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ABSTRACT 

Reale, J. 2018. The impact of a fungus-feeding nematode (Aphelenchoides sp.) on 
decomposition of trembling aspen wood by various wood-decay fungi. 56 + viii 
Pp.  

 
Keywords: Aphelenchoides sp., Bjerkandera adusta, Cerrena unicolor, Climacodon 
septentrionale, fungi, Ganoderma applanatum, grazing, Hohenbuehelia grisea, 
mycophagy, nematodes, nematophagous, Sphaerobolus stellatus, Trametes pubescens, 
wood-decay.  
 
 Grazing by fungus feeding invertebrates on fungal mycelium can potentially 
impact many important ecological processes such as the formation of mycorrhizas and 
the decomposition of wood and litter. A study was initiated to examine the impact of a 
fungus feeding nematode (Aphelenchoides sp.) on the decomposition of trembling aspen 
(Populus tremuloides) wood blocks under aseptic growing conditions by seven different 
decay fungi. These fungi were Bjerkandera adusta, Cerrena unicolor, Climacodon 
septentrionale, Ganoderma applanatum, Hohenbuehelia grisea, Sphaerobolus stellatus, 
and Trametes pubescens. Results based on dry weight measurements of wood blocks 
before and after inoculation and in the presence or absence of nematodes revealed that 
four of the seven fungi exhibited lower rates of decay in the presence of nematodes. 
These fungi were T. pubescens, G. applanatum, C. septentrionale and S. stellatus. The 
other three fungi had slight increases in decomposition of wood blocks in the presence 
of nematodes. It is suggested that B. adusta and C. unicolor may have responded to 
grazing by producing enhanced mycelial growth and thus enhanced enzymatic activity. 
Hohenbuehelia grisea is a known nematophagous fungi, capturing and consuming 
nematodes as a supplementary source of nitrogen, thus accounting for enhanced 
decomposition in the presence of nematodes.  
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  INTRODUCTION 

WOOD DECAY 

 
Wood is a very important substance in our world and is of considerable 

anatomical and chemical complexity; supporting rich communities of fungal species in a 

variety of microbial niches (Dix and Webster 1995). A key component in the healthy 

life cycle of a forest is the presence of wood-inhabiting fungi which are extremely 

important in the process of nutrient and carbon cycling in temperate forests. Wood 

rotting fungi are, by definition, those which can bring about significant weight loss and 

structural change in woody tissues (Dix and Webster 1995). 

Wood is composed of mostly cellulose, which is a polymer of sugars, and lignin 

which is a complex heterogeneous polymer that is made up of several phenol-containing 

compounds. Trees differ in their wood structure, as does the enzymatic potential of the 

fungi for decomposition. The degree of decomposition on the substrate and the method 

used to do so will depend on the ability to degrade different cell types and cell-wall 

constituents (Schwarze et al. 2000).  

Coarse woody debris makes a large contribution to immobilized nutrients such 

as Phosphorus (P) and Nitrogen (N) that can be readily utilized by wood-decay fungi 

(Stenlid et al. 2008). Fungi which decay wood are some of the few organisms that can 

utilize these nutrients by secreting an array of enzymes with the unique ability to 

disassemble the complex molecules that comprise wood (cellulose, lignin and 

hemicellulose) and recycle it back into the ecosystem (Boddy and Watkinson 1995). 
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TYPES OF WOOD DECAY  

 

 However, not all fungi secrete the same array of enzymes to disassemble wood, 

and thus not all fungi attack wood in the same way. They may be distinguished by 

differences in colour, solubility, strength, dimensional stability, pulping properties and 

the chemical composition of the decayed wood (Cowling 1961). As a result, one might 

expect to see one of the following three types of rot: white rot, brown rot and soft rot 

depending on the enzymatic arsenal of the fungus and the host that it is attacking (Dix 

and Webster 1995). In some cases, wood-decay fungi may use several different methods 

of attack on the same tree (Dix and Webster 1995).    

 

White Rot  

 

White rot is the most common type of decay and normally leaves a bleached 

appearance due to the oxidation of lignin in wood and may occur uniformly, leaving the 

wood spongy or stringy. White rot may also appear as a selective decay or a pocket rot 

(Goodell et al. 2008). White rot fungi possess both cellulolytic and lignin degrading 

enzymes, therefore having the potential to degrade the entirety of the wood structure 

under the correct environmental conditions (Goodell et al. 2008).  

 White rot fungi are the most efficient lignin degraders in nature, but erode the 

cellulose and hemicellulose components in wood as well (Dix and Webster 1995). 

White rot can also be broken down into white-pocket, white-mottled, and white-stringy 

based on macroscopic characteristics. These are all dependent on the fungal species, 

wood species and ecological conditions (Schmidt 2006). Another unique characteristic 

to white rotters, is that they may produce zone lines demarking territory between decay 
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and non-decayed wood which is called “spalting” and can be seen in early stages of 

decay. From microscopic and ultrastructural investigations, two main types of white rot 

have been distinguished (Liese 1970).  

In the simultaneous white rot or “corrosion rot”, carbohydrates and lignin are 

almost uniformly degraded at the same time and at a similar rate at all stages of decay 

(Schmidt 2006). This is done by the hyphae of the wood-decay fungi penetrating the cell 

wall and secreting an array of degrading enzymes (Liese 1970).  Thus a lysis zone 

develops under the hypha, and in turn the hypha produces grooves in the wall which is 

gradually reduced in thickness, similar to the way a river erodes the ground (Schmid and 

Liese 1964; Liese 1970). 

In selective white rot, or otherwise known as successive (sequential) white rot, 

the degradation of lignin and hemicellulose is greatest in the early stages of attack (Liese 

1970). Further, fungi showing successive white rot contain small, elongated cavities 

within wood tissue, where the lignin and hemicelluloses are “selectively” 

(preferentially) degraded, and the greatest part of the cellulose remains (Blanchette 

1984). This is more commonly known as “white-pocket rot”.  

 White-rot fungi predominantly attack hardwoods and cause the greatest decrease 

in the strength properties of wood versus the further discussed forms of wood-decay.  

 

Brown Rot 
  

Brown rot fungi are much less common than white rot fungi and are more 

frequently found on softwoods than on hardwoods. Brown rot fungi degrade wood by 

metabolizing the carbohydrates cellulose and hemicelluloses found in the cell wall of 
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wood by non-enzymatic and enzymatic action and leave the lignin in wood unaltered, 

causing the brown mottled appearance (Liese 1970).  As the brown rot fungi attack the 

cellulose along the cell wall, it breaks it up into short pieces, causing a significant 

amount of strength loss, making wood very brittle and easily breakable under tension 

(Liese 1970). Strength properties of wood decayed by white and brown rot fungi were 

reviewed by Hartley (1958) and was concluded that at comparable stages of decay, as 

measured by weight loss, brown-rot fungi reduce the strength of wood more than do 

white-rot fungi. This can be the reason for brown-rotted wood being more friable than 

white-rotted wood.  

 Brown-rot fungi colonize the wood by using their microhyphae to penetrate 

through pits in the cell wall, where they spread into the longitudinal tissue (Liese 1970). 

The microhyphae then grow inside the cell lumina and with the use of enzymes, 

penetrate through the relatively resistant tertiary wall containing high lignin and diffuse 

into the secondary wall, where they degrade the carbohydrates completely (Liese 1970). 

Contrary to white-rot fungi, brown-rot fungi do not typically cause lysis zones around 

their hyphae, but instead the hyphae are surrounded by slime layers (Schmidt 2006).  

 
Soft Rot  
 
 
 Soft rot, originally termed by Findlay and Savory (1954), differs from white and 

brown rot, as it occurs when wood loses mechanical strength and becomes wet and 

spongy (Dix and Webster 1995). Soft rot fungi grows mainly inside the woody cell wall 

and degrades cellulose and hemicellulose, however cellulolytic agents do not diffuse as 

far into the cell wall compared to brown rot (Liese 1964). Furthermore, the lignin 
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content in wood is either attacked minimally or not at all in the initial stage, in turn 

leaving it to resemble brown rot. The distribution of lignin due to its restriction to 

cellulose access, is of particular importance as it determines which parts of the wall are 

attacked preferentially by brown and soft-rot fungi (Dix and Webster 1995). Soft rot 

fungi typically attack wood of higher moisture content, and can create unique cavities in 

the wood cell wall (Goodell et al. 2008). 

