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Abstract 

Increasing fossil fuel prices, electricity demand, and global concern for greenhouse 

gas emissions have increased interest and research of novel renewable energy technologies. 

Renewable solar-photovoltaic (PV) systems are known for their ability to directly convert 

solar energy into electrical energy, however, their performance degrades when operating at 

elevated temperatures. Thus, decreasing the temperature of PV modules using efficient 

cooling methods tend to improve their overall efficiency and increase power production. 

Thermoelectric power generation (TEG) technology has the innovative capability to convert 

a portion of the waste-heat energy dissipated from PV systems directly into electricity, and 

simultaneously reduce the PV systems operating temperature. Hybrid photovoltaic-

thermoelectric power generation (HPV-TEG) systems integrate TEG modules with a PV 

module to form a more efficient power generation system. There has been a lack of research 

that has explored this hybrid concept and characterized in detail the performance of HPV-

TEG systems. Therefore, the main objective of this research work is to investigate the 

viability and performance characteristics of a HPV-TEG system through detailed numerical 

and experimental studies. Numerical simulations showed that the HPV-TEG system was able 

to generate more electricity than a conventional PV system while operating at high solar 

radiation intensities and ambient temperatures. Two HPV-TEG test setups (indoor & 

outdoor) were designed, constructed and fully instrumented in order to achieve the main 

objective of this research. Detailed indoor and outdoor experimental tests and case studies 

were consistently performed. Optimization of the HPV-TEG system showed that the addition 

of an aluminum layer increased the PV and TEG power output by approximately 6.9% and 

350%, respectively. The infrared thermal imaging results showed that the HPV-TEG systems’ 

cooling system efficiently reduced the systems’ operating temperature. In the outdoor tests, 

the HPV-TEG systems’ minimum and maximum overall daily efficiency were 3.68% and 

9.45%, respectively. For all the tests, it was found that the daily electrical energy output from 

the HPV-TEG system was always higher than the conventional PV system (in one case about 

6.4% higher). Finally, a predictive sizing correlation was developed to estimate the power 

density generated by an HPV-TEG system as a function of solar radiation, ambient air 

temperature, and TEG’s coolant inlet temperature. A conceptual scheme was also proposed 

in this study for large-scale application using the promising green HPV-TEG technology.  
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P  Power (W) 
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Chapter 1: Introduction 

1.1 Environmental Issues and Renewable Energy Technologies 

In today’s society, there has been an increasing awareness of climate change and 

environmental issues pertaining to air pollution and global warming. According to the United 

Nations Framework Convention on Climate Change (UNFCCC), climate change can be defined 

as an alteration of the composition of the global atmosphere that is attributed directly or 

indirectly to human activity, in addition to natural climate variability observed over 

comparable time periods [1]. Although climate change can be the result of natural forces, 

such as changes in solar radiation and volcanic eruptions, recent scientific and socio-

economic studies have shown that the use of fossil fuels by humans has directly contributed 

to climate change by releasing greenhouse gases (GHGs) into the atmosphere. Ever since the 

Industrial Era, many technologies have relied on fossil fuels to operate and these 

technologies have emitted large amounts of carbon dioxide (CO2), methane (CH4), nitrous 

oxide (N2O) and other greenhouse gases [2]. Research conducted by the Carbon Dioxide 

Information Analysis Center has examined that the amount of carbon dioxide released due 

to the use of fossil fuels has been increasing exponentially from 1750 to 2010, as seen in 

Figure 1.1 [3].  

Greenhouse gases, especially carbon dioxide, trap thermal energy inside the Earth’s 

atmosphere, leading to an overall increase in the Earth’s temperature. One method of 

measuring this phenomenon is to analyze the radiative forcing (RF) of a greenhouse gas. 

Radiative forcing is the net change in the energy balance of the Earth system in response to 

an external effect or force. A positive radiative forcing means that the external effect is 

increasing the rate at which the Earth is absorbing energy by the Sun’s radiation, and a 

negative radiative forcing decreases this rate. Data provided by the Intergovernmental Panel 

on Climate Change, shown in Figure 1.2, displays the change in radiative forcing of multiple 

agents from 1750 to 2011. The total radiative forcing for carbon dioxide and other well-

mixed greenhouse gases (WMGHS) is approximately 2.8 W/m2. The total change in radiative 

forcing due to human activity is estimated to be 2.25 W/m2, while the change in radiative 

forcing due to natural causes is considered to be minimal [4]. This scientific study  
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Figure 1.1: Global CO2 emissions per year due to fossil fuel combustion from 1750-
2010 [3]. 

 

Figure 1.2: Radiative forcing change from 1750 to 2011 [4]. 
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emphasizes that human activities have significantly modified the Earth’s natural energy 

balance. Global warming, the negative consequence of increasing the energy absorbed by the 

Earth, is evident when analyzing the recent increase in sea level, ocean temperatures, 

atmospheric carbon dioxide concentration, and the recent decline in Arctic sea-ice level [2]. 

Further evidence of global warming is demonstrated by the Earth’s steadily increasing 

surface temperature as shown in Figure 1.3. The use of fossil fuels must be decreased 

substantially in order to regulate the amount of greenhouse gases emitted. 

Global investment in renewable and clean energy technologies is thought to be a solution 

to reducing greenhouse gas emissions, while also meeting the growing demand for electrical 

energy. Figure 1.4 shows that the global electricity generation and demand has been 

gradually increasing from 1970 to 2011. Furthermore, the majority of electrical energy 

production is dependent on the use of fossil fuels. Renewable energy systems such as solar, 

wind, geothermal, and others rely on natural resources to generate electrical energy while 

releasing minimal quantities of greenhouse gases and pollutants. In comparison, renewable 

energy systems generate far less electricity than fossil fuel and nuclear energy systems. For 

example, estimates of global electricity production at the end of 2013 have suggested that 

renewable systems only account for 22.1% of the market, while fossil fuels and nuclear 

energy systems account for 77.9% [5]. Nevertheless, the electricity generated from 

renewable and alternative energy systems has been increasing and is projected to increase 

in the near future, as seen in Table 1.1. Extensive research studies on the optimization of 

alternative energy systems have been ongoing in order to increase the overall efficiency, 

performance, and reliability of these systems. As a result, the feasibility and practicality of 

implementing solar, wind, and geothermal, and other systems in industrial, commercial and 

residential sectors have increased. Further improvement in the performance of renewable 

energy systems, in particular solar energy, is required for these systems to become a 

competitive alternative to fossil fuel technologies.  

 

 

 



 

Figure 1.3: Annual global-mean temperature from 1880 to 2013 [6]. 

 

Figure 1.4: World electricity generation (TWh) from 1970 to 2011 for various energy 
sources [7].  

Table 1.1: World renewable electricity production (GW) and future projection [8]. 

 

Year 2011 2012 2013 2014 2015 2016 2017 2018
Hydropower 1071 1102 1138 1173 1209 1249 1291 1330
Wind 236 282 321 268 413 459 508 559
Solar PV 69 98 128 161 194 230 268 308
Geothermal 11 11 12 12 13 14 14 15
Ocean 1 1 1 1 1 1 1 1
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1.2 Fundamentals of Solar Photovoltaic Systems 

1.2.1 Photovoltaic Cells 

The process in which a single-junction photovoltaic (PV) cell converts sunlight into 

electrical energy is dependent on the incident energy of a photon, and the material 

properties of the PV cell. The solar radiation projected onto a photovoltaic cell may be 

characterized into smaller energy units known as photons. The energy of a photon is given 

by [9]: 

 𝐸𝑛𝑝ℎ𝑜𝑡𝑜𝑛 = ℎ𝑃𝑣 (1.1) 

where, hP is the Plank’s constant (6.25 x 10-34 J·s), and v is the frequency (1/s) of the photon 

determined by the following equation [9]: 

 
𝑣 =

𝜆

𝑐
 

(1.2) 

where, c is the speed of light (3 x 108 m/s), and 𝜆 is the wavelength (m) of the photon. As 

seen in Figure 1.5, a photovoltaic cell consists of an n-type semiconductor, p-type 

semiconductor, p-n junction, and an electrical load. The n-type semiconductor may be 

created by doping crystal-silicon with small impurities of phosphorus, and the p-type 

semiconductor being doped crystal-silicon with small quantities of boron. By doing so, the 

n-type semiconductor has an excess amount of electrons (negatively charged), and the p-

type semiconductor has an excess amount of holes, the void spaces in the crystal structure 

that electrons may occupy (positively charged) [9]. When the n-type and p-type 

semiconductors are directly connected, they form a layer called the p-n junction. Diffusion 

will occur at the p-n junction, meaning the holes from the p-type semiconductor will move 

into the n-type semiconductor, and the electrons from the n-type semiconductor will move 

into the p-type semiconductor. However, not all holes and electrons will diffuse, resulting in 

a high concentration of holes at the bottom of the n-type semiconductor, and a high 

concentration of electrons at the top of the p-type semiconductor. As a result of this diffusion, 

an electric field is created at the p-n junction that stabilizes the diffusion flow and establishes 

an equilibrium state [10].  

When an incident photon is absorbed by the valence electron in the atom of the n-type 

semiconductor material, the energy of the electron increases by the energy of the photon. If 

the energy of the incident photon is equal to the band gap of the semiconductor, the electron  
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Figure 1.5: Schematic of the major components of a photovoltaic cell. 
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is freed from the atom, creating an electron-hole pair. If the absorbed photon’s energy is 

greater or less than the band gap, the kinetic energy of the electron is increased, resulting in 

an increase in temperature of the photovoltaic cell [11]. When the n-type and p-type 

semiconductor are connected using an electrical circuit, the freed electrons may flow 

through the circuit to the p-type semiconductors. This flow of electrons through the circuit 

creates electrical current that can be used to power an electrical load.  

Photovoltaic cells are the fundamental component of a photovoltaic system [12]. 

Photovoltaic modules are comprised of several photovoltaic cells connected electrically in 

series or in parallel, depending on the demanded power specifications. Photovoltaic modules 

can be connected in series or parallel to form a photovoltaic array. An illustration of a 

photovoltaic cell, module and array is depicted in Figure 1.6. 

Solar photovoltaic (PV) systems are a renewable energy technology that has several 

advantageous characteristics. The major advantage of a photovoltaic system is its ability to 

directly convert the Sun’s solar energy into electrical energy. In addition, PV systems emit 

zero pollution when operating, are reliable, have a long operating life, have no mechanical 

moving parts, and require little to no maintenance once properly installed. They are also an 

extremely adjustable power source, generating microwatts to megawatts, depending on the 

size of the PV system and the required application [11]. Photovoltaic cells are made from a 

variety of semiconductor materials including silicon (Si), cadmium telluride (CdTe), 

cadmium sulfide (CdS), and gallium arsenide (GaAs) [9, 12]. The atomic structure of silicon 

photovoltaic cells may be crystalline, multicrystalline or amorphous [13]. Crystalline silicon 

has an ordered crystal structure in which the atoms are in the ideal position. Therefore, the 

manufacturing process is very accurate and expensive. Multicrystalline, also known as 

polycrystalline silicon, is a less expensive material due to its lower manufacturing cost. 

However, multicrystalline silicon has grain boundaries that reduce the performance of the 

photovoltaic cell by providing effective recombination sites and creating recombination 

losses. Amorphous silicon may be produced at a cost lower than polycrystalline, but the 

structural arrangement of the material establishes areas where disconnected bonds occur. 

These disconnected bonds decrease the flow of electrons within the semiconductor material 

and make the doping process more difficult [14].  
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Figure 1.6: Schematic of a photovoltaic cell, photovoltaic module, and photovoltaic 
array. 
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Photovoltaic cells may be categorized by type, such as single-junction, multijunction, 

and thin-film. Single-junction photovoltaic cells consist of a single n-type and p-type 

semiconductor layer and are limited in efficiency due their inability to convert a large range 

of photon wavelengths into electrical energy. Multijunction photovoltaic cells consist of 

subcells with different band gaps connected in series or in parallel, allowing a larger range 

of photons to be absorbed from the solar spectrum and establishing a relatively high energy 

conversion efficiency [15]. Thin-film photovoltaic technologies made from such materials as 

amorphous silicon, silicon germanium alloys, and microcrystalline silicon vary in thickness 

from hundreds of nanometers to a few micromobeters [16, 17]. Thin-film silicon 

photovoltaics have seen tremendous growth in recent years due to the low quantity of silicon 

material required, low production costs, relatively high energy conversion efficiency, and 

ease of design and installation in photovoltaic modules [17].  

1.2.2 Power Generation Characteristics of Photovoltaic Systems 

 The performance of a photovoltaic cell or module may be characterized using the 

current vs. voltage (I-V) profile, as shown in Figure 1.7. The I-V curve is typically generated 

under the standard operating condition at an incident irradiance intensity GT equal to 1000 

W/m2 at an Air Mass (AM) 1.5 spectrum with an operating photovoltaic cell temperature Tcell 

of 25 ⁰C [18]. The AM spectrum is a standardized irradiance spectrum profile, where AM zero 

is the solar spectrum outside the Earth’s atmosphere, and AM 1.5 is the sea-level solar 

radiation spectrum [19]. The point at which the photovoltaic module operates on the I-V 

curve is dependent on the electrical load resistance. The short-circuit current Isc is the 

current value when the voltage is zero (V=0), and the open-circuit voltage Voc is the point on 

the I-V curve where the current is zero (I=0). The power output at any point on the I-V curve 

may be determined using Ohm’s law: 

 𝑃𝑃𝑉 = 𝐼𝑃𝑉  𝑉𝑃𝑉 (1.3) 

 The maximum power point, as shown in Figure 1.7, is the point on the P-V curve where the 

maximum photovoltaic module or cell power output occurs [20]: 

 𝑃𝑃𝑉,𝑚𝑝 = 𝐼𝑃𝑉,𝑚𝑝 𝑉𝑃𝑉,𝑚𝑝  (1.4) 

The change in power output with respect to current and voltage is zero at the maximum 

power point [21, 22]: 



 

 

 

 

 

 

 

Figure 1.7: Typical current and power vs. voltage (I-V & P-V) curve of standard 
photovoltaic module based on experimental data. 
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 𝑑𝑃𝑃𝑉,𝑚𝑝

𝑑𝐼
= 0 

(1.5) 

 𝑑𝑃𝑃𝑉,𝑚𝑝

𝑑𝑉
= 0 

(1.6) 

 There are several factors that significantly influence the performance of a 

photovoltaic cell. These factors include the incident irradiance intensity and the photovoltaic 

cell temperature. The I-V and P-V curves of a typical PV cell operating at various irradiance 

intensities and at a constant cell temperature are shown in Figure 1.8. The open-circuit 

current and the maximum power point increases as the irradiance intensity increases. 

Figure 1.9 depicts the I-V and P-V curves of a typical photovoltaic cell operating at various 

temperatures with a constant irradiance intensity. This figure emphasizes that decreasing 

the photovoltaic cell temperature increases power output. Therefore, maintaining a low cell 

temperature is beneficial in order to maximize the overall performance of a photovoltaic 

system.  

Besides temperature and irradiance intensity, the efficiency of a photovoltaic cell is 

dependent on the semiconductor material, and the quality of the manufacturing process of 

the photovoltaic cell. In recent years, research and development has produced more efficient 

photovoltaic cells to maximize power output. Figure 1.10 illustrates the history of the 

highest confirmed energy conversion efficiencies of research photovoltaic cells. The energy 

conversion efficiency of a photovoltaic system may be expressed as the ratio of the actual 

power generated and the total solar irradiance projected onto a photovoltaic system [23, 24]. 

The energy conversion efficiency of a photovoltaic system may defined as [24, 25, 26]: 

 
𝜂𝑃𝑉 =

𝑃𝑃𝑉

𝐺𝑇  𝐴𝑃𝑉
 

(1.7) 

The maximum power point efficiency of a photovoltaic system may be expressed as [9, 27]: 

 
𝜂𝑃𝑉,𝑚𝑝 =

𝑃𝑃𝑉,𝑚𝑝

𝐺𝑇 𝐴𝑃𝑉
=

𝐼𝑚𝑝𝑉𝑚𝑝

𝐺𝑇 𝐴𝑃𝑉
 

(1.8) 

The maximum power point efficiency and temperature of a photovoltaic cell or module may 

be expressed as a linear relationship [28]: 

 𝜂𝑃𝑉 = 𝜂𝑇𝑐𝑒𝑙𝑙,𝑟𝑒𝑓[1 − 𝜇𝑚𝑝,𝑟𝑒𝑓(𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑐𝑒𝑙𝑙,𝑟𝑒𝑓)] (1.9) 

where, 𝜂𝑇𝑐𝑒𝑙𝑙,𝑟𝑒𝑓 is the efficiency of the cell or module at the reference temperature, and 

𝜇𝑚𝑝,𝑟𝑒𝑓 is the maximum point efficiency temperature coefficient. The maximum point  
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Figure 1.8: Typical I-V and P-V curve of photovoltaic cell at various irradiance 
intensities and constant photovoltaic cell temperature. 

 

 

 

 

Figure 1.9: Typical I-V and P-V curve of photovoltaic cell at various temperatures at a 
constant irradiance intensity. 
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Figure 1.10: Conversion efficiencies of research PV cells from 1976- 2015 [29]. 
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efficiency temperature coefficient typically ranges from 0.2-0.45 %/K depending on the 

photovoltaic cell or module’s material and design [30].  

The Fill Factor of a photovoltaic system may be defined as the ratio of the maximum 

power output and the product of the open-circuit voltage and short-circuit current as given 

by [31, 32, 33, 34]: 

 
𝐹𝐹 =

𝐼𝑃𝑉,𝑚𝑝𝑉𝑃𝑉,𝑚𝑝

𝑉𝑃𝑉,𝑜𝑐 𝐼𝑃𝑉,𝑠𝑐
 

(1.10) 

The Fill Factor is a dimensionless parameter that represents how closely the performance 

characteristics of a PV system resemble an ideal PV system [35]. The Fill Factor decreases 

significantly with cell temperature, highlighting that an increase in the cell temperature 

negatively affects the energy conversion efficiency of a PV system [30]. The maximum power 

point efficiency of a photovoltaic system may also be defined in terms of the Fill Factor [31, 

32, 33]:  

 
𝜂𝑃𝑉,𝑚𝑝 =

𝐹𝐹 𝑉𝑃𝑉,𝑜𝑐 𝐼𝑃𝑉,𝑠𝑐

𝐺𝑇  𝐴𝑃𝑉
 

(1.11) 

1.2.3 Improving PV Systems Performance 

One of the principle limitations in the power output of a photovoltaic system arises 

when the system is installed in a geographical location with low solar radiation potential. 

Sun tracking systems typically increase the performance of a photovoltaic system by 

increasing the annual incident irradiance projected onto the PV array(s). These tracking 

systems position the PV array in the optimal position to increase the amount of solar energy 

collected. Solar tracking systems may be categorized as one-axis, or two-axis trackers. One-

axis trackers include azimuth, inclined, and horizontal axis trackers, while two-axis trackers 

can be divided into polar and azimuth/elevation trackers [36]. Tracking systems generally 

increase the annual output of photovoltaic systems between 30 to 60% depending on the 

geographical location [36, 37]. The practicality of installing a sun tracker is significantly 

influenced by the capital and maintenance cost of the tracking system, tracking accuracy, and 

the amount of power consumed by the tracking system. The application of Sun trackers is 

more feasible at geographical locations where the Sun remains high on the horizon, generally 

at latitudes between +300 and −300 [38].  
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 Concentrated photovoltaic (CPV) systems use lenses or mirrors to effectively 

concentrate incident solar radiation onto relatively small photovoltaic cells. The required 

photovoltaic module area is reduced due to the concentration of the irradiance intensity, 

reducing the total cost of the photovoltaic system. The Fresnel lens is commonly used in 

concentration photovoltaic systems as it is light-weight, robust, and possesses a relatively 

high optical efficiency [39]. The concentration irradiance uniformity, operating temperature 

of the photovoltaic cells, and the accuracy of the tracking system are some of the operating 

factors that significantly impact the performance of concentrating photovoltaic systems. 

Photovoltaic cells require a uniform irradiance flux distribution to obtain optimal 

performance. Therefore, it is desired to have lenses or mirrors that have high optical 

properties that can provide a uniform flux distribution [39]. As previously mentioned, the 

efficiency of photovoltaic cells is reduced when operating at elevated temperatures. 

Furthermore, high temperatures can cause optical and material degradation, resulting in a 

decrease in performance and permanent structural damage [27, 40]. During operation, the 

temperature of CPV cells is typically well above the ambient air temperature. Passive or 

active cooling is recommended for medium-to-high concentration ratio CPV systems in order 

to decrease the temperature of the photovoltaic cells, increase overall efficiency of the 

energy system, and decrease the probability of permanent material damage occurring. 

Medium- and high-concentration systems also require accurate tracking systems (i.e. two-

axis) to maintain the focus of the solar radiation onto the photovoltaic cells [41].  

As previously stated, the efficiency of a photovoltaic module is limited by the band 

gap energy of the photovoltaic cell’s semiconductor material and the incident irradiance 

wavelength spectrum. Longer wavelengths (infrared) do not generate electron-hole pairs, 

and thus are converted into thermal energy [27]. Commercially available photovoltaic 

modules vary in efficiency, ranging from 5% to 25%. Therefore, a large portion of the 

incident solar radiation is converted into thermal energy [42]. A hybrid photovoltaic thermal 

(PVT) collector integrates a photovoltaic module and cooling components to simultaneously 

convert solar radiation into electrical and thermal energy. PVT systems use a working fluid, 

such as air or water, and a heat exchanger system to efficiently remove waste-heat and 

decrease the temperature of the PV module. Common designs of PVT collectors are 

illustrated in Figure 1.11. By removing this waste-heat, the temperature of the PV module 
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decreases, which increases the PV module’s efficiency and power output. The electrical 

efficiency of the photovoltaic module can be maximized by using the lowest possible inlet 

working fluid temperature. The outlet working fluid may be used to provide thermal energy 

to other systems. For instance, the outlet air from a PVT collector may be used to heat a 

building, while the outlet water from a PVT collector can be used to heat swimming pools 

[43]. Since the main benefit of PVT systems is their ability to remove thermal energy from 

the PV module, they are more suitable in geological locations where PV systems achieve high 

operating temperatures.  

The working fluid and structure of a PVT collector significantly influences the 

performance of the system. The working fluid is normally dependent on the design and 

application of the PVT collector. PVT collectors can be categorized as either air-type (PVT-a) 

or water-type (PVT-w). PVT air collectors that use natural air circulation are a low-cost 

method to remove the waste-heat from photovoltaic modules. Forced air circulation is a 

more effective method to remove the thermal energy from the photovoltaic module, 

however electrical energy must be supplied to a pump or fan which reduces the net electrical 

energy generated [43]. PVT water collectors are more efficient than air-type collectors due 

to water’s high heat capacity. Extensive and costly modifications must be made to PVT water-

type collectors in order to create a water-tight and corrosion-free system [44]. PVT collectors 

can be further categorized as either glazed or unglazed. Glazed PVT collectors have a well-

insulated glass-covered box on top of the photovoltaic module, while unglazed PVT 

collectors have no additional glass layer. The addition of the glass cover decreases the rate 

of thermal energy dissipated from the top surface of the PVT collector. Consequently, the 

temperature of the PV module increases, leading to a decrease in the electrical efficiency 

[45]. Thus, research has concluded that glazed PVT collectors are more suitable when the 

production of electrical energy is not critical, due to the fact that the addition of the glass 

cover increases the thermal energy transferred to the working fluid and the PVT collector 

temperature, while decreasing the electrical energy generated. 
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Figure 1.11: Typical photovoltaic-thermal system designs.  
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1.3 Thermoelectric Technology for Power Generation 

Thermoelectric technologies have the ability to directly convert thermal energy, such as 

the waste-heat from a photovoltaic module, directly into electrical energy. Thermoelectric 

devices are a solid-state, reliable technology with no moving parts, and thus are silent in 

operation. They are also position independent, environmentally friendly, and very safe to 

use [46]. The practicality of using thermoelectric technologies may be improved upon 

through two different methodologies. The first method focuses on the improvement of 

existing thermoelectric materials in order to increase the efficiency and performance of 

thermoelectric devices. The alternative method can be used to develop innovative 

applications and hybrid systems that exploit the advantageous characteristics of 

thermoelectric devices. This work focuses on the latter, conducting research and analyzing 

the potential of creating a hybrid thermoelectric system. It is important to first have a 

comprehensive understanding of the thermoelectric effects, thermoelectric devices, and the 

governing performance parameters before discussing the new concepts of hybrid 

thermoelectric systems. 

1.4 The Thermoelectric Effects 

1.4.1 The Seebeck Effect 

 Thermoelectric devices are able to generate electrical energy when a temperature 

differential is established. This physical phenomenon is known as the Seebeck effect, the 

generation of voltage by placing a material in a temperature gradient [47]. The Seebeck effect 

was discovered in 1821 by Thomas Seebeck, who observed that a compass needle deviated 

when a temperature differential was applied at two junctions using two different metals [48, 

49]. The principle of the Seebeck effect may be discussed with reference to the schematic of 

a thermocouple shown in Figure 1.12. Connecting two dissimilar materials in series, 

whether it be metals or semiconductors, and creating a temperature difference at nodes A 

and B, generates a voltage between the C and D junction once connected to an electrical load. 

This voltage is known as the Seebeck voltage, and is directly proportional to the Seebeck  

coefficient [48]. The Seebeck coefficient for the thermocouple may be expressed as the ratio 

of the voltage generated and the temperature differential given by [50]: 

 



 

  

 

 

 
(a) Seebeck Effect 

 

 

 
(b) Heat engine cycle 

Figure 1.12: Principle of (a) the Seebeck effect using a thermocouple, and (b) the 
thermodynamic heat engine cycle. 
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𝛼𝑠 =

𝑉

𝛥𝑇
 

(1.12) 

where, the temperature differential ΔT is the difference between the hot Th and cold Tc 

junction temperature. The resulting Seebeck coefficient of the thermocouple may be 

determined based on the Seebeck coefficients of each individual material [50]: 

 𝛼𝑠 = 𝛼𝐴 − 𝛼𝐵 (1.13) 

The Seebeck coefficient is positive if the electromotive force causes the current to flow 

clockwise, and negative if the electromotive force causes the current to flow counter-

clockwise [50]. It is also noteworthy to mention that the Seebeck effect resembles the 

thermodynamic power cycle of a conventional heat engine, with the electrons serving as the 

working fluid [46]. 

