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Abstract

The objective of this research is to produce a control scheme by an inverse method
that is capable of acting fast enough to be useful in a real-time manufacturing en-
vironment.The scheme should provide a transient boundary condition that produces
a prescribed interfacial surface motion with a corresponding desired morphology at
the phase interface in solidification problems. In this thesis, an inverse technique is
presented for one and two-dimensional heat transfer problems with phase change. It
calculates the required boundary temperature to provide a specified interface velocity
at the solid-liquid interface. An entropy-based method is used to improve the stability
of the proposed algorithm. The effects of free convection in the liquid are also con-
sidered. A control-volume- based finite element method is employed for the numerical
solution of the conservation equations for mass, momentum and energy. Numerical
examples are presented in order to demonstrate the promising capabilities and perfor-
mance of the proposed formulation. In practical solidification problems, this method
can lead to stable and meaningful results.
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Nomenclature

Xo reference length

X,y spatial coordinates

c specific heat

k thermal conductivity

L latent heat

H enthalpy

t time

s, ¢ local coordinate

At time step

T temperature

p density

V, u, v velocity

p presstre

R sensitivity coefficient

N shape function

S source term

P entropy production rate

Pr Prandtl number

Ra Rayleigh number

Ste Stefan number

e internal energy
Greek

$ general scalar variable

[ thermophysical property

a thermal diffusivity

B8 thermal expansion coefficient

v Kkinematic viscosity

Subscripts
l liquid
r reference
S solid

p+1 nodal point
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m iterative counter
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Chapter 1

Introduction

1.1 Background

In many industrial processes, thermal and fluid flow controls are required in a real-
time mode to improve processing conditions. It has received considerable attention
due to its wide practical applications. Specific examples would be in metallurgy, such
as casting and molding processes. Controlling the heat transfer and fluid flow patterns
is important since it largely affects the casting quality and production time in materi-
als processing. The heat fluxes and velocities at the solidification interface determine
the casting or molding properties and structures. They can be controlled by utilizing
measurements, such as thermocouple temperature measurements, during a process and
then adjusting the external boundary conditions at the inlet in a real-time mode to
give desired results. Another example includes various aspects of biological tissue de-
struction or preservation by alternating freezing-thawing cycles. The survival rate of
preserved blood cells is dependent upon the rate of temperature change during freez-
ing and preservation. Information on the cooling rates that will insure optimum cell
survival rates can be employed for improved control of the freezing process.

Demirci and Coulter (1] implemented this type of control successfully in molding
processes. Given a mold shape with specified inlet gate and vent locations, one can
identify the desired flow progression schemes. Experiments were conducted with a two-

dimensional, irregular mold cavity to test the performance of the control unit during
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actual injection molding processes. Two inlet gates and three different desired flow
progression schemes were considered. The experimental apparatus in the injection mold
filling experiments during this study is shown in Fig. 1.1. The assembly includes a two-
dimensional transparent mold cavity with two inlets (supplied by two tubing pumps
with corresponding pump controllers) and embedded sensors. Liquid was supplied
from the resin tank. Also, a video camera was used to monitor the flow patterns

arising during the injection mold filling experiments.

PUMP
CONTROLLER
RESIN #1
TANK COMPUTER
#
o —— I
| [am
E:pump | A0 RD
MOLD —
BUMP CAVITY a POWER
| SUPPLY

Figure 1.1: Sample experitmental apparatus

The control method can be summarized as follows. At any given time, measure-
ments of the interface position were obtained. Then, using a Fortran program, they
compared this present interface position with the interface position along the desired
flow progression path identified earlier. In this way. they determined the desired in-
terface position that was closest to and following the present interface position. This
position can be called the desired interface position of interest for the given time step.
The algorithm was then repeated many times. At each instance, the input was set to
the present interface position plus a different inlet flow rate combination. By running



this step repeatedly with different inlet flow combinations, the interface position can
be calculated for each time step. Also, they compared the resulting predicted interface
position from each output with the desired interface position of interest and found the
predicted interface position that was closest to the desired interface position at the
given time level. The inlet flow rate combination that gave the predicted interface po-
sition was the best choice for the current time step. This procedure was then repeated
for subsequent time steps until the mold cavity is filled.