 

WHAT FUNGI CAUSE DECAY? 

Robert Hartig, better known as the father of forest pathology proved that wood 

decay is not caused by all fungi, but is in fact caused by fungi belonging to one of the 

two taxonomic groups being the Basidiomycota (basidiomycetes) and the Ascomycota 

(ascomycetes) (Hartig 1874).  

The basidiomycetes are the largest and most important group of fungi as they are 

one of the few groups of organisms capable of degrading lignin in wood, and are 

responsible for brown rot, and most white rot. Examples of basidiomycetes include 

mushrooms and bracket fungi that one would see walking through the forest. A study 

done by Gilbertson and Ryvarden (1986) identified nearly 500 different basidiomycetes 

responsible for decaying wood of living and dead trees in North America. 

The ascomycetes belong to another large group of fungi, however only a few 

ascomycetes are responsible for wood decay which include soft-rot and some white rot. 

These fungi are more commonly known as the cause of leaf diseases and cankers on 

trees (Breitenbach and Kranzlin 1986). The fruiting structures on ascomycetes are also 

much less conspicuous than those of the basidiomycetes, with an example being cup-

fungi.  



6 
 

ECOLOGICAL ROLE OF WOOD-DECAY FUNGI 

Fungi carry out many ecosystem services, all being of a particular importance. A 

key component in the temperate forest is the presence of wood-inhabiting fungi, as they 

play an extremely important role in nutrient and carbon cycling.   

As dead wood litter contributes to a large percentage of most forest ecosystems, 

it forms a reservoir of immobilized mineral nutrients such as nitrogen (N) and 

phosphorus (P). These nutrients remain unavailable to primary producers until they are 

released by decomposer organisms, such as wood-decay fungi (Boddy and Watkinson 

1995).  

Wood-decay fungi are also some of the few organisms that can utilize the carbon 

(C) assimilated into wood components such as cellulose, lignin and recycle it back into 

the ecosystem (Boddy and Watkinson 1995). As decomposition proceeds, relative 

concentrations of N and P in the wood increase (i.e., carbon/nitrogen ratio decrease) and 

carbon (C) is lost in the form of CO2 (Boddy and Watkinson 1995). Wood-decay fungi 

then use the excess nutrients for the production of reproductive structures and foraging 

mycelium.  

This ability for accumulated nitrogen (N) and phosphorus (P) to move within the 

mycelial networks of wood-decay fungi enables fungi to play key roles as wood 

decomposers and root symbionts (Watkinson et al. 2006). Mycelial networks act as both 

a reservoir and a distribution system as nutrients are conserved and often relocated for 

many metres and can even aid in the establishment of mycelia in new resources (Boddy 

and Watkinson 1995). This whole process, in turn, is a major driving force in the soil 
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formation of forest ecosystems in the temperate forests of northern Ontario (Watkinson 

et al. 2006).  

Mycelium and fruiting bodies of wood-decay fungi are also important food 

sources for many other organisms and wildlife that contribute to overall ecosystem 

services.  

 
Obstacles Faced  

Like all living organisms, wood-decay fungi require certain factors for growth 

and survival including water, oxygen, optimal temperature range, a digestible substrate 

(wood), a favourable pH range as well as various chemical growth factors (Zabel and 

Morrell 2012).   

In order for fungi to grow on wood, they must be able to tolerate certain 

chemical and physical stresses including high levels of tannins, phenols and other 

antifungal aromatics present in wood (Dix and Webster 1995). This can be overcome by 

some wood-decay fungi, as for example, heart-rot basidiomycetes which produce an 

array of enzymes including laccases and tyrosinases in order to detoxify wood (Dix and 

Webster 1995).  

 Although important, decay of wood is a very slow process for many reasons. 

One reason being the presence of lignin in the cell walls of the bulk of tissues (Dix and 

Webster 1995). Lignin coats the cell wall polysaccharides and chemically combines 

with them to form lignocellulose, a substance that is very resistant to microbial 

degradation. Therefore, unless wood-decay fungi can chemically modify or degrade 

lignin, it will protect the cell wall from being penetrated by the hyphae (Dix and 

Webster 1995).   
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 Fungi are obligate aerobic organisms and require moderate amounts of oxygen 

for respiration (Zabel and Morrell 1992). Another limiting factor in the ability for wood-

decay fungi to contribute to ecosystem processes are low levels of oxygen (O2) and high 

levels of carbon dioxide (CO2) in the substrate. In the natural environment reduced 

levels of oxygen and high levels of carbon dioxide can occur in wood and influence the 

ability for wood-decay fungi to inhabit these areas as oxygen is needed for growth.  

Moisture levels will also play a major role in the ability for wood-decay fungi to 

succeed in their environment (Griffin 1977). Only a few wood-decay fungi species can 

degrade wood below the fiber saturation point (ca. 25%) (Ammer 1963). Optimal 

moisture levels for the growth of wood-decay fungi are not known but many tests have 

suggested that the optimal wood-moisture levels for most wood-decay lie between 40%-

80% (Scheffer 1973; Schwarze et al. 2000).  

Temperature plays a significant role in the success of wood-inhabiting fungi as 

well. In general, temperature limits for the growth of most fungi lie between 0 and 45 

degrees Celsius. Previous studies have been done in order to understand the success 

rates of wood inhabiting fungi based on temperature. Humphrey and Siggers (1933) 

studied the growth rate of 56 species of wood-decay fungi at temperatures ranging from 

0 to 40°C and found 12 species with an optima below 24°C; 42 with an optima between 

24 and 32°C and 10 with an optima above 32°C.  

 Nitrogen concentrations in wood can also inhibit the growth and ability for 

wood-decay fungi to succeed. There have been many studies done that prove high 

nitrogen contents in wood can lead to higher rates of degradation by wood-decay fungi, 

or cause increased disposition for decay (Hungate 1940, Kollmann 1951, Platt et al. 
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1965, Cowling and Merrill 1966, Garrett 1970). However, it is assumed that wood is a 

substance that happens to be low in nitrogen, and nitrogen is essential for living 

organisms (Cowling and Merrill 1966). Due to these low levels of nitrogen, there are 

some wood-decay fungi that will parasitize invertebrates, including nematodes, in soil 

and utilize their nutrients (Thorn and Barron 1984, Tzean and Liou 1993).  

 As wood-decay fungi are rich in nutrients, they act as an important food supply 

to many grazing animals in the environment. The average nitrogen and phosphorus 

levels in fungal mycelium can range from 3.7% to 5.32% and 0.55% to 0.7%, 

respectively (Flanagan and Van Cleve 1977; Bååth and Söderström 1979). Vegetative 

mycelium represents over 99% of the fungal colony biomass and offers a valuable 

source of nutrients for soil fauna (Frankland 1982). Not only are the survival and growth 

of these grazing animals dependent upon the extensive hyphal systems and fruiting 

bodies produced by lignicolous and mycorrhiza-forming fungi, but the animals have 

effects on the fungi through the dispersal of spores or reduction in the fecundity of the 

fungi (Dighton 2003). In turn, fungal grazers alter fungal species richness by selectively 

eliminating or promoting certain species over others and ultimately effect fungal growth 

and respiration (Newell 1984a, Newell 1984b; McGonigle 2007; Hanlon and Anderson 

1979; Bengtsson et al. 1993; Hedlund and Augustsson 1995; Bretherton et al. 2006; 

Tordoff et al. 2008).  

Invertebrates are one example of grazing animals that can change the 

competitive strength and the overall reproductive success of wood decay fungi, which 

play a major role in important processes (Dighton 2003). Invertebrates that graze on 

fungi include amoebae (Chakraborty et al. 1985), nematodes (Townshend 1964; Riffle 
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1971), enchytraeid annelids (Hedlund and Augustsson 1995; Jaffee et al. 1997), 

mollusks (Silliman and Newell 2003), mites (Mitchell and Parkinson 1976), 

collembolans (Visser and Whittaker 1977; Shaw 1985), adult insects (Weber 1966; 

Newton 1984), and insect larvae (Fletcher et al. 1989; Shaw 1992).  

Nematodes are extremely important invertebrates contributing a large portion to 

nutrient cycling in ecosystems. Nematodes are among the most abundant multicellular 

organisms in the world and are ubiquitous in soil and may feed on a variety of fungal 

species, resulting in them being of great ecological importance (Blaxter 2011; Bongers 

and Bongers 1998).  Nematodes are varied in their habitats, feeding habits and general 

biology. Nematodes are very common in dung, rotting wood and also occur in the sea as 

well as fresh water (Dix and Webster 1995). It is estimated that there are approximately 

29 million nematodes per square metre of mixed deciduous forest soil (Bernard 1992). 

