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Abstract 
 

An automated experimental setup was developed to measure the spectral irradiance of new low 

pressure (LP) ultraviolet lamp (UV). The experimental analysis was performed by the 

measurement of the UV intensity along the length of the lamp to evaluate the variation in UV 

output during preliminary 5% lifespan of the UV lamp. The automation of the experimental setup 

has executed with the Arduino-LabVIEW interfaced computer program to maintain sequential 

collaboration among the setup components. The new LP UV lamp had a non-uniform output with 

the unexpected rise and drop in the UV intensity at certain locations along the length. 

 
The lamp showed predominant ageing signs at the electrode, which was confirmed by the visual 

observation after the appearance of the darken quartz sleeve near the electrode and further 

reduction in UV output was verified by the experimental analysis as a result of the obstructed 

transmittance of the UV radiation through the quartz sleeve. Initially, UV output of the new lamp 

was uniform; however, as the lamp was aged analysis noticed non-uniform output along the length 

of the lamp though the lamp was operated for same working conditions throughout the entire 

experimental phase. The non-uniform temperature profile of the UV lamp was studied with the 

implementation of the thermal imaging IR camera to confirm variable temperature gradient inside 

the quartz sleeve and at the surface of the quartz sleeve. The thermal analysis recognized the 

overheating of the lamp electrode. Further, as amp aged the temperature profile at the lamp 

electrode raised significantly. 

 
The experimental analysis proved that the lamp ageing was more noticeable at lamp ends than the 

middle part of the lamp, which was confirmed after evaluation of the UV intensity along the length 

of the lamp as well as after performing the output stability test at electrode for corresponding lamp 

operating cycle. 
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CHAPTER 1 

INTRODUCTION 

 
1.1 Thesis Background and overview 

 
 

Ultraviolet light (UV) has been proven to be effective disinfection technique which has gained 

importance over past few decades for disinfection of drinking water, secondary effluent and air 

purification systems (Blatchley et al.,1997; Kowalsski, 2009; Jacangelo et al., 1995; USEPA 

2006). The UV disinfection has been proven alternative to chemical methods of disinfection 

because it is a physical treatment and it is environmentally safe with no toxic side effects and by- 

products (Jacangelo et al., 1995; Sommer et al., 2004). The implementation of UV disinfection is 

accomplished by the arrangement of UV reactor systems with a germicidal lamp which radiates 

monochromatic light at 253 nm at the peak of germicidal effectiveness (IESNA, 2000; Linden et 

al., 2001; Reed, 2010). The microbial inactivation mechanism implicates by the absorption of this 

germicidal UV light within DNA or RNA of pathogens which alters nucleic activities of pathogens, 

resulting in inhibition of formation of new DNA and cell replication (Dai et al., 2012; McLeod et 

al., 2017; Rutula et al., 2010; Weber, 2005). 

 
The applications of UV disinfection systems have been increasingly implemented, despite the fact 

that a direct, cost-effective and precise method for determination of change in UV lamp intensity 

over the time is still under investigation, which is a challenging issue and has limited the 

practicality of UV disinfection technology (Ducoste et al., 2005; Sommer et al., 2004). 

Further measurement of UV output and lamp efficiency varies from one testing facility to the other 

(Sasges and Robinson, 2005), which is a significant limitation. 

An important issue with all germicidal lamps is non-uniform lamp aging, which impacts UV lamp 

life and UV output over time and this variation can affect UV dose delivery also it can trigger 

uneven dose distribution of germicidal intensity in the reactor. UV lamp exhibits technical 

difficulties due to aging and fouling of the lamp, electrode sputtering and darkening at the lamp 

edges due to amalgam deposits (Heath et al., 2013; Schmalwieser et al., 2014; Sheriff and 

Gher,2001). 
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1.1.1 Overview of UV radiation measurement techniques 
 
 

Over the years numerous efforts were taken to investigate the UV lamp aging phenomenon and its 

correlation with the lamp performance as well as diverse approaches have been anticipated to 

evaluate the UV radiation measurement based on the electric energy of the lamp, UV-C output and 

fluence rate from the UV lamp (Keyser et. al., 2008; Muller et al., 2011). UV lamp performance 

has been studied by two distinct methods that are, an indirect method by testing the resultant 

outcome and direct radiometric set-up arrangement (Braunstein et al., 1996; Siegel, 1995). 

 
1.1.2 Summary of indirect measurement techniques for UV radiation 

 
 

The first measurement method is followed by indirect measurement of the absolute amount of UV 

light received by an object, dose response of various microorganisms, pathogens and indicators by 

observing the effect of heat and radiation on the object or on the microorganisms, which are 

exposed to the UV light during the experiment (Braunstein et al., 1996; Chevrefils et al., 2006; 

Government of Canada, 2015; Qualls and Johnson, 1983; Sommer et al., 1997). Three types of 

indirect UV measurement approaches have been established to estimate the UV intensity 

biological assay/ bio-dosimetry, chemical actinometry and mathematical models (Braunstein et al., 

1996). 

 
In practice, UV irradiance has been determined by indirect measurement technique such as bio- 

dosimetry by the various scientist (Quintern et al.,1992; Ronto et al., 1994); however, their 

research was mainly focused on measurement of solar UV radiation in the air. Furthermore, 

laboratory dose-response analysis followed by collimated beam arrangement is renowned and 

acceptable UV output measurement technique (Darby et al., 1995; Harold W., 2000; Scheible, 

2000), though it is a time intense and variable dependent technique when involved with microbial 

dose-response analysis (Kuo et al., 2003). Bio-dosimetry has been considerable technology to 

evaluate the efficacy of the UV lamp by engineers and researchers as this method has gained 

significant recognition in a water and wastewater treatment practices to perform UV radiation 

measurement to verify bacterial inactivation spectral responsivity and efficacy of UV reactor 

systems (Cabaj and Sommer, 2000). 
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In bio-dosimetry measurement technique, a suspension of the test sample is injected upstream of 

the UV system, and samples are collected at the downstream (Bolton, 1999; Sommer et al., 1999). 

The ratio of counts of effluent to that of the influent sample is compared with the UV dose-response 

curve which is obtained by a collimated beam test (Blatchley, 1997; Bolton, 1999). This UV 

response curve is determined in a collimated beam apparatus to obtain data which is essential to 

develop the relationship between UV dose and the response curve. After irradiation of UV light 

the distribution of fluence among the sample, which results scattering of UV radiation inside the 

reactor, this scattering affects the overall range of UV fluence, which is often referred as, 

Reduction Equivalent Dose (RED) (Cabaj et al, 1996; Sommer et al, 1997; Sommer et al, 1999). 

Further, Wright et al. (2007), measured incident UV intensity by using a collimated beam 

arrangement, with the average reading of two radiometers and sensor assembly. However, the main 

focus of their study was to examine the dose-response of the suspension organisms. Further, the 

microorganism action spectrum was estimated, based on the UV dose-response data obtained by 

the collimated beam testing arranged by medium pressure (MP) UV lamp and optical bypass filter. 

Additionally, their analysis stated, this method is suitable for the comparison of wavelength 

response among two microbial samples. 

 
Numerous researchers have attempted to anticipate another indirect UV radiation measurement 

technique a chemical actinometry (CA), (Jin et al., 2005; Rahn et al., 2006; Wols et al., 2012). 

Chemical actinometry technique works on the principle of photochemical conversion that is, 

chemical change occurred in a chemical sample due to an absorption of photon from the light 

radiation such as destruction or a buildup of the molecules and change occurred in the properties 

of the chemical sample with the application of a calibrated chemical actinometer or dosimeter 

(Kuhn et al., 2004). The chemical actinometry performs absolute measurement of the incident 

radiation by determining the amount of the reactant transformed during the photo-kinetic activity 

with analytical technics (Maafi, 2010). Further, the obtained amount of reactant transformation is 

then used to calculate the intensity of the irradiating light in units of Einstein’s per unit time and 

area (Comerford, 1998). Chemical actinometry has been comparatively simple and applied method 

for radiation measurement. (Kuhn et al., 2004; Leighton et al., 1930). 

In past chemical, actinometry was practiced with the implementation of iodide actinometer 

consisting of iodide-iodate solution. The fluence (UV dose) was calculated based on the amount 
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of triiodide yielded during the irradiation of the UV light between 200-300nm (Rahn et al., 2006). 

Furthermore, the study evaluated the fluence rate at each site to predict the mathematical model. 

However, the results were presented to confirm the implementation of actinometry to measure the 

spatial distribution of the UV fluence rate in the spherical reactor (Rahn et al., 2003; Rahn et al., 

2006). 

 
Uncertainties in the UV light measurement has encouraged researchers to find alternative 

techniques to estimate UV irradiance (Blatchley et al., 2008; Wols et al., 2012). Some 

mathematical models have been developed over the time for the hypothetical measurement of UV 

dose in a UV reactor such as Point Source Summation (PSS) model (Jacob and Dranoff 1970), 

Extense Source Volumetric Emission (ESVE) (Bolton, 2000; Irazoqui et al., 1973). Moreover, in 

the last decade Spherical actinometry method was validated by Rahn et al., (2000) and Stefan et 

al., (2001). More recently, multi-point source summation method was studied by Liu et al., 2004. 

Based on these mathematical and numerical methods commercialized software packages have 

been developed by engineering companies and consultancies to validate the fluence rate 

distribution and performance of the reactor system. However, these software packages are 

expensive and mainly focused on the improvement of fluence rate measurement and fluence 

distribution. Moreover, The application of these pre-developed models is limited due to 

operational parameters of the systems. Despite the fact that these models can evaluate fluence rate 

these models fail to validate UV lamp life and aging of the lamp and change in the lamp 

characteristics after the specific period. However, indirect measurement techniques do not give an 

exact measurement of the UV intensity. Also, it fails to provide real-time analysis of UV intensity 

variation occurred at different locations of UV lamp across the lamp's axial and radial directions. 

 
Furthermore, indirect UV radiation measurement techniques are comprehensive and extensive 

techniques, which cannot be applicable to quantify the characterizable changes occurred in the UV 

lamp over time. Indirect measurement techniques are precise and accurate, but these techniques 

are focused on the estimation of the UV dose from the UV lamp and its implicit effect on the 

resultant sample. Also, even if the measurement is performed for the same microbial sample with 

same surrounding characteristics the dose-response relationships obtained from the analysis, 

significantly varies from one another study (Kuo et al., 2003; Linden, 2000). 
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This experimental limitation can lead to imprecise measurement because it does not directly 

quantify the amount of UV-C radiation emitted from the UV lamp (Cabaj et al., 1996; Nicholson 

and Galeano 2003), which makes indirect measurement techniques practically inadequate to 

perform onsite UV lamp analysis. 
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1.1.3 Summary of direct measurement techniques for UV radiation 
 
 

The second method is the direct measurement of UV-C radiation, emitted by the germicidal UV 

lamp containing wavelength between 200-300nm. Direct measurement techniques are performed 

with the configured set-up comprising of collimated beam arrangement, a radiometric 

measurement unit, and a UV sensor, specially designed and calibrated to detect the precise 

wavelength of UV-C radiation. (Chevrefils et al., 2006; Kuhn et al., 2004; Sigel, 1995). The 

conventional UV sensor is consisting of sensitive photodiode or photodetector which produces a 

small photocurrent when exposed to the UV radiation and further, this photocurrent is transmuted 

into a voltage signal, and then intensified with the amplifier (Chen et al., 2015; Lee et al., 2012; 

Pounce et al., 2017). To collect radiometric data, the UV detector of spectrophotometer 

accumulates photons and transforms photons into an electric signal according to the quantified 

relationship, established at the time of radiometer-sensor calibration against the reference source 

from National Institute of Standards and Technology (NIST) or Physikalisch-Technische 

Bundesanstalt (PTB) or other standard body to ensure that, UV detectors response is associated 

with the absolute standard (Sasges and Robinson, 2005; Wright et al., 2007). This transformation 

due to the photon absorption by a light absorbing material gives enough energy to free an electron 

from the surface and cause change in the electric properties of the photon absorbing material is 

known as photoelectric effect due to a phenomenon recognized as a photoconductivity of a 

semiconductor (Pan and Zhu, 2015). 

 
The measurement method has to be followed by calibrated radiometer and UV detector, which is 

ideal, more precise and more proficient because it and enables continuous data collection by an 

automated sensor-radiometric assembly (Chevrefils et al., 2006; Kuhn et al., 2004; Schmalwieser 

et al., 2014; Siegel, 1995). However, evaluation of lamp aging phenomenon and its correlation 

with decreased UV intensity typically involves long term analysis, highly expensive and 

specialized instruments. Many UV disinfection systems do not implement any strategy to monitor 

UV lamp performance due to a technical constraint. Moreover, lack of onsite direct measurement 

practices, consumers rely on the assumption centered monitoring such as, visual observation of 

the ageing signs appeared on the UV lamp i.e., sleeve fouling and darkening, which is highly 

inaccurate. 
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Usually, lamp performance statistics are provided by the manufacturer based on precise laboratory 

testing (Heath et al., 2013). However, these statistics cannot be applicable all the time because the 

performance of the UV lamp depends on operating conditions such as surrounding temperature, 

operating hours and voltage supplied to ballast (Adamse and Britz,1992; Lankhorst and Nilemann, 

2000). Furthermore, even though lamps have manufactured for the same criteria with the same 

manufacturing condition and under the same batch, can experience the differentiable aging 

phenomenon (Heath et al., 2013; Sigel 1995). Additionally, there is no accurate and precise 

explanation available to confirm this non-uniform behavior of the UV lamp which affects UV lamp 

intensity over time (Holmes et al., 2002; Lankhorst and Niemann, 2000; Schmalwieser et al., 

2014). Also, it has been identified that as UV lamp ages, the UV output also decreases (Braunstein 

et al., 1996; DWI, 2016). 

 
In past Safari et al. (2015) presented the study to examine the correlation between UV emission 

and illuminance of compact fluorescent lamps (CFL), with the set-up arrangement consisting of 

optical bench technique, UV meter, and flux meter. The measurement was conducted for different 

lamp burn-in hours at fixed locations (i.e., 10, 25,50,100 cm). However, their study involved 

measurement of UV-A and UV-B radiation for the comparison among the different CFL lamps 

manufactured by different companies. Very recently, Schmalwieser et al. (2014) measured the 

spatial distribution of the spectral irradiance for 200 to 600nm wavelength with the use of UV 

reactor modeling software UVXPT to predict the UV dose delivery. Further, the experimental set- 

up involved radiometer-sensor assembly to measure the UV output along the axial length of the 

lamp with 15 mm increments. The study was conducted for amalgam low-pressure high output 

(ALPHP) lamps to examine the impact of lamp aging on the germicidal dose delivery with the 

computer simulation with the Computational Fluid dynamics (CFD) software known as FLUENT, 

to model flow of the fluid and trajectories of the microorganism within the UV reactor. The detail 

about previously followed direct measurement techniques and their outcomes are elaborated in 

next chapter, Literature Revie 
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1.1.4 The originality of the concept and modification of the set-up configuration 

 
 

Previously, it has been identified that UV intensity will decrease with time (DWI, 2006); therefore, 

lamp manufacturing companies equip UV reactors with the UV sensors at the quartz sleeve of the 

UV lamp (Bolton 2002; Infilco Degremount Inc. 1996). These on-line sensors perform a 

measurement to identify the decrease in the UV intensity with respect to the initial UV intensity 

for the same UV lamp. If the UV system is not outfitted with a real-time UV-sensor-radiometer 

assembly, the lamp manufacturer provides lamp statistic for lamp intensity vs. lamp burn-in hours. 

 
The purpose of this research was to build an experimental setup and establish a method to test UV 

lamp followed by direct UV radiation measurement technique which can be a substitute to record 

the change in the UV intensity as lamp ages. If the statistics provided by the lamp manufacturing 

companies are not sufficient, on-site lamp testing can be facilitated with the use of established set- 

up. In this research, an instrument was developed to evaluate UV lamp performance over time. 

Furthermore, an automated experimental setup was established with the use of the Arduino Uno 

microcontroller and LabVIEW (Laboratory Virtual Instrumentation Engineering Workbench) 

programming language to perform interface between the setup components. 

 
In recent years LabVIEW base data acquisition systems has been used to study and develop an 

advanced measurement and control techniques in the field of light measurement, especially for the 

applications involving the ultraviolet spectrum (Abbasi et al., 2016; Kita et al., 2015; Samah et al., 

2017; Walsh, 2001). Furthermore, the use of Arduino Uno microcontroller to regulate the 

functioning of the devices and module has been prospered. There have been numerous designs, 

and device control mechanisms have been implemented to study UV-C radiation and its effect, to 

control germicidal lamps remotely with the mobile app (application), to develop a portable 

smartphone spectrophotometer (Das et al., 2016; Denzina and Punkaja et al., 2018; Gomes and 

Ventura, 2018). 
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Nevertheless, in referred literature related to the UV intensity monitoring for burn-in lamp hours 

with optical bench arrangement using radiometer and sensor configuration, there is no declaration 

for the set-up that has implemented Arduino UNO microcontroller to operate the linear movement 

of the photovoltaic detector fixed on the 3-D printed adapter casing to perform the linear motion 

in the axial direction of the UV lamp. Further, the linear movement of the photodetector attached 

3-D printed adapter is encoded to perform the linear measurement in micrometer (µm) to minimize 

the error and improve the precision of the measurement. The set-up components were interfaced 

together with LabVIEW algorithm for the signal processing and the hardware control followed by 

the PC assembly (Personal Computer). The data obtained after each measurement contained 

information about the date, time, exact location (µm) of the sensor across the length of the lamp 

and UV intensity (a. u.) for that location. 
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1.2 Proposition 
 
 

This thesis will demonstrate an instrument and its functionality, to study the performance of the 

UV lamp, UV lamp aging and variations in lamp performance over time. 

The research was mainly focused on the developing a reliable automated setup, which can be used 

to verify the lamp statistics provided by the manufacturer, i.e., UV lamp life, lamp performance, 

the effect on lamp sleeve and lamp aging pattern caused by uneven heating of the electrode. 

 
1.2.1 The innovation of the experimental set-up 

 
 

The set-up has designed in such a way that, the measurements will be taken by the provision of 

the automatic operational controller (Arduino UNO Microcontroller), which will record lamp 

intensity detected by photovoltaic detection sensor for the selected position across the length of 

the lamp in a linear motion across the length of the lamp. The measurements logged by the 

photovoltaic sensor will be computed into the supervisory computer program by LabVIEW 

programming language which was designed explicitly for this experimental analysis (as previously 

mentioned in section 1.1.4). The developed set-up will enable Thunder Bay Waste Pollution 

Control Plant (WPCP) to test, analyze, and compare the results, obtained by on-site lamp testing 

at Thunder Bay WPCP with the statistical results provided by the lamp manufacturing company 

for the corresponding lamp. Also, the developed set-up will enable Thunder Bay WPCP to perform 

UV lamp testing independently to evaluate and analyze the UV lamp performance for the 

comparison among the different UV lamps, which are produced by diverse manufacturing 

companies. 
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1.3 Relevance of this thesis 
 
 

The Thunder bay WPCP wishes to reduce the operating cost of their UV lamp replacement cycle 

by finding appropriate low-cost UV lamp which will last longer and perform adequately during 

the expected lifetime of 10000-12000 hours, which is an approximate lifespan of the UV lamp 

(First et al., 2013). Also, the intensity of the lamp life is affected by surrounding temperature and 

burn-in time, and after first 100 burn-in hours, the UV lamp intensity will start to drop with respect 

to the time (Darby et al., 1993; Thampi 1990). However, finding an appropriate UV lamp involves 

testing and analyzing the lamp performance as well as a scientific provision to perform a 

comprehensive study to compare lamp characteristics with other distinctive lamp manufacturing 

companies. Hence, they are seeking technical support, to find reasonable solutions to their 

questions. Moreover, this research will help them to resolve and find answers to their questions. 

 
1.3.1 The current scenario at Thunder bay waste pollution control plant (WPCP) 

 
 

The Thunder Bay Water Pollution Control Plant (WPCP) provides primary and secondary 

treatment for phosphorus and ammonia removal, which is followed by seasonal UV disinfection, 

and at the end of disinfection, water is discharged to the Lake Superior (WPCP City of Thunder 

Bay, 2017). Earlier Thunder Bay WPCP followed chlorination, however recently they have 

replaced chlorination with UV disinfection by eliminating annual chlorine use of 20000 kg (Net 

News-Ledger, Thunder Bay, 2010). 

 
1.3.2 The layout of the UV disinfection system at Thunder Bay WPCP 

 
 

The currently installed UV disinfection systems at Thunder Bay WPCP (Trojan Model UV 3000 

plus) has designed to disinfect a flow up to 169 ML/day. The system is consisting of two (2) 

channels (11.50m long and 2.1365 m wide), each channel has two (2) banks of twenty four (24) 

modules of eight (8) low pressure high intensity UV lamps (total lamps are 768), designed to 

produce UVC radiation to achieve UV dose of 26 mJ/cm2, which is equipped with soft brushing 

with chemicals to clean quartz sleeve after a period of time of operation . In the end, final effluent 
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is discharged to the sewer to the 2700 mm final effluent outfall (Government of Ontario, Ministry 

of the Environment, 2008). 

 
1.3.3 Technical difficulty and steps planned by Thunder Bay WPCP 

 
 

At the present moment, Thunder Bay WPCP is experiencing a problem related to the lamp 

replacing cycle due to an uncertain lamp aging phenomenon also an unreliable lamp life 

expectancy and economic statistic of currently installed lamps. The disinfection unit of Thunder 

Bay WPCP consisting of LPHO UV lamps with an expected life span of 12000 hours and 98% 

stable germicidal output throughout their anticipated usage. However, these lamps are 

experiencing non-uniform aging and inconstant output as well as less life expectancy than the 

predicted life even though installed lamps have the same manufacturing specification and 

operational conditions. This is a genuinely critical issue experienced by all lamp consumers for 

UV lamps because non-uniform aging affects the overall quality of the germicidal disinfection. As 

lamp undergoes continuous use, the lamp intensity reduces over time (Braunstein et al., 1996; 

DWI, 2007). The drop in UV lamp intensity is interdepended to the change occurred in the internal 

components of a UV lamp such as a change in the mercury pressure, decaying of the electrode, 

and the deposition of the tungsten on interior quartz and lamp's overall output degrades (Siegel S. 

B. 1995). Moreover, fouling of the quartz sleeve is often observed, when UV lamps are used to 

disinfect the wastewater (Blatchley et al., 1996; Peng et al., 2005; Wait and Blatchley III, 2010). 

This alteration in the lamp characteristic can be problematic because as lamp performance changes 

the efficiency of the germicidal output of a lamp might change as well (Sheriff and Gehr, 2001). 

 
To overcome this difficulty Thunder Bay WPCP has decided to find an alternative UV lamp as a 

replacement for currently installed UV lamps. However, replacement of installed 768 lamps should 

be taken with care because of technical and economic challenges. The primary concern of Thunder 

Bay WPCP is that, if they replace currently installed lamps with the alternative lamps, will the 

alternative lamps have similar or more performance with profound life expectancy and whether it 

will be economically beneficial or not? Henceforth, Thunder Bay WPCP is pursuing the assurance 

of the functionality of the alternative lamps. At present situation, Thunder Bay WPCP is dependent 

on the lamp statistics provided by the lamp manufacturing companies. Usually, these lamp 
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statistics are precise but, based on the standard lamp testing procedure, operational or validation 

conditions (i.e., UV fluence rate, UV lamp status) and parameters (i.e., lamp aging and sleeve 

fouling) for which lamps are being validated. These circumstances might not be similar to the 

operational conditions followed by the lamp consumer. Therefore, the lamp characteristics 

obtained by the manufacturer during the standard lab testing can be dissimilar than the lamp 

characteristics noticed by the consumer after the lamp installment. The dissimilar characteristics 

include variable UV lamp intensity, time taken by the lamp to stabilize the output after each 

operating cycle, subsequent power interruptions, hours spent in operation, ambient temperature 

and humidity and outer lamp sleeve fouling due to a fluctuating characteristic of water and 

wastewater, etc. (DWI, 2016; He et al., 2017; Qiang et al., 2013; Wait et al., 2008; Wait and 

Blatchley III, 2010). 