In this thesis, a deterministic control strategy, based on solutions of the governing
transport equations, will be adopted, rather than neural network control in the previ-
ous example.

In this procedure, we can have a “forward model” or an * inverse model”. In the
forward modeling case, a present interface position and an inlet flow rate combination
are given and the model is expected to predict the shape and location of the next in-
terface. In the inverse modeling case, a present interface position and a next interface
position are given and it is expected to predict the inlet flow rate combination that
provides these two consecutive interface positions. It was shown in the previous study
that an inverse model can be more useful than a forward model because the inverse
model directly calculates the appropriate inlet flow rate combination at any particular
time. The forward model. on the other hand. gives one of many possible subsequent
interface positions. A search method must then be employed to find the optimal inlet
flow rate combination at each time step that leads to the best of all possible subsequent

interface positions.

The control scheme using a forward model requires the numerical calculation of the
direct heat transfer problem. Conversely, the control scheme using an inverse model

requires the numerical calculation of the inverse heat transfer problem.

Most heat transfer problems are concerned with the determination of temperatures

at interior points when certain initial and boundary conditions are given, such as speci-



fied temperature or heat flux boundary conditions. These problems are called “direct”
problems because the solutions involve a direct integration of differential equations
with known initial conditions. Numerous research studies have been performed on this
topic. The methods for these problems have been well developed.

On the other hand, the inverse heat transfer problem is concerned with the esti-
mation of the required boundary heat flux or temperature values based on internal
measurements or a desired internal process behaviour. It is well known that an inverse
problem is much more difficult to solve numerically than a direct problem. Its solution
strongly depends upon the amount of error in the prescribed data for two main reasons.
Firstly, in the direct problem, any fluctuations in the applied heat flux are damped as
the heat diffuses through the solid medium. In the inverse problem, the opposite sit-
uation occurs. The fluctuations or noise in the measurements will be amplified in the
projection back to the boundary, and the resulting surface condition estimates can be
easily overwhelmed by the noise in the interior measurement. Secondly, the physics of
heat conduction introduces a natural lag between the applied boundary temperature
or heat flux and the temperature response at interior points. Thus, a step change in
the surface temperature or heat flux will not be fully felt in the interior until a finite
amount of time has passed.

The inverse heat transfer problem has been applied to two main areas: (i) the [nverse

Heat Conduction Problem (IHCP). and (ii) problems involving phase change.

1.2 The Inverse Heat Conduction Problem (IHCP)

In the Inverse Heat Conduction Problem, the desired surface temperatures or heat
fluxes are estimated by utilizing transient temperature measurements at one or more

interior locations of the specified domain.

The inverse heat conduction problem has been the subject of considerable research.
Several methods have been proposed to solve the [HCP. It is worth mentioning that



Stolz [2] presented one of the first studies of inverse heat transfer problems with a
numerical method. Stolz formulates the inverse problem as though it is a direct prob-
lem and obtains an integral equation for the unknown surface condition. The solution
is obtained by numerically inverting the integral equations. This procedure becomes
unstable if the time step becomes small. Burggraf [3] found an exact series solution to
a one-dimensional inverse problem. The temperature and heat flux histories are given
at a single internal point. Approximate results are found if discrete or experimental

data are used.

The well-known methods for the solution of the IHCP are the sequential function
specification method (4], the regularization method (5] and the combined function spec-
ification and regularization (CFSR) method.

