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Abstract 

Fibromyalgia (FM) is a chronic pain disorder that affects many individuals worldwide. 

The lack of a definitive diagnostic method and highly successful treatment approaches make it an 

interesting area of research. In the present study, the effectiveness of quantifying cytokine 

concentrations from stimulated peripheral blood mononuclear cells (PBMCs) in pre-intervention 

FM patients as a new diagnostic approach for FM, and the effectiveness of radial shockwave 

therapy (RSWT) as a FM treatment option to improve the function of PBMC cytokine release 

from pre- to post-interventions were investigated. Evaluating cytokine concentrations released 

from stimulated PBMCs allows the capacity of PBMCs to release cytokines and the function of 

the immune system to be assessed. This was done by isolating PBMCs from blood samples of 

healthy controls (HCs) and FM participants taken before and after receiving the treatment or 

placebo intervention, dividing the amount of cells in media from each sample into wells of a cell 

culture plate, and stimulating half of the cells with the mitogen phytohaemagglutinin protein 

(PHA-P) to release cytokines. The concentrations of interleukins 6 and 10 (IL-6 and IL-10, 

respectively) released from stimulated and unstimulated PBMCs were determined from the cell 

culture supernatants in pre-intervention FM participants and HCs. IL-6 and IL-10 concentrations 

released from stimulated and unstimulated PBMCs were also determined from the cell culture 

supernatants before and after FM participants received the treatment or placebo intervention. The 

effective change ratios for both IL-6 and IL-10 cytokines were also calculated by dividing the 

cytokine concentration released from stimulated PBMCs by the cytokine concentration released 

from unstimulated PBMCs for each FM participant. The effective change ratios from pre-

intervention FM participants were compared to the effective change ratios from HCs. The 

effective change ratios from FM participants were also compared pre- and post-intervention for 

the treatment and placebo groups, and to effective change ratios from HCs. The correlation of 

IL-6 and IL-10 delta effective change ratios from the difference in effective change ratios pre- to 

post-intervention was also determined for each FM participant. The results indicated there were 

no significant differences between HCs and FM participants for the concentrations of IL-6 and 

IL-10 cytokines released from stimulated and unstimulated PBMCs. There were also no 

significant differences between HCs and FM participants for both the IL-6 and IL-10 cytokine 

effective change ratios. There were no significant differences between FM participants pre- and 

post-intervention for the treatment and placebo groups for the concentrations of IL-6 and IL-10 
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cytokines released from stimulated and unstimulated PBMCs. There were also no significant 

differences observed between FM participants pre- and post-intervention for the treatment and 

placebo groups for both the IL-6 and IL-10 cytokine effective change ratios. A significant 

positive correlation was observed between IL-6 and IL-10 delta effective change ratios from the 

difference in effective change ratios pre- to post-intervention for each FM participant. 

Additionally, the data did not indicate that RSWT is effective at improving PBMC function for 

individuals with FM to improve PBMC function as there were no significant differences in IL-6 

and IL-10 concentrations released from stimulated PBMCs, or in IL-6 and IL-10 cytokine 

effective change ratios from pre- to post-intervention for treatment or placebo groups that could 

potentially indicate an improvement in PBMC function. While previous research has 

demonstrated the effectiveness of quantifying IL-6 and IL-10 cytokine concentrations released 

from stimulated PBMCs as a FM diagnostic method, the data do not support these conclusions as 

no significant differences between the IL-6 and IL-10 concentrations released from stimulated 

PBMCs, or between the IL-6 and IL-10 effective change ratios were seen between FM 

participants and HCs. Differences between the previous research and present results could 

possibly be explained by the screening and inclusion criteria used to enroll FM participants into 

the studies, or the methods used to quantify cytokine concentrations. An unexpected finding was 

the lower IL-6 concentration released from stimulated PBMCs in HC females compared to 

males. Lower IL-10 concentrations released from stimulated and unstimulated PBMCs in HC 

females compared to males were also observed. The IL-6 effective change ratios were 

significantly higher in HC females compared to males, but there were no significant differences 

in the IL-10 effective change ratios between males and females. Future research should focus on 

using strict and consistent FM screening and inclusion criteria to limit variation in the FM 

population enrolled into studies, determining which FM subgroup responds the best to RSWT 

treatment to improve PBMC function, utilizing validated cytokine quantification methods, and 

studying a larger sample of male and female HCs to determine if the findings of sex differences 

for cytokines released from stimulated PBMCs are supported. 
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Lay Summary 

Fibromyalgia (FM) is a type of condition that causes individuals to experience chronic 

pain throughout their body and other mental problems. This condition is very diverse and 

symptoms affect individuals differently. Many individuals do not know they have this condition 

as there is no proper way to diagnose it. Individuals who are diagnosed with FM often do not 

have relief from their symptoms as there are no treatments that are known to successfully work. 

It is thought that the immune system is involved in the cause of this condition, so the present 

study used cells of the immune system purified from blood samples of individuals with FM for 

analyses. Concentrations of interleukin-6 (IL-6) and interleukin-10 (IL-10), which are molecules 

released from immune cells, were analyzed to determine if these concentrations were different 

between FM participants and healthy individuals. If there were differences between FM and 

healthy individuals, this could suggest immune cells in individuals with FM were not functioning 

properly, and this difference could potentially be used to develop a FM diagnostic method. No 

significant differences in IL-6 or IL-10 concentrations were observed, however, between FM 

participants and HCs. Radial shockwave therapy (RSWT) was also assessed as a potential 

treatment option for individuals with FM. FM participants were assigned to either the group 

receiving the RSWT treatment, or a group that received the deactivated RSWT treatment, but 

they did not know their group assignment. IL-6 and IL-10 concentrations were measured before 

and after FM participants completed treatments to determine if changes in IL-6 or IL-10 

concentrations were affected by the RSWT treatment. There were no significant differences in 

IL-6 or IL-10 concentrations after treatment, which suggests that RSWT is not effective at 

improving PBMC function for individuals with FM. The heterogeneity of FM suggests that 

RSWT treatment could potentially benefit a certain group of individuals with FM with specific 

symptoms. Lower IL-6 and IL-10 concentrations in HC females compared to males were also 

observed, which could indicate sex differences associated with these molecules. 
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Chapter 1. Introduction 

1.1 Statement of Problem 

 The use of novel methods for the diagnosis and treatment of chronic pain disorders has 

become prominent in current research. Fibromyalgia (FM) is a chronic pain disorder that causes 

a widespread heightened sensitivity to pain in an individual, along with cognitive symptoms 

including mood and sleep disruptions, fatigue, depression, memory problems, and lack of focus.
1
 

An individual is usually diagnosed with FM after other conditions with similar symptoms have 

been eliminated as FM has no definitive diagnosis or treatment methods available.
1
 Currently, 

the most widely used method to identify FM is the American College of Rheumatology (ACR) 

Preliminary Diagnostic Criteria for FM screening tool that can be used to diagnose FM by 

evaluating a patient’s symptoms and pain areas.
2
 Refer to the “2010 ACR Preliminary Diagnostic 

Criteria for FM” section in the Appendix for this screening protocol. Many recent FM research 

studies focus on developing diagnostic and treatment methods to aid in understanding this 

complex and misunderstood disorder.
3,4,5

  

The identification of cytokines as biomarkers for FM is a diagnostic method that has been 

previously explored.
4,6

 Cytokines are important in the immune system response, and changes in 

their release could indicate impaired immune cell function.
7
 In contrast to inconclusive results 

from studies investigating basal circulating cytokine levels in the blood, analyzing altered 

concentrations of cytokines released from stimulated peripheral blood mononuclear cells 

(PBMCs) is a current detection method that is a promising area in FM diagnostic research.
3,4,6

 

Evaluating cytokine release from stimulated PBMCs can potentially assess the immune system 

function of FM patients in reaction to a mitogen stimulus.
4
 Interleukins 6 and 10 (IL-6 and IL-10, 

respectively) from stimulated PBMCs are cytokines of interest as their mitogen-stimulated 

release have been shown in previous studies by Wallace et al. 2015 and Behm et al. 2012 to be 

impaired in FM patients compared to healthy controls (HCs).
3,4,6

 The variations in released IL-6 

pro-inflammatory and IL-10 anti-inflammatory cytokine concentrations could contribute to the 

pain and symptoms experienced by FM patients.
4,7

 Moreover, the altered release of cytokines 

from PBMCs could indicate that PBMC function in FM patients is affected.
4,6

  

In addition to determining FM diagnostic methods, effective treatments for FM have also 
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been elusive.
1
 A multimodal treatment approach has been shown to be most effective at reducing 

FM associated pain and symptoms; however, this can be costly and time consuming as it is 

tailored to each person.
1
 Radial shockwave therapy (RSWT) is currently being studied as a novel 

FM treatment method due to its previous success in treating musculoskeletal disorders by 

improving muscle pain.
5
 The RSWT device uses biphasic acoustic energy waves to generate low, 

medium, or high energy to stimulate tissue inflammation, and it is thought to promote healing by 

causing cells to undergo a regenerative process.
5
 The energy generated is transferred from the 

device applicator to the treatment area on the skin of FM patients.
5
 RSWT is regarded as safe and 

has no serious side effects other than the potential for short term redness, soreness, and tingling 

in the treated area.
5
 The effectiveness of RSWT in other musculoskeletal disorders make it a 

high-interest area of research for treating FM. 

1.2 Significance of Study 

 There have been research studies analyzing differences in cytokine concentrations from 

stimulated PBMCs in FM patients compared to HCs.
3,4,6

 Studies by Wallace et al. 2015 and 

Behm et al. 2012 identified aberrant mitogen-stimulated released cytokine concentrations from 

PBMCs in FM patients, including IL-6 and IL-10 cytokines, and Behm et al. 2012 reported their 

potential as biomarkers for a FM diagnostic method.
3,4,6

 The use of the widely accepted 2010 

ACR Preliminary Diagnostic Criteria for FM in previous studies by Wallace et al. 2015 and 

Behm et al. 2012 is significant as these criteria were used in the current study to classify FM in 

participants and verify the measurement of aberrant IL-6 and IL-10 cytokine concentrations 

released from stimulated FM PBMCs as these previous studies used this criteria and observed 

lower released cytokine concentrations in FM.
3,4

 The use of enzyme-linked immunosorbent 

assays (ELISAs) is also significant as its improved ability to accurately detect IL-6 and IL-10 

cytokine concentrations released from stimulated PBMCs can be evaluated in contrast to 

previous research by Behm et al. 2012 and Wallace et al. 2015 who used multiplex 

immunoassays, which have been criticized regarding their ability to accurately quantify cytokine 

concentrations.
3,4

  

There is little known on the ability of RSWT to treat FM.
5
 RSWT is thought to promote 

localized repair and healing by stimulating tissue inflammation that causes cells to undergo a 

regenerative process, which may regulate immune cell function due to an increase in an 
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individual’s overall well-being from reduced pain.
5
 Measuring deviations in stimulated PBMC 

cytokine release before and after a FM patient receives RSWT treatments can indicate if RSWT 

is effective at improving PBMC function and its capacity as a FM treatment option. 

1.3 General Research Question 

Is RSWT effective at improving PBMC function in individuals with FM? 

1.4 Specific Aims 

Specific Aim 1. Determine the effectiveness of quantifying cytokine concentrations from 

stimulated PBMCs in pre-intervention FM participants as a new diagnostic approach for FM. 

Rationale: 

Cytokine release is part of the body’s immune system response to promote healing, tissue 

repair, and inflammation.
7
 Certain aberrant cytokine concentrations released from stimulated 

PBMCs may be associated with chronic pain, and FM patients have been shown in some studies 

to have altered concentrations when compared to HCs, as shown in Table 1 in Section 2.4.1 of 

Chapter 2.
3,4,6,7,9

 This difference may indicate that FM patients have an impaired immune 

function that affects the release of cytokines from PBMCs, which could contribute to incomplete 

tissue repair and lead to chronic pain.
4,7

 Lower pro-inflammatory and anti-inflammatory aberrant 

cytokine concentrations in FM patients such as IL-6 and IL-10 from stimulated PBMCs supports 

the thought of an altered ability for PBMCs to release cytokines.
4,7

 The identification of these 

altered cytokines as biomarkers for FM could be a potential diagnostic method and indicator of 

FM treatment success at the molecular level.
4,6

   

Hypotheses: 

H1a: IL-6 and IL-10 cytokine concentrations from stimulated PBMCs will be lower in FM 

participants compared to HCs. 
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H1b: IL-6 and IL-10 cytokine effective change ratios, which are determined by dividing 

the cytokine concentration released from stimulated PBMCs by the cytokine concentration 

released from unstimulated PBMCs for each FM participant, will be lower in FM participants 

compared to HCs. 

 

Specific Aim 2. Determine the effectiveness of RSWT at improving the function of FM PBMC 

cytokine release from pre- to post-interventions. 

Rationale: 

RSWT has been used to successfully treat musculoskeletal disorders by stimulating tissue 

inflammation, which is thought to cause cells to undergo a regenerative process and promote 

healing.
5
 The known effectiveness of RSWT indicates its potential to reduce chronic pain 

associated with FM by promoting proper and complete localized tissue repair.
5
 This action may 

in turn regulate systemic immune cell function, including the altered release of cytokines from 

stimulated PBMCs in FM patients, due to an increase in an individual’s overall well-being from 

reduced pain. It has been shown in studies by Lin et al. 2018 and Cyranowski et al. 2007 

investigating depression and cytokine concentrations, that an altered release of cytokines from 

stimulated PBMCs may be associated with depression and accompanying symptoms.
10,11

 

Another study by Weizman et al. 1994 examining a clomipramine drug treatment to increase 

suppressed cytokine production from stimulated PBMCs in majorly depressed patients showed 

an improvement in depression symptoms and an increase in suppressed cytokines after 

treatment.
12

 An improvement in depression symptoms could increase an individual’s overall 

well-being, which may in turn regulate cytokine production. Since depression can occur with 

FM, it can be suggested that treatments improving FM associated pain may increase an 

individual’s overall well-being, which may subsequently regulate PBMC function and cytokine 

release. Tests and questionnaires were administered to FM participants pre- and post-intervention 

to assess their pain levels including a visual analog scale to assess pain levels, the Baseline 

Pressure Tolerance Meter, the Quantitative Sensory Testing for hyperalgesia and allodynia, the 

Beighton Scoring Screen for hypermobility, and the Pain Catastrophizing Scale. These 

measurements were analyzed in another arm of the study. RSWT can be evaluated as a FM 

treatment option by measuring deviations in cytokine concentrations released from PBMCs 
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before and after a FM patient completes all the treatments. Circulating cytokines differ from 

cytokine released from stimulated and unstimulated PBMCs as cytokines released from PBMCs 

can be used to assess the immune system function of an individual with FM. Reduced IL-6 and 

IL-10 released from stimulated PBMCs in individuals with FM compared to HCs could indicate 

an altered FM PBMC function. Differences in cytokine release can also indicate the effectiveness 

of RSWT at promoting tissue repair and improving PBMC function. An improvement in FM 

associated pain could potentially regulate PBMC function and cytokine release due to an 

increase in an individual’s overall well-being. 

Hypothesis: 

H2: FM participants in the RSWT treatment group will have increased post-intervention 

IL-6 and IL-10 cytokines released from stimulated PBMCs compared to those in the placebo 

group. 
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Chapter 2: Literature Review 

2.1 Characterization of Fibromyalgia (FM) 

FM is widely accepted as a non-inflammatory chronic pain disorder; however, there is 

some evidence to suggest it could be an inflammatory disorder.
1,6,8

 FM causes an individual to 

experience a widespread heightened sensitivity to pain, along with cognitive symptoms including 

mood and sleep disruptions, fatigue, depression, memory problems, and lack of focus.
1
 While 

there are many symptoms associated with FM, almost all individuals with FM experience 

fatigue, pain, and sleep disturbances.
13

 It has also been shown that individuals with FM have 

increased blunt pressure and heat stimuli sensitivities, which could indicate aberrant central pain 

processing.
14

 The intensity and location of FM associated pain can frequently change in an 

individual’s body depending on various factors or for unknown reasons.
15

 FM affects 

approximately 2-5% of the general adult population worldwide, and more commonly occurs in 

women compared to men with a prevalence of 3.4% compared to 0.5%, respectively.
16,15

 An 

increased sensitivity to pain in women causing a greater response to painful stimuli could explain 

the higher occurrence of FM in women compared to men.
16

 Although individuals with FM can 

range from teenagers to older adults, FM most commonly occurs in middle-aged individuals.
15

  

2.1.1 Classification and Identification 

Currently, FM has no clear diagnostic methods. Individuals with FM are usually 

diagnosed after eliminating other conditions with similar symptoms due to a lack of definitive 

diagnosis and treatment methods available for FM.
1
 Diagnosing an individual with FM may 

involve the coordination of various specialists, with a definitive diagnosis often being made by a 

rheumatologist.
15

 The uncertain diagnostic criteria for FM makes an accurate diagnosis 

challenging and also contributes to increased costs for health care as tests to rule out other 

conditions must be performed, and various treatment methods must be attempted.
17

 Only criteria 

based on the analysis of symptoms and comorbid disorders in an individual are available to 

identify FM, which is not highly reliable.
16

  

The most widely used method to classify FM is the American College of Rheumatology 

(ACR) Preliminary Diagnostic Criteria for FM.
2
 This is a screening tool that evaluates a patient’s 
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symptoms and pain areas to classify but not definitively diagnose FM, which decreases its 

reliability.
2
 The original 1990 ACR criteria for classifying FM differs from the revised 2010 

ACR criteria as they focus on identifying a minimum number of tender points and widespread 

pain without addressing cognitive symptoms associated with FM.
18

 The 2010 criteria focus on a 

patient’s symptoms and pain locations instead of identifying tender points since the use of tender 

points is not a highly reproducible or reliable method to classify FM.
18

 Both criteria are still 

widely used in the literature to identify individuals with FM for FM related studies. The ACR 

Preliminary Diagnostic Criteria for FM is currently the most accepted method to identify FM, 

but there are some disadvantages associated with it. In addition, this screening tool can also only 

identify symptoms that occur more severely in an individual, which may misclassify some 

individuals with different FM subtypes or who only have mild symptoms.
18

 An advantage of this 

screening tool is that it can provide a method to investigate potential FM comorbidities and their 

relationship to FM.
18

  

The lack of definitive diagnostic criteria for FM is concerning due to the relatively high 

reported prevalence of individuals with FM in society. Research investigating the spectrum of 

FM could lead to the development of more effective diagnostic criteria that could potentially 

identify FM subgroups. With an increased knowledge of FM diagnosis through research and 

education, individuals with FM can be diagnosed more effectively.
19

  

2.1.2 Hypotheses for Etiology and Pathogenesis 

The pathogenesis of FM has been a high interest area of research, but the etiology of this 

disorder is still not clearly known.
16,15

 Previous research suggested many hypotheses which 

could contribute to the creation and development of FM, including the role of infectious agents 

such as hepatitis C and hepatitis B, and gene analysis studies evaluating an individual’s potential 

predisposition for FM.
15

 In addition to researching different agents that could lead to FM, 

identifying potential deregulations of certain systems in the body and their interaction with other 

systems has also been studied. One thought is that FM could partly be due to altered pain 

processing in the central nervous system (CNS), which causes an increased sensitivity to pain 

perception known as hyperalgesia and allodynia.
16

 The CNS in individuals with FM could also 

be hyperactive from an irregular perception and processing of painful stimuli in neurotransmitter 

systems.
15

 Research has shown that FM is partly related to stress, and that chronic stress could 
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cause alterations in neurotransmitter systems in individuals with FM.
20

 It is also thought that 

central sensitization may be involved in FM, where the nervous system overreacts from receiving 

various pain stimuli and causes chronic pain to develop in an individual.
21,22

 As a result of 

central sensitization, pain signal transmission and neuron stimulation in the CNS are increased.
23

 

Although there are many hypotheses for the etiology and pathogenesis of FM, the 

connection between the nervous system and immune system of individuals with FM has been 

examined. A study by Staud 2015 investigated if dysfunctional interactions are present in the 

nervous and immune systems of individuals with FM that could potentially lead to FM.
24

 The 

importance of the immune system in the pathogenesis of FM has been recognized due to the 

altered levels of immune mediators discovered from previous studies, including one from Behm 

et al. 2012.
4
 It is also known that both the immune and nervous systems use cytokine signaling 

molecules, which allows the systems to communicate with each other directly.
24

 Since these 

systems are associated with analgesia and pain symptoms in an individual, their interactions with 

each other are of interest as these symptoms are also associated with FM.
24

 While dysfunctions 

in the CNS and immune system are thought to be the main contributors to FM associated pain 

and symptoms, the involvement of potential dysfunctions from the autonomic nervous and 

endocrine systems have also been studied in individuals with FM.
25

 By understanding the 

mechanisms of defective central pain processing in the nervous system for FM, the etiology and 

pathogenesis of this disorder can be further developed and studied.
23

  

2.1.3 Subgroups 

Although FM is recognized as a chronic pain disorder that causes a widespread 

heightened sensitivity to pain along with cognitive symptoms, it is not a single homogeneous 

condition.
1,26,27

 There is evidence of FM subgroups where individuals have different sensitivities 

to certain pain stimuli and various degrees of other cognitive symptoms.
26

 The differences in FM 

associated symptoms between individuals also indicates that some subgroups will respond better 

to certain treatments compared to other subgroups. The concept of FM subgroups is supported by 

the knowledge that pain, symptoms, and comorbid conditions associated with FM are highly 

variable between individuals.
26

 Specific pain and symptom characteristics can be identified for 

each FM subgroup, which could be used to determine the best combination of treatment methods 

to use, as various FM subgroups respond better to different treatments.
26

 Giesecke et al. 2003 
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analyzed mood, cognition, and hyperalgesia of individuals with FM and classified individuals 

into three FM subgroups.
27

 This study found individuals in the first FM subgroup had an extreme 

sensitivity to pain without any cognitive or mood symptoms, the second subgroup had a 

moderate sensitivity to pain without any abnormal mood symptoms, and the third subgroup had 

the greatest sensitivity to pain with extreme cognitive and mood symptoms.
27

 It has also been 

acknowledged that some FM subgroups can be identified based on the presence or absence of 

depression as this comorbidity can greatly affect the treatment method of an individual with 

