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Abstract

Beams on elastic foundations have received great attention of researchers for its

importance in civil engineering. The present work can be applied, for example,

to the study of dynamically loaded finite columns which are embedded in soil

and supported by a layer of bedrock, or to the dynamic buckling analysis of

longitudinal fibers in a composite elastomer.

The dynamic stability of simply supported beam-column under periodic axial

loading, and laterally resting on an elastic foundation is investigated. The com-

bined effect of stiffness and damping is exerted on the beam through the founda-

tion.

Traditionally, the periodical sinusoidal waveforms have been considered as the

axial dynamic loading. However, in practical engineering, dynamic loading may

exhibit other waveforms. Therefore this thesis considers various periodical wave-

forms as excitations in the derivation of the dynamic stability.

The equation of motion for the system is derived. This equation is further pro-

cessed and transformed into the Hill equation. The conditions for dynamic stabil-

ity regions are developed using Pipes matrix method for periodical loadings. The

theoretical solutions are provided for various waveforms such as rectangular load-

ing, sawtooth loading, exponential loading and sum of the step loading. In order

to conduct numerical simulations and to develop the diagram for dynamic stabil-

ity region, certain reasonable assumed values are taken for mechanical property

of beam and various parameters.

Using dynamic stability plots, effects of various parameters such as flexural stiff-

ness of beam, damping, and stiffness of foundations are studied and discussed on

dynamic stability of a beam. Moreover, the first three vibration modes of beam

modal analysis are conducted. In order to evaluate the accuracy of the solutions,

a comparison is made among the solutions obtained from Pipes matrix method,

Floquet theory, and finite element method.
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As an example of applications, the study of buckling of rock slope resting on

the elastic foundation is carried out and is modeled for blasting vibrations. In

addition to that, the factors affecting the buckling of rock slope with blasting

are also discussed. The dynamic stability solutions for arbitrary loadings are

illustrated using wind sampling data which is obtained.

Keywords : Dynamic stability, Pipes matrix method, beams on elastic founda-

tions, stress waves, rock slopes.
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Chapter 1

Introduction

1.1 Introduction

In civil engineering, beams on elastic foundations are an essential topic of research

due to its broad applicability. The environmental interactions of such system are

complex and often represented as static and dynamic loads. The dead loads on the

system that do not change their initial amplitude and direction are considered as

static loads. However, dynamic loads in realistic situations are time-dependent

and may change their amplitude and direction. The analysis of beam-column

resting on elastic foundation under time-varying parametric axial loads are vital,

and such problems can be categorized as dynamic stability problems. Research for

such subject was accelerated in the mid of 20th century when researchers learned

how crucial it is to understand the behavior of beam-column under dynamic

loadings in order to design and accurately analyze the stability of structural

elements and also to prevent stability related collapses. Bittanti and Pastrizio

(2009) explained stability analysis of the time-varying linear system, which is a

study of the behavior of free motion as a function of initial state. The system is

said to be stable if free vibration vanishes for any initial condition. Therefore,

the dynamically stable system refers to the system which generates bounded
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displacement with increasing time under the action of dynamic loading.

Such dynamic stability problems may be encounter in bridge columns (Arduino

et al., 2017), submerged tunnels, pile foundations(Sun et al., 2011), railway tracks,

large floating buildings, etc., these are the perfect examples of the beams resting

on elastic foundations. This research focuses explicitly on cases such as vertically

loaded pile foundation surrounded by soil and resting on bed-rock. This study

can also be applied to rock slope stability, homogeneous rock tunnel roof and

tunnel side walls where the resilience of the adjoining portions of a continuous

elastic structure supplies the elastic foundation for the beam. Interactions be-

tween beam and foundation mainly depend upon the types of foundation which

are categorized as Winkler, Pasternak, and Hetenyi (Engel, 1991). Understand-

ing of static behavior of these types of foundations is the key to solve the dynamic

behavior problems, and it is vital to study the impact of surrounding medium

on dynamic stability and how this system will behave under various types of

time-varying loadings. The general idea of an axially loaded beam on an elastic

foundation is shown in Fig. 1.1.

Figure 1.1: Axially loaded beam on elastic foundation

Dynamic stability study includes establishing the regions in the parameter space

in which the system becomes unstable, which is called dynamic instability regions.

The stable and unstable regions are separated by dynamic stability boundaries.
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These boundaries are drawn in a parameter space that includes dynamic load

amplitude, excitation frequency, and static load component. These diagrams are

called as stability diagrams. Dynamic stability for beams on elastic foundations

is usually derived from a second order homogeneous equation. The pattern of

loading is usually adopted for dynamic stability study in the form of periodic

sinusoidal function (Bolotin, 1964; Briseghella et al., 1998; Engel, 1991), but the

true nature of applied load can be of any waveform and can also be arbitrary or

even random (Huang et al., 2017). So it becomes critical to derive dynamic sta-

bility problems of various waveforms, including the arbitrary periodic waveforms.

So far, literature is oriented for investigation of the beams on the elastic foun-

dations for various end conditions, beam properties, foundation properties, and

stability methods. However, all literature has considered a periodic sinusoidal

waveform as excitation. In the environment, excitation can be of almost any

type, so it is vital to investigate various other periodic waveforms such as saw-

tooth, step loading, exponential loading, and any arbitrary loading. That leads

us to our objective of investigation of the beams on elastic foundations for various

waveform excitations.

The objectives of this research are as follows:

• Analysis of dynamic stability of axially loaded beams laterally resting on the

elastic foundations for various types of loading patterns with Pipes matrix

method (Pipes and Harvill, 2014).

• To conduct a parametric study over the system and also incorporate plotting

of dynamic stability regions for various mode shapes.

• To compare results obtained from the Pipes method with the finite element

method.
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• Assessment of dynamic stability of rock slope against the blast vibration.

• Investigation of the dynamic stability of the beams under wind excitation.

Among many methods such as Floquet theory (Bolotin, 1964), finite element

method (Briseghella et al., 1998), and Pipes matrix method (Pipes and Harvill,

2014), for separating stable bounded displacement solutions and unstable un-

bounded displacement solutions, Pipes method has the potential to solve the lin-

ear system not only for periodic defined functions but also for arbitrary functions.

Numerical experimentation and calculated examples are also presented to illus-

trate the process of dynamic stability analysis thoroughly. Moreover, dynamic

stability regions for certain cases have also been presented and explained.

1.2 Literature review

Dynamic stability study for beams on elastic foundations starts with formulating

governing equation of motion for the system. This equation of motion usually is

reduced to Mathieu - Hill equation that can be solved by analytical, numerical and

experimental methods like Bolotin proposed method (based on Floquets theory),

Galerkin’s method, Lyapunov second method, as well as pipes matrix method.

As an important application, the stability of rock slopes will be reviewed.

1.2.1 Dynamic stability of beams

The governing equation for the dynamic stability problems is usually derived as

the second order differential equation that has a variable coefficient of periodic

functions. The dynamic stability of systems has no accurate solution; therefore,

researchers have been investigating different approximate methods for these kinds
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of problems. The main objectives are to develop the method for discovering the

response of the system, and assessment of stability associated with the response.

In 1924, for the first time, the problem of dynamic stability of beams under pe-

riodic loads had been investigated by Beliaev (1924). The simply supported end

condition and sinusoidal axial dynamic load were considered. Hence, Beliaev ob-

tained Mathieu- Hill equation which became an important base for many dynamic

stability-related problems. Hill equation can be presented as

f ′′(t) + a
(
1− b ∗ P (t)

)
f(t) = 0, (1.1)

where a is the natural frequency of system and b is the excitation parameter, f(t)

denotes time-dependent displacement, and P (t) is a periodic longitudinal force,

where if P (t) is a sinusoidal function then Eq.(1.1) becomes Mathieu equation.

Beliaev analysis did not include the dynamic stability study about Euler beam

for various end conditions which was derived by Krylov and Bogoliubov (1935)

with Galerkin method. Later, more detailed study about axially loaded column

was presented by V.V. Bolotin (1964) in his book on Dynamic stability of elastic

system where he had defined the critical frequency for dynamic instability and

developed the first three dynamic instability regions in which the displacements of

the beam under the action of continuous dynamic loading were unbounded. The

loading was taken in form of P (t) = P0 + Pt cos (θt), where P0 is the static load

component, Pt is the amplitude of loading and θ is the angular frequency (rad/s)

of the applied loading. The dynamic instability regions were originated when

ratio of excitation frequency to natural frequency is 1
3
, 1
2
, 1. Bolotin’s method was

based on the characteristic equation where real roots of characteristic equation

coincide with the region of an unboundedly increasing solution of second order

linear differential equation, whereas the region of complex characteristics roots
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corresponds to the bounded solution. Bolotin’s book also incorporates discussion

about damping impact on dynamic stability region of a beam. Burney and Jaeger

(1971) used Bolotin’s method for investigating the dynamic stability of uniform

column for different end conditions where the column was divided into different

segments and assumption was made that each segment is massless spring with

lumped masses. Bolotins method was also used for studying the parametric

instability of thin-walled composite beam (Machado et al., 2007).

Pipes (1953) developed a matrix based method to solve the general second order

differential equation based on dividing the excitation period T into n fundamen-

tal intervals so that T = nt, where the first matrix solution for the initial case,

i.e., the time is zero, can be constructed, and then consecutive matrices can be

built at intervals t. Dynamic stability conditions can be obtained from matrix

multiplication of all interval matrices. The dynamic stability boundaries sepa-

rate unstable vibrations with the stable ones. Other work of Pipes’ includes the

dynamic stability of a uniform straight column excited by pulsating load (Pipes,

1964), where the author considered pinned-pinned column subjected to loading

whose time graph is square, the regions of instabilities with the matrix algebra

method were attained. More general end conditions such as clamped-clamped

were also investigated for pulsating forces.

Brown et al. (1968) illustrated a method of solution for dynamic instability prob-

lem by the finite element method for bars of various end conditions, and to draw

a conclusion as to the nature of the regions of instability and their dependence

on modes of free vibration and static buckling. Further advancement in finite el-

ement method (FEM) for dynamic stability problems were carried out by Abbas

(1978). The author developed a new finite element model to investigate the effect

of shear deformation and rotary inertia on natural frequency and also on the re-

gion of dynamic instability. In addition to that, the effects of elastic foundation
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on the natural frequency, static buckling loads and region of dynamic instability

were examined. Abbas also incorporated the dynamic stability analysis of three-

dimensional frames subjected to various loading conditions using FEM. Shastry

and Rao (1987a; 1987b) established dynamic stability boundaries for an interme-

diate periodic concentrated load for various load positions acting on cantilever

column.

Briseghella et al. (1998) derived region of dynamic stability for beams and also

for frames. The method was developed for analyzing the behavior of structures of

any shape such as shallow shells and curved beams. Impact of elastic foundation

on dynamic stability region of a beam was also integrated. In order to evaluate

the accuracy of finite element approach, a set of numerical experimentation was

conducted, where dynamic stability diagram was developed for HEB 200 beam

and was compared well with theoretical solutions with a practically negligible

difference. Apart from that Mohanty (2007) used finite element method to study

the effect of localized damage on the dynamic stability of a pre-twisted cantilever

beam. The study mainly focused on phenomenon of parametric resonance. When

the foreign excitations are parametric with respect to a specific form of deflection

of the beam-column, they appear as one of the coefficients in the homogeneous

governing equation of motion of the system. Such systems are said to be paramet-

rically excited, and the associated instability of the system is called parametric

resonance. Mohanty et. al. also examined functionally graded Timoshenko beam

for its static and dynamic stability (Mohanty et al., 2011, 2012).

In general, relatively few experimental studies have been conducted in the field

of dynamic stability of the beam. Bolotin (1964) presented very first experimen-

tal study. The simply supported flat-steel bar under parametric excitation was

experimented to validate the results of dynamic stability regions as well as the

response of flat steel bar. In the region of dynamic instability, the transverse
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vibration of beam increases in high amplitude and growth of traverse vibration

initially follows the exponential law of response which is the same as that in an-

alytical results. Similar experimental work was conducted with beam specimen

as Polymethyl Methacrylate known as Plexiglass or Acrylic glass (Stevens and

Evan-Iwanowski, 1969). They experimentally investigated dynamic stability be-

havior of the viscoelastic material column under parametric excitation and found

reasonable agreement with analytical findings.