1.4.2 The Peltier Effect 

 In addition to generating electrical energy, thermoelectric devices also have the 

ability to transfer thermal energy from one medium to another using electrical energy based 

on the Peltier effect. The Peltier effect was discovered by Jean C. A. Peltier in 1834 when he 

discovered that electrical energy may be used to create a temperature differential at two 

different junctions, as seen in Figure 1.13 [49]. When an electrical potential (voltage) is 

created across the C and D junctions, current will flow through the two dissimilar materials 

and establish a temperature difference between nodes A and B. As a result of the 

temperature differential, a rate of heating 𝑄̇𝐻 occurs at one junction, and a rate of cooling 𝑄̇𝑐 

occurs at the other. The Peltier effect resembles the thermodynamic heat pump cycle. The 

Peltier coefficient (V) is defined as the ratio of the rate of heating and input current [51]: 

 
𝜋 =

𝑄̇ℎ

𝐼
 

(1.14) 

The Peltier effect is considered to be positive if the hot side temperature Th occurs at node A 

and the cold temperature Tc occurs at node B [50].  

1.4.3 The Thomson Effect 

 The final thermoelectric effect is known as the Thomson effect. The Thomson effect 

concludes that a rate of reversible heat is generated when current flows through a 

semiconductor material that has a uniform temperature profile [50]. Consider a  



 

  

 

 

 
(a) Peltier effect 

 

 

 
(b) Heat pump cycle 

Figure 1.13: Principle of (a) the Peltier effect using a thermocouple, and (b) the 
thermodynamic heat pump cycle. 
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thermoelectric device that has a temperature-dependent Seebeck coefficient and constant 

current, due to the temperature-dependent Seebeck coefficient, power in the form of heat is 

generated due to the charge carriers responding to the changing voltage field along the 

length of the material. The Thomson coefficient is defined as the rate of heating per unit 

length that results from the passage of current along a conductor that has a temperature 

gradient. The Thomson coefficient may be expressed as [52]: 

 
𝜏𝑇𝐸𝐺 = 𝑇

𝑑𝛼(𝑇)

𝑑𝑇
 

(1.15) 

Standard numerical models and analysis neglect the Thomson coefficient under the 

assumption that thermoelectric material is subjected to a small temperature gradient and 

that the material’s Seebeck coefficient is relatively constant with temperature [50, 52].  

1.5 Thermoelectric Devices  

1.5.1 Major Components of a Thermoelectric Module 

 The major components of a single-stage thermoelectric device, also known as a 

thermoelectric module, are shown in Figure 1.14. The thermoelectric device is composed of 

multiple semiconductor thermoelements connected using electrically conductive materials 

sandwiched between two ceramic substrates. These thermoelements are comprised of 

several n-type and p-type semiconductor materials connected electrically in series and 

thermally in parallel. The n-type semiconductor elements are heavily doped to create excess 

electrons, while the p-type is doped to create a material with an excess number of holes [53]. 

A thermoelectric module can act as a thermoelectric generator (TEG) by utilizing the Seebeck 

effect, or as a thermoelectric cooler by utilizing the Peltier effect. Figure 1.15 illustrates 

these two different operating conditions of a single thermocouple thermoelectric module. 

When waste-heat (thermal energy) 𝑄̇ℎ is transferred at the hot side temperature junction 𝑇ℎ 

to a thermoelectric generator, a portion of the input thermal energy is converted into 

electrical energy 𝑃𝑇𝐸𝐺 . The remaining energy is dissipated as thermal energy 𝑄̇𝑐 at the cold 

temperature junction 𝑇𝑐. Thus, a thermoelectric generator converts thermal energy into 

electrical energy from a temperature difference across the thermoelements. Experiments 

conducted by Rowe and Min [54] have shown that the power output of thermoelectric 

generators is proportional to the temperature differential and is significantly dependent on  
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Figure 1.14: Schematic of major components of a typical thermoelectric module. 
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(a) Thermoelectric generator (TEG)   (b) Thermoelectric cooler 

Figure 1.15: Thermoelectric module acting as a (a) thermoelectric generator (b) 
thermoelectric cooler. 
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the geometry of the thermoelectric generator. Replacing the electrical load component with 

an electrical DC source allows the thermoelectric module to act as a heat pump or cooler, 

dissipating thermal energy 𝑄̇ℎ from the hot side temperature 𝑇ℎ, and absorbing heat 𝑄̇𝑐 from 

the cold side temperature junction 𝑇𝑐 [48]. Thermal energy may be transferred to and from 

the thermoelectric module through the use of heat sinks or direct contact with a heat and 

cooling source.  

 Thermoelectric modules come in a variety of shapes and sizes depending on the 

desired application of the device. Figure 1.16 shows photographs of existing types of 

thermoelectric generators. Conventional single-stage thermoelectric modules range in 

height between one and five millimeters, and may have a cross-sectional area ranging 

between 1 mm2 and 3200 mm2. The number of thermoelements in commercially available 

single-stage modules varies between 6 and 400 [55, 56, 57, 58]. Normally, the coefficient of 

performance (COP) of thermoelectric coolers decreases as the temperature difference across 

the modules increases [59]. Multistage thermoelectric modules establish a lower 

temperature difference when operating and thus, are typically used to transfer thermal 

energy when large temperature gradients occur [59]. Lindler’s experimental simulations 

demonstrated that using a multistage thermoelectric cooler under high temperature 

gradients establishes a significantly higher coefficient of performance compared to a single-

stage thermoelectric cooler [60]. Current manufactured multistage thermoelectric coolers 

have two to four stages with heights ranging from 10 millimeters to less than 1 millimeter 

[61, 62]. Standard thermoelectric generators’ cross-sectional areas are 30 x 30, 35 x 35, 40 x 

40, and 56 x 56 mm and have a graphite cover to decrease heat transfer losses due to 

inefficient thermal contact [56, 63]. Single-stage and multistage thermoelectric modules can 

only be mounted to flat surfaces because of their flat-plate structure and rigid shape. This 

means that when these modules are mounted to flat surfaces, heat is limited to flowing only 

perpendicular to the ceramic substrates [53].  

The design and development of efficient, flexible and cylindrical-shaped 

thermoelectric modules is crucial in increasing the viability of thermoelectric technology for 

residential or industrial applications. Micro thermoelectric generators are also an emerging 

technology that generates nanowatts of electrical energy from the waste-heat of electrical  
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Figure 1.16: (a) single-stage thermoelectric module (b) multi-stage thermoelectric 
cooler [58] (c) Flexible micro thermoelectric generator [64] (d) ring-structured 
thermoelectric module [65]. 
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components or human bodies to power small electronic devices. For example, a wearable 

micro thermoelectric generator was designed and fabricated by Fracioso et al. [64] to power 

low-consumption electronics for assisted living applications. The wearable micro 

thermoelectric generator was able to generate 32 nanowatts at the matched load condition 

and with a temperature difference of 40 ⁰C [64]. Yadav et al. [66] investigated the proof-of-

concept of a flexible thermoelectric power generator made from evaporating thin films of 

thermoelectric fiber onto a flexible substrate. Experimental results showed that the 7-

thermocouple, fiber-based, flexible thermoelectric generator was able to generate 

approximately 7 nanowatts of electrical power when a temperature gradient of 6.6 ⁰C is 

applied [66]. A small-scale thermoelectric generator for human body applications, 

engineered by Wang et al. [67] was able to establish a stable output voltage of 150 milliwatts 

when being worn on a human body. Min and Rowe [65] experimentally characterized a novel 

tube-shaped thermoelectric module manufactured from four ring-shaped (two n-type and 

two p-type) thermoelements by measuring the electrical power output as a function of the 

temperature differential across the module. This thermoelectric tube has the potential to 

generate electrical energy using the heat transferred in a radial direction, while 

simultaneously transporting high temperature fluids to a desired location. Experimental 

results established a maximum electrical power output of approximately 33 milliwatts at a 

temperature difference of 70 ⁰C [65]. Due to its unique geometry, advancement in the quality 

of the manufacturing process of the ring-structure thermoelectric module is required to 

increase proper contact between the n-type and p-type thermoelements and increase its 

performance.  

1.5.2 Thermoelectric Materials 

 In general, the material composition of a thermoelectric module significantly affects 

the performance and efficiency of the device. The type of n-type and p-type thermoelectric 

semiconductor material can be divided into three distinct categories: low temperature, 

intermediate temperature, and high temperature applications. Low temperature 

thermoelectric materials operate under temperatures less than 450 ⁰C and are typically 

composed of bismuth (Bi), coupled with antimony (An), tellurium (Te) or selenium (Se) [68]. 

Low temperature materials are suitable for cooling and low-scale power generation 
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purposes [69]. Intermediate temperature applications, ranging in operating temperatures 

from 400 to 850 K, are commonly implemented for power generation and are made from 

lead-based materials (Pb), such as lead telluride (PbTe) [68, 69]. Lead telluride 

thermoelectric modules have a maximum operating temperature of 900 K. High temperature 

materials made from silver antimony, lead telluride, cobalt triantimonide-based (CoSb3) 

skutterudites, and silicon germanium-based (SiGe) alloys can operate efficiently up to 

temperatures ranging from 800 to 1300 K [69, 70, 71]. Bismuth telluride (Bi2Te3) and lead 

telluride (PbTe) are two of the most commonly used thermoelectric materials [48, 53, 72], 

and have a maximum operating temperature of 550 and 900 K, respectively [73]. The major 

disadvantage of bismuth telluride compounds are that they are toxic and are chemically 

unstable at high temperatures [74].  

The ceramic substrates of a thermoelectric module electrically insulate and protect 

the thermoelements from being damaged. Ceramic substrates are normally made from white 

96% alumina (Al2O3) ceramic due to the material’s low cost [75]. Alumina-based ceramics 

have a very low thermal conductivity, which as a result decreases the performance of the 

thermoelectric module by restricting the rate of heat absorbed and dissipated [76]. 

Aluminum nitride- (AlN) or beryllium oxide- (BeO) based ceramic substrates have a 

significantly higher thermal conductivity and cost [77, 78]. However, beryllia-based 

ceramics are very toxic in nature and pose serious health risks. These high thermally 

conductive ceramic materials may be used to reduce the thermal resistance of the ceramic 

layer when the performance of the thermoelectric device must be maximized [75].  

The electrode strips connecting the n-type and p-type thermoelements are typically 

composed of a highly electrically conductive material, such as copper [79]. Yamashita et al. 

[80] found that the electrode material significantly affects the power generated by a p-type 

and n-type bismuth telluride compound. Their [80] experimental simulation indicated that 

gold-copper (Au-Cu) and silver-copper (Ag-Cu) electrode pair configurations are able to 

generate a larger amount of power than the copper-copper (Cu-Cu) electrode pair 

configuration. The results of the experimental analysis suggested that a thermoelectric 

module with gold-copper or silver-copper electrodes, although more costly to manufacture, 

could increase the performance and overall efficiency of a thermoelectric module, compared 

to the common copper-copper electrode configuration. 
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1.6 Thermoelectric Power Generator Performance Characteristics 

1.6.1 Energy Conversion Efficiency 

 The energy conversion efficiency of a thermoelectric generator may be determined 

by the ratio of the electrical energy output PTEG, and the rate of heat supplied to the 

thermoelectric generator 𝑄̇ℎ [81, 82, 83]:  

 
𝜂𝑇𝐸𝐺 =

𝑃𝑇𝐸𝐺

𝑄̇ℎ

 
(1.16) 

 The absolute maximum energy conversion efficiency of an irreversible 

thermoelectric power generator can be approximated as [50, 74]: 

 

𝜂𝑇𝐸𝐺,𝑚𝑎𝑥 = 𝜂𝐶𝑎𝑟𝑛𝑜𝑡 [
√1 + 𝑍𝑇̅ − 1

√1 + 𝑍𝑇̅ +
𝑇𝑐

𝑇ℎ

] 

(1.17) 

where, Z is the figure-of-merit, and the Carnot efficiency for a heat engine is defined as [84]: 

 
𝜂𝐶𝑎𝑟𝑛𝑜𝑡 = 1 −

𝑇𝑐

𝑇ℎ
 

(1.18) 

As previously mentioned, the efficiency of a thermoelectric generator (TEG) is 

dependent on several factors, such as the thermoelement cross-sectional area, 

thermoelement length, electrical load resistance, temperature gradient, and material 

properties of the thermoelectric generator. An experimental evaluation conducted by Rowe 

and Min [54] indicated that the thermoelement cross-sectional area and length significantly 

influences the power output of a thermoelectric module. The power curves of a commercially 

available thermoelectric module at a constant temperature gradient are shown in Figure 

1.17. The point at which the thermoelectric module operates on the power curve is 

dependent on the electrical load resistance. The amount of electrical power produced by the 

TEG is proportional to its temperature gradient. Research [54, 81, 82, 85] has shown that 

TEG power output increases exponentially as the temperature gradient increases. Thus, it is 

important to know both the temperature difference and its relationship to electrical power 

output when analyzing the performance of a thermoelectric generator. Currently, one major 

shortcoming of commercially available thermoelectric generators is their low energy 

conversion efficiencies, establishing a maximum efficiency of less than 5 % [46, 86].  

 



 

 

 

 

 

 

 
Figure 1.17: Typical current and power vs. voltage (I-V & P-V) curve of standard 
thermoelectric generator based on experimental data. 
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1.6.2 Thermoelectric Figure-of-Merit 

 The figure-of-merit is a temperature-dependent parameter used to define a 

thermoelectric material’s ability to convert thermal energy into electrical energy. The figure-

of-merit may be expressed as [50, 87, 88]: 

 
𝑍 =

𝛼𝑠
2𝛾

𝑘
=

𝛼𝑠
2

𝑘𝜌𝑒
 

(1.19) 

where, 𝛼𝑆 is the Seebeck coefficient, 𝛾𝑒 is the electrical conductivity, 𝜌𝑒 is electrical resistivity, 

and 𝑘 is the thermal conductivity of the thermoelectric generator. A large figure-of-merit 

suggests that the thermoelectric device can efficiently generate electrical energy. Based on 

the figure-of-merit equation (1.19), an ideal thermoelectric generator material will have a 

high Seebeck coefficient, high electrical conductance (low electrical resistivity), and low 

thermal conductivity [87]. As discussed previously, the electrical energy produced by a 

thermoelectric generator increases as the temperature difference increases. Therefore, a low 

thermal conductivity is desired to maintain a large temperature differential across the 

thermoelements. Metals and metallic alloys are not used in thermoelectric power generation 

applications because they have very low Seebeck coefficients and high thermal conductivity, 

and thus have a low figure-of-merit and do not generate a significant amount of power [49]. 

Insulators have high Seebeck coefficients and low thermal conductivity; however the 

electrical conductivity of insulators is essentially zero, which restricts the flow of electrons 

through the thermoelements [50]. On the other hand, semiconductors have higher Seebeck 

coefficients, and lower electrical and thermal conductivity than metals [50]. The material 

properties of semiconductors obtain the highest figure-of-merit values and are the most 

suitable material for thermoelectric power generation. It is also important to note that the 

material properties of thermoelectric materials are temperature-dependent. For example, 

increasing the temperature of bismuth telluride-based alloys has shown to increase the 

electrical resistivity and decrease the material’s thermal conductivity [89, 90, 91]. The 

figure-of-merit values of established thermoelectric materials are shown in Figure 1.18. 

The dimensionless figure-of-merit is also used to analyze the performance of a 

thermoelectric generator. The dimensionless figure-of-merit may be determined by [49, 52, 

53]: 
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𝑍𝑇̅ =

𝛼𝑆
2𝜎

𝑘
𝑇̅ =

𝛼𝑠
2

𝑘𝜌𝑒
𝑇̅ 

(1.20) 

 where, 𝑇̅ is the mean absolute temperature of the thermoelectric generator (K). The mean 

absolute temperature of the thermoelectric generator may be estimated by [53]: 

 
𝑇̅ =

𝑇ℎ + 𝑇𝑐

2
 

(1.21) 

Min et al. [87] conducted an experimental analysis of the dimensionless figure-of-

merit of a commercially available Bi2Te3 thermoelectric module under various temperature 

gradients. The results shown in Figure 1.19 emphasize that the temperature difference 

across the thermoelectric generators significantly influences the dimensionless figure-of-

merit.  

Recently, optimization of a thermoelectric generator’s energy conversion efficiency 

has primarily focused on the research and development of thermoelectric materials with 

high dimensionless figure-of-merit values. Thermoelectric power generation can become a 

more promising technology with the development of high-efficiency materials. 

Thermoelectric materials used in practical applications today have a dimensionless figure-

of-merit value approximately equal to one [46, 92]. Difficulties arise in creating 

thermoelectric materials with 𝑍𝑇̅ > 1 due to the inability to decrease the thermal 

conductivity of thermoelectric materials. Recent literature has shown that nanostructuring 

thermoelectric materials can reduce thermal conductivity and establish dimensionless 

figure-of-merit values greater than one [93]. Wang et al. [71] report a peak dimensionless 

figure-of-merit value of 1.3 at 1173 K in an n-type nanostructured silicon germanium alloy. 

Venkatasubramanian et al. [94] examined the dimensionless figure-of-merit of thin-film 

thermoelectric materials. Their [94] experimental results show a dimensionless figure-of- 

merit of 2.4 at 300 K for a high quality p-type Bi2Te3/Sb3Te3 superlattice. Cobalt 

triantimonide-based skutterudites have also been identified as potential candidates to 

establish high-efficiency thermoelectric generators. This is mainly due to the discovery that 

cobalt triantimonide has lattice voids that may be filled with filler atoms to form filled 

skutterudites with low thermal conductivities. Recently, Pei et al. [95] introduced sodium 

(Na) into the voids of a cobalt triantimonide-based skutterudite structure and obtained a 

dimensionless figure-of-merit of 1.36 at 800 K for an n-type 𝐵𝑎𝑥𝑌𝑏𝑦𝐶𝑜4𝑆𝑏12 compound. 
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Figure 1.18: Figure-of-merit vs. temperature of various thermoelectric materials [50]. 

 

Figure 1.19: Experimentally determined dimensionless figure-of-merit vs. mean 
temperature at various temperature gradients (diamond shape symbols – small 
temperature difference, circle shape symbols – large temperature difference) [87]. 
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Heremans et al. [96] obtained a dimensionless figure-of-merit equal to 1.5 at 773 K using p-

type lead telluride samples with thallium impurities. Yamashita and Sigihara [90] were able 

to develop as-grown p-type and annealed n-type bismuth telluride semiconductor materials 

with relatively steady dimensionless figure-of-merit values from 200 to 360 K. The peak 

dimensionless figure-of-merit values of the p-type and n-type bismuth telluride compounds 

were 1.19 and 1.13 at approximately 320 K [90]. Thermoelectric materials with 

dimensionless figure-of-merit values greater than three must be developed in order for 

thermoelectric technology to be competitive with modern power systems [97]. Progress in 

semiconductor material research is key for thermoelectric power generation to become a 

viable technology.  

1.7 Hybrid Photovoltaic-Thermoelectric Power Generation  

 The new concept of a hybrid photovoltaic-thermoelectric power generation (HPV-

TEG) system integrates photovoltaic and thermoelectric technology together to form a more 

efficient energy system. Thermoelectric power generation has been applied to a variety of 

applications and research areas including aerospace, medical, thermal waste energy, 

military, and remote power generation. This particular research focuses on developing a 

thermoelectric power generator integrated with photovoltaic solar energy in order to form 

an innovative renewable energy system. In this study an HPV-TEG module, shown in Figure 

1.20 directly attaches a thermoelectric generator to the bottom of a photovoltaic module. 

When solar energy from the Sun, also known as irradiance, is projected onto the photovoltaic 

module, a small portion of the energy is converted into electrical energy and transferred to 

the electrical load RPV. The majority of the incident solar energy is converted into thermal 

energy that is dissipated at a heat transfer rate from the top 𝑄̇𝑃𝑉,𝑡𝑜𝑝 and from the bottom 

𝑄̇𝑃𝑉,𝑏𝑜𝑡 of the photovoltaic module. The majority of the waste heat can be transferred through 

and dissipated at a rate of 𝑄̇𝑐 from the thermoelectric generator to a cooling fluid by 

connecting a heat sink to the bottom of the thermoelectric generator. The photovoltaic 

operating cell temperature is decreased as a result of removing the thermal energy from the 

module. As previously discussed, decreasing the operating photovoltaic cell temperature 

increases the overall performance of the photovoltaic module. Therefore, the electrical  
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Figure 1.20: The concept of a hybrid photovoltaic-thermoelectric generator.  
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power delivered to the photovoltaic module’s electrical load increases due to the cooling of 

the photovoltaic module. The photovoltaic module acts as a heat source, creating a 

temperature gradient ∆𝑇 across the thermoelectric generator. The thermoelectric generator 

utilizes the temperature gradient to convert the waste-heat from the photovoltaic module 

directly into electrical energy. The additional electrical energy generated from the 

thermoelectric generator may be supplied to an electrical load RTEG. A hybrid photovoltaic-

generator system simultaneously decreases the operating temperature of the photovoltaic 

module and increases the rate of electrical power produced. The HPV-TEG system has the 

potential to become a viable hybrid energy system in locations where the PV modules 

operate at high temperatures. However, further research is necessary to determine the 

system’s viability and optimal design under different operating conditions.  

1.8 Thesis Outline 

 The hybrid concept of integrating solar photovoltaic with thermoelectric power 

generation for cooling PV system and increasing power generation has not been 

comprehensively examined. Therefore, research is necessary to determine the feasibility and 

design constraints limiting the power output of hybrid photovoltaic-thermoelectric power 

generation systems. This research thesis will effectively review, numerically model, and 

experimentally investigate the performance of a HPV-TEG system. The thesis is divided into 

five chapters. Chapter one provides an introduction to the fundamental aspects of 

photovoltaic and thermoelectric power generation. Chapter two reviews some key previous 

research studies relating to the topic. Chapter three includes a comprehensive numerical 

model and presents numerical analysis in order to parametrically investigate the 

performance of an HPV-TEG system under a variety of operating conditions. Chapter three 

will also identify the detrimental performance parameters of a HPV-TEG system for better 

understanding and optimizing the system’s performance. Chapter four presents the 

experimental work, including methodology, analysis, and discussion of the HPV-TEG system 

test setups used in this research. Chapter four is divided into two parts. In the first part, 

various designs of HPV-TEG systems are fully characterized using an indoor solar simulator. 

The second part of the chapter deals with the characterization using an outdoor test setup 

operating under the dynamic weather conditions of the city of Thunder Bay, Ontario, Canada. 
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Chapter five concludes the presented research work and provides some useful 

recommendations for future research related to HPV-TEG technology.  
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Chapter 2: Literature Review 

 This chapter reviews some existing literature related to recent innovation and 

development in the photovoltaic and thermoelectric power generation research field. Also 

in this chapter, the research objectives and outlines used in this research work are 

introduced and discussed.  

2.1 Previous Experimental Studies of Solar PV Systems for Optimal Power 

Generation  

 The primary goal of solar photovoltaic research is to develop a reliable and efficient 

photovoltaic system that maximizes the rate at which electrical power is produced, while 

remaining competitive with the cost of modern power technologies. The cost of a 

photovoltaic module in terms of price per watt-hour ($/Wh) is normally more expensive 

compared to other renewable energy technologies, such as wind and hydroelectricity, due to 

the high cost of semiconductor materials and the low energy conversion efficiency of 

photovoltaic modules [98]. For example, according to the United States Energy Information 

Administration (EIA), the average total levelized cost of electricity for wind, hydro, and solar 

photovoltaic plants entering service in 2019 is approximately 80.3 $/MWh, 84.3 $/MWh, and 

130 $/MWh respectively [99]. In the past few years, significant progress has been made to 

increase the rate of electricity production by creating advanced photovoltaic systems that 

incorporate additional components.  

A significant amount of research on solar photovoltaic module optimization has 

analyzed the process of efficiently cooling PV modules by further developing photovoltaic-

thermal collectors. Outdoor experimental studies have an important role in characterizing 

the actual performance of different hybrid photovoltaic-thermal system designs. For 

example, outdoor experiments completed by Tripanagnostopoulos et al. [43] directly 

compared the performance of PVT collectors, air-type (PVT-a) and water-type (PVT-w), with 

different designs in an outdoor environment. The PVT collectors were fabricated using 

commercially available polycrystalline silicon photovoltaic modules. In their study [43], 

steady-state analysis showed that additional glazing of PVT-a and PVT-w collectors 
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decreased the electrical efficiency by ~2%. Real-time comparisons of a PVT-a, a PVT-w, a 

standard photovoltaic module, and an insulated photovoltaic module were accomplished 

under the weather conditions of Patras, Greece from 9:30 AM to 3:30 PM. 

Tripanagnostopoulos et al. [43] reported that the PVT-a and PVT-w collectors were able to 

maintain a lower photovoltaic operating temperature than the standard photovoltaic 

module, while the insulated PV module operated at a higher temperature than all the other 

systems because of its inability to dissipate thermal energy from its back surface. Also, the 

PVT-a and PVT-w collectors constantly established a higher electrical efficiency than the 

standard PV module during the duration of the outdoor experiment. PV water cooling was 

shown to be more effective in terms of establishing a higher electrical efficiency and a lower 

PV module temperature than air cooling when there are high irradiance intensities and 

ambient air temperatures. Although the dimensions of the PVT collectors and the weather 

conditions of the experimental simulation are provided in [43], accurate comparison of air-

type and water-type PVT collectors requires the inlet working fluid characteristics to be 

published. Volumetric flow rate and temperature of the inlet working fluid are important 

experimental variables that significantly influence the performance and rate of thermal 

energy extracted from the system. Unfortunately, uncertainty in the experimental simulation 

arises due to the build quality of the water-type PVT collector. It was found that the build 

quality of the PVT-w collector was inadequate due to the described unsatisfactory thermal 

contact between the photovoltaic module and heat exchanger. Furthermore, the procedure 

for determining the maximum power output of the PV module was not described in detail by 

Tripanagnostopoulos et al. [43].  

In 2012, Kim and Kim [45] experimentally examined two different absorber designs 

for an unglazed water-type PVT collector under outdoor conditions, a sheet-and-tube type 

and a fully wetted type. Each PVT collector was manufactured using a 240-watt 

monocrystalline silicon photovoltaic module. The study [45] determined that the average 

electrical efficiency of the fully wetted and sheet-and-tube absorber PVT collector was 

approximately 12.6% and 14%, respectively. The fully wetted PVT temperature was 

approximately 17 ⁰C cooler compared to the standard photovoltaic module temperature. 