 
Likewise, every UV lamp manufacturing company has distinctive features to their corresponding 

lamp, if low pressure (LP) and medium pressure (MP) UV lamps are compared, the LP lamps 

produce narrow band UV-C (200-300nm) radiation only and can be used across the whole range 

of water and air disinfection (Heering et al., 2004; Kowlski, 2009), however, MP lamps produce 

polychromatic spectrum, i.e. UV-C/UV-B radiations. Furthermore, lamps are field with mercury 

and argon (Ar) a starting gas LP and MP lamps, works at 1 mbar (1 Pa) and 1 bar (100kPa) 

respectively. Moreover, recently Mercury free lamps have developed which are also known as 

Excimer Technology, containing Xenon (Xe2) molecule, which forms dielectric barrier discharge 

after the provision of the modulated electric field to the quartz lamp body. These lamps are mercury 

free, instant on lamps with no warm-up time; however low in UV-C efficiency compared to 

amalgam LP lamps also expensive in the cost (Schalk et al., 2005; Voronov et al., 2004). 

 
The life expectancy of these lamps is different; LP lamps can last up to 10000 hours and MP lamps 

last up to 6000 hours; however, their UV output can be affected by ambient temperature and 

humidity (Schalk et al.,2004). Further, The Low-Pressure High Output (LPHO) amalgam lamps, 

which are also known as Germicidal High Output (GHO) Lamps with a lifespan up to 12000 hours. 

Further Voronov et al. (2003) developed long life technology which stabilizes optical properties 

of lamp tube extending their life up to 16000 hours. In contrast, MP lamps have low electric 

efficiency but require much higher operating temperature than the LP and LPHO amalgam lamps 
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(Bolton and Cotton, 2008). Therefore, lamp characteristics intensely depend upon the lamp's type, 

inert gas pressure, operating temperature, and electric supply. Consequently, due to these 

distinctive features among the variety of UV lamps, it is challenging to choose an appropriate lamp 

without an accurate understanding of the lamp behavior and its characteristics and verify their 

competency over one another. 

 
 

1.3.4 Contribution of this research to resolve the problem at Thunder Bay WPCP 
 
 

To overcome this problem, we can test the UV lamp and compare the performance characteristics 

obtained by on-site lamp testing with the lamp statistics provided by the manufacturer. To obtain 

these comparative statistics, we need to perform long term analysis, which involves study of the 

UV intensity variation occurred after each operating cycle of the UV lamp, time difference to reach 

a stable output after every turn on cycle, also we need to observe the variation occurred in the UV 

intensity after particular burn-in time such as UV intensity after 50hr, 100hr,150hr and, 200hr. 

Further, we can graphically elaborate the results by plotting UV intensity vs. time to observe how 

UV intensity has dropped for corresponding lamp operating hours. Furthermore, the results can 

be generated based on the UV lamp output change in percentage for the lamp burn-in hours based 

on the onsite lamp testing. The results obtained by the onsite lamp testing can be compared with 

the statistics for different lamp manufacturing companies to find appropriate lamp after the 

verification of the test outcomes. 

 
However, to perform this comparative study, we need a highly specialized and expensive lamp 

testing instrument similar to the instrument used by the lamp manufacturing company to 

understand and study lamp characteristics. Nevertheless, Thunder Bay WPCP does not have that 

instrument, which can be used to test the UV lamps for comparative analysis based on the UV 

lamp performance throughout the life span of the lamp. Therefore, this research has demonstrated 

the innovative idea for the set-up development and comparatively advanced approach to operate 

and control the experimental set-up by using Arduino UNO microcontroller, interfaced with the 

LabVIEW algorithm. 
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The data obtained during the experimental analysis can be plotted for UV lamp intensity at a 

specific location across the axial length of the lamp with respect to the burn-in lamp hours. 

Furthermore, this research has performed thermal analysis of the lamp to study the non-uniform 

temperature profile of the lamp with Thermal imaging Infrared (IR)camera. The research specific 

objectives and the final goal of the thesis is described in the next section (1.4). 
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1.4 Objectives and goal 
 
 

The primary objective of this research was to develop a set-up which can be functioned with the 

provision automatic recording of the measurement taken by the photovoltaic sensor and further 

computed with a software platform. 

 
1.4.1 Specific objectives 

 
 

a) Build an instrument to test the UV lamps specifications claimed by the manufacturing 

company 

b) Develop a set-up that can be functioned and controlled automatically 

c) Develop a supervisory computer program to record and analyze data 

d) Develop a sequential method for the user to be followed to justify the manufactures 

e) claim with data obtained with the developed experimental setup 

f) Develop an operating manual and procedure 

g) Interpret the data and provide a guideline for decision making 

h) Perform in-house tests to be sure that everything is working correctly and to be ensured 

that WCPC can use the setup and obtain the information that they are seeking for. 

 
 

1.4.2 Thesis goal 
 
 

The goal of this thesis is to provide, a fully developed and optimized experimental set-up to the 

Thunder Bay WPCP, which will enable them to test and evaluate the UV lamp characteristics, 

correlation between UV lamp performance and burn-in time, accurate life expectancy of the UV 

lamp for the operational conditions that, Thunder Bay WPCP wishes to monitor, and at the end 

Thunder Bay WPCP can justify these statistics with the statistics provided by the corresponding 

lamp manufacturer. By using the developed experimental setup; Thunder Bay WPCP can perform 

realistic analysis, and indeed, they can trust the performance results that are obtained for the 

replacement lamp to verify the suitability of the replacement lamp. 
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This thesis involves an experimental analysis to understand UV intensity variation with respect to 

the lamp burn-in hours, during the initial 5% life span of the UV lamp. This study was intended to 

observe the change that occurred in a UV lamp for each 45 burn-in hours span. Further, this 

research observed temperature variation at various location across the axial direction of the lamp 

with the help of Thermal imagining Infrared (IR) camera. The thermal analysis with the IR camera 

validated temperature variations across the length of the lamp; also it enabled observation of cold 

and hot spots/ temperature zones formed on the quartz sleeve of the UV lamp. 
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1.5 Significance of the thesis 
 
 

This thesis was focused on developing and building an instrumental set-up which will have the 

following implications: 

 
1) The set-up can be operated remotely and with automatic recording of the experimental data 

which, saves time and the labor cost. 

 
2) The set-up performs safe implementation due to remote controlling operation feature; 

hence zero risk of human exposure to UV radiation as the set-up can be turned on and 

turned off by distant command before entering or leaving the lamp testing area. 

 
3) The set-up can be functioned in consecutive cycles by the setting the timer to turn on and 

turn off data collection because of its automatic operation feature. This provision simplifies 

the daily routine of experimental practice as the set-up can be turned on and turned off and 

by programmed operating schedule. 

 
4) The set-up will be helpful to evaluate the lamp performance statistics claimed by the 

manufacturer. (i.e., lamp life, aging of lamp sleeve and change in the UV intensity over 

time). By comparing the experimental results obtained from this set-up with the statistical 

data provided by the manufacturer of the corresponding lamp and based on the analysis the 

best suitable lamp can be selected as per the requirement. 

 
5) This set-up contributes to saving on economic attributes because the purpose of this set-up 

is to test numerous UV lamps and compare the results with manufacturer's statistics for the 

corresponding lamp. Hence it strengthens the decision-making while performing a mass 

selection of UV lamp from a wide range of competitor companies and it limits the chances 

of selecting inappropriate lamp replacement. 



19  

1.6 Thesis outline 
 
 

This thesis consists of five chapters: 
 
 

Chapter 1 provides a summarizing introduction about UV disinfection, thesis proposition, the 

relevance of the thesis, objective and final goal of the research and significance of the research. 

 
Chapter 2 discusses a comprehensive review of the topic-specific theory, previously performed 

scientific practices, techniques followed, experimental findings, and research outcomes published 

by scientific expertise and research gaps to improve the configuration of direct measurement setup. 

 
Chapter 3 introduces the setup functioning and the configuration of the setup components, working 

mechanism of the setup and the procedure followed. 

 
Chapter 4 focuses on study outcomes after the experimental analysis and the discussion of results. 

Chapter 5 concludes the study and offers a recommendation for future work. 
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CHAPTER 2 

LITERATURE REVIEW 

 
This chapter elaborates comprehensive review of previously performed practices in UV 

disinfection, direct measurement techniques followed for evaluating the UV lamp performance, 

experimental finding about lamp life and ageing phenomenon. Furthermore, this chapter covers 

description of UV lamp components, to create contextual understanding about the UV lamp’s 

structural configuration. The material covered in this chapter was necessary to develop suitable 

methodology and upgrade the instrument design based on the previously reported studies. 

 
2.1 History and development of UV disinfection technology 

 
 

The Ultraviolet disinfection technology was first discovered by Dowens and Blunt (1877), which 

revealed germicidal property of sunlight. The first use of mercury lamp as an artificial UV light 

was reported in 1901. The first UV lamp was developed in 1906 by Kuch (Loach, 1987) which 

lead to the fundamental application of UV lamp as a water disinfection technology at Marseilles, 

France, in 1910 (Henri et al., 1910). In 20th century considerable research was conducted on UV 

disinfection mechanism (Brandt and Giese, 1956; Dulbecco,1952; Gates, 1929). The first practical 

implementation of UV disinfection was conducted in 1955 at Switzerland and Austria with low 

pressure mercury lamp. 

 
The application of UV disinfection technology increased over years across the world for 

disinfection of water, wastewater and air. In 1970’s amalgam low pressure high throughput UV 

lamps were introduced to provide efficient germicidal effect as an alternative to regular low and 

medium pressure lamps (Bloem et al., 1977). In late 1978, a fully developed UV disinfection 

system was established at Northwest Bergen wastewater treatment plant, Waldwick, New Jersey 

(Scheible and Bassell 1981). In 1982 a modular UV system with gravity feed and parallel 

arrangement of UV lamp system was introduced (Whitby et al., 1984). 
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A survey in 2003 by the Water Environment Federation showed that there are approximately 

18000 wastewater treatment plants in North America and there are at least 4000 UV systems 

among them (Water Environment Federation, 2004). Throughout the years UV disinfection 

technology has become popular due to its safe simple, effective and chemical free application (Dai 

et al., 2012; McLeod et al., 2017) 

 
2.2 UV light description 

 
 

UV light is a form of electromagnetic radiation which lies between the X-ray and infrared light 

region as shown in following figure 2.1 of electromagnetic spectrum in a range of 10nm-400nm 

band width which are subdivided into UV-A, UV-B and UV-C radiation. 

However, UV-B and UV-C spectrum has germicidal properties (USAPHC,2004). The bandwidth 

containing 200nm wavelength has maximum germicidal properties (Reed,2010). UV-C radiations 

are created artificially to perform disinfection with the use of mercury vapor lamps, quartz lamps, 

florescent lights and high intensity discharge lamps (Chadysiene and Girgzdys, 2004). 
 
 

Figure 2. 1 Electromagnetic spectrum 
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2.3 Fundamentals of UV light generation based on UV lamp types 
 
 

UV light is generated by variety of lamps such as gas discharge lamps, UV-light emitting diode 

(UV-LED), excimer lamps (mercury free lamps), metal halide lamps, Xenon lamps (USEPA UV 

light, 2006). In gas discharge lamps, electrons are accelerated by an electric field. Further due to 

the collision with atoms, molecules, ions and electrons they transfer kinetic energy, which results 

into excitation of heavy gas ions and molecules making them to release energy into a form of 

radiation. In UVLED, when voltage is applied to a nitrite semi-conductors pn junction, electrons 

are injected from the n-type semi-conductor (n-GaN) and holes from the p-type semiconductors 

(p-GaN) into the active layer of (InGaN). The electrons, which were injected, combines with the 

finite well energy levels (for electron 0.64 eV) resulting into the emission of blue light or UV 

radiation. Usually UV light emerges from wider band gap material such as Silicon carbide (Sic) or 

Sapphire. 

 
Excimer lamps are also known as high pressure gas discharge lamps, which emits quasi- 

monochromatic radiation (single wavelength). In Excimer lamps electrodes are detached from the 

filler gas by a dielectric barrier. Excimers are the molecules which are stable only in the excited 

stage. The excited gas atoms produce an excimer after infusing with the rare gas, metal or halogen 

atoms which are filled inside. The most efficient excimer lamp contains Xe2 gas atoms inside. 

These lamps are also known as mercury free lamps as it contains rare gas halogen instead of the 

mercury. However their efficiency is significantly less i.e., by ~8% when compared with ALPHO 

lamps i.e., by ~35% (Schalk, 2005). The metal halide lamps work on the same principle as gas 

pressure lamps. The gas discharge works through the excitation of the metal halide salts and 

mercury atoms. 
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2.4 Lamp types based on mercury pressure and principle of UV light generation 
 
 

The UV lamps and florescent lamps work on the same principle (USAPHC, 2004) that is, when 

voltage is applied to a UV lamp containing an inert gas argon or liquid mercury, some amount of 

an inert gas vaporizes. The primary role of inert gas is to facilitate the starting of the discharge and 

promote ionization of the mercury. Free electrons and ions then collide with mercury atoms, which 

generate higher energy state into mercury atoms and these exited mercury atoms discharge energy 

while approaching back to their normal state. The energy discharged from mercury atoms is in the 

for of electromagnetic radiation, which has bandwidth 200-300nm of ultraviolet region in the 

electromagnetic spectrum. The UV light intensity depends on the amount of inert gas pressure 

present in the lamp casing (USEPA, 2003;). 

Depending on the mercury vapor pressure UV lamps are categorized into three types 

(USEPA,2003) 

a) Low pressure mercury lamp (LP) 

b) Amalgam Low pressure high throughput lamp (ALPHO) 

c) Medium pressure mercury lamps (MP) 
 
 

2.4.1 Low pressure lamps and amalgams low pressure high output lamps 
 
 

The LP and LPHO lamps possess greater germicidal output with monochromatic wavelength at 

254 nm, which is also known as UV-C radiation. The spectral irradiance from LP mercury lamp 

is dominated by the two bandwidths 253 nm and 185 nm (Heering, 2004). The radiation in a range 

of 200-300nm is responsible for deactivation of DNA of the microorganisms, however 254 nm 

wavelength is more lethal (Heering, 2004; Linden, 2001; USAPHC,2004). Hence, to avoid 

photoreactivation and dark repair of microorganism’s DNA; sufficient germicidal dose has to be 

provided to the water and air during the disinfection. The phenomenon of reactivations and its 

relationship with UV lamp intensity is explained in the section 2.7.6. UV-C radiation at 185 nm is 

primarily suitable for Advanced Oxidation Processes (AOP) such as, UV/O3 or UV/H2O2 

(Gonzalez and Braun, 1995; Stefan and Williamson, 2004). These applications are targeted on 

direct photolysis of ozone(O3) or water molecule (H2O) resulting in to the formation of highly 

reactive hydroxyl radicals (·OH). 
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The lamp envelope is made up of fused quartz, soft glass or fused quartz amalgam, however quartz 

is most preferred material for disinfection purposes due to its physical property of allowing higher 

UV-C transmittance at 254 nm (Schalk, 2005). Likewise, soft glass is suitable for general lighting 

purpose. The mercury pressure in UV LP lamp is 0.8 Pa and LP lamps are operated at 42°C with 

current of 430mA resulting into the germicidal outcome of 0.2 W/cm (USEPA UV light, 2006). 

To enhance UV disinfection with cost effective approach ALPHO lamps were introduced (Bloem 

et al., 1977; Heering, 2004). ALPHO lamps consisting of amalgam of mercury infused with other 

elements indium (In), lead (Pb), bismuth (Bi) and, tin (Sn) (Schmalwieser, 2014). Usually 

mercury/indium infusion is used, to regulate the optimum mercury vapor pressure 0.01 mbar or 

1000Pa with temperature inside quartz envelope reaching close to the 100°C. Further, ALPHO 

lamps are less affected by ambient temperature (Heering, 2004; Schalk, 2005) and ALPHO lamps 

maintain 90% UV-C output, above the 60°C temperature inside the envelope (Schalk, 2005). 

 
2.4.2 Medium pressure lamps 

 
 

MP lamps have considerably greater power or UV-flux per unit 30 to 35 W/cm, when compared 

with LP lamps ~ 1W/cm (Schalk, 2005; USEPA UV light, 2006). MP lamps have extremely high 

quartz envelope temperature ranging from 500°C to 950°C (USEPA UV light, 2006). However, 

the efficiency of MP lamps for UV-C radiation is in range of 5 to 15 % which is relatively less 

than LP lamps. The figure 2.2 describes components of LP, LPHO and MP lamps 
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Figure 2. 2 Construction of mercury vapour lamps (Retrieved from USEPA UV light, 2006) 
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The table 2.1 elaborates characteristics of mercury vapor pressure lamps 

Table 2. 1 Characteristics of mercury pressure UV lamp 
 
 

Parameter Low pressure 
lamp 

Amalgam low 
pressure high 
output 

Medium 
pressure lamp 

Reference source 

UV light spectrum 254 nm 254 nm 200-300nm USEPA, 2006 

Wavelength type Monochromatic Monochromatic Polychromatic USEPA, 2006 

Sleeve temperature °c 30-50 60-100 600-900 Heering, 2004 

Sleeve diameter (cm) 2.5-5.0 2.5-5.0 3.5-10.0 USEPA, 2006 

Mercury pressure (pa) 0.93 0.18-1.6 >1000 USEPA, 2006 

Power (w/cm) 0.5 1.5-10 50-250 USEPA, 2006 

UV output (w/cm) 0.2 0.5-3.5 5-30 USEPA, 2006 

Lamp life (hours) 8000-10000 8000-12000 4000-8000 Schalk et al., 2005; 
USEPA, 2006 

UV-C efficiency (%) 35-38 35 10-20 USEPA, 2006; 
Schalk et al., 2005 

Lamp start up time  4-7 minutes 1-5 minutes USEPA, 2006; 

>15 seconds 
(Cold Start) 

2-7 minutes 
(Warm Start) 

(Cold Start) 

2-5 minutes 
(Warm Start) 

Cotton et al., 2006 

 
 
 

Heat development Low Low High Sommer, 2004 
 



35  

2.5 Components of mercury vapor pressure UV lamp 
 
 

LP, ALPHO and MP lamps are consisting of the following components as shown in figure 2.3. 
 
 

2.5.1 Lamp envelope 
 
 

The lamp envelope of the UV lamp acts as an electric insulator made up of fused quartz and 

transparent silica due to its ability of allowing UV transmittance. The lamp envelope is 1-2 mm in 

thickness. The lamp envelope is often called as arc tube. 

 
2.5.2 Lamp sleeve 

 
 

UV lamps are housed within the lamp sleeves which protects lamp from overheating and physical 

damage. Lamp sleeves are usually made up of quartz. The size of the sleeve diameter depends 

upon the lamp type, for LP and LPHO lamps sleeve diameter is 2.5-5.0 cm. Likewise for MP lamps 

sleeve diameter id 3.5-10.0 cm. However, solarization and sleeve foiling reduces UV transmittance 

of the lamp (Polymicro Tecnologies, 2004). 

 
2.5.3 Mercury fill 

 
 

The mercury filled inside the lamp envelope can be solid, liquid or vapor phase in LP lamps. 

ALPHO lamps are typically filled with mercury alloys such as gallium and indium. 

In MP lamps vapor phase mercury is filled. 
 
 

2.5.4 Electrodes 
 
 

The electrodes promote heat transfer to provide optimum temperature inside the lamp envelope. 

The electrodes are made up of tungsten coil embedded with barium (Ba), strontium (St) or calcium 

(Ca). 
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2.5.5 Inert gas fill 
 
 

MP lamps are filled with an inert gas. The rare/inert gas filled inside the lamp together with the 

mercury is commonly among the argon, krypton and xenon (Morimoto et al., 2004); however, the 

most preferred inert gas is argon (Ar). The purpose of adding inert gas is to accelerate gas 

discharge and reduce the disintegration of the tungsten electrode. 

 
2.5.6 Lamp ballast 

 
 

The lamp ballast is used for regulating the power supply to the UV lamp. Ballast can be magnetic 

or electronic based on the requirement. Magnetic ballast powered UV lamp can have more 

darkening at the edge, also magnetic ballasts have short life. Electronic ballast can cause power 

quality problems. However, ballast’s performance depends upon electric design. 

 
2.5.7 Mechanical wipers 

 
 

Mechanical wipers maintain optimum UV radiations transmission by performing scheduled 

cleaning and maintenance work (not shown in figure 2.3). 
 
 
 
 

Figure 2. 3 Schematic of mercury lamp components 
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2.6 Fundamentals of UV lamp operation 
 
 

This section elaborates UV lamp operation for mercury pressure UV lamps. The UV lamp is 

constructed using the fused quartz tube, which is transparent and allows UV radiation to pass 

through the lamp sleeve. The lamp is enclosed by protective quartz sleeve which protects lamp 

components from the external damage. Further electric or electromagnetic ballasts are used to 

control power supplied to the UV lamp (Harley et al., 2008). 

 
2.6.1 Lamp start-up 

 
 

When voltage is supplied to the lamp ballast, tungsten electrode emits electrons which undergoes 

into collision with the inert gas atoms, resulting into the ionization of the inert gas atoms. This 

effect creates plasma which allows movement of the electrons and results into heating of the inert 

gas. The temperature increase causes mercury atoms to reach to the highly excited state and further 

collide with the free electron present in the plasma. The energy generated during the collision is 

then emitted in the form of UV light (USEPA, 2006). LP lamps can reach to operating state within 

15 seconds after voltage has supplied to the ballast. However, for LPHO lamps it can take several 

minutes to reach to the stable UV output. Likewise, MP lamps can require start-up time to emit 

stable UV output. The lamp start-up depends upon the cold start up and warm start up conditions 

and the lamp configuration designed by the manufacturer (Cotton et al., 2005). 
 
 

Figure 2. 4 Lamp start up and mercury activation 
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2.6.1.1 General principle 
 
 

As mentioned in section 2.4.1, LP UV lamps are filled with mercury, which has ~1 Pa pressure. 

The activation of the mercury atoms by an electrical discharge at an optimal temperature (Heering, 

2004). This activation process is called as ionization of atomic mercury by the transfer of kinetic 

energy upon the inelastic collision between electrons and the mercury atoms. As a result of the 

collision, the UV light is produced with the wavelength of 254 nm, which is blue in colour. The 

UV radiation is invisible however, it has more energy than the visible light. 
 
 
 
 

Figure 2. 5 UV radiation emitted after the lamp start up 
 
 

When, voltage is applied to the electrodes of the mercury pressure lamps, an electric field is created 

inside the lamp envelope. In this electric field, a free electron tries to move away from a negative 

electrode towards the positive electrode; during this accelerated movement of the free electron, 

electron collides with mercury atom, which causes mercury atom to reach to its excited state 

(Masschelein and Rice, 2017, 2002; Sahin et al., 2010). 
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The following equation represents the ionization process. 
 

Hg + e = 2e + Hg' Equation 2. 1 
 
 
 

The exited mercury in an electrical field, does not remain at high-energy state for a long period, 

and returns to its lowest energy state by transmitting the UV light. 

Further, electron-ion recombination occurs, resulting into the re-formation of the mercury atoms. 
 
 

The entire process of ionization is carried out in subsequent stages. One of the stages involves 

Penning effect of the filler gas (argon) during the electrode ignition step (Druyvesteyn and 

Pennings, 1941; Sahin et al., 2010). The penning effect named after Frans Penning, who discovered 

mechanism of electrical discharges in low pressure gases. 

 
) = *+ =  *+∗ (+)) Equation 2. 2 

 

*+∗(+)) + /0 =  /0'  + ) + *+ Equation 2. 3 
 

The electrons in low pressure mercury lamps do not possess enough active energy to perform 

mercury atoms ionization in a single stage and requires multiple collisions in accelerated electric 

field, for the formation of excited mercury atoms. 