FM.
26,28

 

The ACR Preliminary Diagnostic Criteria for FM screening tool is currently the most 

widely used method to diagnose FM; however, it is unable to solely identify different FM 

subgroups.
2,29

 Analyzing FM associated symptoms using a variety of methods could also create 

different classification criteria for FM subgroups, which could make diagnosing and treating FM 

more difficult. The knowledge that FM can be further classified into subgroups based on 

differences in pain severity, cognitive symptoms, and comorbid inflammatory and non-

inflammatory conditions is beneficial as it can allow a unique combination of treatment methods 

for individuals to be created.
28,30

 By tailoring treatments to an individual’s specific somatic and 

psychological symptoms, there is a greater chance for treatment effectiveness and success for 

improving FM associated symptoms.
21

 A customized approach for treating individuals with FM 

could be effective at reducing specific FM symptoms associated with each subgroup, and to 

identify potential inflammatory FM subgroups.
28

  

2.2 Comorbid Conditions with FM 

Pain and cognitive dysfunctions, including sleep disturbances and fatigue, are the most 

common FM associated somatic and cognitive symptoms.
13,18

 FM is known to be comorbid with 

certain other conditions that may also have common FM associated symptoms, especially mood 

and anxiety disorders.
16,17

 A comorbidity indicates that one or several other conditions may be 

present in an individual along with FM.
16

 Since these conditions may share some of the same 

symptoms as FM, this could make identifying each one challenging. A number of conditions that 

are comorbid with FM may also be classified as functional somatic syndromes, which are 

syndromes that are related and identified based on an individual’s symptoms instead of by 

functional variations.
21

 Specifically, conditions that may occur along with FM have been referred 
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to as central sensitivity syndromes due to their association with chronic pain and the central 

nervous system.
1,21,22

  

2.2.1 Physical Pain Conditions 

While there are numerous conditions that are comorbid with FM, chronic fatigue 

syndrome (CFS) is one condition that has been shown to be highly comorbid with FM.
22,17,13

 

Both FM and CFS have common symptoms such as fatigue, widespread pain, sleep disturbances, 

and cognitive dysfunctions that makes distinguishing between the two conditions challenging.
13

 

To further associate CFS and FM, a considerable number of individuals with FM have been 

shown to meet the CFS criteria, and some individuals with CFS have also met the FM criteria.
18

 

The association of an increased sensitivity to a stimulus for several shared symptoms between 

individuals with FM and CFS may provide a potential common mechanism for these two 

conditions.
31

 In addition to CFS, chronic widespread pain (CWP) is considered to be a main 

condition that is also comorbid with FM.
18,32

  

Individuals with FM experience a heightened sensitivity to pain throughout their entire 

body, particularly observed more in the arms, shoulders, and lower back, which coincides with 

CWP symptoms.
18,32

 The cause of CWP is unclear; however, it is suggested that its mechanism 

may be similar to that of FM.
32,18

 Rheumatoid arthritis (RA) is another conditions that has also 

been shown to be comorbid with FM.
33,25

 Unlike FM, RA causes chronic pain and swelling in the 

joints.
33

 Despite having different inflammatory reactions in the body, both conditions share the 

commonality of causing pain to an individual.
33

 Irritable bowel syndrome (IBS) is another well 

known comorbidity of FM, and it causes abdominal pains and discomfort.
34

 Individuals with IBS 

have an increased gut hypersensitivity comparable to the hyperalgesia sensations that are 

characteristic of FM.
22

 Individuals with IBS experience somatic hypoalgesia, however, which is 

opposite to individuals with FM who experience heightened somatic pain.
35

 An individual with 

FM and an IBS comorbidity may have CWP that includes the abdomen area.
35

  

2.2.2 Cognitive Dysfunction Conditions 

In addition to comorbid conditions of FM that cause physical pain, there are also 

comorbid conditions that cause cognitive dysfunctions. Depression is a cognitive disorder that is 

well-known to be associated with chronic pain conditions and has a high comorbidity with 



11 

 

FM.
36,22

 It has been stated in the literature that individuals with FM are found to have depression 

more often than any other FM comorbidity.
37

 The reason for the high prevalence of depression as 

a FM comorbidity has been hypothesized, but no clear link has been established.
18

 One 

hypothesis is that an individual with FM could develop depression due to living with chronic 

pain and having a decreased overall well-being.
18

 Another hypothesis is that the etiology of both 

FM and depression share a common mechanism that causes both conditions to develop in an 

individual with FM.
29

 Similar to hyperalgesia sensations associated with FM, individuals with 

symptoms of depression may also experience a greater perception to pain; however, there is no 

definitive link between individuals with depression and altered pain processing as this could be 

affected by various aspects.
37

 FM individuals experiencing depression are also likely to 

experience anxiety conditions, such and post traumatic stress disorder (PTSD).
37,29

 Although the 

link between FM and anxiety conditions is not fully established, the association of experiencing 

traumatic events with the development of physical pain has been observed.
29

 

Diagnostic tests to distinguish FM from other potentially comorbid conditions can be 

useful to investigate connections between these conditions.
3,33

 This could aid in developing FM 

treatment methods that address multiple symptomatic and cognitive aspects of FM, and allows 

the potential to treat FM and its comorbid conditions present in an individual using various 

intervention methods.
16

 Overall, the recognition of certain comorbid conditions with FM could 

contribute to an increase and improvement in FM diagnosis and treatment, respectively. 

2.2.3 Mast Cell Activation Syndrome (MCAS) 

Mast cells (MCs) are a type of granulated cell found in connective tissue that are 

important in the immune system response, and they release substances including histamine, 

heparin, and inflammatory mediators.
38

 Certain MC dysfunctions can cause MC disorders, 

including MCAS and mastocytosis.
38

 MCAS is the improper activation of MCs from 

immunologic and non-immunologic methods, which can result in aberrant amounts of cellular 

mediators being released from MCs such as inflammatory cytokines.
38,39,40

 MCAS does not 

involve the over-proliferation of MCs in certain tissues, which is seen in mastocytosis.
38

 MC 

dysfunctions are also thought to be the underlying cause of many conditions such as obesity, 

asthma, CFS, IBS, and FM.
41

 MCs have previously been thought to be involved with FM partly 

due to their association with pain perception in individuals.
1,42

 Studies by Afrin 2016, Blanco et 
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al. 2010, and Enestrbm et al. 1997 found an increased amount of activated MCs located in the 

uppermost dermis layer of skin biopsies from FM individuals that could be linked to this 

condition’s etiology and pathogenesis.
41,43,44

 Since MCs are close to neurons in many areas of the 

body, it was hypothesized that increased amounts of corticotrophin-releasing hormone (CRH) 

and substance P (SP) released from neurons cause the activation of localized MCs and release of 

neurosensitizing and pro-inflammatory mediators.
40,43

 This action could affect the peripheral and 

central nervous system of some FM individuals, which could influence FM associated pain and 

symptoms.
45

 

It has been suggested in the literature that MCAS may be comorbid with FM.
39,46

 Many 

symptoms for MCAS overlap with symptoms for FM including fatigue, depression, memory 

problems, mood disturbances, and cognitive dysfunctions.
38,39

 A major symptom seen in MCAS 

is migratory pain areas, which is similar to the type of pain experienced by individuals with 

FM.
39,45

 Like FM, MCAS has no definitive diagnostic criteria, which makes it difficult to 

identify in individuals.
47

 Although MCAS could be comorbid with FM, the causes of both 

disorders are not clearly understood.
47

 MCAS has also been suggested to be comorbid with other 

conditions including hypertension, asthma, and postural orthostatic tachycardia syndrome 

(POTS), which indicates the complexity of this syndrome.
39

 Overall, current research 

demonstrates there could be a link between MCAS and FM; however, more research is needed to 

fully develop a clear connection between MC dysfunction, MCAS, and FM. 

2.3 Peripheral Blood Mononuclear Cell (PBMC) Function in FM 

2.3.1 Phytohaemagglutinin protein (PHA-P) Stimulation and PBMC Activation 

Different mitogens can be used to stimulate various cell types, such as lipopolysaccharide 

(LPS) to stimulate B-cell proliferation.
48

 PHA-P is a type of mitogen lectin that is used to 

stimulate PBMCs to release cytokines.
4
 It has been used in previous FM research by Behm et al. 

2012 and Wallace et al. 2015 to stimulated isolated PBMCs, and it is used in the present study to 

verify the results obtained from the previously mentioned FM research.
3,4

 It is the protein form of 

phytohaemagglutinin (PHA) that is extracted from the red kidney bean Phaseolus vulgaris.
49

 

PHA-P is composed of the two isolectin subunits phytohaemagglutinin erythrocyte (PHA-E) and 

phytohaemagglutinin leukocyte (PHA-L) that interact with erythrocytes and leukocytes, 
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respectively.
49

 PHA-E allows erythrocytes to agglutinate, and PHA-L agglutinates and acts as a 

mitogen for lymphocytes.
49

 Since PBMCs isolated from peripheral blood contain no 

erythrocytes, PHA-P can be used as the PHA-E subunit will not affect the mitogenic properties 

of the PHA-L subunit to stimulate PBMCs. If red blood cell contamination is present in the 

isolated PBMCs, PHA-E will agglutinate the erythrocytes and it will not affect the mitogenic 

properties of PHA-L. 

PHA-P is a polyclonal activator protein that stimulates and activates naïve T-cells that 

have clonally distributed surface antigen receptors known as T-cell receptors (TCRs).
50,51

 TCRs 

contain α and β heterodimers that bind the antigen of interest, and the CD3 complex consists of 

four invariant signaling chains that are specific for the different T-cell antigen binding receptors, 

as shown in Figure 1.
51,52

 PHA-P activates T-cells by attaching to glycoproteins, as well as TCRs 

and CD3 complexes specific to certain antigens that are both located on the T-cell surface 

plasma membrane.
50,51

 The glycoproteins and CD3 complex are cross-linked by the binding of 

PHA-P to the T-cell surface, causing T-cell activation, proliferation, and cytokine release.
51,53

 

PHA-P attaches to T-cell surface receptors instead of receptors on other lymphocytes as TCRs 

contain sugar moieties that are recognized by the mitogen.
54

 PHA-P mimics an immune response 

in vitro by acting like a general antigen that activates T-cells in a PBMC extraction. This action 

can evaluate PBMC immune function by determining cytokine secretion profile patterns of T-

cells following stimulation.
50
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Figure 1. Structural components of a T-cell receptor (TCR). 

TCRs contain α and β heterodimers that bind the antigen of interest.
51

 The CD3 complex 

consisting of four invariant signaling chains that are specific for clonally distributed TCRs.
51

 The 

polyclonal mitogen activator phytohaemagglutinin protein (PHA-P) binds to the TCR and cross-

links glycoproteins and the CD3 complex on the T-cell surface to activate the T-cell.
53

 Adapted 

from Franco et al. 2016.
52

  

 

Although PHA-P can only stimulate T-cells, all PBMCs are incubated with PHA-P as it 

has been shown that monocytes need to be present as accessory cells for PHA-P to stimulate T-

cells since isolated T-cells do not proliferate only in the presence of PHA-P.
55,53

 This is due to 

the monocyte-derived helper activity where factors in monocyte culture supernatant such as 

interleukin-6 (IL-6), aid in T-cell stimulation and proliferation by PHA-P, and factors from 

stimulated T-cells aid in monocyte stimulation.
55

 Since PHA-P can only stimulate T-cells, its use 

is limited if all PBMCs need to be stimulated including monocytes, B-cells, and natural killer 

(NK) cells.
49

 The mitosis of lymphocytes other than T-cells does not occur using PHA-P as this 

mitogen is either inactive or inhibits the process for these cells.
54

 It is known that PBMCs consist 

of around 10-20% monocytes and 70-90% lymphocytes.
50

 The lymphocyte population is made 

up of 5-20% NK cells, 5-10% B-cells, and 70-85% CD3
+
 T-cells.

50
 Within the T-cell population 

exists a 2:1 ratio of CD4
+
 helper T-cells and CD8

+
 cytotoxic T-cells.

50,51
 Since some PBMC T-

cell subpopulations can be determined based on their cytokine secretion patterns, it may be 
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possible to identify certain T-cell subpopulation dysfunctions by analyzing cytokine 

concentrations in response to stimulation.
51

 The ability of PHA-P to successfully bind to T-cell 

glycoproteins, TCRs, and CD3 complexes and activate T-cells can influence cytokine 

concentrations as proper binding is needed in part for activation.
53

 If these domains are altered, 

this could affect T-cell activation and cytokine release.
53

 Despite other cell types being present in 

the PBMC extraction along with T-cells, the exclusive stimulation of T-cells by PHA-P was 

chosen to expand on previous research by Behm et al. 2012 and Wallace et al. 2015.
3,4

 This 

method of stimulation was used in the previous research to analyze PBMC function and evaluate 

the immune response of individuals with FM.
3,4,51

 Although T-cells are the most predominant 

cell type in the PBMC extraction, other PBMC types in individuals with FM may experience 

altered functions that might not be detected using this method. Evaluating the adaptive immune 

response is important for determining a diagnostic method for FM as it could indicate potential 

PBMC dysfunctions and altered cytokine release patterns unique to FM individuals.  

2.3.2 PBMC Dysfunction in Other Conditions 

In addition to research studying potential altered PBMC function by quantifying released 

cytokine concentrations in FM patients, there have also been studies done on other conditions 

that exhibit an aberrant cytokine release response from PBMC stimulation, which could indicate 

PBMC dysfunction. Wallace et al. 2015 compared IL-6, interleukin-8 (IL-8), macrophage 

inflammatory protein-1 alpha (MIP-1α), and macrophage inflammatory protein-1 beta (MIP-1β) 

cytokine concentrations from stimulated PBMCs in healthy controls (HCs) to FM, RA, and 

systemic lupus erythematosus (SLE) patients and found a unique cytokine profile for FM.
3
 All 

four cytokine concentrations were lower in FM individuals compared to HC, RA and SLE 

patients except for IL-8 which had a similar concentration to RA.
3
 Mean cytokine/chemokine 

composite test scores calculated from combined cytokine concentrations for each FM, RA, SLE, 

and HC group determined that 93% of FM individuals had a positive test score for identifying 

FM, compared to 11% for HCs, 31% for RA, and 29% for SLE.
3
 These findings indicated this 

test score method for determining a cytokine profile had a 93% sensitivity and 89.4% specificity 

for a FM diagnosis compared to HCs.
3
 These findings also suggest that PBMC function may be 

altered in FM patients as well as other systemic inflammatory autoimmune processes, and that 

cytokine expression differences could potentially be used as a differential diagnosis method.
3
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Some conditions that exhibit an aberrant cytokine response from PBMC stimulation and 

potential PBMC dysfunction are also seen in individuals with FM, including depression, chronic 

pain, and CFS.
4,10,56

 It is known that improperly functioning cytokines are involved in the 

pathogenesis of depression.
57

 Lin et al. 2018 analyzed PBMC function in patients with major 

depressive disorder (MDD) and reported lower interleukin-2 (IL-2) and interleukin-10 (IL-10) 

cytokine release from stimulated PBMCs in these individuals compared to HCs.
10

 Weizman et al. 

1994 analyzed the production of interleukin-1 beta (IL-1β) and interleukin-3-like activity (IL-3 

LA) cytokines from PBMCs in major depressed patients before and after treatment with 

clomipramine.
12

 This study found that initially suppressed cytokine levels in major depressed 

patients compared to HCs increased after treatment, along with an improvement in depression in 

these individuals.
12

 Gür et al. 2002 examined the concentrations of serum cytokines interleukin-1 

(IL-1), IL-2 receptor (IL-2r), IL-6, and IL-8 in individuals with FM and their relationship to 

depression using the Hamilton Depression Rating Scale (HDRS) and observed higher serum IL-8 

and IL-2r, and HDRS scores in individuals with FM compared to controls.
58

 Another study by 

Zou et al. 2018 investigating cytokine levels from the blood serum of patients with MDD also 

found abnormal cytokine levels compared to HCs, which could be associated with potential 

PBMC dysfunction in MDD patients.
59

  

Individuals with chronic pain have also been shown to have increased IL-1β expression 

from stimulated PBMCs, which could indicate an altered ability for PBMCs to release 

cytokines.
60

 The transforming growth factor beta 1 (TGF-β1) cytokine is important for 

inflammatory characteristics of CFS, and deregulations in its release from stimulated PBMCs 

was also observed in CFS individuals.
56

 Since the potential relationship between PBMC 

dysfunction and aberrant cytokine responses from PBMC stimulation has been studied and 

recognized in conditions that can also occur with FM, it can be suggested that PBMC 

dysfunction may be a commonality underlying FM and associated conditions that could be 

linked to the pathogenesis of FM. 

2.3.3 Sex and Age Influences 

There are differences reported in the literature between concentrations of cytokines 

released from stimulated PBMCs in HCs and individuals with FM, but there is minimal research 

analyzing sex and age differences of cytokine concentrations in HCs.
4
 Interest in cytokine 
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concentration differences from stimulated PBMCs between HC males and females over a range 

of ages is important as variations could provide more insight into the pathogenesis and potential 

PBMC dysfunction of FM. There have been studies analyzing the role of cytokines and pain 

perception in individuals which have not investigated potential cytokine concentration 

differences between sexes and only used entire male or female populations to eliminate possible 

variations that could arise.
61

 Euteneuer et al. 2011 analyzed the serum concentrations of tumor 

necrosis factor alpha (TNF-α) in patients with major depression and observed higher 

concentrations in patients compared to HCs, but there were no significant differences between 

sexes in either of the patient or HC groups.
61

 In depressed patients, however, there was a 

correlation between a decrease in pressure pain threshold and increase in TNF-α concentration in 

women but not in men.
61

 The findings from this study could support previous research 

identifying variations in chronic pain perception between sexes based on sex differences in the 

immune system instead of the nervous system.
62

 This study could also aid in the development of 

diagnostic and treatment methods for FM due to the comorbid association of depression with 

FM.
61

  

In addition to a lack of research analyzing sex differences for cytokine concentrations and 

pain perception in individuals with depression, there is also minimal research for the influence of 

age and sex on cytokine concentrations released from stimulated PBMCs in HCs. There have 

been some studies using basal cytokine concentrations to analyze the relationship of cytokines to 

age and/or sex; however, studies using cytokines released from stimulated PBMCs are scarce. 

Verthelyi et al. 2000 analyzed the correlation between various sex hormone levels and the 

number of PBMCs secreting IL-2, interleukin-4 (IL-4), IL-6, IL-10, TNF-α, and interferon 

gamma (IFN-γ) in vivo.
63

 It was found that secreted IL-4 correlated with oestrogen hormone 

levels during the menstrual cycle, and secreted IFN-γ correlated with dehydroepiandrosterone 

sulfate (DHEA-S) hormone levels in males.
63 

These results suggest that cytokine production by 

PBMCs may be influenced by sex hormones, which could contribute to differences in immune 

responses based on sex.
63

 It also provides support for the potential influence of sex hormones on 

immune function due to certain factors, including women having a higher susceptibility to 

autoimmune diseases.
63

 There is also evidence that the adaptive immune response is affected by 

age, as observed by the reduction of T-cell numbers and increase in basal cytokine 

concentrations in older individuals; however, this does not provide a direct assessment of 
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immune system function.
64

 Evaluating the ability of immune cells, such as T-cells, to be 

stimulated and release cytokines can assess immune system function by determining if these 

cells are releasing cytokines properly, and if the released cytokine levels are altered.
64

  

Sturgeon et al. 2014 investigated basal cytokine concentrations in serum samples from 

pre- and post-menopausal women with FM to determine if hormone differences due to age 

influenced cytokine production in females.
65

 It was observed that the DHEA-S hormone of 

interest did not correlate with cytokine concentrations in pre- or post-menopausal women, which 

could be due to basal cytokine levels being measured instead of levels from stimulated PBMCs.
65

 

This study, however, did not compare cytokine differences with age in males or in healthy pre- 

and post-menopausal women to determine if similar or variant cytokine patterns could be seen.
65

 

With little research on cytokine differences over various ages and between sexes, this study 

suggested that hormonal differences between males and females could partially influence 

cytokine concentrations.
65

 This study also acknowledged that research is lacking regarding 

cytokine concentration changes with age in individuals with FM.
65

  

There is also evidence that age and sex could affect cytokine production from monocytes 

and T-cells.
65

 Pietschmann et al. 2003 evaluated cytokine release from stimulated PBMCs in 

young and elderly males and females, and it was observed that age influenced T-cell cytokine 

production; elderly women had increased levels of IL-4 and IFN-γ from stimulated CD8
+
 T-cells 

compared to young women.
66

 It was also found that elderly men had increased levels of IL-2, IL-

4, and interleukin-13 (IL-13) released from T-cells compared to young men.
66

 Between sexes, 

certain cytokines released from stimulated T-cells, such as IFN-γ and IL-10, had changes 

specific for each sex.
66

 Overall, more research looking at differences in other cytokines released 

from stimulated PBMCs between sexes is needed to find potential causes for male and female 

cytokine concentration differences. 

Without knowing the cause of potential variations in cytokine release from stimulated 

PBMCs for each sex across different ages, research evaluating differences in immune response 

could be confounded. Future research analyzing cytokine differences in males and females at 

various ages would be beneficial for many research disciplines attempting to identify and use 

cytokines as potential biomarkers for disease diagnosis, including FM diagnosis. 
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2.4 Diagnostic Methods for FM 

2.4.1 FM/a
®
 Test 

A functional biomarker challenge test (FBCT) can detect regulatory differences of a 

certain biomarker of interest, and it can be used to evaluate the function of the immune system. 