Furthermore, the electrical efficiency of the fully wetted PVT was nearly 2% higher than the 

standard photovoltaic module in [45]. The experimentally determined electrical efficiency 



39 
 

and temperature of the photovoltaic systems were presented as a function of the ratio of the 

ambient air temperature and irradiance intensity. Neglecting to present these experimental 

parameters as a function of the actual operating conditions of the system, in this case [45] 

the outdoor weather conditions and the working fluid temperature, decreases the level of 

characterization of the PVT collectors. Background information regarding the procedure and 

instrumentation used to calculate the maximum power output of the photovoltaic systems 

was not described in [45]. Using the experimental results, the authors [45] concluded that 

an unglazed PVT collector provides better electrical performance than a standard PV module 

under the simulated outdoor climate. In their study [45], the location, time and weather 

conditions of the simulation used in their experimental work were not given, and as a result 

their experimental results are not consistently understood. 

Some researchers have recently opted to use indoor solar simulators to test the 

performance of photovoltaic-thermal collectors. Indoor solar simulators allow researchers 

to complete parametric analysis and to study the steady state performance of a photovoltaic 

system in a controlled environment. Simulation, observation, and optimization of a 

photovoltaic system can be easily conducted using this type of experimental setup. Once the 

photovoltaic system has been optimized using an indoor solar simulator, outdoor 

experimental simulations may be conducted in order to determine the actual performance 

of the system, since the solar simulators do not accurately simulate the irradiance intensity 

of the Sun or climate conditions of a specified geographical location.  

Agrawal et al. [100] designed and experimentally characterized the performance of 

two air-type photovoltaic-thermal collectors connected thermally in series using a low cost 

indoor solar simulator. The outlet of the first PVT collector was connected to the second PVT 

collector. The solar simulator consists of 28 500-watt tungsten halogen lights, and a screw 

jack mechanism that adjusts the height of the solar simulator platform and incident 

irradiance intensity projected onto the photovoltaic system [100]. The PVT system was made 

from two 2.2-watt monocrystalline silicon solar cells and a rectangular wooden channel with 

dimensions of 12 cm x 12 cm x 5 mm. A 0.6 watt DC fan was used to circulate air through the 

wooden air duct at a fixed mass flow rate of 1.08x10-4 kg/s and inlet air temperature equal 

to 38 ⁰C. Irradiance intensities of 600, 700, and 800 W/m2 were investigated for this specific 

experimental study. All solar simulations reached steady state operating condition in 
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approximately 1.75 hours. Agrawal et al. [100] reported that the maximum outlet air 

temperatures of the first and second PVT collectors were approximately 89 and 90 ⁰C 

respectively, at an irradiance intensity equal to 800 W/m2. They [100] observed that the 

waste-heat removed from the first and second PVT collectors was not equal due to the high 

inlet air temperature from the first PVT collector. The electrical efficiency of the first PVT 

collector was consistently higher than the second PVT collector due to its lower inlet air 

temperature and cell temperature. The researchers in another study [100] failed to compare 

the PVT system with a conventional photovoltaic system in order to show the benefit of using 

two PVT air-type collectors connected thermally in series. The electrical efficiency of the 

system was determined by subtracting the power consumed by the small electrical fan from 

the maximum power point of the photovoltaic module. Assuming the Fill Factor remains 

constant, the maximum power point of the photovoltaic module was estimated using the Fill 

Factor, open-circuit voltage, and short-circuit current measurement. This mathematical 

approach used by the researchers was subject to some inaccuracies because the fill factor 

increases substantially with temperature [20]. Variations in the inlet air temperature could 

have been studied to further characterize the PVT system.  

Solanki et al. [101] also completed a thermal and electrical characterization of an air-

type PVT system using an indoor solar simulator. In their work [101], the PVT system 

consisted of three 75-watt monocrystalline photovoltaic modules connected thermally in 

series, and a rectangular duct connected to the bottom of the PV modules. Air was circulated 

within the duct using a DC fan. The solar simulator had 16 500-watt tungsten halogen lamps 

orientated in a manner that created a uniform irradiance intensity of 400, 600, 700, 800, and 

900 W/m2. The PVT system reached steady state operating condition after approximately 

four hours. The operating temperatures of the first, second, and third PV modules are 

approximately 75, 81, 84 ⁰C, respectively, at an irradiance intensity equal to 600 W/m2, mass 

flow rate equal to 0.01 kg/s, and an inlet air temperature of 38 ⁰C. Solanki et al. [101] 

observed that this increase of the PV module temperature was due to the series configuration 

of the PVT system. At the same operating condition, direct comparison of the PVT collector 

with a standard PV module shows that the electrical efficiency increases by 4%, and the 

operating temperature of the PV module decreases by 9 ⁰C. Similar to Agrawal et al. [100], 

the efficiency of the photovoltaic module was determined mathematically by assuming the 
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Fill Factor remains constant (FF=0.8) and by measuring the open-circuit voltage and short-

circuit current. The thermal model developed by Solanki et al. [101] showed reasonable 

agreement with the experimental results.  

2.2 Previous Experimental Power Generation Characteristic Studies of TEGs 

 As discussed in the previous section, the removal of waste thermal energy from PV 

modules is one of the major optimization techniques used to maximize the performance of a 

PV module. Thermoelectric generators (TEGs) have the potential to utilize this waste 

thermal energy extracted from a PV module and directly convert a portion of it into electrical 

energy. A large amount of experimental research in recent years has concentrated on the 

accurate determination of a thermoelectric generator’s performance parameters under 

different operating conditions. These performance parameters include the overall electrical 

power output, efficiency, Seebeck coefficient, and electrical conductivity of a thermoelectric 

generator. For example, as recently as 2014, Wang et al. [86] surveyed major test methods 

and multiple systems used at research institutes to evaluate the efficiency of thermoelectric 

generators. Their research suggested that the maximum power point of a thermoelectric 

generator occurs when the voltage of the load was equal to half of the open-circuit module 

voltage. Using one of these test methods, experimental analysis of an eight-thermocouple 

bismuth telluride thermoelectric generator revealed that the efficiency increases from 5% 

to 6.1% when decreasing the cold side temperature of the generator by 30 ⁰C and 

maintaining the hot side temperature at 250 ⁰C [86]. 

Karabetoglu et al. [102] estimated the Seebeck coefficient and electrical conductivity 

of a bismuth telluride thermoelectric generator under a low temperature range from 100-

375 K. The Seebeck coefficient in this particular study was calculated by measuring the open-

circuit voltage and the temperature gradient across the thermoelectric generator. Research 

presented by Hsu et al. [103] proposed the concept of an “effective Seebeck coefficient” to 

link the discrepancy between the theoretical and experimental Seebeck coefficient. The 

authors’ [103] analysis emphasizes that thermal contact dominates the performance of the 

TEG module, generating a superior Seebeck coefficient as the clamping force was increased 

from 0.423 kg/cm2 to 0.634 kg/cm2.  

Technological advances in the thermoelectric field have renewed interest in using 
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thermoelectric power generation in order to convert the large quantity of unused thermal 

energy that is transferred to the atmosphere into electricity. For instance, a numerical study 

completed by Yodovard et al. [104] took data from 27,000 factories from different sectors 

and analyzed the potential of using thermoelectric power generation to produce electricity. 

The net potential power generation using thermoelectrics was estimated to be 

approximately 92 MW. In order to determine the true potential of thermoelectric power 

generation for particular applications, further design optimization and an understanding of 

the external parameters that influence power output is necessary. Date et al. [105] provided 

an in depth review of the recent progress of thermoelectric power generation systems and 

the factors impeding its development and application in small to medium scale power 

production. Lesage and Pagé-Potvin [85] investigated the optimal electrical resistance for a 

liquid-to-liquid thermoelectric generator. The liquid-to-liquid thermoelectric generator 

apparatus was comprised of 40 commercially available Bi2Te3 thermoelectric modules, three 

aluminum channels, and an electrical circuit that can vary the electrical load resistance. In 

their study [85], the maximum power output of the generator appeared to increase 

exponentially as the temperature gradient across the modules increases. Minimal fluctuation 

in the optimal load resistance occurred when varying the temperature and flow rates of the 

hot and cold fluid. The experimental simulation suggests that a maximum power point 

tracker may not be necessary for this particular device, due to the fact that the optimal load 

resistance remains within 15% of 15.8 ohms for all of the thermal input conditions. In 

another experimental study, Dai et al. [106] introduced a test setup that exploited the 

advantageous thermophysical properties of liquid metal by using it as a carrier of waste-heat 

to a thermoelectric generator. Measurements of the thermoelectric modules’ voltage and the 

temperature distribution of the test setup in [106] were determined to show the concept’s 

feasibility.  

2.3 Previous Studies on Characterization of Hybrid TEG Systems 

2.3.1 Solar Thermal-Concentrator Thermoelectric Generators 

 Methods of using thermoelectric generators to produce electrical energy from 

renewable energy sources, such as solar energy, have become a more popular area of 

research because of the demand for clean energy technologies. In 2014, Nia et al. [107] 
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conducted an experimental investigation in Babol, Iran that used a Fresnel lens in order to 

concentrate solar energy onto an oil reservoir that was attached to a thermoelectric 

generator. The thermoelectric generator was placed between an oil and water reservoir in 

order to create a temperature gradient. Assuming the internal resistance of the TEG remains 

constant, the outdoor results showed a matched load output power of 1.08 watts under an 

irradiance intensity of 705.9 W/m2. In the same year, Chen et al. [108] developed a finite 

element model and simulation of a thermal-concentrated solar thermoelectric generator. 

They concluded that increasing the substrate area or reducing the cross-sectional area of the 

thermoelements improves performance. The finite element model demonstrated that 

increasing the convective heat transfer coefficient of forced air convection has no significant 

effect on the system’s performance and therefore, water cooling was recommended to 

maximize the temperature gradient and power output of the thermoelectric generator.  

 Kramer et al. [109] developed a high-performance solar thermoelectric generator 

using a spectrally-selective absorber and a single n- and p-type thermoelement pair. The 

thermoelement’s material was based on a nanostructured Bi2Te3 alloy, with each 

thermoelement having dimensions approximately 1.35 mm x 1.35 mm x 1.65 mm. Simulated 

irradiance intensities of 1 and 1.5 kW/m2 at a AM1.5G spectrum established peak efficiencies 

of approximately 4.6% and 5.2% when maintaining the cold side at 20 ⁰C. Chávez-Urbiola et 

al. [110] examined the possibility of using thermoelectric generators in four solar hybrid 

system designs based on the experimental evaluation of a Bi2Te3 thermoelectric generator. 

The researchers suggested that a hybrid system with non-concentrated light was not feasible 

given the performance characteristics of commercially available thermoelectric generators. 

The concept of integrating thermoelectric generators with photovoltaic modules operating 

at a high temperature was introduced as a means of providing thermal stability. 

Furthermore, numerical analysis suggested that the photovoltaic modules’ efficiency 

increases only if advanced thermoelectric materials with a high figure-of-merit value are 

incorporated into the system.  

2.3.2 Recent Research Investigations of HPV-TEG Systems 

The growing demand for more novel and efficient renewable energy systems has 

prompted greater interest in the integration of photovoltaic and thermoelectric technology 
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to fabricate an innovative hybrid system. However, despite there being several methods of 

integrating these two technologies, there seems to be few published works that have 

experimentally or numerically determined in detail the thermal characteristics and electrical 

output of a hybrid photovoltaic-thermoelectric (HPV-TEG) system. For example, Daud et al. 

[111] developed a hybrid photovoltaic-thermoelectric module and investigated its 

performance in an outdoor setting. In their work [111], the HPV-TEG module was comprised 

of a photovoltaic module, four Bi2Te3 thermoelectric modules connected electrically in 

series, and a glycol liquid cooling system. The thermoelectric modules were connected to a 

constant electrical load of 4.3 ohms. The efficiency of the HPV-TEG and standard photovoltaic 

module was calculated in terms of the power output measured in W/m2 and the incident 

irradiance intensity. Compared to the standard photovoltaic module, the HPV-TEG module 

increased the energy conversion efficiency by 1.84% at an irradiance intensity of 601.12 

W/m2. The researchers in [111] also reported that the HPV-TEG system has a higher 

efficiency than the standard photovoltaic system as the irradiance intensity increases. 

The main focus of the recent research involving hybrid photovoltaic-thermal systems 

has primarily been numerical modeling. Some researchers, such as Najafi and Woodbury 

[112] have analyzed the potential of cooling a photovoltaic system by inputting power to 

multiple thermoelectric modules using numerical modeling. The Matlab simulation in their 

[112] research showed that as the ambient air temperature and irradiance intensity 

increased, the power required by the thermoelectric modules to maintain the temperature 

of the photovoltaic module increases exponentially. The results of their [112] numerical 

study concluded that it was not feasible to operate the thermoelectric modules at the optimal 

performance because the amount of power generated by cooling the photovoltaic modules 

was far less than the power consumed by the thermoelectric modules. The alternative 

method of operating the thermoelectric modules at the optimal current suggested extra 

power can be produced from the proposed hybrid system if the thermoelectric modules have 

a high figure-of-merit value (Z>0.005 K-1). 

Using thermoelectric generators for direct conversion of the waste-heat from a 

photovoltaic module into electrical energy has been proposed as a more valid principle than 

cooling photovoltaic modules using thermoelectric modules. This type of system is known 

as a hybrid photovoltaic-thermoelectric power generation (HPV-TEG) system. Another 
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numerical study developed by Najafi and Woodbury [113] simulated the performance of an 

HPV-TEG system by developing a thermal circuit model and implementing energy balance 

analysis. The model has thermoelectric modules installed on the backside of a photovoltaic 

module, and removes the thermal energy from the TEGs using an air-cooling system. The 

theoretical results suggested that the power output of the photovoltaic module and TEG 

increases asymptotically and exponentially as the irradiance intensity increases. Further 

analysis of the performance of the HPV-TEG system for a typical summer day in Tuscaloosa, 

Alabama was conducted. The HPV-TEG system was composed of a 75-watt photovoltaic 

module, 3 x concentrator, single-axis tracker and 36 thermoelectric modules with constant 

material properties. Total power generated by the TEG and photovoltaic module was 

estimated to be approximately 28.398 Wh and 1.54 kWh [113].  

Similar to the investigation completed by Najfi and Woodbury [113], Liao et al. [114] 

recently developed a theoretical model of a hybrid photovoltaic-thermoelectric power 

generation system. This HPV-TEG system was made from a 75-watt photovoltaic module and 

11 thermoelectric generators operating with a constant cold side temperature equal to 300 

K. The material properties of the thermoelectric generator are considered to be 

temperature-dependent in the numerical model. Several factors, such as the thermal 

conductance between the photovoltaic module and thermoelectric generator, concentration 

ratio, and figure-of-merit are analyzed with respect to the power output of the photovoltaic 

module and thermoelectric generator. The theoretical model suggested that the optimal 

electrical load for the photovoltaic module decreases asymptotically, while the optimal load 

resistance for the thermoelectric generator increases as the irradiance intensity increases. 

The work of Liao et al. [114] has provided meaningful insights into the design criteria 

required to optimize the performance of an actual HPV-TEG system.  

The feasibility of a HPV-TEG system operating in Malaga, Spain was examined by van Sark 

[115]. In his study, van Sark [115] developed a model under ideal conditions to determine 

the performance of an HPV-TEG system operating from August 19th to August 28th in Malaga, 

Spain. Results from the simulation showed that the thermoelectric generator can establish 

approximately 24.7% of the total power of the HPV-TEG system, assuming a constant figure-

of-merit equal to 0.004 K-1. This numerical model overestimated the performance of the 

HPV-TEG by neglecting heat loss due to radiation and convection, reflection, and by assuming 
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that the solar radiation not converted into electricity by the PV module is directly transferred 

to the thermoelectric module.  

2.4 Thesis Research Objectives  

The concept of a hybrid photovoltaic-thermoelectric generator has not been 

thoroughly examined previously by researchers and engineers. Few detailed experimental 

simulations have been conducted in order to characterize the performance of an HPV-TEG 

system. Additionally, there is a limited literature that has developed an in-depth model to 

numerically simulate the performance of an HPV-TEG system. Figure 2.1 illustrates the 

major components and objectives of the thesis research work. Due to the lack of detailed 

studies exploring the viability of an HPV-TEG system, the main objective of this research is 

to first design, construct, and fully instrument two test setups (indoor and outdoor). Once 

the experimental test setups are completed, detailed experimental simulations will be 

performed in order to characterize in detail the HPV-TEG system’s performance under a 

variety of operating conditions. The controlled indoor solar simulator test setup is fabricated 

in order to analyze the HPV-TEG system under steady state operating conditions, while the 

real-time outdoor test setup is used to investigate the performance of the HPV-TEG system 

under the actual dynamic climate conditions of Thunder Bay, Ontario, Canada. A 

comprehensive numerical model and simulations of an HPV-TEG system will also be 

developed to provide insight into and further understanding of the performance, with 

respect to the applied operating conditions.  

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 
 

Figure 2.1: Flow chart of major components of this research work. 

 

 

 



48 
 

Chapter 3: Modeling and Numerical 

Characterization of a HPV-TEG System  

This chapter numerically models, simulates and analyzes the performance of a PV and 

HPV-TEG system by completing parametric analysis. The obtained simulations results will 

assist in understanding the performance of a HPV-TEG for optimization purposes. Various 

relationships between the performance, energy conversion efficiency, irradiance intensity, 

and ambient air temperature of a PV and HPV-TEG system are examined. In addition, the 

concept of exergy analysis is introduced and used to identify and quantify the main 

irreversibilities and destruction of exergy rates in a HPV-TEG system for optimization and 

better understanding of the system’s performance. 

3.1 Numerical Model and Analysis of Conventional and Hybrid Photovoltaic 

Module 

3.1.1 Thermal Circuit Analogy  

Each solar photovoltaic system’s temperature distribution is determined by 

developing and solving a complex set of nonlinear equations. These equations are 

formulated by using the one-dimensional (1-D) heat transfer thermal circuit analogy, and by 

applying the first law of thermodynamics to control surfaces within the energy system. The 

thermal circuit analogy determines the heat transfer rate through a specific boundary based 

on the thermal resistance and temperature differential across the boundary. This 1-D heat 

transfer model is similar to electrical current flowing through an electrical resistor. In this 

case, the heat transfer rate is analogous to the electrical current, the thermal resistance is 

analogous to the electrical resistance, and the temperature differential is analogous to the 

voltage difference across the boundary [116]. The thermal circuit analogy is a useful model 

that is utilized to simplify steady-state one-dimensional heat transfer when no internal heat 

generation occurs. The photovoltaic module may be modeled using the thermal circuit 

analogy, assuming that the majority of thermal energy is assumed to transfer one-

dimensionally across the thickness of the module. The assumption of 1-D heat transfer flow 

in this model is reasonable since the thickness of the module is much smaller than its other 
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dimensions, therefore the majority of the heat transfer will occur across the least resisted 

path. 

3.1.2 Determination Conventional PV Module Temperature Profile  

A schematic of the numerically modeled conventional PV module and its thermal circuit is 

shown in Figure 3.1. The PV module experiences uniform convection on the top and bottom 

surfaces, as well as radiation heat transfer to the sky. The PV module is comprised of a glass 

layer, silicon layer, and a tedlar layer. The specifications and thermophysical properties of 

the PV module used in this study are shown in Table 3.1. The thermal resistance of the glass, 

silicon, and tedlar may be determined by the following equations [117]: 

 
𝑅𝑔𝑙𝑎 =

𝐿𝑔𝑙𝑎

𝑘𝑔𝑙𝑎𝐴𝑃𝑉
 

(3.1) 

 
𝑅𝑠𝑖𝑙 =

𝐿𝑠𝑖𝑙

𝑘𝑠𝑖𝑙𝐴𝑃𝑉
 

(3.2) 

 
𝑅𝑡𝑒𝑑 =

𝐿𝑡𝑒𝑑

𝑘𝑡𝑒𝑑𝐴𝑃𝑉
 

(3.3) 

where, L is the thickness of the layer, and k is the thermal conductivity of the material. The 

thermal resistance due to convection at the top and bottom surfaces of the PV module may 

be expressed as [117]: 

 
𝑅𝑐𝑜𝑛𝑣,𝑡𝑜𝑝 =

1

ℎ𝑐𝑜𝑛𝑣,𝑡𝑜𝑝 𝐴𝑃𝑉 
 

(3.4) 

 
𝑅𝑐𝑜𝑛𝑣,𝑏𝑜𝑡 =

1

ℎ𝑐𝑜𝑛𝑣,𝑏𝑜𝑡 𝐴𝑃𝑉 
 

(3.5) 

The thermal resistance due to radiation heat transfer is given by [117]: 

 
𝑅𝑟𝑎𝑑 =

1

𝜀𝑃𝑉𝜎(𝑇𝑐𝑒𝑙𝑙 + 𝑇𝑠𝑘𝑦)(𝑇𝑐𝑒𝑙𝑙
2 + 𝑇𝑠𝑘𝑦

2 )𝐴𝑃𝑉 
 

(3.6) 

where, 𝜀𝑃𝑉 is the emissivity of the PV module, 𝜎𝐵 is the Stephan-Boltzmann constant 

(5.67x10-8 W/m2·K), and 𝑇𝑠𝑘𝑦 is the absolute sky temperature. The sky temperature may be 

approximated as [113]: 

 𝑇𝑠𝑘𝑦 = 0.0552 ∗ 𝑇𝑎𝑚𝑏
1.5  (3.7) 

The bottom and top overall heat transfer coefficients may be expressed as [117]:  

 



 

 

 

 

 

 

 

 

 

 

Figure 3.1: Schematic of a simplified model conventional PV module and thermal 
circuit used in this study. 
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Table 3.1: Specifications and thermophysical and optical properties of PV and HPV-
TEG Module used in simulations of this study. 

Parameter Value 

APV (m2) 0.098172 [118] 

Lgla (m) 0.003 [119] 

Lted (m) 0.001 [119] 

Lsil (m) 250 x 10-6 [119] 

𝐿𝑐𝑒𝑟 (m) 0.0025 

𝛼𝐴,𝑡𝑒𝑑 0.5 [113] 

𝛼𝐴,𝑠𝑖𝑙 0.9 

𝛽𝑐𝑒𝑙𝑙 0.88 

kgla (W/m·K) 0.78 [116] 

kted (W/m·K) 0.2 [119] 

ksil (W/m·K) 148 [119] 

kcer (W/m·K) 32 [120] 

𝜀𝑃𝑉 0.88 [113] 

𝜏𝑔𝑙𝑎 0.86 [116] 

𝑇𝑤,𝑖𝑛(⁰C) 10 

ℎ𝑐𝑜𝑛𝑣,𝑏𝑜𝑡 (W/m2·K) 5 
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𝑈𝑏𝑜𝑡 = [

𝐿𝑠𝑖𝑙

𝑘𝑠𝑖𝑙
+

𝐿𝑡𝑒𝑑

𝑘𝑡𝑒𝑑
]

−1

 
(3.8) 

 
𝑈𝑡𝑜𝑝 = [

𝐿𝑔𝑙𝑎

𝑘𝑔𝑙𝑎
+

1

ℎ𝑐𝑜𝑛𝑣,𝑡
]

−1

 
(3.9) 

The radiation heat transfer rate, and the heat transfer rates of the top and bottom portions 

of the PV module to the ambient air may be determined by the following formulae [117]:  

 𝑄̇𝑟𝑎𝑑 = 𝜀𝑃𝑉𝜎𝐴𝑃𝑉(𝑇𝑐𝑒𝑙𝑙
4 − 𝑇𝑠𝑘𝑦

4 ) (3.10) 

 𝑄̇𝑡𝑜𝑝 = 𝑈𝑡𝑜𝑝𝐴𝑃𝑉(𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑎𝑚𝑏) (3.11) 

 𝑄̇𝑏𝑜𝑡 = 𝑈𝑏𝑜𝑡𝐴𝑃𝑉(𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑏𝑜𝑡) (3.12) 

The maximum conversion efficiency of the PV module when accounting for the losses due to 

the glass cover is given by: 

 
𝜂𝑃𝑉,𝑒𝑙𝑒 =

𝑃𝑃𝑉,𝑚𝑝

𝐺𝑇 𝐴𝑃𝑉𝜏𝑔𝑙𝑎𝛽𝑐𝑒𝑙𝑙
 

(3.13) 

where, 𝑃𝑃𝑉,𝑚𝑝 is the maximum power generated by the PV module, 𝜏𝑔𝑙𝑎 is the transmittance 

of the PV glass, and 𝛽𝑐𝑒𝑙𝑙 is the packing factor. The packing factor refers to the ratio of a 

photovoltaic module’s area that is covered with photovoltaic cells. 

 The overall performance of the PV module may be determined by obtaining an energy 

balance equation around the Tcell surface. The amount of solar radiation absorbed by the PV 

module is determined by the amount of solar radiation absorbed by the silicon and 

surrounding tedlar layer. The solar radiation that is not converted into electrical energy is 

dissipated as waste thermal energy. Applying the first law of thermodynamics to the Tcell 

surface yields: 

 
∑ 𝐸̇𝑖𝑛

𝑖𝑛

= ∑ 𝐸̇𝑜𝑢𝑡

𝑜𝑢𝑡

 
(3.14) 

 𝜏𝑔𝑙𝑎𝐴𝑃𝑉𝐺𝑇[𝛽𝑐𝑒𝑙𝑙𝛼𝑎,𝑠𝑖𝑙 + 𝛼𝑎,𝑡𝑒𝑑(1 − 𝛽𝑐𝑒𝑙𝑙)]

= 𝑈𝑡𝑜𝑝𝐴𝑃𝑉(𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑎𝑚𝑏) + 𝜀𝑃𝑉𝜎𝐴𝑃𝑉(𝑇𝑐𝑒𝑙𝑙
4 − 𝑇𝑠𝑘𝑦

4 )

+ 𝑈𝑡𝑜𝑝𝐴𝑃𝑉(𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑎𝑚𝑏) + 𝐺𝑇𝐴𝑃𝑉𝜏𝑔𝑙𝑎𝛽𝑐𝑒𝑙𝑙𝜂𝑒𝑙𝑒 

(3.15) 

where, 𝛼𝐴 is the absorptance of the material, and 𝑇𝑎𝑚𝑏  is the ambient air temperature.  

