix 152× 150 152× 150 152× 150 152× 150

Reconstruction matrix 160× 160 160× 160 160× 160 160× 160

Na 1 1 1 2

them to see a projection of the entire artifact within a dynamic image. From an image processing

point of view, an interventional device’s susceptibility artifact appears in gradient echo images

mainly as a null region emanating along the device’s position. As per the equations above,

the size and intensity of this region depends on the difference of susceptibility of a device from

surrounding tissue, device radius, the strength and orientation relative to the device of static

magnetic field and gradient fields. Fig. 2.2 also shows a characteristic ’bloom’ of distortion

and signal dephasing around the needle tip locations not described by Eqs. 2.3 - 2.1. The

exact distribution of these blooms depend on instrument tip geometry and can be modeled by

superposition of induced elementary dipole fields as simulated numerically by Muller et al. [20].

Appearance of the bloom is most pronounced at the actual tip location and can be minimized

when the needle is oriented anti-parallel to the scanner frequency encoding gradient direction

but also parallel to the scanner static magnetic field orientation [21].

To contain the signal void of a biopsy needle entirely within a limited region of interest across

a slice volume, localization error (position and angle) between the needle and slice must be

contained within limits determined according to the geometry of Fig. 2.3. This illustration of

the worst case needle orientation is used to determine the following condition for total biopsy

needle containment within a rectangular slice:

h− d

cos θ
≥ |2ε+ ROI · tan θ| (2.9)
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Figure 2.3: A cross-sectional diagram illustrates the relevant parameters in determining minimum

localization accuracy required to contain a biopsy needle within a region of interest across a visualization

slice volume.

where h is slice thickness, ROI (region of interest) is the length of the slice field of view (FOV)

over which the needle is to be contained, d is biopsy needle outer diameter, ε is needle centroid

localization error along the slice select direction and θ is angular localization error within the

plane illustrated by the figure.

2.3 Signal to Noise Ratio

Much of this work pertains to calculation of optimal scan plane alignment based on image

data containing noise with a broad spatial distribution. For the remainder of Chapter 2, x, y and

z directions refer to frequency encoding, phase encoding, and slice-selection dimensions in a right-

handed coordinate system aligned with slice geometry as shown in Fig. 2.4. These directions are

linear combinations of foot-head, right-left and anterior-posterior patient axes with corresponding

’F-H’, ’R-L’ and ’A-P’ designations. Each MRI scan is composed from voxels (volume elements)

with associated signal magnitude and phase information. The signal amplitudes of scan voxels

can be represented by pixels of MRI magnitude image data, with each pixel containing noise

with an approximately Gaussian distribution resulting from receive coil resistance and inductive

tissue losses [22]. In terms of scan parameters, MR image SNR is generally proportional to voxel

volume ∆V and the square root of acquisition time Ta [23]:

SNR ∝ ∆V
√
Ta (2.10)

and

Ta = TR ×Ny ×Nz ×Na (2.11)
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Figure 2.4: Illustrations of coordinate system vectors that define the geometry of a given imaging

volume.

where Ny and Nz are the number of phase encoding steps in the phase encoding and slice-selection

directions of the scan respectively [24].2 Na is the number of signal averages performed.

2.4 Structured Noise

In addition to the noise inherent to each voxel, different phenomena that occur during ac-

quisition of MRI scans exhibit patterned interference across the MR image space. The spatial

distribution of this noise is discussed in the following subsections and with included mathematical

descriptions.

2.4.1 Motion Artifacts

Subsequent discussion in this work regarding orientation (’scout’) scan acquisition is related

to correction of artifacts contained within data constructed from these scans. Optimal scan

plane alignment can be calculated from the element-wise subtraction of two three-dimensional

(3D) localizer data sets.3 3D MRI acquisitions employ an additional dimension of spatial en-

coding,namely a second application of phase encoding in the slice-selection direction of the scan

volume. A 3D EPI scan acquisition time can take from several seconds to several minutes accord-

ing to Eq. 2.11. The portion of each TR required for signal sampling is negligible in comparison

to the time period over which significant subject motion will take place inside the scanner. How-

ever, as many phase encoding steps are required for this sequence as the number of voxel elements

2Nz = 1 for the case of a 2D slice projection image.
3In this work, the term ’scan’ will be distinguished from ’image’ or ’data set’ by the inverse Fourier transform recon-

struction of signals acquired during a scanning sequence.
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along respective phase encoding directions. Even the shortest repetition times, on the order of

single milliseconds, require a total scan duration of several seconds over which significant subject

motion may occur, particularly periodic patient motion due to the involuntary nature of the

cardiac or respiratory cycle. Hedley et al. [25] describe a two-dimensional case of translation of

voxel signal intensity I during acquisition of signal S which is extended to three dimensions as:

I = I(x− p, y − q, z − r) (2.12)

S = S(kx, ky, kz) =

∫ ∫
I(x, y, z) exp (−i2π(kxx+ kyy + kz))dxdydz (2.13)

where x, y, z are the spatial coordinates of an image space, and p, q, r are a rigid translation

offset. kx, ky, kz are spatial frequency coordinates. For the blipped-gradient or Cartesian k -space

trajectories used in this work, rows of k -space along phase encoding directions are acquired over

greater lengths of time than individual samples during frequency encoding readout. The result

is a higher likelihood that voxel signal amplitudes could be modulated due to motion between

phase encoding steps. p, q, r = p(ky, kz), q(ky, kz), r(ky, kz) are thus assumed to depend only on

ky and kz phase encoding spatial frequency coordinates. A signal Ŝ acquired during translation

of tissue will encounter a non-uniform phase shift φ:

Ŝ(kx, ky, kz) = exp (−iφ(kx, ky, kz))S(kx, ky, kz) (2.14)

φ(kx, ky, kz) = 2π [kxp(ky, kz) + kyq(ky, kz) + kzr(ky, kz)] (2.15)

By property of the Fourier transform relationship between k -space and image space, the resulting

image exhibits motion artifact where ripples of the affected tissue are apparent everywhere the

across phase encoding directions of the reconstructed data set as shown in Fig. 2.5.

2.4.2 Aliasing

As noted, the Fourier transform relates signal space (k -space) and image space. A con-

sequence of the discretization of k -space is spatial periodicity across image space resulting in

possible aliased voxel signal intensity Ia extended to three dimensions from the properties of the

inverse discrete Fourier transform [26]:

Ia(x, y, z) = I(x, y, z) + I

(
x+

n

∆kx
, y +

m

∆ky
, z +

l

∆kz

)
, ∀(n,m, l) ∈ Z3, (2.16)

where k -space sample spacing ∆k is reciprocal to field of view in x, y and z directions denoted as

subscripts. If subject size exceeds field of view for a given dimension of a scan, the subject image
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Figure 2.5: Left: A biopsy needle artifact generated within a porcine muscle sample. Right: Motion

of the needle during acquisition creates a motion artifact along the entire phase encoding direction

(vertical).

will begin to ’wrap around’ on itself creating the well known aliasing artifact shown in Fig. 2.6.

The varying phase of aliased voxels causes signals to combine constructively in some portions

of the image as well destructively in others. Aliasing artifact can be mitigated in the frequency

direction by means of oversampling during signal measurement with the scanner receiver system

analog-to-digital converter, effectively widening the image FOV in this direction without time

penalty. To oversample in any phase encoding direction incurs a time penalty according to

Eq. 2.11. Compensatory techniques can be employed to keep acquisition time constant such

as reducing the number of signal averages or increasing voxel size along the aliased direction in

proportion to a larger FOV.

2.4.3 Cross-talk Artifacts

During a 2D multi-slice acquisition, intersecting or adjacent slices are excited in succession.

If signal within a slice volume is repeatedly attenuated by prior RF excitation from a preceding

slice in the sequence, the resulting image artifact is referred to as ’cross-talk’[16] and shown in

Fig. 2.7. The width of cross-talk bands are given by the projection of an intersecting slice of

thickness h at contact angle Φ is calculated from RF excitation pulse bandwidth BWRF , tissue

gyromagnetic ratio γ and slice-selection gradient strength Gs is given by:

h

sin Φ
=

BWRF

γGs sin Φ
. (2.17)
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Figure 2.6: A phantom subject size exceeds the scan FOV in the phase encoding direction of this 2D

acquisition resulting in aliasing artifact.

Figure 2.7: An image shows stark ’cross-talk’ artifacts corresponding to the locations of orthogonally

intersecting slices.
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2.5 Fast Imaging Sequences for Real-time MRI

MR-guided interventional procedures require fast imaging sequences to provide real-time

information to a clinician about placement of a device relative to a target position. Common

choices for this requirement include Echo Planar Imaging (EPI), balanced Steady State Free

Precession (bSSFP)4, and Turbo Spin Echo (TSE) Sequences [1, 27, 28]. Appropriate choices

are desired for the experiments described in Chapter 4. The following case set of parameters for

real-time interactive multi-slice visualization of needle placement based on Rothgang et al.(2013)

[29] serve as a basis for making a comparison between commonly used fast imaging sequences for

interventions: shortest TR, shortest TE, α = 20◦, slice thickness = 10 mm, FOV = 300×300 mm2,

acquisition matrix = 192 × 192. A primary criterion for selecting a sequence is the simply the

time required per image frame acquisition. The shorter the amount of time required to acquire

an image frame, the higher the value of effective ’frame rate’ of displayed images and the shorter

the amount of time experienced as latency by a clinician operator in obtaining visual feedback

about the placement of a device. Generally, video-based interactive manual activities require a

lag time of less than 300 ms to maintain immersive effect [30] while longer delays will degrade

an operators natural association between their manual actions and corresponding visualization.

Fig. 2.8 shows the time the required for the Philips Achieva 3.0 T scanner to obtain one image

frame using respective fast imaging sequences (a) EPI and bSSFP and (b) TSE at various echo

train lengths (ETL).5 The lag requirement of 300 ms is marked with a dashed line in both cases.