The FM/a
®
 test is a blood test that is reported to objectively diagnose FM, and it is marketed by 

the company EpicGenetics.
67

 This test uses a multi-biomarker approach to detect altered 

cytokine concentrations released from stimulated PBMCs, and irregular cytokine patterns 

compared to controls can identify individuals with FM.
67

 An individual is diagnosed with FM 

based on a scoring system for the cytokines of interest, where a score of 50 or higher on a 1-100 

scale indicates a FM diagnosis.
67

  

The method for the FM/a
®
 test to identify altered cytokine concentration patterns from 

stimulated PBMCs in individuals with FM and distinguish them from HCs was studied and 

developed by Behm et al. 2012 and Wallace et al. 2015.
3,4

 Behm et al. 2012 observed eight 

cytokine concentrations from stimulated PBMCs that were altered in individuals with FM 

compared to controls, and a follow up study by Wallace et al. 2015 observed that four of the 

eight altered cytokines could identify individuals with FM from individuals with RA and SLE.
3,4

 

The study by Behm et al. 2012 observed seven of the eight cytokines analyzed had significant 

differences in released cytokine concentrations from stimulated PBMCs in individuals with FM 

compared to HCs, with the exception of the interleukin-5 (IL-5) cytokine which did not have a 

significant difference.
4
 The study by Wallace et al. 2015 observed three of the four released 

cytokine concentrations from stimulated PBMCs analyzed were significantly different in 

individuals with FM compared to HCs and individuals with autoimmune disorders, with the 

exception of the IL-8 cytokine which was not significantly different. The mean range of select 

altered cytokine concentrations released from stimulated PBMCs highlighted by Behm et al. 

2012 and Wallace et al. 2015; and the range of minimum to maximum values of released 

cytokine concentrations, and cytokine median detection ranges from Behm et al. 2012 for 

individuals with FM and HCs are shown in Table 1.
3,4

 The IL-6 and IL-10 cytokines exhibited 

the greatest difference between HCs and individuals with FM in the Behm et al. 2012 study, 

where individuals with FM had a blunted response to cytokine release.
4
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Table 1. Mean cytokine concentrations released from stimulated PBMCs in individuals with FM 

and HCs. 

The released cytokine concentration ranges from minimum to maximum values are shown for 

individuals with FM and HCs from Behm et al. 2012.
4
 Mean concentration values are taken from 

papers by Behm et al. 2012 and Wallace et al. 2015.
3,4

 Median detection ranges in pg/mL for 

each cytokine are taken from Behm et al. 2012.
4
 Concentrations are in pg/mL. Data are presented 

as mean ± SD. 

Cytokine Median 

Detection Range 

Individuals with FM HCs 

Concentration Range Concentration Range 

IL-6 1 to 33000 276 ± 437 to 

2667 ± 1149 

3.1 to 2255 2799 ± 4182 to 

5365 ± 1901 

1.2 to 15592 

IL-8 2 to 60000 5751 ± 6123 to 

17298 ± 7094 

135 to 

37981 

17456 ± 24246 

to 24009 ± 

10433 

161 to >OOR 

IL-10 2 to 63000 12 ± 15 <OOR to 84 80 ± 94 <OOR to 352 

MIP-1α 1 to 7000 204 ± 272 to 

1104 ± 465 

5.7 to 1598 1084 ± 1773 to 

1876 ± 777 

1.9 to 9159 

MIP-1β 5 to 14000 2900 ± 2417 to 

10756 ± 4350 

395 to 

>OOR 

4413 ± 5228 to 

18521 ± 7814 

122 to >OOR 

Abbreviations: FM – Fibromyalgia, HCs – Healthy Controls, IL – Interleukin, MIP-1α – 

Macrophage Inflammatory Protein-1 Alpha, MIP-1β – Macrophage Inflammatory Protein-1 

Beta, OOR – Out of Range, PBMCs – Peripheral Blood Mononuclear Cells, SD – Standard 

Deviation 

 

In Table 1, the range of minimum to maximum values of released cytokine 

concentrations from Behm et al. 2012 were considerably large, but significance was still 

obtained for all cytokines except IL-5, which had a p value of 0.136 (significant p value range 

for other cytokines was from <0.001 to 0.016).
4
 In addition, the results from Behm et al. 2012 

and the Wallace et al. 2015 strongly suggest detecting altered cytokine responses from stimulated 

PBMCs could be used as a FM diagnostic method; however, research produced from these 

papers may be questioned.
3,4

 The principal investigator on both papers is the owner of 
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EpicGenetics, and other authors are employees for the company. This relationship can potentially 

question the validity of the FM/a
®
 diagnostic method for FM. 

The FM/a
®
 test is also compliant with the United States Food and Drug Administration 

(FDA) under the Code of Federal Regulations (CFR) Title 21, Part §866, Subpart F – 

Immunological Test Systems 5700 – Whole human plasma or serum immunological test 

system.
68

 Although the FM/a
®
 test is compliant with the FDA and regulations of the CFR, this 

does not imply that it is also FDA approved or regulated. An FDA regulated product indicates 

that a product approval, processing, and use in the commercial market is overseen by the FDA.
69

 

By recognizing the relationship between EpicGenetics company employees and their published 

papers that use methods from the FM/a
®
 test, and the knowledge of the FDA compliant instead 

of FDA regulated status of the FM/a
®
 test, the importance to independently confirm the findings 

of using altered cytokine concentrations released from stimulated PBMCs as a diagnostic method 

for FM is established. 

2.4.2 Cytokines as FM Biomarkers 

Cytokines have been studied as potential biomarkers for diagnosing FM.
4,6

 Cytokines are 

proteins released from cells and identified as either anti-inflammatory or pro-inflammatory as 

they respectively cause a decrease or increase in inflammation throughout the body from a 

response to a stimulus.
7
 They are responsible for cell communication, including cells in the 

immune and nervous systems.
7
 Changes in cytokine release could indicate impaired immune cell 

function, which could affect the immune system response and contribute to the pathogenesis of 

chronic pain in FM patients.
7,8

 PBMCs are cells of the immune system that release cytokines 

upon activation in vivo with cytokines from an immune response, or upon stimulation in vitro 

with a mitogen stimulus.
4,7

 Stimulating PBMCs and analyzing the released cytokine 

concentrations can be used to assess immune system function in individuals with FM.
4,70

 Studies 

by Wallace et al. 2015 and Behm et al. 2012 analyzing released cytokine concentration 

differences from stimulated PBMCs in FM patients compared to HCs found FM patients had 

aberrant cytokine concentrations.
3,4,6

 Although altered cytokine concentrations are observed in 

FM patients, there is a lack of consensus regarding their increased or decreased regulation 

compared to HCs.
4,6

 It is presumed, however, that pro- and anti-inflammatory cytokine 

imbalances are associated with pain initiation and maintenance.
6
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There have also been studies investigating serum or plasma basal circulating cytokine 

levels in the blood of FM patients, but the results have been inconclusive and do not directly 

assess immune system function.
3,4,6

 These varying results could partially be due to diurnal effects 

of cytokine production as it has been observed that specific cytokines are produced in particular 

amounts at certain times during the day within the body.
71

 It has also been observed that 

individuals with FM have cytokine changes throughout the day in plasma, which could affect 

results obtained from various studies depending on when blood samples are collected from 

participants.
72

 A summary of various studies analyzing cytokine concentrations from stimulated 

or unstimulated immune cells in blood samples for individuals with FM is shown in Table 2. A 

variety of techniques were used to process the blood samples and different methods were used to 

quantify cytokine concentrations, which makes direct comparisons between these studies not 

possible. 
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Table 2. Cytokine concentrations from stimulated or unstimulated immune cells in blood 

samples for individuals with FM. 

For each study, the FM diagnostic criteria used to include FM participants, types of immune cells 

analyzed, types of stimulation, method used to quantify cytokine concentrations, cytokines 

investigated, and results obtained from comparing cytokine levels in FM participants to HCs 

were examined. 

Diagnostic 

Criteria 

a) Immune Cells 

b) Stimulation 

c) Method 

Cytokines Results Reference 

FM diagnosis 

>1 year, ACR 

1990 and 2010 

a) PBMCs 

b) PHA; PMA 

and ionomycin 

c) Luminex 

xMAP
™

 

multiplex 

immunoassay 

bead array 

IL-5, IL-6, 

IL-8, IFN-

γ, IL-10, 

MIP-1α, 

MIP-1β, 

MCP-1 

More cytokines released from 

stimulated PBMCs vs. 

unstimulated; less cytokines 

released from stimulated 

PBMCs of FM patients vs. 

HCs 

Behm et al. 

2012.
4
  

FM diagnosis 

>1 year, ACR 

1990 and 2010 

a) PBMCs 

b) PHA 

c) Luminex 

multiplex 

immunoassay 

bead array 

IL-6, IL-8, 

MIP-1α, 

MIP-1β 

Lower cytokine 

concentrations released from 

stimulated PBMCs of FM 

patients vs. HCs 

Wallace et 

al. 2015.
3 

Rheumatologist 

FM diagnosis, 

ACR 1990 

a) Monocytes 

b) LPS 

c) ELISA 

Eotaxin, 

MDC, 

GRO-α 

More eotaxin, MDC, and 

GRO-α released from 

stimulated and unstimulated 

monocytes of FM patients vs. 

HCs 

García et al. 

2016.
73 

ACR 1990 a) PBMCs 

b) PHA, LPS, 

PMA 

IL-1β, IL-

2, IL-6, 

IL-8, IL-

Increased IL-1RA and IL-6 

cytokine concentrations from 

stimulated and unstimulated 

Wallace et 

al. 2001.
74 
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c) ELISA 10,sIL-2R, 

IL-1RA, 

IFN-γ, 

TNF-α 

PBMCs of FM patients vs. 

HCs for LPS and PHA 

Criteria of 

general physical 

pain symptoms 

outlined by 

Smythe, 1979  

a) CD4+ T-

lymphocytes, T-

lymphocytes 

b) Con A, PMA 

c) Dialyzed 

supernatants from 

stimulated T-cell 

cultures 

IL-2 More mitogen needed for T-

lymphocytes from FM 

patients to secrete comparable 

amount of IL-2 from HCs 

Hader et al. 

1991.
75 

Rheumatologist 

FM diagnosis, 

ACR 1990 

a) PBMCs 

b) PHA 

c) Automated 

biochip array 

analyzer before 

and after 1.5 mg 

DEX treatment 

IL-1α, IL-

1β, IL-2, 

IL-4, IL-6, 

IL-8, IL-

10, IFN-γ, 

TNF-α 

Higher IL-2 concentration 

released from stimulated 

PBMCs in FM patients vs. 

HCs pre-DEX; greater 

reduction in cytokine 

concentrations in FM patients 

vs. HCs after DEX treatment 

Macedo et 

al. 2007.
76 

Rheumatologist 

FM diagnosis, 

ACR 1990 

a) Monocytes 

b) LPS 

c) ELISA 

IL-1β, 

TNF-α, 

IL-6, IL-

10 

Higher cytokine 

concentrations released from 

stimulated and unstimulated 

monocytes in FM patients vs. 

HCs pre-aquatic exercise; 

comparable cytokine 

concentrations in FM patients 

and HCs post-aquatic 

exercise 

Ortega et 

al. 2012.
77 

Abbreviations: ACR – American College of Rheumatology Preliminary Diagnostic Criteria for 

FM, Con A – Concanavalin A, DEX – Dexamethasone, ELISA – Enzyme Linked 

Immunosorbent Assay, FM – Fibromyalgia, GRO-α – Growth Regulated Oncogene, HCs – 
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Healthy Controls, IFN-γ – Interferon Gamma, IL – Interleukin, IL-1RA – Interleukin 1 Receptor 

Antagonist, LPS – Lipopolysaccharide, MCP – Monocyte Chemoattractant Protein, MDC – 

Macrophage Derived Chemokine, MIP-1α – Macrophage Inflammatory Protein-1 Alpha, MIP-1β 

– Macrophage Inflammatory Protein-1 Beta, PBMCs – Peripheral Blood Mononuclear Cells, 

PHA – Phytohaemagglutinin, PMA – Phorbol Myristate Acetate, sIL-2R – Serum IL-2 Receptor, 

TNF-α – Tumor Necrosis Factor Alpha 

 

 Overall, there was no general consensus regarding an increase or decrease in pro-

inflammatory or anti-inflammatory cytokine concentrations in individuals with FM compared to 

HCs after immune cells were stimulated with a mitogen or if they were unstimulated. However, 

there was a trend for studies by Behm et al. 2012, Wallace et al. 2015, and Hader et al. 1991, 

analyzing cytokines released from stimulated T-cells to have lower released cytokine 

concentrations in individuals with FM compared to HCs.
3,4,75

 There was also a trend for studies 

by García et al. 2016, Wallace et al. 2001, and Ortega et al. 2012, analyzing cytokines released 

from stimulated monocytes to have higher released cytokine concentrations in individuals with 

FM compared to HCs.
73,74,77

 These trends could be due to the different types of stimulation 

methods and cell types used for each study. Despite different quantification methods used to 

detect various released cytokine concentrations from stimulated immune cells for studies in 

Table 2, Harder et al. 1991 observed lower released IL-2 concentrations in individuals with FM 

compared to HCs.
75

 This agrees with results from Behm et al. 2012 and Wallace et al. 2015 

identifying lower released cytokine concentrations from stimulated PBMCs in individuals with 

FM compared to HCs.
3,4,75

 The four studies in Table 2 by García et al. 2016, Wallace et al. 2001, 

Macedo et al. 2007, and Ortega et al. 2012 observed higher released cytokine concentrations 

from stimulated immune cells in individuals with FM compared to HCs, which were opposite to 

the results from the Wallace et al. 2015 and Behm et al. 2012 studies.
3,4,73,74,76,77

 The results from 

all studies in Table 2 indicated there was evidence of a potentially altered immune cell function 

in individuals with FM compared to HCs.  

In addition to the previously observed trends for lower released cytokine concentrations 

from stimulated T-cells, and higher released cytokine concentrations from stimulated monocytes 

in individuals with FM compared to HCs, the pro-inflammatory cytokine IL-6 and anti-

inflammatory cytokine IL-10 released from stimulated PBMCs are of particular interest as their 
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concentrations were observed by Behm et al. 2012 and Wallace et al. 2015 to be lower from 

stimulated T-cells in FM patients compared to HCs, and they were observed by Wallace et al. 

2001 and Ortega et al. 2012 to be higher from stimulated monocytes in FM patients compared to 

HCs.
3,4,74,77

 These irregular cytokine concentrations could contribute to FM associated chronic 

pain as it has been shown that certain cytokines are associated with pathological pain.
7
 IL-6 is 

associated with hyperalgesia, depression, and fatigue, which are some symptoms of FM, while 

IL-10 is correlated with blocking pain signals in the body.
74

 Identifying cytokine deregulations 

could potentially be used as a biomarker for FM, which could aid in the development of a FM 

diagnostic method. 

2.4.3 Multiplex and Enzyme Linked Immunosorbent Assay (ELISA) Cytokine Detection 

Methods 

There are different methods to detect cytokine concentrations from serum or plasma 

samples, including ELISAs or multiplex assays. Both the ELISA and multiplex methods have 

been shown to have exceptional specificity and sensitivity for effectively detecting a variety of 

proteins, including cytokines.
78

 These methods are widely used and accepted in the literature; 

however, there are some advantages and disadvantages associated with each. The ability of a 

multiplex assay to detect numerous cytokines from a single sample has greatly improved 

experimental processing time, and helped researchers gather the most information from 

experiments. The multiplex assay is more cost effective compared to an ELISA if multiple 

cytokines need to be quantified for each sample as less reagents and laboratory supplies are 

consumed.
78

 The assay also requires less sample volume, which is advantageous for research 

studies with limited sample quantities. Despite the many advantages of multiplex assays, their 

use in clinical settings is not widely accepted as only a small number of assays have been 

approved for use.
79

 Compared to ELISAs, multiplex assays require stricter quality control criteria 

to ensure the simultaneous measurements of numerous cytokines are accurate.
79

 There is also a 

concern for cross-reactivity between target cytokines and capture and detection antibodies, which 

can affect proper multiplex assay functioning and potentially cause results to be 

misrepresented.
79

 Antibodies used in ELISAs may also not work if combined in a multiplex 

assay due to the potential for cross-reactivity’s to occur.
79

 By analyzing capture antibodies and 
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their interactions with specific cytokine targets and other antibodies, improvements can be made 

to obtain accurate results from multiplex assays.
79

  

Although multiplex assays have many advantages, there are also some advantages for 

ELISAs. The ability of ELISAs to quantify a single cytokine of interest in a sample can be useful 

for diagnosing certain diseases that are confirmed by the detection of a single cytokine.
79

 

ELISAs have also been recognized as the top validated method for cytokine detection.
78

 There is 

also only a single antibody being used to detect a certain cytokine, so there is minimal potential 

for cross-reactivity to occur and the cytokine measurement obtained is more accurate. Despite 

the many advantages of ELISAs, they are unable to diagnose more complex diseases requiring 

the detection of numerous cytokines for an accurate diagnosis.
79

 ELISAs are also not as cost-

effective or efficient as multiplex assays.
78

 With the technology for multiplex assays being 

improved for use in clinical settings, ELISAs are still considered the gold standard for accurate 

cytokine detection and measurement.
78

  

2.5 Treatment Methods for FM 

FM has been widely classified as a chronic pain disorder with cognitive function 

impairments as well as hypersensitivity in an individual due to altered pain perception and 

response from certain stimuli.
15

 Unlike acute pain, most medication and other non-

pharmacologic treatment methods are ineffective at fully alleviating chronic pain and associated 

symptoms on their own.
15

 The heterogeneity and complexity of FM makes finding effective 

treatments difficult as there is no single treatment method that works for all individuals with 

FM.
1,16

 It has been observed that a combination of treatment methods provides the best outcome 

for alleviating pain and symptoms associated with FM.
1
 These treatment options can be tailored 

to each individual and range from using a pharmacological and symptom-based treatment 

approach, to a non-pharmacological and holistic approach.
21,19

 Due to the many factors that 

contribute to the cause of pain, a variety of medications with different mechanisms of action in 

the body may have to be used for successful pain management.
23

  

2.5.1 Pharmacological and Non-Pharmacological Approaches 

The study by Bonaccorso et al. 1998 observed the use of selective serotonin reuptake 

inhibitor (SSRI) and tricyclic antidepressant medications to improve FM associated somatic and 
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cognitive symptoms in some individuals, including pain and hyperalgesia responses, and 

depression and sleep disturbances, respectively.
36

 The percentage of individuals who experienced 

a significant improvement in FM associated pain and symptoms from taking antidepressants, 

however, is only around 10 to 25%.
80

 The use of antidepressants may not be effective to treat all 

individuals as FM is a heterogeneous spectrum disorder with different subtypes, which require 

individualized treatments. In addition to pharmacological treatments, non-pharmacological 

methods are also recommended to treat FM including low intensity aerobic exercise programs, 

cognitive behavioural therapy, healthy lifestyle choices, and FM associated symptom coping 

strategies.
15,19,21

 A drawback of cognitive behavioural therapy is that it may only improve the 

cognitive functioning of an individual and not directly decrease physical pain.
15

  

2.5.2 Anti-inflammatory and Immunosuppressant Medications 

Non-steroidal anti-inflammatory drugs (NSAIDs) are a type of medication used to treat 

individuals with inflammation and pain. They work by inhibiting the cyclooxygenase-1 and 2 

(COX-1 and COX-2) enzymes that are mostly present in the endoplasmic reticulum of cells that 

produce prostanoid to reduce their production of prostaglandin, which subsequently reduces 

pain, inflammation and fever in specific injured tissue areas throughout the body.
81,82

 The 

effectiveness of NSAIDs and other natural anti-inflammatory compounds have been studied by 

Lu et al. 2018 and Tanaka et al. 1998 with in vitro models of inflammation using PBMCs 

stimulated with a mitogen.
83,84

 In these studies, cytokine concentrations were measured before 

and after the addition of an NSAID to stimulated PBMCs to determine if the drug had an effect 

at reducing pro-inflammatory cytokine concentrations.
83,84

 These studies demonstrated the anti-

inflammatory abilities of NSAIDs and their effects on the immune response as seen by a 

reduction of pro-inflammatory cytokine levels.
83,84

 Ceuppens et al. 1986 also observed that the 

NSAID naproxen taken orally for seven days improved lymphocyte proliferation following 

stimulation with PHA in RA patients due to an immunomodulatory effect of the medication.
85

 

There are, however, no known studies analyzing the effectiveness of NSAIDs in FM, or 

analyzing the in vivo effects of NSAIDs on PBMCs after being isolated from blood. 

In addition to NSAIDs, opioids are a stronger type of medication also used to manage 

pain. They work by interacting with opioid receptors in the central nervous system to block 

painful stimuli and produce analgesia.
82

 Opioid analgesic treatment has previously been used to 
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help control FM pain levels, although its long term use is now discouraged by many medical 

guidelines due to its lack of effectiveness when compared to other treatment options such as 

various nonpharmacologic therapies and FDA approved pharmacotherapies.
86

 A pilot study by 

Parkitny et al. 2017 using the low dose naltrexone opioid receptor antagonist in individuals with 

FM observed improvements in FM associated pain and symptoms and reductions in pro-

inflammatory cytokine plasma concentrations.
87

 However, there has been no clinical trial 

research studies that have proven the effectiveness of opioids to treat FM.
86

 Overall, since FM is 

widely accepted as a non-inflammatory chronic pain disorder, NSAIDs and opioids are not 

recommend to treat FM associated pain.
21,80

 They can successfully treat most peripheral pain 

complaints, but are not effective for treating central pain disorders such as FM.
23

  

In addition to the ineffective use of NSAIDs and opioids to treat FM, there is also 

evidence that immunosuppressant medications are not beneficial as a treatment method for FM. 

Different immunosuppressants, such as glucocorticoids, work by interacting with specific 

biological targets in the body to cause immune function changes in an individual.
88

 These 

medications have anti-inflammatory and immunosuppressive properties that inhibit inflammatory 

and immune responses in the body.
88,89

 Although immunosuppressants can reduce inflammation 

and aid in managing rheumatic conditions, their ability to weaken the immune system and cause 

infection are side effects that make them undesirable for treating FM.
90

 Overall, 

immunosuppressant therapy for individuals with FM is not effective as FM is widely accepted as 

a non-inflammatory chronic pain disorder.
91

 

2.5.3 Radial Shockwave Therapy (RSWT) 

RSWT is a potentially novel FM treatment method that has been successful in treating 

musculoskeletal disorders such as chronic tendinopathies, but there is little research on its ability 

to treat FM.
5
 Some musculoskeletal disorders reported in which shockwave therapy has 

successfully treated are shown in Table 3.
5,92,93
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Table 3. Examples of musculoskeletal disorders shockwave therapy has successfully treated. 