(i) The Sequential Function Specification Method

Beck [4] has stabilized the [HCP by using several future-time temperatures with a
least-squares method to calculate components of the heat flux at a given time. This
method is called the Sequential Function Specification Method. It can improve the nu-
merical stability of IHCP solutions effectively. The main idea of this method is given
as follows. A temporary assumption is made that the heat fluxes or the temperatures
are constant over r future times: this assumption will be subsequently removed. An
estimate is sought for “he value of heat flux or temperature. constant over r future time
steps. that minimizes the least squares error hetween the computed and measured sen-
sor temperatures. Many authors have applied this approach. i.e. Bass et al [6] and
Osman and Beck (7).

(ii) The Regularization Method
The Regularization method was proposed by Tikhonov and Arsenin {3]. It is a

procedure that modifies the least squares approach and provides stability by adding
smoothing factors that are intended to reduce the influence of measurement error in

(4]



the data. An augmented sum-of-squares function is minimized. This method involves
the whole domain in the sense that it utilizes all of the data to estimate simultaneously
the heat flux components. Thus, if the solution is needed over a large domain and a
long period of time, the dimensions of the matrices and the number of computations
involved increase accordingly. The influence of the regularization component is deter-
mined by the magnitude of a regularization parameter. Different criteria are found in
the literature for the selection of this parameter, i.e. Tikhonov and Arsenin [5], Murio
[8], Scott and Beck [9].

(iii) Combined Function Specification-Regularization (CFSR) Method

This method is also presented for the solution of the [HCP by Beck and Murio
[10] and Osman and Dowding [11]. It is used to stabilize and smooth the estimates
of the surface heat flux distribution. It differs from the global regularization methods
in that the solution is found sequentially, thereby greatly improving computational
efficiency. This method was shown to be very competitive with the global regular-
ization methods in terms of the heat flux estimates. In studies by Beck and Murio
(10], Tikhonov regularization was applied to the time variation of heat flux. Also, Os-
man and Dowding [11] apply the regularization to the spatial variation of the heat flux.

1.3 Inverse Heat Transfer Problem with Phase Change

Problems involving phase change are accompanied by either absorption or release of la-
tent energy (melting or solidification). A moving boundary exists and separates the two
phases of differing thermo-physical properties where latent energy is either absorbed
or liberated. The heat transfer processes now become more complicated in comparison
to the [HCP.

In inverse problems with phase change, the temperature and the interface velocity
may be prescribed at the phase interface. The required temperature and heat flux at



the stationary boundary of the domain are then unknown and must be determined by
the analysis. Due to the presence of the moving interface, the above problems may
be strongly non-linear. There are only limited studies on the subject of inverse heat
transfer with phase change.

We will consider previous methods that have been proposed for the solution of this
problem. They can be categorized into the analytical method, front-fixing method,
front-tracking method and the fixed domain method.

(i) Analytical Method

There are only a limited number of analytical solutions available, which are mainly
for one-dimensional problems. Rubinsky and Shitzer [12] derived analytic infinite-series
solutions to the one-dimensional inverse Stefan problem in Cartesian and spherical co-
ordinates. Conduction heat transfer was assumed in the liquid region. Frederick and
Grief [13] presented another method, which can be used to obtain the solution of prob-
lems involving phase change. The solution in one of the phases is specified as a known
single-phase solution. An inverse analysis then determines the solution for the other
phase.

(ii) Front-fixing Method and Front-tracking Method

In the Front-fixing method and the Front-tracking method, the solid and liquid
regions are treated separately and the phase change interface is explicitly handled as
a moving boundary.

For the one-dimensional case (Fig. 1.2), the problem involves consideration of the
conservation of energy in the domain by dividing it into two distinct domains. Q; and
Q,. where ) + Q, = (). The energy conservation is written as two separate equations
in the liquid (€2;) and solid (£2,) regions, respectively, i.e.

aT T

paor = k'tw (1.1)
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Interface
rd

Figure 1.2: Onc-dimensional solidification

aTr a*T
PsCamr = ks-a';;; (1.2)

where the subscripts | and s denote liquid and solid, respectively. The complete descrip-
tion of the problem involves, in addition to the initial conditions and the appropriate
external boundary conditions, the interface conditions on the phase change boundary,
[y, which are

Ty = Tn (13)
ar ds or
_ks(g;)s = psLZ!' —kl(g’;)l (14)

where sl represents the position of the interface. ds/dt is the interface velocity and
Tn is the phase change temperature. Eq. (1.4) states that the heat transferred by
conduction in the solidified portion is equal to the heat entering the interface by la-
tent heat liberation at the interface and the heat coming from the liquid by conduction.