The effect of fixed-fixed and fixed-pined end conditions of the column for dynamic

stability was studied and experimentally verified (Iwastubo et al., 1973). They

used a finite difference method for dynamic stability analysis.

Svensson (1996) experimentally studied the dynamic buckling and dynamic sta-

bility of a beam with transverse constraints, where the adjustable flat stoppers

were used to restrain the beam vibrations till specific displacement. Moreover,

a model for the impact of the beam and constraints was proposed, as impact

conditions at constraints were of crucial importance. Furthermore, the author in-

vestigated damping effects of the periodically loaded non-linear dynamic system,

where Floquet theory and finite element method were used to include not only

material damping but also to incorporate damping effects at beam hinge (Svens-

son, 2001). In order to capture beam material damping, a glass-mat-reinforced

thermoplastic material was chosen. Svensson concluded that in order to get the

most accurate damping estimation, it is vital to consider two dampings separately,

one from the hinges of the end supports and second from the beam material itself.

Mohanty (2007) experimentally investigated parametric resonance of beams with

localized damage, sandwich beams and pre-twisted cantilever beams with local-

ized damage for dynamic instabilities. In addition, fixed-free, pinned-pinned,

fixed-fixed and fixed-pinned end conditions were considered. Aluminum strips
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were used as an experimental specimen, where rectangular cut-outs of suitable

dimension were made at essential places to yield the effect of specified artificial

damage. The cut-outs were filled with an epoxy compound (M-seal), whereas

sandwich beam specimens were composed of steel sheets as cover and P.V.C. as a

viscoelastic core. The experiments of the beam with localized damage and sand-

wich beam for fixed-free and fixed-fixed end conditions were in close agreement

with the theoretical results, whereas deviation in results was encountered in case

of pinned-pinned and pinned-fixed cases since damping presence in hinges was

not considered in theories.

1.2.2 Beams on elastic foundations

Extensive studies on beams and plates resting on the elastic foundation have been

done. These studies mainly categorize as numerical and analytical approaches.

Dynamic stability of beams having variable cross-sections supported on an elastic

foundation was first studied by Ahuja and Duffield (1975) both theoretically and

experimentally, where they investigated the effect of the beam with linear variable

cross-section on dynamic stability regions and concluded that under the effect of

the elastic foundation, the width of dynamic stability regions was decreased and

the amplitude of parametric resonance was also reduced. Another study was

presented by Eisenberger and Clastornik (1987) on the vibration of the beam on

a variable Winkler foundation. They presented and compared two methods of

solving the eigenvalue problem of vibration and stability of a beam on an elastic

foundation.

Similarly, Abbas and Thomas (1978) studied Timoshenko beam on the elastic

foundation for sinusoidal excitation and considered various end conditions. More-

over, they also developed dynamic stability regions for the first five modes of

vibration where the width of dynamic stability regions increases with the mode
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number of vibration. Yokoyama (1988) compared results between Timoshenko

beam and Euler Bernoulli beam on elastic foundations. In order to evidently

illustrate the effect of elastic foundation on dynamic stability region of the beam,

Yokoyama developed dynamic stability regions for beam, one with and the other

without foundation. After examining the impact of static load factor, rotatory in-

ertia, and shear deformation on dynamic stability regions, Yokoyama concluded

that the increase in static load factor would move dynamic instability regions

towards left in parallel along the frequency ratio axis, whereas rotatory inertia

and transverse shear deformation have a destabilizing effect on the system of the

beam on elastic foundation.

Engel (1991) has modified static foundation models such as Winkler, Pasternak,

and Hetenyi, to incorporate damping. Stability studies were performed using

Floquets method. The parametric studies were conducted to investigate the effect

of foundation stiffness, foundation damping and the number of vibration modes

on dynamic stability regions.

1.2.3 Stability of rock slope

Rock layer which is resting on the slope of soil (Elastic foundation) can be modeled

as the dynamic stability of beams on elastic foundations. Many types of research

have been submitted regarding the solution methods for the stability of the sloped

rock layer resting on an elastic foundation. The study of stability of rock slope

for the high-frequency wave propagation was conducted using discrete element

model to assess the effects of variable frequency blasting vibrations (Dowding and

Gilbert, 1988). Blasting is also one of the considerable loading types for rock slope

stability. Dynamic stability analysis under blasting vibration was investigated

(Chen et al., 2013). The method was based on recording the response of rock

slope against different blast vibration velocities.
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Tommasi et al. (2009) concluded that minor geometry variation in rock slab could

initiate the instability phenomenon while water pressure is not performing a ma-

jor role. Hu and Kempfert (1999) presented modeling of the buckling rock failure

using a numerical method. The discontinuity behavior was introduced by joint

element concepts. Moreover, they presented one sample calculation for buckling

of rock slope in an open pit mining. Hu and Cruden (1993) conducted a case

study on buckling of rock layer in Highwood Pass, Alberta, Canada. They clas-

sified various types of buckling in the region of Highwood pass and provided the

modifications in Euler buckling method considering cohesion and safety factors.

Deng and Gu (2018) conducted research for the buckling mechanism of the pillar

rockburst in underground hard rock mines under the static and blasting load. In

their study, they had an innovative point of view, because they modeled the buck-

ling of the pillar as dynamic instability, which incorporated derivation of dynamic

instability for pillar rockburst using Floquet theory, and presented dynamic sta-

bility diagrams. Blasting disturbances for the pillar rockburst was modeled as

periodical functions, and closed-form solutions were obtained in terms of rock-

burst diagrams (Deng et al., 2019).

Study about biaxially loaded rock slope buckling was conducted by Nilsen et al.

(1987). They incorporated axial stress horizontal to slope face and axial stress in

dip direction. The case study of Ortfjell open pit in Northern Norway based on

the buckling under biaxial loading was presented. The stresses can be excited by

the blasting vibration. The method is based on analyzing elastic, flexural buckling

of rectangular plates, including analyzing the joints of plates. A conclusion was

made that to include flexural buckling of hard rock, very special combinations of

parameters such as geology, stress conditions and rock character have to exist.

The configuration of the rock on slope foundation under blasting vibration is

shown in Fig. 1.2.

11



Figure 1.2: Rock slope stability under axial loading

The detailed study of failure mechanism was conducted. It states that discon-

tinuities parallel to the surface forming slabbing causes the slip buckling slope

failure. In general, the failure mechanism requires that the slope dip more steeply

than the angle of internal friction along the discontinuity forming slabs involved.

Three main cases of buckling involve i) flexural buckling of plane slopes, ii) three

hinge-buckling of plane slopes and iii) three-hinge buckling of curved slopes(Qi

et al., 2015). Various theories were used for modeling of slip buckling slope fail-

ure like Eulers formula, elastic theory, energy equilibrium principle, and finite

element method. Research on the effect of stiffness and cohesion was studied on

buckling failure. Earthquake is a significant cause of slip buckling slope failure,

so the study was focused on the analytical solution on slip buckling slope failure

considering the effect of earthquake and pore water pressure.

Buckling failure of rock slope can be originated by the following mechanism: 1)

Pore pressures along the bounding discontinuity (for example, bedding). 2) Slope

geometry (for example, curved, convex-up slopes). 3) Forces external to the slope

which can cause unstable vibration. 4) Very high stresses in the plane of the slab

(occurring, for example, on very high, continuous slabs) (Cavers, 1981). Flexural

buckling is elastic buckling and follows Eulers rule which is an action of static
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loading. Three hinge buckling on plane can take place due to piezometric pressure

and external loading on slope causing larger displacement as a result of unstable

vibrations.

1.3 Outline of thesis

This research focuses on assessing dynamic stability for axially loaded beams

laterally supported on elastic foundations for various periodical loadings and also

tries to establish an approach for solving the same system for arbitrary loading

using Pipes matrix method (2014). A chapter wise outline is as follows.

• Chapter 1- Introduction, this chapter is mainly divided into two sections,

introduction and literature review.

• Chapter 2- Beams on elastic foundations under dynamic loadings, it ex-

plains types of foundations and how they affect the system. The equation of

motion for beams on elastic foundations is derived, and a detailed discussion

about damping is also included.

• Chapter 3- Solution with Pipes method, it specifically focuses on provid-

ing the theoretical solution of Pipes matrix method for assessing dynamic

stability for various types of loadings.

• Chapter 4- Numerical analysis, it considers the beam specimen and pro-

vides dynamic stability diagram for various cases. This chapter also in-

cludes the parametric study of the dynamic stability of beams on elastic

foundations. Moreover, the comparison of the solution obtained using Pipes

method with the solution obtained with Floquet theory and finite element

study is presented.

13



• Chapter 5- Dynamic stability of rock slopes, the dynamic stability of the

rock slopes under blasting vibrations has elaborated.

• Chapter 6- Dynamic stability of beams under wind loading, Wind sam-

pling data collected from Huang et al. (2014) study is taken and processed

for solving it with Pipes methods.

• Chapter 7- Conclusions, the conclusions drawn from previous chapters are

summarized, and points for improvements in further research are suggested.

1.4 Summary

The aim and importance of the dynamic stability of beams on elastic founda-

tions have been introduced. Various methods of deriving dynamic stability such

as Floquet method, finite element method, Beliaev method, and Pipes method

are discussed in brief with its applicability. Research based on beams on elas-

tic foundations with various end conditions, different foundation conditions, and

various beam models have been reviewed. This chapter also incorporates the

background study about rock slope stability in various site conditions and geo-

logical conditions. Moreover, experimental researches on dynamic stability are

reviewed.
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Chapter 2

Beams on Elastic Foundations under Dynamic

Loadings

2.1 Introduction

Beams resting on elastic foundations have been studied for considerable numbers

of cases. Some of these analysis considers a single parameter for illustrating foun-

dation behavior. In such cases, it is assumed that pressure on the foundation is

proportional to the deflection of the foundation. The vertical deformation charac-

teristics of the foundation are defined by means of identical, independent, closely

spaced, discrete, and linearly elastic springs. The constant of proportionality of

these springs is known as the modulus of subgrade reaction (k), which can also be

defined as foundation stiffness per unit length. This simple and relatively crude

mechanical representation of soil foundation was firstly introduced by Winkler

(Kerr, 1964).

The Winkler model, which has been originally developed for the analysis of rail-

road tracks, is straightforward to take into account for mathematical modeling.

However, one of the most critical deficiencies of the Winkler model is that the

displacement discontinuity appears between the loaded and the unloaded part of
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the foundation surface as shown in Fig. 2.1a. In reality, the soil surface does not

show any discontinuity as shown in Fig. 2.1b.

(a) Winkler Type foundation (b) practical soil foundation

Figure 2.1: Deflection of foundation under effect of uniform pressure

Here, we take the Winkler foundation model in the account for the beams on

elastic foundations problem, because the solution for dynamic stability is highly

complex in nature.

2.2 Development of equation of motion

The equation of motion is an equation vital to characterize the nature of a vibrat-

ing system regarding its motion as a function of time. The equation of motion

can be often derived from force balance or energy balance equations of the sys-

tem. Here we have used force-equilibrium to derive the equation of motion for

the system, which concerns the transverse vibration of a simply supported elas-

tic column of the uniform cross-section, laterally supported on continuous elastic

foundation subjected to a dynamic axial load P (t) as shown in Fig. 2.2. Prior to

any loading or deflection the length of the column is taken as L.

An infinitesimal element from Euler Bernoulli beam resting on an elastic founda-

tion is taken of length ∆x with its free body diagram shown in Fig. 2.2. Taking

ρ as the mass density per unit volume of the column, A be the cross-sectional

area, and v(x) as the transverse displacement of the central axis. Therefore in-

ertia force (D’alembert’s force) can be given as mv̈ = (ρA∆x)v̈. The Winkler
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Figure 2.2: Column under axial loading and Free body diagram

type elastic foundation exerts stiffness force and damping force between beam-

foundation interaction. These forces will act opposing the displacement under the

axial force P (t), which are shown with kv∆x and βv̇∆x, where k is the stiffness

of the foundation per unit length and β is the damping of the foundation per unit

length.