Musculoskeletal Disorder Type of Shockwave Treatment Used Reference 

Myofascial Pain Syndrome Focused Low-Energy ESWT 5 

Proximal Plantar Fasciitis ESWT 92 

Lateral Epicondylitis of the Elbow ESWT 92 

Calcific Tendinitis of the Shoulder ESWT and RSWT 92,93 

Achilles Tendinopathy ESWT 92 

Patellar Tendinopathy ESWT 92 

Delayed and Non-Union of Long Bone 

Fractures 

ESWT 92 

Abbreviations: ESWT – Extracorporeal Shockwave Therapy, RSWT – Radial Shockwave 

Therapy 

 

RSWT is also known as radial pressure waves as the treatment shockwave intensity is 

very low and a true shockwave it not generated.
5,93

 RSWT and extracorporeal shockwave therapy 

(ESWT) function by generating low to medium, or high biphasic acoustic energy waves from the 

device, respectively.
5
 This energy is transferred from the applicator to the treatment area on the 

skin of FM patients.
5
 RSWT and ESWT differ from each other due to the physical characteristics 

of pressure and energy densities of their waves over time.
93

 RSWT has a longer rise time and 

lower peak pressure compared to ESWT.
93

 The radial shockwaves used in RSWT are generated 

by a projectile accelerating in the device, which are then transferred radially from the device 

applicator to the treatment area.
93

 The focused shockwaves used in ESWT are generated in the 

device applicator using an electrohydraulic technique, or externally to the treatment area using 

piezoelectric or electromagnetic techniques, which are then transferred in a focused manner to 

the specific treatment area.
5,93

 RSWT has an unfocused application, where ESWT has a focused 

application with respect to the treatment area on the skin of FM patients.
93

 There are no safety 

concerns with the RSWT device and it only has potential mild side effects including short term 

redness, soreness, and tingling in the treated area.
5
 A benefit of RSWT is it can be administered 
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to an individual without anesthesia as it uses lower energy shockwaves and an unfocused 

application, which make it is less painful compared to ESWT.
93

  

RSWT is thought to cause cells to undergo a regenerative process and promote healing 

through localized tissue repair by stimulating tissue inflammation using the mechanical effects of 

the RSWT device to cause disruptions in the tissue.
5
 Tissue repair is achieved due to primary and 

secondary effects from shockwaves being administered to a treatment area.
92

 The primary effect 

of shockwaves generated from the device is the production of direct mechanical forces acting on 

the tissue in the treatment area, and the secondary effect of shockwaves is cavitation from 

indirect mechanical forces.
92

 The bursting of cavitation bubbles creates a force that can stimulate 

cells to undergo tissue healing. This physical process causing tissue inflammation in FM patients 

may potentially reduce FM associated chronic pain, which could regulate immune cell function 

from an increase in an individual’s overall well-being.
5
  

Overall, the use of various treatments to create unique multimodal approaches for FM 

management has currently been shown to have the greatest effect at improving an individual’s 

FM associated pain and symptoms.
21,19

 The inclusion of RSWT as part of an FM treatment 

program can act as a pain modulator in addition to using other FM treatment methods and 

components. The effectiveness of RSWT at improving FM associated pain and symptoms can 

continue to be studied to determine if it can be a potential FM treatment option. 
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Chapter 3: Methodology and Experimental Design 

3.1 Research Ethics Board (REB) Study Approval 

The present study has been reviewed and approved by the Thunder Bay Regional Health 

Sciences Centre (TBRHSC), St. Joseph’s Care Group (SJCG), and Lakehead University (LU) 

REBs. Approvals have also been obtained from the REBs for changes made to the original 

protocol. 

3.2 Experimental Design 

3.2.1 Participant Recruitment 

Potential participants were recruited using flyers advertising the study. These flyers were 

posted at local clinics and organizations that have a high population of individuals with 

fibromyalgia (FM). A study advertisement was placed in the local paper to reach more 

individuals. Electronic advertising was achieved using social media and online clinic newsletters. 

Interested potential participants contacted the research team using the information on the 

recruitment flyer or advertisement to arrange an informed consent and screening meeting. 

3.2.2 Participant Informed Consent and Screening 

The informed consent and screening meeting determined if potential FM and healthy 

control (HC) participants were eligible to enroll in the study. Refer to the “Flow of FM 

Participants through Each Stage of the Present Study” section in the Appendix for the flow chart 

outlining this process. Potential HC participants were screened and met the inclusion criteria as 

follows: they must have been between 18-60 years of age, willing to talk with a research team 

member and provide informed consent, and able to speak and read basic English. They also had 

to meet the exclusion criteria as follows: they must not have been pregnant, had no current anti-

inflammatory use, and not be diagnosed with thrombosis, thrombophlebitis, or coagulation 

disorders which could cause an increased health risk during blood draws. Smoking, diabetes, or 

body mass index were not screened for in potential participants, and these factors could alter 

immune function. 
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Potential FM participants must have met the inclusion criteria as follows: they must have 

been between 18-60 years of age, willing to talk with a research team member, able to speak and 

read basic English, and willing to give the name of their primary healthcare provider/physician. 

They must have also met the exclusion criteria as follows: they must have had no vascular, 

neurological or other condition or disorder that could explain their pain, had no implanted metal 

that was incompatible with shockwave therapy, not be pregnant, and not be diagnosed with 

thrombosis, thrombophlebitis, or coagulation disorders which could have caused an increased 

health risk during blood draws. Potential FM participants were screened using the 2010 

American College of Rheumatology (ACR) Preliminary Diagnostic Criteria for FM to ensure 

they were eligible to participate.
2
 If a potential FM participant did not meet either the inclusion, 

exclusion, or 2010 ACR Preliminary Diagnostic Criteria for FM, they were not permitted to 

partake in the study. Ineligible participants had their informed consent and screening forms 

marked as a “Screen Fail”, and these were kept separate from forms of approved participants. 

Potential FM and HC participants could take time to consider participating in the study, 

and ask questions before providing informed consent. Participants consented to the study by 

signing the informed consent form. Participants could withdraw from the study at any time 

without reason. Participants that were withdrawing could choose to have any or all data collected 

from them destroyed, with the exception of the screening and informed consent forms which 

must be kept for a minimum of five years. The duration of participation in the study for FM 

individuals was between six to seven consecutive weeks. 

3.2.3 Participant Enrollment 

FM participants who passed the screening criteria and provided informed consent were 

enrolled into the study. Each FM and HC participant was assigned a unique number code to 

ensure their identity remained anonymous during data collection and analysis. Baseline measures 

from the FM participants were taken pre- and post-intervention using a variety of tests and 

questionnaires to assess pain levels. These tests could be used to determine if possible sub-

groups of FM individuals were present, which could influence an individual’s response to the 

radial shockwave therapy (RSWT) treatment. A visual analog scale allowed FM participants to 

rate their pain levels from three of the most painful areas in different regions on their body.
94

 The 

Baseline Pressure Tolerance Meter determined the pressure pain threshold in lbs of the three 
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painful areas by having increasing pressure applied to each area until the FM participant reported 

pain.
95

 The Quantitative Sensory Testing for hyperalgesia and allodynia quantified the FM 

participant’s increased sensitivity to pain from the three painful areas using a standardized 

methodology.
96

 The Beighton Scoring Screen for hypermobility assessed motions done on 

certain areas of a FM participant’s body to determine if hypermobility was present.
97

 The Pain 

Catastrophizing Scale evaluated a FM participant’s pain levels and feelings towards their pain.
98

 

The sex and age of FM and HC participants were recorded, as well as the mass, height, and 

current anti-inflammatory medication use for FM participants. 

3.2.4 Participant Group Randomization 

In this randomized controlled trial study, participants were randomly assigned to either 

the study treatment or placebo group based on their sex and age. This randomized group 

assignment process is called minimisation, and it was used to remove bias from group 

assignment and to ensure equal group sizes were obtained.
99

 The QMinim online program was 

used to randomize participants as it utilizes this process.
100

 Participants were told their group 

assignment after they completed the study. Participants who were randomized into the placebo 

group had the RSWT treatment offered to them for free after the official study and data 

collection was completed. No data was collected or used from participants during the free RSWT 

treatments as this data would not be part of the original study design. The individual 

administering the interventions knew all group assignments to ensure each participant received 

the appropriate treatment. 

3.2.5 Treatment 

The type of intervention for each participant was administered based on their group 

assignment. Participants in the treatment group received the active form of the RSWT treatment, 

which was administered as 500 shocks (1.5 bar, 15 Hz), followed by 1000 shocks (2 bar, 8 Hz), 

and then another 500 shocks (1.5 bar, 15 Hz). Participants in the placebo group received a 

similar treatment, but a different device applicator with a soft rubber cap was used that caused an 

air gap between the participant’s skin and transmitter. The placebo intervention was administered 

as 500 shocks (0.01 mJ/mm
2
, 15 Hz), followed by 1000 shocks (0.01 mJ/mm

2
, 8 Hz), and then 

another 500 shocks (0.01 mJ/mm
2
, 15 Hz). The Storz Duolith

®
SD1 Ultra Shockwave module 
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device (Storz Medical AG, Tägerwilen, Switzerland) was used to administer the active or 

placebo RSWT intervention to each of the three most painful areas attributed to FM in different 

regions on the participant’s body. The intervention sessions occurred once weekly for five 

weeks. At the start of each session, changes to the participant’s anti-inflammatory or pain 

medication use were also noted. 

3.2.6 Blood Sample Collections 

A blood sample was collected at the LU School of Kinesiology Sanders Building from 

the participant before beginning and after completing the five weeks of interventions. A blood 

sample was collected from HC participants only once as they did not participate in the 

intervention sessions. A phlebotomist drew one vial of blood for each of the two visits using 

specialized 4 mL draw capacity BD Vacutainer
®
 CPT™ Tubes with Sodium Citrate and a 

density solution (Becton, Dickson and Company, Franklin Lakes, New Jersey, USA, cat 

#362760), and other supplies needed for a blood draw. The specialized vacutainers contained an 

anti-coagulant that did not allow the blood to clot. Following centrifugation, plasma was formed 

and all the blood components were suspended, including a distinct layer of peripheral blood 

mononuclear cells (PBMCs). This process allowed PBMCs to be isolated from the participant’s 

whole blood. Each vial of blood was labeled with the participant’s number code and “A” or “B”, 

which indicated if the blood was drawn before or after receiving treatments, respectively. The 

blood samples were transported to the Northern Ontario School of Medicine (NOSM) laboratory 

for processing and analysis. 

3.2.7 Blood Sample Processing and Storage 

Once the vacutainer containing the participant’s blood sample was transported to the 

NOSM laboratory, it sat at room temperature for one to two hours before processing. The 

vacutainer was then inverted eight to ten times to re-mix the blood sample before being placed 

into a centrifuge machine with vacutainer adapters and water balance to spin for 25 minutes at 

1500 G-force (X g). The centrifuge separates PBMCs from whole blood due to the centripetal 

force generated that causes higher density blood components to travel to the bottom of the 

vacutainer quicker than less dense blood components. Following centrifugation, the clear layer of 

PBMCs located below the plasma layer and above the density layer solutions was removed from 
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the vacutainer, as indicated in the BD Vacutainer
®

 CPT™ Tube with Sodium Citrate information 

booklet (Becton, Dickson and Company, Franklin Lakes, New Jersey, USA). The PBMCs were 

transferred to a 15 mL conical centrifuge tube, and phosphate buffered saline (PBS) modified 

with calcium and magnesium (GE Healthcare Life Sciences, South Logan, Utah, USA, cat 

#SH30264.01) was added to a final volume of 15 mL. The tube was inverted five times before 

being placed into a centrifuge with conical centrifuge tube adapters and water balance for 15 

minutes at 300 x g to wash the PBMCs of unwanted blood components. The supernatant was 

then poured off, the pellet was resuspended by gently tapping the tube, and PBS was added to a 

final volume of 10 mL for another wash step. The tube was inverted five times before being 

placed into a centrifuge with conical centrifuge tube adapters and water balance for 10 minutes at 

300 x g. 

During this time, supplemented Roswell Park Memorial Institute (RPMI) 1640 media 

(2.05 mM L-Glutamine, 10% fetal clone III (FCIII), 1% penicillin-streptomycin, 1% sodium 

pyruvate (NaPyr); GE Healthcare Life Sciences, South Logan, Utah, USA, cat #SH3002701, 

refer to “RPMI Media Preparation” section in the Appendix for the recipe), and the mitogen 

phytohemagglutinin-P (PHA-P; Sigma-Aldrich, St. Louis, Missouri, USA, cat #L1668) were 

warmed in the bead heater. Following centrifugation, the supernatant was poured off, and the 

pellet was resuspended in 1 mL of media. 20 µL of this resuspension was used for a 10-fold 

dilution with 180 µL of PBS. Ten µL of the 10-fold dilution was transferred to each side of a 

hemocytometer to count the PBMCs and determine the number of cells per mL in the 

resuspension. Based on the number of cells in the resuspension, the appropriate amount of media 

was added to dilute the resuspension and obtain one million cells per mL. No media was added if 

the resuspension already contained less than one million cells per mL. The final resuspension 

volume was divided equally into two wells of a cell culture plate labeled “stimulated” and 

“unstimulated”. PHA-P was diluted to a final concentration of 10 µg/mL and added to the 

“stimulated” well. PHA-P was used for stimulation as it was previously used in FM studies by 

Behm et al. 2012 and Wallace et al. 2015 analyzing the release of cytokines from stimulated 

PBMCs, and the present study is verifying the results obtained from these previous studies.
3,4

 

The seeded cells were incubated at 37˚C with 5% carbon dioxide (CO2) for 18 hours. 

After the incubation period, the PBMCs in media were transferred to 1.5 mL 

microcentrifuge tubes and centrifuged for 10 minutes at 16000 x g at 4˚C. The supernatant from 
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each sample was pipetted into new 1.5 mL microcentrifuge tubes and inverted to mix. Based on 

the volume of each sample, 220 µL and 30 µL aliquots were made in 1.5 mL microcentrifuge 

tubes. These tubes were labeled with the date, participant code and if the sample was taken pre- 

or post-interventions. They were stored at –80˚C. Refer to the “Blood Sample Processing and 

Storage” section in the Appendix for the full standard operating procedure (SOP). 

3.2.8 Blood Sample Preparation for Enzyme-Linked Immunosorbent Assay (ELISA) 

The processed blood samples stored at –80˚C were prepared before being used in an 

ELISA analysis. Based on the standard range detection limit of ELISA kits, the samples were 

diluted to ensure the biomarker of interest was detected. The Human Interleukin-6 (IL-6) ELISA 

MAX™ Deluxe set (BioLegend, San Diego, California, USA, cat #430504) required samples 

stimulated with PHA-P to be diluted to allow IL-6 concentrations to fall within the standard 

range of 7.8-500 pg/mL. After the samples were removed from the -80˚C freezer and placed on 

ice to thaw, serial dilutions were done to allow IL-6 concentrations to fall within the middle of 

the standard curve for each sample. The dilutions used for data collection varied within the serial 

dilution range depending on the sample. A 10-fold dilution was initially done, followed by a 5-

fold dilution, a 3-fold dilution, and a 2-fold dilution. All dilutions were plated to ensure IL-6 

concentrations were detected if there was variability between samples. The Human Interleukin-

10 (IL-10) ELISA MAX™ Standard set (BioLegend, San Diego, California, USA, cat #430601) 

required samples stimulated with PHA-P to be diluted to allow IL-10 concentrations to fall 

within the standard range of 3.9-250 pg/mL. After the samples were removed from the -80˚C 

freezer and placed on ice to thaw, serial dilutions were done to allow IL-10 concentrations to fall 

within the middle of the standard curve for each sample. The dilutions used for data collection 

varied within the serial dilution range depending on the sample. A 10-fold dilution was initially 

done, followed by two 2-fold dilutions. All dilutions were plated to ensure IL-10 concentrations 

were detected if there was variability between samples. Unstimulated PBMC supernatant 

samples did not need to be diluted as the full sample concentration was low enough to potentially 

be detected within the IL-6 or IL-10 standard range. The samples were diluted using 1X Assay 

Diluent A from the BioLegend ELISA kits, which was 1X PBS solution with bovine serum 

(BioLegend, San Diego, California, USA, cat #421203). Aliquoted stimulated and unstimulated 

PBMC supernatant samples were only thawed and used once to avoid potential effects on 
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cytokine concentrations caused by repeated freeze and thaw cycles.
101

 Refer to the “Blood 

Sample Preparation for Enzyme-Linked Immunosorbent Assay (ELISA)” section in the 

Appendix for the full SOP. 

3.2.9 Blood Sample Analysis using ELISA 

 To measure the IL-6 and IL-10 concentrations in the PBMC stimulated and unstimulated 

supernatant samples, Human IL-6 and IL-10 ELISA MAX™ sets (BioLegend, San Diego, 

California, USA) were used following the manufacturer’s directions. The standard dilution 

series, blank and samples were plated in duplicate, and 100 µL of each were loaded into the 

wells of a Nunc™ MaxiSorp™ flat-bottom 96 well uncoated ELISA plate (Thermo Fisher 

Scientific, Waltham, Massachusetts, USA, cat #44240421). The plate was read at 450 nm and 

570 nm on a BioTek Power Wave XS microplate reader (model #MQX200R) using KC4 

analysis software, and the delta optical density (OD) absorbance readings were recorded. Refer 

to the “Blood Sample Analysis using ELISA” section in the Appendix for the full SOP. 

3.3 Limitations, Basic Assumptions, and Delimitations 

3.3.1 Limitations and Basic Assumptions 

 In the present study, there were limitations and assumptions associated with the 

participation of FM and HC individuals. One limitation was that FM participants might not be an 

accurate representation of the entire FM population due to the limited location where study 

treatments could be administered, a limited participant recruitment of 13 female individuals with 

FM, and multiple-week commitment to the study. It was assumed the ACR Preliminary 

Diagnostic Criteria for FM was reliable at accurately classifying FM to identify potential study 

participants.
2
 It was also assumed FM participants did not have other underlying health 

conditions not captured on the screening criteria that made them ineligible to participate or that 

could interfere with the study results. It was assumed the baseline measure tests and 

questionnaires completed pre and post intervention for FM participants, including the visual 

analog scale, the Baseline Pressure Tolerance Meter, the Quantitative Sensory Testing for 

hyperalgesia and allodynia, the Beighton Scoring Screen for hypermobility, and the Pain 

Catastrophizing Scale, were reliable and accurate at assessing pain levels.
94-98

 For HC 
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participants, it was assumed that those who passed the screening criteria were in good health and 

did not have underlying health conditions that could affect the study results. Another assumption 

was that FM and HC participants answered all screening questions truthfully. A limitation was 

that participants might have experienced different stressors in their lives that could have 

contributed to variations in blood draw analysis and treatment results. It was assumed the 

randomization software used to assign FM participants to the placebo or treatment group was 

operating properly. It was also assumed the RSWT device was functioning as expected to deliver 

the appropriate treatment to FM participants. It was assumed the blood collection and analysis 

materials were not defective and the results obtained from them were accurate. 

3.3.2 Delimitations 

In the present study, cytokine supernatants of stimulated and unstimulated PBMCs 

isolated from human blood samples of FM and HC participants were used for all experiments. 

Participants were classified as having FM but did not necessarily have a FM diagnosis from a 

rheumatologist. This potentially allowed more individuals to be included in the study as there are 

no definitive FM diagnostic methods available. FM and HC participants also passed their 

respective study inclusion and exclusion criteria to ensure they were eligible to participate. These 

criteria addressed potential safety concerns, as well as factors that could impact study results. 

Potential other factors that were not screened for that could impact the study include smoking, 

diabetes and an individual’s body mass index as these factors could potentially affect immune 

function. Another delimitation was the variation of blood draw and RSWT treatment or placebo 

intervention times for each FM participant. This was done to accommodate each participant’s 

schedule. All treatments and blood draws were performed in the same conditions and rooms to 

minimize variability. Participants were recruited from specific locations around the city, 

including local clinics, SJCG Chronic Pain Management and Rheumatic Disease Programs, and 

the 55 Plus Centre. These locations were chosen as they had a high population of individuals 

with FM. 

3.4 Statistical Analysis 

To answer the hypotheses from Specific Aim 1, separate one-tailed Student’s t-tests for 

IL-6 and IL-10 cytokines were used to compare the effective change in stimulated and 
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unstimulated cytokine concentrations from pre-intervention FM participants and HCs. Separate 

one-tailed Student’s t-tests for IL-6 and IL-10 cytokines were also used to compare stimulated 

and unstimulated cytokine concentrations from pre-intervention FM participants and HCs. 

Stimulated to unstimulated ratios were determined for each participant before determining the 

means when comparing the stimulated and unstimulated samples. 

To answer the hypothesis from Specific Aim 2, separate two-way repeated measures 

analysis of variances (ANOVAs) for IL-6 and IL-10 cytokines were used to compare the 

effective change in stimulated and unstimulated cytokine concentrations from FM participants 

pre- and post-treatment or placebo interventions. The Fisher’s least significant difference (LSD) 

post-hoc test was used as two separate group means can be directly compared to each other. 

Separate two-way repeated measures ANOVAs for IL-6 and IL-10 cytokines were also used to 

compare stimulated and unstimulated cytokine concentrations for each FM participant pre- and 

post-treatment or placebo interventions. The Fisher’s LSD post-hoc test was used as two separate 

group means can be directly compared to each other. The Pearson correlation coefficient was 

used to determine the strength of the linear relationship between IL-6 and IL-10 delta effective 

change ratios from the difference in effective change ratios pre- to post-intervention for each FM 

participant. 

Additional analyses were done for released IL-6 and IL-10 cytokines from stimulated and 

unstimulated PBMCs for female and male HCs. Separate one-tailed Student’s t-tests for IL-6 and 

IL-10 cytokines were used to compare the effective change in stimulated and unstimulated 

cytokine concentrations from female and male HCs. Separate one-tailed Student’s t-tests for IL-6 

and IL-10 cytokines were also used to compare stimulated and unstimulated cytokine 

concentrations from pre-intervention FM participants and HCs. Data was presented as means ± 

standard error of the mean (SEM). A p-value of less than or equal to 0.05 was significant. 
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Chapter 4. Results 

4.1 Demographic Data 

Fibromyalgia (FM) can occur at any age, but it is most commonly seen in middle aged 

individuals. Demographic information was collected from FM participants in both the treatment 

and placebo groups, and healthy controls (HCs). The sex and age of FM participants and HCs 

were recorded, along with the height and mass of FM participants, as shown in Table 4.  