In the front-fixing method, the moving interface is fixed with a proper coordinate
transformation and the interface becomes effectively stationary. For inverse problems
where the interface position is specified a priori. it will be shown that these trans-
formation techniques offer significant advantages. However, these methods introduce
numerical complications. Zabaras [14] used a front-fixing method to obtain the solu-
tion of several one-dimensional inverse solidification problems. A finite element method
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with a future time-stepping technique was employed in this study.

Front-tracking methods involve deforming and moving finite elements or finite dif-
ference grids. The mesh is continuously moving to adapt to the freezing interface
motion. Katz and Rubinsky [15] developed a "front-tracking” finite element method
for the study of the inverse one-dimensional conduction heat transfer problem with
phase change. An inverse method for the study of two-dimensional problems with
phase change was first reported by Hsu and Rubinsky (16]. An inverse finite element
method was described for the analysis of two-dimensional stationary arc welding pro-
cesses. This method can be used to predict the position of the solid-liquid interface as
a function of several variables. Zabaras and co-workers (17, 18] solved two-dimensional
phase change problems by a front-tracking method using the boundary element formu-
lation. The boundary element analysis was used in conjunction with Beck's sensitivity
analysis. The solutions can be stabilized by a future time-stepping technique.

These two methods offer the advantage of being able to clearly separate the two
phases along a boundary delineated by the discretization mesh. However, the mathe-
matical algorithms required to appropriately adjust the mesh are generally very com-
plex. They are usually difficult to implement, computationally intensive and can seldom

be incorporated into existing numerical codes.
(iii) Fixed-domain Methods

Fixed-domain methods do not change the initial spatial discretization mesh. They
involve the solution of a continuous system with an implicit representation of the phase
change. The problem is formulated in such a way that the interface conditions become
implicit in a new form of the equations. which applies over the entire fixed domain.
For example, in the Enthalpy Method. a single energy conservation equation is written
for the whole domain as

oH L *T

5 = Fam (1.5)



where H is the enthalpy function and only transient heat conduction is considered. The
enthalpy change is written in terms of specific heat multiplied by temperature change.

Then. appropriate heat source terms, or modified (apparent) specific heat, involv-
ing latent heat, are introduced and a single differential equation is solved over the
whole domain (solid and liquid). This method has the great advantage of simpler
numerical implementation and an easier incorporation into existing codes. Voller {19]
introduced an enthalpy method to solve the inverse one-dimensional Stefan problem.
The discretized equation is obtained by a control volume approach and a time-stepping
scheme. In solving this equation, finite differences are used and the value of the liquid
fraction is used to track the progress of the solid-liquid phase interface. The deter-
mination of time step and numerical grid is based on the prescribed movement of the
phase interface. The method requires that at any time step the phase interface moves
from one node point to the next point. An iterative technique is adopted such that the

solution provides a specified movement of the phase interface.

1.4 Effects of Convection on Solidification

In some cases, it is sufficient that phase change problems can be analyzed with con-
duction heat transfer only. However, convection cannot be neglected in other cases
of practical interest. Liguid flow during solidification affects the morphology of the
solid/liquid interface, solidification rate and the temperature distribution. It may be

necessary to take into account convection effects in the inverse solidification problem.

Convection heat transfer problems are normally divided into two broad categories,
namely forced convection and free (or natural) convection. In forced convection, the
flnid motion is due to externally applied pressure or viscous forces. When the fluid
motion is produced by buoyancy forces. which are usually due to temperature or con-
centration gradients in the flow, the process is called free or natural convection.