Based on their anterior morphology, nematodes can be defined as fungivores, 

bacterivores, predators or omnivores with a diet that consists of algae, fungal spores, 

protozoa and other nematodes (Swift et al. 1979; Twinn 1974). Fungivorous nematodes 

pierce hyphae of wood-decay fungi with their stylets and feed on the fluid protoplasm of 

the fungus using a pumping action (Figure 1), leaving empty hyphal walls behind 

(Freckman and Baldwin 1990; Siddiqui and Taylor 1969). Invertebrate grazing can 

influence mycelial growth and physiology of wood-decay fungi. Grazing by 

invertebrates can damage or destroy fungal propagules, affecting species richness by 

promoting or eliminating the introduction of a fungal species and affecting the relative 

abundance and community diversity (McGonigle 1995). The impact of gazing by 

fungivorous nematodes can be severe, killing all aerial hyphae and reducing growth 
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drastically (Shafer et al. 1981). Extensive feeding by mycophagous nematodes disrupts 

mycelial networks, affecting the ability of wood-decay fungi to carry out ecological 

functions such as decomposition and mycorrhizal relationships (Ingham 1988; Gera Hol 

and Cook 2005; Boddy and Jones 2008).  

 
Figure 1. Photo taken by Dr. Hutchison of Aphelenchoides sp feeding on hyphae 

 
However, in order for wood-decay fungi to successfully reproduce and 

contribute to the ecosystem, some have evolved to defend themselves from invertebrate 

grazing.  
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OBJECTIVE 

 This thesis will analyze the effects of the fungal-feeding nematode 

Aphelenchoides sp. on the ability of seven wood decay fungi to decay pre-weighed 

wood blocks of trembling aspen. The objective is to understand the relationship between 

wood-decay fungi and hyphal grazing nematodes. As we know, nematodes consume the 

vegetative hyphae through selective cropping or feeding, and due to this, the flasks 

inoculated with both wood-decay fungi and nematodes should, in theory, not be able to 

decay the wood blocks as efficiently as compared to the flasks containing decay fungi 

only. However, we know that some wood-decay fungi have evolved defence 

mechanisms against grazing. Some of the fungi selected are known to employ such 

defence mechanisms.  

HYPOTHESIS 

 The Null hypothesis (Ho) for this thesis project consists of two parts: 

1. The Aphelenchoides sp. will have no effect on the decomposition of the wood 
blocks by the various wood-decay fungi.  
 

2. Those decay fungi with known defence mechanisms against the hyphal grazing 
will have no effect on Aphelenchoides sp.  
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MATERIALS AND METHODS 

 

WOOD BLOCK PREPARATION 

On September 20, 2016; 150 wood blocks of Populus tremuloides Michx. which 

were approximately 1.5-2.0 cm3 in size, were individually numbered and placed on 

aluminum weigh boats and dried for 72 hours at 100 degrees Celsius. They were later 

removed with forceps and weighed (Figure 2). The weight was recorded (see Appendix 

II) for each block.  

 
Figure 2. Dried wood blocks being weighed  

 
 

FLASK PREPARATION 

120 mL of a vermiculite-peat mixture (10:1) was added to the 150 glass 

Erlenmeyer flasks (250 mL). Each flask was numbered and the corresponding block was 

added to each flask, making sure to cover it in the vermiculite-peat mixture. Seventy mL 

of a 2% malt extract broth (20g malt extract, 1g yeast extract, 1000 mL water) was 

added to each flask. Each flask was then plugged with a cotton ball wrapped in cheese 
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cloth in order to prevent contamination. A piece of aluminum foil was then used to 

cover the mouth of the flask and was also numbered to correspond to the number of 

wood block (Figure 3). The flasks were autoclaved for 1 hour at 121 degrees Celsius and 

approximately 1.7 kg/cm2 pressure.  

   
Figure 3. Flasks prepared with vermiculite-peat mixture and malt extract broth before 

                  being autoclaved.  
 
 

EXPERIMENTAL DESIGN 
 
 Table 1 and Figure 4 display the layout of the experimental design for 

investigating the effects of the fungus-feeding nematode Aphelenchoides sp. on the 

decay of wood blocks of Populus tremuloides by seven different wood-decay fungi. The 

seven wood-decay fungi used are Trametes pubescens (728), Bjerkandera adusta (297), 

Ganoderma applanatum (089), Cerrena unicolor (433), Climacodon septentrionale 

(426), Hohenbuehelia grisea (606) and Sphaerobolus stellatus (589) (Appendix I). 

The last three fungi used (Climacodon septentrionale, Hohenbuehelia grisea, 

Sphaerobolus stellatus) are known to have fungal defence mechanisms present. Wood-

decay fungi were obtained from Lakehead University’s Mycological Herbarium Fungal 
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Culture Collection (Thunder Bay, Ontario). Fungi were selected that are known to decay 

deciduous wood.  

 
Table 1. Experimental Design  

Flask Numbers 
Nematodes                

Present  
(Y) Yes (N) No 

Fungi 

1-10 N Control (none) 
11-20 N Trametes pubescens 21-30 Y 
31-40 N Bjerkandera adusta 41-50 Y 
51-60 N Ganoderma applanatum 61-70 Y 
71-80 N 

Cerrena unicolor 81-90 Y 
91-100 N Climacodon septentrionale 101-110 Y 
111-120 N Hohenbuehelia grisea 121-130 Y 
131-140 N Sphaerobolus stellatus 141-150 Y 
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ethanol. Tools used were also kept in 70% ethanol between inoculations and when not in 

use. Flasks were taken one at a time and placed in the transfer hood, where the foil and 

cotton plugs were removed, the mouth of the flask flamed by a Bunsen burner. Two agar 

plugs (7mm in diameter) per flask were cut from the margin of vigorously growing 

cultures with a flame sterilized cork borer, and placed on two sides of the wood block 

with a sterilized long-handled spatula (Figure 5). The mouth of the flask was then 

flamed again, and the cotton plug and foil were placed back on the flask. Once 140 

flasks were inoculated, the flasks were incubated in the dark at 20°C until mycelium was 

visible in each flask, meaning the fungi and wood blocks were ready to be inoculated 

with nematodes.  

   
Figure 5. Author inoculating wood-decay fungi on wood blocks (left) and example of 

      Cerrena unicolor agar plugs from petri dish (right).  
  

 
INOCULATION WITH APHELENCHOIDES SP.  
 
 On November 19, 2016, a small volume of sterilized water was added to agar 

dishes containing cultures of C. macrocephalus containing the nematode 

Aphelenchoides sp. The cultures were swirled and the water containing nematodes 

pooled into a sterile beaker. A one mL sample was taken and added to a 
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haemocytometer to determine the density and was found to be approximately 200 

nematodes/mL. Using an Eppendorf micropipette, a 1mL aliquot of suspended 

nematodes was aseptically added to each set of flasks (Figure 6) designated to receive 

nematodes (Table 1). All inoculations were done aseptically in the transfer hood in 

BB1046. Once inoculated, all flasks were incubated in the dark at 20oC until blocks 

were removed at the end of the incubation period (March 2017) (Figure 7).  

 

 
Figure 6. Author using Eppendorf micropipette to inoculate 200 nematodes/mL of 

      Aphelenchoides sp. (top) and sterilize flask using Bunsen burner (bottom). 
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Figure 7. 150 Erlenmeyer flasks in incubator for incubation at 20°C 

 
 
ADDITION OF EXTRA WATER 

 An additional 30 mL of sterile water was aseptically added to each flask on 

January 13th in order to ensure that adequate moisture levels of the vermiculite-peat 

mixture were conducive for fungal growth.  

 
HARVESTING WOOD BLOCKS 
 
 On March 3rd, 2017, all flasks were removed from incubation (Figure 8). One at 

a time, each flask was emptied of all substances, and each wood block was scraped 

clean, and placed on their respective numbered aluminum foil weigh boats. Once this 

was done, the wood blocks were placed back in the drying oven for 72 hours at 100oC. 