 

Table 4. Demographic information for fibromyalgia (FM) participants in the treatment (n=7) and 

placebo (n=6) groups and healthy controls (HCs; n=10). 

Sex, age, and the number of participants were recorded for each group, and height and mass was 

recorded for the FM treatment and placebo groups. Data are presented as mean ± standard error 

of the mean (SEM). 

Group Age (years) Height (cm) Mass (kg) Sex 

HCs 27 ± 2.1; 

48 ± 3.8 

N/A N/A 7 Females; 

3 Males 

FM Treatment 53.3  ± 2.4 162.4  ± 2.2 79.7  ± 7.7 7 Females 

FM Placebo 51.5  ± 2.1 160.8  ± 2.2 97.7 ± 14.7 6 Females 

 

4.2 HC Released Cytokine Concentration Sex Differences 

4.2.1 HC Interleukin-6 (IL-6) Concentrations Released from Stimulated and Unstimulated 

Peripheral Blood Mononuclear Cells (PBMCs) 

There was higher released IL-6 concentrations from stimulated PBMCs in HC males 

(n=3) compared to females (n=7), as shown in Figure 2a (p=0.0013). There was no significant 

difference in released IL-6 concentrations from unstimulated PBMCs in HC males or females, as 

shown in Figure 2b (p=0.25). These data suggest potential sex differences for the release of IL-6 

from stimulated PBMCs.  
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a)  

 b)   

Figure 2. Interleukin-6 (IL-6) concentration release from healthy control (HC) stimulated and 

unstimulated peripheral blood mononuclear cells (PBMCs). 

PBMCs were stimulated with phytohemagglutinin-P (PHA-P). IL-6 concentrations were 

determined in pg/mL for male (n=3) and female (n=7) HCs. a) Stimulated PBMCs from HC 

males had a higher IL-6 concentration of 89154.7 ± 24427 pg/mL, compared to HC females with 

an IL-6 concentration of 24421.5 ± 2504.6 pg/mL (p=0.0013). b) Unstimulated PBMCs from HC 

males had an IL-6 concentration of 9.3 ± 1.1 pg/mL, compared to HC females with an IL-6 

concentration of 13.5 ± 3.7 pg/mL (p=0.25). Data are presented as mean ± standard error of the 

mean (SEM). * represents a significant difference (p ≤ 0.05) between males and females. 
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4.2.2 HC Interleukin-10 (IL-10) Concentrations Released from Stimulated and 

Unstimulated PBMCs 

There was higher released IL-10 cytokine concentrations from stimulated PBMCs in HC 

males (n=3) compared to females (n=6), as shown in Figure 3a (p=0.042). There was also higher 

released IL-10 cytokine concentrations from unstimulated PBMCs in HC males compared to 

females, as shown in Figure 3b (p=0.037). These data suggest potential sex differences for the 

release of IL-10 from stimulated and unstimulated PBMCs. 
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a)  

b)  

Figure 3. Interleukin-10 (IL-10) concentration release from healthy control (HC) stimulated and 

unstimulated peripheral blood mononuclear cells (PBMCs). 

PBMCs were stimulated with phytohemagglutinin-P (PHA-P). IL-10 concentrations were 

determined in pg/mL for male (n=3) and female (n=6) HCs. a) Stimulated PBMCs from HC 

males had a higher IL-10 concentration of 3710.8 ± 1255.6 pg/mL, compared to HC females 

with an IL-10 concentration of 1555.8 ± 470.3 pg/mL (p=0.042). b) Unstimulated PBMCs from 

HC males had a higher IL-10 concentration of 4.3 ± 0.4 pg/mL, compared to HC females with an 

IL-10 concentration of 3.7 ± 0.08 pg/mL (p=0.037). Data are presented as mean ± standard error 

of the mean (SEM). * represents a significant difference (p ≤ 0.05) between males and females. 
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4.2.3 HC Effective Change Ratios in Released IL-6 Concentrations 

 The effective change in stimulated to unstimulated cytokine concentration ratios for IL-6 

released from PBMCs for female (n=7) and male (n=3) HCs were determined, as shown in 

Figure 4. A significant difference in IL-6 effective change ratios was observed (p=0.00058) 

between males and females. These data suggest potential sex differences for the release of IL-6 

from stimulated and unstimulated PBMCs. 

 

 

Figure 4. The effective change ratios in interleukin-6 (IL-6) for female and male healthy controls 

(HCs). 

The stimulated to unstimulated cytokine concentration ratios for IL-6 released from peripheral 

blood mononuclear cells (PBMCs) was determined for female (n=7) and male (n=3) HCs. The 

effective change ratios in IL-6 were 2639.1 ± 548.6-fold for females, and 9359.7 ± 1762.9-fold 

for males (p=0.00058). Data are presented as mean ± standard error of the mean (SEM). * 

represents a significant difference (p ≤ 0.05) between males and females. 
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The effective change in stimulated to unstimulated cytokine concentration ratios for IL-

10 released from PBMCs for female (n=6) and male (n=3) HCs were determined, as shown in 

Figure 5. No significant difference in IL-10 effective change ratios was observed (p=0.086) 
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between males and females. These data do not suggest potential sex differences for the release of 

IL-10 from stimulated and unstimulated PBMCs. 

 

 

Figure 5. The effective change ratios in interleukin-10 (IL-10) for female and male healthy 

controls (HCs). 

The stimulated to unstimulated cytokine concentration ratios for IL-10 released from peripheral 

blood mononuclear cells (PBMCs) was determined for female (n=6) and male (n=3) HCs. The 

effective change ratios in IL-10 were 431.6 ± 141.0-fold for females, and 887.0 ± 330.2-fold for 

males (p=0.086). Data are presented as mean ± standard error of the mean (SEM). 

4.3 Cytokine Concentration for Pre-Intervention FM Participants and HCs 

4.3.1 IL-6 Concentrations Released from Stimulated and Unstimulated PBMCs 

Since all FM participants enrolled in the study were female, only female HCs were used 

for data analysis to remain consistent with the majority of methods used in the literature. 

Released IL-6 concentrations from stimulated and unstimulated PBMCs for HCs (n=7) and FM 

participants in both treatment and placebo groups pre-intervention (n=13) were determined, as 

shown in Figures 6a and 6b, respectively. 
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a)  

b)  

Figure 6. Interleukin-6 (IL-6) concentration release from stimulated and unstimulated peripheral 

blood mononuclear cells (PBMCs) for fibromyalgia (FM) participants and healthy controls 

(HCs). 

PBMCs were stimulated with phytohemagglutinin-P (PHA-P). IL-6 concentrations were 

determined in pg/mL for FM participants in both treatment and placebo groups pre-intervention 

(n=13) and HCs (n=7). a) Stimulated PBMCs from FM participants had an IL-6 concentration of 

30134.1 ± 6647.4 pg/mL, compared to HCs with an IL-6 concentration of 24421.5 ± 2504.6 

pg/mL (p=0.27). b) Unstimulated PBMCs from FM participants had an IL-6 concentration of 
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42.9 ± 20.1 pg/mL, compared to HCs with an IL-6 concentration of 13.5 ± 3.7 pg/mL (p=0.15). 

Data are presented as mean ± standard error of the mean (SEM). 

 

In Figure 6a, there was no significant difference in IL-6 concentrations released from 

stimulated PBMCs between HCs and FM participants (p=0.27). IL-6 concentrations of 24421.5 ± 

2504.6 pg/mL and 30134.1 ± 6647.4 pg/mL were observed for HCs and FM participants from 

stimulated PBMCs, respectively. There was also no significant difference in IL-6 concentrations 

released from unstimulated PBMCs between HCs and FM participants (p=0.15), as shown in 

Figure 6b. IL-6 concentrations of 13.5 ± 3.7 pg/mL and 42.9 ± 20.1 pg/mL were observed for 

HCs and FM participants from unstimulated PBMCs, respectively. Although there were no 

significant differences between the HC and FM participant groups, there was a non-significant 

trend where FM participants had higher IL-6 concentrations released from stimulated and 

unstimulated PBMCs compared to HCs, which is more pronounced by an almost 3-fold 

difference in the unstimulated PBMCs. 

4.3.2 IL-10 Concentrations Released from Stimulated and Unstimulated PBMCs 

Released IL-10 concentrations from stimulated and unstimulated PBMCs for HCs (n=6) 

and FM participants in both treatment and placebo groups pre-intervention (n=13) were 

determined, as shown in Figures 7a and 7b, respectively. 
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a)   

b)  

Figure 7. Interleukin-10 (IL-10) concentration release from stimulated and unstimulated 

peripheral blood mononuclear cells (PBMCs) for fibromyalgia (FM) participants and healthy 

controls (HCs). 

PBMCs were stimulated with phytohemagglutinin-P (PHA-P). IL-10 concentrations were 

determined in pg/mL for FM participants in both treatment and placebo groups pre-intervention 

(n=13) and HCs (n=6). a) Stimulated PBMCs from FM participants had an IL-10 concentration 

of 1546.7 ± 323.4 pg/mL, compared to HCs with an IL-10 concentration of 1555.8 ± 470.3 

pg/mL (p=0.49). b) Unstimulated PBMCs from FM participants had an IL-10 concentration of 
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4.0 ± 0.2 pg/mL, compared to HCs with an IL-10 concentration of 3.7 ± 0.1 pg/mL (p=0.13). 

Data are presented as mean ± standard error of the mean (SEM). 

 

In Figure 7a, there was no difference in IL-10 concentrations released from stimulated 

PBMCs between HCs and FM participants (p=0.49). IL-10 concentrations of 1555.8 ± 470.3 

pg/mL and 1546.7 ± 323.4 pg/mL were seen for HCs and FM participants from stimulated 

PBMCs, respectively. There was also no difference in IL-10 concentrations released from 

unstimulated PBMCs between HCs and FM participants (p=0.13), as shown in Figure 7b. IL-10 

concentrations of 3.7 ± 0.1 pg/mL and 4.0 ± 0.2 pg/mL were observed for HCs and FM 

participants from unstimulated PBMCs, respectively. 

4.3.3 Effective Change Ratios in Released IL-6 Concentrations 

The effective change in stimulated to unstimulated cytokine concentration ratios for IL-6 

released from PBMCs for HCs (n=7) and FM participants in both treatment and placebo groups 

pre-intervention (n=13) were determined, as shown in Figure 8. 
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Figure 8. The effective change ratios in interleukin-6 (IL-6) for fibromyalgia (FM) participants 

and healthy controls (HCs). 

The stimulated to unstimulated cytokine concentration ratios for IL-6 released from peripheral 

blood mononuclear cells (PBMCs) was determined for HCs (n=7) and FM participants in both 

treatment and placebo groups pre-intervention (n=13). The effective change ratios in IL-6 were 

2639.1 ± 548.6-fold for HCs, and 2363.7 ± 693.6-fold for FM participants (p=0.40). Data are 

presented as mean ± standard error of the mean (SEM). 

 

In Figure 8, no significant difference in IL-6 effective change ratios was observed 

between HCs and FM participants (p=0.40). There were IL-6 effective change ratios of 2639.1 ± 

548.6-fold and 2363.7 ± 693.6-fold for HCs and FM participants, respectively. Although there 

was no significant difference between the HC and FM participant groups, there was a non-

significant trend where FM participants had a lower IL-6 effective change ratio compared to 

HCs. 

4.3.4 Effective Change Ratios in Released IL-10 Concentrations 

The effective change in stimulated to unstimulated cytokine concentration ratios for IL-

10 released from PBMCs for HCs (n=6) and FM participants in both treatment and placebo 

groups pre-intervention (n=13) were determined, as shown in Figure 9. 
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Figure 9. The effective change ratios in interleukin-10 (IL-10) for fibromyalgia (FM) participants 

and healthy controls (HCs). 

The stimulated to unstimulated cytokine concentration ratios for IL-10 released from peripheral 

blood mononuclear cells (PBMCs) was determined for HCs (n=6) and FM participants in both 

treatment and placebo groups pre-intervention (n=13). The effective change ratios in IL-10 were 

431.6 ± 141-fold for HCs, and 381.4 ± 75.7-fold for FM participants (p=0.37). Data are 

presented as mean ± standard error of the mean (SEM).  

 

In Figure 9, no significant difference in IL-10 effective change ratios was observed 

between HCs and FM participants (p=0.37). There were IL-10 effective change ratios of 431.6 ± 

141-fold and 381.4 ± 75.7-fold for HCs and FM participants, respectively. Although there was 

no significant difference between the HC and FM participant groups, there was a non-significant 

trend where FM participants had a lower effective change ratio compared to HCs. 

4.4 Cytokine Concentration for FM Participants in Treatment and Placebo Groups 

4.4.1 IL-6 Concentrations Released from Stimulated PBMCs Pre- and Post-Interventions 

Repeated measures for released IL-6 concentrations from stimulated PBMCs for FM 

participants in the treatment (n=7) and placebo (n=6) groups pre- and post-interventions were 

determined, as shown in Figure 10. 
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Figure 10. Repeated measures for interleukin-6 (IL-6) from stimulated peripheral blood 

mononuclear cells (PBMCs) from fibromyalgia (FM) participants pre- and post-interventions. 

PBMCs were stimulated with phytohemagglutinin-P (PHA-P). IL-6 concentrations were 

determined in pg/mL for FM participants in the treatment (n=7) and placebo (n=6) groups pre- 

and post-intervention. FM participants in the treatment group had pre- and post-intervention IL-6 

concentrations of 23625 ± 9571 pg/mL and 42767 ± 9571 pg/mL (p=0.36), compared to the 

placebo group which had pre- and post-intervention IL-6 concentrations of 37728 ± 17479 

pg/mL and 72685 ± 17479 pg/mL (p=0.13), respectively. There was a significant group effect 

between the treatment and placebo groups (p=0.016) and no significant difference between any 

groups (p=0.60). Data are presented as mean ± standard error of the mean (SEM). 

 

In Figure 10, there was no significant difference in IL-6 concentrations released from 

stimulated PBMCs between FM participants in the treatment and placebo groups pre- and post-

interventions (p=0.60). FM participants in the treatment group had pre- and post-intervention IL-

6 concentrations of 23625 ± 9571 pg/mL and 42767 ± 9571 pg/mL (p=0.36), compared to the 

placebo group which had pre- and post-intervention IL-6 concentrations of 37728 ± 17479 

pg/mL and 72685 ± 17479 pg/mL (p=0.13). There was a significant group effect between the 

treatment and placebo groups (p=0.016). 
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4.4.2 IL-6 Concentrations Released from Unstimulated PBMCs Pre- and Post-

Interventions 

Repeated measures for the released IL-6 concentrations from unstimulated PBMCs for 

FM participants in the treatment (n=7) and placebo (n=6) groups pre- and post-interventions 

were determined, as shown in Figure 11. 

 

 

Figure 11. Repeated measures for interleukin-6 (IL-6) from unstimulated peripheral blood 

mononuclear cells (PBMCs) from fibromyalgia (FM) participants pre- and post-interventions. 

IL-6 concentrations were determined in pg/mL for FM participants in the treatment (n=7) and 

placebo (n=6) groups pre- and post-intervention. FM participants in the treatment group had pre-

and post-intervention IL-6 concentrations of 29 ± 26.5 pg/mL and 81.9 ± 26.5 pg/mL (p=0.42), 

compared to the placebo group which had pre- and post-intervention IL-6 concentrations of 59.2 

± 5.1 pg/mL and 69.3 ± 5.1 pg/mL (p=0.88), respectively. There was no group effect between the 

treatment and placebo groups (p=0.83) and no significant difference between any groups 

(p=0.65). Data are presented as mean ± standard error of the mean (SEM). 

 

In Figure 11, there was no significant difference in IL-6 concentrations released from 

unstimulated PBMCs between FM participants in the treatment and placebo groups pre- and 

post-interventions (p=0.65). FM participants in the treatment group had pre-and post-intervention 

IL-6 concentrations of 29 ± 26.5 pg/mL and 81.9 ± 26.5 pg/mL (p=0.42), compared to the 
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placebo group which had pre- and post-intervention IL-6 concentrations of 59.2 ± 5.1 pg/mL and 

69.3 ± 5.1 pg/mL (p=0.88), respectively. There was no group effect between the treatment and 

placebo groups (p=0.83). 

4.4.3 IL-10 Concentrations Released from Stimulated PBMCs Pre- and Post-Interventions 

Repeated measures for the released IL-10 concentrations from stimulated PBMCs for FM 

participants in the treatment (n=7) and placebo (n=6) groups pre- and post-interventions were 

determined, as shown in Figure 12. 

 

 

Figure 12. Repeated measures for interleukin-10 (IL-10) from stimulated peripheral blood 

mononuclear cells (PBMCs) from fibromyalgia (FM) participants pre- and post-interventions. 

PBMCs were stimulated with phytohemagglutinin-P (PHA-P). IL-10 concentrations were 

determined in pg/mL for FM participants in the treatment (n=7) and placebo (n=6) groups pre- 

and post-intervention. FM participants in the treatment group had pre- and post-intervention IL-

10 concentrations of 1503 ± 377.3 pg/mL and 2257 ± 377.3 pg/mL (p=0.49), compared to the 

placebo group which had pre- and post-intervention IL-10 concentrations of 1598 ± 825.8 pg/mL 

and 3250 ± 825.8 pg/mL (p=0.17), respectively. There was no group effect between the 

treatment and placebo groups (p=0.20) and no significant difference between any groups 

(p=0.57). Data are presented as mean ± standard error of the mean (SEM). 
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In Figure 12, there was no significant difference in IL-10 concentrations released from 

stimulated PBMCs between FM participants in the treatment and placebo groups pre- and post-

interventions (p=0.57). FM participants in the treatment group had pre- and post-intervention IL-

10 concentrations of 1503 ± 377.3 pg/mL and 2257 ± 377.3 pg/mL (p=0.49), compared to the 

placebo group which had pre- and post-intervention IL-10 concentrations of 1598 ± 825.8 pg/mL 

and 3250 ± 825.8 pg/mL (p=0.17), respectively. There was no group effect between the 

treatment and placebo groups (p=0.20). 

4.4.4 IL-10 Concentrations Released from Unstimulated PBMCs Pre- and Post-

Interventions 

Repeated measures for the released IL-10 concentrations from unstimulated PBMCs for 

FM participants in the treatment (n=7) and placebo (n=6) groups pre- and post-interventions 

were determined, as shown in Figure 13. 
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Figure 13. Repeated measures for interleukin-10 (IL-10) from unstimulated peripheral blood 

mononuclear cells (PBMCs) from fibromyalgia (FM) participants pre- and post-interventions. 

IL-10 concentrations were determined in pg/mL for FM participants in the treatment (n=7) and 

placebo (n=6) groups pre- and post-intervention. FM participants in the treatment group had pre- 

and post-intervention IL-10 concentrations of 4.2 ± 0.3 pg/mL and 4.9 ± 0.3 pg/mL (p=0.59), 

compared to the placebo group which had pre- and post-intervention IL-10 concentrations of 3.7 

± 1.2 pg/mL to 6.1 ± 1.2 pg/mL (p=0.07). There was no group effect between the treatment and 

placebo groups (p=0.62) and no significant difference between any groups (p=0.30). Data are 

presented as mean ± standard error of the mean (SEM). 

 

In Figure 13, there was no significant difference in IL-10 concentrations released from 

unstimulated PBMCs between FM participants in the treatment and placebo groups pre- and 

post-interventions (p=0.30). FM participants in the treatment group had pre- and post-

intervention IL-10 concentrations of 4.2 ± 0.3 pg/mL and 4.9 ± 0.3 pg/mL (p=0.59), compared to 

the placebo group which had pre- and post-intervention IL-10 concentrations of 3.7 ± 1.2 pg/mL 

and 6.1 ± 1.2 pg/mL (p=0.07), respectively. There was no group effect between the treatment and 

placebo groups (p=0.62).  
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4.4.5 Effective Change Ratios in Released IL-6 Concentrations Pre- and Post-Interventions 

The effective change in stimulated to unstimulated cytokine concentration ratios for IL-6 

released from PBMCs for FM participants in the treatment (n=7) and placebo (n=6) groups for 

pre- and post-interventions were determined, as shown in Figures 14a and 14b.  
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a)  

b)  

Figure 14. The effective change ratios in interleukin-6 (IL-6) for pre- and post-intervention 

fibromyalgia (FM) participants. 

a) The stimulated to unstimulated cytokine concentration ratios for IL-6 released from peripheral 

blood mononuclear cells (PBMCs) were determined for FM participants pre- and post- 

interventions as indicated by the white and light grey bars, respectively, for the treatment (n=7) 

and placebo (n=6) groups, as well as for healthy controls (HCs; n=7) as indicated by the dashed 

black horizontal line. The effective change ratios in IL-6 for pre- and post-treatment FM 

participants were 2718.8 ± 1037.1-fold and 4289.4 ± 1977.1-fold, compared to pre- and post-

placebo FM participants which was 1949.5 ± 965.4-fold and 2459.4 ± 1008.8-fold, respectively. 

There were no significant differences from pre- to post-interventions for the treatment (p=0.43) 

or placebo (p=0.81) groups, and there was no overall significant difference between groups 
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(p=0.71). b) The repeated measures effective change ratios in IL-6 from pre- to post-intervention 

in the treatment and placebo groups for each FM participant. Data are presented as mean ± 

standard error of the mean (SEM). 

 

In Figure 14a, no significant difference in IL-6 effective change ratios was observed 

between FM participants in the treatment and placebo groups for pre- and post-interventions 

(p=0.71). The effective change ratios in IL-6 for pre- and post-treatment FM participants were 

2718.8 ± 1037.1-fold and 4289.4 ± 1977.1-fold, compared to pre- and post-placebo FM 

participants which were 1949.5 ± 965.4-fold and 2459.4 ± 1008.8-fold, respectively. There was 

no significant difference between FM participants in the treatment (p=0.43) and placebo 

(p=0.81) groups pre- and post-intervention. Figure 14b shows the variation between FM 

participants for the effective change ratios in IL-6 from pre- to post-intervention in the treatment 

and placebo groups. In the treatment group, four FM participants had higher IL-6 effective 

change ratios post-intervention compared to pre-intervention, and three FM participants had 

lower IL-6 effective change ratios post-intervention compared to pre-intervention. In the placebo 

group, four FM participants had higher IL-6 effective change ratios post-intervention compared 

to pre-intervention, and two FM participants had lower IL-6 effective change ratios post-

intervention compared to pre-intervention. 