The graph indicates that with sufficient echo train lengths, EPI and bSSFP based images can

be collected from the Philips Achieva 3.0 T at rate even faster than that required to maintain

immersive clinician interaction. Additional time savings can be achieved through ’half-scan’

acquisition where due to the conjugate symmetry of k -space, coverage of a blipped gradient or

Cartesian trajectory can be limited to slightly more than half of k -space and the remaining rows

populated by interpolation [17] as illustrated in Fig. 2.9. Acquisition time Ta within Eq. 2.11 is

reduced accordingly along with image signal to noise ratio (SNR) according to Eq. 2.10. Half-

scans are implemented in Philips MR Imaging as an option for all sequences used in §4.2 and

their application will be discussed in Chapter 4. An additional consideration in interpreting Fig.

4bSSFP is implemented in Philips MR Imaging release 3.2.3 as a contrast enhancement compatible with gradient echo

imaging sequences such as EPI.
5An ETL of one indicates that no fast imaging is used i.e. one RF excitation is applied per phase encoding step.
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(a) (b)

Figure 2.8: A comparison of fast imaging pulse sequence image frame times.

Figure 2.9: Illustration of ’half-scan’ k -space acquisition.
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Figure 2.10: A phantom affected by geometric distortion characteristic of EPI imaging with a long ETL.

2.8 (a) is that geometric distortion and loss of SNR increase with echo train length. The basic

principal is that when echo train duration is increased, additional localization error and signal

dephasing from field inhomogeneity will accrue. Signal localization will be shifted in frequency

and phase encode directions according the following expression:

(x′, y′, z′) =

(
x+

∆f(x, y, z)

BWf

FOVx, y +
∆f(x, y, z)

BWpy

FOVy, z +
∆f(x, y, z)

BWpz

FOVz

)
(2.18)

where x′, y′, z′ are distorted image coordinates, x, y, z are the corresponding object coordinates

across field of view FOV and ∆f = γ∆B is precession frequency shift resulting from field

inhomogeneity. BWf , BWpy and BWpz are frequency and phase encoding signal bandwidths

which are reciprocal to sampling time and total readout time respectively. BWpy and BWpz

increase directly with ETL during EPI-based sequences and because BWf � BWpy > BWpz

in this case, spatial distortion appears mostly along the phase encoding directions. Fig. 2.10

depicts geometric distortion occurring in an EPI image with ETL = 11 of a phantom where the

central signal void created with an air-filled tube inserted into a cylindrical water bottle should

appear straight and diagonal.

Ta is also reduced in proportion to ETL and consequently so is SNR according to Eq.

2.10. In addition to these image defects, images acquired with bSSFP sequences suffer from
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Figure 2.11: A phantom affected by dark banding characteristic of bSSFP imaging and geometric

distortion characteristic of a long ETL.

’dark banding’ artifacts as shown in Fig. 2.11. Like Fig. 2.10, Fig. 2.11 also depicts geometric

distortion with ETL = 11 occurring in the same phantom.

Dark bands correspond to locations in the image which coincide with transition bands of the

bSSFP transverse magnetization profile [31] shown in Fig. 2.12.6 The following expressions show

signal magnitude Ibssfp for balanced SSFP is be expressed a function of phase shift φ of spins

accumulated in the TE period after RF excitation:

Ibssfp ∝M0

(1− E1) · sinα ·
√

(E2 sinφ)2 + (1− E2 cosφ)2

(1− E1 cosα) · (1− E2 cosφ)− E2 · (E1 − cosα) · (E2 − cosφ)
(2.19)

where M0 is equilibrium longitudinal magnetization, α is RF excitation flip angle and

E1,2 = exp (−TR/T1,2). φ is related to magnetic field inhomogeneity ∆B by the following

expression:

φ = γTE∆B. (2.20)

Inhomogeneity is an inherent part of an interventional device susceptibility artifact as presented

in §2.2 and consequently repositioning of a device like that represented in Fig. 2.11 alters the dis-

6Fig. 2.12 is calculated from T1 = T2 = 3000 ms, TR = 5 ms, α = 70◦ and shifted according to RF pulse phase cycling

∆φ = 180◦ [31, 32].
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Figure 2.12: A transverse magnetization profile of bSSFP. Attenuated ’transition bands’ are shown with

a dashed line.

tribution of dark banding across image space, interfering with artifact segmentation techniques.

It is worth noting a dependency on both longitudinal and transverse magnetization recovery time

constants T1 and T2. This ’mixed contrast’ property of bSSFP images is at odds with achieving

independently ’T1 weighted’ or ’T2 weighted’ contrast within images, control of which is desirable

for device localization and tumor visualization respectively [1, 27]. Fig. 2.8 shows unacceptable

image frame times for a TSE sequence in terms of real-time imaging, however the resulting im-

ages show relevant image quality characteristics as can be observed in Fig. 2.13 obtained with

an ETL = 11. The spin echoes induced in this sequence with successive 180◦ RF pulses between

phase encoding steps between readouts to reverse signal dephasing resulting from static magnetic

field inhomogeneity. This periodic inversion effectively rewinds and replays phase dispersion of

nuclear spins within a voxel to recoup accrual of phase-encoded localization error throughout long

echo trains, thus protecting images from the significant spatial distortion seen in the EPI-based

images [33]. Conveniently, all pulse sequence types discussed in this section are available within

Philips MR in 3D scan modes. These implementations execute a second order of phase encoding

to distinguish contiguous voxels along the slice-selection direction [33, 17]. 3D acquisitions will

be employed in Chapter 4 as ’orientation scans’ from which device position and alignment will

be determined automatically, as well as placement verification scans. Based on the limitations

discussed in this section, gradient echo-techniques without EPI or bSSFP can provide both the

imaging speed and resilience to geometric distortion required to be employed for orientation and
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Figure 2.13: A phantom exhibits improved image quality with use of a TSE sequence.

visualization scan imaging.

2.6 Occupational Exposure

Occupational exposure effects of MR scanner use pose potential hazards to clinicians or

patients during an intervention. For example, vertigo can result from fast head movements near

the opening of a scanner bore. A static magnetic field strength of 0.5 T shifted by ∂B
∂t

= 0.7 T · s−1

can induce an experience of vertigo on par with a blood alcohol concentration of 0.09% [34]. Other

effects relevant considered in this work are described in the following subsections.

2.6.1 Peripheral Nerve Stimulation

Rapidly switching gradient magnetic fields applied during imaging can induce stimulation

of peripheral nerves in an imaging subject or in those standing in close proximity to the gradi-

ent coils [35, 1]. Gradient fields reach their highest amplitudes at the end of the maximal field

of view. When gradients are pulsed periodically during an imaging sequence, currents may be

induced in nearby neural tissue potentially resulting in twitching and contraction of muscles.

This phenomena is not dangerous in itself but presents a warning of vital nerve stimulation and

may interfere with motor control. GRE imaging can induce 1.6 T · s−1 at the entrance of an

Philips Achieva 3.0 T scanner bore vs 0.22 T · s−1 corresponding International Commission on
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Non-Ionizing Radiation Protection (ICNIRP) guideline [36]. Limits on rate of change of the gra-

dient coil magnetic flux density with time dB
dt

are defined by the International Electrotechnical

Commission (IEC) Medical Electrical Equipment Standard 60601-2-33 [37] as a percentage of

median PNS detection threshold at which 50% of the population is expected to perceive stimu-

lation effects. This median threshold is modeled in hyperbolic form from empirical data in the

following equation:
dB

dt
< g

(
1 +

c

Ω

)
(2.21)

where g = 20 T · s−1 is the standard rheobase i.e. the mean dB
dt

stimulation threshold for an

infinite pulse duration, c = 0.36 ms is the standard chronaxie and gradient ramp duration

at which the stimulation threshold is twice the rheobase and Ω is the stimulus duration in

milliseconds. Normal operating controlled mode limits dB
dt

within 80% of the median threshold.

first level controlled operating mode requires a warning prompt for scans operating between 80 %

and 100 % of the median threshold. The Philips Achieva 3.0 T is not permitted to run in Second

Level Controlled Operating Mode which allows operation above 100 %. Additional IEC limits

are imposed to prevent cardiac stimulation according to the following threshold:

dB

dt
<

g[
1− exp

(
− Ω

3 ms

)] (2.22)

Peripheral Nerve Stimulation is an important consideration for assessing the feasibility of scanner

control techniques which involve the rapidly interleaved scan protocols because of the potential

risks posed to patient and clinician.

2.6.2 Specific Absorption Rate

During a scan acquisition, RF pulses are applied to subject located in the scanner to perturb

nuclear spins in such a manner that they will emit measurable signal. Some of this RF energy is

absorbed by the subject tissue and dissipated as heat resulting in potentially harmful effects. This

absorption is monitored in terms specific absorption rate (SAR) measured in units of W · kg−1.

Limits on SAR exposure are defined by the International Electrotechnical Commission (IEC)

Medical Electrical Equipment Standard 60601-2-33 [37] and summarized in Table 2.2. Gradient

echo based sequences minimize SAR by eliminating 180◦ refocusing pulses used in spin-echo

based techniques and by use of flip-angle reductions [38]. An insulated slab of tissue would

experience a temperature rise of about 1◦ C per hour under SAR conditions of 1 W · kg−1 [39].
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Table 2.2: Specific absorption rate limits as defined by International Electrotechnical Commission (IEC)

60601-2-33

SAR estimates provided by the Philips Achieva 3.0 T are calculated from a proprietary model

and are independent of subject size. They appear to consistently overestimate actual SAR

as a worst-case estimate [40]. The SAR figures collected during the experiments described in

Chapter 4 provide assurance that patients directly exposed to RF excitation from the body coil

or clinicians working in close proximity to this coil would be exposed to a SAR level less than or

equal to the levels reported by the scanner.

2.6.3 Noise Exposure

The construction of MRI scanners can be compared to audio speakers suspending coil wind-

ings with rapidly alternating current experience Lorentz forces within an applied magnetic field

creating audible variations of air pressure. The coil windings in this case are those of gradient

coils and the applied magnetic field that of the scanner’s static magnetic field. These vibrating

gradient coils can produce noise levels as high as 97 db(A) during execution of EPI sequences

in a 3.0 T scanner [41]. Noise exposure levels of 97 db(A) are typical for EPI sequences [41].

Hearing protection may be required in environments with noise levels above 85 dB(A) [42]. Fig.