There is an important difference between forced and natural convection. In the for-

10
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mer case. the flow is externally imposed and is often independent of the temperature
field. The flow field can thus be obtained independent of the heat transfer processes
and then used in the determination of the temperature field. In natural convection, on
the other hand. the flow and heat transfer mechanisms are typically linked, since the
flow itself arises due to the temperature differences in the fluid. As a resuit, the flow
field cannot be obtained independent of the temperature field and the two processes
must be considered simultaneously. Because of these complexities, natural convection
flows are generally more difficult to solve (analytically and numerically) as compared
to corresponding forced flow circumstances.

Several papers have been published on the numerical calculation of the direct solidi-
fication problem with natural convection. One of the first significant investigations was
by Sparrow et al. [20]. They solved an axially symmetric solidification problem using
an implicit finite difference method. Marshall et al. [21] and Strada and Heinrich [22]
developed a finite element method that computed heat transfer rates for steady-state
natural convection in a rectangular enclosure involving high Rayleigh numbers. Mec-
Daniel and Zabaras (23] presented their results on two-dimensional solidification and
melting problems for pure metals using a least-squares front-tracking finite element
method. Only few studies have considered the numerical simulation of inverse solidifi-
cation with the effects of natural convection. Voller [24] published results that extend
the inverse method to solidification and melting problems of metals in which fluid flow

occurs in the melt.

In this thesis. the effects of natural convection on inverse solidification problem will
be considered.

1.5 Scope of Present Study

It is apparent that numerical simulation of heat transfer plays a very important role
in the control strategy as mentioned earlier. In particular. an inverse method for heat
transfer problems is useful for control implementation in solidification processes.

11
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This thesis will address the numerical simulation of the inverse heat transfer prob-
lem with phase change for solidification processes. A Fixed Domain Method will be
used for one and two-dimensional solidification problems such that the phase interface
moves uniformly and satisfies a desired progression. The solidification problem with
and without fluid flow will be considered. During the numerical calculation, since the
Second Law of Thermodynamics should be satisfied, an entropy-based method is intro-
duced to improve the numerical stability of the formulation. A Finite Element Method
is employed for the numerical discretization. In order to demonstrate the promis-
ing capabilities and performance of the current formulation, some examples involving
conduction with phase change will be presented. These include one-dimensional and
two-dimensional problems with an interface moving at a constant velocity or a specified
variable velocity. Also, the numerical results for an example that includes the effects
of fluid flow will be presented.

It is anticipated that the contributions of the present work can be realized in three
regards. Firstly, a control volume based finite element discretization is employed in
the formulation of the inverse procedure. In this way, the model is conservation based
while retaining the geometric flexibility of the finite element method. Secondly, an
entropy based technique is proposed for the improvement of numerical stability in the
inverse method. It considers local violations of the Second Law. due to discretization
errors. as a criterion for a corrective strategy in the computations. The magnitude
of negative entropy production can be used in a quantitative correction of the appar-
ent thermal conductivity. It will be shown that this approach provides an effective
alternative to previous inverse stabilizing techniques such as future time stepping. Fi-
nally. the model is extended to a problem considering natural convection. As a result,
the formulation appears capable of handling phase change with fluid flow. The above
developments can provide important contributions in terms of control engineering in
coupled thermal/fluid processes involving solidification and melting applications.

12
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Chapter 2

Mathematical Model

2.1 Descriptions of Inverse Solidification Problems

A solidification problem occurs when a substance has a transformation point whereby
it changes from liquid to solid with an emission of latent heat. The essential feature
of such problems is the existence of a moving interface with respect to the substract,
i.e. in some cases, a solidification problem requires only motion with respect to the
material which itself is in motion.