The heat transfer from the top portion of the PV module may be expressed as: 
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𝑄̇𝑡𝑜𝑝 =

𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑔𝑙𝑎

𝑅𝑔𝑙𝑎
=

𝑇𝑔𝑙𝑎 − 𝑇𝑎𝑚𝑏

𝑅𝑐𝑜𝑛𝑣,𝑡
 

(3.16) 

Similarly, the heat transfer from the bottom portion of the PV module may be expressed as: 

 
𝑄̇𝑏𝑜𝑡 =

𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑡𝑒𝑑

𝑅𝑠𝑖𝑙
=

𝑇𝑡𝑒𝑑 − 𝑇𝑏𝑜𝑡

𝑅𝑡𝑒𝑑
=

𝑇𝑏𝑜𝑡 − 𝑇𝑎𝑚𝑏

𝑅𝑐𝑜𝑛𝑣,𝑏
 

(3.17) 

 The temperature profile of the conventional PV module may be determined by 

simultaneously solving equations 3.15-3.17. Once the temperature profile is known, the 

electrical power output may be determined using the equivalent circuit model presented 

later in section 3.0.6.  

3.1.3 Determination of the HPV-TEG Module Temperature Profile 

Similar to the previous section 3.0.2, the temperature distribution of a hybrid 

photovoltaic-thermoelectric power generator module may be determined by solving a 

complex system of nonlinear equations. The modeled HPV-TEG system and its thermal 

circuit is shown in Figure 3.2. The HPV-TEG system has all the same dimensions and 

specifications of the conventional PV module shown in Table 3.1. A thermoelectric 

generator comprised of several thermoelements sandwiched between two ceramic layers is 

directly coupled to the back surface of the PV module. A perfectly insulated water cooling 

channel is attached to the bottom of the thermoelectric generator to ensure that the majority 

of the waste thermal energy is transferred through the TEG. As shown in Table 3.2, the 

thermophysical properties of water are based on the mean temperature. The thermal 

resistance of the ceramic layer and the thermal resistance due to the convection heat transfer 

to the water in the channel may be expressed as [117]: 

 
𝑅𝑐𝑒𝑟 =

𝐿𝑐𝑒𝑟

𝑘𝑐𝑒𝑟𝐴𝑃𝑉
 

(3.18) 

 
𝑅𝑐𝑜𝑛𝑣,𝑤 =

1

ℎ𝑤𝐴𝑃𝑉
 

(3.19) 

Based on the thermal circuit, the heat transfer rate to the thermoelectric generator’s hot side, 

and from the thermoelectric generator’s cold side are given by [117]: 

 
𝑄̇ℎ,𝑇𝐸𝐺 =

𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑏𝑜𝑡

𝑅𝑠𝑖𝑙 + 𝑅𝑡𝑒𝑑
=

𝑇𝑏𝑜𝑡 − 𝑇ℎ

𝑅𝑐𝑒𝑟
 

(3.20) 

 



  

Figure 3.2: Schematic of the simplified HPV-TEG module and thermal circuit used in 
this work. 

  

Table 3.2: Thermophysical properties of water based on mean temperature (K) used 
in the numerical study [117]. 

Parameter Equation  

Specific Heat (J/kg·K)  

Dynamic viscosity (Pa·s)  

Thermal conductivity (W/m·K)  
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𝑄̇𝑐,𝑇𝐸𝐺 =

𝑇𝑐 − 𝑇𝑚

𝑅𝑐𝑒𝑟 + 𝑅𝑐𝑜𝑛𝑣,𝑤
 

(3.21) 

where, 𝑇𝑚 is the mean water temperature approximated as: 

 
𝑇𝑚 =

𝑇𝑤,𝑖𝑛 + 𝑇𝑤,𝑜𝑢𝑡

2
 

(3.22) 

Applying energy balance to the control surface around the top channel surface and assuming 

negligible pressure loss in the channel yields:  

 𝑇𝑐 − 𝑇𝑐ℎ𝑎𝑛

𝑅𝑐𝑒𝑟
= 𝑚̇𝑤𝐶𝑝,𝑤(𝑇𝑤,𝑖𝑛 − 𝑇𝑤,𝑜𝑢𝑡) 

(3.23) 

where, 𝑚̇𝑤 is the mass flow rate of water liquid, and 𝐶𝑝,𝑤 is the specific heat of the water 

estimated using the mean temperature of the water [117]. 

The Reynold’s number may be expressed as [116]:  

 
𝑅𝑒𝐷 =

𝜌𝑤𝐷ℎ𝑉𝑚

µ𝑤
 

(3.24) 

where, 𝜌𝑤 is the density of water (kg/m3), 𝐷ℎ is the hydraulic diameter, 𝑉𝑚 is the mean 

velocity of the water flow through the channel, and µ𝑤 is the dynamic viscosity of the water. 

The hydraulic diameter is given by [116]: 

 
𝐷ℎ =

4𝐴𝑐ℎ𝑎𝑛

𝑃𝑤
 

(3.25) 

where, 𝐴𝑐ℎ𝑎𝑛 is the cross-sectional area of the channel, and 𝑃𝑤 is the wetted perimeter. The 

model simulates an assumed fully hydrodynamically and thermally developed laminar flow 

with a uniform heat transfer from the top surface of channel. The flow in the channel is 

considered to be laminar flow if 𝑅𝑒𝐷<2300, turbulent flow if 𝑅𝑒𝐷 > 10000, and transitional 

flow if 2300 ≤ 𝑅𝑒𝐷 ≤ 10000 [116]. The channel’s resulting cross-sectional area ratio of 

width to length is modeled to be approximately eight. The numerical model presented in this 

research work establishes a 𝑅𝑒𝐷 ≪ 2300. Based on these conditions, the Nusselt number 

may be approximated as [117]: 

 𝑁𝑢𝐷 = 6.49 (3.26) 

Based on the above equation, the convective heat transfer coefficient of the water flow may 

be approximated as [117]: 
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ℎ𝑤 =

6.49𝑘𝑤

𝐷ℎ
 

(3.27) 

where, 𝑘𝑤 is the thermal conductivity of the water, given by the equation shown in Table 

3.2. 

3.1.4 Modeling the Thermoelectric Power Generator 

As discussed previously, the thermoelectric generator consists of multiple n-type and 

p-type thermoelements connected electrically in series, and thermally in parallel. Electrical 

energy may be generated by establishing a temperature differential across the 

thermoelements according to the Seebeck effect. The specifications of the thermoelectric 

generator used in this research are shown in Table 3.3. The standard analytical 

thermoelectric generator model used in this research neglects the thermal conductivity and 

electrical resistance of the electrode connections between the p- type and n-type 

thermoelements. The TEG model also assumes no heat loss to the thermoelements’ 

surroundings except at the junction contacts. Based on the standard thermoelectric power 

generator model, the Seebeck coefficient, electrical resistance, and thermal conductance of a 

single thermocouple may be determined by the following equations [82, 103, 121, 122]: 

 𝛼𝑠,𝑝−𝑛 = 𝛼𝑝 − 𝛼𝑛 (3.28) 

 
𝑅𝑝−𝑛 =

𝜌𝑝𝐿𝑝

𝐴𝑝
+

𝜌𝑛𝐿𝑛

𝐴𝑛
=

𝐿𝑇𝐸𝐺

𝐴𝑇𝐸𝐺
(𝜌𝑝 + 𝜌𝑛) 

(3.29) 

 
𝐾𝑝−𝑛 =

𝑘𝑝𝐴𝑝

𝐿𝑝
+

𝑘𝑛𝐴𝑛

𝐿𝑛
=

𝐿𝑇𝐸𝐺

𝐴𝑇𝐸𝐺
(𝑘𝑝 + 𝑘𝑛) 

(3.30) 

The Seebeck coefficient, electrical resistance, and thermal conductance are temperature-

dependent material properties. The numerically modeled thermoelectric generator consists 

of n-type and p-type bismuth-telluride compounds. The material properties of a single 

thermocouple are determined through linear regression analysis of the experimental data 

provided by Yamashita and Sugihara’s [90] experimental work. Based on linear regression 

analysis of Yamashita and Sugihara’s [90] research, the Seebeck coefficient, electrical 

resistance, and thermal conductance as a function of mean TEG temperature (K) are 

estimated as: 

 𝛼𝑠,𝑝−𝑛 = 1.34𝐸 − 10𝑇𝑇𝐸𝐺
2  + 1.70𝐸 − 6𝑇𝑇𝐸𝐺 + 1.22𝐸 − 4 (3.31) 
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Table 3.3: Specifications of the thermoelectric generator used in this research. 

Parameter Value 

Ap (m2) 0.000025 

An (m2) 0.000025 

Lp (m) 0.003 

Ln (m) 0.003 

NTEG 1350 
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 𝑅𝑝−𝑛 = 1.02𝐸 − 8𝑇𝑇𝐸𝐺
2 + 4.11𝐸 − 6𝑇𝑇𝐸𝐺 − 7.32𝐸 − 5 (3.32) 

 𝐾𝑝−𝑛 = 3.07𝐸 − 7𝑇𝑇𝐸𝐺
2 − 2.16𝐸 − 4𝑇𝑇𝐸𝐺 + 6.40𝐸 − 2 (3.33) 

The mean TEG temperature is based on the temperature of the hot and cold junctions, and is 

given by: 

 
𝑇𝑇𝐸𝐺 =

𝑇𝑐 + 𝑇ℎ

2
 

(3.34) 

The Seebeck coefficient, electrical resistance, and thermal conductance of the entire 

thermoelectric generator may be determined by the following equations [81, 114]: 

 𝛼𝑠,𝑇𝐸𝐺 = 𝑁𝑇𝐸𝐺𝛼𝑝−𝑛 (3.35) 

 𝑅𝑇𝐸𝐺 = 𝑁𝑇𝐸𝐺𝜌𝑝−𝑛 (3.36) 

 𝐾𝑇𝐸𝐺 = 𝑁𝑇𝐸𝐺𝑘𝑝−𝑛 (3.37) 

where, NTEG is the total number of thermocouples in the thermoelectric generator.  

The Seebeck effect, heat transfer by conduction, and the internal Joule heating effect 

must be considered in order to derive the heat transfer rate absorbed and dissipated from 

the thermoelectric generator. The heat transfer rate absorbed from the high temperature 

side, and released from the low temperature side, due to the Seebeck effect, may be 

expressed by the following equations [82]: 

 𝑄̇ℎ,𝑃𝐸𝐿𝑇𝐼𝐸𝑅 = 𝛼𝑠,𝑇𝐸𝐺𝐼𝑇𝐸𝐺𝑇ℎ (3.38) 

 𝑄̇ℎ,𝑃𝐸𝐿𝑇𝐼𝐸𝑅 = 𝛼𝑠,𝑇𝐸𝐺𝐼𝑇𝐸𝐺𝑇𝑐 (3.39) 

Applying Fourier’s law of heat conduction, the heat transfer rate due to conduction 

throughout the thermoelectric generator may be determined by [82, 117]: 

 𝑄̇𝑘 = 𝐾𝑇𝐸𝐺(𝑇ℎ − 𝑇𝑐) (3.40) 

The Joule heat generated due to electrical current flowing through the thermoelectric 

generator may be defined as [82]: 

 𝑄̇𝑗 = 𝐼𝑇𝐸𝐺
2 𝑅𝑇𝐸𝐺  (3.41) 

where, 𝐼𝑇𝐸𝐺  is the electrical current produced by the thermoelectric generator. The model 

assumes that the internal Joule heat generated is equally divided between the hot and cold 

temperature junctions.  

Based on the previous analysis discussed above, the total rate of heat absorbed and 

dissipated by an ideal thermoelectric generator is given by [82, 83, 85, 103, 112, 123, 124]: 



59 
 

 
𝑄̇ℎ,𝑇𝐸𝐺 = 𝛼𝑠,𝑇𝐸𝐺𝐼𝑇𝐸𝐺𝑇ℎ + 𝐾𝑇𝐸𝐺(𝑇ℎ − 𝑇𝑐) −

𝐼𝑇𝐸𝐺
2 𝑅𝑇𝐸𝐺

2
 

(3.42) 

 
𝑄̇𝑐,𝑇𝐸𝐺 = 𝛼𝑠,𝑇𝐸𝐺𝐼𝑇𝐸𝐺𝑇𝑐 + 𝐾𝑇𝐸𝐺(𝑇ℎ𝑜𝑡 − 𝑇𝑐𝑜𝑙𝑑) +

𝐼𝑇𝐸𝐺
2 𝑅𝑇𝐸𝐺

2
 

(3.43) 

The electrical current generated by the TEG is given by [113, 122, 125]:  

 
𝐼𝑇𝐸𝐺 =

𝛼𝑠,𝑇𝐸𝐺(𝑇ℎ − 𝑇𝑐)

𝑅𝑇𝐸𝐺 + 𝑅𝐿,𝑇𝐸𝐺
 

(3.44) 

where, 𝑅𝐿,𝑇𝐸𝐺  is the electrical resistance of the load connected to the TEG. The maximum 

power output of a thermoelectric generator may be obtained when the electrical load 

resistance is equal to the internal resistance of the thermoelectric generator. Therefore, the 

TEG’s electric load resistance at the maximum power point is given by [82, 85]:  

 𝑅𝐿,𝑇𝐸𝐺 = 𝑅𝑇𝐸𝐺  (3.45) 

The thermoelectric generator’s maximum electrical power output is determined by [83, 85, 

122, 125]:  

 𝑃𝑇𝐸𝐺,𝑚𝑝 = 𝑄̇ℎ,𝑇𝐸𝐺 − 𝑄̇𝑐,𝑇𝐸𝐺 = 𝛼𝑆,𝑇𝐸𝐺𝐼𝑇𝐸𝐺(𝑇ℎ − 𝑇𝑐) − 𝐼𝑇𝐸𝐺
2 𝑅𝑇𝐸𝐺  (3.46) 

Based on the derived heat equations shown in Eq. (3.20) and (3.21), the thermoelectric 

generator’s maximum power output is also expressed as a function of temperature 

distribution and thermal resistances, given by: 

 
𝑃𝑇𝐸𝐺.𝑚𝑝 = 𝑄̇ℎ,𝑇𝐸𝐺 − 𝑄̇𝑐,𝑇𝐸𝐺 =

𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑏𝑜𝑡

𝑅𝑠𝑖𝑙 + 𝑅𝑡𝑒𝑑
−

𝑇𝑐 − 𝑇𝑚

𝑅𝑐𝑒𝑟 + 𝑅𝑐𝑜𝑛𝑣,𝑤
 

(3.47) 

The conversion efficiency of the thermoelectric generator may be defined as [122]:  

 
𝜂𝑇𝐸𝐺 =

𝑃𝑇𝐸𝐺,𝑚𝑝

𝑄̇𝐻,𝑇𝐸𝐺

 
(3.48) 

3.1.5 Modeling and Simulation of Thomson Effect  

 The Thomson effect states that there is a relationship between the rate of heat 

generation due to the temperature gradient and current passing through a semiconductor 

material. In this investigation, Thomson effect will be considered and numerically simulated 

in order to determine its significance on the modeling of the HPV-TEG system. While 

operating at a constant current, heat is generated and dissipated from a thermoelement due 

to charge carriers responding to the changing voltage field [52]. The heat absorbed and 
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dissipated by an ideal thermoelectric generator, when accounting for the Thomson effect, 

may be expressed as [87, 126]:  

 𝑄̇ℎ,𝑇𝐸𝐺 = 𝛼𝑠,𝑇𝐸𝐺𝐼𝑇𝐸𝐺,𝑇ℎ𝑜𝑚𝑇ℎ,𝑇ℎ𝑜𝑚 + 𝐾𝑇𝐸𝐺(𝑇ℎ,𝑇ℎ𝑜𝑚 − 𝑇𝑐,𝑇ℎ𝑜𝑚)

−
𝐼𝑇𝐸𝐺,𝑇ℎ𝑜𝑚

2 𝑅𝑇𝐸𝐺

2
−

1

2
𝜏𝑇𝐸𝐺(𝑇ℎ,𝑇ℎ𝑜𝑚 − 𝑇𝑐,𝑇ℎ𝑜𝑜𝑚)𝐼𝑇𝐸𝐺,𝑇ℎ𝑜𝑚 

(3.49) 

 𝑄̇𝑐,𝑇𝐸𝐺,𝑇ℎ𝑜𝑚 = 𝛼𝑠,𝑇𝐸𝐺𝐼𝑇𝐸𝐺,𝑇ℎ𝑜𝑚𝑇𝑐,𝑇ℎ𝑜𝑚 + 𝐾𝑇𝐸𝐺(𝑇ℎ,𝑇ℎ𝑜𝑚 − 𝑇𝑐,𝑇ℎ𝑜𝑚)

+
𝐼𝑇𝐸𝐺,𝑇ℎ𝑜𝑚

2 𝑅𝑇𝐸𝐺

2
+

1

2
𝜏𝑇𝐸𝐺(𝑇ℎ − 𝑇𝑐)𝐼TEG 

(3.50) 

The equations above assume that the Thomson heat given by: 

 𝑄̇𝑇𝐻𝑂𝑀 = 𝜏𝑇𝐸𝐺(𝑇ℎ − 𝑇𝑐)𝐼TEG,Thom (3.51) 

is equally released from the hot and cold thermoelement junctions. The power generated by 

the TEG when accounting for the Thomson effect becomes: 

 𝑃𝑇𝐸𝐺,𝑚𝑝,𝑇ℎ𝑜𝑚 = 𝑄̇ℎ,𝑇𝐸𝐺,𝑇ℎ𝑜𝑚 − 𝑄̇𝑐,𝑇𝐸𝐺,𝑇ℎ𝑜𝑚

= 𝛼𝑠,𝑇𝐸𝐺𝐼𝑇𝐸𝐺,𝑇ℎ𝑜𝑚(𝑇ℎ − 𝑇𝑐) − 𝐼𝑇𝐸𝐺,𝑇ℎ𝑜𝑚
2 𝑅𝑇𝐸𝐺

− 𝜏𝑇𝐸𝐺(𝑇ℎ − 𝑇𝑐)𝐼TEG,Thom 

(3.52) 

Assuming the Thomson coefficient is constant, the Thomson coefficient may be 

approximated using Eq. (1.15) [52]: 

 𝛼𝑠,𝑇𝐸𝐺(𝑇) = 𝜏𝑇𝐸𝐺 ln(𝑇) + 𝐶 (3.53) 

where, C is the constant of integration. The logarithmic curve fit of the Seebeck coefficient 

based on Eq. (3.31) estimates the TEG to have a Thomson coefficient approximately equal to 

0.000504 V/K. Some numerical TEG simulations [82, 103, 112, 113, 122, 123, 124, 127] have 

neglected the Thomson effect and assumed the Seebeck coefficient to be constant. The 

Thomson effect is neglected based on the effect being small under low temperature 

differences [128]. In other research works [114, 121], the temperature dependency of the 

Seebeck coefficient, electrical resistivity, and thermal conductivity have been considered. 

The assumption that the Thomson effect can be neglected will be evaluated prior to 

completing the PV and HPV-TEG numerical study. 

3.1.6 Equivalent Circuit Model of a Photovoltaic Module 

 The equivalent circuit model may be used to accurately determine the electrical 

performance of a photovoltaic cell, module, or array. The model presented in this research 



61 
 

will simulate the performance of a photovoltaic module. A schematic of the standard 

equivalent circuit model with a single diode is shown in Figure 3.3 [9]. The electrical 

parameters of the PV and HPV-TEG module are shown in Table 3.4. The electrical current 

supplied to the electrical load at a fixed irradiance intensity and photovoltaic temperature is 

given by [9, 129]: 

 
𝐼𝑃𝑉 = 𝐼𝐿 − 𝐼𝐷 − 𝐼𝑠ℎ = 𝐼𝐿 − 𝐼𝑜 [exp (

𝑉𝑃𝑉 + 𝐼𝑃𝑉𝑅𝑠

𝑎
) − 1] −

𝑉𝑃𝑉 + 𝐼𝑃𝑉𝑅𝑠

𝑅𝑠ℎ
  

(3.54) 

where, IL is the light current, Io is the diode reverse saturation current, Rs is the series 

resistance of the photovoltaic module, Rsh is the shunt resistance of the photovoltaic module, 

and a is the thermal voltage. The reference thermal voltage may be determined by the model 

equation [9]: 

 
𝑎𝑟𝑒𝑓 =

𝑛 𝑘𝐵 𝑇𝑐𝑒𝑙𝑙,𝑟𝑒𝑓 𝑁𝑠

𝑞
 

(3.55) 

where, n is the diode quality coefficient, kB is the Boltzmann constant (1.381*10-23 J/K), Tcell,ref 

is the photovoltaic cell temperature at the reference condition (K), Ns is the number of cells 

in series, and q is the absolute value of an electron’s charge (1.602*10-19 coulomb). Assuming 

the internal resistance of the PV module is negligible (Rsh>>Rs), the diode quality coefficient 

may be determined by [130]:  

 
𝑛 =

𝑞(𝑉𝑃𝑉,𝑚𝑝,𝑟𝑒𝑓 − 𝑉𝑃𝑉,𝑜𝑐,𝑟𝑒𝑓)

𝑁𝑠𝑘𝐵𝑇𝑐𝑒𝑙𝑙,𝑟𝑒𝑓
∗

1

ln (1 −
𝐼𝑃𝑉.𝑚𝑝,𝑟𝑒𝑓

𝐼𝑃𝑉,𝑠𝑐,𝑟𝑒𝑓
)

 
(3.56) 

The series resistance of the PV module may be assumed to be independent of temperature 

[9]:  

 𝑅𝑠(𝑇𝑐𝑒𝑙𝑙,𝑟𝑒𝑓) = 𝑅𝑠(𝑇𝑐𝑒𝑙𝑙) (3.57) 

The shunt resistance does not significantly vary as the temperature of the PV module 

changes, however, it is dependent on the incident solar radiation. Previously conducted 

experimental research by De Soto et al. [131] demonstrated that the shunt resistance may 

be approximated as:  

 𝑅𝑠ℎ

𝑅𝑠ℎ,𝑟𝑒𝑓
=

𝑆𝑟𝑒𝑓

𝑆
 

(3.58) 



 

Figure 3.3: Equivalent circuit model of a photovoltaic module with a single diode. 

 

Table 3.4: Electrical specifications of PV and HPV module used in this research study.  

Parameter Value 

 (Ω) 3.23 [118] 

 (Ω) 654.39 [118] 

(V) 20.081 [118] 

 (A) 0.723 [118] 

 (V) 16.52 [118] 

 (A) 0.62 [118] 

 (⁰C) 25 

  36 [118] 

 (L/min) 5 

 (1/⁰C) -0.06 [132] 

(1/⁰C) 0.33 [132] 

 (W/m2) 1000 
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where, S is the solar radiation absorbed by the PV module. Assuming that the absorptivity, 

reflectivity, and transmissivity of the photovoltaic module remains constant, Eq. (3.58) may 

be simplified as: 

 𝑅𝑠ℎ

𝑅𝑠ℎ,𝑟𝑒𝑓
=

𝐺𝑇,𝑟𝑒𝑓

𝐺𝑇
 

(3.59) 

Assuming the diode quality coefficient n is independent of temperature, the parameter a 

may be defined as a function of the cell temperature by the following equation [9]: 

 𝑎

𝑎𝑟𝑒𝑓
=

𝑇𝑐𝑒𝑙𝑙

𝑇𝑐𝑒𝑙𝑙,𝑟𝑒𝑓
 

(3.60) 

The reference light current may be expressed as a function of the reference open-circuit 

voltage by substituting IPV=0 and VPV=VPV,oc, into equation (3.54). The fundamental 

equivalent circuit equation (3.54) becomes: 

 
𝐼𝐿,𝑟𝑒𝑓 = 𝐼𝑜,𝑟𝑒𝑓 [exp (

𝑉𝑃𝑉,𝑜𝑐,𝑟𝑒𝑓

𝑎𝑟𝑒𝑓
) − 1] +

𝑉𝑃𝑉,𝑜𝑐,𝑟𝑒𝑓

𝑅𝑠ℎ,𝑟𝑒𝑓
 

(3.61) 

The light current, also known as the photocurrent, at a known irradiance intensity GT and 

cell temperature 𝑇𝑐𝑒𝑙𝑙, may be approximated based on the reference irradiance intensity 

𝐺𝑟𝑒𝑓 and photovoltaic cell temperature 𝑇𝑐𝑒𝑙𝑙,𝑟𝑒𝑓 [9, 32, 130, 131]:  

 
𝐼𝐿 =

𝐺𝑇

𝐺𝑟𝑒𝑓
[𝐼𝐿,𝑟𝑒𝑓 + µ𝐼𝑠𝑐(𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑐𝑒𝑙𝑙,𝑟𝑒𝑓)] 

(3.62) 

where, µ𝐼𝑠𝑐 is the short-circuit current temperature coefficient. Experimental simulations 

completed by Virtuani et al. [132] estimated the short-circuit current and open-circuit 

voltage temperature coefficients of various types of photovoltaic modules. The experimental 

results suggest that crystalline silicon-based photovoltaic modules have a short-circuit 

current and open-circuit voltage temperature coefficient of approximately 0.06 (1/⁰C) and -

0.33 (1/⁰C) [132]. 

 The diode reverse saturation current Io is given by [133]: 

 𝐼𝑜

𝐼𝑜,𝑟𝑒𝑓
= (

𝑇𝑐𝑒𝑙𝑙

𝑇𝑐𝑒𝑙𝑙,𝑟𝑒𝑓
)

3

exp (
𝐸𝑔

𝑘𝐵𝑇𝑐𝑒𝑙𝑙
−

𝐸𝑔,𝑟𝑒𝑓

𝑘𝐵𝑇𝑐𝑒𝑙𝑙,𝑟𝑒𝑓
) 

(3.63) 

where, Eg is the material band gap energy. The material band gap energy as a function of 

photovoltaic cell temperature can be found using the model equation [133]: 
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 𝐸𝑔

𝐸𝑔,𝑟𝑒𝑓
= 1 − 𝐶(𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑐𝑒𝑙𝑙,𝑟𝑒𝑓) 

(3.64) 

where, Eg,ref is equal to 1.12 eV (1.794 x 10-19 J), and C is equal to 0.0002677 for crystalline 

silicon-based photovoltaic cells [9]. 