2.14 maps the effectiveness of voice communication for different ambient noise levels at a range

of distances between speaker and listener. The chart indicates that voice communication is

impossible for ambient noise levels of 97 db(A) up to distances of about 1.5 m and remaining

very difficult at shorter distances. Intercom communication is impossible at this level [43]. In

Canada, hearing protection required for clinicians operating in these conditions [44] which can

further inhibit communication in the vicinity of a running scanner. A viable solution has been

use of third party wireless headsets by scanner room staff which suppress ambient noise but may

require fiber connections run out of the scanner room using waveguide access [45, 12]. Use of
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Figure 2.14: Effectiveness of voice communications as a function of ambient sound level. Taken from

Davis, Jeffrey R., Robert Johnson, and Jan Stepanek, eds. Fundamentals of aerospace medicine. Lip-

pincott Williams and Wilkins, 2008 with permission.

headsets alone do not provide a clinician with a direct means of scanner control and nevertheless

require an intermediary to operate the scanner console based on verbal directions. Measuring

noise levels remains an important consideration for assessing the feasibility of scanner control

techniques such as that proposed by this work.
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Literature review

This chapter presents a literature review which describes recent work in the area of real-time

imaging platforms, imaged-based localization techniques, and automated scan plane alignment.

The research cited here justifies this work’s main objective of developing an MR image-based

localization mechanism and description is included about which aspects are incorporated into

the device tracking system developed in the ensuing chapter.

3.1 Existing Interventional MRI Solutions

Specialized interventional tools have been used peripherally with modern scanner units. Ac-

tive device tracking techniques include embedding RF receive coils into the construction of an

interventional device connected co-axial cable link or resonant RF markers that are visualized

with high signal intensity [1]. A recent example of scan plane alignment by means of active

device tracking from Elayaperumal et al. embedded fiber optic sensors into a biopsy needle to

automatically align scan planes with the needle tip, adjusting for optically sensed deflection of

the needle from a rigid external base [15]. The base is tracked by means of miniature MR receiver

coils localized by successive applications of frequency encoding in various directions as part of a

non imaging pulse sequence. Active device tracking techniques have significant drawbacks due

to safety issues such as heating of metallic components as well as the complexity and cost of

incorporating tuned hardware modifications into disposable MR-safe instrumentation [46].

Philips iSuite real-time interactive interface [47] provides a fully integrated software and hard-

ware package which can image and navigate biopsy needles in real time as shown in Fig. 3.3 (a).

iSuite displays four viewports where two are updated in real time and aligned automatically to



CHAPTER 3. LITERATURE REVIEW 25

Figure 3.1: A connectivity diagram illustrates the system components of Philips iSuite.

a needle guidance tool attached to the instrument external to the patient while corresponding

geometry is shown as an overlay on static scout scans in the remaining two view ports. Operator

input can be collected using optically connected USB foot switch array allowing nine inputs as a

three pedal array with ’short’, ’long’ and ’double-click’ activations [48]. An interactive scanning

interface running on a dedicated workstation drives foot pedal connectivity, image visualization

and scanner control. The latter is implemented over Ethernet link from the dedicated personal

computer (PC) to the scanner console using ’eXTernal Control’ (XTC), an API for scanner

connectivity [49]. A connectivity diagram for Philips iSuite is shown in Fig. 3.1.

Siemens Healthcare offers their own Interactive Front End (IFE) platform which supports

modules for needle placement and thermometry compatible with various Siemens scanner mod-

els [50]. Likewise, GE Healthcare has the MR Echo interventional imaging platform [51]. Both

Echo and IFE allow real-time adjustments to scan parameters such as contrast settings, image

size and scan plane orientations shown in Fig. 3.2. The RTHawk platform (HeartVista, Inc.,

Los Altos, CA) runs with HeartVista’s cardiac software package for GE scanners that allows

real-time control of scan pulse sequences and acquisition but also reconstruction. This state of

the art system is accessible in the scan room wirelessly through a tablet PC [12] as shown in Fig.

3.3 (b).

As described in section 1.1, MRI-guided interventions can be performed in closed bore diagnos-

tic scanners and further discussion of scanner units will be contained within this scope. For

additional information about specialized interventional scanner units, see Appendix A.1. The

experiments of this work are conducted on a Philips Achieva 3.0 T closed bore scanner with a
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(a) (b)

Figure 3.2: Vendor developed interventional interfaces showing real-time interactive scan plane control

(a) GE MR echo screenshot (courtesy of GE Healthcare, used with permission) and (b) Siemens Inter-

active Front End screenshot ( c©2016 Siemens Healthcare GmbH. All Rights Reserved. Product photo

provided courtesy of Siemens Healthcare GmbH.).

(a) (b)

Figure 3.3: Interventional interfaces showing real-time interactive scan plane control (a) Philips iSuite

screenshot (used with permission from Philips Healthcare) and (b) RTHawk user interface screenshot

(used with permission of Heartvista Inc.).
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gradient coil slew rate of 120 T · (m · s)−1 and 40 mT ·m−1 respectively [52].

Active device tracking comes with significant drawbacks such as patient safety risks from device

heating. Optical tracking of fiducial markers located on a needle apparatus as part of stereotactic

surgical navigation can be completed within an MRI scanner bore [53]. This technique requires

the markers to remain visible to navigation system cameras throughout a procedure which can

be difficult or impossible to achieve given the already limited patient access inside the scanner

bore. The complexity, cost and limitations of using such device tracking techniques leave a de-

sire for device tracking techniques which do not rely on hardware modifications to interventional

instruments. Although the use of actively tracked positioning tools are undesirable in view of

the drawbacks mentioned, Fig. 3.1 illustrates a system design by which scanner control for a

Philips scanner may be implemented and the system design of §4.3 operates on this framework.

3.2 Image-based Scan Plane Alignment

A main premise of this thesis work is that optimal scan plane geometry can be calculated

based on features extracted from conditioned MRI data. Dimaio et al. employed algorithms for

artifact detection to localize biopsy needle susceptibility artifacts from in-plane needle image data

with sub-millimeter accuracy, including linear/non-linear image filters for signal conditioning

and a Hugh-transform for feature extraction [54]. The same author developed a localization ’Z-

frame’ constructed from glass cylinders filled with MR-visible fluid. This frame exhibits a unique

fiducial pattern within gradient echo images depending on the relative orientation of the frame

with respect to the intersecting scan plane [55]. Localization was accomplished by convolution of

fiducial k -space data with template masks to determine the best correlation with sub-millimeter

and sub-degree accuracy. Localization frames have since been used for robot-assisted navigation

of MRI-guided biopsies [56, 57]. An initial MR experiment established closed-loop scan plane

control to maintain relative plan orientation to the ’Z-frame’ as it was rotated on a moving

platform inside the scanner bore or positioned with free-hand motion [58].

Chen et al. employed low resolution 3D scout scans for the detection of anatomical features to

automatically determine the correct alignment for diagnostic brain scans [59]. The 3D scans were

performed with isotropic resolution and T1 weighted contrast to detect anatomical landmarks

detected with a ’Learning Ensembles of Anatomical Patterns (LEAP)’ algorithm. Landmarks

are registered to a virtual atlas composed from a ’Data-adaptive Multi-structural Model (DMM)’
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database trained with data from 130 adult and pediatric scans. Alignment from over 700 time

trial scans verified manually to show correct orientation of the middle sagittal plane and patient

brainstem in over 98% of cases with reproducible sub-millimeter and sub-degree accuracy.

3.3 MatMRI

The Philips iSuite interventional imaging platform described in §3.1 uses the XTC API

for scanner connectivity [49]. This API gives client-side communication to compatible Philips

scanners in the form of read access to images and corresponding meta-data as well as write

access to scan parameters such as scan geometry and start/stop functionality. Networking for

XTC is implemented with Common Object Request Broker Architecture (CORBA) architecture

and delivered via TCP/IP. Several applications integrate XTC such as Philips Sonalleve MR-

guided High Intensity Focused Ultrasound (MRgHIFU) treatment platform. CORBA software

components are accessible for client programming with the ’Microsoft .Net’ framework. Zaporzan

et al. have written .Net classes (using the ’C#’ programming language) and named MatMRI and

MatHIFU respectively [60]. These classes are available in MATLAB and Python programming

language packages (wrappers) which can interface the programs with a Philips scanner and

Sonalleve systems by means of XTC.

3.4 Principal Component Analysis

Principal component analysis (PCA) is a widely used means of feature extraction within

medical images [61]. Geometric applications of PCA in MRI have included determination of

target displacement direction during robotic prostate biopsy [62] and automatic alignment of

dynamic scan planes along directions of greatest organ tissue motion for MR-guided high intensity

focused ultrasound (MRgHIFU) treatments [63]. PCA is applied in this work to calculate the

spatial direction of greatest variation amongst 3D orientation scan voxels affected by the presence

of an interventional device to determine its true orientation. Additional background for this topic

is provided in Appendix A.2.



Chapter 4

Experiment Design

The main thesis work is set out in this chapter which describes two experiments to assess first

the preliminary effectiveness of the proposed localization mechanism and secondly the feasibility

of its incorporation into an interventional MRI scanner configuration. §4.1 describes a variation

of principal component analysis (PCA) employed to localize a device from 3D orientation scan

data, and measurements collected in §4.2 to asses the accuracy of this algorithm. §4.3 describes

how this algorithm can be incorporated into interleaved scanner operation in conjunction with

foot-pedal input to facilitate freehand needle placement.

4.1 Principal Component Analysis

PCA is a widely used tool for statistical analysis of multivariate data in which linearly inde-

pendent factors (principal components) are calculated as a basis upon which observations can be

projected to exhibit the greatest variation [64]. These orthogonal components consist of linear

combinations of the original p variables. Principal component vectors U =
(
û(1), û(2), ... , û(p)

)
1

can be calculated from the singular value decomposition of a symmetric observation data covari-

ance matrix C where:

C =
1

n
RRT = UΛUT (4.1)

with mean-centered observation data input matrix R = (r(1), r(2), ... , r(n)) ∈ Rp×n and Λ =

diag(λ) is a diagonal matrix of eigenvalues λ = (λ1, ... , λp) [65].