 
)  + /0 = /0∗()) Equation 2. 4 

 
/0∗()) + ) = 2) + /0' Equation 2. 5 

 
 

The atoms can exist only in a specific energy state, hence the energy emitted by the high state 

mercury atoms, is the difference between the two stages, and only certain energies in the form of 
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the light at specific wavelength is emitted as shown in following equation. 
 

/0∗()1234)5 64789) → /0 (0+7;<5 9464)) + ℎ> Equation 2. 6 
 
 

The emission of a photon by an excited mercury atom is reversible, hence after emitting the UV 

radiation, photons are reabsorbed by another mercury atom. This phenomenon is known as self- 

absorption of mercury atoms. 
 
 

Figure 2. 6 Principle of UV light generation 
 
 

LP UV lamps are usually tubular, which contributes to the non-uniform electric field, and several 

zones can be form across the length of the lamp contributing the variation in the UV dose and 

temperature variation (Masschelein and Rice, 2017, 2002). The figure 2.7 displays the 

distribution of the UV light after the lamp was properly warmed up. 



41  

 
 
 

 
Figure 2. 7 Light distribution 
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2.6.2 Lamp power feed 
 
 

LP lamps are supplied alternate electric current to the electrodes known as cathode and anode, 

which contributes to mercury ionization inside the silica glass tube of the UV lamp. As mentioned 

in the previous section 2.6.1.1, the excited state of the atoms can exist up to certain time interval, 

hence electron-ion pair generated during the ionization lasts about 1msec. However, this process 

continues until lamp has provided stable voltage. The electric feed, that is provided to lamp can be 

cold or hot cathode type. 

 
2.6.2.1 Function of the lamp ballast 

 
 

The UV lamps cannot be operated with direct AC supply due to their negative resistance. Hence 

without the provision of the ballast to limit an electric current, UV lamp would be damaged 

quickly. The ballast’s crucial purpose is to limit an electric current to the rated value by the lamp 

manufacturer (Lindsay, 1997; Newsome, 2006) and provide the starting voltage pulse to ionize the 

gas mixture in the UV lamp tube (Kowalski, 2009). An electric circuit of the ballast has effect on 

the UV lamp especially on the arc striking. To obtain appropriate dose and stable output UV lamps 

are often preheated before initiating the disinfection practice. To preheat the lamp, the lamp is 

connected with the starter, which is the component of the ballast. The starter heats up the lamp 

electrode for 1- 2 seconds before the lamp gets ignited completely. In recent years there have been 

technical advancement in starter-ballast operations depending upon its function e.g. triggered start 

with no starter, rapid start ballast and instant start ballast (Newsome, 2006). 

 
The ballast factors (BF) specifies the lamp output (Lindsay, 1997). The efficiency of the ballast is 

measured in terms of ballast efficiency factor (BEF), which is the ratio of ballast factor in percent, 

to the power provided in watts (Kowalski,2009). 
 
 
 
 
 

?@A = BC 
D 

Equation 2. 7 
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BF = Ballast factor in percent 

P = Power in watts (W) 

There are two types of ballast used for UV lamps electric and magnetic as mention in previous 

section (section 2.5). 

 
The figure below illustrates typical electric feed system of the UV lamp. 

 
 

Figure 2. 8 Lamp power feed circuit 
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2.6.2.2 Function of the cathode and anode electrode 
 
 

As mentioned previously the electric feed to the lamp can be cold cathode or hot cathode. The cold 

cathode type requires structure with iron (Fe) or nickel (Ni) electrode to release the electron after 

the bombardment with the positively charged ions in to the gas mixture or a plasma (Masschelein 

and Rice, 2017, 2002). This type is less preferred because it requires high voltage up to 2kV. The 

hot cathode type works on the thermionic emission of the electron from the electrode. The structure 

of this type of the electrode is consisting of coiled tungsten wire glazed with the alkaline oxides of 

calcium, barium, aluminum and strontium, sometimes thorium is used as well (MA electrodes, 

2003). Hence another term for hot cathode is oxide-coated cathode. When current is supplied to 

the electrodes, after the heating of the electrodes enough electrons are discharged which then 

collide with the ionized mercury atoms, resulting in the emission of the light spectra. In past 

various studies reported the cathode and anode effect (Heberlein et al., 2010; Redwitz et al., 2006). 

The mercury lamps work by the alternate electric feed to maintain temperature equilibrium of 

inside the tube. 
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2.6.3 Radiation spectrum 
 
 

LP lamp emits UV-C radiation between the bandwidth of 200-300 nm, with the resonance lines at 

253.7 (peak germicidal wavelength) and 185 nm (responsible for oxidation). The brief about this 

has explained in previous section (section 2.4.1). The resonance line 253.7 nm is responsible for 

85% of the total UV intensity emitted, which is essential for the disinfection of the water, air and 

the surface (IESNA, 200; Masschelein and Rice, 2017, 2002; Reed, 2010). The most effective 

wavelength among the emission spectrum is 254 nm emitted by LP mercury lamp, allowing 100% 

germicidal effectiveness (Calvert and Pitts, 1966). 

 
2.6.3.1 UV output of the lamp 

 
 

The UV output or photochemical yield of the lamp is a function of the mercury pressure, which is 

reliant upon the lamp surface temperature . Also, the UV output is variable depending upon the 

surrounding air or water temperature, type of the lamp, lamp orientation and flow pattern of the 

disinfecting entity (Lau et al., 2008; Kowalski, 2009). As previously motioned in section 1.3.3, 

the UV output can be variable depending upon the lamp manufacturing standard, burn-in hours, 

turn on and turn off cycles, subsequent power interruption and voltage variation and type of the 

lamp utilization i.e. air disinfection or water disinfection (DWI, 2016; Lau et al., 2009; Qiang et 

al., 2013; Wait et al., 2008). The UV lamps emit maximum efficient intensity in lamp surrounding 

temperature range of 21°C to 25°C at 100% UV output efficiency and 110% UV output efficiency 

at 32°C- 40°C under steady surrounding temperature. 
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2.6.4 Parameters influencing UV emission output 
 
 

In this section influence of the lamp operating parameters and surrounding conditions i.e. voltage 

provided to the lamp and, surrounding temperate to the lamp has described. 

 
2.6.4.1 Influence of the voltage 

 
 

Mercury pressure lamp needs a certain amount of voltage to start up the lamp. The voltage supplied 

to the lamp through a tungsten electrode assembly, further results into the ionization of the 

mercury-argon gas atoms. During this stage an arc gets produced between the two electrodes 

resembling a bridge. The heat produced during this event also contributes to the ionization of the 

mercury atoms (Soo, 2005). As current continues to increase to its full potential, a ballast limits 

the supply of the voltage keeping the mercury lamp at stable operating condition. However, a 

faulty ballast can cause overheating of the electrical components, resulting into over voltage or 

under voltage, which causes fluctuation of the electric supply to lamp electrode. Furthermore, 

fluctuating electric feed can cause intensity variation and due the formation of the gas discharge 

zones as a result of non-uniform electric field. 

 
 

2.6.4.2 Influence of the surrounding temperature 
 
 

The surrounding temperature to the lamp has direct influence on the UV output because it affects 

the surface temperature of the lamp tube, and as result it affects the stability of the mercury pressure 

inside the tube. If surrounding temperature is too cool, the mercury will cool down and condense, 

causing the drop of UV output. Likewise, if surrounding temperature is too hot, the mercury will 

transform into liquid state resulting into the rise in vapor pressure. The reabsorption of the plasma 

radiation inside the tube wall affects the temperature depending upon the constituents used during 

the fabrication of the quartz tube (Franke et al., 2006; Schöpp and Steffen, 2016). The optimum 

pressure for mercury in LP lamps is ~ 0.9 to 1pa with temperature range from 21°C to 40°C 

(Kowalski, 2009; Masschelein and Rice, 2017, 2002). The figure 2.5 shows temperature profile at 

electrode and central part of the lamp. 
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Figure 2. 9 Temperature gradient at lamp electrode and central part 

(image has taken thought thermal imaging camera with visible plate mode) 
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2.7 Uncertainties in UV lamp operation and disinfection 
 
 

The performance of the UV lamp decreases as lamp ages and fouls, which contributes to the 

reduced photochemical yield. During the first 100 hours of UV lamp operation initial drop in UV, 

outpour appears after that UV lamp emission is stable for several months (Masschelein, 2002). 

As mentioned in previous sections 1.3.3 and 2.6.4, the lamp output deprivation occurs with both 

LP and MP lamps, which can be accounted for lamp hours in operation, operating cycle or turn on 

and turn off cycles, electrical feed, ambient conditions and the type of lamp and the purpose of the 

application. There are number of other a contributing constraint which affects the UV lamp output 

such as, solarization of the lamp sleeve material (i.e. quartz), accumulation of the sputtered oxides 

of the electrodes inside the lamp sleeve and the fouling of the lamp sleeve due to the characteristic 

of ambient air (for air disinfection application) or effluent characteristics of the waste-water (for 

wastewater disinfection application). The impure lamp sleeve structure can contain metal 

impurities, which can absorb UV light and can cause reduction in the UV output due to premature 

lamp ageing. 

 
In mercury pressure lamps, mercury can combine with mineral constituents present in a quartz 

glass, which results in the formation of the UV absorbing layer inside the lamp sleeve. 

As mentioned earlier in section 2.6.2.2, the tungsten electrodes are glazed with an alkali oxide 

which, contributes the formation of the non-uniform UV absorbing layer inside the lamp sleeve as 

a result of overheating of the electrode and deficient cooling during the continuous lamp operation 

(USEPA UV Light, 2006). Furthermore, these uncertainties in UV lamp operation varies from one 

lamp to another though the lamps were manufactured for the same specification among the same 

batch (Heath et al., 2013; Siegel, 1995). 
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2.7.1 UV lamp ageing 
 
 

The UV output of the mercury pressure lamps progressively declines throughout the lifetime of 

the UV lamp, which is potentially unfavorable for the disinfection of the water and air. The non- 

uniform ageing of the UV lamp contributes to the less effective UV dose as a result of the formation 

of low irradiance regions in a UV reactor (Schmalwieser, 2014). The lamp ageing can be noticeable 

by structural changes occurred in the lamp envelope such as darkening of the lamp envelope near 

the electrode. As previously mentioned in section 1.1.3, numerous studies were performed to 

understand the non-uniform ageing phenomenon of the lamp with direct UV output measurement 

technique (Heath et al., 2013; Schmalwieser, 2014; Siegel, 1995). 

 
The UV output from the lamp significantly changes over time, when compared with the UV output 

at the time of installation and after several hundred hours (Darby, 1993). The expected lifetime of 

the UV lamp is approximately 10000 to 12000 hours for LP lamps and ~8000 hours for MP lamps 

(Masschelein, 2002). Usually, the lamp performance statistics are provided by the lamp 

manufacturing companies based on standard laboratory testing (Heath et al., 2013). However, UV 

lamp performance significantly contrasts, when compared with the statistical data provided by the 

manufacturer due to a non-uniform and unpredictable ageing pattern of the UV lamps as a result 

of the distinctive operational condition followed during the lamp operation (Holmes et al., 2002; 

Lankhorst and Niemann, 2000). 
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2.7.1.1 Overview of UV lamp ageing uncertainties 
 
 

In past various studies have been performed to understand the non-uniform ageing of the UV lamp, 

and its consequence with the reduced output over time (Braunstein et al., 1996; Hanzon and 

Vigilia,1999; Heath et al., 2013; Siegel, 1995; Schmalwieser, 2014). Siegel (1995) performed the 

test to evaluate the UV lamp performance during the life of the UV lamp for consecutive 18 days 

until the lamp failure. During the UV lamp monitoring the experimental data collected showed 

uncertain peaks, plateaus and slopes in the intensity for a specific wavelength. Further, their study 

found, altered performance in the UV lamp intensity as a consequence of inconsistency in the 

supplied electrical feed, operating temperature of the lamp and ventilation method around the lamp 

testing area that had a profound effect on the UV intensity. Their study observed several changes 

in the UV lamp intensity profile during the testing period of the lamp performance, which is 

explained in the next section 2.8. 

 
Another study was conducted by Heath et al. (2013), to compare the UV output statistics provided 

by the lamp manufacturer with the UV transmittance measurements obtained by the experimental 

analysis. Their study confirmed that the lamp ageing graph that was obtained after the direct 

measurement of UV transmittance has significantly higher ageing profile than the reported by the 

lamp manufacturer. Based on the graphical illustration of their study for the lamp ageing 

comparison between data reported by the lamp manufacturer vs data obtained after the lamp 

testing, had ~20-25% dissimilarity in the results of the UV transmittance; during the 8000-12000 

hours of the lamp operation. This substantial dissimilarity in the obtained lamp ageing curve by 

direct monitoring of the lamp vs assumed lamp ageing curve based on the provided statistical 

estimation can have an extensive impact on the UV systems due to reduced UV output, resulting 

into insufficient UV dose to inactivate the harmful microorganism present in air or in water (Heath 

et al., 2013; Sheriff and Gehr, 2001). The detail about the direct measurement technique followed 

for the research mentioned above and setup arrangements are elaborated in the next section 2.8 

(section 2.8.5). 
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Previously, lamp ageing factor (LAF) was calculated based on the ratio of the germicidal output 

of the old lamp to the new lamp (AwwaRF and NYSERDA, 2007). The formula was used to 

estimate LAF for MP lamps, and it is quoted below. 

 

E*A =   
FGHIJKJLMN OPQRPQ OS ONL  NMIRT 

FGHIJKJLMN OPQRPQ OS QUG VGW NMIR 
Equation 2. 8 

 
 

LAF = Lamp Ageing Factor 

Germicidal output was described in Output W/Cm 
 
 
 

To obtain germicidal output (IG) following formula was quoted 
 
 

]^_ 
`a^__ Z([) ×  X([) Equation 2. 9 

 
 
 

IG = Germicidal output W/cm 

G [ = UV sensitivity of the microorganisms 

I [ = Spectral output of the lamp measured in W/cm 

XF = ∑ 
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2.7.2 UV lamp sleeve fouling 
 
 

As mentioned earlier in section 2.5.2, the UV lamp is enclosed into the quartz sleeve to provide 

the lamp defense against the external damage and enable plug-in module configuration to the lamp 

structure. The common problem with the UV lamps is fouling of the outer quartz sleeve when 

lamps have used for the disinfection of drinking water and waste effluent. The inorganic particles 

present in the water accumulates on the outer wall of the sleeve, as a result of the formation of the 

thin layer on the outer wall of the quartz sleeve. This accumulation of the particles can obstruct 

the UV transmission of the UV system by absorbing part of the UV radiation that was emitted 

from the lamp. As a consequence, reduced UV dose efficiency (Sommer et al., 2001; Wait and 

Blatchley III, 2010). 

 
The sleeve fouling can be a result of the accumulation of the chemical compounds present in the 

water as a combination of thermal effect and photochemical reaction (USEPA, 2006). These 

chemical compounds can be oxides, carbonates, phosphates and sulphates of calcium, magnesium 

and aluminum (Nessim and Gher, 2006; Sehnaoui, 2002; USEPA, 2006). Furthermore, Lin et al. 

(1999) mentioned that particles could accumulate on the sleeve surface as a result of gravity 

settling and instability stimulated interaction (Sehnaoui, 2002). One of the main reasons for lamp 

sleeve fouling can be an improper lamp cleaning cycle and maintenance. 

 
Heath et al. (2013) performed study over the quartz sleeve fouling with simple optic bench setup 

to estimate the sleeve fouling factor (SSF) by comparing new lamp and aged lamp. This study was 

conducted to understand the effect of the internal, external fouling and degradation of the quartz 

sleeve material. Further, their experimental analysis estimated lamp ageing factor (LAF) based on 

the reference value obtained from the new lamp. 
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f 

The formulae used during Heath et al. (2013) have cited below. 
 
 
 
 

b*A = c 
cd 

 
Equation 2. 10 

 
 
 
 

b*A  = eAA ×  E*A Equation 2. 11 
 
 
 
 
 

 

eAA = 
g(ONL NMIR) 

g(VGW NMIR) 
Equation 2. 12 

 
 

After rearranging the previous equation 
 
 

E*A  = hiC 
cCC 

Equation 2. 13 
 
 
 
 

CAF = Combined ageing and fouling factor 

S = Measurement reading by sensor 

SP = Predicated reading value of the new lamp 

SFF = Sleeve Fouling Factor 

LAF = Lamp Ageing Factor 

I = Radiometric Measurement for an old and new lamp 
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2.7.3 Spectral shift 
 
 

The UV spectral range varies from one lamp to the other lamp depending upon lamp’s 

characteristics. The composition of the UV gives unique ability to lamp to emit a specified range 

of the UV light, identifies as UV-A, UV-B and UV-C. The details about UV radiation types are 

explained in section 2.1, and UV light generation principle is described in section 2.6. The spectral 

output range is of a UV lamp ranges from 100 to 460 nm depending upon the requirement of 

wavelength bandwidth and the lamp configuration. The spectral irradiance is studied by the 

spectrometer (Schmalwieser, 2014). As stated earlier in section 2.6, mercury fill is the main 

constituent, which enables the generation of the UV lamp in LP and MP lamps. 

 
The mercury lamp emits distinctive UV spectrum of a shorter wavelength continuum and series of 

a spectral line, which has sharp peaks at specific wavelengths, i.e. 260, 290, 310, 365, 400 nm 

wavelengths. However, presentence of other material in a lamp quartz sleeve in excess amount can 

initiate spectral shift due to inference with the plasma, which can shift UV output wavelength from 

specific range to the element induced range. To provide stability to the lamp and extend the lamp's 

life, generally protective coating is applied to the lamp. Without the stability of the lamp, the UV 

spectral range can shift towards longer wavelengths. The reason behind the spectral shift is the 

excess concentration of the additives and the impurities in the lamp casing. During the ionization 

stage of UV light generation, the present impurity combines with the plasma, which affects 

stimulation process of mercury atoms resulting in the spectral enhancement. Further, an extended 

presence of the impure element in the lamp’s quartz enclosure becomes immobilized either by 

reaction or by the migration into the quartz as a result of consistent heating of the quartz wall 

during the lamp operation. 

 
One of the primary additives, which can trigger the spectral shift, is iron. Iron iodide it boils at 849 

°C and at 1 atm pressure, which is relatively higher temperature range than the normal UV lamp 

and reactor operating temperature, which can result into the condensation of the Iron iodide on the 

quartz wall when the lamp is cooled and revision back into the plasma during the lamp operation. 

(Borsuk and Armitage;2010) 
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2.7.4 Precipitation of deposits and slime formation 
 
 

The mineral salts (calcium, magnesium and iron) present in water and air has solubility which, 

reduces with increase in the temperature, and as a consequence of photochemical reaction, mineral 

deposition occurs on the quartz sleeve of the UV lamp. Due to the higher operating temperature of 

the UV lamp compared to the surrounding water and air these mineral salts precipitate on the lamp 

sleeve (Bolton and Cotton; 2008; Harley et al., 2008). The predominant minerals salts deposits are 

calcium and magnesium between 30% to 80%; however, iron, manganese and aluminum salts can 

be accountable for 10 %to 40% for the groundwater disinfection for drinking water purposes 

(Masschelein, 2002). 

 
2.7.5 UV Transmission and reflection 

 
 

The UV transmittance (UVT) is the amount of UV light that reaches the micro-organisms present 

in the water. The UVT depends upon the quality and characteristics of the water (suspended 

particles, hardness, organic materials) and spacing between the lamps in the UV reactor. The UV 

lamp transmissivity also depends upon the lamp envelope material. 

 
2.7.5.1 Effect of photo-chemical solarization 

 
 

As mentioned earlier in section 2.5, the preferred material for LP lamps is fused quartz, due to its 

higher efficacy of UV-C transmittance compared to other materials, i.e. soft glass (Sodium-barium 

glass), optical glass and Vycor 791 (Masschelein, 2002; Schalk et al., 2005). The solarization is 

one of the reasons for the reduced UV transmittance by the lamp sleeve, which is caused by photo- 

thermal damaged to the quartz sleeve due to the persistent effect of the high energy radiations such 

as UV light (USEPA, 2006) The solarization is a consequence of the UV lamp ageing. Previously, 

it has been reported that LP UV lamp can drop UV transmittance up to 50% due to photo-chemical 

solarization of the lamp material. 
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2.7.5.2 Effect of suspended solids and particle shading 
 
 

The reduction in UVT due to the presence of the suspended particles and the formation of the 

aggregates is a challenging issue in the application of the UV disinfection for wastewater 

(Mamane, 2011). Usually suspended solids are removed prior to the disinfection stage. However, 

some particles and flocs can reach to the disinfection stage (Templeton et al., 2008). Furthermore, 

some microorganisms have ability to self-aggregate to the floc upon the exposure to the UV light, 

allowing them to survive throughout the UV disinfection process (Blatchley et al., 2001; Emerick 

et al., 1999, 2000; Jolis et al., 2001; Madge and Jense, 2006). 

 
The presence of suspended particles and the flocs in the water absorbs, blocks or scatters UV light 

emitted in the water, which reduces chances of the UV light reaching to the microorganisms 

present in the water (Mamane, 2011). The Iron has been identified as a substantial foulant 

accountable for UV lamp fouling from the outer side of the lamp sleeve (Sun et al., 2008). The 

suspended particles not only block but scatters UV light as well, which affects UVT as well it 

allows microorganisms to embed within the particles. (Darby et al., 1993; Sun et al., 2008; Wait 

et al., 2007; Wait and Blatchley III, 2010). These phenomena are also known as particle shading 

and enmeshment or embedding. These phenomena and effect of low UVT have described in 

section 2.7.6 and 2.7.5.6 in detail. 
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2.7.6 UV lamp intensity and microbial reactivation 
 
 

The inactivation of microbial nuclei is carried out by exposing water and air entity to UV-C 

radiation. When micro-organisms are sufficiently exposed to the UV light, thymine and cytosine 

dimerization takes place, which either inhibits the replication or sudden death by nuclei rupture 

(Lindene et al., 2002). However, it does not instantly result in the inactivation because inactivated 

micro-organism can evoke DNA restoration capability through repair mechanism (Malley et al., 

2004). This event takes place when there is insufficient UV dose to inactivate the microorganisms. 

The UV-C radiation at the peck of 253 nm possesses highest germicidal efficiency, compared to 

other wavelengths in the UV spectrum, also elaborated in section 2.1. The microbial reactivation 

takes place by photoreactivation and dark repair, which are explained in the next section, 2.7.6.1. 

 
2.7.6.1 Type of microbial reactivation 

There are two types of microbial reactivation as described below: 
 
 

2.7.6.1.1 Photoreactivation 
 
 

The photoreaction involves the release of the specific enzyme photolyase, which is capable of 

restoration of DNA segments in the presence of UV light. This event occurs, when there is 

insufficient UV light of required germinal wavelength, allowing the microorganism to release 

photolyase enzyme by two-step reaction, first by binding with dimer pair and second breaking of 

dimer by utilizing wavelength from 310 -490 nm (Friedberg et al., 1995; Friedberg et al., 2006). 

 
2.7.6.1.2 Dark repair 

 
 

The dark repair of the DNA is carried out in the absence or presence of UV light (Hanawalt et al., 

1979). The dark repair can occur either by excision repair by removing the damaged DNA segment 

and with regenerating new segment by recombination repair using complementary DNA strand 

(Hanawalt et al., 1979). As mentioned in section 2.6, UVT is affected by the presence of the 

suspended particles in air and dust particles in the air, responsible for shadowing effect, allowing 

UV shielding to the microorganisms against the germicidal light rays emitted from the UV lamp. 
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2.7.6.2 Factors influencing microbial reactivation 
 
 

The photoreactivation depends on the UV dose, UV lamp type and UV exposure conditions. These 

factors are discussed below. 

 
2.7.6.2.1 Effect of improper UV dose 

 
 

Higher the UV dose, more time will be required by the microorganisms to repair the DNA (Martin 

and Gehr, 2007). It was reported that UV dose is essential to minimize the microbial reactivation 

rate ( Gehr and Nicell, 1996; Lindenauer and Darbyreported, 1994). Their study observed the effect 

of lower UV dose and higher UV dose on the microbial inactivation. 