The short-circuit current IPV,sc and open-circuit voltage VPV,oc at the operating cell 

temperature may be determined by solving equation (3.54) at the short-circuit current and 

open-circuit voltage condition, given by the following two equations: 

 
𝐼𝑃𝑉,𝑠𝑐 = 𝐼𝐿 − 𝐼𝑜 [exp (

𝐼𝑃𝑉,𝑠𝑐𝑅𝑠

𝑎
) − 1] −

𝐼𝑃𝑉,𝑠𝑐𝑅𝑠

𝑅𝑠ℎ
 

(3.65) 

 
𝐼𝐿 = 𝐼𝑜,𝑟𝑒𝑓 [exp (

𝑉𝑃𝑉,𝑜𝑐

𝑎
) − 1] +

𝑉𝑃𝑉,𝑜𝑐

𝑅𝑠ℎ,𝑟𝑒𝑓
 

(3.66) 

 The maximum power point of a photovoltaic module occurs when the derivative of 

the power curve with respect to voltage and current is set to zero. Therefore, the ratio of the 

maximum power point current and voltage may be determined by the following equations 

[9, 21, 22]: 

 𝑑𝑃𝑃𝑉,𝑚𝑝

𝑑𝑉
=

𝑑𝑃𝑃𝑉,𝑚𝑝

𝑑𝐼
= 0 

(3.67) 

 𝑑𝑃𝑃𝑉.𝑚𝑝

𝑑𝑉
= 𝑉𝑃𝑉,𝑚𝑝 (

𝐼𝑜

𝑎
exp (

𝑉𝑃𝑉,𝑚𝑝 + 𝐼𝑃𝑉,𝑚𝑝𝑅𝑠 

𝑎
) +

1

𝑅𝑠ℎ
) 

(3.68) 

 𝑑𝑃𝑃𝑉,𝑚𝑝

𝑑𝐼
= 𝐼𝑃𝑉,𝑚𝑝 (

𝐼𝑜𝑅𝑠

𝑎
exp (

𝑉𝑃𝑉,𝑚𝑝 + 𝐼𝑃𝑉,𝑚𝑝𝑅𝑠

𝑎
) +

𝑅𝑠

𝑅𝑠ℎ
+ 1) 

(3.69) 

 
𝐼𝑃𝑉𝑚𝑝

𝑉𝑃𝑉.𝑚𝑝
=

𝐼𝑜

𝑎 exp (
𝑉𝑃𝑉,𝑚𝑝 + 𝐼𝑃𝑉,𝑚𝑝𝑅𝑠 

𝑎 ) +
1

𝑅𝑠ℎ

𝐼𝑜𝑅𝑠

𝑎 exp (
𝑉𝑃𝑉,𝑚𝑝 + 𝐼𝑃𝑉,𝑚𝑝𝑅𝑠

𝑎 ) +
𝑅𝑠

𝑅𝑠ℎ
+ 1

 

(3.70) 

The maximum current and voltage may also be substituted into equation (3.54). The 

resulting equation is given by: 

 
𝐼𝑃𝑉,𝑚𝑝 = 𝐼𝐿 − 𝐼𝑜 [exp (

𝑉𝑃𝑉,𝑚𝑝 + 𝐼𝑃𝑉,𝑚𝑝𝑅𝑠

𝑎
) − 1] −

𝑉𝑃𝑉,𝑚𝑝 + 𝐼𝑃𝑉,𝑚𝑝𝑅𝑠

𝑅𝑠ℎ
  

(3.71) 

The numerical model will assume that the photovoltaic module operates at the maximum 

power point, and will determine the maximum power point current and voltage by solving 

equations (3.70) and (3.71). The maximum power generated by the PV module is then given 

by [20]: 
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 𝑃𝑃𝑉,𝑚𝑝 = 𝐼𝑃𝑉,𝑚𝑝 𝑉𝑃𝑉,𝑚𝑝 (3.72) 

Note that the equivalent circuit model of the hybrid photovoltaic module (HPV) may be 

determined based on the equations discussed in this section. In the case of the HPV module, 

all PV subscripts are substituted with HPV subscripts. For example, the power output of the 

HPV module is given by [20]:  

 𝑃𝐻𝑃𝑉,𝑚𝑝 = 𝐼𝐻𝑃𝑉,𝑚𝑝 𝑉𝐻𝑃𝑉,𝑚𝑝 (3.73) 

The total power generated by the HPV-TEG system is determined using the following 

equation: 

 𝑃𝐻𝑃𝑉−𝑇𝐸𝐺,𝑚𝑝 = 𝑃𝐻𝑃𝑉,𝑚𝑝 + 𝑃𝑇𝐸𝐺,𝑚𝑝 (3.74) 

The overall energy conversion efficiency of the PV and HPV-TEG system is defined as: 

 
𝜂𝐸𝑛,𝑃𝑉 =

𝑃𝑃𝑉,𝑚𝑝

𝐺𝑇 𝐴𝑃𝑉
 

(3.75) 

 
𝜂𝐸𝑛,𝐻𝑃𝑉−𝑇𝐸𝐺 =

𝑃𝐻𝑃𝑉−𝑇𝐸𝐺,𝑚𝑝

𝐺𝑇 𝐴𝑃𝑉
 

(3.76) 

3.1.7 Developed Computational Algorithm for Solving the Complex Systems of 

Equations 

 The computational algorithm used to solve all of the unknown parameters of the 

previously described model equations is shown in Figure 3.4. The developed Matlab script 

uses three different algorithms to solve the system of nonlinear equations. The trust-region-

dogleg algorithm is first implemented, which is specifically designed to solve a system of 

nonlinear equations [134]. The Matlab script then implements the trust-region-reflective 

and Levenberg-Marquardt algorithm that both use various functions and multiple iterations 

to efficiently converge the solution and determine the unknown parameters [135]. The initial 

photovoltaic cell temperature and efficiency is assumed to be 25 ⁰C and 9.83%, respectively, 

and the initial water outlet temperature is assumed to be 14 ⁰C. New values of the water inlet 

temperature, photovoltaic cell temperature, and photovoltaic module efficiency are 

determined based on the numerically modeled equations. The new values are substituted 

back into the solver until the difference between the calculated parameter xi and the 

calculated parameter from the previous iteration xi-1 have a difference of 0.00001% [113] for  



 

Figure 3.4: Algorithm used to solve complex system of nonlinear equations to 
determine temperature and performance of PV and HPV-TEG system.  
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each unknown variable. Once the performance and temperature characteristics of the PV 

and HPV-TEG are determined, exergy analysis of both systems is completed. 

3.1.8 Exergy Analysis of a PV and HPV-TEG System 

Energy analysis of an energy system is evaluated based on the first law of 

thermodynamics, also known as the conservation of energy principle, and is subject to some 

shortcomings. Energy analysis is a quantitative analysis that does not define the quality of 

the energy and may not be implemented to study the lost work of an energy system. Exergy 

analysis combines the first and second laws of thermodynamics to initiate qualitative 

analysis of the energy [33]. Exergy may be defined as the maximum amount of work a system 

operating at a specific state generates as it reaches equilibrium with a reference 

environment [33, 136]. This reference environment is known as the dead state, and is 

typically considered to have the same properties as the system’s surrounding medium. The 

system is considered to be at the dead state and have zero exergy when it has the same 

temperature and pressure of the reference environment, and has no kinetic energy, potential 

energy, or chemical energy potential, with respect to the reference environment [136]. 

Accounting for only the thermo-mechanical potential of a working fluid, the exergy rate of a 

mass flow at state i may be expressed as [136]: 

 𝐸̇𝑥𝑚𝑎𝑠𝑠,𝑖 = 𝑚̇𝑖 ∙ 𝑒𝑥𝑖  (3.77) 

where, 𝑚̇𝑖 is the mass flow rate, and 𝑒𝑥𝑖 is the specific exergy of the working fluid at state i 

given by [136]:  

 
𝑒𝑥𝑖 = (ℎ𝑖 − ℎ0) − 𝑇0(𝑠𝑖 − 𝑠0) +

𝑉𝑖
2

2
+ 𝑔𝑧𝑖  

(3.78) 

where h is specific enthalpy (J/kg), T is temperature (K), s is specific entropy (J/kg∙K), V is 

velocity of the working fluid, g is the gravity constant, z is the elevation height of the system 

in reference to a specific level, and subscript 0 refers to the condition of the dead state. The 

rate of exergy by heat transfer is given by [136]:  

 
𝐸̇𝑥ℎ𝑒𝑎𝑡,𝑗 = (1 −

𝑇0

𝑇𝑗
) 𝑄̇𝑗 

(3.79) 

where, 𝑇𝑗  is the temperature of the boundary at which heat transfer occurs. As previously 
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stated, exergy is defined as the useful work potential of a system. Thus, neglecting the case 

where the system completes boundary work to the surrounding environment, the rate of 

exergy transferred by work (i.e. electrical, mechanical, etc.) may be expressed as [136]: 

 𝐸̇𝑥𝑤𝑜𝑟𝑘 = 𝑊̇ (3.80) 

The rate exergy equation for a closed and open system is given by the following equations 

[136]: 

 𝑑𝐸̇𝑥

𝑑𝑡
= ∑ (1 −

𝑇0

𝑇𝑗
) 𝑄̇𝑗 − (𝑊̇ − 𝑃0

𝑑𝑉

𝑑𝑡
) − 𝐸̇𝑥𝐷  

(3.81) 

 𝑑𝐸̇𝑥

𝑑𝑡
= ∑ (1 −

𝑇0

𝑇𝑗
) 𝑄̇𝑗 − (𝑊̇ −

𝑃0𝑑𝑉

𝑑𝑡
) + ∑ 𝐸̇𝑥𝑖𝑛 − ∑ 𝐸̇𝑥,𝑜𝑢𝑡 − 𝐸̇𝑥𝐷 

(3.82) 

where, t is time, V is the volume of the system, and 𝐸̇𝑥𝐷 is the rate of exergy destruction. 

Under steady state operating conditions, and neglecting the change in kinetic and potential 

energy of the working fluid entering and exiting the system, the closed and open system 

exergy equations become:  

 
𝐸̇𝑥𝐷 = ∑ (1 −

𝑇0

𝑇𝑗
) 𝑄̇𝑗 − 𝑊̇  

(3.83) 

 
𝐸̇𝑥𝐷 = ∑ (1 −

𝑇0

𝑇𝑗
) 𝑄̇𝑗 − 𝑊̇ + ∑ 𝐸̇𝑥𝑚𝑎𝑠𝑠,𝑖𝑛 − ∑ 𝐸̇𝑥𝑚𝑎𝑠𝑠,𝑜𝑢𝑡 

(3.84) 

Unlike energy, exergy may be destroyed. Friction, heat transfer, optical losses, mixing, and 

other irreversibilities caused by transport processes generate entropy. The rate of exergy 

destroyed is directly proportional to the rate of entropy generation 𝑆̇𝑔𝑒𝑛, and is given by 

[136]:  

 𝐸̇𝑥𝐷 = 𝑇0𝑆̇𝑔𝑒𝑛 (3.85) 

The rate of exergy destruction is zero for a reversible process. Since the rate of exergy 

destruction represents the lost work potential [136], optimization methods have been 

developed by analyzing the rate of exergy destruction of various components of a system. 

Exergy analysis allows engineers to investigate the performance of a device and determine 

the main components of the system where the majority of the useful work is lost. The useful 
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work lost from these components may be decreased by changing the material, mass flow 

rate, pressure, temperature distribution or by completely redesigning the component. Other 

optimization methodologies, such as the entropy-generation minimization (EGM) method, 

are used to optimize the performance of real devices that have thermodynamic 

imperfections [137]. The EGM method is completed by designing, modeling and varying each 

single physical characteristic of the system at a time to establish the minimum entropy 

generation rate [137]. In this research, exergy analysis will be completed based on the 

temperature distribution, heat transfer rates, and power output of the PV and HPV-TEG 

system to determine design parameters that may be changed to increase performance.  

The rate of exergy from the solar radiation may be determined using the following 

expression [32, 33, 137, 138]: 

 
𝐸̇𝑥𝑠𝑜𝑙 = 𝐺𝑇𝐴𝑃𝑉 (1 −

𝑇𝑎𝑚𝑏

𝑇𝑠𝑢𝑛
) 

(3.86) 

where, Tsun is the temperature of the Sun (Tsun=5760 K). Based on the previous discussion, 

the rate of exergy destruction from the PV system may be approximated as:  

 
𝐸̇𝑥𝐷,𝑃𝑉 = − (1 −

𝑇0

𝑇𝑔𝑙𝑎
) 𝑄̇𝑡𝑜𝑝 − (1 −

𝑇0

𝑇𝑏𝑜𝑡
) 𝑄̇𝑏𝑜𝑡 − (1 −

𝑇0

𝑇𝑐𝑒𝑙𝑙
) 𝑄̇𝑟𝑎𝑑

+ 𝐺𝑇𝐴𝑃𝑉 (1 −
𝑇𝑎𝑚𝑏

𝑇𝑆𝑢𝑛
) − 𝑃𝑃𝑉,𝑚𝑝 

(3.87) 

 The rate of exergy destruction from the HPV-TEG system may be determined by the 

following equations:  

 
𝐸̇𝑥𝐷,𝑃𝑉 = − (1 −

𝑇0

𝑇𝑔𝑙𝑎
) 𝑄̇𝑡𝑜𝑝 − (1 −

𝑇0

𝑇𝑐𝑒𝑙𝑙
) 𝑄̇𝑟𝑎𝑑 + 𝐺𝑇𝐴𝑃𝑉 (1 −

𝑇𝑎𝑚𝑏

𝑇𝑆𝑢𝑛
)

+ 𝐸̇𝑥𝑤 − 𝑃𝐻𝑃𝑉−𝑇𝐸𝐺 

(3.88) 

 𝐸̇𝑥𝑤 = 𝑚̇𝑤 ((ℎ𝑤𝑖𝑛 − ℎ𝑤,𝑜𝑢𝑡) − 𝑇0(𝑠𝑤,𝑖𝑛 − 𝑠𝑤,𝑜𝑢𝑡)) (3.89) 

where, 𝐸̇𝑥𝑤  is the rate of exergy transferred from the HPV-TEG system to the water cooling 

fluid, hw is the specific enthalpy of the water (J/kg), and sw is the specific entropy of the water 

(J/kg·K). Assuming that the water remains completely saturated, the water’s enthalpy and 

entropy as a function of the water temperature Tw (K) is estimated by following correlations 

[136]: 

 ℎ𝑤 = 4194.25𝑇𝑤 − 114512.99 (3.90) 
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 𝑠𝑤 = 14.6𝑇𝑤 − 4008.04 (3.91) 

The rate of electrical exergy destroyed by the PV and HPV module is determined by [33]:  

 𝐸̇𝑥𝐷,𝑃𝑉 = 𝐼𝑃𝑉,𝑠𝑐𝑉𝑃𝑉,𝑜𝑐 − 𝑃𝑃𝑉,𝑚𝑝 (3.92) 

 𝐸̇𝑥𝐷,𝐻𝑃𝑉 = 𝐼𝐻𝑃𝑉,𝑠𝑐𝑉𝐻𝑃𝑉,𝑜𝑐 − 𝑃𝐻𝑃𝑉,𝑚𝑝 (3.93) 

The rate of exergy due to optical losses from the top surface of the PV module may be 

estimated by:  

 
𝐸̇𝑥𝐷,𝑜𝑝𝑡 = 𝐺𝑇𝐴𝑃𝑉 (1 −

𝑇𝑎𝑚𝑏

𝑇𝑆𝑢𝑛
) (1 − 𝜏𝑔𝑙𝑎[𝛽𝑐𝑒𝑙𝑙𝛼𝑠𝑖𝑙 + (1 − 𝛽𝑐𝑒𝑙𝑙)𝛼𝑡𝑒𝑑]) 

(3.94) 

The rate of exergy destroyed by the TEG may be expressed as [139]: 

 
𝐸̇𝑥𝐷,𝑇𝐸𝐺 = (1 −

𝑇ℎ𝑜𝑡

𝑇0
) 𝑄̇𝐻,𝑇𝐸𝐺 − (1 −

𝑇𝑐𝑜𝑙𝑑

𝑇0
) 𝑄̇𝐻,𝑇𝐸𝐺 − 𝑃𝑇𝐸𝐺,𝑚𝑝 

(3.95) 

The exergy efficiency of the PV and HPV-TEG system is defined as the ratio of the rate of 

useful exergy recovered to the rate of exergy supplied [140]: 

 
𝜂𝐸̇𝑥,𝑃𝑉 =

𝑃𝑃𝑉𝑚𝑝

𝐸̇𝑥𝑠𝑜𝑙

 
(3.96) 

 
𝜂𝐸̇𝑥,𝐻𝑃𝑉−𝑇𝐸𝐺 =

𝑃𝐻𝑃𝑉−𝑇𝐸𝐺

𝐸̇𝑥𝑠𝑜𝑙

 
(3.97) 

3.2 Numerical Model Results and Discussion 

3.2.1 Thomson Effect Analysis 

 The difference between the power generated by the thermoelectric generator when 

accounting and neglecting the Thomson effect versus irradiance intensity is shown in Figure 

3.5. The power generated by the TEG when accounting for the Thomson effect is higher than 

the power generated by the TEG when neglecting the Thomson effect. This difference in TEG 

power generated when accounting and neglecting the Thomson effect increases nonlinearly 

as the irradiance intensity increases. As the amount of solar radiation increases, the TEG 

absorbs and discharges less thermal energy due the Thomson heat being released at the hot 

and cold junctions of the TEG based on equations (3.49) and (3.50). The Thomson effect has 

a greater influence on the performance of the TEG as the solar radiation increases, since high 

solar radiation intensities lead to an increase in the temperature gradient across the TEG,  
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Figure 3.5: Thermoelectric power generated temperature difference between 
accounting and neglecting the Thomson effect vs. irradiance intensity, Tamb=25 ⁰C, 
hconv,top =20 W/m2∙K. 
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which is directly proportional to the Thomson heat as indicated in equation (3.51). The 

additional thermal energy transferred at hot and cold junctions due to the Thomson effect 

increases the mean temperature of the thermoelectric generator, as shown in Figure 3.6. As 

a result, the temperature-dependent thermoelectric properties (Seebeck coefficient, thermal 

conductivity, electrical resistivity) of the thermoelectric generator change. As demonstrated 

by Yamashita and Sugihara [90], the dimensionless figure-of-merit of the n-type and p-type 

thermoelements used in this numerical model increase with TEG temperature, meaning the 

TEG’s performance improves with temperature. The Thomson effect decreases the thermal 

energy absorbed and dissipated from the TEG, however for this particular numerical model, 

this performance deficiency of the Thomson effect is diminished. The increase in the mean 

TEG temperature improves the thermoelectric properties of the TEG, which in turn 

establishes a larger TEG power output than the simulation neglecting the Thomson effect. 

The Thomson effect also affects the performance of the hybrid photovoltaic module. 

The hybrid photovoltaic cell’s difference between accounting and neglecting the Thomson 

effect increases nonlinearly, as seen in Figure 3.7. The Thomson effect increases the hybrid 

photovoltaic cell by 0.003 ⁰C at an irradiance intensity of 1000 W/m2. As expected, this 

increase in the photovoltaic cell temperature with irradiance intensity due to the Thomson 

effect decreases the power output of the module nonlinearly as irradiance intensity 

increases, as shown in Figure 3.8. The power generated by the hybrid photovoltaic module 

decreases by 0.45 mW when accounting for the Thomson effect at an irradiance intensity of 

1000 W/m2. This numerical study has demonstrated that the Thomson effect should be 

considered to improve the accuracy of the numerical model, especially if the HPV-TEG 

system has a high capacity and if the TEG operates under large temperature gradients. Based 

on the results in this section, the Thomson effect will be neglected for all of the numerical 

simulations. The TEG in the numerical model operates under very small temperature 

gradients, and thus, the Thomson effect does not significantly affect the performance and 

temperature distribution of the numerically modeled HPV-TEG system. 
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Figure 3.6: Mean thermoelectric generator temperature difference between 
accounting and neglecting the Thomson effect vs. irradiance intensity, Tamb=25 ⁰C, 
hconv,top =20 W/m2∙K.  

 

 

Figure 3.7: HPV-TEG photovoltaic cell temperature difference between account and 
neglecting the Thomson effect vs. irradiance intensity, Tamb=25 ⁰C, hconv,top=20 
W/m2∙K.  
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Figure 3.8: HPV-TEG photovoltaic module power output difference between account 
and neglecting the Thomson effect vs. irradiance intensity, Tamb=25 ⁰C, hconv,top=20 
W/m2∙K.  
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3.2.2 Performance Analysis of PV and HPV-TEG 

The HPV module maintains a lower temperature than the standard PV module due to 

the additional cooling system provided by the TEG system, as shown in Figure 3.9. The 

temperature of both photovoltaic modules increases linearly with respect to irradiance 

intensity. The hybrid module obtains a photovoltaic temperature 13 to 20 ⁰C less than the 

standard PV module depending on the irradiance intensity. The simulated maximum power 

point of the conventional and hybrid photovoltaic module as a function of irradiance 

intensity is shown in Figure 3.10. The difference in power generated between the 

conventional and hybrid PV module increases as the incident solar radiation intensity onto 

both photovoltaic modules increases. This difference in power generated between the two 

PV modules emphasizes that maintaining a low photovoltaic cell temperature increases the 

power output of the PV module. The difference in photovoltaic module power generated by 

the two systems at an irradiance intensity of 400 W/m2 and 800 W/m2 is approximately 0.75 

and 1.96 W, respectively. Furthermore, according to Figure 3.10, the HPV module produces 

about 31.8%, 36.8%, and 45% more electrical energy than the conventional PV module 

under irradiance intensity of 600, 800, and 1000 W/m2, respectively. The relationship 

between the power generated by the PV modules and the ambient air temperature is shown 

in Figure 3.11. The power generated by each PV module decreases somewhat linearly as the 

ambient air temperature increases. The power generated by the PV and HPV module 

decreases by approximately 19.7% and 6.3% when increasing the ambient air temperature 

from 15 to 25 ⁰C.  

A three-dimensional representation of the HPV-TEG system’s photovoltaic module 

temperature and thermoelectric power generated as a function of irradiance intensity (50-

1000 W/m2) and ambient air temperature (10-40 ⁰C) is shown in Figure 3.12 and Figure 

3.13. The temperature profile presented in Figure 3.12 emphasizes that ambient air 

temperature and irradiance intensity both significantly affect the temperature of the HPV 

photovoltaic cell. Figure 3.13 demonstrates that in order for the thermoelectric generator 

to maximize power output, the HPV-TEG system must be operated under a high irradiance 

intensity and ambient air temperature. The power generated from the thermoelectric 

generator is small, producing approximately 1.66% of the total HPV-TEG electrical power 

output at an ambient air temperature of 25 ⁰C, irradiance intensity of 900 W/m2, and top  
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Figure 3.9: Photovoltaic cell temperature of PV and HPV-TEG photovoltaic module vs. 
irradiance intensity, Tamb=25 ⁰C, hconv,top=20 W/m2∙K. 
 

  

Figure 3.10: Power generated by PV and HPV-TEG photovoltaic module vs. irradiance 
intensity, Tamb=25 ⁰C, hconv,top=20 W/m2∙K. 
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Figure 3.11: Power generated by PV and HPV-TEG photovoltaic module vs. ambient air 
temperature, GT=1000 W/m2, hconv,top=20 W/m2∙K.  
 

 

Figure 3.12: HPV-TEG photovoltaic cell temperature vs. irradiance intensity vs. 
ambient air temperature, hconv,top=20 W/m2∙K.  
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Figure 3.13: Power generated by thermoelectric generator vs. irradiance intensity vs. 
ambient air temperature, hconv,top=20 W/m2∙K.  
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convective coefficient of 20 W/m2∙K. The results of the performance study has shown that 

the advantageous characteristics of the HPV-TEG system may be exploited while operating 

under high irradiance intensities and ambient air temperatures.  

3.2.3 Energy and Exergy Analyses of HPV-TEG System 

 Figure 3.14 shows the parametric study of the energy and exergy efficiency of the PV 

and HPV-TEG system versus irradiance intensity. Similar energy and exergy profiles as a 

function of irradiance intensity have been developed in literature [24, 31, 32, 141], 

suggesting that the developed mathematical model in this study was accurately simulated. It 

may be observed from this figure that an optimal irradiance intensity exists that establishes 

the maximum energy conversion and exergy efficiency for the PV and HPV-TEG. For the PV 

system, the maximum energy and exergy efficiency of 7.9% and 8.3% occurs at an irradiance 

intensity of 250 W/m2. The maximum energy and exergy efficiencies of the HPV-TEG system 

are approximately 9.7% and 10.3% and occurs at an irradiance intensity of 400 W/m2. 

Increasing the optimal irradiance intensity to 900 W/m2 decreases the energy and exergy 

conversion efficiencies of the PV system by approximately 1.4% and 1.5%, while the HPV-

TEG system’s energy and exergy efficiencies decreases by about 0.53%. Further analysis of 

the energy and exergy efficiencies of the PV and HPV-TEG versus the ambient air 

temperature is presented in Figure 3.15. The energy and exergy efficiencies of both systems 

decreases linearly with ambient air temperature. Increasing the ambient air temperature 

from 10 ⁰C to 20 ⁰C decreases the energy and exergy efficiencies of the PV system by about 

1.5% and 1.6%, and HPV-TEG system’s energy and exergy efficiencies decreases by about 

0.6% and 0.54%. The overall efficiency of the PV and HPV-TEG may be improved upon by 

minimizing the ambient air temperature at a constant irradiance intensity of 1000 W/m2. 

However, a closer look at the thermoelectric generator’s efficiency, as shown in Figure 3.16, 

suggests that a high ambient air temperature is beneficial for the performance of the TEG. As 

suggested by various researchers [81, 108, 110, 113, 115], the thermoelectric generator’s 

efficiency increases as the temperature differential increases, whether it is by increasing the 

ambient air temperature or irradiance intensity.  

The simulated energy and exergy efficiency of the PV and HPV-TEG system versus the 

top convection coefficient is shown in Figure 3.17. The exergy and energy conversion  
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Figure 3.14: (a) Energy conversion efficiency and (b) exergy efficiency of PV and HPV-
TEG system vs. irradiance intensity, Tamb=25 ⁰C, hconv,top = 20 W/m2∙K.  
 

 

Figure 3.15: (a) Energy conversion efficiency and (b) exergy efficiency of PV and HPV-
TEG system vs. ambient air temperature, GT=1000 W/m2, hconv,top = 10 W/m2∙K.  

(a) 

(b) 

(a) 

(b) 



81 
 

 

Figure 3.16: Energy conversion efficiency of thermoelectric generator vs. ambient air 
temperature vs. irradiance intensity, hconv,top = 20 W/m2∙K.  

    

Figure 3.17: (a) Energy conversion efficiency and (b) exergy efficiency of PV and HPV-

TEG system vs. ambient air temperature, GT=1000 W/m2, Tamb=25 ⁰C.  