The centroid and direction of greatest spatial variation among tissue voxels affected by the

presence of an interventional device allow the device position and orientation to be calculated

1Vectors noted in this work are designated as column matrices.
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(a) (b) (c)

Figure 4.1: Element-wise subtraction of 3D orientation image data sets produces artifact position ob-

servation data with additional magnitude information.

respectively. These voxels comprise the device signal void, and as well as susceptibility effects

of spatial distortion and dephasing [19]. To determine the coordinates of affected voxels as

three dimensional observations for PCA, element-wise subtraction of two 3D image data sets

reconstructed from rapid orientation acquisitions is proposed as illustrated in Fig. 4.1. Here, we

see (a) a 3D orientation image data set acquired after partial placement of an MR-compatible

catheter device within a gelatin phantom subtracted from (b) a baseline 3D orientation image

data set acquired before placement to produce (c) 3D artifact coordinate data with additional

magnitude information. The observations are segmented based on percentile rank calculated

from the absolute change in magnitude for each voxel, effectively thresholding observations to

a fixed number m = n·Γ
100%

where Γ ∈ [0, 100] % and n is the total number of elements in the

orientation scan reconstruction matrix. The computational cost of this operation is calculated

from sorting and slicing operations [66] to give:

O(n · log(n) +m). (4.2)

The computational complexity of completing a principal component analysis is dominated by

the covariance matrix calculation with O(mp2) [67] where m is the number of observations.

Subsequent calculation of eigenvectors as principal component vectors from the covariance matrix

by singular value decomposition comes with an additional computational cost of O(p3) [68]. The

combined computational cost is given by:

O(mp2 + p3) ≈ O(m), m� p. (4.3)

The contribution of a given observation to the calculation of each component increases with
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squared distance from the sample mean in terms of its factor score [69, 64] according to Eq. 4.4.

The contribution ψi,j of i-th factor score f to the calculation of component j with associated

eigenvalue λj is given by:

ψi,j =
f 2
i,j∑n
k f

2
k,j

=
f 2
i,j

λj
(4.4)

where fi,j =
(
û(j)
)T

r(i) and λj =
∑m

k f
2
k,j. Pixel magnitude information corresponding to each

observation can be regarded as the sum of binary signal states located within the boundaries of

the voxels from which pixels are reconstructed. To account for this sum with PCA, each unique

observation can be replicated according to a factor wi ∈ N. Values of wi are chosen a linearly

proportional to the corresponding pixel intensity of each observation. The combined contribution

ψci,j of the i-th unique observation to principal component j given by Eq. 4.4 becomes:

ψci,j =
wif

2
i,j∑m

k wkf
2
k,j

(4.5)

=

(√
wifi,j

)2∑m
k

(√
wkfk,j

)2 . (4.6)

Eq. 4.6 indicates that replication effectively scales factor scores according to
√
wi. Simple

replication of input data is undesirable according to Eq. 4.3 such that m increases to
∑
wi. To

achieve this effect with a fixed number of computations, the observation covariance matrix C is

shown to require a weighted input matrix S =
(
s(1), ... , s(m)

)
:

C =
1

Σwi

m∑
i=1

wi
(
r(i) − s̄

) (
r(i) − s̄

)T
(4.7)

=
1

Σwi
QWQT =

1

Σwi

(
QW1/2

) (
QW1/2

)T
(4.8)

=
1

m
SST (4.9)

∴ S =

√
m

Σwi
QW1/2 (4.10)

where

Q =
(
r(1) − s̄, ... , r(m) − s̄

)
(4.11)

s̄ =

∑
wir

(i)∑
wi

(4.12)
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and W = diag(w) is a diagonal matrix of the factor score coefficients w = (w1, ..., wm). The

complexity of arithmetic operations required to calculate the weighted input matrix is simply

O(m). Eq. 4.10 shows how no initial estimate is required in this case, however an iterative method

could be used if scaling was not equal across all components [70]. The overall procedure is shown

in Algorithm 1 given the number of observations to segment m out of n total observations. The

Input: m

Data: R = (r(1), ..., r(n)),w = (w1, ..., wn)

Result: û(1), s̄

// Find indices of top ’m’ voxels

for t = 1, 2, ...,m do

choose it ε N :
percentile rank{wit}

100% >
(
1− m

n

)
end

// Weight observation matrix

s̄ =
∑m

t=1 witr
(it)∑m

t=1 wit

for t = 1, 2, ...,m do

s(t) =
√
wit
(
r(it) − s̄

)
end

// Calculate adjusted PCA

C = 1
m

∑m
t (s(t))(s(t))T = UΛUT

Algorithm 1: Adjusted principal component analysis with scaled observations.

desired outputs of this algorithm are the first principal component û(1) obtained by singular

value decomposition according to Eq. 4.1 and position centroid s̄. it are the indices of segmented

observations. From Eq. 4.3 and Eq. 4.2, the combined computational cost of the entire process

is summarized by

O(n · log(n) +m+mp2 + p3) ≈ O(n · log(n)), n� m� p. (4.13)

4.2 Preliminary Effectiveness Study

Preliminary evaluation of the of the proposed algorithm’s effectiveness was conducted using a

Philips Achieva 3.0 T scanner running Philips MR release 3.2.3. Software restrictions limited 3D

acquisition matrices to a minimal size of 64×64×64 when configuring isotropic scan parameters
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Table 4.1: Parameters selected for orientation scans during the preliminary effectiveness study.

Scan Number 1 2 3 4

TR (ms) 4.5* 37.8 105.0 205.8

TE (ms) 1.9 2.1 2.1 2.2

Scan Time (s) 14.6 121.0 337.2 660.8

Flip Angle (◦) 4.5 13.16 21.76 30.1

for 3D orientation scan acquisitions. To avoid influence from interpolation effects on orientation

data during reconstruction, the reconstruction matrix was also chosen as 64 × 64 × 64 corre-

sponding to an input data size of n = 643. Contrast between tissues was not needed for these

scans, but instead contrast between the signal void created by the device and the surrounding

tissue. This proton density (ρ) weighting requires a relatively long repetition time and relatively

short echo time [17] where TR ∼ T1 and TE � T2.2 Achieving proton density weighting shares

a common requisite with increasing SNR according to Eqs. 2.10 and 2.11, but also requires an

increase in acquisition time. A range of TR values was selected corresponding to theoretical linear

increases of SNR and listed in Table 4.1 to explore the trade-off between algorithm performance

and required scan time.

No signal averaging was performed to minimize total scan duration. Magnitude image data

from these 3D acquisitions was formatted as 64 coronal slices. Remaining MR parameters were

selected to optimize containment of a 310 mm-long, 11-gauge titanium biopsy needle with a

7 mm-bevel tip. A rigid frame of polystyrene was constructed to ensure that the biopsy needle

was placed into a porcine shoulder specimen with a double oblique orientation of 14◦ and 12◦ from

the sagittal and coronal planes respectively. This corresponds to an needle angle of β = α = 18.4◦

from the shared static magnetic field and frequency encoding axis. The head/foot direction was

chosen for frequency encoding to minimize spatial distortion external to the needle according to

Eq. 2.6. Flip angles were calculated based on a typical T1 value for muscle tissue at 3.0T [71]

using the Ernst angle αE given by

αE = arccos [exp (−TR/T1)]. (4.14)

A field of view of 128× 128× 128 mm3 was chosen for a resolution of 2× 2× 2 mm3. To evaluate
2Here, T1 and T2 are taken as the magnetic relaxation time constants of surrounding tissues.
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Table 4.2: Parameters selected for accelerated orientation scans during the preliminary effectiveness

study.

Scan Number 5 6 7 8

TR (ms) 4.4* 37.8 105.0 205.8

TE (ms) 2.1 2.1 2.1 2.2

Scan Time (s) 4.6 39.4 109.0 214.6

Flip Angle (◦) 4.5 13.16 21.76 30.1

the performance of the proposed algorithm using accelerated image techniques, a second table

of scan parameters was selected based on a half-scan ratio of 0.625 and a reconstruction matrix

of 64× 64× 64 with an acquisition matrix of 64× 64× 32 and a voxel size of 2× 2× 4 mm3, as

shown in Table 4.2. The field of view remained unchanged.

The scan protocol described by Tables 4.1 and 4.2 was also performed devoid of needle

placement to provide a baseline from which orientation scans may be subtracted to produce data

for Algorithm 1. Actual needle placement was verified with localizer scans with parameters TR =

11 ms, TE = 5 ms, flip angle = 15◦, slice thickness = 10 mm, FOV = 250×250 mm2, acquisition

matrix = 256× 128, and reconstruction matrix = 256× 256.

4.3 Feasibility Study

Trials were conducted with an experimental set-up demonstrated with previous experiments

[72] and illustrated in Fig. 4.2. Trials were conducted with the experimental setup illustrated

in Fig. 4.2 using a Philips Achieva 3.0 T scanner, an 11-gauge titanium biopsy needle, and an

MR safe projector unit (MRA Inc., Washington, PA, USA). Operator input was collected using

foot-pedal optical switches constructed with plastic and brass to interrupt a 5 mW, 650 nm

multi-mode fiber optic circuit interfaced with an external control PC. The foot pedal layout was

based on a footswitch for the Artis-Zeego interventional fluoroscopy imaging system (Siemens

Healthcare, Erlangen Germany) and illustrated in Fig. 4.3. The layout contains two elevated

push-button switches and a dual rocker style foot switch. The status of individual switches

on the array is sensed by photodiode components (Industrial Fiber Optics Inc., Tempe, AZ,

USA) and detected by microcontroller unit (MCU) (Arduino LLC, Somerville, MA, USA). The

* Values result from ’Shortest TR’ option selected within Philips MR release 3.2.3
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Figure 4.2: Diagram of equipment configuration used for subsequent experiments.

MCU is programed in a loop to check each switch state upon query and transmit a priority

encoded status code asynchronously to a host workstation by means of virtual serial port over

USB. Fig. 4.4 shows a schematic for the fiber optic transceiver constructed to interface the

external control PC with a 1000 µm diameter by 20 m long circuit. A GUI application was

written in the Python computer language to control the scanner according to operator input

using the MatMRI software toolbox. This application was also used to display a visualization of

the procedure inside the scanner room using the connected projector. Three views were aligned

horizontally according to Fig. 4.5 with primary transverse view3 (left) and auxiliary coronal and

sagittal oblique views (centre and right). Image overlay information was included with images

to display a scan time stamp collected at the scanner host as well as image plane coordinates.