 
2.7.6.2.2 UV lamp intensity and exposure time 

 
 

Bohrerova and Linden (2007) observed photo repair at higher and lower UV intensities and found 

that the rate of photo repair is correlated to the UV intensities. Higher intensities had higher repair 

rate (Bohrerova and Linden, 2007; Zimmer and Slawson et al., 2002). Further, Bohrerova and 

Linden (2007), stated that photo repair depends on UV lamp intensity and exposure time together, 

and not independently under the term UV fluence. 

 
2.7.6.2.3 Type of the UV lamp and its correlation with microbial reactivation 

 
 

Oguma et al., (2002) and Zimmer and Slawson (2002) found decreased levels of photoreactivation 

when MP lamp is used instead of LP lamp when tested for E. coil. In monochromatic LP lamp 

microorganisms were able to repair DNA; however, in polychromatic MP lamps microorganism 

were unable to repair DNA. 
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2.7.6.2.4 Effect of the wavelength 
 
 

Zimmer and Slawson (2002), assumed that the wide variety of wavelength emitted by MP lamp, 

UV-A (320-400nm) and UV-B (290-320) along with the germicidal wavelength range UV-C (290- 

185nm), was responsible for lowering photoreactivation level. Oguma et al. (2002) reported that 

the wavelength between the range of 220-300 nm reduced photo repair due to the dysfunction of 

photolyase. 

 
2.7.6.2.5 Effect of water quality 

 
 

As mentioned previously in section 2.7.5.2, the water entity, containing suspended solids has low 

UVT due to reflation and scattering of the light (Chan and Kilick, 1995; Darby et al., 1993; Martin 

and Gehr, 2007). Lindenauer and Darby (1994) reported that improved water quality resulted in 

improved initial inactivation and less photoreactivation in the microbial sample. 
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2.8 Direct UV output measurement technique 
 
 

In this section, previously developed sensor-radiometer or sensor-photometer assembled set-up 

arrangements for UV radiation measurement has elaborated. 

 
2.8.1 Overview of direct measurement set-up assembly 

 
 

The direct measurement of the UV lamp output is performed by optical bench arrangement with 

the provision of the photovoltaic sensor and radiometer, which precisely calibrated for the 

detection of a specific wavelength of UV-C radiation (Chevrefils et al., 2006; Kuhn et al., 2004). 

Previously, it has been recognized that, the direct measurement technique followed by radiometer 

and sensor assembly is more ideal for the measurement of the UV output, which provides accurate 

measurement of UV intensity (Chevrefils et al., 2006; Kuhn et al., 2004; Schmalwieser et al., 2014; 

Siegel, 1995); recapped from section 1.1.3. Hence, lamp output can be monitored by the on-line 

or regular radiometer, which can evaluate irradiance produced by the UV lamp from one or 

multiple fixed points (Bolton, 2002). 

 
If a manufacturer has not provided on-line radiometer monitoring systems to the corresponding 

lamp; usually lamp statistics are provided for the corresponding lab based on the laboratory testing 

for lamp burn-in time and its subsequent UV output for the expected life span of the lamp; recapped 

from section 1.1.4. The components of a typical radiometer-sensor based set-up are described in 

the next section. 
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2.8.2 Components of direct measurement set-up for UV radiation 
 
 

The direct measurement set-up is consisting of the three essential components: The mechanical 

arrangement, optical assembly module and electrical signal processing unit, as shown in the 

following figure. 
 
 
 
 
 

Figure 2. 10 Schematic of the direct measurement setup 
 
 
 

2.8.2.1 Mechanical arrangement 
 
 

The mechanical arrangement is comprised of an optical beam set-up consisting of a UV lamp, 

mounting assembly to arrange a UV sensor, radiometer-computer configured segments to record 

and store the collected data. In the past, Siegel (1995) monitored UV lamp performance with the 

help of on-line UV measurement system, which comprised of PC- based data acquisition system 

in conjunction through an optical probe, fiber optic cable and optical bench set-up. 



62  

2.8.2.2 Optical assembly module 
 
 

The optical assembly module usually called a UV sensor, which is comprised of quartz window, 

diffuser, focusing optics and filter. The figure below illustrates the photodetector and its 

components. 
 
 
 
 

 
Figure 2. 11 Configuration of the UV sensor 

 
 
 

2.8.2.2.1 Window 
 
 

The window is usually made of the quartz or synthetic sapphire, allowing protection to the internal 

components of the sensor protection against the pressure and flow inside the disinfection chamber 

(Goin et al., 2004). 
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2.8.2.2.2 Diffuser 
 
 

The diffuser is commonly used to obtain cosine response for the wide acceptance angle of the input 

UV radiation. The primary function of the diffuser is to provide an appropriate spatial response 

and regulate the irradiance level to avoid excessive radiant power to the photodetector. The diffuser 

is also known as an attenuator, which acts as supplementary sift to prevent damage to the filter 

unit due to saturation during the high-power settings (Xu and Huang, 2000). The diffuser with 

attenuation properties prevents premature photodetector degradation (Goin et al., 2004). 

 
The spatial response is a measurement of UV radiation at different incident angles, and it is 

essential to recognize the spatial response of a radiometer to determine how effectively it detects 

incident radiation. Further, the spatial response depends on angular response and axial symmetry 

of the UV sensor (Goin et al., 2004). For radiometer monitoring single lamp, a unit with narrow 

spatial response will have more precise sensitivity than the wide spatial response as shown in the 

figure below. 
 
 

 
Figure 2. 12 Schematic of two radiometers with different spatial response 

A- Narrow and focused response 

B- Wide response (Adopted from Goin, 2004) 
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2.8.2.2.3 Focusing optics 
 
 

The focusing optics is an aperture that converges the incoming UV radiation into the detector. The 

focusing optics or aperture is used to mask the edges of the photodetector to allow uniform spatial 

responsivity to the radiometer detection (Xu and Huang, 2000). 

 
2.8.2.2.4 Filter 

 
 

Filters are used to attenuate the specific radiation wavelength by eliminating wavelength other than 

the required bandwidth. Usually, a filter has a thin metal film which is coated with dye, which 

allows passage to the specific wavelength by absorbing wavelength containing colour other than 

the specified range, allowing absolute measurement of the specific bandwidth from UV spectrum. 
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2.8.2.3 Electrical signal processing 
 
 

The electrical signal processing unit is comprised of UV photodetector, radiometer or PLC units 

for online radiometer measurements. Figure 2.13 illustrates the signal processing sequence of the 

detector and radiometer. 
 
 

Figure 2. 13 Schematic of Radiometry measurement 
 
 

2.8.2.3.1 UV photodetector 
 
 

Most of the radiometry measurement involves UV sensitive cathode that converts the incident UV 

radiation into the electric current; this phenomenon is also called as photoelectric effect 

photodetector converts photons into an electric signal (Garipov et al., 2010; Pan and Zhu, 2015; 

Pounce, 2017). The photodetectors are often identified as photodiodes or photocells, which are 

semiconductors, fabricated to detect a specific part of the electromagnetic spectrum (Photoelectric 

effect, 2018). The photodetector or photodiode, formerly called as an electron tube or vacuum 

tube, consisting of the sealed-glass or metal-ceramic enclosure containing a cathode made up of 

metal which allows electron transmission. The release electrons released by the cathode then 

gather around the anode seized at a positive voltage similar to the cathode. 

However, these tubes were replaced by semiconductor materials, that can detect UV light, measure 

UV intensity, control illumination of the source and convert photon energy into the electric energy, 

that can be processed to obtain value into electron volts (Photoelectric effect, 2018). 



66  

Every UV radiation spectral range has a different wavelength and corresponding photon energy 

output (Omnès, 2007). 

UV-A, for wavelengths between 400 and 320 nm (from 3.1 to 3.87eV) 

UV-B, for wavelengths between 320 and 280 nm (from 3.87 to 4.43 eV) 

UV-C, for wavelength between 280 and 200 nm (from 4.43 to 6.20 eV) 

Far UV, for wavelengths between 200 and 10 nm (From 6.2 to 124 eV) 

 
Previously, narrowband semiconductor-based photodetectors were used for UV radiation detection 

such as silicon and III-V compounds. However, lately new generation semiconductor-based 

photodetectors have been introduced such as silicon carbide, diamond and gallium nitride alloys, 

allowing precise measurements (Erturk et al., 2019; Lin et al., 2014; Omnès, 2007; Wright and 

Horsfall, 2007; Zou et al., 2018). Photodetector further can be the photoconductive or photovoltaic 

detector. The Photoconductors works on the principle of photoconductive effect when photon 

energy is greater than the band-gap energy, it absorbs photons and produces electron-hole pair, 

consequently changing the electrical conductivity of the semiconductor, which is detected by the 

external circuit (Takahashi et al., 2014; Zou et al., 2018). 

 
The second type is the photovoltaic detector that detects UV light of specific frequency infiltrated 

on the metallurgical junction. When UV light of specific wavelength irradiated on the active region 

of the detector, a photon-generated transferor releases a photocurrent in the circuit, which is 

detected and recorded by the radiometer. During this event, bias is applied in p-n junction 

photodiodes. Usually, p-i-n photodiodes work at the zero bias and at the reverse bias (Photoelectric 

diode mode) to provide improved sensitivity. Both p-n and p-i-n work at faster response speed 

with an increase in the light transmission rate (Razeghi and Rogalski,1996; Zou et al., 2018). 
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2.8.2.3.2 Signal processing by a radiometer 
 
 

The primary function of the radiometer is a provision of electric signal that is proportional to the 

absorption of the wavelength by the photodiode. The radiometer further processes the small 

voltage formed due to the photovoltaic effect. The radiometer amplifies the received signal by the 

photodetector and converts the voltage into the current with the prebuilt amplifying unit. 

After accurate conversion and processing of the current irradiance level of the incident UV 

radiation are expressed as µW/cm2, mW/cm2, pW/cm2 or intensity a.u. Radiometer can provide 

absolute or relative measurement depending upon the requirement (i.e., 0 to 1Volt, 4 to 20 mA, 

digital RS232 etc.), for on-line remote-radiometer monitoring system, SCADA systems or 

assembly to PLC's for an advanced facility to measure UV lamp output based on irradiance 

reduction over time. The digital readouts are favored for the clarity of the readings, which can be 

linked to the microprocessor. The recorders can be added to the system which can store the data 

obtained for the incident spectrum by the photodiode. Further, the controller enables monitoring 

systems can trigger an audible alarm to an automatic system shutdown until damaged or aged UV 

lamp has been replaced. 

 
An on-line radiometer cannot determine UV dose because the sensor unit is fixed and does not 

travel through the reactor (Goin et al., 2004) ; making it challenging to identify the burned out 

lamp in a reactor, which adds up to cross-checking of the algorithm confirmation and testified 

values during the reactor validation (Goin et al., 2004). 

 
2.8.2.3.3 Data assembly 

 
 

If radiometer and measurement set-up has been configured with predominantly developed software 

for automated data logging and analysis; the measurements will be recorded for the prefixed time 

intervals and will be stored in a sequential statistics logbook for the preceded date, distance or 

position and specific time intervals between the measurements. 
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2.8.3 Calibration of the system component 
 
 

The NIST tracible metrology laboratories purchase calibrated transfer standard detector directly 

from the National Institute of Standards and Technology. 

From 400 nm to 1100 nm, this transfer standard is S1337-1010BQ photodiode, a 10 x 10 mm 

planner silicon sell with synthetic quartz coating. The photodiode is fixed behind an accurately 

measured 7.98 mm circular aperture, yielding active area of 0.5 cm2. Calibration labs then use 

this transfer standard to calibrate their working standards using a monochromatic light source. 

These working standards are identical to the equipment that will be calibrated (e.g. photocell, 

radiometer etc.) Detectors are calibrated to the peak wavelength range of the detector/diffuser/filter 

arrangement using equivalent optics for the proposed application. Fundamental to the precise 

calibration is a consistent kinematic base (mounting arrangement) that allows movement of 

detectors in the optical path. Though the working standards of the unknown detector are fixed in 

the precise kinematic base in front of the precisely controlled light source, a small error can be 

generated due to transfer error. Hence, properly calibrated sensor/detector and radiometer has to 

be obtained or purchased from certified metrology laboratories for precise measurements. 
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2.8.4 Overview of the previously developed experimental set-up for direct measurements 

and research gaps 

 
The direct measurement technique is followed by the optical bench arrangement with a calibrated 

detector and radiometer assembly. The background of direct measurement set-up, setup 

components and their working principles are described in previous sections (section 2.8.1 and 

2.8.2). Over the years the direct measurement techniques are used to study and analyze the 

performance of the UV lamp, efficiency of the UV dose based on the incident intensity and the 

consequences of the non-uniform ageing pattern during the expected lifetime of the UV lamp 

(Harrington and Valigosky, 2007; Loge et al., 1999; Nessim and Gher,2006; Siegel,1995; 

Schmalwieser et al., 2014; Vasilśev et al., 2006). 

 
2.8.4.1 Direct measurement set-up for determination UV dose 

 
 

Harrington and Valigosky (2007) performed experimental analysis for decontamination of 

surfaces in a biological safety cabinet for UV-C radiation to optimize the UV dose to kill the 

microorganism. Their study involved evaluation of the correlation between UV lamp output and 

its effect on the microorganism to find the appropriate dosage amount. The experimental setup that 

was used for the measurement of the UV intensity was consisting of the photometer IL1400 (from 

International Lighting Inc.) and photodetector # SEL240/TD. Their analysis was performed by 

exposing the microbial sample to UV-C radiation of intensity 510µW/cm2 to 20 µW/cm2, by the 

UV lamp G30T8 MP lamp within less than 500 hours of use. The UV exposure studies were 

confirmed by the Labconco purifier Class II Model #36204 BSC (Labconco Co. Kansas City MO). 

However, their main focus was to estimate the appropriate UV intensity to inactivate the 

microorganism. Their study reported that the measured UV intensity of the UV lamp at the center 

was 510µW/cm2 (51 mW/cm2). Further, it was stated that UV lamp after 8000 hours of operation 

produced 125µW/cm2 (12.5 mW/cm2) and killing time for microorganism was ~20 to 40 seconds, 

even at the end of the useful life of the MP lamp. Furthermore, their study quoted that time taken 

more than 120 seconds would suggest dosage level below ~40 µW/cm2(~4 mW/cm2), which is 

below the minimum desirable dosage stated by New York health department (Clinical Laboratory 

Evaluation Program, 2006). 
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2.8.4.2 Direct measurement set-up for monitoring for foulant accumulation on lamp sleeve 
 
 

In another study by Nassim and Gher (2006), the fouling mechanism in Laboratory-scale UV 

disinfection system (reactor) was studied by monitoring of foulant accumulation. The basics of 

lamp sleeve fouling are described in the previous section (section 2.7.2). This analysis was 

performed by the direct periodical measurements of UV intensity at 253.7 nm, 2mm above the 

fouling surface, on the top of the quartz sleeve of the lamp. The radiometer IL1400(from 

International Lighting Company) fitted with the water submersible optic detector #SEL 240 with 

the wavelength filter P2 # 954, performed the monitoring of foulant accumulation. 

 
The experimental study for every measurement involved intensity reading was recorded as a 

reference value, and succeeding readings were normalized with respect to it. Their study reported 

intensity values ranging from 100 to 2400 µW/cm2 (~ 10 mW/cm2 to 240 mW/cm2) depending 

upon the water temperature and quality. Their analysis reported fouling of the quartz sleeve and 

predominately because of the iron and volatile solids. Further calcium and ferric iron recombined 

and precipitated as calcium carbonate and ferrous hydroxide and attributed to sedimentation. 

Further, their remark for one the experiment stated calcium, iron, phosphorus and BOD resulted 

into the highest accumulation of foulant in the form of foulant film predominantly on the top region 

of the UV lamp, reducing UVT by 50%. Furthermore, it was mentioned that UV radiation-induced 

precipitation of Fe (OH)3, FePO4 and CaCO3 among the length of the lamp, consequently blocking 

UV transmittance in the water. 

 
The main focus of their research was to understand the fouling mechanism of the wastewater 

constituent and the amount of the UV transmittance that was able to penetrate after the foulants 

accumulation the UV lamp surface. However, their study did not involve sensor arrangement 

which can enable scanning of each position along the length of the lamp to understand the change 

of the lamp output along the axial length of the lamp after each experimental run with respect to 

the burn-in lamp hours. 
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2.8.4.3 Direct measurement set-up for monitoring light penetration in the wastewater sample 
 
 

In another study by Loge et al. (2000), fiber optic microelectrode set-up was used. However, their 

study was focused on the analysis of light-attenuation within the wastewater. The set-up was 

consisting of two main components, a fiber-optic microelectrode to detect the light and radiometer 

systems that measure radiant light. The fiber optic microelectrode was constructed by inserting 

60µm silica fiber optic cable inside 60 mm long stainless-steel tube. The set-up had a compartment 

to hold the wastewater sample with solids. The set-up was constructed with the installment of MP 

lamp equipped with radiometer IL1700 (from International Light Inc.) with was connected to a 

photomultiplier (Model # 400a with tube IL101). The set-up had motor-driven micromanipulator 

to control the movement of the fiber-optic with 1µm increments. 

 
Their study involved analysis of UV light that can be passed through the sample and overall 

intensity reaching a particular point within the wastewater containing solids as a function if the 

light that is reaching towards the receptor plus the amount of light coming from all directions, i.e., 

scalar irradiance. This study justified the effect of the solids in UV disinfection. However, this 

experimental set-up did not involve the analysis of the UV lamp output, and the change occurred 

in the UV intensity over time at specific length intervals along the length of the lamp. 



72  

2.8.4.4 Direct measurement set-up for monitoring the ageing of MP lamps 
 
 

Jin et al. (2007), studied the ageing of the MP lamps using a closed vessel UV reactor system for 

drinking water disinfection purposes. Their analysis involved the evaluation of the UV lamp output 

during the expected lifetime MP lamp with four different lamps which were able to last for 6006, 

13600 and, two lamps for 16500 hours (from 2002 to 2007-year span). Their study stated that the 

lamps output dropped below 70% efficiency until the end of the lamp's life for the burn-in hours, 

as mentioned earlier. 

 
The test equipment was consisting of, calibrated radiometer IL1700 (from International Light Inc.) 

and detector SED 240 equipped with the W- diffuser and a QNDSI filter, to test the irradiance. 

The lamp spectrum was analyzed by the handheld spectrometer (S200, Ocean Optics, Inc. 

Dunedin, FL), based on the direct record and conversion into the spectral irradiance 

This study involved detailed analysis of fluence rate change, occurred during the life span, of the 

MP UV lamps. Additionally, the analysis also involved the measurement positions at 25%, 37% 

and 50% distance from the ends of the arc, mentioned by USEPA UV Disinfection Guidance 

Manual (USEPA, 2003) for conservative measurements. 

 
However, this study did not involve a consistent motor driven sensor movement to study the 

change occurred in UV lamp output across the axial length of the lamp at multiple measurement 

locations with specific increments during each measurement (i.e. in centimeters, millimeters or 

micrometers). 
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2.8.4.5 Direct measurement of UV lamp performance with an on-line monitoring 

arrangement 

 
Siegel (1995), experimented with direct measurement technique to study UV lamp performance 

over time. The direct measurement set-up was consisting of on-line monitoring tool LM-9000 UV 

Lamp Monitor connected by PC-based assembly and software-based data acquisition system 

combined with an optical probe, optical bench and sensor unit. The optical probe was mounted on 

the lamp, which was connected with fiber optic to an optical bench, which converts incoming light 

into an electric signal voltage. The software was developed for on-line monitoring, to displays 

wavelength distribution based on the real-time sampling at 5 seconds interval. 

During this analysis, the life of the lamp test was performed on a single lamp for 408 operating 

hours until the lamp failure. The study found that, as lamp undergoes continuous use, the lamp 

intensity degrades over time due to changes in the mercury pressure, electrode degradation and 

deposition of material on the inside of the quartz sleeve. The study also observed an unexpected 

decline in output with multiple peaks, drops and pluteus. The main discovery of this study was the 

nonuniformity of the lamp output. 

 
Furthermore, another test was performed, to compare lamp characteristics among 14 UV lamps of 

the same specification and few lamps were new, and few had up to 1000 hours of operation (lamp 

life specifically has not been mentioned) 

The comparison test was performed for similar lamps from the same manufacturer; however, the 

experimental analysis did not show any exact pattern in lamp ageing and variable output. 

This non-uniform behavior of the new lamp, on which life of lamp test was performed in this study 

by Siegel (1995), helped to realize lamp of the similar specification can show variable performance 

through the lamps have been manufactured under same conditions by the same manufacturer. 
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2.8.4.6 Direct measurement set-up for analyzing ageing of ALPHO lamps 
 
 

Recently Schmalwieser et al. (2014) studied the spatial distribution of ALPHO lamps for 

irradiance measurement at 254 nm wavelength. The part of this study was to examine the UV dose 

monitoring to predict UV dose delivery based on reactor modelling. The analysis was performed 

on five different lamps obtained from Pitkäkoski Water Treatment Plant, Finland. The lamps had 

different burn-in hours 100, 432, 940, 1472 and, 6696 hours. 

 
The experimental arrangement involved horizontal arranged lamps inside the black box. The set- 

up involved radiometric measurement by IL1700 research radiometer (International Light Inc.) 

equipped with SED240 and 245 interference filter and diffuser. The sensor was mounted on the 

rail system which was able to move across the axial length of the lamp with 15mm increments. 

After the lamp was scanned along the length of the lamp. After, the lamp was turned off and rotated 

to the 90°, and measurements were performed again. During this analysis, researchers have noticed 

darkening of the electrode, which was first visible at the lamp, ends than the middle part. Further, 

their analysis stated that as lamp ages darkening becomes severe and expands towards the middle 

part of the lamp. Their examination for a new lamp reported a formation of the two wavelength 

maxima near the lamp ends and between the two maxima output decreases at the middle part of 

the lamp. Also, it was confirmed that as lamp ages, it not only reduces the UV output but also 

changes the profile of the output measurements obtained for the maxima between the two 

electrodes. Additionally, their analysis reported total irradiance from 500 to 1500 hours was 75%, 

and from 1500 to 6700 hours it was 50% for pre-used lamps with prior burn-in hours. 

 
Further, their study stated that the non-uniform output along the length of the lamp could be related 

to the temperature gradients, because lamp possesses a cooler temperature profile in the middle 

part. However, their study did not provide justifiable temperature profile analysis across the length 

of the lamp to show temperature variation at the electrode and the middle part of the lamp. 

As mentioned earlier, the irradiance of one new and 4 old lamps was observed and monitored by 

Schmalwieser et al. (2014). The study reported non-homogeneous UV radiation firm the ALPHO 

lamps. Their analysis noticed emittance increased from the lamp end reached to its maximum and 

then dropped towards the middle part of the lamp. The primary difference between the maximum 
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and minimum irradiance range was 7% for 500 hours, 16% after 1500 hours and, 20% after 7000 

hours. Also, there was a discontinuity in rising and drops in the intensity across the length of the 

lamp as well reduction in the output between the two maxima formed across the length the lamp 

as explained earlier (section 2.8.4.6) Further, their study reported visual ageing signs of brownish 

discoloration of the quartz sleeve near the electrode. 
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2.8.4.7 Direct measurement set-up for quantifying UV transmittance of the quartz sleeve 
 
 

In 2013 Heath et al. (2013) presented UV lamp ageing by direct measurement of the UVT. 