4.4.6 Effective Change Ratios in Released IL-10 Concentrations Pre- and Post-

Interventions 

The effective change in stimulated to unstimulated cytokine concentration ratios for IL-

10 released from PBMCs for FM participants in the treatment (n=7) and placebo (n=6) groups 

for pre- and post-interventions were determined, as shown in Figures 15a and 15b.  
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a)  

b)  

Figure 15. The effective change ratios in interleukin-10 (IL-10) for pre- and post-intervention 

fibromyalgia (FM) participants. 

a) The stimulated to unstimulated cytokine concentration ratios for IL-10 released from 

peripheral blood mononuclear cells (PBMCs) were determined for FM participants pre- and post- 

interventions as indicated by the white and dark grey bars, respectively, for the treatment (n=7) 

and placebo (n=6) groups, as well as for healthy controls (HCs; n=6) as indicated by the dashed 

black horizontal line. The effective change ratios in IL-10 for pre- and post-treatment FM 

participants were 337.3 ± 108.7-fold and 511.3 ± 150-fold, compared to pre- and post-placebo 

FM participants which were 423.9 ± 110.9-fold and 537.7 ± 124.9-fold, respectively. There were 

no significant differences from pre- to post-interventions for the treatment (p=0.41) or placebo 
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(p=0.64) groups, and there was no overall significant difference between groups (p=0.82). b) The 

repeated measures effective changes ratios in IL-10 from pre- to post-intervention in the 

treatment and placebo groups for each FM participant. Data are presented as mean ± standard 

error of the mean (SEM).  

 

In Figure 15a, no significant difference in IL-10 effective change ratios was observed 

between FM participants in the treatment and placebo groups for pre- and post-interventions 

(p=0.82). The effective change ratios in IL-10 for pre- and post-treatment FM participants were 

337.3 ± 108.7-fold and 511.3 ± 150-fold, compared to pre- and post-placebo FM participants 

which were 423.9 ± 110.9-fold and 537.7 ± 124.9-fold, respectively. There were no significant 

differences between FM participants in the treatment (p=0.41) and placebo (p=0.64) groups pre- 

and post-intervention. Figure 15b shows the variation between FM participants for the effective 

change ratios in IL-10 from pre- to post-intervention in the treatment and placebo groups. In the 

treatment group, five FM participants had higher IL-10 effective change ratios post-intervention 

compared to pre-intervention, and two FM participants had lower IL-10 effective change ratios 

post-intervention compared to pre-intervention. In the placebo group, two FM participants had 

higher IL-10 effective change ratios post-intervention compared to pre-intervention, and four FM 

participants had lower IL-10 effective change ratios post-intervention compared to pre-

intervention. 

4.4.7 IL-6 and IL-10 Delta Effective Change Ratios from Pre- to Post-Interventions 

The correlation of IL-6 and IL-10 delta effective change ratios from the difference in 

effective change ratios pre- to post-intervention for each FM participant (n=13) were determined, 

as shown in Figures 16. 
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Figure 16. The correlation of interleukin-6 (IL-6) and interleukin-10 (IL-10) delta effective 

change ratios for each fibromyalgia (FM) participant. 

The IL-6 and IL-10 delta effective change ratios were determined from the difference in effective 

change ratios pre- to post-intervention for each FM participant (n=13). A positive correlation was 

observed (y=0.07460x+61.67), which was also significant (p=0.0073). 

 

In Figure 16, a significant positive correlation was observed between IL-6 and IL-10 

delta effective change ratios from the difference in effective change ratios pre- to post-

intervention for each FM participant (p=0.0073). Six FM participants with positive IL-6 delta 

effective change ratios also had positive IL-10 delta effective change ratios, while four FM 

participants with negative IL-6 delta effective change ratios also had negative IL-10 delta 

effective change ratios. Three FM participants had opposite IL-6 and IL-10 delta effective 

change ratios. 
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Chapter 5. Discussion 

There is currently no accurate diagnostic method or definitive treatment approach for 

fibromyalgia (FM). Behm et al. 2012 evaluated the immune system function of individuals with 

FM compared to healthy controls (HCs) by quantifying cytokines released from stimulated 

peripheral blood mononuclear cells (PBMCs), and suggested the potential of this method to be 

used as a FM diagnostic approach.
4
 Cytokines also play a role in various comorbidities and 

symptoms associated with FM, including hyperalgesia, allodynia, cognitive dysfunction and 

fatigue, which supports their analysis in FM research.
102

 In the present study, the capacity of 

unstimulated PBMCs, and PBMCs stimulated with the mitogen phytohemagglutinin-P (PHA-P) 

to release interleukin-6 (IL-6) and interleukin-10 (IL-10) cytokines was investigated in 

individuals with FM to determine if their cytokine concentrations were lower compared to HCs. 

IL-6 and IL-10 cytokines from stimulated PBMCs were analyzed as their concentrations have 

been observed in previous research to be lower in individuals with FM.
3,4

 IL-6 and IL-10 

cytokines from unstimulated PBMCs of individuals with FM were also analyzed to determine if 

these cells were isolated with an elevated activation state, causing the release of cytokines. 

Cytokines released from stimulated and unstimulated PBMCs were used instead of basal 

circulating levels in the blood as the immune system function of FM participants was 

investigated.
70

 Analyzing cytokines released from mitogen-stimulated and unstimulated immune 

cells can demonstrate how cells react to immune responses in the body, and if immune cell 

function is altered, respectively.
103

  

The present study used the 2010 American College of Rheumatology (ACR) Preliminary 

Diagnostic Criteria for FM to classify FM in participants and verify the measurement of 

potentially lower IL-6 and IL-10 concentrations released from stimulated FM PBMCs as 

previous studies by Wallace et al. 2015 and Behm et al. 2012 used this criteria and observed 

lower released cytokine concentrations in FM.
3,4

 Enzyme-linked immunosorbent assays 

(ELISAs) were used to determine cytokine concentrations in the present study as they have been 

recognized as the best method to accurately quantify IL-6 and IL-10 concentrations released 

from stimulated PBMCs.
78,79

 The ELISA method was chosen for the current study in contrast to 

previous research by Behm et al. 2012 and Wallace et al. 2015 who used the less widely 
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accepted multiplex immunoassay cytokine detection method as it has been criticized regarding 

its accuracy quantifying cytokine concentrations.
3,4,78,79

  

The effectiveness of radial shockwave therapy (RSWT) as a novel treatment method for 

PBMC dysfunctions in individuals with FM was also evaluated in the present study. RSWT 

promotes healing by producing tissue inflammation that causes cells to undergo a regenerative 

process, which may regulate immune cell function due to an increase in an individual’s overall 

well-being from reduced pain.
5
 Detecting higher released IL-6 and IL-10 concentrations from 

stimulated PBMCs before and after an individual with FM receives RSWT treatment may 

indicate the effectiveness of RSWT at improving PBMC function. 

5.1 PBMC Function and Cytokine Release for FM Participants and HCs 

In the present study, the ability of PBMCs from FM participants and HCs to be 

stimulated with the PHA-P mitogen and release IL-6 and IL-10 cytokines was assessed. In 

Figures 6a and 6b, the IL-6 concentrations released from stimulated and unstimulated PBMCs, 

respectively, were both non-significantly higher in FM participants compared to HCs. Of 

particular interest is the non-significant IL-6 concentration released from unstimulated PBMCs 

in FM participants that is approximately 3-fold higher compared to HCs, as shown in Figure 6b. 

The non-significantly higher concentration of IL-6 release from stimulated PBMCs was much 

less pronounced between FM participants and HCs, as shown in Figure 6a. The results from the 

analysis of IL-6 released from stimulated PBMCs do not agree with the literature by Wallace et 

al. 2015 and Behm et al. 2012 which observed lower released IL-6 concentrations from 

stimulated PBMCs in individuals with FM compared to HCs.
3,4

 The range of IL-6 concentration 

detected was also much lower in Behm et al. 2012, as shown in Table 1, compared to the present 

research.
4
 HCs in the present study had a mean released IL-6 concentration from unstimulated 

PBMCs of 13.5 ± 9.9 pg/mL, compared to 215 ± 380 pg/mL in Behm et al. 2012.
4
 These data 

were presented as mean concentration ± standard deviation (SD). HCs in the present study had a 

range of released IL-6 concentrations from stimulated PBMCs of 17149.0 to 34093.8 pg/mL, 

compared to 1.2 to 15592 pg/mL in Behm et al. 2012.
4
 FM participants in the present study had a 

range of released IL-6 concentrations from stimulated PBMCs of 32.3 to 85140.8 pg/mL, 

compared to 3.1 to 2255 pg/mL in Behm et al. 2012.
4
 These discrepancies in FM participant IL-6 
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ranges could be due to differences in FM participant characteristics, and screening and inclusion 

criteria between the previous and present studies, as shown in Table 5.
3,4

  

 

Table 5. Differences in FM participant characteristics, and screening and inclusion criteria 

between the present study and studies by Behm et al. 2012 and Wallace et al. 2015. 

For each study, the total number of male and female FM participants, the FM identification 

criteria used to include FM participants, mean age in years, FM medication use during the study, 

and method used to quantify cytokine concentrations were examined. 

Study Total FM 

Participants 

FM 

Identification 

Age FM Medication Method for Cytokine 

Quantification 

Present 

Study 

13 female ACR 2010 52.5 Used during study ELISA 

Behm et 

al. 2012 

98 female, 12 

male 

FM diagnosis 

>1 year, ACR 

1990 and 2010 

52.2 Stopped use two 

weeks before 

beginning study 

Luminex xMAP
™
 

multiplex immunoassay 

bead array 

Wallace 

et al. 

2015 

98 female, 12 

male 

FM diagnosis 

>1 year, ACR 

1990 and 2010 

52.2 Stopped use two 

weeks before 

beginning study 

Luminex multiplex 

immunoassay bead 

array 

Abbreviations: ACR – American College of Rheumatology Preliminary Diagnostic Criteria for 

FM, ELISA – Enzyme Linked Immunosorbent Assay, FM – Fibromyalgia, SEM – Standard 

Error of the Mean 

 

The released IL-6 range results from stimulated PBMCs in the present study are more in-

line with results from the study by Macedo et al. 2007 who observed average released IL-6 

concentrations from stimulated PBMCs of 33223.19 ± 4155.03 pg/mL, and 33884.14 ± 3626.81 

pg/mL for FM participants and HCs, respectively.
76

 These data were presented as mean 

concentration ± standard error.
76

 Although the data from Macedo et al. 2007 support lower 

released IL-6 concentrations from stimulated PBMCs in FM participants compared to controls 

similar to Behm et al. 2012, their use of an automated biochip array analyzer was able to 

quantify more comparable released IL-6 concentrations to the present research.
4,76

 The higher IL-

6 concentrations from unstimulated PBMCs in FM participants in the present study, although not 
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significant, could indicate a potential immunological dysfunction of immune cells.
104

 This 

dysfunction could have caused PBMCs from individuals with FM to be isolated with an elevated 

activation state, which could have caused a higher IL-6 cytokine release in unstimulated FM 

PBMCs. It is known that IL-6 is involved in pain perception in an individual, and altered PBMC 

function in FM participants could have potentially caused higher amounts of IL-6 to be released 

in vivo following PBMC activation by an immune system response.
7
 This response could have 

possibly contributed to increased pain levels related to FM. 

To account for the effects of IL-6 released by unstimulated PBMCs, the effective change 

ratios in released IL-6 concentration from stimulated and unstimulated PBMCs were determined 

for FM participants and HCs, as shown in Figure 8. There was no significant difference in the 

IL-6 effective change ratios between FM participants and HCs. No significant difference for the 

IL-6 effective change ratios between FM participants and HCs could be partly due to the 

influence of IL-6 concentrations from unstimulated PBMCs as the effective change ratios are 

dependent on this denominator. 

In addition to analyzing the release of IL-6 from stimulated and unstimulated PBMCs 

from FM participants and HCs, the release of IL-10 was also investigated. Figures 7a and 7b 

demonstrate there was no difference in the concentrations of IL-10 released from stimulated or 

unstimulated PBMCs, respectively. Unlike IL-6 concentrations released from stimulated and 

unstimulated PBMCs, there was no trend for elevated IL-10 concentrations from stimulated or 

unstimulated PBMCs in FM participants compared to controls. In contrast to results from the 

present study, Macedo et al. 2007 observed higher released IL-10 concentrations from stimulated 

PBMCs in FM participants compared to controls.
76

 It is known that IL-10 has anti-inflammatory 

properties, and lower released IL-10 concentrations in FM participant stimulated PBMCs could 

have indicated a blunted anti-inflammatory response, which could have also affected released IL-

6 concentrations.
7
  

To account for the effects of IL-10 released by unstimulated PBMCs, the effective 

change ratios in IL-10 concentration released from stimulated and unstimulated PBMCs were 

determined for FM participants and HCs, as shown in Figure 9. There was no significant 

difference in the IL-10 effective changes between FM participants and HCs. It is important to 

note that all the differences in IL-10 concentrations and effective changes observed between FM 

participants and HCs were not significant. 
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In the present study, the stimulated PBMC release of IL-6 and IL-10 is not significantly 

different between FM participants and HCs, which does not suggest altered PBMC function in 

individuals with FM. Other studies have postulated that altered PBMC function in individuals 

with FM potentially affects interactions of the immune system with other systems of the body, 

such as the nervous system, as cytokines are responsible for communication between cells.
7,105

 

An immune system dysfunction in individuals with FM could have affected proper healing and 

repair of tissues, including neural tissues, which could have led to chronic pain.
4,7,104

 The 

contrast between the present research and previous research studies by Wallace et al. 2015 and 

Behm et al. 2012 indicating individuals with FM had a blunted response in cytokine release from 

stimulated PBMCs could be due to differences in screening and inclusion criteria used, as shown 

in Table 5, along with the approximately 9-times higher FM participant cohort sizes from both 

previous research studies compared to the present study.
3,4

 Overall, the present study determined 

that quantifying IL-6 and IL-10 concentrations from stimulated PBMCs, or observing effective 

change ratios are not effective at distinguishing FM participants from HCs due to non-significant 

differences observed in IL-6 and IL-10 concentrations released from stimulated PBMCs. 

Although Behm et al. 2012 and Wallace et al. 2015 obtained significant results without 

determining the homogeneity of their FM participants or identifying FM subgroups, based on the 

highly variable data in the present study, a larger FM participant pool with identifiable FM 

subgroups in future research could produce significant results regarding differences in cytokine 

release from stimulated PBMCs. The minimum sample size of FM participants needed in future 

studies to obtain significance if it exists would be determined using an a priori power analysis. 

There is also heterogeneity within the HC population which should be minimized in future 

research by including more factors in the inclusion and exclusion criteria, including height, mass, 

and smoking history of HCs. Due to a lack of a definitive FM diagnosis method, the group of FM 

participants in the present study could have potentially been highly heterogeneous with respect to 

the large variations in the data observed between FM participants, which could have resulted in 

no significant differences being observed between FM participants and HCs. No significantly 

observed differences for cytokine release between individuals with FM and HCs in the present 

study indicates certain parameters should be accounted for in future research, including 

increasing the FM sample size, and determining the presence of depression, symptom severity, 

body-mass index, and homogeneity of FM participants. These parameters could better define the 
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FM population studied, and determine if cytokines could be a potentially effective biomarker for 

diagnosing FM. 

5.2 Effectiveness of RSWT at Improving PBMC Function and Cytokine Release 

In the present study, the ability of RSWT to improve PBMC function in FM participants 

pre- and post-treatment was assessed. In Figures 10 and 12, there were no significant differences 

for the concentrations of IL-6 and IL-10 released from stimulated PBMCs in FM participants 

from the treatment and placebo groups pre- and post-interventions. There was a non-significant 

trend for the treatment and placebo groups from Figures 10 and 12 to have higher stimulated 

PBMC released IL-6 or IL-10 concentrations pre- to post-interventions. The treatment and 

placebo groups in Figure 10 had p values for the stimulated PBMC release of IL-6 pre- to post-

interventions of 0.36 and 0.13, respectively, while the treatment and placebo groups in Figure 12 

had p values for the stimulated PBMC release of IL-10 pre- to post-interventions of 0.49 and 

0.17, respectively. These higher IL-6 or IL-10 concentrations released from stimulated PBMCs 

in the treatment and placebo groups could potentially be due to placebo effects. For the treatment 

group, this potential placebo effect is where FM participants believe their condition is improving 

due to the RSWT treatments, but any changes they experience are not from the actual treatment. 

For the placebo group, this potential placebo effect is where FM participants believe they are 

receiving the RSWT treatments and their condition is improving, but they are actually not 

receiving the treatment. In Figure 10, there was also a significant difference between treatment 

and placebo groups when the pre- and post-interventions were combined, where released IL-6 

concentrations were lower in the treatment group compared to the placebo group. This finding 

could also be due to placebo effects. 

In addition to quantifying released IL-6 and IL-10 concentrations from stimulated 

PBMCs, concentrations of IL-6 and IL-10 released from unstimulated PBMCs of FM 

participants in Figures 11 and 13 yielded non-significant differences between the treatment and 

placebo groups from pre- to post-interventions. There were no trends observed for the treatment 

and placebo groups from Figures 11 and 13 to have higher unstimulated PBMC released IL-6 or 

IL-10 concentrations pre- to post-interventions. The treatment and placebo groups in Figure 11 

had p values for the unstimulated PBMC release of IL-6 pre- to post-interventions of 0.42 and 

0.88, respectively. The treatment and placebo groups in Figure 13 had p values for the 
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unstimulated PBMC release of IL-10 pre- to post-interventions of 0.59 and 0.07, respectively. 

There was a non-significant trend for the placebo group from Figure 13 to have higher 

unstimulated PBMC released IL-10 concentrations post- compared to pre-interventions. 

In the present study, the unstimulated PBMC release of IL-6 and IL-10 concentrations 

was not significantly different between FM participants in the treatment and placebo groups pre- 

to post-interventions. The lack of significant differences between the treatment and placebo 

groups pre- to post-intervention indicated that RSWT did not significantly alter PBMC function.  

To account for the effects of IL-6 released by unstimulated PBMCs, the effective change 

ratios in IL-6 concentration released from stimulated and unstimulated PBMCs were determined 

for FM participants in treatment and placebo groups pre- and post-interventions, as shown in 

Figures 14a and 14b. The effective change ratio in IL-6 concentration for HCs was also included 

for comparisons. In Figure 14a, there was no significant difference between FM participants in 

the treatment (p=0.43) and placebo (p=0.81) groups pre- and post-intervention. There was 

insufficient evidence to support the hypothesis of RSWT treatment promoting local healing and 

tissue repair that would cause a reduction in pain and increase the FM participant’s overall well-

being, leading to improved PBMC function and cytokine release following stimulation. In Figure 

14b, some individual FM participants in the treatment and placebo groups demonstrated a lower 

IL-6 effective change ratio post-intervention compared to pre-intervention. In the treatment 

group, there is considerable variation in IL-6 effective change ratios from pre- to post-

intervention. There are three FM participants who had lower IL-6 effective change ratios post- 

compared to pre-treatment, and four FM participants who had higher IL-6 effective change ratios 

post- compared to pre-treatment. In the placebo group, there was also considerable variability in 

IL-6 effective change ratio from pre- to post-intervention. There were two FM participants who 

had lower IL-6 effective change ratios post- compared to pre-placebo, and four FM participants 

who had higher IL-6 effective change ratios post- compared to pre-placebo. This variability in 

IL-6 effective change ratios between FM participants pre- to post-intervention could indicate 

more than one FM subgroup is present, where RSWT is more effective at treating one group 

compared to others.
26,27

 Future research could study individuals with FM who have lower or 

higher IL-6 effective change ratios pre- to post-intervention separately to determine if they could 

be certain FM subgroups. It is important to note that all differences in IL-6 concentrations seen 
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between FM participants in the placebo and treatment groups pre- and post-intervention were not 

significant. 

To account for the effects of IL-10 released by unstimulated PBMCs, the effective 

change ratios in IL-10 concentration released from stimulated and unstimulated PBMCs were 

determined for FM participants in treatment and placebo groups pre- and post-interventions, as 

shown in Figures 15a and 15b. The effective change ratio in IL-10 concentration for HCs was 

also included for comparisons. In Figure 15a, there were no significant differences between FM 

participants in the treatment (p=0.41) and placebo (p=0.64) groups pre- and post-intervention. 

There was insufficient evidence to support the hypothesis of RSWT treatment promoting local 

healing and tissue repair that would result in a reduction in pain and increase the FM 

participant’s overall well-being, leading to improved PBMC function and cytokine release 

following stimulation. In Figure 15b, some individual FM participants in the treatment and 

placebo groups demonstrated a lower IL-10 effective change ratio post-intervention compared to 

pre-intervention. In the treatment group, there was considerable variability in IL-10 effective 

change ratios from pre- to post-intervention. There were two FM participants who had lower IL-

10 effective change ratios post- compared to pre-treatment, and five FM participants who had 

higher IL-10 effective change ratios post- compared to pre-treatment. In the placebo group, there 

was also considerable variability in IL-10 effective change ratio from pre- to post-intervention. 

There were four FM participants who had lower IL-10 effective change ratios post- compared to 

pre-placebo, and two FM participants who had higher IL-10 effective change ratios post- 

compared to pre-placebo. This variability in IL-10 effective change ratios between FM 

participants pre- to post-intervention could indicate more than one FM subgroup is present, 

where RSWT is more effective at treating one group compared to others.
26,27

 Future research 

could study individuals with FM who have lower or higher IL-10 effective change ratios pre- to 

post-intervention separately to determine if they could be certain FM subgroups. It is important 

to note that all differences in IL-10 concentrations seen between FM participants in the placebo 

and treatment groups pre- and post-intervention were not significant. 