The time stamp values collected from metadata headers were comparable to DICOM address

[0008,0032] and [0008,0033] which indicated the time at which imaging is initiated. The image

plane coordinates refered to the centre of the imaging plane with respect to the scanner coordinate

system originating at the scanner isocenter and patient axes. Direction indicators are placed to

ensure an operator’s familiarity with the orientation of each image plane. Images from each

session are stored automatically and available for review using the same interface. A flow chart

3In this work, ’transverse’ refers to the patient anatomical plane so as to avoid confusion with ’axial’ images of a needle

cross section not necessarily oriented parallel to the transverse plane.
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Figure 4.3: Layout drawing for MR-compatible footswitch array.

Figure 4.4: Schematic drawing of a fiber optic transceiver interface.
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Figure 4.5: Screenshot of interface system software GUI while in operation.

depicting the basic operation of the real-time MR scanner control GUI is shown in Fig. 4.6. The

3D orientation scans described in §4.2 were interactively inserted into a time interleaved scan

protocol using MatMRI to update MR sequence parameters [73]. Repetition settings for image

frames within an interleaved cycle could be toggled on demand between the two configurations

shown in table 4.5 so as to trigger a single orientation scan between real-time visualization image

frames.4 A master-slave implementation of interleaved scanning for Philips MR release 3.2.3

limited the minimum number of repetitions of visualization scans to one per interleaved cycle.

Visualization parameters were based on a set for real-time interactive multi-slice visualization of

needle placement taken from Rothgang et al. [29] and noted in Table 4.3.

Orientation scan parameters were chosen according Scan #1 results noted in Table 5.1 reduc-

ing orientation scan time acquisition time to 14.6 s and minimizing workflow interruption. From

Eq. 2.9, using d = 4 mm, eθ = 0.39◦pp, es̄ = 2.38 mm and ROI = 128 mm (corresponding to the

orientation scan field of view), a biopsy needle can be fully visualized across an ROI of 180 mm.

All scanning was performed using the scanner body coil. These configurations were incorporated

into each trial according Fig. 4.7 and Fig. 4.8. Scanning initiated with a single cycle of interleav-

ing configuration B for the collection of a baseline scan which served as a reference from which

subsequent orientation scans were subtracted according to §4.2. Upon each foot pedal command

4Here, the term ’image frame’ describes a multi-stack acquisition with at least one slice per stack.
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Figure 4.6: A flow chart depicting the basic operation of the real-time MR scanner control GUI. Dashed

lines indicate creation of a parallel thread.

Table 4.3: Parameters selected for visualization scans.

Parameter Value

TR 17.6 ms

TE 2.3 ms

Flip angle 30◦

Slice thickness 10 mm

FOV 300× 300 mm2

Acquisition matrix 192× 192

Stacks 1

Slices/stack 3

Time/frame 2.7 s for three frames
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Table 4.4: Parameters selected for orientation scans.

Parameter Value

TR 4.5 ms

TE 1.9 ms

Flip angle 4.5◦

FOV 128× 128× 128 mm3

Acquisition matrix 64× 64× 64

Time/frame 14.6

Table 4.5: Repetition configurations for interleaved scanning.

Repetitions Per Cycle

Visualization Orientation

Configuration A 1 0

Configuration B 1 1

from the system operator, a single cycle of configuration B was queued for immediate execution.

Complete acquisition of an orientation scan preceded calculation of new geometry parameters

during the remainder of the interleaving cycle. The new parameters were calculated according

to Algorithm 1 as well as Eqs. 4.16-4.19 and applied instantly upon restoration of interleaving

configuration A. Orientation scan image data was scaled according to XTC meta-data rescale

slope and rescale intercept values (analogous to DICOM address [0028,1052] and [0028,1053]

respectively) before application of the algorithm as is required for normalization of magnitude

values received from the Philips Achieva 3.0 T [74, 75]. The time required for a complete cycle

Tc of Configuration B and thus the time required to complete scan plane re-alignment is given

by:

Tc = τ1 + τ2 (4.15)

Where τ1 is the time required to obtain one orientation scan image frame (one complete 3D

acquisition) and τ2 is the time required to obtain one visualization scan image frame (one complete

multi-stack acquisition). These times are specified in Tables 4.4 and 4.3.

Fig. 4.9 (a) illustrates the multi-stack scan plane configuration used for needle visualization

given a needle alignment vector û(1) calculated with Algorithm 1. Fig. 4.9 (b) labels the required
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Figure 4.7: A time-interleaved scan protocol for initiating scanning as part of the proposed alignment

technique.

Figure 4.8: A time-interleaved scan protocol for interactively inserting a single orientation scan between

visualization scans in order to calculate and apply new geometry parameters.

(a) (b)

Figure 4.9: Illustrations of (a) multi-stack dynamic scan plane configuration and (b) orientation vectors

that define the geometry of a given slice.
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vectors to determine an individual image slice orientation with orthogonal b̂ row and d̂ column

vectors relative to the scanner coordinate system and centre position calculated as a weighted

centroid of segmented observations according to Eq. 4.12. Eqs. 4.16-4.19 show how row and

column vectors for coronal oblique (red), sagittal oblique (green) and transverse (blue) scan

planes are obtained for this designated with c, s, and t subscripts respectively. x̂, ŷ and ẑ

vectors represent right-left, anterior-posterior and foot-head patient axes.

d̂c = d̂s = − û(1)

||û(1)||
(4.16)

d̂t = ŷ (4.17)

b̂c =
û(1) × x̂

||û(1) × x̂||
(4.18)

b̂s =
û(1) × ŷ

||û(1) × ŷ||
(4.19)

b̂t = x̂ (4.20)

A rigid frame of polystyrene was obtained with inner dimensions measuring 22.0 × 16.5 ×

13.0 cm3 in the head-foot, left-right, anterior-posterior directions respectively and designated as

frame #1. The frame contained a gel phantom created with 5.93 g · L−1 gelatine powder con-

gealed with water. A 6 ml vial of water containing 4.27 mmol · L−1 gadoteridol was inserted into

the centre of phantom. An additional frame of polystyrene was obtained with inner dimensions

measuring 20.3×16.5×19.0 cm3 in the head-foot, left-right, anterior-posterior directions respec-

tively and designated as frame #2. A porcine left shoulder specimen containing skin, fat, bone

and muscle tissue was procured to fit the inner dimensions of the frame. A 12 ml vial of water

containing 0.32 mmol · L−1 was inserted into the centre of specimen.

Un-trained operators (N=3) each participated in two separate trials. The first trial was com-

pleted using frame #1 and the second using frame #2. During each trial, the operators manually

guided the provided biopsy needle tip from arbitrary entry sites of the foot end of the frame us-

ing freehand placement to target a location specified as the conical tip of either vial containing

contrast-enhanced fluid as illustrated in Fig. 4.10. Operators were positioned on the right side

(patient left) of the patient table. Visualization during trials was projected onto a backing sit-

uated on the left side (patient right, according to DICOM patient axes which assume supine
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Figure 4.10: A diagram illustrates needle placement during time trials. Actual frames were opaque and

occluded view of the enclosed specimen.

positioning of the scanner subject) directly adjacent to the opening of the scanner bore. Final

needle tip distance from the target and scan plane alignment were verified using localizer scans

with parameters TR = 55 ms, TE = 2 ms, flip angle = 30◦, slice thickness = 10 mm, FOV =

250× 250 mm2, acquisition matrix = 128× 128, and reconstruction matrix = 256× 256. Oper-

ators wore two levels of hearing protection: earplugs with NRR = 33 (3M Inc., St. Paul, MN,

USA) and earmuffs with NRR ∼ 30 (Koninklijke Philips N.V., Netherlands).
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Results and Analysis

5.1 Preliminary Effectiveness Study

Fig. 5.1 shows the centroid position (s̄) error for each scan. The average error across all

scans reaches a minimum at a threshold value of Γ = 0.21%, marked in Fig. 5.2 corresponding

to m = 551 observations with which the line fitting results of Fig. 5.3, Fig. 5.6 and Fig. 5.7

as well as Table 5.1 were calculated. In the region shown, threshold values exhibit a direct

relationship to the mean radial distance of observations to the needle axis with a correlation

coefficient of r = 0.996. Fig. 5.3 shows a 3D rendering of the line fitting results from Algorithm

1 super-imposed over point cloud observations thresholded at a higher value for illustration. The

transparency of each point in the cloud is rendered according to the corresponding value of wi.

Longitudinal and lateral angle results for individual scans are shown in Fig. 5.4 and Fig. 5.5

respectively. SNR measurements are shown for all scans before baseline subtraction in Table 5.1,

calculated using the conventional ROI method [76] over the same regions for each scan. Line

fittings are individually projected onto the axis of the needle in Fig. 5.6 and Fig. 5.7 along

with corresponding point cloud data. The grid size markings are set according to the orientation

scan voxel size. Patient coordinate axes shown are oblique according to the acute angles of the

needle orientation. An ideal line-fitting result here would be illustrated as a single dot in the

centre of the plot. Fig. 5.8 shows the transverse plane intersection of the inserted biopsy needle

artifact within the porcine shoulder specimen. A smaller signal void from a prior placement is

also visible. Computation time is measured on an Intel(R) Xeon(R) CPU at 2.13 GHz with

12.0 GB RAM and recorded in Table 5.1. H,F,L,R,A,P designations correspond to Head, Foot,
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Figure 5.1: Mean centroid position error of individual scans as a function of threshold value.

Table 5.1: Results and measured SNR for each scan with Γ = 0.21%.

Scan Number 1 2 3 4 5 6 7 8

SNR 21.39 57.34 68.03 97.91 16.09 22.02 24.39 25.26

Lateral Position Error (mm) -2.38 0.11 0.28 0.30 -1.83 -0.76 -0.45 -0.78

Longitudinal Position Error (mm) 2.36 0.79 0.83 0.68 2.88 1.79 1.04 1.50

Lateral Angular Error (◦) 0.34 0.22 0.05 0.04 -0.07 0.89 1.33 0.78

Longitudinal Angular Error (◦) -0.39 -0.26 -0.2 -0.22 -0.6 -0.22 -0.05 -0.375

Computation Time (ms) 10 9 7 8 9 9 8 7

Left, Right, Anterior, and Posterior patient directions respectively for all figures.