The weights were then recorded for all 150 wood blocks (see Appendix II).  
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Figure 8. Mycelium present in Erlenmeyer flasks before harvesting and drying wood 

       blocks for statistical analysis 
 
 
STATISTICAL ANALYSIS 
 
 The percent decay for each of the 150 wood blocks were recorded by using the 

dry weights of the wood blocks before and after inoculations: 

Percent decay (%) = (Dry weight (before) – Dry weight (after)

Dry weight (before) 
)* 100 

 
Using a statistical software system, SPSS Statistics 17.0 (SPSS Inc. 2008), a univariate 

analysis (one-way ANOVA) was done (Appendix IV) using the percent decay (%) as 

the response variable, with fixed variables being the fungus species used, and the 

presence of nematodes in order to detect significant relationships with a p value of less 

than 0.05. Once significances were found, the least significant difference (LSD) was 

found. This was done by using the following formula: 

LSD = 𝑡𝛼
2,𝑑𝑓⁄ s.ey1- y2 

  A Post-Hoc test was then done in order to determine if the 14 means were 

significantly different from each other and can be found in Appendix V.   
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RESULTS 

 

PERCENT DECOMPOSITION 

 A summary of the results are presented in Table 2. The eight treatments (each 

with 20 flasks) are shown, seven with their respective wood-decay fungi and one 

treatment being the control (10 flasks). The first set of 10 flasks for each wood-decay 

fungus do not contain nematodes, and the second set of 10 flasks do contain nematodes. 

The average dry weights of each of the 150 wood blocks are summarized before and 

after inoculations, with the average percent difference (%).  

 Trametes pubescens was the most successful at decaying wood blocks of 

Populus tremuloides, however it did experience a decline in decay in the presence of the 

fungus-feeding nematode Aphelenchoides sp.  The average percent difference between 

dry weights of wood blocks before and after inoculation with Trametes pubescens 

without the presence of nematodes was 23.72%, and in presence of nematodes was 

19.24%.   

 Ganoderma applanatum exhibited similar results to Trametes pubescens, as 

there was a decrease in the rate of decay in the presence of the fungus-feeding nematode 

Aphelenchoides sp. The average percent difference between dry weights of wood blocks 

before and after inoculation with Ganoderma applanatum without the presence of 

nematodes was 8.79%, and with nematodes 2.13%. 

 Bjerkandera adusta exhibited the second greatest ability to decay wood blocks 

of Populus tremuloides compared to T. pubescens. Unlike T. pubescens, B. adusta 

exhibited an increase in the rate of decomposition in the presence of the fungus-feeding 
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nematode Aphelenchoides sp. with an average percent difference of 19.11% versus 

10.93% in the absence of nematodes. 

 Cerrena unicolor exhibited similar results to Bjerkandera adusta as the average 

percent difference between dry weights of wood blocks before and after inoculation 

increased in the presence of nematodes (5.10%) versus without nematodes (3.75%), but 

this was only slightly statistically significant. This can also be said of the next fungus 

used, Hohenbuehelia grisea, whose average decay (%) also increased in the presence of 

nematodes (0.75%) versus without nematodes (0.27%) but likewise was not statistically 

significant. However, H. grisea also exhibited the least amount of decay compared to all 

other six fungi used.  

 The remaining wood-decay fungi used, Climacodon septentrionale and 

Sphaerobolus stellatus, exhibited a small decrease in the average percent difference in 

dry weights of wood blocks before and after inoculation, with an average percent 

difference of 1.66% and 1.56% respectively, in the presence of fungus-feeding 

nematodes versus 2.55% and 2.33% respectively, without nematodes. Neither of the 

differences were statistically different.  
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Table 2. Summary table showing average dry weights before and after inoculation and 
their average percent differences (percent decay %).  

Treatment Fungi 
Presence 

of 
Nematodes 

Average 
Weight 
(Before) 

Average 
Weight 
(After) 

Average 
Percent 

Difference 
(%) 

1 Control N 1.203 1.204 -0.20 

2 Trametes 
pubescens 

N 1.476 1.143 23.72 
Y 1.596 1.289 19.24 

3 Bjerkandera 
adusta 

N 1.814 1.619 10.93 
Y 1.672 1.361 19.11 

4 Ganoderma 
applanatum 

N 1.746 1.595 8.79 
Y 1.770 1.731 2.13 

5 Cerrena unicolor N 1.534 1.477 3.75 
Y 1.216 1.205 5.10 

6 Climacodon 
septentrionale 

N 1.678 1.634 2.55 
Y 1.757 1.727 1.66 

7 Hohenbuehelia 
grisea 

N 1.348 1.345 0.27 
Y 1.133 1.124 0.75 

8 Sphaerobolus 
stellatus 

N 1.579 1.546 2.33 
Y 1.532 1.507 1.56 

 

 Table 3 shows the results from the one way ANOVA that was run using the 

average percent decay (%) as the response variable compared against the presence of 

nematodes and the wood-decay fungi used in order to find significances (p <0.05). The 

relationship between the wood-decay fungi used and the presence of nematodes did 

show a significance. Therefore, there was a significant impact on the percent of decay in 

the presence of nematodes. There was also a significance shown in the wood-decay 

fungi used, therefore the species of fungi also impacted the amount of decay present.  

Table 3. Results from univariate analysis (one way ANOVA). 

 df Mean Square Significance (p) 
Fungi used 6 1246.67 0.00 
Nematodes 1 5.57 0.38 
Interaction 6 111.39 0.00 

Error 126 7.114  
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A Least Significant Difference (LSD) test was done using the appropriate 

formula and a value of 2.36 was calculated. A Post-Hoc test was then done in order to 

find significances between each treatment. By using the LSD value and the average 

percent difference in decay (%) per each species of wood-decay fungi, treatments were 

grouped into A, B, C, D, E, F or a combination in order to find significances between 

treatments (Table 4). If treatments belong to different groupings, they exhibit a 

significant difference. For the ease of analysis, treatments were given codes: TP - 

Trametes pubescens; with (N) for no nematodes present and (Y) for nematodes present, 

this continues for the following 6 wood-decay fungi: BA – Bjerkandera adusta, GA – 

Ganoderma applanatum, CU – Cerrena unicolor, CS – Climacodon septentrionale, HG 

– Hohenbuehelia grisea, SS – Sphaerobolus stellatus.  

When analyzing the treatment groups for significances, there is a significant 

difference exhibited between treatments of Trametes pubescens in the presence or 

absence of Aphelenchoides sp. In the absence of nematodes the percent decomposition 

was greater (23.72%) with an LSD group F, versus in the presence of nematodes 

decomposition decreased (19.24%) with an LSD group E. 

Similarly, Ganoderma applanatum exhibited a significant difference in the 

percent rate of decomposition in the presence of nematodes (2.13%) with an LSD group 

AB, versus in the absence of nematodes (8.79%) in grouping D.   

Bjerkandera adusta also exhibited a significant difference in decay between 

treatments in the presence or absence of the fungus-feeding nematode Aphelenchoides 

sp. However unlike the first two wood-decay fungi discussed, B. adusta exhibited an 

increase in decomposition in the presence of fungus-feeding nematodes. Percent 
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decomposition in the absence of nematodes was 10.93% and in grouping D, while the 

percent decomposition in the presence of nematodes was 19.11% and in grouping E.  

Similarly, Cerrena unicolor exhibited a slight significant increase in 

decomposition with the presence of nematodes (5.10% and in grouping C) versus 

without nematodes (3.75% and in grouping BC), this overlap in group C shows there is 

a slight significance in these results.  

The last three wood-decay fungi; Climacodon septentrionale, Sphaerobolus 

stellatus and Hohenbuehelia grisea did not show a significant difference in the rate of 

decomposition in the presence or absence of the fungus-feeding nematode 

Aphelenchoides sp.  

Table 4. Treatments with their respective average percent decay (%) sorted from       
  smallest to largest, and LSD group. 

Treatment Average Percent Decay 
(%) LSD group 

HG (N) 0.27 A 
HG (Y) 0.75 A 
SS (Y) 1.56 AB 
CS (Y) 1.66 AB 
GA (Y) 2.13 AB 
SS (N) 2.33 AB 
CS (N) 2.55 AB 
CU (N) 3.75 BC 
CU (Y) 5.10 C 
GA (N) 8.79 D 
BA (N) 10.93 D 
BA (Y) 19.11 E 
TP (Y) 19.24 E 
TP (N) 23.72 F 

 

 Figure 9 depicts the average percent difference in decay for each wood-decay 

fungus treatment. LSD groupings are also shown to depict significant differences, as 

treatments belonging to a different letter groupings represent a significance in results.  
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Figure 9. Figure showing the percent decay (%) corresponding to each treatment, with 
the LSD grouping labelled.  