A correlation between IL-6 and IL-10 delta effective change ratios from the difference in 

effective change ratios pre- to post-intervention for each FM participant in the treatment and 

placebo groups was determined, as shown in Figure 16. A significant positive correlation was 

observed between the IL-6 and IL-10 delta effective change ratios for each participant 
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(p=0.0073). Out of the 13 total FM participants, six FM participants with positive IL-6 delta 

effective change ratios also had positive IL-10 delta effective change ratios, while four FM 

participants with negative IL-6 delta effective change ratios also had negative IL-10 delta 

effective change ratios. Three FM participants had opposite IL-6 and IL-10 delta effective 

change ratios. The evidence of a significant positive correlation of IL-6 and IL-10 delta effective 

change ratios observed in the present study could indicate that IL-6 and IL-10 are correlated with 

each other in FM participants. Bazzichi et al. 2007 suggested that IL-6 and IL-10 plasma 

concentration increases were correlated with each other due to the role of IL-10 as an anti-

inflammatory cytokine to balance increases of the pro-inflammatory cytokine IL-6.
105

 Future 

research could analyze the correlation of IL-6 and IL-10 cytokines further to determine if they 

could be used to identify specific FM subgroups.
26,27

  

In addition to their importance in the immune system, cytokines are also important in the 

nervous system.
106

 In the body, the immune system can be activated from the stimulation of 

immune cells after experiencing trauma, infection or inflammation, and this process involves the 

nervous system which results in the production of inflammatory cytokines.
107

 The interactions 

between the nervous and immune systems in individuals with FM could be affected due to the 

presence of aberrant cytokine concentrations as these are common molecules for communication 

between cells.
24,105

 Since FM chronic pain is not from a physical injury, it is suggested that 

deregulations in the nervous system are causing an individual with FM to feel pain in areas 

where no physical damage is seen.
23

 In this case, neural pain pathway dysfunctions cause 

improper pain signals to be sent to the brain and an individual to think they are experiencing 

pain.
23

 With the knowledge that cytokines are used for communication between the nervous and 

immune systems, the improvement of PBMC function and cytokine release from a reduction in 

pain and increase in overall well-being can be suggested. Although significant differences were 

not seen for higher IL-6 or IL-10 concentrations from stimulated PBMCs following RSWT 

treatment, a larger sample size and stricter screening and inclusion criteria could be used in 

future research to determine if significant differences are seen in a specific FM subgroup. These 

additions to future research could determine if RSWT is a potentially effective treatment 

approach for FM. Overall, based on the results from the present study, RSWT did not have an 

effect on increasing the release of IL-6 and IL-10 cytokines from pre- to post-interventions 

following treatment. 
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5.3 IL-6 and IL-10 Cytokine Analyses Considerations 

For the analyses done on released IL-6 and IL-10 concentrations from stimulated 

PBMCs, there are some considerations that need to be addressed. While studies by Behm et al. 

2012 and Wallace et al. 2015 analyzing isolated PBMCs stimulated with a mitogen assessed 

immune system function in vitro, environmental influences from other systems in the body were 

absent, which could greatly alter cytokine release.
3,4,50

 Since PHA-P can only stimulate a T-cell 

response from isolated PBMCs, potentially different results could be obtained if a different 

compound was used that stimulated PBMCs and monocytes. In the in vitro analysis of isolated 

PBMCs, unstimulated PBMCs should not release cytokines; however, they may become 

activated and release some cytokines due to isolation and incubation techniques. Determining the 

effective change ratios for cytokines released from stimulated and unstimulated PBMCs can 

account for cytokines released by unstimulated PBMCs, as these ratios are very dependent on the 

concentration of cytokines released from unstimulated PBMCs in the denominator. If altered 

PBMC function in FM participants is observed based on cytokine release from stimulated or 

unstimulated PBMCs, differences in PBMC function between FM participants and HCs should 

also still cause IL-6 and IL-10 concentrations to differ in unstimulated samples as the PBMCs 

from FM participants should still exhibit an altered ability to release cytokines. Many of the 

unstimulated samples from both FM participants and HCs in the present study also fell below the 

lower limit of detection for each of the IL-6 and IL-10 standards and had to be estimated based 

on the lowest level of detection. Data that fall around or below the lower limit of detection could 

be unreliable as there could be lots of variability around the detection limit. Future studies should 

consider using IL-6 and IL-10 standards with higher sensitivity and lower detection ranges to 

ensure unstimulated sample cytokine concentrations can be determined. In the present study, the 

sensitivities of the IL-6 and IL-10 assays were 4 pg/mL and 2 pg/mL, respectively, and the 

standard ranges of the IL-6 and IL-10 assays were 7.8-500 pg/mL and 3.9-250 pg/mL, 

respectively. For the analysis of IL-6 and IL-10 cytokines released from stimulated and 

unstimulated PBMCs, the relatively large standard error of the mean (SEM) could be due to 

many of the samples falling close to the lower limit of detection for the IL-6 and IL-10 assays, 

the small sample sizes used, and the large variation associated with individuals which is difficult 

to control. The large variability could partly be the reason significant differences were not 

observed between FM participants and HCs. The use of ELISAs to quantify released IL-6 and 
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IL-10 cytokine concentrations from stimulated and unstimulated PBMCs was also used as it is a 

better quantification method compared to the multiplex immunoassay.
78,79

 The higher released 

IL-6 and IL-10 concentrations in FM participants compared to HCs observed in the present study 

and its difference from previous studies observing lower released IL-6 and IL-10 concentrations 

in FM participants compared to HCs could also be investigated further as ELISA and multiplex 

immunoassay methods were respectively used, which could have influenced the results 

obtained.
3,4

  

In addition to differences in IL-6 and IL-10 concentrations released from stimulated 

PBMCs in individuals with FM compared to HCs, other cytokines could potentially also have 

altered concentrations released from stimulated PBMCs. In previous studies by Behm et al. 2012 

and Wallace et al. 2015, the IL-8 cytokine had a blunted release response from stimulated 

PBMCs.
3,4

 IL-8 plays an important role in pain regulation and cognitive functions, which may 

also be an important indicator for the success of various FM treatment.
3
 Due to the diurnal 

effects of cytokine production for certain cytokines, the timing of blood draws for FM 

participants may also have affected the results obtained as different concentrations of cytokines 

could have been present at specific times.
71

 Differences in released cytokine concentrations 

could have also been seen after the final RSWT treatment depending on when the final blood 

draw was done following the treatment. 

5.4 Influence of FM Subgroups and Comorbidities 

Due to the lack of definitive diagnostic criteria for FM, individuals are usually diagnosed 

with FM by a rheumatologist after other conditions with similar symptoms have been eliminated. 

The development of the ACR Preliminary Diagnostic Criteria for FM screening tool has been 

widely accepted in clinical practice and it is the FM criteria utilized most often in the literature, 

but it is not always effective at accurately identifying FM.
2
 There have been Canadian guidelines 

released and some revisions to the 2010 ACR Preliminary Diagnostic Criteria in 2016 with 

intentions of improving FM classification and diagnosis.
108

 Although the 2010 ACR Preliminary 

Diagnostic Criteria screening tool takes into account the cognitive symptoms of individuals in 

addition to their physical pain symptoms, it is unable to accurately classify individuals into FM 

subgroups. The concept of FM subgroups is important as it can be used to develop and tailor 
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various treatment methods based on the symptoms experienced by individuals in a specific 

subgroup.
26,27 

In the present study, the ACR criteria were used to identify individuals with FM to enroll 

them into the study; however, the FM participants were treated as a homogeneous group with no 

further classification into subgroups based on pain or symptom severity. Although FM subgroups 

have been recognized in the literature, there are no widely accepted proposed guidelines for FM 

subgroup classification.
26,27

 Some potential parameters used for the identification of FM 

subgroups could include identifying the severity of cognitive and physical symptoms such as 

depression and pain, respectively, as the presence of certain symptoms could greatly affect the 

treatment method of an individual with FM.
26,28

 The small sample size of 13 FM participants 

could have also made it difficult to assign individuals to FM subgroups as it might not be clear if 

differences in certain pain or cognitive symptoms could be normal variations within that 

subgroup, or if it could be a different subgroup all together. Although there were no significant 

differences for IL-6 or IL-10 release from PBMCs pre- and post-intervention for all FM 

participants, future work collecting pain and cognitive data from participants and combining it 

with observed trends in cytokine release could potentially be used to assign FM participants to 

subgroups. These groups could also be used to determine if RSWT is more effective at 

improving FM associated pain and symptoms in select subgroups that exhibit particular 

symptoms with certain severities. 

The association of comorbidities with FM could also influence released cytokines 

detected from stimulated PBMCs. It is known that some comorbid conditions with FM have 

aberrant cytokine responses following PBMC stimulation and potential PBMC dysfunctions, 

including depression, chronic pain and chronic fatigue syndrome (CFS).
10,56

 Other conditions 

and factors for HCs and individuals with FM that could influence released cytokine 

concentrations from PBMCs are diabetes, smoking, and body mass index. The presence or 

absence of comorbid conditions in FM participants in the present study could potentially 

influence the stimulated released IL-6 and IL-10 from PBMCs. The present study did not take 

into account FM comorbidities that could be present in some FM participants, which could have 

had an effect on the results obtained from the quantification of released IL-6 and IL-10 cytokines 

from stimulated PBMCs. Research analyzing differences in cytokines released from stimulated 
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PBMCs in various FM comorbid conditions would be beneficial for future FM cytokine 

detection studies as it could help determine if there is a potential link to comorbidities in FM.  

5.5 Factors that Affect PBMC Function and Cytokine Release 

 In the majority of studies analyzing differences in cytokine concentrations between FM 

individuals and HCs, only one sex was used. Many of these studies, however, also analyzed 

basal circulating cytokine levels instead of cytokines released from mitogen-stimulated PBMCs. 

One study analyzing cytokine concentrations released from stimulated PBMCs included both 

male and female FM individuals in their analyses, but there were significantly more females 

(89%) than males (11%).
4
 This uneven ratio of males and females could have potentially masked 

differences in released cytokine concentrations between sexes. 

In Figure 2a, HC IL-6 concentrations from stimulated PBMCs were significantly 

different between sexes with males having a higher concentration than females. There was no 

significant difference observed for HC IL-6 concentrations from unstimulated PBMCs between 

sexes, as shown in Figure 2b. There was a significant difference in the IL-6 effective change 

ratio between males and females, however, with males having a higher effective change 

compared to males, as shown in Figure 4. Significant differences between sexes were also seen 

in Figures 3a and 3b for HC IL-10 concentrations from stimulated and unstimulated PBMCs, 

with males having higher concentrations than females for both sample analyses. For determining 

the released IL-10 concentrations for HC females, only six HC female samples were used 

compared to seven HC female samples used for determining the released IL-6 concentrations as 

there was not enough sample from one HC female participant for both assays. There was no 

significant difference in the IL-10 effective change ratio between males and females, as shown in 

Figure 5. Differences in HC IL-6 and IL-10 effective change ratios could be due to a potential 

correlation between sex hormones and PBMC function, where certain hormones may cause 

higher or lower concentrations of particular cytokines to be released.
63

 A study analyzing the 

relationship between certain sex hormone levels and secreted cytokines from stimulated PBMCs 

found some secreted cytokines were related to certain hormones, which differed between sexes.
63

 

It is also known that there are interactions between the immune and endocrine systems, and the 

differences in cytokine concentrations between sexes could be a useful way to analyze this 

relationship.
63

 Taking into account hormonal status of participants could have affected the results 
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obtained as the immune response can be influenced by hormones. Although there were only six 

to seven females and three males in the analyse in Figures 2, 3, 4, and 5, the differences in IL-6 

and IL-10 concentrations from stimulated and unstimulated PBMCs and effective change ratios 

warrant further investigation with larger sample sizes. The effective change ratios of IL-6 and 

IL-10 cytokines from stimulated and unstimulated PBMCs is also greatly dependent on the 

unstimulated concentration denominator as it could determine if higher cytokine concentrations 

released from stimulated PBMCs is significant, or if the difference in cytokine concentrations 

between stimulated and unstimulated PBMCs is not very large. Although there was a lack of 

male participants with FM recruited in the present study, the participation of male individuals 

with FM could have also provided more insight regarding differences in IL-6 and IL-10 

concentrations released from PBMCs to determine if differences were seen between sexes in FM 

individuals as well. Taking into account the height and mass of participants could have further 

supported differences seen in released cytokine concentrations between HC males and females, 

FM treatment and placebo groups, and FM treatment and HC groups. 

It is also observed that the mean ages between HC males and females have a difference of 

21 years, and HC males had a mean age of 48 years, which may introduce potential thoughts that 

age related differences are being observed instead of sex differences for IL-6 and IL-10 

concentrations released from PBMCs. Although the analyses of IL-6 and IL-10 cytokines 

released from stimulated PBMCs between HC males and females are reflective of an assessment 

for immune system function, age difference is still a factor as immune function changes with 

age. With the knowledge of age-related and hormonal differences between males and females 

potentially affecting cytokines released from stimulated PBMCs, this provides insight for sex 

related differences of cytokine concentrations observed in the present study.
63,66

 It is also 

important to mention that although there were no differences in the results between HC females 

and all FM participants, the difference in mean ages between these two groups is 25.5 years, 

which is relatively large. HC females had a mean age of 27 years, while FM females had a mean 

age of 52.5 years. This large age difference between FM and HC females is important to note as 

it may potentially affect hormonal status, and in turn immune function, which may impact 

potential future studies. Future studies should be aimed at identifying potential relationships 

between stimulated PBMC function, age and sex. 
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5.6 Conclusion 

 The large number of individuals who suffer from FM and the many others who do not 

have an official diagnosis from a rheumatologist is cause for concern. The lack of a definitive 

diagnostic method for FM is even more alarming as FM symptom identification is not always 

effective. The results from the present study suggest there are no significant differences in IL-6 

and IL-10 concentrations released from PBMCs in HCs and FM participants. These findings are 

in contrast to some previous studies where lower IL-6 and IL-10 concentrations released from 

stimulated PBMCs were observed in individuals with FM compared to HCs.
3,4

 Additionally, 

other studies that used ELISAs to quantify cytokine concentrations from stimulated PBMCs used 

the older 1990 ACR Preliminary Diagnostic Criteria for FM to identify individuals with FM, and 

studies that used the newer 2010 ACR Preliminary Diagnostic Criteria for FM to identify 

individuals with FM used multiplex immunoassays to quantify cytokine concentrations from 

stimulated PBMCs.
3,4,73,74,77

 The sample size of the present study was also not large enough, 

comorbidity information from FM participants was not collected, and other data measurements 

were not analyzed in the present study, including scores from the visual analog scale, the 

Baseline Pressure Tolerance Meter, the Quantitative Sensory Testing for hyperalgesia and 

allodynia, the Beighton Scoring Screen for hypermobility, and the Pain Catastrophizing Scale. 

There was insufficient evidence to establish if RSWT would benefit stimulated PBMC function 

in the present study, or if different FM subgroups would respond better to this treatment. Asai et 

al. 2001 demonstrated differences in cytokine release between males and females from PBMCs 

stimulated with lipopolysaccharide (LPS), and the present study found a significant difference in 

released IL-6 concentrations from PBMCs stimulated with PHA-P and IL-6 effective change 

between male and female HCs; however, various methods of stimulation may have different 

outcomes, as shown in Table 2.
109

 Due to the small FM participant and HC sample sizes, results 

from the present study were not significant and are classified as preliminary findings in a pilot 

study. Future work would benefit from using larger FM and HC sample sizes and stricter 

screening and inclusion criteria to potentially identify FM subgroups, and to evaluate the 

influence of FM comorbidities. 
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5.7 Future Directions 

 The present study provides many opportunities for future research to analyze differences 

in cytokine concentrations from stimulated PBMC in individuals with FM as a diagnostic 

method, and also for evaluating the effectiveness of RSWT as a FM treatment option. Future 

research could create customized approaches for treating individuals with FM to reduce specific 

FM symptoms associated with FM subgroups, and to identify potential inflammatory FM 

subgroups. For analyzing cytokine concentrations released from stimulated PBMCs, isolating 

PBMC subpopulations could determine if cytokine production and release in certain cell types, 

such as those from T-cells, are altered. Some PBMCs release specific or more types of cytokines 

than others after stimulation with a certain mitogen, and analyzing their release could identify 

potential cellular dysfunctions.
49

 Flow cytometry and intracellular staining could then be used to 

analyze various characteristics of dysfunctional PBMC subpopulations to determine if there are 

differences compared to HCs. The identification of specific PBMC subpopulation functions 

could also aid in developing treatment methods that target these certain cell types. While the 

current study did not observe any significant differences regarding improved PBMC function in 

FM patients from RSWT treatment, future studies can use larger sample sizes to identify FM 

subgroups and determine which subgroups responded better to RSWT treatments. 

In addition to studies analyzing cytokines as biomarkers to diagnose FM, future studies 

can evaluate different analysis techniques as FM diagnostic approaches. There has recently been 

a study published that identified individuals with FM with high accuracy using vibrational 

spectroscopy and metabolites unique to these individuals.
110

 Other studies have used gene 

expression analysis to determine genes that are correlated to individuals with FM. These studies 

show promising future FM diagnostic research using different analysis approaches. 
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Chapter 7. Appendix 

7.1 List of Abbreviations 

ACR – American College of Rheumatology 

ANOVAs – Analysis of Variances 

CFR – Code of Federal Regulations 

CFS – Chronic Fatigue Syndrome 

CNS – Central Nervous System 

Con A – Concanavalin A 

CRH – Corticotrophin-Releasing Hormone 

CWP – Chronic Widespread Pain 

COX-1 – Cyclooxygenase-1 

COX-2 – Cyclooxygenase-2 

CO2 – Carbon Dioxide 

Dex – Dexamethasone 

DHEA-S – Dehydroepiandrosterone Sulfate 

ELISA – Enzyme-Linked Immunosorbent Assay 

ESWT – Extracorporeal Shockwave Therapy 

FBCT – Functional Biomarker Challenge Test 

FCIII – Fetal Clone III 

FM – Fibromyalgia 

FDA – Food and Drug Administration 

X g – G-force 

HC – Healthy Control 

HDRS – Hamilton Depression Rating Scale 

IBS – Irritable Bowel Syndrome 

IFN-γ – Interferon Gamma 

IL-1β – Interleukin-1 Beta 

IL-1RA – Interleukin 1 Receptor Antagonist 

IL-1 – Interleukin-1 

IL-2 – Interleukin-2 
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IL-2r – Interleukin-2 receptor 

IL-3 LA – Interlekin-3-Like Activity 

IL-4 – Interleukin-4 

IL-6 – Interleukin-6 

IL-8 – Interleukin-8 

IL-10 – Interleukin-10 

IL-13 – Interleukin-13 

LPS – Lipopolysaccharide 

LSD – Least Significant Difference 

LU – Lakehead University 

MC – Mast Cell 

MCAS – Mast Cell Activation Syndrome 

MCP – Monocyte Chemoattractant Protein 

MDC – Macrophage Derived Chemokine 

MDD – Major Depressive Disorder 

MIP-1α – Macrophage Inflammatory Protein-1 Alpha 

MIP-1β – Macrophage Inflammatory Protein-1 Beta 

NaPyr – Sodium Pyruvate 

NK – Natural Killer 

NOSM – Northern Ontario School of Medicine 

NSAID – Non-Steroidal Anti-Inflammatory Drug 

OD – Optical Density 

PBMC – Peripheral Blood Mononuclear Cell 

PBS – Phosphate Buffered Saline 

PHA – Phytohaemagglutinin 

PHA-E – Phytohaemagglutinin Erythrocyte 

PHA-L – Phytohaemagglutinin Leukocyte 

PHA-P – Phytohemagglutinin-P 

PMA – Phorbol Myristate Acetate 

POTS – Postural Orthostatic Tachycardia Syndrome 

PTSD – Post Traumatic Stress Disorder 



92 

 

REB – Research Ethics Board 

RA – Rheumatoid Arthritis 

RPMI – Roswell Park Memorial Institute 

RSWT – Radial Shockwave Therapy 

SEM – Standard Error of the Mean 

sIL-2R – Serum IL-2 Receptor 

SJCG – St. Joseph’s Care Group 

SP – Substance P 

SLE – Systemic Lupus Erythematosus 

SSRI – Selective Serotonin Reuptake Inhibitor 

TBRHSC – Thunder Bay Regional Health Sciences Centre 

TCR – T-cell Receptor 

TGF-β1 – Transforming Growth Factor Beta 1  

TNF-α – Tumor Necrosis Factor Alpha 
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7.2 2010 ACR Preliminary Diagnostic Criteria for FM 
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7.3 Flow of FM Participants through Each Stage of the Present Study 

 

Figure 17. Flow of fibromyalgia (FM) participants through each stage of the present study. 
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7.4 Blood Sample Processing and Storage 

7.4.1 Blood Sample Processing and Storage – Day 1 

Materials: 

- BD Vacutainer CPT Tube 

- 2X vacutainer adapters for the table top centrifuge 

- Table top centrifuge 

- Vacutainer water balance 

- Pasteur Pipette 

- Pipette bulb 

- 2X 15 mL conical centrifuge tubes with caps 

- Conical centrifuge tube water balance 

- 2X conical centrifuge tube adapters for the table top centrifuge 

- Phosphate buffered saline (PBS) solution 

- 25 mL sterile serological pipette 

- 10 mL sterile serological pipette 

- Pipetting aid 

- RPMI+FCIII media 

- Bead heater set at 37˚C 

- Tube rack 

- 200-1000 µL pipette with appropriate tips 

- 1.5 mL microcentrifuge tube 

- Hemocytometer slide with appropriate cover slip 

- Nikon H550S phase contrast microscope 

- 2-20 µL pipette with appropriate tips 

- 20 µL to 200 µL pipette with appropriate tips 

- PHA-P 

- Waste container 

- Biohazard disposal bag 

- Kim Wipes 

- 70% ethanol 
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- Paper towel 

- Ethanol resistant marker 

- 24 well plate (or 12 well plate depending on media volume needed to obtain 1 million 

cells per mL) 

- Incubator at 37˚C with 5% CO2 

 

Methods: 

1. After a vial of the participant’s blood has been collected, store the tube upright at room 

temperature. Let the tube sit for about one hour before it is centrifuged. The tube must be 

centrifuged within two hours post draw. 