5.2 Feasibility Study

The mean targeting error was in-plane and out-of-plane errors were calculated from verifica-

tion scan image data on the basis of coronal planes. The actual needle tip location was manually

determined from verification data as the focal point of signal dephasing around the end of the

needle artifact. The mean targeting error across all directions was 3.6 mm and 5.1 mm for the

phantom trials and ex-vivo trials respectively. The average entry-to-target time was 247 sec.

83% of trials resulted in the needle resting in physical contact with the target vial. Table 5.3

compares trial times from the feasibility experiment results to those of a similar fixed-plane
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Figure 5.2: Mean centroid position error and distance of individual observations averaged across all

scans as a function of threshold value.

Figure 5.3: Algorithm line fitting results for all scans calculated with Γ = 0.21% superimposed over

point-cloud data from scan two segmented with Γ = 0.21%.
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Figure 5.4: Lateral angle of line fittings plotted as a function of threshold value.

Figure 5.5: Longitudinal angle of line fittings plotted as a function of threshold value.
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Figure 5.6: Line fitting results (coloured) and point-cloud data thresholded with Γ = 0.21% from scans

1-4 projected onto the needle axis with Γ = 0.21%.
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Figure 5.7: Line fitting results (coloured) and point-cloud data thresholded with Γ = 0.21% from scans

5-8 projected onto the needle axis.
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Figure 5.8: Verification scan transverse slice.
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study. Mean skin to target time includes the time required for orientation scans. Pre-procedure

imaging time includes the time required for initial scout images and planning/baseline image

acquisition. Alignments are counted as the number of times scan planes are repositioned along

the needle trajectory either before or during placement. Fig. 5.10 compares transverse cross

sections of 3D orientation scan image data collected from 4 cm into the orientation scan field of

view in the patient head direction. SNR measurements for the datasets of Fig. 5.10 (a) and Fig.

5.10 (b) are 150.9 and 29.81 respectively taken over ROIs surrounding the needle artifact.1 SNR

measurements for the datasets of Fig. 5.10 (c) and Fig. 5.10 (d) are 153.1 and 13.1 respectively

taken over an ROI segmented with Γ = 0.21%. Fig. 6.2 plots SAR measurements acquired across

a orientation scan interleaved with visualization scans. SAR measurements were collected from

SAR figure log messages posted to the scanner console General Information System and scaled

according to SAR values reported in corresponding DICOM output. The max reported value for

either visualization or orientation scan when run without interleaving is shown with a dashed

line. dB
dT

measurements for orientation and visualization scans are taken from DICOM address

[0018,1318] are 85.197 T · s−1 and 62.577 T · s−1 respectively. Noise levels during visualization

scan acquisitions were measured to be between 99−101 db(A), while noise levels during orienta-

tion scan acquisitions were measured to be between 98− 100 db(A). Noise levels were collected

from behind the 5-gauss safety line at the edge of the scanner’s fringe field with a VU meter

(MRA Inc., Washington, PA). Fig. 5.9 shows an example of the localizer mechanism aligning

the proposed configuration scan planes along the detected needle trajectory. Table 5.2 shows the

targeting accuracy results for phantom and ex-vivo trials compared to results from similar fixed

plane study [29]. Alignment accuracy results collected during time trial experiments as mea-

sured within visualization images are plotted in Fig. 5.11. A single outlying set of measurements

resulted when the frame was accidentally displaced about 2 mm towards the patient right direc-

tion between orientation scans. The measurements plotted in Fig. 5.11 were used to calculate

parameters for Eq. 2.9 and verify that the biopsy needle was entirely visualized after 93.8 % of

alignments (i.e. in all cases except the aforementioned outlying result). The same calculations

indicate that the average distance of the biopsy needle tip edge from the the slice boundary was

1Because there are insufficient ”noise only” regions for use of the ROI method to compute these SNR values, noise

standard deviation levels are estimated from the corresponding datasets of Fig. 5.10 (c) and Fig. 5.10 (d) and adjusted

by a factor of
√

2.
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Figure 5.9: A comparison of screenshots showing scan plane alignment before and after the control

mechanism is executed.

2.0 mm. Separately collected alignment results acquired at 1 cm increments of insertion length

along two fixed trajectories of (a) 19.4◦ and (b) 9.8◦ from co-aligned static magnetic field and

orientation scan frequency encoding axes are plotted in Fig. 5.12. All alignment results were

calculated from visualization scans using Philips DICOM Viewer R3.0-SP03. Position error was

determined based on the transverse plane images, longitudinal error determined on the basis

of oblique coronal plane alignment and lateral error determined on the basis of oblique sagittal

plane alignment.

Table 5.2: Targeting accuracy comparison between PCA-based alignment mechanism and a similar

study using fixed scan planes.

Mean targeting error (mm)

In-plane

x y Out-of-plane

PCA-based Mechanism Phantom 7.1(±3.5) 4.0(±1.9) 4.0(±3.26)

PCA-based Mechanism Ex-vivo 4.4(±0.5) 2.4(±1.1) 4.0(±0.8)

Rothgang et al. (2013) Phantom 1.6(±1.3) 2.2(±1.9) 1.9(±1.3)

Rothgang et al. (2013) In-vivo Kidney 3.4(±1.7) 2.5(±1.8) 2.2(±2.0)



CHAPTER 5. RESULTS AND ANALYSIS 52

Table 5.3: Procedure time comparison between PCA-based alignment mechanism and a similar fixed

plane experiment.

Time

Parameter PCA Phantom PCA Ex-vivo

Animal

[29] In-vivo

Animal

[29] In-vivo

Patient

Pre-procedure

imaging time

66 sec 66 sec 70 sec 172 sec

Mean planning

time

n\a n\a 6 min± 2

(5 needles)

4 min±

(4 needles)

Entry point

localization time

n\a n\a < 60 sec

Mean skin to

target time

147 sec± 32 269 sec± 347 113 sec± 57 76 sec± 30

Verification

imaging time

226 sec 226 sec 41 sec 23 sec

Alignments 1.3± 0.5 3.3± 1.2 1 1
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(a) (b)

(c) (d)

Figure 5.10: A comparison of transverse cross sections taken from orientation scan data: (a) phantom

before baseline subtraction, (b) ex-vivo specimen before baseline subtraction, (c) phantom after baseline

subtraction, (d) ex-vivo specimen after baseline subtraction.

Figure 5.11: Alignment accuracy results collected during time trial experiments as measured within

visualization images.



CHAPTER 5. RESULTS AND ANALYSIS 54

(a) (b)

Figure 5.12: Alignment results plotted for a range of insertion lengths along an angle (a) 19.4◦ and (b)

9.8◦ from co-aligned static magnetic field and orientation scan frequency encoding axes.



Chapter 6

Discussion

.

6.1 Preliminary Effectiveness Study

The proposed algorithm achieves sub-millimeter and sub-degree accuracy in determining the

position and orientation of a biopsy needle within tissue given the right scan and algorithm

parameters as shown in Table 5.1. Selecting values for TR resulting in SNR as low as 57.34

without any of the acceleration techniques described in Chapter 4 produced the desired result,

however lower values may also produce an acceptable result at a reduced scan time provided

they are beyond the previous data point. Fig. 5.2 shows two competing processes observed in

choosing a threshold value for the initial segmentation of affected voxels: exclusion of noise voxels

vs. exclusion of voxels located in the immediate vicinity of the device. The optimal value of Γ

determined retrospectively in this study may serve as a reasonable guess for future experiments

or one may be calculated based on the volume of the device contained within orientation scan

field of view. The segmented number of points m = 551 corresponds to an equivalent cylindri-

cal volume of 6.4 mm in diameter1 suggesting that observations contribute to the orientation

calculation within roughly 1.4 mm beyond the needle outer diameter. Results from accelerated

scans (#5-#8) exhibited insufficient voxel isotropy to ensure symmetrical signal dephasing in the

vicinity of the needle. All line fitting position errors shown in Fig. 5.6 and Fig. 5.7 are observed

to tend toward signal pile-up effects exhibited along the frequency encoding direction of each

scan according to the expected intensity profile of the needle susceptibility artifact [77]. Sig-

1Based on a needle length across the entire orientation scan field of view at an angle of 20◦.
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nal dephasing surrounding this artifact is exacerbated in scans with minimal Tr values creating

asymmetrical point-cloud projections in scans #1 and #5. Acceleration by parallel imaging with

surface coils was not evaluated due to the implications for restricted access to the specimen. The

heterogeneous distribution of muscle and fat in the vicinity of the needle appears to influence

the segmentation pattern of voxels as projected in Fig. 5.6 and Fig. 5.7.

The minimum scan time required to achieve thesis objective #2 of 14.6 s provides an attractive

alternative to manual scan plane adjustments or cumbersome device registration configurations

which require much longer to prepare. Position error was not considered along the needle axis

in this evaluation as rectilinear translation of the device along this axis is expected subsequent

to localization. The technique could easily be extended to retrieve a second principal compo-

nent to determine optimal double-oblique scan plane orientations for a curvilinear instrument or

directional probe. Given the likelihood of organ/tissue deformation or involuntary patient mo-

tion, multiple baseline scans or motion artifact mitigation techniques such as respiratory/cardiac

gating for orientation scan acquisition may be required during in-vivo studies. The computa-

tion time required to perform the proposed algorithm was observed to be roughly constant and

considered insignificant relative to the total orientation scan acquisition time.