Summing up the forces in the vertical direction x yields ∆P = 0, now summing

up the horizontal forces v leads to

∆S + ρA∆xv̈ + kv∆x+ βv̇∆x = 0. (2.1)

When ∆x → 0, Eq.(2.1) can be written as

∂S

∂x
= −(ρAv̈ + kv + βv̇). (2.2)
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Now summing up the bending moments at mid-point,

∆M − S∆x+ P (t)∆v = 0. (2.3)

Rearranging Eq.(2.3) results in

∂M

∂x
= S − P (t)

∂v

∂x
. (2.4)

The derivative of both sides in Eq.(2.4) gives

∂2M

∂x2
=

∂S

∂x
− P (t)

∂2v

∂x2
. (2.5)

Substituting Eq.(2.2) in Eq.(2.5) results in

∂2M

∂x2
= −

[
ρA

∂2v

∂t2
+ kv + β

∂v

∂t
+ P (t)

∂2v

∂x2

]
. (2.6)

Euler Bernoulli beam follows the relationship, M = EI( ∂
2v

∂x2 ), therefore Eq.(2.6)

can be written as

EI
∂4v

∂x4
+ P (t)

∂2v

∂x2
+ ρA

∂2v

∂t2
+ kv + β

∂v

∂t
= 0. (2.7)

Eq.(2.7) is the general form of the equation of motion for an axially loaded Euler

Bernoulli beam resting on Winkler type foundation. The solution to this type

of equation is complex, and it can be handled through various processes. The

solution in the form of displacement with respect to time is required to understand

the dynamic stability behavior. Moreover, P (t) can be periodic compressive or

periodic tensile force. A negative value of P (t) shows the tension, and positive

value of the same represents the compression force.
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The boundary condition for the beam is assumed to be simply supported so that

displacement and bending moment on both ends are zero. Therefore,

at x = 0, −→ v(0, t) = 0 & ∂2v(0,t)
∂x2 = 0,

at x = L, −→ v(L, t) = 0 & ∂2v(L,t)
∂x2 = 0.

The solution of the equation of motion is required to be in the form of deflection

with respect to time , the general solution for such case is

v(x, t) =
∞∑
n=1

qn(t)φn(x), φn(x) = sin
(nπx

L

)
, n = 1, 2, 3, . . . (2.8)

where φn(x) are the modal function of a simply supported column satisfying the

boundary conditions, which possess the orthogonality property

∫ L

0

φn(x)φi(x)dx =


0, if n 6= i

1
2
L, if n = i.

(2.9)

Substituting Eq.(2.8) into Eq.(2.7) yields

EI
(nπ
L

)4

qn sin
(nπx

L

)
− P (t)

(nπ
L

)
sin

(nπx
L

)
qn + ρAq̈n sin

(nπx
L

)
+ kqn sin

(nπx
L

)
+ βq̇n sin

(nπx
L

)
= 0. (2.10)

Dividing Eq.(2.10) with the sin
(
nπx
L

)
gives

ρAq̈n + βq̇n +

[
EI

(nπ
L

)4

− P (t)
(nπ
L

)2

+ k

]
qn = 0, (2.11)

or

q̈n +
β

ρA
q̇n +

[
EI

ρA

(nπ
L

)4

− P (t)

ρA

(nπ
L

)2

+
k

ρA

]
qn = 0. (2.12)
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In Eq.(2.12), the nth fundamental frequency of a simply supported column when

P (t) = 0 can be represented as ωn =
(
nπ
L

)2√EI
ρA

, whereas Pn is the nth Euler

buckling load and also known as Euler critical load. It is given as Pn = EI
(
nπ
L

)2
.

Then Eq.(2.12) becomes

q̈n +
β

ρA
q̇n + ω2

n

[
1− P (t)

Pn

+
k

Pn

(
nπ
L

)2]qn = 0, (2.13)

taking the stiffness co-efficient as α and the damping co-efficient as 2ζ in order

to reduce the equation of motion, where

1 +
k

Pn

(
nπ
L

)2 = α, (2.14)

β

ρA
= 2ζ. (2.15)

Eq.(2.12) can be transformed into

q̈n + 2ζq̇n + ω2
n

[
α− P (t)

Pn

]
qn = 0. (2.16)

Eq.(2.16) has the damping term which cannot be solved by Pipes method of

matrix solutions for finding the region of dynamic stability, so it requires further

mathematical processing in order to reduce Eq.(2.16) to Hill equation.

2.3 Damping modification

Xie (2006) illustrated the method to eliminate the damping term and the first

differentiation over time term, by simply using a change of variable. This inter-

vention doesn’t affect any of the solutions of the system. Applying the change in
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the variable

qn(t) = e−ζtun(t), (2.17)

the first and second derivative of Eq.(2.17) with respect to time can be given as

q̇n(t) = −ζe−ζtun(t) + e−ζtu̇n(t), (2.18)

q̈n(t) = ζ2e−ζtun(t)− 2ζe−ζtu̇n(t) + e−ζtün(t). (2.19)

Substituting Eq.(2.18) and Eq.(2.19) into Eq.(2.16) yields

ζ2e−ζtun(t)− 2ζe−ζtu̇n(t) + e−ζtün(t)− 2ζ2e−ζtun(t)

+ 2ζe−ζtu̇n(t) + ω2
n

[
α− P (t)

Pn

]
e−ζtun(t) = 0, (2.20)

Dividing Eq.(2.20) by e−ζt results in

ün(t) + ω2
n

[
− ζ2

ω2
n

+ α− P (t)

Pn

]
un(t) = 0, (2.21)

or

ün(t) +

(
ω2
nα− ζ2 − P (t)ω2

n

Pn

)
un(t) = 0. (2.22)

The fundamental frequency ωn can be transformed to modified (damped) natural

frequency ωm, which can also be recognized as natural frequency of beam on

elastic foundation. For simplification, a load factor µ (kN−1) is assumed, which

is inversely proportional to the critical buckling load of the beam. Therefore

Eq.(2.22) can be transformed into

ün(t) + ω2
m

[
1− µP (t)

]
un(t) = 0, (2.23)
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where

ω2
m = ω2

n

[
α− ζ2

ω2
n

]
, (2.24)

µ =
ω2
n

(ω2
nα− ζ2)Pn

=
ω2
n

ω2
mPn

. (2.25)

In Eq.(2.23) the dynamic load P (t) appears as a coefficient or parameter in the

equation of motion, yielding a parametrically excited system. If P (t) is a periodic

function of period T , i.e. P (t) = P (t + T ), then Eq.(2.23) is a linear differential

equation with periodic coefficient and is called a Hill equation. However, if P (t)

is a sinusoidal function of period T , Eq.(2.23) is called as Mathieu equation.

Eq.(2.23) has no damping term and can be solved by using Pipes matrix method.

2.4 Summary

Different types of beam-foundation interactions and foundation behavior have

been reviewed in this chapter. The equation of motion for beams on Winkler

type foundation under dynamic axial loading has been derived. This equation is

transformed into a Hill equation using damping modification. The Hill equation

will be used for deriving the dynamic stability in the next chapter.
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Chapter 3

Solution with Pipes Method

3.1 Introduction

A method for the solution of a class of linear, second-order differential equations

with periodic coefficients of the Hill equation was presented by L. A. Pipes (2014).

The method is adequate for the study of a large class of physical problems and

is based on a procedure involving powers of matrices. This method not only

provides the solution but also incorporates the stability behavior of the solution.

Dynamic stability with various dynamic loadings is solved by the matrix method.

3.2 Solution for displacement

A considerable variety of physical problems leads to a formulation involving a

differential equation that may be reduced to the general form of Eq.(3.1).

d2u

dt2
+ F (t)u = 0. (3.1)

F (t) is a periodic function of fundamental period T . A typical example is the

case where the equation of motion of axially loaded beams on elastic foundations

has reduced to Hill equation. Solution starts with the assumption that x1(t)
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and x2(t) be two linearly independent solutions of Eq.(3.1) in the fundamental

interval 0 ≤ t ≤ T . The value of u(t) and its first derivative, u̇(t) = v(t), may be

expressed in the following form for 0 ≤ t ≤ T ,

u(t) = A1x1(t) + A2x2(t),

v(t) = A1ẋ1(t) + A2ẋ2(t). (3.2)

or in the matrix form,

u(t)
v(t)

 =

u
v


t

=

x11(t) x12(t)

x21(t) x22(t)

 .

A1

A2

 , (3.3)

where A1 and A2 are arbitrary constants, and

x11(t) x12(t)

x21(t) x22(t)

 =

x1(t) x2(t)

ẋ1(t) ẋ2(t)

 . (3.4)

The determinant is found to be constant in the fundamental interval 0 ≤ t ≤ T ,

and it can be written as

W0 =

∣∣∣∣∣∣∣
x11(t) x12(t)

x21(t) x22(t)

∣∣∣∣∣∣∣ = x1(t)ẋ2(t)− ẋ1(t)x2(t). (3.5)

Since the two solutions x1(t) and x2(t) are linearly independent, W0 6= 0, and

the matrix in Eq.(3.4) is non-singular and the inverse matrix can be generated.

Furthermore, u and v for the initial condition can be obtained from Eq.(3.3) when

t = 0, u
v


0

=

x11(0) x12(0)

x21(0) x22(0)

 .

A1

A2

 , (3.6)
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or A1

A2

 =
1

W0

 x22(0) −x12(0)

−x21(0) x11(0)

 .

u
v


0

. (3.7)

This determines the column of arbitrary constants in terms of the given initial

conditions. If Eq.(3.7) is substituted into Eq.(3.3), the result may be written in

the form u
v


t

=
1

W0

x11(t) x12(t)

x21(t) x22(t)

 .

 x22(0) −x12(0)

−x21(0) x11(0)

 .

u
v


0

. (3.8)

The final values of u and v at the end of one interval of the variation of F (t)

are the initial values of u and v in the following interval. At the end of the

fundamental period, when t = T , Eq.(3.8) becomes,

u
v


T

=
1

W0

x11(T ) x12(T )

x21(T ) x22(T )

 .

 x22(0) −x12(0)

−x21(0) x11(0)

 .

u
v


0

. (3.9)

Taking equivalent matrix to Eq.(3.9)

u
v


T

=

[
M

]u
v


0

=

A B

C D

 .

u
v


0

, (3.10)

so that

[
M

]
=

A B

C D

 =
1

W0

x11(T ) x12(T )

x21(T ) x22(T )

 .

 x22(0) −x12(0)

−x21(0) x11(0)

 , (3.11)
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where A, B, C, D are the elements of the matrix resulting from multiplication of

two matrices in Eq.(3.11),

A =
1

W0

[
x11(T )x22(0)− x12(T )x21(0)

]
,

B =
1

W0

[
x12(T )x11(0)− x11(T )x12(0)

]
,

C =
1

W0

[
x21(T )x22(0)− x22(T )x21(0)

]
,

D =
1

W0

[
x22(T )x11(0)− x21(T )x12(0)

]
.

(3.12)

At the end of the second period of the variation of F (t) we have

u
v


2T

=

A B

C D


u
v


T

=

A B

C D


2 u

v


0

=

[
M

]2 u
v


0

. (3.13)

The solution after the end of n periods can be written as

u
v


nT

=

A B

C D


n u

v


0

=

[
M

]n u
v


0

. (3.14)

Eq.(3.14) is the solution of Hill equation at any time t > 0 in terms of the

initial conditions and two linearly independent solutions of Hill equation in the

fundamental interval 0 ≤ t ≤ T .