 

Figures 10 and 11 depict the final results showing the percent decay for each 

treatment (%). The results for the percent decay without the presence of nematodes is 

represented in blue, while the percent decay with the presence of nematodes is 

represented in orange. The LSD codes for each treatment are also displayed.  
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Figure 10. Average percent decay (%) for each treatment of wood-decay fungi, with the 
presence of nematodes shown in orange.  

 

Figure 11. Average percent decay (%) for each treatment of wood-decay fungi, with the 
presence of nematodes shown in orange, versus no nematodes shown in blue.  
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DISCUSSION 

  All 140 flasks inoculated with wood-decay fungi were able to produce 

mycelium and ultimately cause decay and weight loss to the Populus tremuloides wood 

blocks. However, the degree of decomposition varied among the seven species of fungi, 

as well as with the presence or absence of the nematode Aphelenchoides sp.  

 Four of the wood-decay fungi used did exhibit a reduction in their rate of 

decomposition due to the presence of nematodes. These species were Trametes 

pubescens, Ganoderma applanatum, Climacodon septentrionale and Sphaerobolus 

stellatus. The other three wood-decay fungi used did not exhibit this pattern and in fact 

increased the amount of decomposition in the presence of the fungus-feeding nematode 

Aphelenchoides sp. These species were Bjerkandera adusta, Cerrena unicolor and 

Hohenbuehelia grisea.  

Wood-decay fungi require certain factors for growth and survival including 

water, oxygen, optimal temperature range, a digestible substrate, a favourable pH range 

as well as various chemical growth factors (Zabel and Morrell 2012). With this 

knowledge, it can be assumed that the seven wood-decay fungi used were provided with 

optimum growing conditions.  

As trees differ in anatomical structure as well as structural differences in 

individual cell-wall layers, all tree species differ in their ability to provide optimal 

conditions for fungal enzymes to break them down. The seven wood-decay fungi used in 

this experiment were all white-rot fungi and are known to prefer wood from deciduous 

trees, therefore making Populus tremuloides a suitable host. Although this is true, the 

rate of decay for each species of wood-decay fungi may vary depending on the 
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enzymatic arsenal of each species and the anatomical and structural traits of the Populus 

tremuloides wood blocks.  

One factor that can lead to differences in the rate of decay for each of the seven 

species of wood-decay fungi used in this experiment is the rate of growth per fungus 

species. Riffle (1971) noted that fast growing fungi which produce mycelium at a higher 

rate than nematode consumption were more successful than slow growing fungi which 

cannot produce mycelium at a higher rate than the consumption rate by nematodes. With 

this knowledge, we can assume slower growing fungi will be more impacted from the 

fungus-feeding nematode Aphelenchoides sp. thus affecting decay. While S. stellatus, C. 

septentrionale, G. applanatum were slow growing and were indeed most affected by 

grazing, T. pubescens exhibited rapid growth.   

Although we know that wood-decay fungi can be affected in their success rate 

by grazing by invertebrate species such as Aphelenchoides sp., we also know that some 

wood-decay fungi possess antifeedant mechanisms. Nematophagous fungi can possess 

adhesive structures which can be diverse in size and shape, ranging from unmodified 

adhesive hyphae to adhesive knobs and three-dimensional nets (Gray 1987). Some 

species possess constricting rings in order to disable nematodes. In the presence of 

nematodes, the rings induce the rapid inflation of cells and trap the nematode which has 

entered the ring (Higgins and Pramer 1967). Some fungi possess crystalline structures 

along their hyphae which mechanically damage the cuticle of nematodes (Luo et al. 

2004; Luo et al. 2007). Chemical antifeedants are another defence mechanisms used by 

some species of fungi in order to deter predators and protect substrate territory (Janzen 

1977). These fungal chemical antifeedants can be presented to the potential grazer in 
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three ways. Exotoxins are secreted from the hyphae into the surrounding environment, 

creating a gradient preventing gazing from organisms including nematodes (Tanney 

2011). Fungi may also produce toxins from specialized structures including toxocysts 

and secretory cells (Tanney 2011). Another strategy used by some fungi in order to deter 

predators involves the ingestion of fungal cytoplasmic toxins (Tzean and Liou 1993). 

This may be the most efficient defence strategy in terms of metabolic cost compared to 

exotoxins which must be constantly secreted in order to maintain an effective 

concentration in the substrate (Tanney 2011) 

Forms of antifeedant mechanisms that have evolved among wood-decay fungi 

include the function of gloeocystidia (Tanney and Hutchison 2011), the presence of 

setae on perithecia of Chaetomium spp. (Wicklow 1979), the production of toxin 

droplets from secretory cells of Conocybe lactea and Panaeolina foenisecii (Hutchison 

et al. 1996), the production of cytoplasmic toxins in fungal hyphae (Shaw 1985; Tzean 

and Liou 1993), the release of toxic volatiles and antibiotics from fungal hyphae (e.g.: 

Hayashi et al. 1981, Riffle 1971, Stadler et al. 1993; Stadler et al. 1994; Rohlfs et al.  

2007), and the presence of calcium oxalate crystals on hyphae (Böllmann et al. 2010).  

Of the seven fungi utilized, three possess well documented antifeedant and/or 

nematophagous abilities. Hohenbuehelia grisea produces sticky hour glass knobs on the 

hyphae to capture nematodes and eventually consume them as a nitrogen source (Barron 

and Dierkes 1977). This possibly explains the greater rate of decay in the aspen wood 

blocks in the presence of Aphelenchoides sp. The other two, Sphaerobolus stellatus 

employs gloeocystidia as an antifeedant which releases an oily material and 

encapsulates the heads of nematodes thus immobilizing them (Tanney and Hutchison 
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2011), while Climacodon septentrionale employs secretory cells which secrete toxic 

droplets to kill nematodes (Tanney and Hutchison 2012). It is interesting that these latter 

two species were ineffective in reducing grazing on their respective hyphae.  

In order to better understand the interaction between the fungus feeding 

nematode Aphelenchoides sp. and the seven species of wood-decay fungi used in this 

experiment, we will further look at the results per species.  

 
TRAMETES PUBESCENS 
 
 Trametes pubescens exhibited the highest rate of decay compared to the other six 

wood-decay fungi used. Trametes pubescens also exhibited higher decay rates in the 

treatment without the presence of Aphelenchoides sp. (23.72 % difference) versus in the 

presence of Aphelenchoides sp. (19.24%). When doing the LSD test, significant 

differences were found between these two treatments, suggesting that the fungus-

feeding nematode Aphelenchoides sp. were able to successfully graze on the hyphae and 

inhibit the success and rate of decay by T. pubescens. Trametes pubescens may have 

favoured the wood block species Populus tremuloides over the six other wood-decay 

fungi used, as it was originally isolated from P. treumuloides (Appendix I). 

 
BJERKANDERA ADUSTA 
 
 Bjerkandera adusta differed from Trametes pubescens as there was a significant 

increase in the rate of decay in the presence of Aphelenchoides sp. (19.11%) compared 

to the treatment without nematodes (10.93 %). As Bjerkandera adusta is not known to 

have any defence mechanisms against grazing, we can only assume the fast rate of 

growth and possible growth response to grazing may explain the observed results. 
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Bjerkandera adusta is a well-known primary colonizer of dead wood and exhibits a 

ruderal strategy (Dix and Webster 1995). 

Fungal growth is known to be dependent on grazing intensity, as growth may 

increase when fungi are subjected to low intensity grazing and may decrease under high 

intensity grazing (Hanlon and Anderson 1979; Hanlon 1981; Ingham et al. 1985; Moore 

et al. 1988; Hedlund and Augustsson 1995). This fungal response to grazing intensity 

suggests that activity is increased up to an optimal value, after which further increases in 

grazing intensity begin to reduce fungal activity (Hanlon 1981; Ek et al. 1994). When 

invertebrate grazing occurs at optimal densities, fungal growth may be enhanced 

through the selective pruning of senescent hyphae, releasing immobilized nutrients 

(Hanlon 1981; Moore et al. 1988). Selective grazing may also remove toxin-

accumulating hyphae, allowing nutrients to be further utilized, increasing fungal growth 

(Hanlon 1981).  