Health et al. (2013) demonstrated a detailed measurement technique to calculate the quartz sleeve 

fouling with simple optic bench arrangement to measure UVT of the quartz sleeve. Further, the 

field testing of the experiment was performed by Carollo Engineers, USA. To perform this 

experiment, a custom optic bench set-up was developed to measure quartz sleeve transmittance, 

consisting of research radiometer IL1700 (from International Light Inc) and UV sensor (model # 

not provided). The one part of the analysis by Health et al. (2013), involved quantification of the 

lamp output by combined ageing and fouling index (CAF). It is also described in the previous 

section (section 2.7.2). The quartz SFF was measured directly with the optic bench for LP lamp 

for the 254nm wavelength. Following equations have recapped form section 2.7.2 

 
CAF =   

S
 

Sn 
 
 

CAF = SFF  ×   LAF 
 
 
 

 

 
 
 

After rearranging previous equation 

 I(old lamp) 
SFF = p 

I(new lamp) 
 
 

LAF = 
CAF

 
SFF 

 

 
CAF = Combined ageing and fouling factor 

S = Measurement reading by sensor 

SP = Predicated reading value of the new lamp 

SFF = Sleeve Fouling Factor 

LAF = Lamp Ageing Factor 

I = Radiometric Measurement for an old and new lamp 
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During this analysis, Heath et al. (2013) noticed SFF of 0.95, or ~5% reduction in the output for 

the aged sleeves. Further, when new lamps were arranged for the measurement readings obtained 

for 254 nm wavelength was 100%. Moreover, the old UV lamp had darkening across the length of 

the lamp. To obtain LAF, UVT was measured among the one old lamp with the darken quartz 

sleeve. However, the fouled sleeve cannot be cleaned; hence, the new lamp was used as a reference 

to calculate the LAF. Their result indicated LAF of 0.53 relatively to the new lamp, representing 

47% output reduction (for the old lamp) when compared to the new lamp without out darkening 

of the sleeve. 

 
Further, the ratio of UVT transmittance of the old lamp to the new lamp was estimated by dividing 

UVT of old lamp divided by UVT of the new lamp. The spectral transmittance was measured with 

the spectrometer (model # and set-up arrangement information not provided). The UVT analysis 

for old and new lamp reported, UVT of the old lamp was 53%, while new lamp had UVT above 

70% (based on the graphical illustration provided by the Heath et al. 2013). 

The second part of their study involved comparative analysis of MP UV output for old lamps (7500 

to 9500 burn-in hours) and new lamp, using the optic bench set-up. The measured UVT for 254 

nm for old lamps with darken quartz sleeve ranged ~55 to 66% after 8828 to 9500 burn-in hours. 

To validate the lamp output effect fecal coliform inactivation was performed with the aged lamps, 

and the aged lamp had a significant impact on the dose delivery (inactivation details not provided) 

Further, UVT for old lamps at the darken ends near electrodes had a significant decrease in UVT 

and 20 to 40% decrease in the UVT compared to the new lamp. 

 
The spectral UVT transmittance of the old and new lamp was measured by using Ocean Optics 

JAZ spectroradiometer assembled with an optical sensor. The UVT measured performed during 

this experiment concluded LAF of 0.56 after 12000 burn-in hours while manufacture’s claim was 

LAF 0.85. The LAF obtained by the direct measurement was significantly higher than the LAF 

claimed by the lamp manufacturer, when data was plotted as UVT transmittance as a function of 

lamp burn-in hours. Further, the experimental analysis confirmed the significant decrease in the 

UV output over time than the lamp ageing curve provided by the lamp manufacturer. 
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2.9 Research gaps and modification in the setup 
 
 

During the literature review, previously followed measurement techniques and previously 

developed experimental arrangements were studied. During this review, few research gaps were 

notified, which aided to modify the set-up configuration. 

In this section research gaps and set-up, modification has described. 
 
 

2.9.1 Research gaps related to the literature availability associated with the UV lamp ageing 
 
 

There are very few published findings available on the non-uniform lamp ageing and its effect on 

the UV output over time (Health et al., 2013; Schmalwieser et al., 2014; Siegel 1995). 

Furthermore, there are few published studies available, but these are limited to an impact of the 

UV lamp ageing and does not address the non-uniform ageing profile of the lamp. Additionally, 

analysis of UV lamp output involves intensive research and comprehensive understanding of UV 

lamp’s behavior, which often takes a more extended period to perform an analysis depending upon 

the lamp life. Hence contribution in the field of UV lamp performance monitoring is inconsistent 

depending upon the time taken to perform an experiment during the expected life span of the lamp 

(~10000 to 12000 hours). Moreover, most of the literature available is related to the analysis 

related to fluence rate distribution to evaluate the UV dose, and the degradation occurred in the 

UV intensity over time based on the single sampling location. 

 
2.9.2 Research gap related to the setup 

 
 

Previously there have been very few studies published, which has involved the sensor movement 

to monitor UV lamp performance across the axial and radial direction of the ALPHO lamp 

(Schmalwieser et al., 2014). Jin et al. (2007) studied lamp ageing phenomenon for MP lamps 

measurement positions at 25%, 37% and 50% distance from the ends of the arc. 

However, the experimental set-up developed for this analysis involves stepper motor driven axial 

motion of the sensor along the length of the lamp with specified distance increments. The detail 

about setup arrangements is explained in Chapter 3. 
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2.9.3 Research gap related to the imbalanced temperature profile across the lamp 
 
 

As mentioned earlier in the section 2.8.4.6, Schmalwieser et al. 2014, mentioned non-uniform 

output might be related to the uneven temperature gradient along the length of the lamp, the cooler 

temperature at the central part and compared to the electrodes. Nonetheless, there was not any 

justifiable evidence displaying the uneven temperature profile. Furthermore, in previously referred 

studies, there was no reporting of the thermal imaging camera, which could be signified the uneven 

temperature distribution across the length of the lamp. However, this study has observed a 

differential temperature profile at the electrode and the central part of the lamp by modifying the 

set-up configuration with a thermal imaging camera (recapped from section 1.1.4 and 1.4.2). The 

details about the set-up components are explained in Chapter 3. 

 
2.9.4 Automation with Arduino microcontroller and LabVIEW interface 

 
 

As mentioned earlier in section 1.1.4 the setup that has developed for the experimental analysis of 

the change occurred in the UV lamp intensity performance over time, has prospered with the 

Arduino microcontroller to perform control over the set-up components with the specially 

developed program coding with LabVIEW interface with the Arduino. Furthermore, the 

movement of the photodetector has synchronized with the 3-D printed adapter housing, fixed on 

the stepper motor to allow linear motion of the adapter housing implemented with the clockwise 

and anticlockwise movement of the lead screw allowing forward and backward motion of the 

photodetector to scan the UV lamp. 

 
The functioning (signal receiving) of the radiometer was controlled with the LabVIEW coded 

algorithm to stipulate digital input from the photodetector and corresponding output result with 

the user interface (.text file on a computer). The command over radiometer functioning was 

performed on the front panel of the LabVIEW generated virtual instrument program. The details 

about the virtual instrument program have described in the following section (2.11.1). Previously, 

Arduino and LabVIEW interfaced programs have been developed to control automation of 

instrument. However; the application of this interfaced was not performed to study UV lamp 

intensity, and change occurred in the lamp performance over time. 
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Moreover, the literature that was referred to study previously developed direct measurement 

techniques for UV lamp output has not mentioned which software or program interface that was 

used to perform measurement of the UV lamp and control over the set-up components. 

 
2.9.5 Thermal imaging camera to identify a non-uniform temperate profile of the UV lamp 

 
 

The study of UV lamp performance and variation in UV output also includes the observation of 

the uneven temperature gradients at the electrodes and the central part of the UV lamp. The uneven 

temperature profile was observed with the help of a thermal imaging camera. In previously 

reported UV lamp performance studies, the implementation of the thermal imaging camera was 

not included. There has been one reported image (partial image of the lamp), that we encountered 

during the literature review. The study was performed by Lau et al. (2008) for in-duct air 

disinfection to observe the influence of the air velocity and lamp temperature of the lamp output 

for the cold spot at the UV lamp for the prediction of the cold spot at the surface of the lamp. 

However, the study was performed to develop a model to predict the output based on the 

temperature and the UV output analysis was based on the stationary detector with only one 

sampling point and not multiple observation points, which could observe the change in the UV 

intensity along the axial length of the lamp. 

 
The direct measurement setup that has developed in this research for the analysis of the UV lamp 

intensity has a UV detector housing attached, to lead screw and coordinated by a stepper motor 

motion to allow the movement of the detector along the axial direction of the lamp. This 

modification not only allows multiple sampling points but allows to select a specific observation 

location by inputting the distance in the numeric measure in the program through computer input. 

Moreover, this study includes multiple complete thermal images of the UV lamp showing 

temperature gradients at the lamp electrode and the central part of the lamp. 
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2.10 Arduino overview 
 
 

Arduino is an open-source electronics platform used for performing control over devices and 

device movements. Arduino consists of physically programmable circuit board; the programmable 

circuit board is also known as microcontroller, and a software (C++) or Integrated Development 

Environment (IDE), that can be operated on the computer with different operating systems, i.e. 

macOS, Windows, Linux etc. (Arduino-Getting Started, 2017; Mins, 2013). The Arduino platform 

is more preferable because it does not need a sperate piece of hardware to load new program code 

onto a circuit board; it can be configured using a USB cable. The Arduino hardware and software 

(C++) can interact with buttons, motor, speakers, internet and motion control as well it can help to 

read information from input devices such as sensors, potentiometer etc. (Margolis, 2011). The 

Arduino board is classified into two components, hardware and software as explained in the next 

section (section 2.10.1 and 2.10.2). 

 
2.10.1 Arduino hardware 

 
 

The hardware of Arduino consists of the many parts to make it work and perform control over the 

experimental set-up. Figure 2.14 elaborates components of the Arduino board. 

 

Figure 2. 14 Components of Arduino circuit board 
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The USB plug allows program upload by external devices (i.e. data drive, data disk) to the 

microcontroller (Gibbs, 2010) to regulate the power supply of 5 volts, by the same assembly 

connection (mostly direct connection from the computer USB port). However, the external power 

supply can be provided in case the USB plug does not provide sufficient power (9 to 12 volts) to 

the board. The reset button allows the upload of another command to retune the newly added 

feature to the code. The microcontroller receives and sends information as a command to the 

corresponding circuit units. The analog pins, A0 through A5 These pins, read and convert received 

signal from analog unit into a digital value. The Digital pins 0 through 13 are used for digital input 

to signal the command to the board and digital output to represent the output of the command (e.g. 

digital input= button on, digital output= powered light). 

 
2.10.2 Arduino software and programming 

 
 

The microcontroller of the Arduino board requires to be programmed with the software to perform 

specific tasks of the experiment or project. The main difference between the microcontroller 

programming and conventional computer programming (scientific or engineering computation) is 

that the microcontroller is specially programmed to control the hardware, or the motion of the 

hardware configured external components. 

 
The Arduino uses C, C++, and Java-based programming language and its syntax and structures are 

similar to the JavaScript and PHP. The Arduino language refers to the object, which means code 

construction and, that define attributes containing properties of the object and methods, which 

defines procedure associated with the object. In Arduino programming, there is a serial object 

which contains methods for displaying the output after reading the signal from the serial port. 

The Arduino programmed software is a set of instructions that informs a hardware component to 

perform the task, which is specified in the programming language. 

The Arduino software components are divided into three constituents, command area, text area 

and message window area, as shown in figure 2.15. 



83  

 
Figure 2. 15 Labelled IDE (adapted from Arduino-Getting Started, 2017) 
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2.10.2.1 Command area 
 
 

The command area is also called as a programming text editor which allows the input code along 

with the other options such as File, Edit, Sketch and Tools to upload the program. 

 
 

2.10.2.2 Coding area 
 
 

The coding area is where we add written program and compiler compiles the uploaded program 

when Upload to I/O button has pressed. The code uses a simplified version of C++, which enhances 

the easiness of the program writing; it is also called as the sketch. The program follows two main 

functions set-up function and loop routine. Once the variables are initialized for the intended use 

for the assigned task, the setup routine launches to a set initial condition of the variables and to run 

the pilot code. 

The second function is the Loop routine that allows program run and execution of the main code 

in a continuous cycle (Arduino- Getting Started, 2017; Badamasi, 2014). 

 
2.10.2.3 Message window or Debugger 

 
 

The serial monitor is used for the debugging and monitoring the data from the computer. It 

provides feedback and allows verification of the code (Badamasi, 2014; Gibbs, 2010) 
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2.10.3 Working principle of Arduino board 
 
 

The Arduino board can be programmed with the Arduino software which works on C and C++ 

programming languages, which allows to generate a program to perform the application and 

control of the device components (Sudhan et al., 2015). As mentioned earlier in section 2.10.2, the 

program can be uploaded through microcontroller by using the jack cable. The Atmega-328 

microcontroller saves created or uploaded program, and these internal circuits (IC) can act as a 

processor to process interaction without any error. Furthermore, Atmega-328 comes with the 

bootloader, that allows uploading feature to add new program code without the use of an external 

hardware programmer. After giving analog or digital input to the system, through a program in the 

developed software, we can perform control over the application process of the device. 

 
If revision of the program code is needed, Arduino software allows an editing feature to modify as 

well as it provides a feature to upload a completely new program through jack cable or a USB port 

assembly, to the microcontroller of the Arduino board. After the provision of the new program, we 

need to reset the program to delete the previous program and to use the newly added program. 

Moreover, the Arduino Atmega-328 microcontroller can be used for numerous applications, 

especially in automation movement and control (Sudhan et al., 2015). 
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2.11 Overview of Laboratory Virtual Instrumentation Engineering Workbench 

(LabVIEW) 

 
LabVIEW is a graphical programming approach and system design platform that helps to stimulate 

real-world application with the provision of visualization of the program from National 

Instruments. LabVIEW is commonly used for data acquisition, instrument control and automation 

on various operating systems (Travis and Kring, 2007). LabVIEW is written in C, C++ and .NET; 

however, it requires only logic to programming, and it is syntax intended. LabVIEW is a high- 

level design tool which provides interpreter programming; hence, it compiles the programming 

itself. 

 
2.11.1 Virtual Instruments (VI) programming 

 
 

LabVIEW programs are named as virtual instruments (VI), and each VI has three components a, 

a front panel, a block diagram and a connector pane as shown in the figure below. 
 
 

Figure 2. 16 Front panel and block diagram 
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The front panel is built using controls and indicators. Controls are inputs allowing the user to 

provide information to the VI. Indicators are outputs, displaying the results based on the inputs 

given to the VI. The back panel or block diagram contains the graphical source code of functions 

and structures, which performs an operation on controls and supply data to the indicators. All 

objects placed on the front panel appears as terminals on the back panel. The connector pane is 

used to represent the VI in the block diagram. The controls, structures and functions are referred 

as a node in the programming language, as shown in the following figure. 
 
 

Figure 2. 17 Controls in LabVIEW programming 
 
 
 

The VI can be run as a whole program, in which the front panel serves as a user interface when 

nodes are created on the block diagram. The front panel outlines inputs and outputs for the nodes 

through the connector panes (Christiano, 2015; Tamilvarshini, 2018). Connector pane has shown 

in the following figure. 
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Figure 2. 18 Connector pane and patterns 

 
 
 

As mentioned earlier, the front panel window offers tools menus and controls over all the controls 

required for the application. In LabVIEW programming, the command that we are expecting to be 

performed by the interfaced components is termed as coding. The coding is done by the selecting 

functional controls in the front panel window and if it is appropriate block can be added to the 

block diagram. Furthermore, signal generators, buttons (to turn on and off the experiment, sensor, 

meters, etc.), displays and graphs suitable based on the experiment can be added (Christiano, 

2015). 

 
In the block diagram inputs and outputs of the desired control over the experiment or device can 

be wired and configured. The generated program can run, aborted or paused from either front panel 

or from block diagram. The block diagram also supplements troubleshooting feature to figure out 

and resolve the errors in the programming. 



89  

 
 
 

Figure 2. 19 Toolbar features in LabVIEW 
 
 

Figure 2. 20 Functions in LabVIEW programming 
 

Wires (wires feature) are used to transfer the data among the block diagram. Wires connect the 

control and indicator terminals to the function. Each wire signals the data source, and it can be 

wired to numerous functions and VI that can read data. Different wire patterns can be used based 

on the data source. It also provides a feature that shows broken wire line for the incompatibility 

between two objects and data types if incompatible wire pattern is used, i.e. two indicators 

together, array output to the numeric input (National Instruments, 2019). Furthermore, if selected 
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object has to be moved in the block diagram close towards the other objects, LabVIEW temporary 

connects it with the wire, and once we release the mouse cursor holding the object, it automatically 

connects object and the wire. It connects two terminals that are suitable for one another 

automatically, as well we can perform manual wiring based on the required arrangement of the 

interfaced objects (National Instruments, 2019). 

 
The LabVIEW provides built-in VI and functions that can be used to manipulate strings, format 

strings and edit the strings, which appears as a table, text entry box and labels. LabVIEW also 

represents numeric data as a fixed number, integer and complex number, complex numeric data 

with an orange colour and integer data in blue. Further, it also stores Boolean data as 8-bit values 

to represent binary code as a 0 or 1; TRUE or FALSE. The common application includes 

representation of the digital data and on the front panel control, which acts as a switch with the 

mechanical action that can be used to control execution. Usually, green coloured controls represent 

Boolean data. 

 
Another essential function is Array, that combines data points of the same data type into a one data 

structure and cluster combines data points of the multiple types into a single data structure. It can 

be built from numeric, Boolean, path, string and cluster data types. Usually, arrays are preferred 

to the collection of similar data points, and repetitive computation has to be performed. 

Additionally, it stores collected data from the generated data loops during the program coding, 

where each iteration of a program loop produces one element of the array. LabVIEW provides 

auto indexing by default for every array wired for Loop input terminal (National Instruments, 

2019). After auto-indexing, output array receives a new element from every iteration of the Loop. 
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Figure 2. 21 LabVIEW expanded functions 

 
 

Execution structures contain sections of the graphical code that provides control over the code 

functioning to run and stop the code. As mentioned earlier, most preferred execution structures are 

loops. When coding with the loops, data from previous structures have to be forwarded from 

previous iterations. Hence shift registers are used. Shift registers allow to pass values from the 

previous iteration through the loop to the next iteration. The terminal on the right side of the loop 

contains an up arrow and stores a data on the completion of an iteration of the front panel. The 

LabVIEW transfers the data associated with the right side of the register to the next iteration. After 

the loop executes, the terminal on the right side of the loop returns the last value stored in the shift 

register. Likewise, with the stacked shift register, we can access data from the previous loop 

iteration. Stacked shift register stores value from multiple iterations and carry these values to the 

next iteration. 

 
Another feature of the LabVIEW is error handling. Usually, LabVIEW handles and resolves error 

automatically by default settings when VI runs the program by suspending execution, as shown in 

the following figure. It also highlights the subVI or function where an error has error occurred, 

with the displaying the error, in the dialogue box. 
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Figure 2. 22 VI properties and features 
 

If right clicked on the error, it explains the error. Figure 2.23 shows the sample example of the 

Explain error feature. 
 
 

Figure 2. 23 LabVIEW error resolve feature 
 

Virtually all the controls and functions in the LabVIEW can be configured, allowing each project 

to be custom-made to specialized requirements. To generate the block diagram and configured 

system components based on the coding. 
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2.11.2 Previously followed LabVIEW based experimental applications 
 
 

Previously, there have been numerous applications developed by using LabVIEW graphical 

interface to develop control systems, monitoring systems and experimental analysis (Lin et al., 

2011; Mohamed et al., 2018; Samah et al., 2017). Lin et al. (2011) developed a measurement 

method based on the LabVIEW and mathematical interpolation, for the domain wavelength (for 

visible light spectrum) of the LED based on the microcomputer interface and photoelectric 

interface, to control stepping motor movement along with the monochromator to obtain magnitude 

of the voltage received with the help of the spectrometer. Mohamed et al. (2018) developed an 

Intelligent Lighting Control System (ILCS), for ergonomic setting and energy efficiency with NI 

LabVIEW to design Graphical User Interface (GUI) to perform control over light dimming and 

adjustment feature. 

 
Samah et al. (2017) performed analysis over efficiency and the suitability of an optical sensing 

mechanism for monitoring the water turbidity, with the LabVIEW based monitoring systems to 

evaluate the sample turbidity with the calibrated turbidimeter and photodetector configuration for 

different light wavelengths. The system was programmed to display the turbidity in NTU unit by 

using linear conversion between 0 to 9 volts and 0 to 1000 NTU. The program enables real-time 

measurement of water turbidity, which was displayed in the graphical user interface to indicate a 

continuous changing turbidity parameter. 
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2.12 Overview of Arduino and LabVIEW interface 
 
 

The NI LabVIEW toolkit allows interface LabVIEW with the Arduino microcontroller, to control 

or acquire data from the Arduino microcontroller. (National Instruments, 2019; Navvenkumar and 

Krishna, 2013). Once the data is obtained, LabVIEW analyzes it by using built-in libraries and 

developed algorithms to perform control over the Arduino hardware assembly and delivers results 

on a User Interface (UI). A sketch for the Arduino microcontroller acts as an I/O platform that 

interfaces with LabVIEW VI’s through a sequential linkage, allowing quick transfer of the 

information from Arduino pins (refer section 2.10.1) to LabVIEW program without the need of 

altering the communication, synchronization of the code. By using simple commands Open, Read, 

Write and, Close in the LabVIEW, to approach the digital and analog signals of the Arduino 

microcontroller. 

The Arduino and LabVIEW provide a creative interface, which interacts with the system through 

a graphical interface, allows experiment design process with perceptive graphical programming 

with improved debugging. Furthermore, open Application Programming Interface (API) provides 

customization of the experiment and automation based on the specific needs of the user. 
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2.12.1 Previously developed Arduino and LabVIEW interfaces. 
 
 

Hammoumi et al. (2019) developed a virtual instrument to monitor and trace the power-voltage 

(P-V) and current-voltage (I-V) characteristics of the photovoltaic (PV) panel based on the 

Arduino acquisition board and LabVIEW using LIFA interface. The current and voltage sensor 

detects the output current from the PV panel and measured data of the current, voltage and power 

was directly plotted on the monitoring platform developed by the LabVIEW. Jamaluddin et al. 

(2013) designed a real-time battery monitoring system (BMF) using the LabVIEW interface for 

the Arduino. The device was used for the sensing of battery voltage based on the current detection 

of the by the current sensor. The purpose of this experiment was to study moment and the kinetic 

energy by the inelastic and elastic collision between the two objects. 

 
Furthermore, Jena et al. (2015) developed computerized greenhouse data acquisition system using 

Arduino with the LabVIEW to measure soil moisture, light and carbon dioxide (CO2) for the 

simulation to obtain improved growth of the plants in the greenhouse. The monitoring system was 

established using calibrated sensors for detecting ambient temperature, humidity, CO2, soil 

moisture and light intensity inside the greenhouse. The sensors were configured to Arduino board 

for the acquisition of the data through analog and digital I/O (input and output) which was 

processed by GUI through the LabVIEW coding. The developed system allowed continuous 

monitoring of the greenhouse environ characteristics to facilitate maximum plant growth. The 

working principle of the Arduino and LabVIEW based set-up automation and control of the stepper 

motor for the mounted UV light sensor is explained in Chapter 3. 
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CHAPTER 3 

MATERIALS AND METHODOLOGY 

 
This chapter elaborates the information about the arrangement of the direct measurement setup 

and its components, the functioning of the components and the method followed to perform the 

analysis of the UV output from the lamp. Furthermore, this chapter contains the schematic diagram 

of the setup arrangement and the images illustrating the setup components. The idea of the setup 

arrangement was referred from the previously reported experimental studies by the numerous 

researchers; however, the setup was modified after confirming the research gaps in previously 

reported studies. Chapter 2 describes the comprehensive review of the refereed literature to design 

and develop the experimental setup to conduct the experimental analysis of the UV lamp output 

for this research. Moreover, the literature review allowed to identify the research gap to modify 

and advance the setup arrangement with the automation followed by Arduino LabVIEW interface. 

Furthermore, the setup was modified by the addition of an external Thermal IR camera to observe 

the non-uniform temperature profile along the length of the lamp. 