3.3 Stability of solution

If the lateral vibration of a beam under periodic axial load P (t) with any given

end conditions is to be stable, it is necessary and sufficient that the functions u(t)

remains bounded for all values of the time t. At the end of n complete cycles of

the oscillation of the periodical loading, t = nT .
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Conditions for dynamic stability are based on latent root of [M ]n, following to

that, Pipes presented a condition from Eq.(3.14),

∣∣∣∣A+D

∣∣∣∣ < 2, Stable V ibration. (3.15)

In Eq.(3.15), elements of [M ]n become trigonometric function and the u(t) re-

mains bounded. In such a case, the beam performs stable vibration under the

action of periodic axial loading.

On the other hand, if the value of |A+D| exceeds the value 2, then the elements

of [M ]n becomes the hyperbolic function which increases exponentially with the

number of cycles n performed by the periodic loading. In such a case, the beam

performs the unstable vibrations,

∣∣∣∣A+D

∣∣∣∣ ≥ 2, Unstable V ibration. (3.16)

Moreover, the boundary separating stable and unstable vibration is that |A+D|

is equals to 2. Concisely, to determine the stability of beam under the assumed

conditions, it is only necessary to compute the value of |A+D|.

The general theory will now be applied to the solution of some representative,

special cases. Thus, if P (t) is in the form of any periodical loading such as

rectangular(step), exponential, sawtooth, or sinusoidal it can be solved by Pipes

method.

3.4 Rectangular loading

The Hill equation in Eq.(2.23) is solved for the particular case where the function

P (t) has the form of rectangular ripple. Let T be the fundamental period of

the rectangular ripple, and let the ripple vary in the height of +H to −H as
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shown in Fig. 3.1. The Hill equation may be represented in a piecewise manner,

throughout the first cycle of its variation. If the first mode of vibration (n = 1)

is considered, subscript n can be omitted from Eq.(2.23) for ease in calculation.

Figure 3.1: Rectangular/Step axial loading

Loading pattern is given as,

P (t) = b+H for 0 < t ≤ T

2
, (3.17)

P (t) = b−H for
T

2
< t ≤ T. (3.18)

Now, Eq.(2.23) can be written as,

ü(t) + ω2
m

[
1− µ(b+H)

]
u(t) = 0 for 0 < t ≤ T

2
, (3.19)

ü(t) + ω2
m

[
1− µ(b−H)

]
u(t) = 0 for

T

2
< t ≤ T. (3.20)

Introducing,

g1 = ωm

√
1− µ(b+H), (3.21)
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g2 = ωm

√
1− µ(b−H), (3.22)

therefore Eq.(3.21) and Eq.(3.22) may be written in following form,

ü(t) + g21u(t) = 0 for 0 < t ≤ T

2
, (3.23)

ü(t) + g22u(t) = 0 for
T

2
< t ≤ T. (3.24)

The first solution for Eq.(3.23) can written in matrix form for interval 0 < t ≤ T
2
,

using Cosine function as the solution

u
v


t

=

 cos (g1t)
1
g1
sin (g1t)

−g1 sin (g1t) cos (g1t)


u0

v0

 . (3.25)

The subscripts at the bottom of the column matrices in Eq.(3.25) refer to the

time at which u and v must be evaluated. Here, u0 and v0 are the initial value

for time t = 0, and ut and vt are the value at any time t as the subscript is t.

Now taking t = T
2
, where c1 = g1.

T
2
, we have

u
v


T
2

=

 cos (c1)
1
g1
sin (c1)

−g1 sin (c1) cos (c1)


u0

v0

 . (3.26)

Now taking interval T
2
< t ≤ T , where c2 = g2.

T
2
, we have

u
v


T

=

 cos (c2)
1
g2
sin (c2)

−g2 sin (c2) cos (c2)


u
v


T
2

. (3.27)
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Since the values of u and v at t = T
2

are the initial value of next interval, T
2

<

t ≤ T , we have

u
v


T

=

 cos (c1)
1
g1
sin (c1)

−g1 sin (c1) cos (c1)


 cos (c2)

1
g2
sin (c2)

−g2 sin (c2) cos (c2)


u0

v0

 . (3.28)

If we perform multiplication in Eq.(3.28) and re-writing it in form of [M ] as shown

in equation below,

u
v


T

=

A B

C D


u0

v0

 = [M ]

u0

v0

 . (3.29)

Here, [M ] can be written as

[M ] =

 cos c1 cos c2 − g1
g2
sin c1 sin c2

1
g1
sin c1 cos c2 − cos c1 sin c2

−g2 sin c1 cos c2 − g1 sin c1 cos c2 −g2
g1
sin c1 sin c2 + cos c1 cos c2

 .

(3.30)

The boundary condition for the stability can be given as |A+D
2

| = 1,

∣∣∣∣A+D
2

∣∣∣∣ = cos c1 cos c2 −
1

2

[
g1
g2

+
g2
g1

]
sin c1 sin c2, (3.31)

or ∣∣∣∣A+D
2

∣∣∣∣ = cos c1 cos c2 −
1

2

[c21 + c22
c1c2

]
sin c1 sin c2, (3.32)

where g1
g2

+ g2
g1

=
T2

4
[g21+g22 ]

T2

4
g1g2

=
c21+c22
c1c2

.

Substituting the value of c1, c2, and respectively substituting the value of g1 and

g2 from Eq.(3.21) and Eq.(3.22) into the boundary condition given in Eq.(3.32)
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yields

A+D

2
= cos

[
ωm

T

2

√
1− µ(b+H)

]
cos

[
ωm

T

2

√
1− µ(b−H)

]
−1

2
sin

[
ωm

T

2

√
1− µ(b+H)

]
sin

[
ωm

T

2

√
1− µ(b−H)

]
[ 2(1− µb)√

(1− µb)2 − (µH)2

]
.

(3.33)

Introducing ratio of frequencies as γ =
2π
T

2ωm
, which is ratio of the exciting fre-

quency to twice the natural frequency, so that the condition for dynamic stability

is given as

A+D

2
= r = cos

[ π

2γ

√
1− µ(b+H)

]
cos

[ π

2γ

√
1− µ(b+H)

]
−1

2
sin

[ π

2γ

√
1− µ(b+H)

]
sin

[ π

2γ

√
1− µ(b+H)

]
[ 2(1− µb)√

(1− µb)2 − (µH)2

]
.

(3.34)

The value of r form Eq.(3.34) decides whether the system is stable or unstable

using conditions listed below,

• |r| ≥ 1 for Unstable,

• |r| < 1 for stable.

3.5 Sawtooth type loading

The dynamic stability of the Hill equation in Eq.(2.23) is solved for the sawtooth

type dynamic axial loading as shown in Fig. 3.2. The function P (t) is given in

a form as shown below, this function is for interval 0 ≤ t ≤ T and repeats the

variation after each cycle of T . The minimum amplitude of loading is b, whereas
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the maximum amplitude of loading can be h = aT + b. Loading P (t) can be

defined as

Figure 3.2: Sawtooth axial loading

P (t) = at+ b 0 ≤ t ≤ T. (3.35)

Therefore, Hill equation takes form of

ü(t) + ω2
m

[
1− µ(at+ b)

]
u(t) = 0. (3.36)

Introducing

z = ω2
m

[
1− µ(at+ b)

]
(3.37)

and the change of variable from t to the z transforms Eq.(3.36) into

d2u

dz2
+

z

µ2a2ω4
m

u = 0. (3.38)

Solution of Eq.(3.38) is based on Bessel functions of order one third multiplied

with constant. The solution for u can be given as

u = z
1
2

[
A1J 1

3
(kz

3
2 ) + A2Y 1

3
(kz

3
2 )
]
, (3.39)
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where A1 and A2 are arbitrary constants, and

k =
2

−3aµw2
m

. (3.40)

According to Eq.(3.39), two linearly independent roots can be obtained as

x1(t) = z
1
2J 1

3
(kz

3
2 ), x2(t) = z

1
2Y 1

3
(kz

3
2 ), (3.41)

the following derivatives can be calculated (Pipes and Harvill, 2014):

dx1

dt
= zJ− 2

3
(kz

3
2 ),

dx2

dt
= zY− 2

3
(kz

3
2 ). (3.42)

Therefore, the solution of Eq.(3.36) in the fundamental interval 0 ≤ t ≤ T may

be expressed in the following form:

u
v


t

=

z 1
2J 1

3
(kz

3
2 ) z

1
2Y 1

3
(kz

3
2 )

zJ− 2
3
(kz

3
2 ) zY− 2

3
(kz

3
2 )


u
v


0

. (3.43)

Introducing following notations of kz 3
2 for time t = 0 and t = T , such as

θ = kb
3
2 = − 2b

3
2

3aµω2
m

, for t = 0, (3.44)

φ = kh
3
2 = − 2h

3
2

3aµω2
m

, for t = T. (3.45)

The determinant is given by

W0 =

∣∣∣∣∣∣∣
b

1
2J 1

3
(θ) b

1
2Y 1

3
(θ)

bJ− 2
3
(θ) bY− 2

3
(θ)

∣∣∣∣∣∣∣ = b
3
2

[
J 1

3
(θ)Y− 2

3
(θ)− J− 2

3
(θ)Y 1

3
(θ)

]
. (3.46)
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The matrix of [M ] of Eq.(3.11) for interval 0 ≤ t ≤ T can be obtained as,

[
M

]
=

A B

C D

 =
1

W0

h 1
2J 1

3
(φ) h

1
2Y 1

3
(φ)

hJ− 2
3
(φ) hY− 2

3
(φ)


 bY− 2

3
(θ) −(b)

1
2Y 1

3
(θ)

−bJ− 2
3
(θ) b

1
2J 1

3
(θ)

 .

(3.47)

Therefore, the value of A and D can be taken as,

A =
b(h)

1
2

W0

[
J 1

3
(φ)Y− 2

3
(θ)− J− 2

3
(θ)Y 1

3
(φ)

]
, (3.48)

D =
h(b)

1
2

W0

[
J 1

3
(θ)Y− 2

3
(φ)− J− 2

3
(φ)Y 1

3
(θ)

]
. (3.49)

Hence similar to last section, dynamic stability conditions can be applied using

Eq.(3.48) and Eq.(3.49),

• |A+D
2

| ≥ 1 for unstable vibrations,

• |A+D
2

| < 1 for stable vibrations.

Bessel functions can be represented by dominant term of their asymptotic expan-

sions (Pipes and Harvill, 2014) such as

J 1
3
(e) =

(
2

πe

) 1
2

cos (e− π/4− π/6),

Y 1
3
(e) =

(
2

πe

) 1
2

sin (e− π/4− π/6),

J− 2
3
(e) =

(
2

πe

) 1
2

cos (e− π/4− π/3),

Y− 2
3
(e) =

(
2

πe

) 1
2

sin (e− π/4− π/3).

(3.50)

Using dominant terms the determinant W0 from Eq.(3.46) and the matrix [M ]
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from Eq.(3.47) can be given as

W0 =
−3aµω2

m

π
, (3.51)

and matrix [M ] can be written as

[
M

]
=

−2

3aµω2
m

(
bh

φθ

) 1
2

.

 b
1
2 cos (θ − φ) sin (φ− θ)

(bh)
1
2 sin (θ − φ) h

1
2 cos (θ − φ)

 . (3.52)

Therefore boundary condition for dynamic stability can be rewritten in dimin-

ished form,
A+D

2
=

cos (θ − φ)

3aµω2
m

[
bh

1
2 + hb

1
2

]
. (3.53)

The same stability criteria can be applied as explained in previous sections. It

should be noted that the ratio of frequencies (γ) term cannot be introduced in this

solution as sawtooth loading is a function of time as shown in Eq.(3.35). However,

dynamic stability for any given condition of such loading can be assessed.

3.6 Sum of step functions

When P (t) of Hill equations is a sum of step functions as shown in Fig. 3.3 can

be effectively solved by the matrix method.