2. After about an hour, invert the tube 8-10 times to remix the blood sample. 

3. Obtain the appropriate vacutainer adapters for the table top centrifuge. Place the blood 

sample and a water balance into these adapters, ensure they are balanced, and centrifuge 

for 25 minutes at 1500Xg (3000 rpm). 

4. Following centrifugation, transfer the vacutainer of blood into the biosafety cabinet 

(BSC). Use a Pasteur pipette and bulb to remove the clear/whiteish layer of cells below 

the plasma and above the density solution in the tube. Transfer this solution into a 15 mL 

centrifuge tube and add PBS to a final volume of 15 mL using a 25 mL sterile pipette. 

Invert the tube 5 times to mix. 

5. Obtain the appropriate conical centrifuge tube adapters for the table top centrifuge. Place 

the 15 mL centrifuge tube and water balance into these adapters, ensure they are 

balanced, and centrifuge for 15 minutes at 300Xg (1400 rpm). 

6. During this time, pipette the appropriate amount of media (RPMI+FCIII etc) into a 15 

mL centrifuge tube and warm in the bead heater. The amount of media added to the tube 

is based on the number of vials of blood being processed. There will be 7 mL of media 

used for each vial of blood (2 wells per vial with 3 mL in each well and 1 mL extra). 

7. Obtain the PHA-P in the 1.5 mL microcentrifuge tube from the -20˚C freezer and place 

into the bead heater to thaw. Transfer to the BSC once thawed. 

8. After centrifugation, place the centrifuge tube into the BSC. Pour off the supernatant and 

resuspend the pellet by gently tapping the tube. 
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9. Add PBS to a final volume of 10 mL in the tube using a 10 mL pipette, and invert 5 times 

to mix. 

10. Centrifuge the tube in the table top centrifuge using the appropriate adapters and water 

balance for 10 minutes at 300Xg (1400 rpm). 

11. Obtain the media in the 15 mL centrifuge tube from the bead heater and place in the BSC. 

12. Following centrifugation, place the tube back into the BSC and pout off the supernatant. 

Use a 1000 µL pipette to resuspend the pellet in 1 mL of media to count. 

13. In a 1.5 mL microcentrifuge tube, dilute the resuspension to 1:10 to count. Do this by 

pipetting 20 µL of the cell suspension solution into the tube, and then pipetting 180 µL of 

PBS into the same tube. This gives a final volume of 200 µL. 

14. Count the cells in the hemocytometer by transferring 10 µL of the 1:10 dilution to each 

side of the slide. Count the cells found in all 9 squares on both sides of the slide. 

15. Add the cell counts from both sides and average them, and divide this average by 9 (the 

amount of squares counted on one side). Multiply this number by 10
4
 (a constant), and 

multiply this number by the dilution factor (10 in this case since the dilution is 1:10). The 

resulting number will be the total amount of cells per mL in the sample. 

16. To obtain a concentration of 1 million cells per mL, multiply the volume left in the 15 

mL centrifuge tube (980 µL in this case since the resuspension volume was 1 mL and 20 

µL was taken out to count) by the amount of cells per mL in the sample. Divide this 

number by 1X10
6
 cells/mL as we want to obtain 1 million cells per mL. This is the total 

amount of media that needs to be added to the cells to get 1 million cells per mL. Since 

there is already 980 µL of volume in the tube, subtract this volume from the total amount 

of media needed to obtain 1 million cells per mL. 

17. Use a 200-1000 µL and a 2-20 µL pipette to pipette the appropriate amount of media into 

the 1 mL suspension to obtain 1 million cells per mL. 

18. Divide the total amount of media that needs to be added to the cells to get 1 million cells 

per mL by 2 since we need a stimulated and an unstimulated well. 

19. Once the volume of media with cells that needs to go into each well is obtained, pipette 

this volume into two wells labeled stimulated and unstimulated on a 24 well plate using 

the appropriate pipettes and tips. (Note: if the volume in each well exceeds about 1.5 mL, 

divided the total volume by 4, ie: if the total volume is greater than 3 mL, divide it by 4 
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so each well has 0.75 mL. This will result in 2 stim and 2 unstim wells instead of the 

normal 1 stim and 1 unstim wells per sample. A 12 well plate was used instead once to 

allow a larger surface area for the media to come into contact with the air.) 

20. After the cells have been seeded into the wells, treat the stimulated labeled well with 

PHA-P. To get a final PHA-P concentration of 10 µg/mL from the stock solution of 1 

mg/mL, multiply the volume in each well by 10 µg/mL, divide this value by 1000 µg/mL, 

and convert from mL to µL. Pipette the appropriate amount of PHA-P into the stimulated 

labeled well. 

21. Incubate the cells at 37˚C at 5% CO2 for 18 hours. 

7.4.2 Blood Sample Processing and Storage – Day 2 

Materials: 

- 24 well plate (or 12 well plate) containing stimulated and unstimulated cells 

- Nikon H550S phase contrast microscope 

- +4X 1.5 mL microcentrifuge tubes 

- 200-1000 µL pipette with appropriate tips 

- Temperature controlled table top centrifuge for 1.5 mL microcentrifuge tubes 

- Biohazard disposal bag 

- Kim Wipes 

- 70% ethanol 

- Ethanol resistant marker 

- Incubator at 37˚C with 5% CO2 

 

Methods: 

1. Turn on the centrifuge and let cool to 4˚C. 

2. After the 18 hours, check out the wells in the 24 well plate under the microscope and 

observe how the stimulated cells look compared to the unstimulated cells. 

3. Take the entire media volume from each well and pipette into two 1.5 mL 

microcentrifuge tubes. Centrifuge for 10 minutes at 16000Xg at 4˚C. Make sure the 

centrifuge lid is on tight, set “fast temp” and stick the hinge on the tube facing out. 
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4. Following centrifugation, pipette the supernatant from each tube into new 1.5 mL tubes 

and invert to mix. 

5. Make an appropriate amount of 220 µL aliquots and 30 µL aliquots for each well 

(stimulated and unstimulated) in 1.5 mL microcentrifuge tubes. Make as many 220 µL 

aliquots as possible first, and then make 30 µL aliquots. 

6. Pipette any remaining supernatant volume into another 1.5 mL microcentrifuge tube and 

note the volume. 

7. Label the tubes with the sample name and date, and put all of them into the appropriate 

rack and box in the -80˚C freezer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



102 

 

7.5 Blood Sample Preparation for ELISA 

Materials: 

- Ice bucket with ice 

- Human IL-6 or IL-10 ELISA MAX Capture Antibody vial (300 µL) 

- 5X Coating Buffer A (5X CBA) 

- 2 mL or 15 mL centrifuge tube 

- Ethanol resistant marker 

- NUNC Maxisorp 96 Microwell Plate 

- Plate sealer 

- Brown PCR squeegee 

- 200-1000 µL pipette with appropriate tips 

- 2-20 µL pipette with appropriate tips 

- 50-200 µL pipette with appropriate tips 

- 50 mL conical centrifuge tube, or 50 mL beaker 

- Tube rack 

- Table top centrifuge 

- 2 mL microcentrifuge tube water balance 

- Double distilled water (ddH2O) 

- Scalpel 

- Aluminum foil 

 

Methods: 

1. Place the capture antibody, 5X Coating Buffer A (CBA), and labeled 2 mL or 15 mL 

centrifuge tube into a bucket of ice. 

2. Mix the capture antibody by gently inverting. NEVER VORTEX AN ANTIBODY. To 

get the solution off the vial lid, centrifuge the vial with a balance for 2 seconds. 

3. Determine how much well coating solution is needed to coat the desired amount of plate 

wells. Do this by finding the number of wells needed for each sample and their dilutions 

(ran in duplicates), adding an extra well to account for error, and multiplying by 100 µL 

as this is the amount needed in each well. 
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4. Since the capture antibody has to be diluted 1:200, divide the volume of coating solution 

needed by 200 to get the amount of capture antibody needed in µL. 

5. Since the capture antibody is diluted with 1X CBA, subtract the amount of capture 

antibody needed from the volume of coating solution needed. This is the amount of 5X 

CBA and ddH2O needed. Divide this value by 5 to get the amount of 5X CBA needed. 

Multiply the amount of 5X CBA needed by 4 to get the amount of ddH2O needed. 

6. Fill a 50 mL conical centrifuge tube or beaker with ddH2O and label. 

7. Pipette the appropriate amounts of 5X CBA and ddH2O into a 2 mL or 15 mL centrifuge 

tube. 

8. Add the appropriate amount of the capture antibody to the centrifuge tube. Use a 1000 µL 

pipette to gently mix the solution. 

9. Obtain the ELISA plate (new or partially used), being careful not to touch the bottom. 

Squeegee sealing film onto the plate to ensure a complete seal is formed. 

10. Use a scalpel to cut away a section of sealing film for the wells to be used. Save this 

section as it will be used to re-seal the rows. 

11. Pipette 100 µL of the coating solution into each well. 

12. Place the section of sealing film back over the rows filled with solution, and use the 

squeegee to form a tight seal to ensure the solution will not evaporate. 

13. Label the plate only in the area where the sealing film was removed as the rest of the 

plate can be used in future experiments. Put the date, initials, and “IL-6 or IL-10 ELISA”. 

14. Place the plate onto aluminum foil to ensure the plate bottom does not touch the fridge, 

and incubate at 4˚C for 16-18 hours. 
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7.6 Blood Sample Analysis using ELISA 

Materials: 

- Ice bucket with ice 

- ELISA plate 

- Aluminum foil 

- Human IL-6 Standard (23 ng) or IL-10 Standard (27 ng) 

- 1000X Avidin-Horseradish Peroxidase (HRP) (60 µL) 

- Human IL-6 or IL-10 ELISA MAX Detection Antibody vial (300 µL) 

- 5X Assay Diluent A (5X ADA) 

- Substrate Solution A (SSA) 

- Substrate Solution B (SSB) 

- Stop Solution (sulfuric acid) 

- Phosphate-buffered saline (PBS) powder 

- 1L graduated cylinder 

- Weigh boat 

- Scoopula 

- Weigh scale 

- Distilled water (dH2O) 

- Stir bars 

- Stir plate 

- 1 L screw top bottle 

- Labeling tape 

- Ethanol resistant marker 

- 500 mL beaker 

- 200 mL or 500 mL graduated cylinder 

- Tween-20 

- Syringe 

- Pipette basin 

- Multichannel pipettor 

- 300 mL pipette tips 

- 15 mL or 50 mL centrifuge tube 
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- 1.5 mL microcentrifuge tubes 

- Tube rack 

- Brown PCR squeegee 

- Plate shaker 

- 200-1000 µL pipette with appropriate tips 

- 2-20 µL pipette with appropriate tips 

- 50-200 µL pipette with appropriate tips 

- 96 Microwell Plate Balance 

- 2 mL and/or 15 mL centrifuge tubes 

- Table top centrifuge 

- 2 mL microcentrifuge tube water balance 

- 5 mL seriological pipette 

- 10 mL or 25 mL seriological pipette 

- Pipetting aid 

 

Methods: 

1. Bring the 5X Assay Diluent A (ADA) and Human IL-6 or IL-10 standard to room 

temperature, which should take about 30 minutes. 

2. Fill a 1 L graduated cylinder with dH2O. 

3. Make the 1X phosphate buffered saline (PBS) solution by adding 9.88 g of PBS powder, 

1 L of dH2O and a large stir bar to a 1 L screw top container, and placing onto a stir plate 

until the PBS completely dissolves into solution. Store at room temperature. 

4. Make the wash buffer by measuring the amount of PBS needed plus ~50 mL extra into a 

200 mL or 500 mL graduated cylinder. Pour the PBS into a 500 mL beaker with a stir 

bar, and add Tween-20 using a syringe so it is at a concentration of 0.05%. For 100 mL 

of PBS, add 0.05 mL of Tween-20. Overfill the syringe and dispense the amount needed, 

ensuring there are no air bubbles. Place onto a stir plate being careful not to make foamy 

bubbles. 

5. Determine the amount of 1X ADA needed for Parts I to V, and make this solution in a 

15 mL or 50 mL centrifuge tube. Since the 5X ADA has to be diluted to 1X ADA, take 
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the amount of 1X ADA needed and divide by 5. This is the amount of 5X ADA needed. 

Multiply the amount of 5X ADA needed by 4 to determine the amount of PBS needed. 

6. Part I. Determine the amount of 1X ADA needed to block non-specific binding. Do this 

by finding the number of wells needed for each sample and their dilutions (ran in 

duplicates), adding an extra well to account for error, and multiplying by 200 µL as this 

is the amount needed in each well. 

7. Obtain the ELISA plate from the fridge after the 16-18 hour incubation. 

8. Obtain the wash buffer and pour some into the pipette basin. Wash the appropriate wells 

by removing the section of sealing film, pouring out the solution in the wells into the 

sink, banging the plate onto paper towel, and pipetting 300 µL of wash solution into the 

wells using a multichannel pipettor. Repeat this procedure to wash out the wells 4 times. 

9. Pipette 200 µL of the 1X ADA into each well, use the squeegee to re-seal the plate, and 

place onto a plate shaker at 500 rpm with a 0.3 circular orbit for 1 hour. Place another 

empty plate on the other side to act as a balance. 

10. Part II. Determine the amount of 1X ADA needed for the standards based on the number 

of wells used as follows: 

a. Add 200 µL of 1X ADA to the lyophilized IL-6 or IL-10 standard in the vial and 

allow it to reconstitute at room temperature for 15-20 minutes. Pipette the solution 

into a 1.5 mL tube and vortex briefly to mix. Make nine or ten 20 µL aliquots of 

the standard in 1.5 mL tubes, and store in the “IL-6 or IL-10 ELISA Samples 

Fibro” box in Rack 4 of the -80˚C freezer. Once the standard is reconstituted and 

aliquoted, this step is not needed. 

b. Dilute 4.3 µL of the IL-6 standard stock solution with 995.7 µL of 1X ADA to 

make the first standard. For IL-10, perform an initial 1:10 dilution by adding 10 

µL stock solution with 90 µL of 1X ADA. Add 18.5 µL of the 1:10 dilution to 

981.5 µL of 1X ADA, which will be the top standard. 

c. Pipette 500 µL of 1X ADA into each of the seven 1.5 mL tubes which will form 

the standard curve and blank. The total amount of 1X ADA used is 3.5 mL. 

d. Perform six serial dilutions by transferring 500 µL from each previous dilution 

into the next tube to make the seven standards. 
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11. Part III. Determine the amount of 1X ADA needed to dilute the samples based on the 

number of samples used and how much they need to be diluted. Prepare the dilutions for 

each of the samples in 1.5 mL tubes using 1X ADA.  

12. After the hour incubation, wash the wells 4 times with wash buffer as outlined above. 

13. Create a plate map of where each sample will go, and pipette 100 µL of each sample and 

standard into the appropriate wells. Re-seal the plate using the squeegee, and incubate as 

outlined above for 2 hours. 

14. After the 2 hour incubation, wash the wells 4 times with wash buffer as outlined above. 

15. Part IV. Determine the amount of 1X ADA needed to dilute the detection antibody based 

on the number of wells used as follows:  

a. Place the detection antibody and a labeled 2 mL or 15 mL centrifuge tube in ice. 

b. Mix the detection antibody by inverting. NEVER VORTEX AN ANTIBODY. To 

get the solution off the vial lid, centrifuge the vial with a balance for 2 seconds. 

c. Determine the amount of solution needed for the number of wells to be used. Do 

this by finding the number of wells needed for each sample and their dilutions 

(ran in duplicates), adding an extra well to account for error, and multiplying by 

100 µL as this is the amount needed in each well. 

d. Since the detection antibody has to be diluted 1:200, divide the total solution 

volume needed by 200 to get the amount of detection antibody needed in µL. 

e. Since the detection antibody is diluted with 1X ADA, subtract the amount of 

detection antibody needed from the total solution volume. This is the amount of 

1X ADA needed. 

f. Pipette the appropriate amount of 1X ADA into a 2 mL or 15 mL centrifuge tube 

and add the detection antibody. Use a 1000 µL pipette to gently mix the solution. 

16. Pipette 100 µL of the diluted detection antibody solution into each well, seal with the 

squeegee, and incubate for an hour as outlined above. 

17. After the hour incubation, wash the wells 4 times with wash buffer as outlined above. 

18. Part V. Determine the amount of 1X ADA needed to dilute the Avidin-Horseradish 

peroxidise (HRP) based on the number of wells used as follows.  

a. Determine the amount of solution needed for the number of wells used. Do this by 

finding the number of wells needed for each sample and their dilutions (ran in 
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duplicates), adding an extra well to account for error, and multiplying by 100 µL 

as this is the amount needed in each well. 

b. Mix the Avidin-HRP by gently inverting. DO NOT VORTEX. To get the solution 

off the vial lid, centrifuge the vial with a balance for 2 seconds. 

c. Since the Avidin-HRP has to be diluted 1:1000, divide the total solution volume 

needed by 1000 to get the amount of Avidin-HRP needed in µL. 

d. Since the Avidin-HRP is diluted with 1X ADA, subtract the amount of Avidin-

HRP needed from the total solution volume. This is the amount of 1X ADA 

needed. 

e. Pipette the appropriate amount of 1X ADA into a 2 mL or 15 mL centrifuge tube 

and add the appropriate amount of Avidin-HRP. Use a 1000 µL pipette to mix. 

19. Pipette 100 µL of the diluted Avidin-HRP solution into each well, seal with the squeegee, 

and incubate for 30 minutes as outlined above. 

20. After the hour incubation, wash the wells 5 times with wash buffer as outlined above. On 

the last wash, let the wash buffer soak in the wells for 1 minute to ensure the background 

is minimized when the plates are read. 

21. Determine the amount of 3,3’,5,5’–tetramethylbenzidine (TMB) substrate solution 

needed based on the number of wells as follows: 

a. Find the number of wells needed for each sample and their dilutions (ran in 

duplicates), add an extra well to account for error when making up the solution, 

and multiply by 100 µL as this is the amount needed in each well. 

b. Divide the amount of TMB solution needed by 2 to get the amount of Substrate 

Solution A (SSA) and Substrate Solution B (SSB) needed in equal parts. 

c. Pipette the appropriate amounts of SSA and SSB into a 2 mL or 15 mL centrifuge 

tube. Use a 1000 µL pipette to gently mix the solution. 

22. Pipette 100 µL of the TMB substrate solution into each well, DO NOT seal the plate, and 

incubate in the dark for 15 minutes without shaking for the IL-6 assay. For IL-10 assay, 

incubate in the dark for 30 minutes. 

23. During the incubation period, set up the computer as follows: 

a. Turn the plate reader on and click the “Microplate Readers” user 

b. Click the “KC4” icon on the desktop 
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c. Click “Read” on the top toolbar. In the new window that comes up, select “End 

Point,” and “Wavelengths=2.” 

d. Choose 450 nm and 570 nm as the wavelengths to read the sample 

i. If the desired wavelength is not in the drop-down menu, type it in and 

click “Calibrate.” No plate needs to be in the reader for this step. 

e. Choose “Read Mode=Normal,” and “96 Well Plate.” 

f. Select which wells you want to read (A1-H12 reads the whole plate starting at the 

top going from left to right). 

24. Determine the amount of stop solution needed for the number of wells used. Do this by 

finding the number of wells needed for each sample and their dilutions (ran in 

duplicates), adding an extra well to account for error, and multiplying by 100 µL as this 

is the amount needed in each well. 

25. Pipette the appropriate amount of stop solution into a 2 mL or 15 mL centrifuge tube, and 

add 100 µL to each well after the incubation period. 

26. Remove the sealing film covering the unused wells, and place into the plate reader 

ensuring the plate corner with the A1 well matches up with the A1 marking on the plate 

reader (top left part of plate goes into top right side of plate reader). 

27. Run the plate reader, copy the data obtained for readings at 450 nm, 570 nm and the 

Delta Optical Density (OD) into Excel, and save both the KC4 and Excel files. 

28. Create a standard curve graph along with the accompanying equation for later analysis. 

29. Reseal the unused wells with sealing film using the squeegee, pour out the solution in the 

wells, and rinse the wells with distilled water. Bang the plate onto paper towel to dry. 
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7.7 RPMI Media Preparation 

Materials: 

- HyClone Roswell Park Memorial Institute (RPMI) 1640 Medium with 2.05 mM L-

Glutamine additive, 500 mL 

- Fetal Clone III (FCIII) 50 mL aliquot in -20˚C freezer 

- Penicillin-Streptomycin (pen/strep) 5 mL aliquot in -20 ˚C freezer 

- Sodium pyruvate (NaPyr) 

- 50 mL centrifuge tube 

- Tube rack 

- Ethanol resistant marker 

- Ethanol 

- Kim Wipes 

- Bead heater set at 37˚C 

- Biohazard disposal bag 

- Pipetting aid 

- 2 X 25 mL sterile serological pipette 

- 5 mL sterile serological pipette 

 

Methods: 

1. Obtain the pen/strep 5 mL aliquot in the 10 mL centrifuge tube and the FCIII 50 mL 

aliquot from the -20˚C freezer and place into a bead heater set at 37˚C. Check on the 

tubes ever 15 minutes, gently inverting each time, until they are thawed. 

2. Once the tubes are thawed, place into the fridge until ready to use. 

3. Place a 50 mL centrifuge tube in the biosafety cabinet (BSC) and label as “RPMI 1640 

media, date, initials” and expiry indicated on the original RPMI 1640 bottle. 

4. Obtain the RPMI 1640 media, NaPyr, pen/strep, and FCIII from the fridge and place into 

the BSC. 

5. Use a 25 mL pipette to remove 50 mL of media from the original bottle into the labeled 

50 mL centrifuge tube. 

6. Use a 5 mL pipette to add 5 mL of NaPyr to the original media bottle, and use the same 

pipette to add 5 mL of pen/strep to the media as well. 



111 

 

7. Use a 25 mL pipette to add 50 mL of FCIII to the media. Mix by pipette up and down 20 

times. 

8. Label the media as “10% FCIII, 1% pen/strep, 1% NaPyr, initials and date.” 

9. Place the 50 mL of RPMI 1640 and the supplemented media into the Styrofoam box in 

the fridge, as the media is light sensitive. 