 
3.1 Overview of the experiment 

 
 

The experimental analysis of UV lamp output was performed by direct measurement techniques 

followed by the horizontal optical bench arrangement. The experiment was performed by 

measuring irradiance of new LP lamp at 254 nm using narrowband radiometer and photovoltaic 

sensor. The measurements were logged into a computer by the developed software using 

LabVIEW programming, interfaced with Arduino microcontroller to control the functioning of the 

setup through automation. The developed experimental setup and measurements of the UV lamp 

output was performed at Lakehead University, Thunder Bay, Canada. The experimental analysis 

was performed for an initial 5% lifetime of the LP lamp, i.e. initial 450 burn-in hours 

approximately for 2 months on a daily basis. The experimental analysis was performed along the 

axial length of the lamp in one radial direction, consistently for 450 hours of analysis. The 

measurement also includes initial output drop by the LP lamp, before the initial drop occurred, i.e. 

during the first 100 hours before the lamp reached to its stable output. 
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The observations were logged automatically into the computer by developed program, for every 

measurement run on an hourly basis for 450 operating hours. During experiment, log of ambient 

temperature and humidity was maintained. Moreover, along with the radiometry technique to 

observe UV lamp intensity measurement along the axial length of the lamp; a thermal analysis was 

performed for the lamp section at the electrode and at the central part to verify the non-uniform 

temperature profile of the lamp quartz sleeve. The fully functional setup was consisting of UV LP 

lamp, horizontal optical bench arrangement, UV sensor and research radiometer, LabVIEW based 

software for data logging, Arduino-LabVIEW interfaced program for automated setup control and 

thermal IR camera to record the thermal images of the lamp during the lamp operating hours. 

 
As mentioned earlier, in Chapter 1 (section 1.4), one of the objectives of this research was to 

develop experimental setup and test the functionality of the setup components, for anticipated 

research outcomes. Furthermore, the final goal of this research was to submit a fully developed 

and customized setup to Thunder Bay WPCP. In this research, the fully functional and automated 

direct measurement set up was developed and tested by using LP lamp. The findings of LP lamp 

output performance and variation in UV intensity has been reported in Chapter 4. 
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3.2 Experimental arrangement and working mechanism 
 
 

The experiment was performed with an optical bench horizontal arrangement. The orientation of 

the measurement setup must be horizontal, as mentioned by the International Ultraviolet 

Association (IUVA). The measurement was taken in the still room air and at room temperature ~ 

20 to 22°C. The setup was covered with the box painted with black heat resistant paint to avoid 

reflected light. The black box was an additional component to the setup, which was constructed to 

avoid direct exposure to the UV-C radiation of LP lamp. The LP lamp was mounted on the solid 

metal frame (aluminum rail) inside the black box. The aluminum rail, sensor adapter housing and 

IR camera were inside the black box during the experiment. The sensor was configured with the 

radiometer through sensor input slot on the radiometer (radiometer sensor input has shown in 

figure 3.13). The functioning of the radiometer was controlled with the LabVIEW based program 

(i.e. signal receiving on and off). 

 
The UV sensor was mounted on the 3-D printed adapter housing. The linear movement of the 

adapter housing along the axial length of the UV lamp was enabled with the stepper motor motion 

controlled by the signal input through the Arduino circuit board via computer supervised program. 

The sensor adapter housing was assembled with the linear encoder to tract the position of the 

sensor across the length of the lamp on the aluminum rail. The 3-D printed adapter housing was 

mounted on the aluminum rail profile for the smoother movement of the sensor on the rail the 

linear encoder was attached to the aluminum rail from rare side. The linear encoder and the sensor 

housing were mounted on the lead screw at the ball nut to allow backward and forward movement 

of the sensor housing and linear encoder, as a result of clockwise and counterclockwise rotation of 

the stepper motor. 

 
The movement of the sensor housing along with the linear encoder, was controlled with the stepper 

motor, configured with the Arduino LabVIEW interface. The setup and radiometer functions were 

controlled with the developed software using LabVIEW programming; however, UV lamp and 

radiometer were switched on and off manually. The details about the setup components are 

explained in the following section (section 3.3). 
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The following figure 3.1 illustrates the arrangement of the measurement setup. 
 
 
 

Figure 3. 1 Schematic diagram of the setup 
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3.3 Setup components 
 
 

The experimental setup for UV lamp output measurement was comprising of, a mechanical system 

component (i.e., rail, encoder and sensor housing, stepper motor), electric components (i.e., sensor, 

radiometer, and circuit board), software for collecting and data logging and thermal imaging 

camera. The figure 3.2, illustrates the overview of the experimental setup arrangement. 

In this section, the setup components are listed, and detailed information of the setup components 

has described. 
 
 

Figure 3. 2 Setup arrangement 
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3.3.1 UV lamp 
 
 

To perform the experiment, LP lamp was used model #GPH436T51/4 (4 pin). The lamp base was 

4 pins, single ended (B16). The lamp had preheated category for 2 electrodes (wires) with ~ 25 

watts lamp wattage and a monochromatic spectrum at 254 nm wavelength. The lamp sleeve was 

consisting of the fused quartz glass specifically designed for 254 nm wavelength transmission from 

the glass sleeve. The lamp life expectancy declared by the lamp manufacturer was ~ 9000 hours. 

The lamp was 436 mm long, and the distance between electrode 400 mm (from cathode to anode 

distance) and the diameter of the lamp sleeve was 15mm. Based on observation during the 5% 

lifetime of the lamp, it took ~20 to 30 min to get warm up and emit stable output. However, the 

lamp was turned on for 30 min before proceeding the experiment. The figure 3.3, illustrates the 

components of the UV lamp. 
 
 

 
Figure 3. 3 Components of the LP UV lamp 

 
 

The figure below illustrates the LP UV lamp after proper warm up. The image was clicked from a 

small window constructed at one side of the black box with UV absorbing glass. (The image has 

mirror reflection formed at the middle due to glass window). 
 
 

Figure 3. 4 Illumination of the UV lamp after preheating 
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3.3.2 Power feed, ballast and electric assembly 
 
 

The lamp was framed on the 3D printed support structure and was mounted on the vertical 

aluminum extrusion. The vertical extrusion was then attached to set up. However, it was fixed to 

the rare side of the horizontal aluminum extrusion, to provide rigid support to the elevated lamp 

arrangement. The arrangement of the UV lamp has shown in the following figure. 

 

Figure 3. 5 Power supply to UV lamp 
 
 

The lamp was operated at room temperature and with an electric feed of 120 volts at 55 Hz 

frequency, and the lamp was operated at 40 watts. The electric feed to the UV lamp was provided 

thought the three-pin plug electronic ballasts from HQUA company model # HQUA-OWS-455EB 

(HQUA- 4 ~ 55 watts) for 25 watts output. The electric supply to ballast was provided through 

surge protected power outlet. The lamp had supplementary electric wires, which were attached to 

the other end electrode (lamp end without the 4 pins). 

The purpose behind the providing electronic ballast was to regulate the electric input the UV lamp 

by preventing the UV lamps from drawing an excessive amount of electric current and ultimately 
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damaging internal components. The following figure 3.6 illustrates an electric ballast that was 

used to provide electric supply to the lamp. 
 
 

Figure 3. 6 Electronic ballast and power feed to UV lamp 

(image was taken when ballast was inactive to avoid any interference with the radio frequency) 
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3.3.3 Aluminum rail profile 
 
 

The experimental setup was built by using aluminum extrusion 20” x 80” dimensions, to provide 

rigid support to the structure. The following figure illustrates the arrangement by using aluminium 

extrusion. The image below has taken prior to build complete setup as few components are 

extremely delicate and could have damaged as consequence of the consistent disruption to external 

setup components. 
 
 

Figure 3. 7 Aluminium profile and assembled setup components 
 
 

The setup arrangement with the inclusion of aluminum extrusion enabled the enactment of the 

auxiliary setup components such as stepper motor, encoder and sensor mount. Furthermore, it 

enabled an elevated horizontal lamp arrangement by the addition of a vertical support structure 

from the rare side of the extrusion. The aluminum extrusion provided rigid structure, that was 

unwavering during the movement of the sensor mounted adapter, across the lamp through the 

gliding movement on the rail causing no disturbance to lamp or sensor. 
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The aluminum rail is a linear motion bearing allowing backward and forward motion of the sensor 

mounted adapter. The purpose of the rail is to guide, support, locate and accurately move the sensor 

mounted adapter along the aluminum extrusion of the setup. 

 
3.3.4 Stepper motor, lead screw and DC supply to compumotor 

 
 

As mentioned earlier in section 3.2, the linear motion of the sensor was regulated with the stepper 

motor from Parker company. The stepper motor was fixed to the aluminum extrusion horizontally 

by providing 3D printed support assembly at both ends of the stepper motor. The rear end of the 

stepper motor is also known as support bearing. The figure below illustrates the aluminum rail, 

stepper motor and power supply arrangement. 
 
 

Figure 3. 8 Steeper motor components and power feed 
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The stepper motor is an electromechanical device which transfigures the electric pulses applied to 

their excitation windings into precisely outlined mechanical shaft rotation. The shaft of the motor 

rotates with a fixed angle for each discrete pulse for linear or angular motion (Electrical 

Technology, 2019). The mechanical shaft rotation enabled the rotatory movement of the lead screw 

(i.e. clockwise and counterclockwise rotation). The UV sensor was mounted on the 3D printed 

adapter housing and was fixed next to the ball nut on the nut housing. The rotating mechanism of 

the stepper motor was controlled by the signal input from the Arduino circuit board through the 

LabVIEW and Arduino interfaced program. As input was provided through the computer program, 

the stepper motor performed the rotatory motion of the leadscrew, which performed linear 

movement of the 3D printed adapter housing, allowing adapter housing to glide on the aluminum 

rail along with the encoder attached to the adapter housing from the rare side. As 3D printed 

adaptor housing travels in the linear direction, the UV sensor continuously scans the UV lamp with 

a specified distance interval. 

 
In this experimental arrangement, the program was explicitly written to perform UV output 

measurement with 2000µm increments along the length of the lamp, i.e. 0 mm to 400mm or 0 µm 

40000µm. The program controlled, the rotatory motion of the stepper motor, consequently 

controlling the movement of the sensor mounted adapter across the axial length of the UV lamp. 

The program was designed to control the rotatory motion of the stepper motor to that can enable 

scanning of the UV lamp with 2000µm increment with a complete stop at each measurement point 

i.e., 0µm, 2000µm, 4000µm…. 38000µm, 40000µm etc. The program allowed, control over the 

linear motion of the sensor adapter through stepper motor with a specific stop point to forward 

linear motion towards 40000 µm location, i.e., electrode, by inputting desired scanning range 

across the length of the lamp by putting numeric input in the developed supervisory program. 

During each experiment the measurements had taken twice, the first measurement when sensor 

mounted adapter housing moves from one electrode of the lamp, i.e. 0 µm position towards the 

other electrode of the lamp, i.e. 40000µm position. After that the stepper motor halts and reverses 

the rotatory motion, i.e. it rotates contraclockwise to bring back the sensor mounted adapter 

housing at its initial position, i.e. at 0 µm. During this sensor mounted adapter housing, reverses 

the scanning mechanism by stopping at 2000µm intervals; but with decrementing length units as 

it reverses towards the 0µm position from the 40000µm. 
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During this second measurement is proceeded for the same position along the length of the lamp. 

The measurement sample 0, 2000, 4000, 6000…. 38000, 40000 (halt)38000…. 6000, 4000, 2000, 

0µm. The power supply to stepper motor and encoder was supplied through the compumotor from 

Parker company, which was connected to AC power supply as shown in following figure. 
 
 

Figure 3. 9 Compumotor and Arduino circuit board 



119  

3.3.5 UV sensor and location encoder 
 
 

The irradiance of LP lamp at 254 nm wavelength was measured with narrowband UV sensor from 

International Light Inc. detector model # SED 240. The UV sensor was mounted on the 3-D printed 

adapter housing, and further, it was fixed on the ball nut housing of the lead screw, to perform the 

linear motion of the sensor across the length of the lamp. The following figure illustrates the UV 

sensor arrangement and the assembly of the modules. 
 
 

Figure 3. 10 UV sensor configuration with the setup 
 
 

As mentioned in the preceding section (section 3.3.4), the linear motion of the sensor adapter 

housing was controlled with the stepper motor. The sensor adapter housing was fabricated and 

fixed on the aluminum rail to allow smooth gliding of the sensor along the axial direction of the 



120  

lamp during the experiment. All components were arranged and fixed on the aluminum extrusion 

to maintain rigid support to the setup configurations. The UV sensor was fabricated using a 

diffuser #7037, a filter NS 313 # 8543 and the UV detector SED 240 from the International Light 

Inc. The figure below illustrates the internal arrangement of the sensor components. 
 
 
 
 

Figure 3. 11 Internal components of the UV sensor 
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The UV sensor was fixed on the lead screw at the ball nut with the use of 3D printed adapter 

housing to hold and support the sensor, as shown in the following figure. 
 
 

 
Figure 3. 12 Sensor arrangement and motion mechanism 
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The following figure illustrates the radiometer configuration for sensor signal input. 
 
 
 

Figure 3. 13 Signal input to the radiometer 
 
 

The sensor was connected to the research radiometer IL1700 by fiber optic cable to transfer the 

small voltage detected by the detector SED 240 to the signal processing elements of the research 

radiometer. Further, the signal output was recorded and logged by the developed computer 

program. 



123  

3.3.6 Radiometer and signal measurement 
 
 

The UV intensity was measured with pre-calibrated research radiometer IL 1700 from 

International Light Inc. The following figure illustrates the front panel modules of research 

radiometer IL 1700 from International Light Inc. 
 
 
 

Figure 3. 14 Front panel of the radiometer 
 
 

The measurement of UV lamp intensity was performed across the axial length of the UV lamp at 

multiple measurement points. During the measurement when filtered UV light of 254 nm 

wavelength was irradiated on the detector part of the sensor, a small voltage was generated during 

the irradiation. Further, generated electric voltage was conveyed for amplification and processing 

to the radiometer, to obtain the UV intensity of the incident UV radiation. 
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The figure below illustrates the back-panel components of research radiometer IL 1700, for signal 

input, auxiliary output ports and PC configuration to record and store the data in the developed 

computer program. 
 
 

Figure 3. 15 Back panel of the radiometer IL 1700 
 
 

During the experiment, the sensor adapter housing was moved in the linear motion across the axial 

length of the lamp with the help of the stepper motor motion. The collaboration among the setup 

components was performed and controlled by the LabVIEW interfaced computer program. As 

illustrated in figure 3.13 in section 3.3.5, the detector signal output was transferred to radiometer 

through the fiber optic cable by the sensor input port at the back panel of the radiometer. Further, 

this signal gets amplified by the propriety current amplifier and converted with the help of 

precision I/F converter to be processed by the internal microprocessor. The reading (UV intensity) 

obtained by the radiometer was displayed on the radiometer display and was recorded in the 



125  

computer program for each measurement point. The UV lamp intensity measurement was 

accomplished at multiple measurement points with the provision of the specific increment in a 

distance when sensor adapter housing was allowed to move forward 0 µm towards 40000µm (from 

left/ initial location to the right), and with specified decrement for movement from 40000µm 

towards 0 µm (from right to left/initial location). Each experiment was programmed to run, two 

measurements across the axial length of the lamp at multiple measurement points, the first 

measurement, when sensor adapter housing moves from 0µm location towards the 40000µm 

location and second measurement when sensor adapter housing moves from 40000µm towards 

0µm location. The program was designed in such a way that, the sensor will be allowed to move 

with specified increment and then it was allowed to halt at measurement position for ~1 to 2 

seconds to detect the UV intensity and, then sensor was allowed to move towards next 

measurement point. The same mechanism was followed for both the measurements i.e. 

measurement # 1, linear movement from left electrode to right electrode (with increment units) 

and measurement # 2, right electrode to left electrode (with decrement units). 

The implementation of the twice the measurement (per experiment) for both linear directions (i.e. 

backward and forward) verified the UV output twice at every measurement point and confirmed 

accuracy of the obtained readings of the UV intensity at corresponding measurement point. 

The signal i observed from by the radiometer is the integral of the product of the instrument 

responsivity S (λ) and the irradiance distribution of the light source E(λ). 
 

2 = ∫~ 

 

E(λ) ∙ S(λ)d λ Equation 2. 14 
 
 

i- signal observed by detector (W) 

E(λ) - irradiance distribution of UV light source (W/cm2 , mW/cm2) 

S(λ) – instrument responsivity (Area/W) 

In this experiment λ is 254 nm 

 
The instrument responsivity is a function of the responsivity of the detector as well as the 

transmittance of the diffuser and the optical filter. 
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3.3.7 Arduino circuit board and configuration with setup modules 
 
 

The mechanical components of the UV lamp measurement setup (i.e. stepper motor, lead screw) 

were controlled with the use of the Arduino UNO circuit board to provide a signal to the configured 

setup modules, and LabVIEW interfaced computer program to input the command to be processed 

by the Arduino circuit board. The command was provided through the Arduino-LabVIEW 

interfaced program, was used to regulate the rotation of the mechanical shaft of the stepper motor, 

allowing linear movement of the UV sensor adapter housing which was fixed on the lead screw 

and mounted on the ball nut. The Arduino UNO circuit board was consisting of the 14 digital I/O 

pins to allow signal input and output using the pin mode, digitalwrite (), digitalread () functions, 

which works on the 5V supply at the opposite of the digital pins. 

 
The serial 0 (RX) was used to receive TTL serial data, and serial 1(TX) was used to transmit the 

serial data. These pins are connected to corresponding pins of the Atmega328 Microcontroller 

USB to TTL serial chip. Figure 3.17 illustrates the circuit board and pin assembly. 

The digital pin 2 and 3 are also known as external interrupts configured to trigger an interrupt a 

low value or change in the value. 

The digital pins 3,5,6,9,10,11 provide 8-bit PWM output, with analogwrite function. 

The digital pins 10,11,12,13 support the command communication using the Serial Peripheral 

Interface (SPI) library to perform two-way interaction between the setup modules. It is performed 

using the 4-types of the signal, 

pin 10 Slave Select (SS), 

pin 11 Master Out Slave In (MOSI), 

pin 12 Master In Slave Out (MISO), 

pin13 Serial Clock (SCK) 

Master is a microcontroller, which controls the peripheral devices. 

The pin 10 (SS) to enable and disable the devices, the pin 13 (SCK) to synchronize data 

transmission prepared by the microcontroller. The pin 11 (MOSI) to transfer the data/command 

to the peripheral devices (i.e. Stepper motor motion/ shaft rotation). 

The pin 12 (MISO) to sending data to the master (e.g. encoder/sensor position) 



127  

The following figure illustrates the basic structure of the Arduino circuit board. 
 

Figure 3. 16 Arduino circuit board modules 
 
 
 

The circuit board also has 6 analog input pins, labelled as A0 to A5, which utilize ADC (Analog 

Digital Converter). ADC is used to convert the analog signal into the digital signal, which can be 

comprehended by the non-analog device. This process allows the processor or digital device to 

measure the signal and use it for the required purpose. ADC converts the voltage into bits, that 

microprocessor can understand. The pin 5V and 3.3. V regulated the power provided through the 

compumotor. The USB plug port was connected to a computer. 

 
The Arduino circuit board microcontroller Atmega328 provides serial communication among the 

circuit modules. The data received back from the circuit modules to the circuit board was 

transmitted through the USB to Serial chip and USB to computer connection. The data received 
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from the circuit board to computer contained the information about the sensor adapter location, 

which was facilitated by the stepper motor motion and lead screw rotation, functioned by the input 

signal through the Arduino circuit board. The UV lamp intensity reading from radiometer was 

transferred directly to the computer input. The LabVIEW interface programmed allowed to log 

data, which included the information about the date, time, location of the sensor (input through 

Arduino circuit board) and UV intensity reading from the radiometer. The combined measurement 

data was recorded and logged in the textual file on the computer by the interfaced computer 

program. 
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The following figure illustrates the Arduino circuit board and I/O pin assembly. 

 
 
 
 

Figure 3. 17 Arduino circuit board and I/O pin assembly 
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3.3.8 Thermal imaging camera 
 
 

The experimental analysis also included observation of the non-uniform temperature profile of the 

UV lamp with the use of thermal imaging IR camera from FLIR Systems Inc. Model # FLIR ONE 

PRO iOS. The camera was compact, which allowed a suitable arrangement without interrupting 

the previous arrangement of the set-up. The camera model had revolutionary FLIR Vivid IRTM 

image processing technology, which had 3X speed than any another thermal camera from the FLIR 

and allowing measurement of the temperature up to 400°C (FLIR One Pro, 2019). 

 
The FLIR thermal imaging camera was configured with the Apple iPad to cover a wider area of 

the experiment and obtain complete thermal images of the UV lamp. The thermal image collection 

and processing was performed with the software platform named as FLIR ONE (for iOS devices). 

The thermal imaging camera was used to observe uneven temperature profile at two electrodes 

and a central part of the lamp. 

The figure below illustrates the FLIR IR thermal camera. 
 
 

Figure 3. 18 Thermal imaging camera from FLIR Systems Inc. 
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The following figure 3.19 illustrates the thermal image of UV lamp. 
 
 

 
Figure 3. 19 Sample thermal image and IR scale 
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3.3.9 Digital hygrometer and thermometer 
 
 

During the experiment, digital hygrometer and thermometer were used from company ThermoPro 

model # TP55. The purpose behind using the digital hygrometer and thermometer was to log the 

ambient air characteristics. The experiment was performed at room temperature ~ 20 to 22°C. 

During mid-winter to the late-winter season, the humidity was observed between 10 to 12 %, and 

by the early spring, the humidity was ~15%. The primary purpose of keeping a record of the room 

temperature and humidity was to assure there is stable room conditions during the experimental 

phases. The following figure illustrates the arrangement of the digital hygrometer and 

thermometer. 
 
 
 

Figure 3. 20 Arrangement of the digital hygrometer and thermometer 
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3.4 Automated control of setup components 
 
 

The experiment was performed using Arduino-LabVIEW interfaced computer program, which 

allowed control over the setup components by inputting the command. Figure 3.21 illustrates the 

front panel of the developed computer program, which allowed control over radiometer signal 

input, sensor movement and distance interval and digital readout for sensor location and UV 

intensity. 
 
 

Figure 3. 21 Computer program to control setup components 
 

At the beginning of the experiment, the command was given to generate the written file to log the 

data from the experimental command selector. The command named as the run was used to 

generate this written file on a computer. 
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Figure 3.22 illustrates the experimental command inputs to run, stop and pause the experiment. 

As shown in figure 3.22, the different commands that can be given through the program to 

perform the experiment. 
 
 

Figure 3. 22 Experimental commands 
 
 

The program was designed to conduct multiple measurements by the sensor at predefined 

locations. During the experiment, the sensor was stopped at specified distance interval, i.e. after 

each 2000µm or 200mm or 2cm, to obtain the UV lamp intensity reading. During each experiment, 

the measurement was performed twice at 20 different points (x2) with constant distance increment, 

when the sensor was commanded to move right from 0µm location to the 40000µm. Then the 

second measurement was performed when the sensor was reverted with equal decrements towards 

left from the 40000µm point towards 0µm position. The designed program allowed constant 

increment and decrement based measurement of the UV lamp at every 2000µm or 2cm location 

precisely to obtain the reading while the sensor is motionless during at each measurement position 

across the length of the lamp the exact location of the sensor and the distance travelled by the 

sensor was tracked by the linear position encoder. The developed program was also provided with 

the manual control feature. 
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3.5 Data collection and logging 
 
 

The developed program was designed to record and log the data in the written file, which was 

generated after the selection of the run command, as shown in figure 3.22. The generated file 

records the data for each measurement session, including the date, real-time, location of the sensor 

across the length of the lamp and UV intensity (through the radiometer input) for that point. 

The program was designed to log the data, while the experiment is getting performed, which 

avoided flooding of unnecessary data. The experiment was performed every hour, for 20 

measurement points (each point was measured twice) which included 39 measurements per one 

hour. The 20th point at 40000µm or 40cm position was measured only once. 

 
To begin the experimentation, the run command was provided in the LabVIEW interface program, 

and after the generation of the log file, data was collected by commanding the setup to move the 

sensor with input distances. However, prior to every experiment UV lamp was turned on for at 

least 20 to 30 minutes and UV output data was collected during UV lamp warmup time to observe 

the lamp output stability and its variation for every operating cycle for 450 hours lifetime. The 

experimentation was implemented for ~10 to11 times a day on an hourly basis. 