(a) 

(b) 
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efficiency of the PV system increases asymptotically as the top convection coefficient 

increases. As the top convection coefficient increases, the rate of thermal energy extracted 

from the top surface of the standard PV module increases, reducing the photovoltaic cell 

temperature and improving the system’s performance. The energy and exergy efficiency of 

the HPV-TEG system remains constant at approximately 9% and 9.6%. The majority of the 

thermal energy from the HPV-TEG system is transferred efficiently through the 

thermoelectric generator to the cooling fluid. As a result, increasing the top convection 

coefficient does not significantly increase the rate of thermal energy dissipated and the 

performance of the HPV-TEG system. 

HPV-TEG systems establish a greater energy conversion and exergy efficiency than 

the conventional PV module within the studied range of ambient air temperatures and 

irradiance intensities. Therefore, the mathematical model has provided strong evidence that 

the HPV-TEG is able to convert a greater portion of the input energy and exergy into useful  

work (electricity). However, it is important to mention that the HPV-TEG would not have a 

superior energy and exergy efficiency if the cooling system was not efficiently removing 

thermal energy from the system. Such a case may occur if the irradiance intensity is low, 

ambient air temperature is low, or if the water inlet temperature is high. As shown in Figure 

3.18, numerically simulating a constant ambient air temperature of 5 ⁰C allows the PV 

system to obtain a higher energy and exergy efficiency than the HPV-TEG system while 

operating at an irradiance intensities less than 450 W/m2 . The combination of a low 

irradiance intensity, and the water inlet temperature being higher than the ambient air 

temperature causes the HPV-TEG system to have a higher photovoltaic cell temperature and 

a lower power output than the conventional PV module. Thus, the operating conditions, such 

as the available water inlet temperature, and the annual irradiance intensity and ambient air 

temperature distribution play an important role in determining the feasibility of a HPV-TEG 

system.  

 The effect of the irradiance intensity and ambient air temperature on the rate of 

exergy destruction of the HPV-TEG system is shown in Figure 3.19. The figure demonstrates 

that the rate of exergy destruction of the HPV-TEG system is strongly dependent on the 

irradiance intensity, and changes minimally when the ambient air temperature increases. 

Further analysis of the rate of exergy destruction due to the optimal and electrical  
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Figure 3.18: (a) Energy conversion efficiency and (b) exergy efficiency of PV and HPV-
TEG system vs. irradiance intensity, Tamb=5 ⁰C, hconv,top = 20 W/m2∙K.  
 

 

Figure 3.19: Rate of exergy destruction by HPV-TEG system vs. irradiance intensity vs. 
ambient air temperature, hconv,top=20 W/m2∙K.  
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characteristics of the hybrid photovoltaic module versus irradiance intensity is shown in 

Figure 3.20. Furthermore, the rate of exergy destruction by the thermoelectric generator 

versus irradiance intensity is shown in Figure 3.21. Based on Figure 3.20 and Figure 3.21, 

the rate of exergy destroyed due to optical losses from the top surface of the HPV-TEG 

module, electrical characteristics of the HPV module, and the thermoelectric generator, 

accounts for approximately 72.7%, 6.6%, and 0.2% of the total rate of exergy destroyed at 

an irradiance intensity of 1000 W/m2. Exergy analysis has provided strong evidence that 

optimization efforts should concentrate primarily on improving the optical properties of the 

top surface of the hybrid photovoltaic module. Increasing the transmittance of the glass layer 

and the absorptance of the silicon and tedlar material would dramatically reduce the rate of 

exergy destruction and improve the overall performance of the HPV-TEG system. The 

numerical model has investigated several variables that influence the performance of a HPV-

TEG system. The chapter four will utilize the knowledge gained by the numerical simulation 

results to manufacture, test, and study the performance of various HPV-TEG systems.   
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Figure 3.20: Rate of exergy destruction by HPV-TEG system due to various components 
vs. irradiance intensity, Tamb=25 ⁰C, hconv,top=20 W/m2∙K. 
 

 

Figure 3.21: Rate of exergy destruction by thermoelectric generator vs. irradiance 
intensity, Tamb=25 ⁰C, hconv,top=20 W/m2∙K. 
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Chapter 4: Experimental Work 

Previous analysis and discussion in chapters two and three have provided a greater 

understanding of the factors that impede and improve the performance of a hybrid 

photovoltaic-thermoelectric power generation system. This major chapter focuses on the 

indoor and outdoor experimental characterization of various HPV-TEG modules and directly 

compares their performance with conventional photovoltaic modules. HPV-TEG modules, 

the indoor solar simulator, and the outdoor experimental test setups were designed using 

Autodesk Inventor Professional 3D CAD software prior to completing experimental 

simulations. The HPV-TEG modules use water as a cooling fluid to efficiently remove thermal 

energy from the hybrid system’s photovoltaic module. In the first section of this chapter, the 

effect of the number of thermoelectric modules, the irradiance intensity, and the water inlet 

temperature on the temperature distribution and performance of the HPV-TEG modules will 

be investigated using an indoor solar simulator. In the second section, a series of 12 outdoor 

tests is implemented to determine the feasibility of various HPV-TEG systems under a variety 

of weather and operating conditions.  

4.1 Fabrication and Instrumentation of Hybrid Photovoltaic Modules 

 In this research, three fully-instrumented hybrid photovoltaic-thermoelectric power 

generation (HPV-TEG) modules were designed and manufactured. Additionally, each HPV-

TEG module’s performance will be compared with its corresponding unaltered conventional 

photovoltaic module’s performance. The composition of the three HPV-TEG case studies are 

presented in Table 4.1. Further information regarding the specifications of the two PV 

models used in the construction of the HPV-TEG modules are shown in Table 4.2. For each 

hybrid photovoltaic module, a specific number of thermoelectric modules are coupled to a 

0.635 mm thick aluminum layer that is placed on the back surface of the hybrid photovoltaic 

module. As will be analyzed and discussed in detail in section 4.2, the aluminum layer may 

be removed to study its effect on the performance of the HPV-TEG module. The 

thermoelectric modules are comprised of bismuth telluride compounds, and have a cross-

sectional area of 56 mm x 56 mm. A T-type thermocouple is directly mounted to the hot side 

temperature of a thermoelectric module. An aluminum water cooling block is attached to  
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Table 4.1: Specifications of experimental test setup PV/HPV-TEG modules. 

 

 

Table 4.2: Specifications of experimental test setup photovoltaic modules. 
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the other side of each thermoelectric module to remove the thermal energy from the HPV-

TEG system, as shown in Figure 4.1. Each thermoelectric module is covered with a graphite 

layer to create an excellent contact with the aluminum and water cooling block. The high 

thermal conductivity of the graphite layer allows thermal energy to be uniformly absorbed 

and dissipated from each thermoelectric module. The entire hybrid module is insulated 

using rigid foam insulation to ensure that all the heat is transferred through the 

thermoelectric generator, as depicted in Figure 4.2. The thermoelectric modules are 

connected in series to create the HPV-TEG module’s thermoelectric generator. The 

aluminum water cooling blocks are also connected in series.  

4.2 Indoor Solar Simulation Tests 

4.2.1 Indoor Experimental Solar Simulator Test Setup and Methodology 

 The schematic diagram of the indoor experimental test setup is shown in Figure 4.3. 

The test setup mainly consists of a solar simulator, HPV-TEG module/ PV module, electrical 

loads, data acquisition unit, and a cooling system. As shown in Figure 4.4, 8 500-watt 

tungsten halogen lamps arranged in a 4 x 2 matrix were used to simulate solar radiation. The 

solar radiation intensity was measured using an Onset silicon pyranometer positioned 

parallel to the photovoltaic module plane. The irradiance intensity may be varied by 

illuminating particular lamps and by changing the height of the solar simulator platform. 

Water is supplied at a known temperature and flow rate to the HPV-TEG system. The inlet 

and outlet temperature of the water is determined using T-type thermocouple probes TR1 

and TR2. Real-time water inlet and outlet temperature measurements are recorded every 10 

seconds during each experimental simulation to ensure that the water inlet temperature 

does not vary by more than 5%. Real-time measurements of the hot side temperature 

thermocouple TR3 are also recorded every 10 seconds. A variable area rotameter FL1 is used 

to control the volumetric flow rate of the water. A variable resistance load, also known as a 

rheostat, is connected to the photovoltaic modules and thermoelectric generator. Thermal 

profiles of the photovoltaic modules are recorded using a FLIR E4 infrared camera at an 

emissivity of 0.88 [113]. Steady state operation occurs when the hybrid system’s 

photovoltaic module power at a constant electrical load resistance and TEG open-circuit 

voltage does not deviate by more than 0.1% after 5 minutes. Once the system reaches steady 



 
Figure 4.1: Back surface of hybrid photovoltaic module with aluminum sheet, 
thermoelectric generator, and aluminum cooling block. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Photographs showing fabrication of 10W-HPV-2TEG module. ng fabrication of 10W HPV 2TEG moduleFigure 4 2: Photographs showinng fabrica



 

Figure 4.3: The indoor experimental test setup for (a) hybrid photovoltaic system (b) 
conventional photovoltaic system used in this investigation. 

 
Figure 4.4: A photograph showing the indoor experimental simulation of 40W-HPV-
10TEG module using solar simulator used in this investigation.  

(a) 

(b) 
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state, the power curves of each electrical device may be determined by incrementally 

increasing the load resistance connected to the PV module and TEG, and by measuring the 

resultant voltage and current. 

4.2.2 Results and Discussion: Indoor Experimental Tests 

 Benchmark experimental simulations demonstrating the effect of the aluminum layer 

on the performance of the 10W-HPV-2TEG system were performed to determine whether 

the aluminum was improving or degrading the hybrid system’s performance. As seen in 

Figure 4.5, both systems’ back surface temperature reached a steady state operating 

condition in approximately 90 minutes. It was consistently observed that for each indoor 

test the PV/HPV-TEG system reached steady state operation in approximately 90 minutes. 

The HPV-TEG-2TEG system with the aluminum layer was approximately 10.7 ⁰C cooler than 

the HPV-TEG-2TEG system without the aluminum layer. The thermal profiles shown in 

Figure 4.6 revealed that the addition of the aluminum layer decreases the overall 

temperature profile of the hybrid system’s PV module. The power curves of the hybrid 

system’s PV module and thermoelectric generator are shown in Figure 4.7 and Figure 4.8. 

Based on the experimental results, incorporating the aluminum layer into the design of the 

10-HPW-2TEG system increases the maximum power output of the PV module and 

thermoelectric generator by approximately 6.9% and 350%. The aluminum layer in this 

particular design increases the heat transfer rate from the photovoltaic module to the 

thermoelectric generator, reducing the temperature of the photovoltaic cells, and increasing 

the temperature gradient across the thermoelectric modules. While the thermal resistance 

of the HPV-TEG system is increased with the addition of the aluminum layer, the aluminum 

layer acts as a heat sink when installed, increasing the heat transfer rate 2-dimensionally to 

the thermoelectric generator’s hot side junction. One can conclude that the overall 

performance and thermal stability of a hybrid photovoltaic-thermoelectric generator 

improves significantly with the addition of the aluminum layer, thus the aluminum layer will 

be incorporated into the design of all the HPV-TEG modules.  

Figure 4.9 shows the steady state temperature distribution of the 10W-PV, 10W-

HPV-2TEG and 10W-HPV-4TEG modules under the same operating conditions. It was 

observed that the HPV-TEG module with more thermoelectric modules (10W-HPV-4TEG)  



 

 
Figure 4.5: Back photovoltaic module temperature vs. time for 10W-HPV-2TEG system 
with and without aluminum layer, GT=825 W/m2, Tw,in=14 ⁰C. =1 L/min.  
 

 

 

 
Figure 4.6: Thermal profiles of 10W-HPV-2TEG module (a) without aluminum (b) with 
aluminum, GT=825 W/m2, Tw,in=14 ⁰C. =1 L/min. 

(a) (b) 
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Figure 4.7: 10W-HPV(-2TEG) module power vs. voltage with and without aluminum 
layer, GT=825 W/m2, Tw,in=13.75 ⁰C, 𝑽̇=1 L/min.  
 

 

Figure 4.8: 2TEG power vs. voltage with and without aluminum layer, GT=825 W/m2, 
Tw,in=13.75 ⁰C, 𝑽̇=1 L/min. 
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Figure 4.9: Thermal profiles of (a) 10W-PV (b) 10W-HPV-2TEG and (c) 10W-HPV-4TEG 
system, GT=825 W/m2, Tw,in=11 ⁰C, =1 L/min.  
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provides a lower and more uniform thermal profile. Increasing the number of thermoelectric 

modules from two to four reduces the overall photovoltaic module temperature, and 

simultaneously increases the hybrid system’s photovoltaic module from ~4.5 W to ~4.91 W, 

as shown in Figure 4.10. It may be observed in Figure 4.11 that increasing the number of 

thermoelectric modules also increases the maximum power produced by the hybrid 

system’s thermoelectric generator by approximately 23.5%. Therefore, this study has 

indicated that the number of thermoelectric modules in a HPV-TEG system significantly 

effects the system’s electrical power output. 

 The effect of solar radiation intensity on the maximum power output of the hybrid 

system’s photovoltaic module, hybrid system’s thermoelectric generator, and the 

conventional photovoltaic module was investigated, as shown in Figure 4.12 and Figure 

4.13. In both figures, the power output of all of the electrical components appears to increase 

linearly with irradiance intensity. Further analysis of Figure 4.12 shows that the hybrid 

system’s PV module power remains approximately 0.5 W higher than the standard PV 

module. Increasing irradiance intensity from 500 W/m2 to 825 W/m2 increases the hybrid 

10W-HPV(-2TEG) module power by 58.4%, the standard 10W-PV power by 63.8%, and the 

2TEG power by 124.5%. Furthermore, as seen in Figure 4.13, increasing the irradiance 

intensity from 425 W/m2 to 750 W/m2 increases the hybrid 40W-HPV(-10TEG) module 

power by 76.3%, the standard 40W-PV power by 62.7%, and the 10TEG power by 115%. 

Figure 4.14 shows that the standard photovoltaic module temperature profile ranged from 

approximately 63.3 ⁰C to 86.8 ⁰C, whereas the hybrid photovoltaic module’s temperature 

profile ranged from approximately 41.1 ⁰C to 81.6 ⁰C. The hybrid system’s ability to establish 

a lower photovoltaic module temperature allows it to generate a significantly greater 

amount of electricity.  

The temperature gradient across the thermoelectric generator was estimated based 

on the hot side TEG thermocouple and the water inlet temperature. From the experimental 

simulations, it was observed that the difference between the water inlet and outlet 

temperature was negligible (<0.1 ⁰C), suggesting that the water inlet temperature to each 

aluminum cooling block does not vary significantly. Also, one can assume that there is little 

difference between the water inlet temperature and the outside temperature of the 

aluminum water cooling blocks due to the water cooling blocks having a high thermal 
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Figure 4.10: Power vs. voltage curves of conventional 10W-PV photovoltaic module, 
and hybrid photovoltaic module of 10W-HPV-2TEG and 10W-HPV-4TEG system, 
GT=825 W/m2, Tw,in=11 ⁰C, 𝑽̇=1 L/min.  
 

 

Figure 4.11: TEG power vs. voltage curves for 10W-HPV-2TEG and 10W-HPV-4TEG 
system, GT=825 W/m2, Tw,in=11 ⁰C, 𝑽̇=1 L/min. 
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Figure 4.12: The 10W-PV, 10W-HPV(-2TEG), and 2TEG maximum power output vs. 
irradiance intensity, Tw,in=11 ⁰C, 𝑽̇=1 L/min. 

 

 

Figure 4.13: The 40W-PV, 40W-HPV(-10TEG), and 10TEG maximum power point vs. 
irradiance intensity, Tw,in=2 ⁰C, 𝑽̇=1 L/min.  
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Figure 4.14: Thermal profiles of the (a) 40W-PV and (b) 40W-HPV-10TEG system, 
GT=750 W/m2, Tw,in=2 ⁰C, =1 L/min.  
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conductivity and thin wall thickness (~ 0.0005 m). Therefore, based on these principles, it is 

accurate to estimate that the cold side temperature of the TEG is approximately equal to the 

water inlet temperature. The relationship between the 10W-HPV-TEG system’s 

thermoelectric generator power output and temperature gradient as a function of irradiance 

intensity is shown in Figure 4.15. The temperature gradient appears to increase nonlinearly 

with irradiance intensity. The maximum temperature gradient of approximately 35.3 ⁰C 

established a power output of 303.3 mW from the 40W-HPV-10TEG thermoelectric 

generator. Figure 4.15 emphasizes that the power generated by the thermoelectric 

generator is directly proportional to the TEG’s temperature gradient. 

The importance of maintaining a low inlet water temperature to a HPV-TEG system 

was confirmed by the indoor experimental results shown in Figure 4.16. In this particular 

study, various inlet water temperatures were introduced to the 40W-HPV-10TEG system at 

a constant irradiance intensity of 750 W/m2 and water flow rate of 1 L/min. This figure 

displays that increasing the water inlet temperature decreases the power output of the 

hybrid system’s PV module and thermoelectric generator. Increasing the water inlet 

temperature from 2 ⁰C to 13.5 ⁰C decreases the hybrid system’s PV module and 

thermoelectric generator by approximately 0.15 W and 85 mW, respectively. This decrease 

in the hybrid system’s PV module power can be attributed to the overall increase in the 

photovoltaic module temperature, as seen in Figure 4.17. Increasing the water inlet 

temperature also decreases the thermal energy transferred through each thermoelectric 

module and the temperature gradient of the TEG. As a result, the total amount of power 

generated by the thermoelectric generator decreases. The water inlet temperature should 

be minimized to optimize the performance of the HPV-TEG system.  

The final indoor experimental simulation investigated the optimization of a HPV-TEG 

by incorporating a v-trough concentrator to increase the total amount of electricity 

generated. V-troughs were implemented due to its low cost, easy manufacturability, and low 

solar radiation concentration. High solar radiation concentrators, such as Fresnel lenses, 

have a greater potential of causing permanent damage to the photovoltaic module. A 

photograph of the manufactured concentrated hybrid photovoltaic-thermoelectric power 

generation module prototype (40W-CHPV-10TEG) is shown in Figure 4.18. Two flat 

aluminum coated mirrors were tilted at an angle of 60 degrees to create a geometric 
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Figure 4.15: The 10TEG thermoelectric generator maximum power output and 
temperature difference across TEG vs. irradiance intensity, Tw,in=2 ⁰C, 𝑽̇=1 L/min.  

 

 

Figure 4.16: The 40W-HPV-(10TEG) module and thermoelectric generator (10TEG) 
power output vs. water inlet temperature, GT=750 W/m2, 𝑽̇=1 L/min. 
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Figure 4.17: Thermal profile of the 40W-HPV-10TEG operating with a water inlet 
temperature of (a) 2 ⁰C and (b) 20 ⁰C, GT=750 W/m2, =1 L/min. 

 
Figure 4.18: Photograph of the concentrated hybrid photovoltaic-thermoelectric 
power generation module (40W-CHPV-10TEG).  

(a) (b) 



102 
 

concentration ratio of ~2.93. Comparison between the photovoltaic power vs. voltage curves 

of the 40W-PV, 40W-HPV-10TEG, and the 40W-CHPV-10TEG systems are shown in Figure 

4.19. The maximum power generated by the concentrated hybrid PV module (40W-CHPV-

10TEG) was approximately 33.2% and 23.2% greater than the power generated by the 

conventional (40W-PV) and hybrid PV module (40W-HPV-10TEG). The shift of the 40W-PV 

power curve to the 40W-HPV-10TEG power curve is due to the decrease in the operating 

temperature of the photovoltaic cells, whereas the shift of the 40W-HPV-10TEG power curve 

to the 40W-CHPV-10TEG power curve is due to an increase in the incident irradiance 

intensity. Recall that this power curve shift due to temperature and irradiance intensity is 

also illustrated in Figure 1.8 and Figure 1.9 on page 12. As depicted in Figure 4.20, the 

addition of the v-trough concentrator to the HPV-TEG system slightly increased the 

temperature profile of the PV module. However, the overall thermal profile of the 40W-

CHPV-10TEG system remained lower than the standard PV module’s thermal profile. 

Increasing the incident solar radiation using a v-trough concentrator also increases the 

thermal energy dissipated by the PV module and absorbed by the thermoelectric generator. 

As shown in Figure 4.21 and Figure 4.22, additional thermal energy may be harvested by 

the thermoelectric generator when the incident irradiance intensity is increased using the v-

trough concentrators. Increasing the incident irradiance intensity increases the current, 

voltage and power generated by the thermoelectric generator. The maximum power output 

difference between the 40W-CHPV-10TEG and 40W-HPV-10TEG thermoelectric generator 

was approximately 115.4 mW.  

The experimental results demonstrated that the designed water cooling system has 

the capability to maintain a low photovoltaic module temperature when the irradiance 

intensity was increased through the use of a v-trough concentrator. The major disadvantage 

of installing v-trough concentrators to a HPV-TEG system is the additional cost of the 

reflectors, and the solar tracking system that is required to ensure shadows do not shade 

portions of the PV module. Nevertheless, as demonstrated by Sangani and Solanki’s [142] 

research, the increase in power generated by integrating commercially available 

photovoltaic modules with v-trough concentrators has the potential to decrease the overall 

cost per watt of a PV system. The developed CHPV-TEG prototype and indoor simulation data 

has demonstrated that v-trough concentrators are a safe and low-cost method of increasing 
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Figure 4.19: The 40W-PV, 10W-HPV-(10TEG), and 40W-CHPV(-10TEG) module power 
and vs. voltage curves, GT=750 W/m2, Tw,in=2 ⁰C, 𝑽̇=1 L/min.  
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Figure 4.20: Thermal profiles of the (a) 40W-PV-10TEG (b) 40W-HPV-10TEG, and (c) 
CHPV-TEG module, GT=750 W/m2, Tw,in=2 ⁰C, =1 L/min. 
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Figure 4.21: The HPV-TEG and CHPV-TEG thermoelectric generator current vs. voltage 
curves, GT=750 W/m2, Tw,in=2 ⁰C, =1 L/min. 

 

 

Figure 4.22: The HPV-TEG and CHPV-TEG thermoelectric generator power vs. voltage 
curves, GT=750 W/m2, Tw,in=2 ⁰C, =1 L/min.  



106 
 

the electricity generated from a HPV-TEG system. 

The indoor experimental simulations discussed in this section provided an incentive 

to investigate the performance of a HPV-TEG system in an outdoor setting. There are few 

factors of the indoor solar simulations that limit the accuracy of determining the viability 

and performance of a HPV-TEG system under real-life circumstances. The most critical 

shortcoming of the indoor solar simulator is that the tungsten halogen lamps do not perfectly 

simulate natural sunlight. Tungsten halogen lamps emit a higher spectral irradiance of 

infrared (long) wavelengths compared to the Sun’s wavelength spectrum [143]. Photovoltaic 

modules directly convert these infrared wavelengths into thermal energy. Therefore, the PV 

and HPV-TEG system operate at higher temperatures using halogen lamps than when 

operating at the same irradiance intensity using natural sunlight. Additionally, the solar 

simulator only investigates static conditions where the ambient air temperature and 

irradiance intensity are constant. These constraints of the low-cost solar simulator 

emphasize that outdoor experimental case studies are required to further validate the proof-

of-concept of a HPV-TEG system. 

4.3 Outdoor Case Studies 

4.3.1 Outdoor Experimental Site Location 

 Outdoor experimental case studies will be performed under the dynamic climate 

conditions of Thunder Bay (48.38 ⁰N, 89.25 ⁰W), Ontario, Canada. As seen in Figure 4.23, 

Thunder Bay is located in Northwestern Ontario on the shores of Lake Superior with an 

estimated population of 121,596 in 2011 [144]. The city experiences a large variation in 

weather throughout the year. For example, the minimum ambient air temperature in January 

2015 was approximately -32.0 ⁰C, while the maximum ambient air temperature in July 2014 

was approximately 33.2 ⁰C [145]. It has been estimated that Thunder Bay has an average of 

2121 sunshine hours a year [146]. Although there is a substantial variation in temperature 

throughout the year, Thunder Bay has an adequate amount of sunshine from May to 

September to fully characterize the performance of various designs of HPV-TEG systems. 

 

 



 

 

 

 
Figure 4.23: Location of Thunder Bay (48.38 ⁰N, 89.25 ⁰W), Ontario, Canada [147].  
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4.3.2 Outdoor Experimental Test Setup and Experimental Procedure 

Experimental case studies were implemented to determine the performance of the 

10W-HPV-2TEG, 10W-HPV-4TEG, and 40W-HPV-10TEG. A summary of the tests and the 

corresponding case study type and tilt angle is shown in Table 4.3. Photographs of each 

outdoor experimental test setup are shown in Figure 4.24. A schematic of a typical outdoor 

experimental test setup for each case study is displayed in Figure 4.25. The conventional PV 

and HPV-TEG systems are placed in an outdoor location free from shadows that may be 

present from trees, buildings, birds, pedestrians, etc. Each system has the exact same 

photovoltaic module electrical specifications. Benchmark tests were completed to ensure 

that the PV module used in each HPV-TEG system has the same power output as the standard 

PV module. A weather data logger station is used to record the wind speed, ambient air 

temperature, and irradiance intensity on a horizontal plane every second. For the 40W-PV 

and40W-HPV-10TEG test setup, an additional pyranometer is installed to measure the 

incident irradiance intensity since the test setup is orientated at a tilt angle equal to the 

latitude of the location. An additional pyranometer is not required for tests #1-#8 since the 

tilt angle of the system is zero and the incident irradiance intensity may be determined by 

the weather data logger’s pyranometer. The inlet and outlet temperature of the water is 

determined using T-type thermocouple probes TR1 and TR2. Experimental data is recorded 

from 10 AM to 2 PM EST for each test. Each photovoltaic system faces directly due south. 

Real-time water inlet and outlet temperature measurements are recorded every 10 seconds. 

Real-time measurements of the hot TEG side temperature (TR3), and the back PV module 

surface temperature (TR4 and TR5) are also recorded every 10 seconds. A variable area 

rotameter FL1 is used to set the volumetric flow rate of the water to 1 L/min. Thermal 

profiles of the PV and HPV-TEG systems are recorded using a FLIR E4 infrared camera every 

5 minutes at an emissivity of 0.88.  