6.2 Feasibility Study

The automated scan plane alignment technique featured in this study has the potential for

incorporation into a simplified workflow for an MR-guided needle intervention. The employed

hardware and software modifications afforded volunteers intraprocedural adjustment of device

trajectory to produce time and accuracy results comparable with those from a similar fixed

plane study. The comparison is not meant to show that the workflow used in this work produces

superior results than those of other studies but that it is technically feasible to achieve desirable

outcomes using the new technique. In-plane targeting error of less than 5 mm is acceptable in

most situations, and approximately this result was obtained from volunteers who were totally

untrained in interventional radiology. Virtually no trajectory planning or entry point localization

time was required as these were chosen arbitrarily during each volunteer attempt. Adequate

imaging quality was attained from use the scanner body coil, maximizing volunteer access to

the specimen. The verification imaging time was increased beyond that of the fixed plane study

to ensure adequately small reconstruction voxel size without use of any acceleration techniques.
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Volunteers were able to control scan plan alignment accurately with five degrees of freedom by

pressing a single switch without use of their hands or necessarily deviating their eyes from the

specimen or visualization screen. The required insertion length for useful scan plane alignment

depended on the angle of insertion as measured from the static magnetic field and from the

frequency encoding axes. At a double oblique trajectory of δ = β = 19.4◦, stable alignment

results were obtained from insertion beyond 6 cm as seen in Fig. 5.12 (a). Short of this length,

the needle artifact diameter was comparable to its length and consequently the direction of

greatest variation among voxels affected by the needle was a less effective indication of true

needle orientation. Between 3 cm and 6 cm of insertion length, the centroid calculation was

most accurate and partial visualization was still possible. Beyond 6 cm, results converge on those

observed in §5.1 for full insertion across the 12.8 cm orientation scan field of view using the same

scan parameters and approximately the same insertion angle. For an oblique trajectory such as

this, dephasing and spatial distortion effects are not symmetrical about the needle axis according

to the passive visualization model discussed in §2.2. The diameter of these asymmetrical effects

tapers towards the tip of the needle where the tip geometry disrupts the continuity of distortion

effects. Consequently, displacement error in the transverse plane increases with the inserted

length of the needle, however angular error decreases due to the parallel formation of the artifact

regardless of diameter.

Eq. 2.1 holds for voxels where transverse magnetization is naturally spoiled to the extent that

the voxel has been segmented along with those corresponding to the needle signal void itself.

Consequently Fig. 5.12 (b) shows reduced angular error with a trajectory more closely aligned

with both B0 and Gf . Angular error in this case is stabilized at an insertion length of about

3.5 cm.

6.2.1 Artifacts

Fig. 6.1(a) shows the effect of aliasing on orientation scan image data across a transverse

cross-sectional image. The needle susceptibility artifact has been intentionally dilated by inser-

tion of an aluminum rod into the needle lumen to enhance the effect. The presence of the biopsy

needle (oriented primarily in the head-foot direction) is erroneously localized on the right side

(patient left) of the image space to the extent that it passes beyond the left hand (patient right)

boundary of the orientation scan field of view. This is an inherent consequence of eliminating



CHAPTER 6. DISCUSSION 58

a) b)

Figure 6.1: Transverse slices of orientation scan data showing the effects common artifacts on detection

of a biopsy needle: (a) aliasing of a dilated needle artifact extending beyond the left side (patient right)

of the FOV, (b) motion artifact around a needle which was withdrawn from the slice volume during

acquisition.

oversampling in phase encoding directions for orientation scan acquisitions to minimize scan

time. The reach of the fold-over is seen to be truncated by the specimen tissue boundary. This

artifact completely corrupts the localization results of Algorithm 1 according to Eq. 4.4 where

factor scores of aliased voxels are offset by a distance equal to the scan FOV. Only aliased tissue

which experiences a change in signal magnitude between scans contributes to this problem. In

other words, erroneous results caused by aliasing artifact can be avoided if interventional device

placement is restricted so that the device susceptibility artifact does not extend beyond the ori-

entation scan FOV. Resizing orientation scan FOV settings to enclose the actual subject tissue

dimensions while the acquisition matrix size remains fixed will preclude the possibility of this

artifact occurring at the cost of lost precision along the dimensions for which the voxel size has

been increased. Spatial presaturation pulses can be added to an orientation scan imaging se-

quence to preemptively excite and dephase signal contribution from the extraneous tissue regions

which could allow fold-over to occur [18].

Fig. 6.1 (b) shows the effect of motion artifact in orientation scan image data in the case

a biopsy needle withdrawn 1.8 cm along the needle axis during scan acquisition. As described

in §2.4.1, motion artifact appears across directions along which spatial encoding iterates over

a sufficiently long period for voxel signal amplitudes to be modulated. Here, ripples of motion
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Figure 6.2: SAR values plotted over a sequence of scans.

artifact span the image space horizontally as the right-left direction was configured for the outer

iteration of phase encoding which takes place over periods of Nz ·Ny ·TR as opposed to Ny ·TR only

for the inner iterations corresponding to the vertical (anterior-posterior) direction. The resulting

localization was shifted by 4.0 mm towards the patient right direction versus only 0.2 mm towards

the posterior direction, as well as 6.53◦ longitudinally versus only 4.18◦ laterally.

6.2.2 SAR Estimates

Whole body SAR values plotted within Fig.6.2 are well within allowable values specified in

Table 2.2. Interestingly, SAR is reported to increase by up to 33% when scans are interleaved in

the manner proposed in §4.3. As mentioned, the Philips model for calculating these estimates

is proprietary and serve as a worst case prediction. The cause of this observed increase is

unclear however it is evident that the Philips SAR model expects delivery of RF energy to be

compounded by rapid interleaving of these two scans. This may become a relevant consideration

should the scan plane alignment technique of this work be employed with spin echo sequences

where increased scan times are required to compensate for increased SAR delivery.

6.2.3 Peripheral Nerve Stimulation

Philips MR release 3.2.3. prompts a ’potential peripheral nerve stimulation’ warning based

on the dB
dt

value of 85.197 T · s−1 for orientation scans reported in §5.2. This warning corresponds

to the IEC first level controlled operating mode limit for time varying magnetic fields implying
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Figure 6.3: The range of possible stimulation duration corresponding to first level controlled operating

mode for the given dB
dt value reported for orientation scans.

gradient dB
dt

is between 80% to 100% of median detection threshold values determined from Eq.

2.21. Although exact stimulus duration (Ω) values are not provided from the MR console, the

corresponding range of possible values from 0.083 ms to 0.110 ms is noted in Fig. 6.3. These

durations provide a large margin of safety between the reported dB
dt

value and the corresponding

IEC cardiac stimulation limits determined from Eq. 2.22 as 555.5 T · s−1 to 732.9 T · s−1. MR

scanners are configured to limit gradients according to IEC requirements, however nerve stim-

ulation has been recorded under the same conditions and even at lower values of time varying

magnetic field [78]. This result may pose implications for employment of orientation scans as

described in Chapter 4. MR examinations must be halted once PNS occurs [1]. A clinicians

motor control may be affected without warning should their peripheral nerves be stimulated

while manipulating interventional instrument, however instrument motion is not advised during

orientation scan acquisition to avoid motion artifact generation.

6.3 Noise

Noise levels measured during orientation scan acquisition are measured to be about the same

as during visualization scans and are consistent with values reviewed in §2.6.3. This confirms

that there is no added noise safety hazard posed to a scanner operator during employment of

the orientation scan alignment technique. This rhythm is clearly audible through both levels of

hearing protection (NRR ∼ 63). The rhythm of noise emitted from the scanner during orientation
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scan acquisition is distinct from that of visualization scans giving feedback to the operator about

exactly when the orientation scan is initiated and when the visualization scans have resumed.

The rhythm of audible noise during visualization scans likewise allows the operator to adjust their

hand motions for the effective latency of visualization images presented after their acquisition is

complete.

6.4 Comparison With Other Solutions

Marketing material for GE MR echo and HeartVista Inc. RTHawk show scan plane alignment

changes taking effect within seconds using a ’drop-line’ tool for perpendicular slice navigation

though use of hands is required [79, 80]. A study on pulse sequence switching with GE iDrive

interface using a 1.5T Signa Excite timed an operator switching quickly between two sequences

for a mean of up to 28 seconds over three attempts without having to actually modify any

parameters. In the same manner, an MR Technologist was timed at the Philips Achieva 3.0 T

running Philips MR to arrange a multi-stack configuration of scan planes in the same relative

orientation as described in §4.3 along arbitrary double oblique orientations. The mean over

three attempts was Tm = 140.9 s. The measured technologist manual alignment time can be

extrapolated according to Fig. 1.1 where each iteration of manual alignment requires a restart of

the scanner with prerequisite shimming process as well as scout images requiring an additional

Ts = 38 s. An estimate of the net time savings acquired during the phantom and ex-vivo studies

is calculated to be 213.85 sec and 582.85 sec respectively according to the following expression:

(Ts + Tm − Tc)× a (6.1)

where a is the average number of alignments performed taken from Table 5.3 and Tc is the time

required to employ the scan alignment mechanism calculated in Eq. 4.15. The average total

time for needle placement was 213 sec and 335 sec for phantom and ex-vivo trials respectively.

6.5 Limitations

The orientation scan alignment technique described in this technique does not fully address

two aspects of device placement which are significant considerations for incorporation into inter-

ventional workflows: motion and device tip localization.
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6.5.1 Motion

As discussed in §2.4.1, tissue motion that modulates signal amplitude during orientation scan

acquisition creates artifacts across the phase encoding directions of the image space. For a 3D

orientation scan with two dimensions of phase encoding which are perpendicular to the static

magnetic field, this artifact is manifested as transverse planes of erroneous magnitude informa-

tion which intersect the affected voxels. This effect would be particularly detrimental to the

PCA calculations employed in this work where noisy pixels would not necessarily be localized in

close proximity to the actual trajectory and contribute disproportionately to the calculation of

principal component according to Eq. 4.4. During feasibility study experiments, volunteers were

instructed not to reposition the biopsy needle during orientation scan acquisition. Additional

sources of tissue motion could include periodic respiratory or cardiac motion as well as aperiodic

patient movement.