Each experiment took ~ 10 minutes to perform two measurements. At the end of the 

experimentation (at the end of the operating cycle), stop command was provided to the program 

to stop the data logging, radiometer signal receiving and, the experiment (for experimental 

command refer to figure 3.21 and 3.22). 

The following figure illustrates a sample textual log, generated by the computer program. 
 
 

 
Figure 3. 23 Sample textual data log format (measurement #1sensor movement left to right) 
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3.6 Method and procedure sequence 
 
 

In this section, the experimental method and collaboration sequence of the setup components has 

described. To measure the irradiance, the LP lamp was mounted horizontally with the support 

structure and covered with the black box enclosure during the experimentation, and the lamp 

support structure was fixed on the aluminum profile as shown in figure 3.2. 

 
The lamp arrangement was motionless during the entire phase of experimentation and UV lamp 

was neither moved nor rotated during the experimental analysis (450 hours) to avoid disturbance 

to the inert gas and mercury fill inside the lamp sleeve. At the beginning of the experimentation, 

the UV lamp was turned on for ~20 to 30 minutes for the warm-up. During the warm-up phase, 

the UV intensity of lamp was measured by the sensor at a fixed location (at 0.00 cm) to observe 

the time taken by the UV lamp to emit stable output as well as to verify the stability range of the 

UV lamp during the 450 hours. After confirming the stable UV output, the experiment was 

performed with 2 scanning measurements with specified distance input in the computer program. 

Approximately 10 to 11 experiments were performed daily. The UV lamp performance was 

evaluated by measuring UV lamp intensity along the axial direction of the lamp with a fabricated 

UV sensor and narrowband radiometer. The sensor was fixed on the custom-made adapter housing 

and was mounted on the steeper motor-controlled leadscrew, which was controlled by the Arduino- 

LabVIEW interface computer program. 

 
The setup components were collaborated with one another through two-way I/O signal 

communication using Arduino circuit board, to monitor and control the mechanical movement of 

the stepper motor, lead screw and, sensor adapter housing. The LabVIEW interface program 

allowed to regulate the setup functions, UV intensity measurements and data logging in a textual 

file based on the I/O signal interaction between the corresponding the devices. The detail about 

setup component and working mechanism in explained in preceding sections (section 3.2, 3.3, 3.4 

and 3.5). 
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3.7 Result interpretation 
 
 

The experiment was designed to acquire the data during each measurement and log into a textual 

file through a LabVIEW interfaced computer program. During each lamp operating cycle of LP 

UV lamp, the UV output data was collected, sorted and graphically arranged to observe the UV 

intensity of lamp for specified measurement point (i.e. 0, 2000, 4000…µm). The data was 

represented using a graphical arrangement of UV lamp intensity in terms of UV output at the 

multiple measurement points along the length of the lamp. 
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NOTES 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

This chapter elaborates the research findings of UV lamp performance during the preliminary 5% 

lifetime of the LP UV lamp. The experimental analysis was performed with the developed direct 

measurement setup for evaluating the variation in the UV intensity of the lamp during preliminary 

450 hours. The detail about the direct measurement setup is described in chapter 3. This chapter 

includes a graphical representation of experimental results and, explanations framed based on the 

research findings. 

 
4.1 Overview of the experimental results 

 
 

The LP UV lamp used for the experimental analysis was new, hence part of observations also 

includes the findings during initial 100 hours burn-in time, i.e., experimental analysis has reported, 

UV lamp performance when LP lamp researched to maximum UV output phase and then, 

decreased to steady state output phase indicating LP lamp has passed through an optimum into an 

overheated condition. This initial dropped during approximately first 100-120 hours. The findings 

related to preliminary UV output drop, after a slightly overheated lamp condition allowed to 

generate a UV irradiance curve as a function of the time across the length of the lamp. After the 

preliminary UV output drop, LP lamp started to emit stable UV intensity across the length of the 

lamp for a short time, and after that lamp experienced uneven UV output across the length of the 

lamp. 

 
The preliminary output drop occurred during week 3 between 102 to 109 operating hours. 

The experimental observations noticed non-uniform UV output pattern across the length of the 

lamp and spotted multiple peaks and drop along the lamp length. For each operating cycle (i.e., 

for ~10-12 hours daily), collected measurement data was analyzed and plotted to identify the UV 

lamp ageing profile. The measurement data was collected through a LabVIEW interfaced 

computer program, and data was comprised of real-time monitoring of the UV lamp intensity at 

the specified positions across the lamp length. As previously mentioned in section 3.6, the 

experimentation included ~10 to 12 experiments for every lamp operating cycle (10 to12 hours 
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experiment run), with 2 measurements for each run. However, the result for each experimental 

run (i.e., hourly collected data) was generated through the averaging of the 2 measurements taken 

for each specified measurement point (total 20 points) during each run. At the end of each 

experimentation (i.e., after one lamp operating cycle), the results of every experimental run were 

generated through an averaging of the two measurements to diminish the error. The averaging 

method was selected to obtained more precise signal input and diminish the measurement error 

(National Instruments, 2006). For every lamp operating cycle, approximately 10 experimental runs 

were performed and at the end of every lamp operating cycle, concluding results were generated 

by the averaging of ~10 to 12 experimental runs, performed under corresponding lamp operating 

cycle. After every lamp operating cycle, the lamp was turned off for the next 10 hours, and the 

next experimentation was performed for followed by the same routine. The experimentation 

included 45 lamp operating cycles. 

 
The experimental analysis was consisting of the observations of the UV lamp performance for 

every lamp operating cycle, which includes observations of UV lamp stability for warm-up phase 

after UV lamp was ignited (~20 to 30 minutes) and, UV output measurement for each operating 

cycle during stable output phase (~10 hours). During all phases of the experimentation, the ambient 

air temperate near setup was maintained ~21 to 22°C, in a still room. The experimental analysis 

also includes the detection of the non-uniform temperature profile at the lamp electrode and central 

part, observed by the thermal imaging camera. Furthermore, results were combined and 

represented by a UV output curve as a function of time. The final results were prepared by the 

unification of the experimental data of 45 lamp operating cycles to identify the change that 

occurred in the lamp output based on a weekly timeframe. 
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4.2 Visual observations of UV lamp ageing 
 
 

UV lamps degrade with as they age, resulting in reduced and non-uniform UV output. As 

previously mentioned previously (section 1.1.3 and 2.7), the lamp ageing phenomenon depends on 

various parameters such as lamp operating cycles, electric feed system, ambient conditions and 

purpose of the application and can vary from one lamp to another (Heath et al., 2013; Lankhorst 

and Nilemann, 2000; Sigel 1995). However, in various studies the visual ageing signs of the lamp 

has been reported; such as darkening near the lamp electrode, fouling of the quartz sleeve, resonant 

darkening and discoloration of the lamp sleeve (AwwaRF and NYSERDA, 2007; Schmalwieser 

et al., 2014). The experimental analysis was performed for 450 burn-in hours for LP UV lamp to 

evaluate UV output and change occurred in irradiance output over time. During experimental 

analysis, visible ageing signs were noticed on the lamp sleeve especially darkening of the sleeve 

near the electrode, discoloration of the lamp sleeve, the random formation of the spot along the 

length of the lamp. 

 
4.2.1 Darkening of the lamp end 

 
 

Figure 4.1 illustrates the firsts visible ageing sign, that was identified during week 6 after 224 burn- 

in hours. The following figures illustrate the visual ageing signs, identified during the 

experimental analysis. 

 

Figure 4. 1 Darkening of the lamp sleeve (occurred after 224 burn-in hours) 
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Initially, the appearance of the darker area at the end of the electrode was indistinguishable, 

however as the experiment was continued further, the darkening at the lamp end became denser as 

displayed in figure 4.2 and figure 4.3. 
 
 
 
 

Figure 4. 2 Darkening of the lamp end after 328 hours 
 

Figure 4.2 illustrates the darkening of the lamp edge became denser after 328 burn-in hours 

during week 8 though the lamp was functioned for the same operating conditions and schedule. 

Furthermore, by the end of the planned experimental schedule, i.e. after 450 burn-in hours, the 

darkening at the lamp end was much more blacken, than it was observed initially after 224 burn- 

in hours. 
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Figure 4.3 illustrates the darkening of the quartz envelope at the end of the lamp after 450 burn- 

in hours during week 10. The darkening at the lamp end can be caused by the sputtering of the 

lamp electrode material during the lamp start-up and operating span (AwwaRF and NYSERDA, 

2007; USEPA 2006). 
 
 

Figure 4. 3 Darkening of the lamp edge after 450 burn-in hours 
 
 

Figure 4.4 displays the lamp end prior to the experimentation. This figure can be compared with 

the previous figures 4.1, 4.2 and 4.3 to justify the darkening of the lamp end as it has aged. The 

lamp electrode in figure 4.4 had uniform blackish colour without any glazing, which could not 

remain uniform and can be noticed in figure 4.3. After consistent lamp operation, it turned into a 

glossy blackish shade; this phenomenon is also known as electrode sputtering, which is caused due 

to excessive heating of the electrode. The overheating of the electrode results into deposition of 

the electrode material on the lamp sleeve from inside, and as the lamp ages, it becomes denser, 

and consequently, it triggers resonant darkening due to convection effects and deflection of the 

plasma. 

In other similar studies by AwwaRF and NYSERDA (2007), the formation of the resonant 

darkening and distortion in the form of sinusoidal shape was reported for MP lamps. 
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Figure 4. 4 Lamp electrode prior to begin experimentation 



146  

4.2.2 Discoloration and sleeve fouling of the lamp sleeve 
 
 

The experimental analysis was performed for 450 hours and, during the experimentation, 

discolouration of the lamp sleeve was observed along the length of the lamp and, around lamps 

circumference. The discoloration along the length of the lamp was randomly formed and was grey. 

Initially, the sleeve fouling along the length of the lamp was indistinct; however, as lamp aged, it 

became more noticeable. Following figure 4.5 illustrates the clear lamp sleeve prior to the 

beginning of the experimentation. 
 
 

Figure 4. 5 Lamp sleeve prior to begin experimentation 
 
 

The discoloration along the length of the lamp is a consequence of the convention effect and the 

deflection plasma due to the electromagnetic field. The non-uniform plasma distribution leads to 

uneven UV irradiance along the length of the lamp and variation in the temperature profile of the 

quartz sleeve. Figure 4.6 displays, the fouled sleeved after 289 burn-in hours during week 6. 

Initially fouled sleeve was indistinguishable; however, as experimentation was carried further, 

sleeve fouling was more visible though the lamp was operated under same ambient conditions. 

 

Figure 4. 6 Quartz sleeve fouling after 289 burn-in hours 



147  

The following figure 4.7 displays fouled quartz sleeve on the other end side of the lamp (two 

images were taken to provide a close view of the lamp sleeve, which could not be possibly shown 

in a single image). 

 

Figure 4. 7 Quartz sleeve fouling on other end of the lamp after 298 burn-in hours 
 
 

The figure 4.8 and 4.9 displays the prevalent sleeve fouling after 419 hours during week 9 of the 

experimentation. 
 
 

Figure 4. 8 Quartz sleeve fouling after 419 burn-in hours 
 
 

The sleeve fouling and discoloration of quartz sleeve become predominant during week 9 and 

week 10. The reason behind the discoloration can be consistent operating of the UV lamp and 
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several scheduled operating cycles during the entire phase of the experimentation, which could 

have triggered the sleeve fouling. 

Figure 4.9 displays the predominant sleeve fouling at another end of the UV lamp (right-sided 

electrode). The image was taken after 419 lamps burn-in hours. The difference can be perceived 

by comparing figure 4.7 (earlier image after 289 burn-in hours) and figure 4.5 (image prior to the 

beginning of the experiment). 
 
 

Figure 4. 9 Quartz sleeve fouling on other side of the lamp after 419 hours 
 
 

Furthermore, the ambient air can be responsible for the quartz sleeve fouling. The surrounding air 

temperature has a direct influence on the UV lamp s it affects the surface temperature of the quartz 

sleeve, and it determines the stability of the inside mercury vapour. If the surrounding temperature 

is cooler than the temperature inside the quartz sleeve, mercury condenses on the quartz sleeve 

from inside, and process of reabsorption of mercury plasma radiation inside the quartz tube affects 

the wall temperature and eventually affecting the quartz sleeve characteristics (Franke et al., 2006; 

Schöpp and Steffen, 2017). 

 
Figure 4.10 illustrates the temperature profile, for the temperature inside the quartz sleeve and at 

the surface of the quartz sleeve (image taken by FLIR thermal imaging camera). Figure 4.10 

justifies the temperature difference between the quartz sleeve surface and the inside of the sleeve. 

The inside sleeve temperature was ~63°C, while surface temperate of the quartz sleeve was 

relatively cooler than the inside of the sleeve. 
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Figure 4. 10 Temperature profile inside and at a surface of the quartz sleeve 
 
 

The inside temperature of the quartz sleeve ~ 60-70°C depending upon the hours of lamp operation 

under the corresponding lamp operating cycle (between ~1 to 10hours). 
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Figure 4.11 displays the temperature profile at the central part of the quartz sleeve after the lamp 

was warmed up. The ambient air temperature during the experiment was ~21 to 22°C; however, 

the temperature inside the black box (used to cover the set-up) was ~29 to 31 °C. 
 
 
 
 

Figure 4. 11 Temperature profile at central part of the lamp 
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4.2.3 Solarization of the quartz sleeve material 
 
 

Another visual ageing sign of the lamp was observed on the quartz sleeve due to the solarization 

of the lamp sleeve material in relation to the photochemical effect. It is very much similar to the 

sleeve fouling; however, it occurs as a result of the accumulation of the sputtered oxides of the 

electrode material on the lamp sleeve due to overheating of the electrode. Furthermore, in mercury 

pressure lamps the mercury can combine with the other constitutes present in the quartz sleeve, 

which results into the formation of the thin and non-uniform UV absorbing layer inside the quartz 

sleeve (USEPA, 2006). This effect leads to premature ageing of the quartz sleeve and results into 

decreased UV output due to affected UVT. Figure 4.8 in the previous section displays the 

formation of the thin layer inside the UV lamp sleeve. During experimentation, the formation of 

the spots on the quartz sleeve from inside was observed. The spots were formed near the mercury 

droplets and could be accountable photochemical degradation of the quartz sleeve material. 

Differential temperature zones inside the lamp sleeve and at the sleeve surface has shown in earlier 

figure (figure 4.10). The following figure displays the formation of the unusual spots at the central 

part of the lamp. 
 
 

Figure 4. 12 Formation of the spots on lamp sleeve 
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4.2.4 Resonant darkening effect 
 
 

The resonant darkening and distortion are driven by an effect of electric feed form the electronic 

ballast (AwwaRF and NYSERDA 2007). The resonant darkening of LP lamp used for the 

experimentation was characterized by the formation of the evenly spaced darken areas at the 

electrode from both the ends with the alternate region of peaks and lows. The resonant darkening 

gets particular shape by the formation of the standing waves within the plasma due to the variable 

operating frequency of the lamp ballast (AwwaRF and NYSERDA, 2007). The prolonged 

operation (~ after 6000 hours) of the UV lamp, leads to an intense resonant darkening and 

distortion of the lamp sleeve, it was narrated in the detail report by AwwaRF and NYSERDA 

(2007) for MP lamp. The following figure illustrates the formation of the preliminary alternate 

resonant darkening at the lamp electrode after 419 burn-in hours. 
 
 

Figure 4. 13 Preliminary resonant darkening after 419 burn-in hours 
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4.3 UV lamp output stability test and results 
 
 

The experimentation was performed for the initial 5% life span, i.e. 450 burn-in hours for the new 

LP UV lamp. The experimental analysis included the measurement of the UV lamp output for 254 

nm irradiance along the length of the lamp with fully optimized direct UV measurement setup. 

The data collected, to study the UV lamp output comprised of the UV output stability during the 

warm-up phase for the corresponding lamp operating cycle (~10 hours). The UV output stability 

test was performed at one lamp electrode, i.e. opposite to the electrode feed pins. The following 

figure illustrates the setup arrangement and sensor position for the UV output stability test. 
 
 

Figure 4. 14 Lamp UV output stability test arrangement at position 0.00 
 
 
 

The stability test was performed for each operating cycle of the UV lamp prior to begin with the 

experimental run on an hourly basis, to observe any unexpected behaviour in lamp stability (i.e. 

for every lamp ignition ~ 45 tests). However, in this report, only one-line graph per week has been 

represented; especially the data collected at the beginning of the week and at the end of the week 

has been plotted for comparison (for stability test). The stability test was performed for the ~20 

to 30 min at 0.00 cm position at the electrode. The UV output obtained during this test was plotted 

as a function of the time. 
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Figure 4.15 illustrates the UV output stability curve for position 0.00 cm, the UV irradiance for 

position 0.00 cm has plotted as a function of time. The data was collected during the lamp warm- 

up phase after every ignition at corresponding operating cycle. Following figure 4.15 was plotted 

at the beginning of every week when the lamp was stabilized after the ignition, to notify the change 

during weekly operation of the lamp 
 
 

Figure 4. 15 UV output peak and stability at the beginning of every week 
 
 
 

Initially when LP lamp was new, the UV output at position 0.00 cm was extremely high, when 

compared to the UV output at later stages as see in figure 4.15. During week 1, week 2 and week 

3, the lamp output was extremely high and was able to stabilize at the higher output when compared 

to the later experimental stages during lamp operation. However, after week 3, the UV output 

consistently decreased for position 0.00 cm. Furthermore, in earlier figures 4.1, 4.2 and 4.3 the 

darkening near the lamp electrode has reported, which can be a considerable reason for reduced 

output at position 0.00 cm due to an obstruction to UVT. 
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The appearance of the electrode darkening was first noticed during week 4 of the lamp operation, 

which became more denser during week 7, as can be seen in figure 4.2. After week 7, the lamp 

output at position 0.00 cm was decreased by 70% based on the output obtained when the lamp was 

new, and output obtained after week7. As can be seen in figure 4.15, after the lamp ignition, the 

UV output reached its peak, and after that, it consistently decreased towards a stable output range. 

Initially, the peak value of the lamp output at position 0.00 was extremely high during week 1 and 

week 2. However, as the lamp was operated further, the peak output value decreased, so does the 

value at which lamp was able to stabilize. As mentioned previously, the reason behind this drastic 

decrease in output is the non-uniform ageing phenomenon of the lamp which can be confirmed 

based on the following figure, in which darkening of the lamp electrodes can be spotted, which is 

prevalent than any other section of the lamp sleeve. 
 
 

 
Figure 4. 16 Lamp end darkening 
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The following table demonstrates the weekly variable lamp output and corresponding peak and 

stability range at position 0 (0.00 cm). 

 
Table 4. 1 Weekly peak and stable output at the beginning of the week for position 0.00 cm 

 
Week Burn-in hours at 

the time of curve 

plot 

Peak irradiance at 

254 nm 

mW/cm2 

Stable output 

at 254 nm 

mW/cm2 

Week 1 ~5 153 127 

Week 2 19 153 126 

Week 3 64 145 130 

Week 4 109 122 104 

Week 5 154 97 89 

Week 6 200 63 47 

Week 7 269 46 37 

Week 8 328 51 38 

Week 9 370 45 37 

Week 10 419 42 33 
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The graph shown in figure 4.17 was plotted at the end of every week to observe weekly variation 

at scheduled intervals to notify a change in the output stability of the UV LP lamp at fixed position 

0 (0.00 cm). 
 
 

 

Figure 4. 17 UV output stability test during lamp warm up phase after lamp ignition 
 

During week 1 and week 2, when the lamp had less than 50 burn-in hours lamp performed 

exceptionally well, with peak UV irradiance up to 150 mW/cm2. The output was outstanding with 

less fluctuating UV stability and stable output after reaching the maximum UV output during the 

warm-up phase at the corresponding lamp operating cycle  (refer  figure  4.19  and  4.20).  

During week 3 (i.e. after 109 burn-in hours) the output of UV lamp decreased, compared to the 

previous week’s output. Also, the peak irradiance, which preliminary was able to reach to 150 

mW/cm2 decreased to 129 mW/cm2 and was able to reach stability at 100 mW/cm2 irradiance. 
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After week 3, the UV output at position 0.00 cm consistently dropped as can been seen the figure 

4.17. After week 5 (i.e., during 224 burn-in hours) extreme drop in UV irradiance at position 0.00 

cm can be seen as a result of the darkening at the electrode on the lamp sleeve as shown in figure 

4.1. Furthermore, the drop in UV irradiance at position 0.00 cm continued, and afterwards when 

the lamp was operated for 328 hours the darkening at the electrode become predominant; 

consequently, it affected UVT at 0.00 cm location when compared to the other location across the 

length of the lamp. Figure 4.2 displays the denser darken layer at position 0.00 cm as the influence 

of non-uniform lamp ageing. By the end of 328 burn-in hours, the lamp UV lamp stability for 

position 0.00 was 50 mW/cm2 with peak intensity at 65 mW/cm2 during the warm-up phase. 

 
The consistent decrease in the UV intensity continued, and by the end of the scheduled 

experimental phase (i.e. at 450 hours) the peak UV output during warm-up phase was 40 mW/cm2 

and after the warm-up phase lamp was able to stable output at 40 mW/cm2. The reason behind this 

extreme drop in UV output at 0.00 cm position is the darken lamp area at the electrode which had 

affected the UV transmittance of the quartz sleeve. The darkening of the quartz sleeve near 

electrode has shown in the following figure 4.18 
 
 

Figure 4. 18 Darken area around the lamp electrode during week 9 
 
 

Furthermore, initially the lamp was able to stabilize with almost null fluctuations in the output; 

however, as the lamp aged and darkening appeared at the end of the lamp near electrodes, the UV 

output has shown slight fluctuations, which can be perceived from figure 4.15, line graph for week 

7, week 8, week 9, and week 10. 
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The following table summarises the UV lamp output during the stability test for peak intensity 

after lamp ignition (for corresponding lamp operating cycle) and the UV output value at which 

lamp irradiance was stabilized. 

 
 

Table 4. 2 Weekly peak and stable output at the end of the week for position 0.00 cm 
 
 

Week Burn-in hours at 

the time curve 

plot 

Peak irradiance 

at 254 nm 

mW/cm2 

Stable output 

at 254 nm 

mW/cm2 

Week 1 19 153 127 

Week 2 64 153 126 

Week 3 109 129 106 

Week 4 154 98 89 

Week 5 200 95 89 

Week 6 269 56 43 

Week 7 328 55 40 

Week 8 370 60 42 

Week 9 419 42 35 

Week 10 450 42 33 
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4.4 UV lamp irradiance at 254 nm along the length of the lamp 
 
 

Irradiance at 254 nm was measured along the length of the lamp by 2000 µm increment in one 

radial direction of the lamp. The purpose behind focusing only one radial direction during the 

entire experimental phase was to keep lamp components undisturbed as disturbance could have 

affected filled mercury and inert gas. The experiment was initiated, after the UV lamp output was 

stabilized, which was verified through computer program generated textual file as well as through 

the radiometer readout, as shown in figure 3.13 in the previous chapter. The procedure and 

sequences of the steps followed for this experimental analysis has described in section 3.6. This 

section elaborates the changes occurred in the UV output every week. Furthermore, it contents the 

particular measurements results at when the visible ageing sign of the UV lamp was observed, i.e. 

spots and scaling on the lamp sleeve. 
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4.4.1 UV output of new lamp 
 
 

The figure 4.19 shows the spectral output of the new lamp at 254 nm. Initially, the UV output from 

the new LP lamp was extremely high, even more than the desired intensity, required to inactivate 

the microorganism. The optimum range of UV output is >0.1 W/cm2 or >100 µW/cm2. 
 
 

Figure 4. 19 UV output of the new lamp at 254 nm 
 

The LP lamp was new with ~5 burn hours, and the line graph shown in figure 4.19 was generated 

prior to 100 burn-in hours . Although the lamp was new with less than 100 burn-in hours, the lamp 

had a non-uniform output with unexpected peak and dune formation. The lamp output was 

increased rapidly from the low output at lamp ends at position 0 and 40, with peak output at 

position 16, 22, 26. 
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4.4.2 UV output variation during week 1 and 2 
 
 

As mentioned earlier (in section 4.1), the experimentation was performed daily, and results were 

prepared based on the averaging method. Figure 4.20 illustrates the UV output at 254nm along the 

length of the lamp during week 1 and week 2. 
 