Assuming that function P (t) is made up of δ number of step functions, each has

length T0 and heights H1, H2, H3, . . . Hδ, so that

δT0 = T. (3.54)
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Figure 3.3: Sum of step functions

For ease of calculations, introducing the following notations as

gk =
√

Hk, φk = T0

√
Hk, (3.55)

where k is any real number as 0 ≤ k ≤ δ, from which matrix [M ]k can be

generated as

[
M

]
k

=

Pk Qk

Rk Pk

 =

 cos (φk)
1
gk
sin (φk)

−gk sin (φk) cos (φk)

 . (3.56)

In such a case, multiplication of matrices can be written as

A B

C D

 =
[
M

]
δ
.
[
M

]
δ−1

. . .
[
M

]
2
.
[
M

]
1
=

[
M

]
. (3.57)

Now solution for u can be carried out using Eq.(3.57) for first period T

u
v


T

=

A B

C D


u0

v0

 . (3.58)
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Similarly, the solution after any n periods, when t = nT , can be presented as,

u
v


nT

=

A B

C D


n u0

v0

 . (3.59)

Now, the dynamic stability criteria shown in Eq.(3.15) and Eq.(3.16) can simply

applied and the dynamic stability can be assessed.

3.7 Exponential variation of loadings

Following the solution strategy used in the previous section 3.6, Pipes method

can be used to study the dynamic stability and obtain the approximate solution

of Hill equation by representing the given loading function in P (t) throughout

the fundamental interval by sum of step functions.

Loading is taken in generalized form of exponential loading of period T , which will

be divided in δ number of identical T0 intervals, in order to generate δ numbers

of individual step loadings such as H1, H2, H3, . . . Hδ. The generalized form of

exponential loading can be defined as

P (t) = y2e−2t − v2, 0 ≤ t ≤ T, (3.60)

where, y and v are any nonzero numbers, hence Hill equation can be written as

ü(t) + ω2
m

[
1− µ(y2e−2t − v2)

]
u(t) = 0. (3.61)

Eq.(3.61) can be solved with Bessel functions and sum of step loadings, solution

with Bessel functions will be the same as that given in section 3.5. This solution

can solve Hill equation for the whole fundamental interval T . However, solution

with the sum of step functions method shown in section 3.6 is an approximate
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solution and accuracy of this approximation solution depends upon the number

of δ. Higher number of δ tends to provide more accurate approximation, however

that results in extended calculations.

Almost any given function P (t) can be represented with step function by dividing

the fundamental interval T into any δ subintervals of length T0 = T
δ
. Hence in

the kth interval, the height of the representative step function can be determined

by

Hk =
1

T0

∫ kT0

(k−1)T0

P (t)dt, k = 1, 2, 3, . . . δ. (3.62)

Using Hk,
[
M

]
k

can be generated as shown in Eq.(3.56) and accordingly
[
M

]
can be calculated as Eq.(3.57).

Now the dynamic stability criteria shown in Eq.(3.15) and Eq.(3.16) can be simply

applied and the dynamic stability can be assessed.

3.8 Summary

The general solutions of the Hill equation of beams on elastic foundations have

been presented using Pipes matrix method, which also encompasses the assess-

ment of the stability nature of the solution. Various excitations such as rectan-

gular (step), sawtooth, a sum of step, and exponential are theoretically solved for

the dynamic stability.

38



Chapter 4

Numerical Analysis

In order to demonstrate the method discussed in Chapter 3, numerical results

are obtained, which incorporate solving the Hill equation in various cases for the

response of the system and also assessing the dynamic stability of systems. The

dynamic stability diagrams are also generated.

4.1 Dynamic stability diagram under periodic rectangular loading

To find the dynamic stability diagram under periodic rectangular loading, it is

vital to set the parameter and assume the properties of a specimen. For the

numerical calculations, a steel strip with reasonably assumed geometric property

is considered, which has a length of 457.2 mm, width of 31.75 mm, and thickness

of 3.18 mm. Steel has a density of 7850 kg/m3, and an elastic modulus of dfd

2.10 x 105 N/mm2. Natural frequency and Euler critical load when n = 1 can be

calculated as

ωn =
(
nπ
L

)2√EI
ρA

= 223.75 rad/s = 35.63 Hz,

Pn = EI
(
nπ
L

)2 = 840 N.

Reasonable assumptions are made from the references (Engel, 1991; Saha et al.,
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1997) for the value of stiffness of foundation k, which is taken as 20 kN/m2 and

the damping ratio 2ζ is combined damping of foundation and beam, which is

taken as 2 %.

So, α = 1.505 and ωm = 274.5 rad/s = 43.71 Hz can be calculated from Eq.(2.14)

and Eq.(2.24). Moreover µ = 0.000791 can be obtained from Eq.(2.25).

As practical beams will have some amount of static load all the time, so b = 100

N is taken. The value of H will be varying from 0 - 840 N, and the aim is

to assess the dynamically buckling before the actual static buckling. Moreover,

the value of the ratio of frequencies(γ) which is the ratio of excitation frequency

to twice the natural frequency of beam-foundation system is taken in a range

of 0 - 1.25. As the unknown parameters in dynamic stability condition shown

in Eq.(3.34) are the dynamic force (b + H) and ratio of frequencies(γ). The

values of both parameters are placed in equations. From the different values

of dynamic loads(b + H) and ratio of frequencies(γ), only those values are kept

separate which give |r| ≥ 1 in Eq.(3.34), these values of dynamic loads (b + H)

and ratio of frequencies(γ) give unbounded solution of Hill equation and result

in dynamically unstable vibrations. Plotting these values of (b+H) vs. γ result

in dynamic stability diagram of the beam on elastic foundation under the action

of periodic rectangular loading.

Fig. 4.1 shows the dynamic stability diagram under periodic rectangular loading.

The solid line represents the dynamic stability boundary which separates the

dynamically stable and unstable regions. The area enclosed in this solid line

represents dynamically unstable regions whereas the rest of the area in the plot

tends to be dynamically stable. The dynamic instability region shown close to

γ = 1 is the principal region of dynamic instability. However, dynamic instability

regions close to γ = 0.48, 0.24 are also obtained which are shown in Fig. 4.2 and
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Figure 4.1: Dynamic stability diagram for periodic rectangular loading

Fig. 4.3, respectively.

Figure 4.2: Dynamic stability diagram for periodic rectangular loading,γ = 0.48
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Figure 4.3: Dynamic stability diagram for periodic rectangular loading,γ = 0.24

According to the dynamic stability diagram shown in Fig. 4.1, all three unstable

regions start from nearly zero dynamic loading, meaning even really small such

as 10 N force can generate the dynamic unstable vibration if it has excitation

frequency twice the natural frequency ωm of the beam on elastic foundations.

Realistically, it might not be possible to get unstable vibration with nearly zero

amplitude, the causes of such inaccuracy are the damping of beam and soil, the

friction between surfaces and joints, etc.

4.1.1 Parametric study

For a broader understanding of behavior of the solutions, it is vital to conduct

a parametric study. Starting with the change in stiffness of foundation k, where

k = 1 kN/m2, k = 20 kN/m2 and k = 40 kN/m2 are taken separately and the

principle dynamic instability regions are compared.
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Figure 4.4: Dynamic stability diagrams for k = 1, 20, 40 kN/m2

Fig. 4.4 shows that the origins of all three principal dynamic stability regions

remain nearly the same, whereas the width of these regions is changed. Moreover,

an increase in width of dynamic stability region is observed as a result of a

decrease in the stiffness of foundation. This result is evident as the rigidity of

lateral support increase, and it permits less vibration of the beam. In other words,

the area of dynamic stability region for k = 1 kN/m2 is the maximum, and for

k = 40 kN/m2 is the minimum. Therefore it can be said that area(width) of the

principal region of dynamic stability is inversely proportional to the stiffness of a

foundation for any identical cases of geometry and loading profile.

The loading is considered static and dynamic in nature. Thus, it becomes essential

to study the impact of the change in static loading on the dynamic stability region.

Here, the static load b is changed such that b = 0 N, b = 100 N, b = 200 N, and

the remaining parameters of the system are kept constant. The principal regions

of dynamic stability diagrams are plotted in Fig. 4.5.
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Figure 4.5: Dynamic stability diagrams for b = 0, 100, 200 N

Fig. 4.5 shows that the area of all three dynamic stability regions remains the

same with the change in static load. However, the origin point tends to move

towards left by virtue of an increase in static loading. Moreover, pure dynamic

loading when b = 0, gives the dynamic stability diagram originating at γ =

1, where the excitation frequency is twice the modified natural frequency of the

beam. Hence, slightly away from the origin of principal dynamic instability region

for γ = 1 with b = 100 N in Fig. 4.1 is justified with discussion above.

Dynamic stability diagrams in Fig. 4.1 are based on first mode of vibration,

where n = 1. Change in n will change the fundamental frequency(ωn), Euler

critical load(Pn), stiffness co-efficient(α) given in Eq.(2.14) and consequently it

will also change the natural frequency(ωm). Considering the first three modes of

vibration, the principal dynamic stability regions are developed by taking n = 1,

n = 2, and n = 3, where, b = 0 and H = 0 − 840 N. Fig. 4.6 presents the first

three regions of instability, corresponding to the first three modes of vibration of

the beam on elastic foundations.
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Figure 4.6: Dynamic stability diagrams for n = 1, 2, 3

Figure 4.7: Results of beam on elastic foundation with "Floquet theory" (Engel,
1991)

Fig. 4.7 shows dynamic instability regions, which were developed to study the

effect of damping. The noticeable part of this result is as we move further on axis

of the ratio of frequencies, the width of dynamic instability regions increases. In

45



Figure 4.8: Results HEB 200 beam using finite element method (Briseghella et al.,
1998)

other words, as the vibration mode transforms from n = 1 to n = 2, and n = 2

to n = 3, the width and overall area of dynamic instability regions increases.

Similar results are obtained with Pipes matrix method in Fig. 4.6, the width of

the region of dynamic unstable regions increases with an increase in mode shape.

Unlike in the study presented in Fig. 4.8, when finite element method was used,

dynamic instability regions have identical width and area for all modes.

As the mode transforms from n = 1 to n = 2, the fundamental frequency(ωn)

changes, and other parameters such as ωm, α, and µ also change. It can be easily

anticipated that the dynamic stability diagram generated from n = 2 cannot be

as same as the dynamic stability diagram generated from n = 1. Therefore, it can

be said that the modal analysis with the Pipes method (Fig. 4.6) and Floquet

theory (Fig. 4.7) have produced more reasonable results.
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4.2 Dynamic stability assessment - Sum of step loadings

The exponential load P (t) shown in Eq.(3.60) is used for the system to assess the

dynamic stability, where certain parameters are set to be fixed and the approxi-

mation solution using the method described in section 3.6 is used. The constants

of loading P (t) are assumed as shown in Eq.(4.1), where the period is assumed

to be T = 0.5 s for the excitation loading. Assuming δ = 10 may give T0 = 0.05

s. The excitation is

P (t) = 36π2e−2t − 1

25
, where 0 ≤ t ≤ 0.5. (4.1)

Therefore, δ = 10 will generate H1, H2, H3, . . . H10 values, which can be calculated

using Eq.(3.62). The parameters gk and φk can be calculated as

gk = ωm

√
1− µ(Hk), (4.2)

φk = T0 ∗ ωm

√
1− µ(Hk), (4.3)

where k is any real number between 0 ≤ k ≤ δ, furthermore Pk = cos(φk), Qk =

1
gk
sin (φk), Rk = −gn sin (φk) can be calculated accordingly.

Using the data in Table 4.1, the matrix
[
M

]
can be calculated for every k value,

for example, if k = 1, then
[
M

]
1

can be expressed as,

[
M

]
1

=

P1 Q1

R1 P1

 =

 0.6499 −0.0032

−177.963 0.6499

 . (4.4)

The final matrix
[
M

]
is obtained by multiplication of the chain of matrices in
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Table 4.1: Values of matrix components

Step Hk gk φk Pk Qk Rk

1 338.078 234.145 11.707 0.6499 -0.0032 177.963
2 305.902 238.171 11.909 0.7887 -0.0026 146.437
3 276.788 241.756 12.088 0.8856 -0.0019 112.282
4 250.444 244.954 12.248 0.9482 -0.0013 77.784
5 226.607 247.813 12.391 0.9838 -0.0007 44.430
6 205.039 250.371 12.519 0.9986 -0.0002 13.111
7 185.523 252.664 12.633 0.9981 0.0002 -15.705
8 167.864 254.720 12.736 0.9864 0.0006 -41.837
9 151.886 256.567 12.828 0.9671 0.0010 -65.288
10 137.429 258.227 12.911 0.9427 0.0013 -86.176

the form,
[
M

]
=

[
M

]
10
.
[
M

]
9
.
[
M

]
8
. . . . .