 
GANODERMA APPLANATUM  
 
 The third wood-decay fungus used, Ganoderma applanatum, showed the 

greatest significant difference in the rate of decomposition between treatments. The 

treatment with Ganoderma applanatum and host wood block Populus tremuloides alone 

exhibited an average decay rate of 8.75% (LSD group D), versus the treatment with 

Ganoderma applanatum, wood block and fungal grazing nematode which exhibited an 

average decay rate of 2.13% (LSD group AB). From these results, we know that grazing 

from Aphelenchoides sp. had a significant effect on the ability of Ganoderma 

applanatum to successfully decay wood blocks of Populus tremuloides. Although 

Ganoderma applanatum did not have the highest rates of decay versus the other six 
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wood-decay fungi used, it exhibited the greatest influence by invertebrate grazing. It is 

possible that Ganoderma applanatum provided the most preferred food source for 

Aphelenchoides sp. compared to the other six wood-decay fungi used. Ganoderma 

applanatum was also one of the slowest growing fungi used, and even the lightest of 

grazing may have impacted rates of decay. Ganoderma applanatum exhibits a stress 

tolerant strategy which includes a slower growth rate (Dix and Webster 1995).  

 
CERRENA UNICOLOR  
 

The fourth wood-decay fungus used was Cerrena unicolor and like Bjerkandera 

adusta, exhibited an increase in decomposition in the presence of the fungus-feeding 

nematode Aphelenchoides sp. However, there was only a slight significance between the 

first treatment where Cerrena unicolor was inoculated onto Populus tremuloides wood 

blocks alone with an average percent decay of 3.75% (LSD grouping BC) versus the 

treatment with Cerrena unicolor and the fungus feeding nematode Aphelenchoides sp. 

inoculated onto wood blocks of Populus tremuloides with an average percent decay of 

5.10% (LSD grouping C). Similar to Bjerkandera adusta, Cerrena unicolor is not 

known to possess defence mechanisms against hyphal grazing, therefore we can only 

assume B. adusta responded to low intensity grazing by the fungus-feeding nematode 

Aphelenchoides sp. by exhibiting enhanced growth and enzyme activity through the 

selective pruning of senescent hyphae, thus releasing immobilized nutrients (Hanlon 

1981; Moore et al. 1988). Selective grazing may also remove toxin-accumulating 

hyphae, allowing nutrients to be further utilized, increasing fungal growth (Hanlon 

1981).   
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CLIMACODON SEPTENTRIONALE  
 
 The fifth wood-decay fungi used, Climacodon septentrionale, did show a 

difference in the rate of decay between the treatment with nematode species 

Aphelenchoides sp. versus without nematodes. The treatment with C. septentrionale 

inoculated alone with wood blocks showed an average percent decay of 2.55%, while 

the treatment with C. septentrionale, wood block and nematode species Aphelenchoides 

sp. exhibited an average percent decay of 1.66%. However, this difference did not prove 

to be significant when doing the LSD test, placing both treatments in grouping AB.  

 Tanney (2011) undertook an investigation on the presence of antifeedant 

mechanisms in C. septentrionale while in the presence of mycophagist nematodes. The 

study found that when nematodes were introduced to cultures of C. septentrionale, they 

became immobilized in the aerial mycelia by means of toxin droplets produced by 

secretory cells. When nematodes came into contact with secretory cell droplets, their 

movement became restricted, enveloping portions of the nematode body. When 

enveloped, the nematodes were found to struggle in motion in an attempt to locate 

adjacent hyphae, causing droplets to coalesce and further capture nematodes. This 

continued until nematodes fully ceased in motion and ultimately died. Hyphae were 

never found to penetrate the nematode cuticle (Tanney 2011).  

 In the investigation done by Tanney (2011), it was found that nematodes 

degraded at inconsistent rates. The reason for this was thought to be due to the fact that 

experiments took place on a nutrient rich medium, which may negate the requirement to 

consume exogenous nutrient sources by the fungus (Tanney 2011).  It is possible that 

trapped nematodes are used as a dietary supplement and that other organic substrates 
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such as lignin or cellulose are the main energy sources. The ability to capture and 

consume is most useful when nitrogen is a limiting factor at sites of high microbial 

activity in order to supplement nitrogen (Thorn and Barron 1984). Tanney hypothesized 

that if his experiment was done in a nutritionally starved medium, different results 

would have been obtained.  

 
HOHENBUEHELIA GRISEA  
 
 When studying the effects of Aphelenchoides sp. on Hohenbuehelia grisea, there 

was an increase shown in the rate of decay while in the presence of fungus-feeding 

nematodes, with an average percent decay of 0.75% in the weight of wood blocks; 

compared to the treatment without nematodes (0.27%). However, this was not 

statistically significant. 

A study done by Barron and Dierkes (1977) found Hohenbuehelia as the perfect 

state of Nematoctonus. The genus Nematoctonus was erected by Drechsler (1941) in 

discovering two fungi found to be parasitic on nematodes. Fungal parasites of 

nematodes are broadly classified as either predaceous or endoparasitic, however the 

genus Nematoctonus is unique in that some species are endoparasitic and some are 

predaceous (Barron 1977). Nematoctonus fungi are capable of capturing nematodes with 

hourglass-shaped adhesive knobs (Drechsler 1949), which is the case with H. grisea.    

 

SPHAEROBOLUS STELLATUS 
 

 Sphaerobolus stellatus, similar to Climacodon septentrionale, exhibited a slight 

decline in decay when in the presence of fungus-feeding nematodes compared to their 

absence, but this was not statistically significant. Like C. septentrionale and H. grisea, 

S. stellatus is known to have the ability to immobilize mycophagous nematodes.  
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 The surface mycelium of Sphaerobolus colonies produce gloeocystidia which 

encapsulate and immbolize fungus-feeding nematodes such as Aphelenchoides sp. When 

the nematode inserts its stylet into the gloeocystidium, oleaginous contents solidify and 

form a persistent cap on the head of the nematode. This persistent cap restricts the 

movement of the nematode, not allowing it the ability to feed on fungal hyphae (Tanney 

2011)  

 Tanney (2011) found that although gloeocystidia occurred in high densities, it 

was restricted to the agar surface, allowing nematodes to successfully graze on hyphae 

submerged in agar. It was also found that the majority of immobilized nematodes 

appeared to be adults. This can be due to the fact that juvenile nematodes are able to 

shed their encapsulating material through moulting, which has been found to facilitate 

the removal of parasites in other organisms (Whitney 1982).   

 It is possible that S. stellatus, similar to C. septentrionale, was not able to 

produce mycelium at a quick enough rate to surpass the rate of grazing by the fungus-

feeding nematode Aphelenchoides sp. It is also possible that mostly juvenile nematodes 

that were grazing S. stellatus hyphae were are able to escape encapsulation by shedding 

material through moulting. 
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CONCLUSION 

 

 Fungus feeding nematodes such as Aphelenchoides sp. do have an impact on 

ecological functions such as wood decay. However, some wood-decay fungi possess 

defence mechanisms and are able to immobilize nematodes and utilize their nutrients. 

Therefore, among seven wood-decay fungi tested, there was either an increase or 

decrease in the rate of decay of the Populus tremuloides wood blocks while in the 

presence of the fungus-feeding nematode Aphelenchoides sp.  

Trametes pubescens and Ganoderma applanatum exhibited the largest decline in 

the rate of observed decay while in the presence of the fungus-feeding nematode 

Aphelenchoides sp. suggesting that the nematodes were able to successfully graze on 

their hyphae and impact enzyme activity. In contrast, Bjerkandera adusta and Cerrena 

unicolor displayed an increase in decay in the presence of fungus-feeding nematodes. 

Although there is little explanation for this, it was suggested that optimal grazing can 

enhance vigorous hyphal growth and thus promote better enzymatic activity.  

 The last three wood-decay fungi in this experiment have all proven in previous 

studies to possess hyphal defence mechanisms against hyphal grazing. Climacodon 

septentrionale and Sphaerobolus stellatus did not show significant differences in their 

rates of decay while in the presence or absence of fungus-feeding nematode 

Aphelenchoides sp. However, Hohenbuehelia grisea did exhibit an increase in the rate 

of decomposition when in the presence of the fungus-feeding nematode Aphelenchoides 

sp. This increase in decomposition in the presence of nematodes can be explained by the 

ability of H. grisea to consume nematodes for nitrogen, thus it may have been able to 

increase the rate and success of decomposition.  
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  In order to better understand the relationship between the fungus-feeding 

nematode Aphelenchoides sp. and wood-decay fungi, it is suggested that more studies be 

done with larger sample sizes in order to achieve more accurate results. The length of 

experiment can be increased, varying optimal temperatures can be used, a greater 

amount of fungus-feeding nematodes may be introduced into each flask, and the species 

of host wood block can all be investigated further in order to see varying results.  