 

Figure 4. 20 UV output at 254nm along the length of the lamp during week 1 and 2 
 
 

As can be seen in figure 4.20, the lamp output during week 1 was almost stable, providing uniform 

output across the length of the lamp, with slight variation due to varying voltage and electric feed. 

During week 1of experimentation, the lamp was relatively new (~ 5 hours) the graph data shows 

the average of ~19 hours (+ warm-up time). During week 1, slight output peak formation at 

position 16 and 28 was observed output dune or drop at position 2 was consistent. The lamp was 

40 cm long; however, position 36, 38 and, 40 were partially covered by the support structure and 

electric feed (refer figure 3.3 and 3.5 for setup arrangement). The UV output at electrode dropped 

by 3% while, at the central part of the lamp UV output dropped by 13% when compared among 

the week 1 and week 2 data. 
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Later, during week 2, the UV output was dropped, which can be verified by the week 2 line graph 

from figure 4.20. During week 2, the lamp was operated for 64 burn-in hours. As can be seen in 

figure 4.20, the drop formation at position 2 continued, furthermore the peak formation was shifted 

towards the position 20 from position 6, and from position 22 to position 24. This lamp behaviour 

can be accountable for the tendency of the non-uniform UV output as a consequence of variable 

interaction of the lamp operating parameters, i.e. in-constant voltage, speed of mercury activation 

and photochemical reaction between the mercury atoms and electrons). 
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4.4.3 UV output variation during week 3 and 4 
 
 

Figure 4.21 illustrates the LP lamp output during week 3 and week 4. As can be seen in figure 

4.21, the line graph of week 3 and week 4, shows a non-uniform output, although the 

experimentation was performed after the UV lamp was stabilized after the warm-up phase. The 

results obtained during week 3 and week 4 were unexpected. The graph plotted for the week 4 data 

shows the extreme drop at position 12, though the lamp was operated for the same operating 

conditions. 
 
 

Figure 4. 21 UV output at 254nm along the length of the lamp during week 3 and 4 
 

The week 3 graph (109 burn-in hours+ warm-up time) shows 25% reduction in the UV output and 

week 4 (154 burn-in hours + warm-up time) shows 32% reduction in UV output at position 0 near 

the electrode, when compared with the data obtained for the newer lamp (refer figure 4.20). 

Furthermore, during week 3, output drop was formed at position 28; however, during week 4, the 

output drop disappeared. There is no precise explanation available because the LP lamp was 

operated under the same conditions, and the thermal camera was implemented after the 4th week 
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of lamp operation. The extreme drop at position 12 in a line graph of week 4 appeared after 118 

burn-in hours, which held steady drop position during week 4 (for ~ 45 continual operating hours). 

The extreme drop at position 12 shows 36.36% reduced output when compared with the output 

than was measured in week 1 (5 burn-in hours) for position 12. The drop at position 12 was 

consistent, and its consistency was verified by examining the UV output measurements after 

118,127,136,145 and 154 burn-in hours. Moreover, the output drop that was confirmed at position 

28 during week 3 shows 8.74% increase during week 4 for the same position. 

The drop that can be seen at position 28 during week 3 of lamp operation remained consistent 

during the entire week, and it was confirmed by verifying the measurements after 73,82,91,100 

and, 109 burn-in hours. 
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4.4.4 UV output variation during week 5 and 6 and consistent drop at position 12 
 
 

Figure 4. 22 shows the variation in UV output of LP lamp during week 5 and week 6. As can be 

seen in the line graph for week 5, the output drop at position 12 was consistent for ~ 98 hours span, 

with the slightest increase in the UV output at position 12, i.e. by 11.1 % during week 6. However, 

it had 29.13 % decreased output, when compared with week 1 data. As previously observed, the 

output drop at position 12 was unmoving, and its consistency was verified again after 163,170 and 

177 burn-in hours during week 5. However, the drop at position 12 started to be disappeared after 

188 burn-in hours during week 5, with slightest peak formation after 200 burn-in hours, and after 

212 burn-in hours, the drop at position 12 was disappeared entirely, and formation of the peak was 

observed. 
 
 

Figure 4. 22 UV output at 254nm along the length of the lamp during week 5 and 6 
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But, if graph of week 5 and week 6 are compared, the drop at position 12, which was consistently 

observe before (i.e. during week 3, week 4 and week 5) has disappeared and has merged and upheld 

the rise in the output by 22.2 % , when compared with the previous week’s output (i.e., week 5). 

Though, the output at position 12 was still 15.38% less compared to week 1 output. Moreover, 

another output drop, which was spotted during week 3 and week 4 at position 28, has been 

disappeared during week 5 and week 6. However, its disappearance did not increase UV output 

significantly at position 28. 

 
The experimental analysis was able to notice a non-uniform output pattern along the length of the 

UV lamp, which disclosed a decrease in UV output for all position when compared with the data 

obtained during week 1. Another observation that can be seen in the above graph is a shift in the 

position of the output drop; the drop at position 12 disappeared with the formation of another 

output drop at position 10. Likewise, output drop at position 28 disappeared, with the formation 

of another drop position at 30. There is no justifiable answer to this phenomenon. However, this 

non-uniform output pattern can relate to the temperature gradient along the length of the lamp, as 

mentioned by the Schmalwieser et al. (2014). 

 
Figure 4. 23 displays the temperature profile for specific locations. Figure 4.23 shows a thermal 

image taken by a FLIR thermal imaging camera. In thermal image small colder spot was observed, 

which had a different temperature than the rest of the locations along with the lamp, and it can be 

accountable for the consistent drop at position 12. Furthermore, the thermal image confirms the 

partial part of the lamp had a non-uniform temperature profile. Moreover, the temperature profile 

along the length of the lamp became intensively uneven as the lamp was operated for further burn- 

in hours (after ~350 burn-in hours). 
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Figure 4. 23 Thermal image showing cold spot formation position 12 
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4.4.5 UV output variation during week 7 and 8 
 
 

Figure 4.24 shows the UV output of LP lamp during week 7 and week 8. The graph for week 7 

and week 8 has a significant resemblance. However, based on the comparison between UV output 

results of week 7 and week 8 with an earlier result (i.e., when lamp had considerably less burn-in 

hours), we can recognize decreased UV output as well as non-uniform output pattern along the 

length of the lamp. Earlier, during week 3, week 4 and, week 5, formation of the intense drop at 

position 12 was noticed, which has disappeared during week 6 experimental measurements, and 

as can be seen in the line graph of week 7 and week 8, the peak formed at the position 12 and 

position 28 remained continual throughout the week. Figure 4.26 confirms the disappearance of 

the cold spot at position 12 as output at position 12 was back to required output range, which was 

noticed during week 6. 
 
 

Figure 4. 24 UV output at 254 nm along the length of the lamp during week 7 and 8 
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Previously, in another study by Schmalwieser et al.(2014), it has mentioned that the UV output 

along the length of the lamp rapidly increase from the lamp ends and then reaching towards the 

maxima at 2 locations along the length of the lamp, and in between these two maxima lamp output 

has sharp drop; however it is appropriate for the lamps with amalgam spots. However, the LP 

lamp that was used for this experimental analysis has showed formation of the peak at position 12 

and 28, and lamp output held the peak output at these spots during week 6, week 7, and week 8; 

though there was a new drop formation in a line graph at position 14 and position 24. The lamp 

output along the length of the lamp did not have significant change; however, the lamp output was 

continually reducing. 

 
During week 7 and week 8, the UV output along the lamp length was significantly similar, 

however, if the results are compared with earlier measurement results, the non-uniform output 

pattern along the length of the lamp can be confirmed. During week 6, week 7 and, week 8 UV 

output at positions 16,18,20,22 and, 24 has not changed. In a line graph of week 7 and week 8, 

the drop in the UV output for positions 28,30,32 and, 34 can be seen, which can be a result of 

scaling formed on the lamp sleeve as previously mentioned in section 4.2.2 and as shown in figure 

4. 25. 
 
 
 
 

Figure 4. 25 Scaling of the lamp sleeve during week 7 
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Figure 4.26 displays the non-uniform temperature profile along the length of the lamp, clarifying 

the inconstant temperature at the affected areas along the length of the lamp. The inconstant 

temperature profile can be considered as another reason for the affected mercury ionization and 

generation of the photon energy, ultimately affecting the UV output. As can be noticed in the 

thermal image below, the temperature at the lamp area near 24 cm to 30 cm had a variable 

temperature; the lamp sleeve was ~25°C cooler than the inside lamp temperature. This variation 

in temperature profile can cause mercury condensation at lamp sleeve, which affects mercury 

ionization as well as the entire process of UV radiation generation (recapped from section 2.6.4.2 

and 4.2.2). 
 
 

Figure 4. 26 Thermal image showing inconstant temperature profile at lamp area 
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4.4.6 UV output for variation during week 9 and 10 
 
 

Figure 4.27 shows the UV lamp output along the length of the lamp during week 9 and week 10. 

As can be observed in the line graph for week 9 and week 10, the UV output of the lamp along its 

length, followed significantly similar output pattern, but with decreased output during week 10 

(450 hours + warm-up time) than the output, observed during week 9 (419 + warm up time). 
 
 

Figure 4. 27 UV output at 254 nm along the length of the lamp during week 9 and 10 
 

If , UV output results of the LP lamp during week 9 and week 10 are compared, with the UV output 

results obtained during the week 7 and week 8, the change in the output pattern can be identified. 

Earlier, during the week 7 and week 8 measurement, the UV output for position 8, 10 and, 12 was 

~12.73% higher than the output, that was observed during the week 9 and week 10. The non- 

uniform UV output, observed at position 8,10, and 12 can be an effect of the scaling spots formed 

on the lamp sleeve from the inside, as shown in figure 4.28. 
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Figure 4. 28 Scaling spots at position 8 and 12 after 370 burn-in hours 
 
 
 

Though the UV output was disturbed at the position as mentioned earlier, the UV output at position 

14,16,18,20,22 and, 24 was indistinctly uniform with a slight decrease by 1.8% at position 18, 20 

and, 22. Furthermore, for position 4 and 6, the UV output slightly increased (1.2%) than it was 

reported during the previous week’s measurements. The UV output at position 2,4, and, 6 was not 

changed drastically during week 3 to week 8; however, it had patterned decrease in output as lamp 

was consistently operated. The reason behind the non-uniform output pattern can be considered as 

an effect of uneven discoloration and lamp sleeve fouling due to mineral deposition from electrode 

sputtering; it can be observed in figure 4. 29. 
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Figure 4. 29 Uneven discoloration and sleeve fouling after 419 burn-in hours 
 
 

During week 7 and week 8, decrease in the UV output at position 28,30,32 and 34 was spotted, 

which was persistent during week 9 and week 8 as can be verified in the figure 4.27. During week 

7 and week 8 UV output for position 28,30,32 and, 34 was significantly equivalent, however during 

week 9 the UV output for a position as mentioned above decreased by ~ 4%) and by week 10 the 

UV output decreased by 10% (when compared to the week 7 and week 8). When results were 

compared to the UV output that was obtained during week 1, 25% reduction for week 9 and 28.9% 

reduction in the UV output for week 10 results for position 28,30,32 and 34 was observed. 

Figure 4.9 displays the scaling of the lamp sleeve at position 28,30,32 and, 34, which can trigger 

the non-uniform output by obstructing the transmittance of the UV radiation from the sleeve. 

However, the output measured during week 9 shows 70% decreases in UV output at position 0 

(near electrode) and 81.3 % reduced output at position 0 during week 10. This extreme drop in UV 

output is due to a darkening of the lamp sleeve at the electrode. The initial darkening signs 

appeared after 224 burn-in hours and became denser later. The persistent spread of the darken lamp 

sleeve near the electrode can be in figure 4.16 
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4.4.7 UV lamp output after 450th burn-in hour 
 
 

Figure 4.30, displays, two-line graphs of the UV lamp output along the length of the lamp after 5 

hours of operation and after 450 hours of operation. As can be seen in figure 4.30, the UV output 

of the LP lamp has considerably changed since the beginning of the experimentation. At the end 

of the planned experimental phase, i.e. after 450 burn-in hours, the analysis confirmed the last drop 

at position 0 (lamp electrode) due to premature lamp ageing. Furthermore, lamp ageing was 

confirmed with the persistent darkening of the sleeve near the electrode as can be seen in the figure 

4.16, which was affecting the UVT from the lamp sleeve, though the LP lamp was able to operate 

properly. The UV output at position 0 was dropped by 86.9% after 450 hours of operation due to 

darkening of the lamp sleeve near the electrode. 
 
 

Figure 4. 30 UV lamp output after 5 and 450 burn-in hours 
 

The UV output for position 2 and 4 was decreased by 18.9% at the end of the experimentation as 

a result of sleeve fouling and scaling patches formed on the sleeve, as shown in figure 4.29. 
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Likewise, the UV output at position 8,10 and 12 dropped by 22.66% due to the scaling spots 

appeared during week 9 after 419 burn-in hours. The UV output at position 14,16,18,20,22 and, 

24 were less affected and did not show any intense signs of the disturbance in the UV output. 

Although, the output at these locations was dropped by ~21.88%, and analysis did not show intense 

scaling and discolouration similar to the positions mentioned earlier. 

 
Furthermore, the experimental analysis confirmed a non-uniform UV output pattern for position 

26,28,30 and, 32 with a sudden drop at position 28 during week 3. However, it disappeared during 

week 4 but reappeared during week 9 and 10. The analysis noticed fouling of the lamp sleeve at 

position 26,28,30,32, and, 34 after 298 burn-in hours (figure 4.7), which became more visible by 

450 burn-in hours (figure 4.9) The UV output for position 26,28 and, 30 dropped by 30.8% when 

compared to the UV output measured when the lamp was new. Likewise, for position 32, the UV 

output dropped by 27%. For position 34, an unexpected result was observed because the UV output 

at position 34 increased by 4% than it was reported at the beginning of the experimental analysis 

(i.e. after 5 burn-in hours) thought the lamp was operated under the same condition throughout the 

entire experimental phase. 

 
Overall, UV output along the length the lamp was consistent when the lamp was new. However, 

as the lamp was operated consistently, the UV output along the length of the lamp has changed. 

The changes occurred in the UV output were a consequence of the non-uniform ageing pattern, 

the discoloration and scaling formed on the lamp sleeve (figure 4.28, figure 4.8, figure 4.9), 

affecting the UVT of the lamp sleeve and considerably affecting UV output detected by the UV 

sensor. Furthermore, another reason for non-uniform UV output along the length of the lamp is 

uneven temperature profiles giving rise to cold spots (figure 4.23), which affects the overall 

temperature profile of the lamp sleeve, due to different temperature gradient along the lamp sleeve 

(figure 4.26), mercury condenses on the lamp sleeve from inside, which triggers the imbalanced 

mercury atom and electron collision responsible for the generation of the UV light and eventually 

affecting the UV output. 
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4.5 Temperature profile of the lamp 
 
 

The non-uniform output of the UV lamp was observed with the direct measurement set-up, using 

radiometer-sensor configuration. Likewise, a non-uniform temperature profile along the length of 

the lamp was observed using a FLIR thermal imaging IR camera (figure 3.18). During 

experimental analysis, thermal images were collected at hourly basis to observe lamp temperature 

profile. During one lamp operating cycle, ~10 experimental runs were performed, and ~ 10 images 

were captured for every lamp operating cycle during the measurements. Figure 4.31 displays the 

temperature profile along the length of the lamp during one experimental run, at the time of the 

thermal image collection lamp had 370 to 381 operating hours. 
 
 

Figure 4. 31 Thermal image of the lamp during 370 to 381 operating hours 
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As can be seen in figure 4.30 at the beginning of the experiment lamp had a lower temperature; 

however, as the experiment was conducted further, the rise in temperature can be seen. 

During initial 0 to 4 hours of lamp operation, the lamp electrodes were at lower temperature ~ 

60°C to 70 °C, however as the experiment proceeded, we can observe, the lamp electrode showed 

a significant temperature rise to 90°C than the central part of the electrode. Especially the electrode 

on the left side (opposite to electric feed) always had a higher temperature than the rest of the lamp. 

The thermal images displayed in figure 4.31, were taken during the same experimental analysis 

while lamp had~370 burn-in hours. 

 
The electrode on the left side in figure 4.31, has shown significant sleeve darkening than any other 

area on quartz sleeve, it can be seen in figure 4.16. Mainly, the temperature at both the electrode 

was almost the same as can be seen in figure 4.32. However, the right-sided electrode was partially 

coved with the by the electric feed configuration and support structure. The image shown in figure 

4.32 was taken by a different angle to verify the temperature profile at both electrodes. The IR 

scale at the time of image click was fixed show temperature at 98°C. 
 
 

Figure 4. 32 Temperature profile at lamp electrodes (after 385 operating hours) 
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Furthermore, during 419 to 450 hours of lamp operation, the analysis reported temperature rise to 

~103°C for the quartz sleeve at the left electrode, while the middle part of the lamp had ~70° 

temperature. 

The reason behind temperature rise can be an outcome of heat absorption by the darken area near 

the electrode, which results in the overheating of the quartz sleeve near the electrode (refer figure 

4.19). Figure 4.33 displays the temperature profile of the amp after 450 hours of operation. 
 

 

Figure 4. 33 Temperature profile of the lamp after 450 operating hours between 8 to 14 cm 
 
 

The image clicked by the thermal camera confirms that, as the lamp was aged, the temperature at 

electrode was increasing, while the temperature at partial half part of the LP lamp remained 

unaffected and had uniform temperature profile as can be seen in the figure 4.34. 
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Figure 4. 34 Temperature profile of the lamp after 450 operating hours between 18 to 32 cm 

 
 

Moreover, analysis verified visual ageing sign of the lamp, i.e. darkening of the quartz sleeve near 

electrode than the central part of the quartz sleeve , the changes detected in the UV output through 

the direct measurement set-up, and an imbalanced temperature profile observed by thermal camera 

and image analysis confirmed the lamp’s non-uniform ageing profile, which predominates the area 

near lamp electrode than the central part of the lamp (refer figure 4.30). Furthermore, decreased 

UV output at the lamp electrode was a result of the darken quartz sleeve, which was obstructing 

the UV transmittance form the quartz. LP lamp has shown premature ageing signs at the electrode 

(i.e. darkening) and at certain areas across the quartz sleeve (i.e. fouling and scaling), which has 

disturbed the UV transmittance at a darken and fouled area at the lamp sleeve. Ultimately, it has 

reduced UV output detected by the UV sensor as a result of obstruction to UV transmittances at 

affected areas along the length of the lamp. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATION 

 
This chapter concludes the research findings based on the experimental analysis, performed during 

45 lamp operating cycles on the LP UV lamp throughout the preliminary ~5% life span. 

Additionally, this section provides a brief description of the possible modification to the setup. 

 
5.1 Conclusion 

 
 

This study demonstrated the direct measurement technique to analyze the UV output of the LP 

lamp along the axial length of the lamp in one radial direction. Furthermore, this study enhanced 

the experimental analysis by utilizing the thermal imaging camera to perceive temperature profile 

along the length of the lamp. In previously reported studies by other researchers, the non-uniform 

output pattern of the UV lamp was considered as a result of the imbalanced temperature gradient 

across the quartz sleeve; however, none of the referred studies actually performed thermal analysis 

by implementing the thermal camera This research was principally focused on the experimental 

findings of the lamp output, and changes occurred in the UV lamp output during 450 hours of lamp 

operation for a single lamp. The results were generated firmly based on the 450 hours of operation, 

which helped to notify and compare output changes occurred in the lamp’s UV intensity as a 

function of time for 0 hours to 450 hours of lamp operation. 

 
5.1.1 Conclusion related to lamp ageing and UV output 

 
 

Aforementioned direct measurement technique ( refer chapter 3), allowed to study the lamp ageing 

phenomenon as a function of time. The research outcomes of the experimental analysis performed 

on LP lamp confirmed, that the lamp’s UV output was not homogeneous. The study observed 

non-uniform UV output profile along the length of the lamp with the persistent rise and drop at 

certain areas across the quartz sleeve. The lamp used for this experimental analysis was new, 

however as it has undergone multiple operating cycles, the premature ageing signs were more 

visible, such as darkening at the electrode, formation of the scaling spots and fouling of the lamp 

sleeve during lamp’s initial 5% life span. Among visual ageing signs, the prominent ageing sign 
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was the darkening of the lamp electrode, which has affected UVT of the quartz sleeve. The study 

was able to provide firm justification about the darkening of the lamp electrode as a result of the 

overheated quartz sleeve area at the electrode with the help of the thermal imaging camera. Also, 

the study was able to spot the non-uniform temperature profile, which had affected UV output 

along the length of the lamp. 

 
5.1.2 Conclusions related to the experimental setup 

 
 

This research had a goal to provide, completely established and optimized experimental setup to 

Thunder Bay WPCP, which will enable them to test and evaluate the UV lamp performance, the 

relation between the lamp performance and operating hours, and accurate expectancy of the lamp 

life based on the operational conditions, to verify lamp characteristics with lamp statistics provided 

by the corresponding lamp manufacturer. Also, this setup will enable them to monitor the random 

lamps if they wish to evaluate the lamp performance of currently installed lamp at the disinfection 

unit. This research was able to devolve such experimental setup with automated control thought 

Arduino-LabVIEW interfaced program, which provides experimental observation in a textual file 

which can be segregated and graphically arranged as needed. Furthermore, this research has 

implemented a thermal imaging camera to enhance the direct measurement technique, which 

allows the evaluation of the temperature profile of the lamp. The research has fulfilled all of the 

objectives planned to complete this thesis as well as the research has accomplished the final goal 

of the thesis (refer section 1.4). 
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5.2 Recommendation for future work 
 
 

This research has demonstrated a practical, optimized experimental setup which can be used to 

evaluate UV lamp performance along the length of the lamp or at a single measurement point. The 

direct measurement approach applied for the experimental analysis can be modified and enhanced 

further. 

 
5.2.1 Recommendation for future experimental analysis 

 
 

The experimental analysis was performed to study UV output of the lamp during preliminary 5% 

life span of the LP lamp, basically to perform in-house testing of the setup operation to ensure 

setup components are working properly prior to giving the experimental setup to the Thunder Bay 

WPCP. The experimental setup was operated properly with seamless collaboration among the 

mechanical and electric components of the setup. The setup idea can be used to evaluate the UV 

output of a lamp during lamp’s expected lifespan ~10000 hours. 

 
5.2.2 Recommendation for setup modification 

 
 

The setup that was developed to performed direct measurement of the UV lamp output along the 

length of a lamp was designed to conduct measurement in one radial direction. The experiment 

could have been conducted in four radial directions, as shown in figure 5.1. 
 
 
 
 

Figure 5. 1 Radial and axial sample points 
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However, to do so the UV lamp needs to be turned on and off after each measurement run and has 

to be rotated by 90° until the lamp has been scanned along its length in each radial direction. 

Moreover, if the lamp has been tested for each radial direction, the lamp has to be turned off before 

it could be removed, then rotated by 90° and then it should be turned on for the corresponding 

measurement run. This procedure allows to study lamp behaviour in four radial directions of the 

lamp; however, to do so the lamp has to be undergone for four operating cycles just for one 

experimental run. Due to consistent disturbance to the lamp, it disturbs mercury and inert gas 

mixture, which can affect the photochemical reaction and eventually the UV output. Hence, the 

experimental analysis performed during this research, comprising of only one operating cycle and 

lamp was undisturbed during the entire experimental phase. 

 
If the lamp has to be tested for four radial directions, it could be done by improving the setup 

design. Instead of removing and rotating the lamp at 90° after each experimental run, the sensor 

can be rotated by 90° along the circumference of the lamp. However, it will need a modified and 

complex structure of the adapter housing, on which sensor has been mounted, which could be 

rotated to 90° through a computer command by adjusting the computer program code. 
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