[
M

]
1
, which can be written as

[
M

]
=

A B

C D

 =

−0.15615 −0.00406

239.06215 −0.17772

 . (4.5)

As a result, boundary condition for this case can be expressed as

∣∣∣∣A+D

∣∣∣∣ = 0.3338 < 2, Stable V ibration. (4.6)

It can be said that, for the given loading type, the system will generate dynami-

cally stable vibration.

4.3 Comparison of solutions

In order to evaluate the reliability of the solution using Pipes matrix method, it

is essential to make a comparison with the solutions obtained by other methods

such as finite element method and Floquet theory for dynamic stability.

Considering the HEB 200 beam with geometric property given as length L = 7m,

moment of inertia I = 2.003 x 10−8 m4, and mass per unit length m = ρA = 61.3
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kg/m, modulus of elasticity E = 2.1 x 1011 N/m2. The beam is simply supported

and axially loaded. In this case, foundation is not considered, which means the

k = 0 N/m2. Loading has the form P (t) = Pd cos (θt), where Pd is the amplitude,

θ is the excitation frequency, and t represents time. Hill equation of this case can

be written as

ü(t) + ω2
m

[
1− µ(Pd cos (θt))

]
u(t) = 0. (4.7)

Eq.(4.7) has the form of Mathieu equation, for which the first fundamental fre-

quency and Euler critical load can be calculated as

ωn =
(
nπ
L

)2√EI
ρA

= 52.762 rad/s,

Pn = EI
(
nπ
L

)2
. = 847235 N.

Solution to such problem is provided with Pipes matrix method. The loading

is taken as the sum of δ number of step functions, δ = 10 is considered so that

T0 = T/10, and H1, H2, H3, . . . H10 can be obtained from Eq.(3.62).

Manual solution to this problem in order to develop a dynamic instability diagram

can be done by following the steps as follows.

• Step - 1 Assume any value of excitation frequency (θ) and find the period

of excitation T and T0. It should be noted that the assumption of excitation

frequency should be 1.5 ≤ θ
ωn

≤ 2.5 in order to generate first principal region

of dynamic instability. As parametric resonance occurs when excitation

frequency is double or in folds with a natural frequency.

• Step - 2 The step loading Hk can be determined using Eq.(3.62) where

P (t) = Pd cos (
2π
T
t). Assume any value of Pd less than Euler buckling load

(Pd < Pn), because any axial force larger than Euler critical force will buckle

the beam.
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• Step - 3 The value of gk =
√
Hk and φk = T0

√
Hk can be calculated based

on the value of Hk.

• Step - 4 Using the gk and φk, values of Pk, Qk, Rk and related matrix [M ]k

can be calculated using Eq.(3.56). Multiplication of these matrices can be

obtained as [M ] shown in Eq.(3.57).

• Step - 5 Following the value of [M ], |A + D|/2 can be obtained which

determines the dynamic stability condition of the given point. In order to

plot the dynamic instability boundaries, the value of |A+D|/2 is required

to be 1.

Therefore, if the value of |A + D|/2 < 1 for assumed value of Pd, one should

increase the assumed value of Pd and repeat the whole calculation from Step -

2. Moreover, if the |A + D|/2 > 1, one should decrease the assumed value of

Pd. It is required to keep on changing the assumed value of Pd and repeating

the calculation till |A + D|/2 = 1 is achieved. However, if for all values of Pd,

|A + D|/2 < 1 is obtained, one should change the assumed value of excitation

frequency (θ) and follow the procedure starting from Step 1.

For a further illustration taking an example of any Point- D on dynamic stability

diagram which has an excitation frequency θ = 95 rad/s, period T = 0.0661 s,and

ratio of frequencies γ = 2π/T
2ωn

= 0.90. Assumed value of Pd = 336500 N is taken.

Further, values of Hk, gk, φk, Pk, Qk, and Rk are calculated which are shown in

Table 4.2.

Therefore, multiplication of matrices [M ] can be presented as,

[
M

]
=

A B

C D

 =

−1.000468561 −0.013061175

−0.022517515 −0.999825626

 . (4.8)
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Table 4.2: Value of matrix component for θ = 95 rad/s, Pd = 336500 N

Step Hk gk φk Pk Qk Rk

1 315512.8 41.80 0.276 0.9622 3.05E-06 -303580.8
2 194948.9 46.30 0.306 0.9537 4.892E-06 -185918.5
3 225.0 52.75 0.348 0.9400 0.004177 -211.5
4 -194585.0 58.51 0.386 0.9264 -4.76E-06 180257.3
5 -315373.4 61.80 0.408 0.9180 -2.91E-06 289497.5
6 -315445.1 61.81 0.408 0.9179 -2.91E-06 289561.7
7 -195519.0 58.53 0.386 0.9263 -4.74E-06 181109.8
8 -753.3 52.79 0.348 0.9399 -0.001248 708.1
9 194298.9 46.32 0.306 0.9536 4.908E-06 -185289.7
10 314978.6 41.82 0.276 0.9621 3.055E-06 -303054.9

As a result, |A+D|/2 = 1.00014 u 1, so it can be said that Point- D lies on the

dynamic stability boundary.

Following to the calculation procedure described above, more points lying on the

dynamic stability boundary can be obtained which are given in Table 4.3.

Table 4.3: Reference points for dynamic stability boundary

Points θ(rad/s) Pd(N) |A+D|/2

A 79.14 882500 1.00010
B 84.42 693000 1.00055
C 94.97 650000 1.15667
D 94.97 336500 1.00014
E 105.52 1 1
F 126.63 280000 0.75322
G 116.08 365000 1.00063
H 126.63 755000 1.00041
I 130.32 902100 0.99996

Accuracy in the value of |A+D|/2 is maintained up to three decimal places. Point-

C is in the unstable region, whereas Point- F is in the stable region. Dynamic

stability diagram for the axially loaded HEB 200 beam can be plotted with respect

to excitation frequency(θ) as shown in Fig. 4.9. Similarly the dynamic stability

diagram can be plotted with respect to ratio of frequencies (γ = 2π/T
2ωn

= θ
2ωn

) as
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Figure 4.9: Dynamic stability diagrams for HEB 200 beam

shown in Fig. 4.10.

Figure 4.10: Dynamic stability diagram with respect to ratio of frequencies (γ)
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In order to make a comparison, dynamic stability diagram obtained with Pipes

method is overlapped with dynamic stability results obtained with Floquet method

(theoretical method) and finite element method (Briseghella et al., 1998).

From Fig. 4.11 it can be noted that Pipes solution is slightly shifted from both

the theoretical solution as well as finite element solution, except that it is nearly

coincidental. Hence, it can be said that the dynamic stability results computed

using Pipes matrix method are identical with results obtained using traditional

methods.

Figure 4.11: Comparison of solutions with Floquet theory, finite element method
and Pipes Method

4.4 Summary

Dynamic stability diagrams have been plotted using Pipes method for several

excitation cases. A parametric study shows that the dynamic instability regions
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shrink while an increase in stiffness of supporting foundation. The dynamic insta-

bility region shifts towards origin if the static loading is increased. Modal study

results of dynamic stability of beam on elastic foundations reveal that the area

of dynamic instability regions increases with higher mode vibrations. Successful

comparison of results is also obtained.

54



Chapter 5

Dynamic Stability of Rock Slopes

5.1 Introduction

Civil engineering works such as tunnel construction, open pit mining, road con-

struction, and foundation pit excavation inevitably involve several rock slope

problems. Accurate evaluation of rock slope stability and its influencing factors

not only provides a scientific basis for engineering construction but also plays an

essential role in guiding slope reinforcement and landslide prediction. Therefore,

the stability of rock slope is of vital importance against blasting vibrations and

machinery vibrations. The blasting vibrations will laterally excite a rock slope,

and propagation of such vibrations are fast through the rock slab. The dynamic

stability of rock slab becomes essential to assess for mining cases where blasting

is widely used. The blasting vibrations can be measured with the sampling data

collection, which are in arbitrary forms. Therefore, the dynamic stability of rock

slope resting on rock layer can be assessed with the Pipes method.
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5.2 Geology of the rock slope

Geology of a specific case can be described as a rock resting on a rock layer base.

The top end is loose, and the rock bottom is considered as a pin joint. A case

study based on similar geology was conducted on Highwood pass, Alberta (Hu

and Cruden, 1993). However, Hu and Cruden only considered the static buckling

of the rock slope. After knowing the nature of loading, one can assess the buckling

of the rocks due to dynamic instability under blasting vibrations. The geological

profile for two sites of Highwood pass is given here in Table 5.1.

Table 5.1: Geological profile (Hu and Cruden, 1993)

Site 1 Site 2
Bedding thickness (m) 0.7 0.05
Inertia moment (m4) 2.858 * 10−2 1.042 * 10−5

Estimated uniaxial compressive strenght (MPa) 300 200
Estimasted lower and upper bounds of the
Young’s modulus (GPa)

3-300 2-200

Unit weight (kN/m3) 25 25

These sites are composed of rock layers of limestone, quartzite, chert, dolostone,

shale, and sandstone.

5.3 Stress waves from blasting

Blasting vibrations are believed to be one of the most harmful factors of all haz-

ards arising from blasting. The blasting seismic wave produces disturbance in the

rock mass, which spreads in the form of a stress wave. In the near and middle-field

of blasting source where the stress wave peak is higher than the tensile strength

of the rock, the blasting destroys the rock, resulting in crushed zones, fracture

zones or blasting damage. In the far-field of blasting source where the stress
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wave peak is lower than the tensile strength of the rock, the blasting causes elas-

tic stress waves that vibrate rock particles which may cause the potential damage

in the rock and earth mass to develop further, thus leading to slope instability,

landslides, and other damages. The strong vibration caused by blasting load is

very likely to trigger landslides, avalanches, etc. Therefore, the study of blasting

vibration impact on rock slope stability is of major practical significance.

For the purpose of engineering assessments and design, the dynamic load gener-

ated from an explosion in the ground can be anticipated from the Peak Particle

Velocity (PVV). The PVV from a coupled explosion can be given in the following

general form (Zhou and Zhao, 2011):

V = J

[
Z

QB

]−n

, (5.1)

where J and n are constants relaying on geological profile and explosion setup, Z is

the actual distance (m), Q is the charge weight (kg). The exponent B is a function

of the geometry of the explosives charge and reflects the energy transmission from

the explosive to the surrounding medium. Many mining applications tend to use

1/2, or square root scaling, while most military and civil engineering applications

tend to use 1/3, or cubic root scaling.

The parameters J and n are generally a function of the soil/rock quality but

can be affected by the other factors such as types of explosives and scale of the

explosion.

The peak particle velocity can be excited as a harmonic function (sinusoidal wave)

using the velocity-displacement relationship :

V = 2πfz, (5.2)
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where V is the velocity, f is the frequency (Hz), and z is the displacement of

particles. Therefore, excitation can be taken as a harmonic function, and dynamic

stability of rock under such excitation can be assessed.

5.4 Methodology

In order to derive an equation of motion for a simply supported rock slope resting

on an elastic rock layer under axial loading, an infinitesimal element of the system

with ∆x length is taken with the free body diagram as shown in Fig. 5.1. Where,

P is the applied axial loading, S is shear loading and M is for the bending

moment. Taking ρ as density, A as cross-sectional area such that D’Alembert’s

force is ρA∆xv̈ = mv̈, where v is the transverse displacement of the beam. The

forces exerted from the foundation remains the same as kv∆x and βv̇∆x.