 Although many antifeedant mechanisms are known to exist among wood-decay 

fungi, the effects of these may be investigated on other mycophagist organisms with 

various feeding mouthparts such as collembola and mites in order to provide more 

insight into these interactions (Tanney 2011). The results from this thesis conclude 

further research must be done in order to fully understand the relationship between fungi 

and their co-inhabiting fauna.  
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APPENDIX I 
 

 
COLLECTION INFORMATION FOR WOOD-DECAY FUNGI  
 

 Bjerkandera adusta (297)  
10 November 2004 
Lakehead University campus, Thunder Bay, Ontario 
Isolated by O. Bott 
Isolated from spore print from basidioma on deciduous tree 
 

 Cerrena unicolor (433) 
22 November 2005 
Lakehead University campus, Thunder Bay, Ontario 
Isolated by P. Gammond 
Isolated from spore print from basidoma  
 

 Climacodon septentrionale (426) 
September 2005 
Thunder Bay, Ontario 
Isolated by L.J. Hutchison 
Isolated from tissue pieces from basidioma on stem of living Acer saccharum 
 

 Ganoderma applanatum (089) 
18 November 2002 
Thunder Bay, Ontario 
Isolated by S. Hill 
Isolated from tissue pieces from basidioma 
 

 Hohenbuehelia grisea (606) 
2007 
London, Ontario 
Isolated by R.G. Thorn 
Host substrate unknown 
 

 Sphaerobolus stellatus (589) 
23 October 2007 
Lakehead University campus, Thunder Bay, Ontario 
Isolated by N. Coomes-Johnson 
Isolated from peridioles from basidiomata on decayed wood 
 

 Trametes pubescens  
3 October 2014 
Lakehead University campus, Thunder Bay, Ontario 
Isolated by L.J Hutchison 
Isolated from tissue pieces from basidioma on fallen Populus tremuloides lo
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APPENDIX II 
 
DRY WEIGHTS OF POPULUS TREMULOIDES BEFORE AND AFTER 
INOCULATIONS WITH AVERAGE PERCENT DIFFERENCE (DECAY) (%) 
 

Number 
of wood 

block 

Dry 
weight of 

wood 
block 

(Before) 

Dry 
weight of 

wood 
block 

(After) 

% 
Difference 

(Decay) 

Number 
of wood 

block 

Dry 
weight of 

wood 
block 

(Before) 

Dry 
weight of 

wood 
block 

(After) 

% 
Difference 

(Decay) 

1 1.020 1.025 -0.49 87 0.929 0.915 1.51 

2 1.088 1.098 -0.92 88 1.081 0.984 8.97 

3 1.271 1.251 1.57 89 1.350 1.352 -0.15 

4 1.763 1.778 -0.85 90 0.872 0.869 0.34 

5 1.012 1.019 -0.69 91 1.692 1.651 2.42 

6 0.946 0.948 -0.21 92 1.564 1.532 2.05 

7 1.242 1.246 -0.32 93 1.837 1.777 3.27 

8 1.602 1.606 -0.25 94 1.750 1.730 1.14 

9 1.095 1.095 0.00 95 1.670 1.649 1.26 

10 0.972 0.970 0.21 96 1.693 1.626 3.96 

11 1.241 0.925 25.46 97 1.804 1.689 6.37 

12 1.360 1.037 23.75 98 1.806 1.786 1.11 

13 1.764 1.432 18.82 99 1.547 1.499 3.10 

14 1.450 1.057 27.10 100 1.413 1.401 0.85 

15 1.553 1.158 25.43 101 1.402 1.390 0.86 

16 1.572 1.205 23.35 102 1.751 1.743 0.46 

17 1.275 0.911 28.55 103 1.489 1.474 1.01 

18 1.574 1.228 21.98 104 2.053 2.025 1.36 

19 1.563 1.250 20.03 105 1.876 1.843 1.76 

20 1.581 1.222 22.71 106 1.596 1.582 0.88 

21 1.489 1.152 22.63 107 1.832 1.695 7.48 

22 1.618 1.379 14.77 108 1.986 1.961 1.26 

23 1.411 1.121 20.55 109 1.713 1.693 1.17 

24 1.735 1.460 15.85 110 1.868 1.861 0.37 

25 1.700 1.340 21.18 111 1.183 1.179 0.34 

26 1.183 0.983 16.91 112 1.299 1.283 1.23 

27 1.745 1.377 21.09 113 1.353 1.338 1.11 

28 1.690 1.337 20.89 114 1.121 1.119 0.18 

29 1.829 1.496 18.21 115 1.471 1.478 -0.48 

30 1.561 1.244 20.31 116 1.141 1.132 0.79 

31 2.151 1.976 8.14 117 1.333 1.337 -0.30 

32 1.752 1.564 10.73 118 1.332 1.333 -0.08 
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Number 
of wood 

block 

Dry 
weight of 

wood 
block 

(Before) 

Dry 
weight of 

wood 
block 

(After) 

% 
Difference 

(Decay) 

Number 
of wood 

block 

Dry 
weight of 

wood 
block 

(Before) 

Dry 
weight of 

wood 
block 

(After) 

% 
Difference 

(Decay) 

33 2.081 1.874 9.95 119 1.646 1.649 -0.18 

34 1.782 1.596 10.44 120 1.599 1.597 0.13 

35 1.721 1.527 11.27 121 1.120 1.111 0.80 

36 1.459 1.299 10.97 122 1.218 1.212 0.49 

37 1.868 1.668 10.71 123 1.124 1.126 -0.18 

38 2.031 1.814 10.68 124 1.194 1.191 0.25 

39 1.517 1.284 15.36 125 1.009 1.008 0.10 

40 1.780 1.584 11.01 126 1.160 1.157 0.26 

41 1.256 0.913 27.31 127 0.914 0.911 0.33 

42 1.953 1.688 13.57 128 1.310 1.268 3.21 

43 1.934 1.664 13.96 129 0.996 0.992 0.40 

44 1.740 1.381 20.63 130 1.284 1.261 1.79 

45 1.568 1.220 22.19 131 1.670 1.626 2.63 

46 1.763 1.455 17.47 132 1.868 1.855 0.70 

47 1.810 1.590 12.15 133 1.566 1.537 1.85 

48 1.501 1.187 20.92 134 1.609 1.575 2.11 

49 1.538 1.193 22.43 135 1.301 1.274 2.08 

50 1.652 1.314 20.46 136 1.743 1.719 1.38 

51 1.617 1.475 8.78 137 1.296 1.270 2.01 

52 1.829 1.632 10.77 138 1.093 1.008 7.78 

53 1.896 1.695 10.60 139 1.818 1.784 1.87 

54 1.518 1.367 9.95 140 1.830 1.814 0.87 

55 1.659 1.446 12.84 141 1.807 1.812 -0.28 

56 1.696 1.485 12.44 142 1.302 1.288 1.08 

57 1.598 1.480 7.38 143 1.543 1.534 0.58 

58 1.931 1.880 2.64 144 1.480 1.470 0.68 

59 1.870 1.725 7.75 145 1.745 1.701 2.52 

60 1.850 1.763 4.70 146 1.546 1.525 1.36 

61 1.783 1.749 1.91 147 1.223 1.217 0.49 

62 1.718 1.676 2.44 148 1.182 1.129 4.48 

63 1.689 1.659 1.78 149 1.735 1.688 2.71 

64 1.741 1.718 1.32 150 1.742 1.707 2.01 

65 1.530 1.493 2.42     

66 1.649 1.630 1.15     

67 2.154 2.090 2.97     

68 1.752 1.715 2.11     

69 1.963 1.894 3.52     
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Number 
of wood 

block 

Dry 
weight of 

wood 
block 

(Before) 

Dry 
weight of 

wood 
block 

(After) 

% 
Difference 

(Decay) 
    