 In chapter three and section 4.2, it was evident that the optimal electrical load 

resistance for a photovoltaic module and TEG is dependent on several factors including 

ambient air temperature, wind velocity, incident irradiance intensity, and water inlet 

temperature. A conservative estimate of the optimal electrical load resistance for each 

electrical component for the outdoor tests is based on the optimal load resistances 

determined from the indoor experimental results and the electrical specifications of each 
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Table 4.3: Selected PV tilt angle for each test and the corresponding case study. 

 



 

 
Figure 4.24: Photographs showing the outdoor experimental test setup of (a) 10W-
PV/ 10W-HPV-2TEG and 10W-PV/ 10W-HPV-4TEG system (b) 40W-PV/ 40W-HPV-
10TEG system. 
 

 

(a) 

(b) 
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Figure 4.25: Schematic of the outdoor experimental test setup used in this research 

work.  

 

 

 

 



112 
 

device. A constant electrical load resistance of 40 ohms and 1 ohm is connected to each 

photovoltaic module and thermoelectric generator of the 10W-PV, 10W-HPV-2TEG, and 

10W-HPV-4TEG systems. For the 40W-PV and 40W-HPV-10TEG system, an electrical load of 

20 ohms and 10 ohms is connected to each photovoltaic module and thermoelectric 

generator. Real-time data acquisition software and a wireless data recorder is used to 

observe the voltage across the photovoltaic modules’ loads every second. The voltage across 

the TEG load is measured every 5 minutes. Based on the voltage and resistance of each 

device, the power generated at a moment of time t by the conventional photovoltaic module, 

the hybrid system’s photovoltaic module, and thermoelectric generator may be determined 

by the following equations: 

 
𝑃𝑃𝑉(𝑡) =

𝑉𝑃𝑉(𝑡)2

𝑅𝑃𝑉
 

(4.1) 

 
𝑃𝐻𝑃𝑉(𝑡) =

𝑉𝐻𝑃𝑉(𝑡)2

𝑅𝑃𝑉
 

(4.2) 

 
𝑃𝑇𝐸𝐺(𝑡) =

𝑉𝑇𝐸𝐺(𝑡)2

𝑅𝑇𝐸𝐺
 

(4.3) 

The total electrical power generated by the entire HPV-TEG system at a time t may be 

determined by the formula: 

 𝑃𝐻𝑃𝑉−𝑇𝐸𝐺(𝑡) = 𝑃𝐻𝑃𝑉(𝑡) + 𝑃𝑇𝐸𝐺(𝑡) (4.4) 

The total daily irradiance intensity received by each photovoltaic system is determined using 

the equation:  

 
𝐻𝑇 = ∫ 𝐺𝑇(𝑡)

2:00 𝑃𝑀

10:00 𝐴𝑀

𝑑𝑡 
(4.5) 

The total daily energy generated by the conventional photovoltaic module, HPV-TEG module, 

and the HPV-TEG system’s thermoelectric generator over the four hour outdoor test is given 

by the following formulas: 

 
𝐸𝑃𝑉 = ∫ 𝑃𝑃𝑉(𝑡)

2:00 𝑃𝑀

10:00 𝐴𝑀

𝑑𝑡 
(4.6) 

 
𝐸𝐻𝑃𝑉 = ∫ 𝑃𝐻𝑃𝑉(𝑡)

2:00 𝑃𝑀

10:00 𝐴𝑀

𝑑𝑡 
(4.7) 
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𝐸𝑇𝐸𝐺 = ∫ 𝑃𝑇𝐸𝐺(𝑡)

2:00 𝑃𝑀

10:00 𝐴𝑀

𝑑𝑡 
(4.8) 

The overall daily efficiency of the conventional photovoltaic system for each outdoor test 

may be expressed as the ratio of total power generated by the PV module to the total 

irradiance: 

 
𝜂𝑃𝑉,𝑑𝑎𝑖𝑙𝑦 =

𝐸𝑃𝑉

𝐴𝑃𝑉𝐻𝑇
 

(4.9) 

The overall daily efficiency of the HPV-TEG system for each outdoor test may be expressed 

as the ratio of total power generated by the HPV-TEG system to the total irradiance: 

 
𝜂𝐻𝑃𝑉−𝑇𝐸𝐺,𝑑𝑎𝑖𝑙𝑦 =

𝐸𝐻𝑃𝑉 + 𝐸𝑇𝐸𝐺

𝐴𝑃𝑉𝐻𝑇
 

(4.10) 

Using the experimental data, the trapezoidal rule was implemented to approximate the 

integrals used in equations (4.5)-(4.10). 

4.3.3 Results and Discussion: Outdoor Case Studies 

As shown in Figure 4.26 and Figure 4.27, the average water inlet temperature varies 

test to test, however the water inlet temperature did not fluctuate by more than 2 ⁰C from 

the daily average inlet temperature for each test. The daily average water inlet temperature 

ranged from 8.89 ⁰C to 19.85 ⁰C, in order to investigate whether an HPV-TEG system may 

outperform a standard photovoltaic module when the water inlet temperature is not 

provided at an optimal temperature.  

 The results of the first test are shown in Figures 4.28-4.31. As seen in Figure 4.28 and 

Figure 4.29, periodic cloud cover from 10:30 AM to 11:15 AM reduced the incident 

irradiance intensity and directly affects the power output of the 10W-PV and 10W-HPV-

2TEG systems’ photovoltaic modules. The maximum power output of the 10W-PV and 10W-

HPV-2TEG system during test #1 was approximately 6.25 W and 6.55 W, respectively. The 

10W-PV and 10W-HPV-2TEG systems’ energy conversion efficiencies when producing the 

maximum power output were approximately 8.74% and 9.09%, respectively. The daily 

average water inlet temperature of test #1 was approximately 19.85 ⁰C, therefore, test #1 

has indicated the 10W-HPV-2TEG does not require a very low water inlet temperature to 

cool the system’s photovoltaic module and produce more electricity than the standard  
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Figure 4.26: Water inlet temperature vs. time for outdoor test #1 to test #7. 

 

 

 

 

 

Figure 4.27: Water inlet temperature vs. time for outdoor test #8 to test #12. 
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Figure 4.28: Corresponding incident irradiance intensity GT, ambient air temperature 
Tamb, and wind speed Vwind vs. time (test #1).  
 
 

 

Figure 4.29: Power output of standard 10W-PV and hybrid 10W-HPV(-2TEG) 
photovoltaic module vs. time (test #1).  
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Figure 4.30: Thermoelectric generator (2TEG) power output vs. time (test #1). 

 

 

 

 
Figure 4.31: Back PV temperature vs. time (test #1). 
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photovoltaic module. Figure 4.30 indicated that the cloud cover also reduced the power 

generated by the thermoelectric generator, establishing a minimum power output of 11.05 

mW at 10:50 AM. The maximum power produced by the thermoelectric generator for test 

#1 was 38.8 mW. Temperature measurements of the back surface of each PV module show 

that the hybrid system maintained a lower operating temperature than the conventional 

system, as seen in Figure 4.31.  

In comparison to test #1, test #2 also illustrated a similar relationship between 

photovoltaic module power and irradiance intensity. Figure 4.32 and Figure 4.33 show that 

as the irradiance intensity increases, the difference in power generated by the 10W-HPV-

2TEG and 10W-PV photovoltaic modules increases. It is interesting to note, a similar trend 

was also examined in Figure 3.10, providing some confidence in the numerically obtained 

performance results. In Figure 4.34, the power generated by the TEG in test #2 appears to 

generally increase with time. This increasing trend in TEG electrical energy created is due to 

the fact that TEG power is directly proportional to irradiance intensity and the ambient air 

temperature, which increase with time. The minimum TEG power output of test #2 was 3.9 

mW and occurred at 10:00 AM when the ambient air temperature and irradiance intensity 

was 15.92 ⁰C and 413.1 W/m2. The maximum TEG power generated by the TEG for test #2 

was approximately 24.2 mW at 1:55 PM when the ambient air temperature and irradiance 

intensity was 20.82 ⁰C and 764.4 W/m2. 

The performance of the 10W-HPV-2TEG system under non-ideal weather conditions 

was observed in test #3 and test #4. The experimental results for test #3 are shown in 

Figures 4.35-4.37. As seen in Figure 4.35, the irradiance intensity oscillates significantly 

throughout the duration of test #3, establishing a minimum and maximum irradiance 

intensity of 138.1 W/m2 and 951.9 W/m2, respectively. The responsiveness of the 10W-PV 

and 10W-HPV-2TEG photovoltaic modules’ power output to the dynamic weather conditions 

is shown in Figure 4.36. The 10W-PV and 10W-HPV-2TEG daily total photovoltaic module 

energy produced from 10 AM to 2 PM for test #3 was approximately 15.29 Wh and 16.21 

Wh, based on equations (4.6) and (4.7) respectively. Test #3 has a daily overall PV and HPV-

TEG system energy conversion efficiency that was approximately 0.71% lower compared to 

test #2. Research completed by Durisch et al. [148] has shown that the energy conversion 

efficiency of a photovoltaic module generally increases with irradiance intensity. Therefore,  
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Figure 4.32: Corresponding incident irradiance intensity GT, ambient air temperature 
Tamb, and wind speed Vwind vs. time (test #2).  
 

 

Figure 4.33: Power output of standard (10W-PV) and hybrid 10W-HPV(-2TEG) 
photovoltaic module vs. time (test #2).  
 

 

Figure 4.34: Thermoelectric generator (2TEG) power output vs. time (test #2). 
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Figure 4.35: Corresponding incident irradiance intensity GT, ambient air temperature 
Tamb, and wind speed Vwind vs. time (test #3).  
 

 

Figure 4.36: Power output of standard (10W-PV) and hybrid 10W-HPV(-2TEG) 
photovoltaic module vs. time (test #3).  
 

 

Figure 4.37: Thermoelectric generator (2TEG) power output vs. time (test #3). 
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since test #2 has a higher total daily incident irradiance intensity than test #3, test #2 will 

also have a higher daily overall PV and HPV-TEG system efficiency than test #3. It is evident 

that there is a direct relationship between irradiance intensity and TEG power output when 

comparing Figure 4.35 and Figure 4.37. Periods of high irradiance intensity gradually 

increase the power generated by the thermoelectric generator. For example, the irradiance 

intensity from 11:30 AM to 11:35 AM remains greater than 650 W/m2, establishing the 

maximum TEG power output of 15.6 mW at 11:35 AM. Apparently, periodic cloud cover after 

11:35 AM decreases the power output of the TEG, reaching 4.4 mW at 12:05 PM.  

The performance of the 10-HPV-2TEG was also investigated under very low 

irradiance intensities in test #4, as shown in Figures 4.38-4.40. The irradiance intensity for 

test #4 remains less than 400 W/m2 for the entire duration of the experiment. Figure 4.39 

shows that despite the low irradiance intensity, the 10W-HPV-2TEG photovoltaic module 

consistently produces more electrical energy than the standard PV module. The overall daily 

efficiency of the 10W-PV and 10W-HPV-2TEG in test #4 was approximately 3.68% and 

3.81%, confirming the results from other research works [115, 141, 148] that a photovoltaic 

system’s energy conversion efficiency is significantly reduced while operating under low 

irradiance intensities. The effect of the low irradiance intensity on the amount of electricity 

generated by the TEG is apparent in Figure 4.40. The thermoelectric generator in test #4 

produces a very low amount of electrical energy, producing only 5.32 mWh over the course 

of the four hour test. Test #3 and test #4 have very similar ambient air and water inlet 

temperatures, however test #4 had a total daily incident irradiance intensity which was 

approximately 67% less than test #3. This lower daily incident irradiance intensity results 

in the HPV-TEG system’s photovoltaic module and TEG in test #4 to generate 13.81 Wh and 

17.08 mWh less electricity than the HPV-TEG system’s photovoltaic module and TEG in test 

#3.  

The number of thermoelectric modules integrated into the 10-watt photovoltaic 

module was increased from two (10W-HPV-2TEG) to four (10W-HPV-4TEG). Similar to test 

#2, test #5 shows the performance of a 10W-HPV-4TEG under clear sky and sunny 

conditions, as shown in Figure 4.41. It can be observed in Figure 4.42 that the difference 

between the PV module electrical energy generated by the 10W-PV and 10W-HPV-4TEG 

increases with irradiance intensity. In test #5, the power output of the 10W-HPV-4TEG  
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Figure 4.38: Corresponding incident irradiance intensity GT, ambient air temperature 
Tamb, and wind speed Vwind vs. time (test #4).  
 

  

Figure 4.39: Power output of standard (10W-PV) and hybrid 10W-HPV(-2TEG) 
photovoltaic module vs. time (test #4).  
 

 

Figure 4.40: Thermoelectric generator (2TEG) power output vs. time (test #4). 
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Figure 4.41: Corresponding incident irradiance intensity GT, ambient air temperature 
Tamb, and wind speed Vwind vs. time (test #5).  
 

 

Figure 4.42: Power output of standard 10W-PV and hybrid 10W-HPV(-4TEG) 
photovoltaic module vs. time (test #5). 
 

 

Figure 4.43: Thermoelectric generator (4TEG) power output vs. time (test #5). 
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system’s photovoltaic module was approximately 1.65 W when the irradiance intensity was 

313.1 W/m2, and approximately 6.24 W when the irradiance intensity was increased to 636.9 

W/m2. The daily energy conversion efficiency of the 10W-HPV-4TEG system was 0.63% 

greater than the 10W-PV system. Power characteristics of test #5 highlights that as the 

irradiance intensity increases, the difference between the HPV-TEG and PV system power 

output increases, proposing that the HPV-TEG system is more feasible in geographical 

location with high irradiance intensities. Using experimental TEG data shown in Figure 4.43, 

it was determined that the overall daily efficiency of the 10W-HPV-4TEG system was 

increased by only 0.11% due to the electrical energy produced by the thermoelectric 

generator, suggesting that the main beneficial characteristic of the 10W-HPV-4TEG system’s 

design is its ability to cool and increase the power output from the PV module. 

It can be seen by comparing Figure 4.32 and Figure 4.41 that test #2 and test #5 

have similar irradiance profiles, however the weather conditions of test #5 establish lower 

irradiance intensities than test #2. The daily average irradiance intensity for test #2 and test 

#5 was approximately 640.75 W/m2 and 530.99 W/m2. Figure 4.43 demonstrates that the 

TEG in test #5 generates less electrical energy than the TEG in test #2 due to the lower 

irradiance intensity. The thermal profiles of the experimental study also concluded that the 

10W-HPV-4TEG system’s operating temperature was efficiently reduced using the water-

cooling/TEG system, as shown in Figure 4.44. At 10:30 AM, the 10W-HPV-4TEG and 10W-

PV operate at an irradiance intensity of 385.6 W/m2 and an ambient air temperature equal 

to 18.51 ⁰C. During this time, the temperature of the 10W-HPV-4TEG photovoltaic cells was 

4 ⁰C to 10 ⁰C less than the temperature of the 10W-PV photovoltaic cells. The incident 

irradiance intensity and ambient air temperature for test #5 at 2:00 PM was about 639.4 

W/m2 and 18.82 ⁰C. The minimum and maximum temperatures of the 10W-PV module at 

2:00 PM are approximately 28.8 ⁰C and 33.7 ⁰C, while the minimum and maximum 

temperatures of the 10W-HPV-4TEG module are approximately 19.7 ⁰C and 27.4 ⁰C. It is 

evident from the thermal performance graphs that the decrease of the photovoltaic cell 

temperature increases the power output of the hybrid system’s photovoltaic module, 

allowing it to generate an extra 1.3 Wh during test #5.  

The performance of the 10W-HPV-4TEG was investigated under low irradiance 

intensities and with a daily average water inlet temperature greater than the daily average  
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 (b) 

Figure 4.44: Thermal profile of 10W-PV and 10W-HPV-4TEG (a) 10:30 AM and (b) 
2:00PM (test #5).  
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ambient air temperature in test #6 and test #7. The weather conditions of test #6 are 

illustrated in Figure 4.45. The PV and HPV-TEG system in test #6 experience frequent 

periods of cloudiness and sunshine. According to the results shown in Figure 4.46, the total  

energy generated by the 10W-HPV-4TEG and 10W-PV photovoltaic module was 

approximately 11.90 Wh and 12.58 Wh for test #6. The power generated by the HPV-TEG 

system’s module ranges from 0.12 W and 7.63 W due to the irradiance intensity varying 

between 96.9 W/m2 to 944.4 W/m2 throughout the day. Figure 4.47 presents the 

thermoelectric generator power output of test #6 versus time. For this test, the minimum 

and maximum TEG power produced was approximately 0.01 mW and 18.7 mW. The 

minimum TEG power output of approximately 0.01 mW occurs at 1:15 PM and 2:00 PM at a 

low incident irradiance intensity of 210.6 W/m2 and 221.9 W/m2 respectively. 

The weather conditions and performance of the 10W-HPV-4TEG system in test #7 

may be examined in Figures 4.48-4.50. Test #6 and test #7 have very comparable daily 

average ambient air temperatures, establishing daily average ambient air temperatures of 

approximately 12.70 ⁰C and 12.68 ⁰C, respectively. Test #6 and test #7 also have very 

comparable daily average daily average water inlet temperatures, establishing daily average 

water inlet temperatures of approximately 15.05 ⁰C and 14.83 ⁰C, respectively. However, 

there is a noticeable difference between the amount of solar radiation that occured for each 

test when analyzing Figure 4.45 and Figure 4.48. Figure 4.48 shows that for test #7, the 

irradiance intensity remains less than 300 W/m2 until approximately 1:15 PM, then irregular 

short durations of sunlight occur for the remainder of the experiment. The power output of 

the 10W-PV and 10W-HPV-4TEG photovoltaic module is shown in Figure 4.49. The 10W-

HPV-4TEG photovoltaic module has a larger power output than the standard 10 watt 

photovoltaic module for the entire duration of test #7. For example, at 11:15 PM (test #7), 

the 10W-HPV-4TEG photovoltaic module produces 1.53 W, while the 10W-PV photovoltaic 

module produces 1.62 W. Figure 4.50 shows that the thermoelectric generator produces 

low amounts of electrical energy due to the small amount of thermal energy transferred to 

each thermoelectric module. The thermoelectric generator requires long intervals of high 

irradiance intensity or a large difference between the water inlet temperature and ambient 

air temperature to establish a sufficient temperature gradient and power output. Therefore, 

due to the conditions of test #7, the TEG only produces 1.60 mWh of electrical energy. The  
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Figure 4.45: Corresponding incident irradiance intensity GT, ambient air temperature 
Tamb, and wind speed Vwind vs. time (test #6).  
 

 

Figure 4.46: Power output of standard 10W-PV and hybrid 10W-HPV(-4TEG) 
photovoltaic module vs. time (test #6).  
 

 

Figure 4.47: Thermoelectric generator (4TEG) power output vs. time (test #6). 
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Figure 4.48: Corresponding incident irradiance intensity GT, ambient air temperature 
Tamb, and wind speed Vwind vs. time (test #7).  
 

 

Figure 4.49: Thermoelectric generator (4TEG) power output vs. time (test #7). 
 

 

Figure 4.50: Thermoelectric generator (4TEG) power output vs. time (test #7). 
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experimental results of test #6 and test #7 have provided conclusive evidence that the 10W-

HPV-4TEG system has the capability to produce more electrical energy than the standard 

10W-PV system even though the water inlet temperature is not supplied at a low 

temperature. 

The larger HPV-TEG system comprised of a 40-watt photovoltaic module and 10 

thermoelectric modules (40W-HPV-10TEG) was orientated horizontally and investigated in  

test #8. The results of test #8 are presented in Figures 4.51-4.53. The weather during test 

#8 was a mix of sunny and cloudy periods, as shown in Figure 4.51. The total daily incident 

irradiance intensity for test #8 was calculated to be 2231.54 Wh/m2. The daily average 

ambient air temperature of test #8 was approximately 19.28 ⁰C. When analyzing the 

experimental data shown in Figure 4.52, it was calculated that the 40W-HPV-10TEG 

photovoltaic module generated approximately 0.45 Wh more electrical energy than the 

40W-PV photovoltaic module. Although the 40W-HPV-10TEG has a larger photovoltaic 

module than the tests previously discussed, the designed cooling system was able to 

efficiently remove the waste-heat at a rate that noticeably increases the power output of the 

40W-HPV-10TEG system’s photovoltaic module. In Figure 4.53, it is apparent that the 

cloudy periods in the afternoon significantly decrease the power produced by the 

thermoelectric generator. These cloud periods occur from approximately from 12:20 PM to 

12:38 PM, from 12:46 PM to 1:06 PM, and from 1:10 PM to 1:37 PM. The low irradiance 

intensity caused by the cloudy periods establishes a TEG power output of 19.92 mW, 15.74 

mW, and 12.89 mW at 12:30 PM, 1:00 PM, and 1:20 PM respectively during test #8. In test 

#8, the thermoelectric generator has a maximum and minimum power output of 

approximately 54.54 mW and 12.88 mW, respectively. 

The performance of the 40W-HPV-10TEG system at a tilt angle of approximately 48⁰ 

(latitude) was studied in tests #9-#12. The experimental results of the first test (test #9) 

completed with the tilted 40W-HPV-10TEG system are given in Figures 4.54-4.56. The 

increase of the incident solar radiation by tilting the photovoltaic system is clearly 

represented in Figure 4.54 by the difference between the incident solar radiation (GT) and 

solar radiation on a horizontal plane (G). The daily total irradiance on a horizontal plane and 

the incident irradiance from 10 AM to 2 PM was determined to be approximately 2902.53  
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Figure 4.51: Corresponding incident irradiance intensity GT, ambient air temperature 
Tamb, and wind speed Vwind vs. time (test #8).  
 

 

Figure 4.52: Power output of standard 10W-PV and hybrid 10W-HPV(-4TEG) 
photovoltaic module vs. time (test #8).  
 

 

Figure 4.53: Thermoelectric generator (4TEG) power output vs. time (test #8). 
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Figure 4.54: Incident irradiance intensity GT, irradiance intensity on horizontal plane 
G, ambient air temperature Tamb, and wind speed Vwind vs. time (test #9).  
 

 

Figure 4.55: Power output of standard 10W-PV and hybrid 10W-HPV(-10TEG) 
photovoltaic module vs. time (test #9).  
 

 

Figure 4.56: Thermoelectric generator (10TEG) power output vs. time (test #9). 
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Wh/m2 and 3957.78 Wh/m2. Figure 4.55 shows that for test #9, the 40W-HPV-10TEG 

photovoltaic module constantly produces more electrical energy than the standard 40W-PV 

photovoltaic module. The difference in power generated between the 40W-PV and 40W-

HPV-10TEG photovoltaic module ranges between approximately 0.6 W and 1.5 W 

throughout the duration of test #9. The power output of the photovoltaic modules does not 

fluctuating significantly during test #9, suggesting that the constant electrical load condition 

implemented in this test setup does not significantly vary the electrical energy generated by 

the photovoltaic modules when the irradiance intensity was greater than 700 W/m2. The 

total daily electrical energy generated by the 40W-PV and 40W-HPV-10TEG photovoltaic 

modules was determined to be 70.11 Wh and 74.14 Wh. The thermoelectric generator 

output for test #9 establishes a minimum and maximum power output of 72.88 mW and 

107.54 mW, as shown in Figure 4.56. In test #9, the thermoelectric generator’s electrical 

output was also fairly stable and does not deviate by more than 15% from the TEG power 

output average. The HPV-TEG system’s thermoelectric generator can produce a reliable 

power output while operating under the weather conditions given in Figure 4.54. It is also 

apparent that the 40W-HPV-10TEG system produces a significantly larger amount of power 

from its thermoelectric generator than the 10W-HPV-2TEG and 10W-HPV-4TEG case studies 

investigated in test #1 to test #7. This larger power output from the 40W-HPV-10TEG 

system’s TEG is due to the system having a greater quantity of thermoelectric modules and 

a higher temperature gradient, as shown in Figure 4.57. The 10W-HPV-4TEG system’s 

thermoelectric generator in test #5 experiences temperature gradients ranging from 1.4 ⁰C 

to 6.1 ⁰C, whereas the 40W-HPV-10TEG system’s thermoelectric generator in test #9 

experiences temperature gradients ranging from 15.1 ⁰C to 18.2 ⁰C. The 40W-HPV-10TEG 

system’s ability to maintain a lower temperature profile than the 40W-PV system is depicted 

in Figure 4.58. The temperature of the 40W-PV system’s photovoltaic cells at 12:00 PM (test 

#9) ranged from 26.7 ⁰C to 39.3⁰C. As expected, the temperature of the 40W-HPV-10TEG 

system’s photovoltaic cells at 12:00 PM (test #9) was lower, ranging between 20.8 ⁰C to 

39.2⁰C. The 40W-HPV-10TEG system’s cooling uniformly reduces the temperature of the 

photovoltaic cells. Test #9 has confirmed that it is possible to increase the power output and 

reduce the overall temperature of a large 40-watt photovoltaic module using the designed 

TEG/cooling system under clear sky and sunny conditions. 



132 
 

 

 

 

Figure 4.57: Thermoelectric generator power vs. TEG temperature difference for (a) 
4TEG (test #5) and (b) 10TEG (test #9).  
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Figure 4.58: Thermal profile of 40W-PV (left side) and 40W-HPV-10TEG (right side) at 
12:00 PM (test #9).  
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 The 40W-HPV-10TEG system was further investigated in test #10 and test #11. Test 

#10 and test #11 obtained very similar results to test #9 with a daily average water inlet  

temperature of 9.41 ⁰C and 9.23 ⁰C, respectively. The results of test #10 are shown from 

Figures 4.59-4.62. From the recorded weather conditions of test #10 shown in Figure 4.59, 

it was found that the total daily incident irradiance intensity and ambient air temperature 

was 4212.18 W/m2 and 16.84 ⁰C, respectively. Figure 4.60 provides further evidence that 

the 40W-HPV- 10TEG system’s photovoltaic module is able to continuously outperform the 

40W-PV photovoltaic module. The 40W-HPV-10TEG photovoltaic module produces 2.51% 

more electrical energy than the 40W-PV photovoltaic module over the four hour test #10. 

Figure 4.61 presents the thermoelectric power output as a function of time. Continuous 

solar radiation and the warm atmospheric conditions of test #10 produce a TEG power 

output greater than 73 mW throughout the experiment. The total daily TEG electrical energy 

generated equal to 341.10 mWh was achieved during test #10 due to the high irradiance 

intensity, high ambient air temperature, and low water inlet temperature. The daily 

efficiency of the 40W-PV and 40W-HPV-10TEG system was calculated to be 6.54% and 

6.70%, respectively. Detailed thermal profiles of the 40W-PV and 40W-HPV-10TEG systems 

at 1:45 PM during test #10 are shown in Figure 4.62. It was observed that ~80% of the 40W-

HPV-10TEG system operated at a temperature less than 28 ⁰C, whereas the majority of the 

40W-PV system operated at temperatures ranging from 28 ⁰C to 35 ⁰C.  