Figure 5.1: Rock slope under axial loading and free body diagram

Summing up all vertical forces results in

∆S + (ρA∆xv̈ + kv∆x+ βv̇∆x) cos (θs) + ∆P sin (θs) = 0. (5.3)
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Now summing up the horizontal forces gives

(ρA∆xv̈ + kv∆x+ βv̇∆x) sin (θs)−∆P cos (θs) = 0. (5.4)

Eq.(5.4) can be rewritten in terms of ∆P , therefore

∆P = (ρA∆xv̈ + kv∆x+ βv̇∆x) tan (θs). (5.5)

Substituting Eq.(5.3) into Eq.(5.5) yields

∆S+(ρA∆xv̈+kv∆x+βv̇∆x) cos (θs)+(ρA∆xv̈+kv∆x+βv̇∆x) sin (θs) tan (θs) = 0,

(5.6)

or

∆S + (ρA∆xv̈ + kv∆x+ βv̇∆x)(cos (θs) + sin (θs) tan (θs)) = 0. (5.7)

When ∆x → 0, Eq.(5.7) can be written as

∂S

∂x
= −(ρAv̈ + kv + βv̇) sec (θs). (5.8)

Summing up the moments at midpoint results in

−P∆v + S∆x cos (θs)−∆M = 0, (5.9)

or
∂M

∂x
= S cos (θs)− P (t)

∂v

∂x
. (5.10)

As P is a function of time t, it can be written as P (t). Moreover, differentiating
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Eq.(5.10) with respect to x yields,

∂2M

∂x2
=

∂S

∂x
cos (θs)− P (t)

∂2v

∂x2
. (5.11)

Now using Euler-Bernoulli relationship M = EI( ∂
2v

∂x2 ) and elemenating S from

Eq.(5.11) using Eq.(5.8) results in

EI(
∂4v

∂x4
) = −(ρA(

∂2v

∂t2
) + kv + β(

∂v

∂t
)) cos (θs) sec (θs)− P (t)(

∂2v

∂x2
), (5.12)

or

EI(
∂4v

∂x4
) + P (t)(

∂2v

∂x2
) + ρA(

∂2v

∂t2
) + kv + β(

∂v

∂t
) = 0. (5.13)

Eq.(5.13) represents the equation of motion for the axially loaded rock slope

resting on elastic rock layer or soil, which is the same as Eq.(2.7). Hence, it can be

said that Pipes solution can be applied to any configuration of beams and elastic

foundations without any alteration. However, change in the boundary condition

of beam-column can affect the equation of motion as well as the dynamic stability

solution for the beams on elastic foundations.

5.5 Results and discussion

In order to assess the dynamic stability and buckling of the rock slope, Highwood

pass case is chosen as an example because future constructions will require the

blasting around the sites which may cause dynamic buckling of the rocks in the

region (Hu and Cruden, 1993). Geological property is taken from Table 5.1. The

rock has the length (l) = 20 m, depth (h) = 0.7 m, width (b) = 1 m, density (ρ) =

2548 kg/m3 and the Young’s modulus (E) = 150 GPa. From the given data the

fundamental frequency ωn =
(
nπ
L

)2√EI
ρA

= 38.25 rad/s = 6.09 Hz and the Euler

buckling force, Pn = EI
(
nπ
L

)2
= 105794 kN, can be obtained for the rock beam.
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Stiffness of the elastic foundation k = 20 MPa is taken, which results in α = 8.67

from Eq.(2.14), therefore the natural frequency of the beam on elastic foundations

can be calculated as ωm = 17.93 Hz from Eq.(2.24). Moreover µ = 1.09 x 10−9

can be obtained from Eq.(2.25). Dynamic stability diagram of the rock on elastic

foundations can be derived for the harmonic cosine function as shown in Fig. 5.2.

Figure 5.2: Dynamic buckling diagram of rock slope on elastic foundations

Dynamic buckling of the rock slope can be assessed up to the excitation loading
1
µ

= αPn = 9.17 x 105 kN from Eq.(2.23). The elastic foundation acts as a

support so that the system can bear more amplitude of axial loading in the form

of blasting than the Euler critical load. However, the modified natural frequency

of the rock slope and elastic foundation (ωm) is higher than the natural frequency

of the rock beam (ωn) itself due to the effect of the foundation. A increase in the

natural frequency mainly depends upon the stiffness of the foundation. Alazzawi

(2017) presented similar results about the natural frequency of beams on elastic

foundations.
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Blasting pressure can be calculated using the formula provided by Newmark and

Hansen (1961), which can be written as

Ps = 6784
W

R3
+ 93

√
W

R3
(bar), (5.14)

where Ps is the shock pressure in bar, W is the charge mass expressed in kilograms

of TNT and R is distance from the centre of a spherical charge in meter.

Mills (1987) suggested the following for blasting incidental pressure,

Ps =
1772

z3
+

114

z2
+

108

z
− 0.019 kPa, (5.15)

where z is scale distance,

z =
R

W
1
3

. (5.16)

If 1 T of TNT equivalent charge is used at 35 m away from rock slope, the

incidental pressure Ps = 81723 N/m2 using Eq.(5.14), whereas Ps = 88943 N/m2

can be obtained with Eq.(5.15). Both pressure equations yield almost identical

anticipation of incidental blasting pressure. Furthermore, the total incidental

loading H can be obtained by multiplying the cross-sectional area of the rock

slope to the incidental pressure, H = 37.9 MN.

Fig. 5.3 shows that the blasting load with the frequency ranges from 17.75 Hz

to 18.2 Hz can buckle the rock slope even with very small load compared to the

buckling load of the rock beam. As the blast scaling distance decreases, the range

of frequency causing the dynamic buckling increases, which is illustrated in Fig.

5.4, where R is the distance between the center of charge and the rock slope. The

rock slope tends to be more dynamically stable with an increase in distance from

blasting.

62



Figure 5.3: Dynamic buckling diagram of rock slope for blast loading

Figure 5.4: Blast loading at R = 30 m, 25 m, 20 m, 15 m.

The frequency of blasting vibrations ranges from 2 Hz - 50 Hz in most cases, the

calculation average can be taken as 17.35 Hz. The waveform generated from the

blasting will have high as well as low frequencies, wherein the high frequency can
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be seen at the beginning where the peaks and troughs are close together in time,

and low frequency at the end where the waves are further apart in time. The

frequency below 20 Hz is considered as the low frequency which usually shakes

the slopes, rocks, and buildings the most.

Therefore, a separate consideration should be made if the natural frequency of

rock beam slope lies within the limit of 2-50 Hz, and dynamic stability assess-

ment should be approached. Because even if a rock slope is statically stable and

withstands the blasting load, it can be dynamically unstable due to the excitation

frequencies, which may result in unexpected buckling and slope failure. The un-

derstanding of blasting vibration frequency and amplitude is essential to prevent

unexpected collapse in the surrounding of blasting site.

5.6 Summary

The importance of dynamic stability assessment of rock slope against blasting

vibration is clarified, and the equation of motion for the rock slope under dynamic

excitation is derived. The dynamic instability regions for the rock slope are

developed, and the effects of blasting distance are assessed. A risk of the dynamic

instability increases for a given rock slope, with the decrease in distance to the

origin of blasting.
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Chapter 6

Dynamic Stability of Beams under Wind Loading

6.1 Introduction

Owing to the reports of failure of the beams under windstorm, Huang et al. (2014)

considered the dynamic stability study of Euler beam under axially applied wind

force. In their research, they solved the Mathieu- Hill equation for the dynamic

stability under arbitrary loading based on the Floquet method. Huang trans-

formed the arbitrary loading to the sinusoidal function prior to solving it. This

chapter focuses on solving the dynamic stability of beams on elastic foundations

under arbitrary loading.

The wind force data collected from the TJ-2 wind tunnel Tongji University were

used for the case study (Zhou et al., 2011). Data were processed with proportional

load strategy so that they could change the amplitude of excitation according to

the specimen of the experiment. The sampling loading data are shown here as

a(t).

The wind load data shown in Fig. 6.1 has total samples of N = 6000, with

sample recording frequency of fs = 9.58 Hz, so that the total load duration is

tmax = 626.3 s. The maximum recorded amplitude of wind sampling data is

65



Figure 6.1: Wind sampling data

12,367 N, which was considered as relatively high and transformation of loading

was conducted as follows,

a′(t) =
a(t)− a0

ā
, (6.1)

where a′(t) is the based loading, a0 = 4190 N is the mean amplitude and ā =

288.87 N is defined as the maximum harmonic amplitude. The plot of the new

wind loading is shown in Fig. 6.2.

Moreover, the loading was taken in terms of,

a′(t) =
∞∑
n=1

a′n cos (nθt). (6.2)

Dynamic stability assessment of beams was conducted by solving Mathieu - Hill

equation with eigenvalue problem to establish boundary conditions. In order to

reduce the complexity in calculation only the first 100 readings, where the data

for period T = 10.44 s was taken. Concisely, the method transforms the arbitrary

loading through the Fourier series in order to assess the dynamic stability of Euler
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Figure 6.2: Modified wind sampling data

beam. However, Fourier series itself is a harmonic function, and the arbitrary

values of sampling data were not processed directly for the dynamic stability

assessment.

6.2 Solution using Pipes method

The solution for arbitrary loadings using Pipes method can be provided under

certain conceptual assumptions. In order to evaluate dynamic stability of beams

on elastic foundations for the sum of step loading, as mentioned in section 3.6,

4.2 & 4.3, a loading function P (t) can be divided into δ number of step loadings

as H1, H2,..., Hδ acting at constant period T0 = T
δ
. These step loadings are

constant values of loadings and have no relation with each other. Arbitrary

loading as wind excitation or any sampling data is constantly measured value of

loadings at uniform intervals, which can be substituted into the Hill equation as

the step loadings. Hence, the dynamic stability assessment can be provided for

wind loading, and the method can be illustrated with examples.
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Example 1 Assessing dynamic stability of HEB 200 beam of length 7m under

wind sampling data obtained in Fig. 6.1.

Here first thirty data (N = 30) is taken for ease of calculation, as shown in Fig.

6.3. However, any N number of data can be assessed for the dynamic stability

of the beam. The natural frequency of the beam ωn =
(
nπ
L

)2√EI
ρA

= 52.762

Figure 6.3: Wind sampling data, N=30

rad/s and the Euler critical loading Pn = EI
(
nπ
L

)2 = 847235 N is calculated for

n = 1. The frequency of wind sampling is fs = 9.58 Hz, which gives the period of

load excitation T0 = 0.1044 s for the calculation. The calculation model is able

to assess the dynamic stability of beam up to 847235 N of excitation loading.

Loading greater than the Euler critical loading will statically buckle the beam.

Each sampling data will act as Hk for the calculation so that N = 30 will produce

H1, H2, H3, . . . H30. Following to the values of Hk, the matrix for dynamic

stability condition can be derived from
[
M

]
=

[
M

]
30
.
[
M

]
29
.
[
M

]
28
. . . . .

[
M

]
1
.