Because image magnitude values are subtracted from a baseline, any change in voxel signal mag-

nitude between orientation scans will also have an effect on the localization results. This effect is

restricted to the regions in which the signal magnitude change has occurred including deforma-

tion of organs or tissue around the device trajectory. Other signal magnitude changes that occur

during or between orientation scans aside from those directly generated by the placement of a

device would most likely result from some form of involuntary tissue motion but also possibly

from image artifacts such as cross-talk from preceding acquisitions in a time-interleaved scan

protocol. For example, the multislice visualization images employed in this work are themselves

interleaved within their acquisition independently from the time-interleaving settings of Table

4.5. This can potentially result in regions of reduced signal level within subsequent orientation

scan image data which could register as motion upon subtraction of this data from a baseline

dataset. There is a wide variety of motion compensation techniques can be employed to deal with

the problem of motion in MR [31]. Respiratory or cardiac gating can be utilized to collect signal

in small increments in sync with periodic motion at an increased overall scan duration. One

dimensional navigator acquisitions can be interleaved amongst visualization scans to track peri-

odic motion cycles as part of a multi-baseline motion correction approach [81]. This technique

could be adapted such that subtraction of orientation scan data could be calculated in refer-

ence to the most appropriate baseline dataset within a look-up table corresponding to different
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phases of the motion cycle. The effects of aperiodic motion could be remediated by other signal

conditioning techniques in addition to segmentation by thresholding as used in this work. Such

strict thresholding (Γ ∼ 0.2%) relies on an assumption that the greatest contrast in an image

dataset occurs between tissue (ideally ρ-weighted) and the signal void created by the presence

of a titanium needle. However, additional clusters of voxel position vectors may be erroneously

included by this technique in the case of independently moving organs. K-means clustering [82]

could be used to iteratively group point clouds around their respective centroids and the cluster

most closely corresponding to the device position automatically determined based on a priori

knowledge of the expected device trajectory.

6.5.2 Needle Tip Localization

Although the centroid position (s̄) calculated with Algorithm 1 localizes the centre of a

biopsy needle artifact along the needle axis, one of the most critical aspects of biopsy needle

placement is tracking the needle tip. Setting a visualization scan FOV wider than the insertion

length of the needle ensures complete visualization of the tip provided scan plane alignment is

adequate. In this approach, proper placement of the needle tip is left up to an interventionalist

and confirmed manually with verification scans. Assumptions about the tip position relative to

the calculated centroid location are problematic as the contrast of surrounding tissues along the

length of the needle is potentially non-uniform. Needle tip bloom artifact and partial volume

effects complicate matters further by obscuring representation of the tip end. Fig. 6.4 (a) shows

that the signal void of the needle is well pronounced at a point along the length of the needle,

however bloom dephasing affect voxel signal magnitudes less starkly around the tip as shown in

Fig. 6.4 (b) and ahead of the tip shown in Fig. 6.4 (c), thus localization towards the needle

end point becomes difficult. In light of these challenges, the position accuracy results of §5.1

have been limited error calculations to orthogonal distance from the true needle axis. Negative

contrast from passive susceptibility markers shown in Fig. 4.1 are an example of visualization

features built into a device that may help with tip localization. Despite the drawbacks of active

tracking techniques discussed in §3.1, the positive contrast of resonant markers fixed on the

needle at distances relative to the tip would produce image datasets compatible with Algorithm

1.
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(a) (b)

(c)

Figure 6.4: Comparison of surface plots for orientation scan image data transverse cross sections at (a)

a midpoint of the biopsy needle showing signal void, (b) needle tip with surrounding bloom artifact and

(c) bloom and dephasing artifact 2 mm ahead of the needle tip.



Chapter 7

Conclusion

This chapter provides brief conclusions about the achievements of the work with respect to

the objectives outlined in §1.3, along with recommendations for potential applications of the

developed system are discussed.

7.1 Achievements of This Work

An MR image-based localization mechanism has been presented to determine the position

and alignment of a linearly shaped interventional device entirely from 3D MRI orientation scan

image data and visualize the device accordingly to satisfy Objective #1. The performance of

the localization algorithm was demonstrated over a range of scanning parameters to be adequate

for potential applications such as dynamic scan plane alignment for MR-guided interventions

or placement verification for MR-guided prospective stereotaxy. With respect to Objective #2,

device localization was adequate to contain a biopsy needle within a visualization slice volume

after 93.8% of alignments over insertion lengths between 30 mm to 110 mm at insertion angles

between 1.4◦ to 20◦ from the static magnetic field and frequency encoding axes. The algorithm

was incorporated into a biopsy needle tracking system implemented with an MR-scanner operated

by a footswitch only to satisfy Objectives #3 and #4. Time trials produced a mean targeting

error across all directions was 3.6 mm for the phantom trials and 5.1 mm for the ex-vivo trials

respectively. The average entry to target time was 247 sec.
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7.2 Future Work

The technique proposed in this work shows potential for incorporation into existing inter-

ventional workflows to yield reduced procedure times, increase the sensitivity of biopsy results

and otherwise increase the accuracy of interventional device placement. An in-vivo study is

required to assess the tolerance of the proposed method under conditions of patient motion. Al-

though designed for biopsy needle artifacts as a representative interventional device, this system

can potentially operate with any phenomena which can be segmented from image data such

as thermometry mapping, acoustic radiation force imaging (ARFI), or contrast-enhanced MR-

angiography(CE-MRA). Only a change of input data is required to begin experimenting with

these imaging techniques and calculating the optimal visualization there-of.
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Appendix A

A.1 Description of Specialized Interventional Scanner Units

Major diagnostic imaging device vendors (GE Healthcare, Siemens Healthcare, Philips Health-

care, Toshiba Medical Systems Corporation) provide solutions for interventional image guidance

including specially designed scanner units. The GE Signa SP offers an upright ’double donut’

scanner configuration providing clinicians with direct access to patients through a 58 cm hori-

zontal gap between segmented 60 cm diameter bore sections. The separate static field magnets

and gradient coils are positioned to remotely influence a 30 cm diameter imaging volume at 0.5 T

static field strength, 12 T · (m · s)−1 slew rate and 12 mT ·m−1 gradient field strength [1]. En-

tirely open bore scanners such as the Philips Panaroma HFO gives broad patient access between

two 160 cm diameter magnets, set 40 cm apart vertically to produce a vertical magnetic field of

1.0 T, a slew rate of 80 T · (m · s)−1 and a 26 mT ·m−1 gradient field strength [83]. Wide bore di-

ameter scanners are available in 3 T field strengths such as the Toshiba Vantage Titan 3.0 T with

a 70 cm diameter bore, slew rate of 170 T · (m · s)−1 and gradient field strength of 33 mT ·m−1.

[84, 85]. Finally, short bore scanners improve patient access over closed bore diagnostic units

due to their reduced length in the head-foot direction such as 125 cm for the Siemens Magnetom

Espree with field strength of 1.5 T, slew rate of 170 T · (m · s)−1 and gradient field strength of

33 mT ·m−1. The aforementioned specialized scanner installations are discussed in the context

of having a surgical environment co-located with a scanner environment, however other intra-

operative suite designs are possible.1 The IMRIS Visius iMRI surgical theater commissions a

1The term ’intra-operative MRI (iMRI)’ is often used in literature synonymously with real-time imaging as is used in

this work, however the term can also entail ’in-and-out’ imaging where the patient is temporarily moved outside of the

scanner bore during device placement.
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Siemens 3.0 T movable magnet scanner with slew rate of 200 T · (m · s)−1 and gradient strength

of 45 mT ·m−1 on a sliding ceiling mount and can be removed from around the patient table

during device placement [86]. Movable patient positioning systems are also available to transfer

patients between imaging and surgical environments located in the same or adjoining rooms to

facilitate the intra-operative imaging process [87].

A.2 Additional Background for Principal Component Analysis

Principal Component Analysis (PCA) is a widely used tool for statistical analysis of mul-

tivariate data in which linearly independent factors (principal components) are calculated as a

basis upon which observed data can be projected to exhibit the greatest variation [64]. These

components consist of linear combinations of the original variables and exhibit orthogonality.

PCA is useful for dimension reduction where the principal components which span the least

variation amongst variables may be discarded to create a useful representation for visualization

or comparison of observations. The PCA concept is summarized as follows.

• Collect n p-variable observations R = (r(1), r(2), ... , r(n)).

• Determine the vector û(1) along which the greatest variation of observation data occurs to

be the first principal component in order of significance.

• Repeat the previous step subject to constraint of orthogonality p− 1 times until only one

vector û(p) remains as the last principal component in order of significance.

• Project data R onto principal components with a linear transformation U = (û(1), ... , û(p)).

• Discard least significant elements of each observation as is justified to create a variable-

reduced approximation of data.

Determining a unit vector v̂ representing the direction of greatest variation is a problem of

maximizing the variance of projections, also called factor scores, onto an axis parallel to v̂ by

mean-centered observations [88]. The variance of these projections can be described by:

1

n− 1

n∑
i=1

(
r(i)T v̂

)2

=
1

n− 1

n∑
i=1

v̂T r(i)r(i)T v̂ (A.1)

= v̂T

(
1

n− 1

n∑
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r(i)r(i)T

)
v̂ (A.2)
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Figure A.1: A graphical example of a principal component analysis result based on independent variables

x and y.

= v̂T (C) v̂ (A.3)

C =
(

1
n−1

∑n
i=1 r(i)r(i)T

)
is an empirical covariance matrix which yields eigenvector matrix

of principal components U = (û(1), ... , û(p)) with associated eigenvalues λ = (λ1, ... , λd) in order

of size by singular value decomposition [65]. Because v̂ is subject to the constraint ||v̂||2 = 1,

the maximum variance is obtained from selecting v̂ as û(1), the first principal component vector.

The orthogonal distance from each observation onto the first principal component axis

r(i)−
(
r(i)T û(1)

)
û(1) (called a residual) is a composite of remaining principal component vectors

(û(2), ... , û(p)) and is minimized across all observations as illustrated in Fig. A.1). This out-

come of principal component analysis is desirable for calculating a line of best fit from isotropic

orientation scan data as error is assumed to exist in all dimensions of observation data unlike

least-squares linear regression techniques [89]. The contribution ψi,j of the i-th factor score f to

the calculation of component j with associated eigenvalue λj is given by:

ψi,j =
f 2
i,j∑n
k f

2
k,j

=
f 2
i,j

λj
(A.4)

where fi,j =
(
û(j)
)T

r(i) and λj =
∑n

k f
2
k,j. Eq. A.4 shows an important characteristic of PCA, it

is sensitive to the presence of outliers amongst observations. As an observation is moved further
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from the mean in terms of factor score, its contribution to a corresponding principal component

is squared [69].

The computational complexity of completing a principal component analysis is dominated by

the covariance matrix calculation with O(np2) [67] where n is the number of observations and

p is the observation vector dimensionality. Subsequent calculation of eigenvectors as principal

component vectors from the covariance matrix comes with an additional computational cost as

high as O(p3) [90]. The combined computation cost is given in Eq. A.5.

O(np2 + p3) ≈ O(n), n� p (A.5)
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