70 1.716 1.687 1.69     

71 1.472 1.429 2.92     

72 1.197 1.156 3.43     

73 2.000 1.950 2.50     

74 1.399 1.351 3.43     

75 1.713 1.660 3.09     

76 1.446 1.369 5.33     

77 1.570 1.514 3.57     

78 1.677 1.633 2.62     

79 1.491 1.398 6.24     

80 1.370 1.310 4.38     

81 1.681 1.614 3.99     

82 1.524 1.305 14.37     

83 1.327 1.289 2.86     

84 1.121 1.099 1.96     

85 1.213 1.181 2.64     

86 1.065 0.911 14.46     
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APPENDIX III 
 

DATA RUN THROUGH SPSS IN STATISTICAL ANALYSIS 
 

 

Flask # Name Nematodes Percent decay (%) 

11 Trametes pubescens N 25.46 
12 Trametes pubescens N 23.75 
13 Trametes pubescens N 18.82 
14 Trametes pubescens N 27.1 
15 Trametes pubescens N 25.43 
16 Trametes pubescens N 23.35 
17 Trametes pubescens N 28.55 
18 Trametes pubescens N 21.98 
19 Trametes pubescens N 20.03 
20 Trametes pubescens N 22.71 
21 Trametes pubescens Y 22.63 
22 Trametes pubescens Y 14.77 
23 Trametes pubescens Y 20.55 
24 Trametes pubescens Y 15.85 
25 Trametes pubescens Y 21.18 
26 Trametes pubescens Y 16.91 
27 Trametes pubescens Y 21.09 
28 Trametes pubescens Y 20.89 
29 Trametes pubescens Y 18.21 
30 Trametes pubescens Y 20.31 
31 Bjerkandera adusta N 8.14 
32 Bjerkandera adusta N 10.73 
33 Bjerkandera adusta N 9.95 
34 Bjerkandera adusta N 10.44 
35 Bjerkandera adusta N 11.27 
36 Bjerkandera adusta N 10.97 
37 Bjerkandera adusta N 10.71 
38 Bjerkandera adusta N 10.68 
39 Bjerkandera adusta N 15.36 
40 Bjerkandera adusta N 11.01 
41 Bjerkandera adusta Y 27.31 
42 Bjerkandera adusta Y 13.57 
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43 Bjerkandera adusta Y 13.96 
44 Bjerkandera adusta Y 20.63 
45 Bjerkandera adusta Y 22.19 
46 Bjerkandera adusta Y 17.47 
47 Bjerkandera adusta Y 12.15 
48 Bjerkandera adusta Y 20.92 
49 Bjerkandera adusta Y 22.43 
50 Bjerkandera adusta Y 20.46 
51 Ganoderma applanatum N 8.78 
52 Ganoderma applanatum N 10.77 
53 Ganoderma applanatum N 10.6 
54 Ganoderma applanatum N 9.95 
55 Ganoderma applanatum N 12.84 
56 Ganoderma applanatum N 12.44 
57 Ganoderma applanatum N 7.38 
58 Ganoderma applanatum N 2.64 
59 Ganoderma applanatum N 7.75 
60 Ganoderma applanatum N 4.7 
61 Ganoderma applanatum Y 1.91 
62 Ganoderma applanatum Y 2.44 
63 Ganoderma applanatum Y 1.78 
64 Ganoderma applanatum Y 1.32 
65 Ganoderma applanatum Y 2.42 
66 Ganoderma applanatum Y 1.15 
67 Ganoderma applanatum Y 2.97 
68 Ganoderma applanatum Y 2.11 
69 Ganoderma applanatum Y 3.52 
70 Ganoderma applanatum Y 1.69 
71 Cerrena unicolor N 2.92 
72 Cerrena unicolor N 3.43 
73 Cerrena unicolor N 2.5 
74 Cerrena unicolor N 3.43 
75 Cerrena unicolor N 3.09 
76 Cerrena unicolor N 5.33 
77 Cerrena unicolor N 3.57 
78 Cerrena unicolor N 2.62 
79 Cerrena unicolor N 6.24 
80 Cerrena unicolor N 4.38 
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81 Cerrena unicolor Y 3.99 
82 Cerrena unicolor Y 14.37 
83 Cerrena unicolor Y 2.86 
84 Cerrena unicolor Y 1.96 
85 Cerrena unicolor Y 2.64 
86 Cerrena unicolor Y 14.46 
87 Cerrena unicolor Y 1.51 
88 Cerrena unicolor Y 8.97 
89 Cerrena unicolor Y -0.15 
90 Cerrena unicolor Y 0.34 
91 Climacodon septentrionale N 2.42 
92 Climacodon septentrionale N 2.05 
93 Climacodon septentrionale N 3.27 
94 Climacodon septentrionale N 1.14 
95 Climacodon septentrionale N 1.26 
96 Climacodon septentrionale N 3.96 
97 Climacodon septentrionale N 6.37 
98 Climacodon septentrionale N 1.11 
99 Climacodon septentrionale N 3.1 
100 Climacodon septentrionale N 0.85 
101 Climacodon septentrionale Y 0.86 
102 Climacodon septentrionale Y 0.46 
103 Climacodon septentrionale Y 1.01 
104 Climacodon septentrionale Y 1.36 
105 Climacodon septentrionale Y 1.76 
106 Climacodon septentrionale Y 0.88 
107 Climacodon septentrionale Y 7.48 
108 Climacodon septentrionale Y 1.26 
109 Climacodon septentrionale Y 1.17 
110 Climacodon septentrionale Y 0.37 
111 Hohenbuehelia grisea N 0.34 
112 Hohenbuehelia grisea N 1.23 
113 Hohenbuehelia grisea N 1.11 
114 Hohenbuehelia grisea N 0.18 
115 Hohenbuehelia grisea N -0.48 
116 Hohenbuehelia grisea N 0.79 
117 Hohenbuehelia grisea N -0.3 
118 Hohenbuehelia grisea N -0.08 
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119 Hohenbuehelia grisea N -0.18 
120 Hohenbuehelia grisea N 0.13 
121 Hohenbuehelia grisea Y 0.8 
122 Hohenbuehelia grisea Y 0.49 
123 Hohenbuehelia grisea Y -0.18 
124 Hohenbuehelia grisea Y 0.25 
125 Hohenbuehelia grisea Y 0.1 
126 Hohenbuehelia grisea Y 0.26 
127 Hohenbuehelia grisea Y 0.33 
128 Hohenbuehelia grisea Y 3.21 
129 Hohenbuehelia grisea Y 0.4 
130 Hohenbuehelia grisea Y 1.79 
131 Sphaerobolus stellatus N 2.63 
132 Sphaerobolus stellatus N 0.7 
133 Sphaerobolus stellatus N 1.85 
134 Sphaerobolus stellatus N 2.11 
135 Sphaerobolus stellatus N 2.08 
136 Sphaerobolus stellatus N 1.38 
137 Sphaerobolus stellatus N 2.01 
138 Sphaerobolus stellatus N 7.78 
139 Sphaerobolus stellatus N 1.87 
140 Sphaerobolus stellatus N 0.87 
141 Sphaerobolus stellatus Y -0.28 
142 Sphaerobolus stellatus Y 1.08 
143 Sphaerobolus stellatus Y 0.58 
144 Sphaerobolus stellatus Y 0.68 
145 Sphaerobolus stellatus Y 2.52 
146 Sphaerobolus stellatus Y 1.36 
147 Sphaerobolus stellatus Y 0.49 
148 Sphaerobolus stellatus Y 4.48 
149 Sphaerobolus stellatus Y 2.71 
150 Sphaerobolus stellatus Y 2.01 
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APPENDIX IV 

 

UNIVARIATE ANALYSIS WITH PERCENT DECAY AS THE RESPONSE VARIABLE AND PRESENCE OF NEMATODES 
AND SPECIES OF WOOD-DECAY FUNGI AS FIXED VARIABLES 
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APPENDIX V 

 

LSD TEST DONE GROUPING TREATMENTS WITHIN A VALUE OF 2.36 IN ORDER TO TEST FOR SIGNIFICANCES 

 
 

 

  LEGEND 
TREATMENT MEAN TREATMENT MEAN 

HG (N) 0.27 CU (N) 3.75 
HG (Y) 0.75 CU (Y) 5.10 
SS (Y) 1.56 GA (N) 8.79 
CS (Y) 1.66 BA (N) 10.93 
GA (Y) 2.13 BA (Y) 19.11 
SS (N) 2.33 TP (Y) 19.24 
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