Table 6.1 shows the calculated values of Pk, Qk and Rk from which multiplication

of matrix can be computed as

[
M

]
=

A B

C D

 =

 0.03708346 0.018961376

−52.6518663 0.044444877

 . (6.3)
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Table 6.1: Solution components for Example - 1

Step Hk gk φk Pk Qk Rk

1 4337.008 52.6268 5.4942 0.7046 -0.01348 37.3447
2 4008.147 52.6371 5.4953 0.7054 -0.01347 37.3122
3 4528.771 52.6208 5.4936 0.7041 -0.01349 37.3636
4 4008.147 52.6371 5.4953 0.7054 -0.01347 37.3122
5 4888.257 52.6096 5.4924 0.7033 -0.01351 37.3990
6 4242.843 52.6298 5.4945 0.7048 -0.01348 37.3354
7 3559.649 52.6511 5.4968 0.7064 -0.01344 37.2678
8 5845.930 52.5797 5.4893 0.7011 -0.01356 37.4930
9 3333.826 52.6581 5.4975 0.7069 -0.01343 37.2454
10 3093.120 52.6656 5.4983 0.7075 -0.01342 37.2215
11 3629.486 52.6489 5.4965 0.7062 -0.01345 37.2747
12 3749.123 52.6452 5.4962 0.7059 -0.01345 37.2866
13 3252.541 52.6607 5.4978 0.7071 -0.01343 37.2374
14 3575.391 52.6506 5.4967 0.7064 -0.01344 37.2694
15 3989.830 52.6377 5.4954 0.7054 -0.01347 37.3104
16 3335.543 52.6581 5.4975 0.7069 -0.01343 37.2456
17 1889.874 52.7031 5.5022 0.7102 -0.01336 37.1018
18 3220.199 52.6617 5.4979 0.7072 -0.01343 37.2342
19 2217.303 52.6929 5.5011 0.7095 -0.01337 37.1344
20 3209.895 52.6620 5.4979 0.7072 -0.01343 37.2331
21 3197.588 52.6624 5.4980 0.7072 -0.01343 37.2319
22 3666.121 52.6478 5.4964 0.7061 -0.01345 37.2784
23 2401.339 52.6872 5.5005 0.7091 -0.01338 37.1528
24 3859.029 52.6417 5.4958 0.7057 -0.01346 37.2974
25 4249.712 52.6295 5.4945 0.7048 -0.01348 37.3360
26 -1390.716 52.8053 5.5129 0.7177 -0.01319 36.7716
27 3906.827 52.6402 5.4956 0.7056 -0.01346 37.3022
28 4700.786 52.6155 5.4931 0.7038 -0.01350 37.3805
29 7297.324 52.5343 5.4846 0.6977 -0.01364 37.6346
30 4112.902 52.6338 5.4950 0.7051 -0.01347 37.3225
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The dynamic stability condition can be assessed from the boundary condition

given as ∣∣∣∣A+D

∣∣∣∣ = 0.081528 < 2, Stable V ibration. (6.4)

So it can be said that, under provided wind loading, the beam will undergo stable

vibrations.

Example 2 Assess the dynamic stability of the steel beam with dimensions

1000 mm x 50 mm x 9 mm, Modulus of elasticity E = 2.1 x 1011 N/m2, resting on

elastic foundation k = 20 kN/m2 under excitation of wind sampling data shown

in Fig. 6.3.

The fundamental frequency of the beam ωn =
(
nπ
L

)2√EI
ρA

= 132.58 rad/s, α =

1.322 and natural frequency ωm = 152.35 rad/s can be calculated from Eq.(2.14)

and Eq.(2.24). Moreover µ = 0.000120144 can be obtained using Eq.(2.25).

The Euler critical loading Pn = EI
(
nπ
L

)2 = 6296 N is computed. The elastic

foundation provides support to the beam, which increase the buckling capacity

of the beam. Therefore, this calculation model is capable of assessing dynamic

stability of beams on elastic foundations till excitation loading is Hk = αPn =

1.322 x 6296 = 8323 N. Table 6.2 shows the calculated value of Pk, Qk and Rk.
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Table 6.2: Solution components for Example - 2

Step Hk gk φk Pk Qk Rk

1 4337.008 105.4132 11.0051 0.0150 -0.00949 105.4014
2 4008.147 109.6752 11.4501 0.4441 -0.00817 98.2686
3 4528.771 102.8465 10.7372 -0.2504 -0.00941 99.5689
4 4008.147 109.6752 11.4501 0.4441 -0.00817 98.2686
5 4888.257 97.8536 10.2159 -0.6995 -0.00730 69.9327
6 4242.843 106.6510 11.1344 0.1437 -0.00928 105.5434
7 3559.649 115.2338 12.0304 0.8628 -0.00439 58.2609
8 5845.930 83.1012 8.6758 -0.7353 0.00816 -56.3256
9 3333.826 117.9335 12.3123 0.9694 -0.00208 28.9573
10 3093.120 120.7447 12.6057 0.9990 0.00038 -5.4988
11 3629.486 114.3860 11.9419 0.8147 -0.00507 66.3334
12 3749.123 112.9189 11.7887 0.7166 -0.00618 78.7576
13 3252.541 118.8903 12.4121 0.9890 -0.00124 17.5483
14 3575.391 115.0433 12.0105 0.8525 -0.00454 60.1285
15 3989.830 109.9077 11.4744 0.4657 -0.00805 97.2626
16 3335.543 117.9132 12.3101 0.9689 -0.00210 29.1946
17 1889.874 133.9154 13.9808 0.1490 0.00738 -132.4208
18 3220.199 119.2688 12.4517 0.9941 -0.00091 12.9275
19 2217.303 130.4632 13.6204 0.4883 0.00669 -113.8521
20 3209.895 119.3892 12.4642 0.9954 -0.00080 11.4476
21 3197.588 119.5328 12.4792 0.9967 -0.00068 9.6756
22 3666.121 113.9388 11.8952 0.7867 -0.00542 70.3369
23 2401.339 128.4820 13.4135 0.6572 0.00587 -96.8413
24 3859.029 111.5541 11.6462 0.6103 -0.00710 88.3740
25 4249.712 106.5612 11.1250 0.1345 -0.00930 105.5936
26 -1390.716 164.5540 17.1794 -0.0908 -0.00605 163.8745
27 3906.827 110.9553 11.5837 0.5595 -0.00747 91.9600
28 4700.786 100.4883 10.4910 -0.4789 -0.00874 88.2133
29 7297.324 53.4794 5.5832 0.7666 -0.01201 34.3379
30 4112.902 108.3358 11.3103 0.3148 -0.00876 102.8286

The boundary condition provides the important information about the dynamic

stability of the beam resting on the elastic foundation under wind excitation,

where matrix [M ] can be written as

[
M

]
=

A B

C D

 =

−0.031036546 0.022539595

−47.4289489 2.224129476

 , (6.5)
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therefore, dynamic stability condition can be given as

∣∣∣∣A+D

∣∣∣∣ = 2.1930 > 2, Unstable V ibration. (6.6)

Hence, it can be said that, under provided arbitrary loading, the beam on elastic

foundations will undergo dynamically unstable vibrations.

However, unstable vibrations of the beam can be prevented by altering the geo-

metric dimensions of the beam. Decreasing the length of the beam might be a

more effective remedy as it also increases the Euler critical load. In this example,

if the length of the beam reduces to 800mm, it starts to generate stable vibra-

tions. Similarly, increasing the stiffness of foundation may also aid the stability of

the beam, as stiffening the foundation to the k = 23 kN/m2 could lead to stable

vibrations of the beam on elastic foundations.

The Pipes matrix method is able to assess the dynamic stability of beams resting

on elastic foundations under any arbitrary loadings. The consideration should be

made about a lengthiness of calculations, as it is required to create an individual

matrix for each of the sampling data and at the end, multiplication of all individ-

ual matrix is also required to assess the dynamic stability. This model can also

be employed for the seismic excitation.

6.3 Summary

The dynamic stability assessment of beams on elastic foundations under arbitrary

loading using Pipes method is derived in this chapter. A small portion of sampling

data is used as excitation for two systems (example 1 & example 2) for dynamic

stability assessment. The results revealed that dynamic stability of beams under

arbitrary excitations mostly depend upon the Euler Buckling load of the beams
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and stiffness of the foundations.
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Chapter 7

Conclusions

7.1 Summary of thesis achievements

The dynamic stability of axially loaded beams on the elastic foundations is sys-

tematically investigated in this thesis. The excitation is assumed to be various

periodical loadings, and the arbitrary loading is also incorporated. The Pipes

matrix method is used for assessing the dynamic stability of the beams on the

elastic foundations. The dynamic stability diagrams are also obtained for various

cases using numerical analysis, and multiple examples are also presented.

• The force equilibrium for infinitesimal column resting on the elastic founda-

tion (Winkler) can generate the equation of motion of the system. Damping

modification transforms the equation of motion into the Hill equation. Us-

ing Pipes matrix method, dynamic stability assessment for various periodic

loading cases can be adequately determined. The dynamic instability re-

gions are developed for the pulsating force using the numerical analysis.

• Parametric study of a beam on an elastic foundations for change in stiffness

of foundation states that, the dynamic instability regions of the system will

reduce in the area if the stiffness of supporting foundation increases.
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• The principle dynamic instability regions shift towards a small ratio of

frequencies (left) with elevation in the static load component.

• Any periodical loading can be assessed for the dynamic stability of beams

on elastic foundations by merely transforming it into step loadings at equal

intervals.

• The comparison results of Pipes method with Floquet theory and finite

element method provides an idea about the accuracy of the Pipes matrix

method for dynamic stability assessment, and it can be said that the solu-

tion obtained with the Pipes method is reliable and accurate.

• The statically stable rockslope under the excitation of blasting can be col-

lapsed if blasting vibrations propagate with certain specific frequency, which

can be obtained from the dynamic instability region of rock slope.

• The Pipes matrix method is also capable of providing the assessment of

dynamic stability for arbitrary loading. However, the tediousness of the

calculation largely depends upon the number of sampling data.

7.1.1 Assumptions and applications

Dynamic stability study for the arbitrary loading (wind loading) is carried out

based on a assumption that loading has a periodic form, realistically arbitrary

loading or wind excitation cannot be periodic. The elsatic foundation for rock-

slope study is assumed to be Winkler. However, more practical results can be

obtained by assuming it as Pasternak type elastic foundation.

This advancement in the method of assessing dynamic stability can be accessed

into many applications such as the dynamic stability of pile foundation and

bridge column under earthquake vibration, the dynamic stability of rock slope
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against the blasting vibrations, the steel column under machine vibration in in-

dustrial buildings, bridge deck stability against wind loading, harbour deck sta-

bility against the wave excitation.

7.2 Future scope

Some of the future research areas in the field of dynamic stability assessment for

a beam on elastic foundations are described below:

• As Floquet theory is validated with experimental results(Bolotin, 1964;

Svensson, 2001; Mohanty et al., 2012) and comparison results of the Pipes

method is proven to be identical with Floquet theory and finite element

method. However, experimental results and comparison results for the ar-

bitrary solution has not been obtained yet. So the experimental work for

validating the results for arbitrary loading should be carried out. Experi-

mental set up from Svensson (1996) can be adapted, replacing transverse

constraints by springs with known stiffness for the experimental study of

beams on elastic foundations under various excitations.

• The foundation is considered uniform throughout the length of the beam,

which can be considered as variable foundation and solutions can be pro-

vided for dynamic stability.

• The recent model is capable of processing arbitrary loading, and sampling

data from wind loadings and earthquake loadings, however the primary data

for earthquake loadings are usually in the form of ground accelerations. So

modification in the modeling should be made to process ground acceleration

data.
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Appendix A

Calculation Procedures

The calculations for assessing dynamic stability regions are done with the MS

Excel software, for the sake of ease in keeping data in tabular format for separate

input and output. The screen captures of excel sheets represent the format of

calculations.

The calculation data for the pulsating force is shown in Fig. A.1.

Figure A.1: Calculation sheet for pulsating force

In Fig. A.1, H is dynamic load component, γ ratio of frequencies, P static load
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component, |r| presents dynamic stability condition of Eq.(3.34). For the various

value of H, γ and P, boundary condition values are monitored. If any combination

of H, γ and P, |r| is greater than unity, plot that value of H and γ in order to

generate dynamic stability diagram.

The calculations for parametric studies were conducted using a similar Excel sheet

as shown in Fig. A.1. The only changes are in the value of coefficients such as

ωn, α, ωm and µ.

The calculation format changes for the sum of step loading. It requires integration

and multiplication of matrices. In Fig. A.2, the calculation sheet of Point G from

Table 4.3 is shown. Similarly, the calculation sheets for each point are generated.

These calculation sheets with necessary modifications are used in the calculation

of sum of step loading results, exponential loading results and for comparison of

solution.

Figure A.2: Calculation sheet for Sum of step loading

In addition, the calculation sheet for the arbitrary loading varies as a number

of matrices has to be the same as the number of sampling data. Therefore,
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Figure A.3: Calculation sheet for arbitrary loading

arbitrary loading solution provided for example 2 will have thirty matrices as

N = 30, shown in Fig A.3.
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