The weather conditions of test #11 are shown in Figure 4.63. Test #11 has a similar 

irradiance intensity profile to test #9 and test #10, however test #11 experienced very high  

wind speeds, recording a daily average wind speed of 3.05 m/s. Based on the experimental 

results shown in Figure 4.64, the HPV-TEG photovoltaic module generated approximately 

2.33 Wh of additional electricity compared to the 40W-PV photovoltaic module in test #11. 

The thermoelectric generator’s minimum and maximum power output for test #11, shown 

in Figure 4.65, was about 57.42 mW and 88.72 mW. The total energy generated by the TEG 

during test #1 was calculated to be 309.26 mWh. It was observed that the he high wind 

speeds during test #11 did not have a major impact on the electrical power characteristics 

of the PV and HPV-TEG system. 

Tests #9 to #11 show that the 40W-HPV-10TEG system can consistently reduce the 

operating temperature of the photovoltaic module, generate more electricity than the  
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Figure 4.59: Incident irradiance intensity GT, irradiance intensity on horizontal plane 
G, ambient air temperature Tamb, and wind speed Vwind vs. time (test #10).  
 

 

Figure 4.60: Power output of standard 10W-PV and hybrid 10W-HPV(-10TEG) 
photovoltaic module vs. time (test #10).  
 

 

Figure 4.61: Thermoelectric generator (10TEG) power output vs. time (test #10). 
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Figure 4.62: Thermal profile of (a) 40W-PV and (b) 40W-HPV-10TEG at 1:45 PM (test 
#10).  
 

(a) 

(b) 
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Figure 4.63: Incident irradiance intensity GT, irradiance intensity on horizontal plane 
G, ambient air temperature Tamb, and wind speed Vwind vs. time (test #11).  
 

 

Figure 4.64: Power output of standard 10W-PV and hybrid 10W-HPV(-10TEG) 
photovoltaic module vs. time (test #11).  
 

 

Figure 4.65: Thermoelectric generator (10TEG) power output vs. time (test #11). 
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conventional photovoltaic module, and produce electrical energy from the thermoelectric 

generator that consistently exceeds 60 mW. The 40W-HPV-10TEG system’s higher 

photovoltaic module and thermoelectric generator power output may be attribute the higher 

incident irradiance intensity established by tilting the HPV-TEG system to 48.38 degrees. 

The final outdoor experimental test #12 investigated the performance of the 40W-

HPV-10TEG system with a relatively high water inlet temperature. The results of the final 

test are shown in Figures 4.66-4.68. The daily average water inlet temperature for test #12 

was approximately 19.71 ⁰C. It is evident from Figure 4.27 that the previous completed tests 

#8-#11 using the 40W-HPV-10TEG system have a significantly lower water inlet 

temperature. The weather conditions of test #11 are given in Figure 4.66. Test #12 obtained 

the highest daily average ambient air temperature of all outdoor tests, at 26.17 ⁰C. 

Nevertheless, the 40W-HPV-10TEG was still able to outperform the conventional 40-watt 

photovoltaic module with a relatively high water inlet temperature. The power output of the 

conventional and hybrid photovoltaic modules with respect to time is presented in Figure 

4.67. The 40W-HPV-10TEG photovoltaic module generates a total of 1.14 Wh more electrical 

energy than the 40W-PV photovoltaic module during test #12. Examining Figure 4.66 and 

Figure 4.67 shows that short periods of cloud cover from 1:30 PM to 2:00 PM significantly 

reduces the electrical power output of both photovoltaic modules. During test #12, the 

power output of the hybrid system’s photovoltaic module ranges from 1.54 W to 17.50 W. In 

Figure 4.68, it is clear that the short periods of cloud cover also decrease the overall power 

output of the thermoelectric generator. For example, prior to the cloud cover at 1:20 PM for 

test #12, the TEG produces 62.4 mW at an incident irradiance intensity of 989.4 W/m2. 

During the duration of the first cloud cover, the irradiance intensity and TEG power output 

at 1:30 PM decreases to 165.6 W/m2 and 33.3 mW, respectively.  

  Summary of the weather conditions and performance characteristics of the various 

case studies and corresponding tests are given in Table 4.4 and Table 4.5. For each test, the 

total daily energy generated by the HPV-TEG system’s photovoltaic module (equation 4.7) is 

greater than the total daily power generated by the standard photovoltaic module (equation 

4.6). The minimum total daily TEG electrical energy output of 1.60 mWh was obtained in test 

#7. In comparing test #6 and test #7, it is evident that even though both tests have similar  
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Figure 4.66: Incident irradiance intensity GT, irradiance intensity on horizontal plane 
G, ambient air temperature Tamb, and wind speed Vwind vs. time (test #12).  
 

 

Figure 4.67: Power output of standard 10W-PV and hybrid 10W-HPV(-10TEG) 
photovoltaic module vs. time (test #12).  
 

 

Figure 4.68: Thermoelectric generator (10TEG) power output vs. time (test #12). 
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Table 4.4: Summary of weather conditions for each outdoor experimental test. 

 
 

 

 

 

 

 

 

 

 

 

 

1 10W-HPV-2TEG 2485.34 23.04 19.85 1.09

2 10W-HPV-2TEG 2563.05 18.33 19.21 1.25

3 10W-HPV-2TEG 1945.10 19.88 18.5 1.18

4 10W-HPV-2TEG 642.59 19.74 17.39 0.49

5 10W-HPV-4TEG 2123.99 18.87 17.86 1.00

6 10W-HPV-4TEG 1546.65 12.70 15.05 1.38

7 10W-HPV-4TEG 832.14 12.68 14.83 1.15

8 40W-HPV-10TEG 2231.54 19.28 9.55 1.16

9 40W-HPV-10TEG 3957.78 13.92 8.89 1.37

10 40W-HPV-10TEG 4212.18 16.84 9.41 1.88

11 40W-HPV-10TEG 4108.1 14.57 9.23 3.055

12 40W-HPV-10TEG 3867.27 26.17 19.71 1.48

14.95666667

Daily Average Wind 
Velocity (m/s)

Test # Case Study

Total Daily Incident 
Irradiance Intensity

Daily Average 
Ambient Air 

Temperature (⁰C)

Daily Average Water 
Inlet Temperature (⁰C)(Wh/m2)
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Table 4.5: Summary of performance characteristics of standard photovoltaic module 
(PV), hybrid system’s photovoltaic module (HPV), and thermoelectric generator (TEG) 
for each outdoor test. 

 
 

 

 

 

 

1 10W-HPV-2TEG 20.45 21.66 108.16

2 10W-HPV-2TEG 21.94 23.13 51.66

3 10W-HPV-2TEG 15.29 16.21 22.4

4 10W-HPV-2TEG 2.32 2.40 5.32

5 10W-HPV-4TEG 18.39 19.69 20.76

6 10W-HPV-4TEG 11.90 12.58 19.71

7 10W-HPV-4TEG 3.8 4.04 1.60

8 40W-HPV-10TEG 51.02 51.47 136.08

9 40W-HPV-10TEG 70.11 74.14 341.31

10 40W-HPV-10TEG 70.52 71.91 377.1

11 40W-HPV-10TEG 72.11 74.74 309.26

12 40W-HPV-10TEG 64.00 65.14 227.77

Case StudyTest #

Total PV Power 
(Wh)

Total Daily HPV 
Power (Wh)

Total Daily TEG 
Power (mWh)
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daily average ambient air and water inlet temperatures, test #7 operates under a 

significantly lower total daily incident irradiance intensity which impedes the performance 

of the thermoelectric generator. In test #10, the power produced by the thermoelectric 

generator (10TEG) accounts for approximately 0.52% of the total electrical energy 

generated by the 40W-HPV-10TEG system. In comparison, the power generated by the 

thermoelectric generator (4TEG) in test #7 accounts for approximately 0.04% of the total 

power generated by the 10W-HPV-4TEG system. As expected, the overall daily efficiency of 

the standard photovoltaic system (equation 4.9) was less than the overall daily efficiency of 

the HPV-TEG system (equation 4.10) for all outdoor tests, as shown in Figure 4.69. The 

minimum overall daily efficiency of 3.68% occurred in test #4, while the HPV-TEG system in 

test #5 established the maximum overall daily efficiency of 9.45%. The minimum difference 

of 1.15% between the overall daily efficiency of the HPV-TEG system and the PV system 

occurred in test #4. Furthermore, the maximum difference of 7.18% between the overall 

daily efficiency of the HPV-TEG system and PV system occurred in test #5. When analyzing 

all of the outdoor tests, the HPV-TEG system establishes an average daily efficiency 

approximately 4.79% greater than the conventional PV system.  

Based on the experimental data provided by the outdoor tests, a sizing correlation 

was determined to estimate the power density of a HPV-TEG system’s thermoelectric 

generator. The power density of the thermoelectric generator may be given as the ratio of 

TEG power output to the area of the photovoltaic module (PTEG/APV). Previously discussed 

experimental case studies found that the irradiance intensity, water inlet temperature, and 

ambient air temperature were significant operating conditions that influence the 

performance of the HPV-TEG system. Therefore, TEG power density as a function of the 

variable GTTamb/Tw,in was investigated, as shown in Figure 4.70. The power density of the 

thermoelectric generator increases nonlinearly with respect to the operating condition 

variable. Analysis of Figure 4.70 suggests that the thermoelectric generator power density 

increases as the irradiance intensity increases, as the ambient air temperature increases, and 

as the water inlet temperature decreases. The line of best fit shown in Figure 4.70 

represents the sizing correlation developed based on the outdoor experimental data using 

the method of least squares [149]. The following sizing correlation may be used to estimate 

the power density of a HPV-TEG system’s thermoelectric generator as a function of 
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Figure 4.69: Daily overall system efficiency of conventional PV and HPV-TEG systems 
for each outdoor experimental test. 
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Figure 4.70: Thermoelectric generator power density (PTEG/APV) vs. (GTTamb/Tw,in). 
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irradiance intensity (W/m2), ambient air temperature (K), and water inlet temperature (K): 

 𝑃𝑇𝐸𝐺

𝐴𝑃𝑉
= 2.38𝐸 − 4 (

𝐺𝑇𝑇𝑎𝑚𝑏

𝑇𝑤,𝑖𝑛
)

2

+ 3.66𝐸 − 2 (
𝐺𝑇𝑇𝑎𝑚𝑏

𝑇𝑤,𝑖𝑛
) + 4.86 

(4.11) 

where, 

 
80 <

𝐺𝑇𝑇𝑎𝑚𝑏

𝑇𝑤,𝑖𝑛
< 1200 (

𝑊 ∙ 𝐾

𝑚2 ∙ 𝐾
) 

(4.12) 

 0.06 < 𝐶𝐻𝑃𝑉−𝑇𝐸𝐺 < 0.13 (4.13) 

where, 𝐶𝐻𝑃𝑉−𝑇𝐸𝐺  is the thermoelectric generator concentration ratio. The thermoelectric 

generator concentration ratio is defined as the photovoltaic module surface area covered by 

the thermoelectric generator: 

 
𝐶𝐻𝑃𝑉−𝑇𝐸𝐺 =

𝐴𝑇𝐸𝐺

𝐴𝑃𝑉
 

(4.14) 

This correlation assumes that the HPV-TEG system is fabricated similarly to the HPV-TEG 

modules in this research work. Variations between the experimental data and the sizing 

correlation are expected, since the experimental data was recorded during dynamic weather 

conditions. The sizing correlation is in good agreement with the experimentally obtained 

data, establishing a coefficient of determination R2 equal to approximately 0.84 [149]. 

Therefore, the sizing correlation could be used to approximate the total power generated by 

a large-scale HPV-TEG system’s thermoelectric generator. For example, consider the case 

where a HPV-TEG system experiences a constant irradiance intensity of 1000 W/m2, 

ambient air temperature of 20 ⁰C, and water inlet temperature of 10 ⁰C. Assuming the HPV-

TEG system is composed of 10 HPV-TEG modules each with an area (APV) of 0.25 m2 and a 

TEG concentration ratio (CTEG) equal to 0.12, the total power generated from the HPV-TEG 

system’s thermoelectric generator is estimated to be 7.45 W. Further analysis of the 

relationship between the TEG power density and temperature gradient across the 

thermoelectric generator is shown in Figure 4.71. The TEG power density trend increases 

nonlinearly as the TEG temperature gradient increases. The temperature gradient across the 

TEG for the outdoor tests ranges from 0.1 ⁰C to 18.5 ⁰C. Furthermore, the following 

correlation between the TEG power density and the temperature gradient across the 

thermoelectric generator was found based on the outdoor tests:  
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Figure 4.71: Thermoelectric generator power density PTEG/APV vs. temperature 
gradient across TEG. 
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 𝑃𝑇𝐸𝐺

𝐴𝑃𝑉
= 1.21(𝑇ℎ,𝑇𝐸𝐺 − 𝑇𝑐,𝑇𝐸𝐺)

2
− 2.19(𝑇ℎ,𝑇𝐸𝐺 − 𝑇𝑐,𝑇𝐸𝐺) 

(4.15) 

where, 

 0 < (𝑇ℎ,𝑇𝐸𝐺 − 𝑇𝑐,𝑇𝐸𝐺) < 20 (⁰𝐶) (4.16) 

 0.06 < 𝐶𝐻𝑃𝑉−𝑇𝐸𝐺 < 0.13 (4.17) 

The outdoor results presented in Figure 4.71 emphasize that the driving force for 

thermoelectric power generation is indeed the temperature gradient. 

4.4 Proposed Scheme for Large-scale Application of HPV-TEG System 

This research has provided valuable experimental performance characteristics and 

correlations of a HPV-TEG system. Large-scale application of HPV-TEG systems would 

increase the economic feasibility of the system due to the fact that increasing the capacity of 

a photovoltaic system decreases the overall cost ($/W). For example, the total cost of a 

photovoltaic project through the California Solar Initiative program in 2011 with a capacity 

less than 10 kW was 6.37 $/W, while the total cost of a PV system with a capacity greater 

than 100 kW was approximately 5.05 $/W [150]. A proposed large-scale HPV-TEG system 

using a thermal regulated water tank is shown in Figure 4.72. The HPV-TEG system’s 

modules are composed of a photovoltaic module, thermoelectric modules, aluminum layer, 

cooling channel, and insulation. A pump circulates water to each HPV-TEG module to 

maintain a low photovoltaic module temperature and temperature gradient across each 

thermoelectric module. Water exits each HPV-TEG module and is cooled through the use of 

a heat exchanger that is installed in the water storage tank. Circulating water can be added 

at any time to the storage tank to ensure the water inlet temperature remains cool in 

comparison to the photovoltaic module temperature. Circulating water may also be removed 

at any time to supply hot water to a water distribution system for heating or bathing 

purposes. Relief valves are installed for removing excess hot water when the water inlet or 

outlet from the HPV-TEG system establishes elevated temperatures. A controller connected 

to the pump is used to optimize the water flow rate to the HPV-TEG system. Electrical energy 

generated by the photovoltaic modules and thermoelectric generator is supplied to an 

inverter, where the electrical energy is converted from direct current (DC) to alternative 

current (AC). The AC electricity is delivered to an AC breaker where the electrical energy  



 

 

 

 

 

 

 

Figure 4.72: Proposed HPV-TEG system for large-scale application using thermal 
regulation water tank. 
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may be distributed to various electrical loads. Excess electrical energy may be directed to a 

charge controller which regulates the power supplied to the battery system. Electrical 

energy may be supplied from the batteries to the inverter if the power from the HPV-TEG 

system cannot meet the electrical loads’ demand. If the battery is completely charged, the 

excess electricity may be supplied to the electrical grid at a price (typically ¢/kWH or 

$/MWh) determined by the local power authority. The system would be more feasible in 

geographical location where the irradiance intensity and ambient air temperature remains 

high. 
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4.5 Uncertainty Analysis of Experimental Results 

The uncertainty in the experimentally measured and calculated results is given in 

Table 4.6. An EXTECH wireless multimeter was used to measure the voltage and current 

output of the photovoltaic modules and thermoelectric generators, as well as the resistance 

of the electrical loads. T-type thermocouples with an operating range of -250 ⁰C to 350 ⁰C 

are used to measure the bottom surface of the photovoltaic modules and the hot side 

temperature of the thermoelectric generator. The accuracy of the T-type thermocouples is 1 

⁰C or 0.75% of the measured temperature (whichever is maximum). The rotameter used to 

measure the water flow to the HPV-TEG system has an accuracy of 2% of the measured flow 

rate. The solar radiation intensity is measured using a silicon pyranometer sensor. The 

pyranometer has an operating range of 0 W/m2 to 1280 W/m2 with a spectral range of 300 

to 1100 nm. A FLIR E4 camera is used to record the thermal profiles of the PV and HPV-TEG 

systems. The FLIR infrared camera has a least count of 0.1 ⁰C and an accuracy of 

approximately 2%. For all FLIR camera measurements, the emissivity was set to 0.88. 

Uncertainty analysis of experimentally calculated parameters, such as power output of the 

photovoltaic module and TEG, was completed based on the methodology presented by Kline 

and McClintock [149]. Consider a variable y which is a function of multiple independent 

variables 𝑥1, 𝑥2, … , 𝑥𝑛: 

 𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) (4.18) 

The uncertainty of the function y may be given by [149]: 

 

𝑤𝑦 = [(
𝜕𝑦

𝜕𝑥1
𝑤𝑥1

)
2

+ (
𝜕𝑦

𝜕𝑥2
𝑤𝑥2

)
2

+ ⋯ + (
𝜕𝑦

𝜕𝑥𝑛
𝑤𝑥𝑛

)
2

]

1
2

 

(4.19) 

where, 𝑤𝑥1
, 𝑤𝑥2

, … . , 𝑤𝑥𝑛
 are the uncertainties of the independent variables [149]. Based on 

the methodologies shown in equation (4.19), the uncertainty of the power output of the 

electrical devices in the indoor and outdoor simulations is approximately 1.0% and 0.32%, 

respectively.  
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Table 4.6: Uncertainty of experimentally measured and calculated parameters of 
indoor and outdoor simulations. 

Parameter Instrumentation Uncertainty 

DC voltage (V) EXTECH wireless multimeter 0.06% [151] 

DC current (A) EXTECH wireless multimeter 1.0% [151] 

Resistance (Ω) EXTECH wireless multimeter 0.3% [151] 

Water Temperature (⁰C) T-type thermocouple probe 
max(1.0 ⁰C, 0.75%) 

[152] 

Water flow (ml/min) Rotameter 2% [152] 

Irradiance intensity (W/m2) Onset pyranometer sensor 
max(10 W/m2, 5%) 

[153] 

Ambient air temperature (⁰C) Onset temperature sensor 0.2 ⁰C [153] 

Wind Speed (m/s) Onset wind speed sensor 
max(1.1 m/s, 4%) 

[153] 
Back PV surface Temperature 
(⁰C) 

T-type thermocouple 
max(1.0 ⁰C, 0.75%) 

[152] 

Hot TEG side temperature (⁰C) T-type thermocouple 
max(1.0 ⁰C, 0.75%) 

[152] 

Temperature profile (⁰C) FLIR E4 infrared camera 2% [154] 

PV and TEG power for indoor 
simulations (W) 

EXTECH wireless multimeter 1.0% 

PV and TEG power for outdoor 
simulations (W) 

EXTECH wireless multimeter 0.32% 
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Chapter 5: Conclusion and Future 

Recommendations  

5.1 Conclusion 

HPV-TEG systems have the potential to decrease the PV module temperature, 

increase PV module power, and generate additional electrical energy from the waste-heat 

using the TEG. The objective of this research work was to investigate the performance 

characteristics of a HPV-TEG system through numerical modeling, and extensive 

experimental case studies. The waste-heat from a solar-photovoltaic (PV) system may be 

efficiently removed by installing a thermoelectric generator and cooling system to the back 

surface of a photovoltaic module. This system is known as a hybrid photovoltaic-

thermoelectric power generation system (HPV-TEG). The cooling system increases the rate 

of heat transferred from the photovoltaic module, and consequently reduces temperature 

and increases the energy conversion efficiency of the PV module. Additional electrical energy 

from the HPV-TEG system’s thermoelectric generator is produced due to the temperature 

difference between the photovoltaic module and cooling system.  

 Prior to completing experimental simulations, the numerical model presented in 

chapter three was used to investigate the detrimental operating parameters that impede the 

performance of a HPV-TEG system. Due to the low temperature gradient across the TEG, the 

Thomson effect was initially determined to have a negligible effect on the photovoltaic 

module temperature, and power output of the PV module and thermoelectric generator. 

Parametric analysis of the irradiance intensity, ambient air temperature, and convective heat 

transfer coefficient concluded that the HPV-TEG system has the ability to outperform the 

conventional photovoltaic module while operating at high irradiance intensities and ambient 

air temperatures. The numerical model results also showed that the thermoelectric 

generator efficiency increases with respect to irradiance intensity and ambient air 

temperature. Energy and exergy analysis showed that the HPV-TEG system has the potential 

to establish higher energy and exergy efficiencies than the standard PV system under 

particular circumstances. The rate of exergy destruction of a HPV-TEG is significantly 



153 
 

influenced by the irradiance intensity, with the majority of the exergy destruction caused by 

optical losses from the top surface of the photovoltaic module.  

 The experimental work concentrated on evaluating the performance of three fully-

instrumented hybrid photovoltaic-thermoelectric power generation systems. Two HPV-TEG 

systems were constructed using a 10-watt monocrystalline photovoltaic module, with one 

HPV-TEG system’s thermoelectric generator consisting of two thermoelectric modules 

(10W-HPV-2TEG), and the other consisting of four thermoelectric modules (10W-HPV-

4TEG). The third HPV-TEG system was comprised of a 40-watt monocrystalline photovoltaic 

module with a thermoelectric generator containing 10 thermoelectric modules (40W-HPV-

10TEG).  

The performance characteristics of these HPV-TEG systems was first completed using 

an indoor tungsten halogen solar simulator. The indoor simulator is a low-cost testing 

method that was developed to optimize the performance of the HPV-TEG systems. 

Preliminary indoor experiments determined that the addition of an aluminum layer 

significantly reduces the operating temperature of the HPV-TEG system, and increases the 

power output of the HPV-TEG system’s photovoltaic module and thermoelectric generator. 

Power curves and thermal profiles using an infrared camera provided conclusive evidence 

that increasing the number of thermoelectric modules improves the overall performance 

and temperature distribution of a HPV-TEG system. The indoor tests showed that increasing 

the irradiance intensity by 315 W/m2 increases the maximum power output and 

temperature gradient of the 10TEG by approximately 158.3 mW and 13.7 ⁰C. Elevated water 

inlet temperatures were shown to have a negative effect on the power output of the HPV-

TEG system’s photovoltaic module and thermoelectric generator. Lastly, the indoor 

simulation and performance of a HPV-TEG with a v-trough concentrator safely increased the 

power output of the photovoltaic module and thermoelectric generator, while maintaining a 

low operating temperature.  

Experimental results of 12 outdoor tests compared the performance of the three 

different HPV-TEG systems under various operating conditions. The test results indicated 

that the HPV-TEG system is able to consistently produce more electrical energy than the 

conventional photovoltaic system for each four hour test. In test #10, the thermoelectric 

generator was able to produce approximately 0.52% of the total electrical energy generated 
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by the HPV-TEG system. The results of the outdoor tests also confirmed that the HPV-TEG 

system consistently has a higher daily overall system efficiency than the standard PV system. 

A sizing correlation based on the results of the outdoor tests was determined to estimate the 

thermoelectric generator power density based on the operating conditions of a HPV-TEG 

system for a specific thermoelectric generator concentration ratio.  

5.2 Future Works and Recommendations 

 Numerical modeling and extensive experimental characterization of various designs 

of HPV-TEG systems has been implemented in this research work. The indoor solar simulator 

presented in section 4.2 provided a low cost method for testing and optimizing of the HPV-

TEG system. However, the solar radiation simulated from the tungsten halogen lamps does 

not perfectly imitate the solar radiation from the Sun, establishing a higher intensity of 

infrared (longer) wavelengths. Future work may improve the simulated solar spectrum by 

using optical filters, such as dichroic filters, to reduce the intensity of infrared wavelengths 

emitted from the tungsten halogen lamps.  

 The designed HPV-TEG module prototypes successfully utilized the waste-heat from 

the photovoltaic module to produce electrical energy using a thermoelectric generator. It is 

recommended that future HPV-TEG system prototypes incorporate an all-in-one 

thermoelectric generator/cooling system that may be easily attached to a photovoltaic 

module. This optimized module design would make HPV-TEG systems a more attractive 

technology. Future research projects may also study the effect of the composition of the 

thermoelectric generator, investigating how different thermoelectric module types and sizes 

affect the power output and temperature distribution of the HPV-TEG system.  

 The outdoor experimental case study tests thoroughly examined the performance of 

multiple HPV-TEG systems with the system’s corresponding unaltered photovoltaic module. 

Future outdoor experimental simulations may incorporate a solar tracker to maximize the 

irradiance intensity projected onto the HPV-TEG and PV systems. It should be noted that 

using a solar tracker may significantly increase the total cost of the system the type of 

technology used. The addition of a solar tracker would also permit a low concentration 

concentrator to be integrated into the HPV-TEG system. Low concentration concentrators, 

such as Fresnel lenses or v-trough concentrators, require a solar tracking system to 
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optimally focus and uniformly distribute the Sun’s solar radiation onto the photovoltaic 

module. Based on the indoor solar simulator results, such a system would significantly 

increase the power output of the HPV-TEG system’s photovoltaic module and thermoelectric 

generator. In the outdoor test setup, the HPV-TEG system’s cooling liquid is supplied from a 

water distribution system. A practical HPV-TEG experimental test setup, including a thermal 

regulator water tank and pump similar to Figure 4.72, may be manufactured to determine 

the performance and constraints limiting the application of a stand-alone HPV-TEG system.  
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Figure A.1: Specifications of TEG1-12611-6.0 thermoelectric module used in HPV-
TEG system.  
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Figure A.2: Electrical specifications of TEG1-12611-6.0 thermoelectric module used 
in HPV-TEG system.  
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Figure A.3: Dimensions and electrical specifications of HES-10 photovoltaic module. 