Heat transfer problems dealing with phase change at a constant temperature (i.e.
pure materials) are referred to as Stefan problems. The Stefan problem involves the
solidification or melting of a pure material and it is characterized by a distinct moving
phase change boundary with respect to the material at which a heat balance condition
has to be satisfied. The way in which this interface moves is typically controlled
by the boundary temperature; in other words, the temporal location of the interface
between the phases is given and the required temperature at the fixed boundary is
calculated. This is the so-called inverse Stefan problem. For the inverse design problem.
it is desirable to approximate the boundary temperature history that would produce
a prescribed interfacial motion. With this information. one can hopefully develop a
controlled experiment that produces the described boundary condition to ensure a

desired motion of the phase interface in a practical application.

13



2.1.1 Description of Inverse Stefan Problem

Interface

T() >V
T
Solid Liquid

B s ST g ey - ey
P TPl SOt S SO (£ 1 e Pyt y

TG

Figure 2.2: Inverse Stefan probletn, Case (b)

Consider solidification in a region (Figs. 2.1-2.2) occupied initially by a pure liquid at a
temperature T,,(r). with T}, denoting the melting temperature. Since the top. bottom
and right boundaries of the cavity are insulated, no temperature gradients will occur
in the liquid region normal to these boundaries and the position of the interface will
be controlled by the temperature at the left boundary of the cavity. The conductivity.
K. density, p, and specific heat, c, are assumed to be temperature independent. The
melting temperature, Tp,. is given. For case (a), it is assumed that the interface moves
in the x direction and the shape of the interface is a vertical straight line at all times
and the velocity of the interface can be constant or variable. For case (b), it is assumed
that the interface velocity in the y direction varies according to position and the shape

14

Fo—_n



of the interface is a straight line. In the above example, all points on the interface
reach the right boundary at same time. We will solve these problems to assess how
the temperatures of the left boundary should vary with time to produce the desired
interface motion. In case (a), the temperature at the left boundary will be uniform
and it will only change with time, Ty(t). It can be treated as a one-dimensional heat
transfer problem although the discretized domain will be two-dimensional. In case
(b). we have a two-dimensional problem, where the temperature at the left boundary
changes with both time and position y, (Ty(t, y)).

2.1.2 Description of Inverse Stefan Problem with Fluid Flow

Figure 2.3: Inverse Stefan problem with fluid flow

Consider solidification in a rectangular region (Fig. 2.3) occupied initially by a pure
liquid of temperature T,,(r). When the liquid is superheated. fluid flow will play a
role in heat transfer. The position of the interface is controlled by the temperature of
the left boundary in the cavity. Given the interface velocity and assuming that this
interface moves uniformly with a vertical profile at all times, then. due to fluid flow and
convection, the temperature of the left boundary would not be uniform. We will solve
this problem to assess how the temperature of the left boundary should vary. This
temperature at the left boundary will be a function of time and position y. (To(t. y)).

The problem occurs in a two-dimensional domain and fluid flow in the liquid region
makes it a fully two-dimensional inverse heat transfer problem with phase change.



2.2 Governing Equations

The processes of heat transfer and Auid flow are governed by fundamental principles
from thermodynamics and mechanics. These principles are the conservation of mass,
momentum, and energy. The conservation principles are general statements that are
applied in a local sense, leading to the continuity, momentum and energy equations.
These equations describe physical processes and they are the mathematical statements
of three fundamental principles: (1) mass is conserved; (2)F = ma (Newton's Law); (3)
energy is conserved. The phase change process occurs within the energy conservation
equation.

2.2.1 Definitions of Dimensionless Variables

The equations of heat transfer and fluid flow may be non-dimensionalized to achieve
certain objectives. Firstly. it would provide conditions upon which dynamic and energy
similarity may be obtained for geometrically similar problems. Secondly, the solution
of these equations would usually provide convenient values within limits between zero

and one.

In this work, the governing equations will be written in a dimensionless form. We
will define the following dimensionless variables,

L = -ll;’li (2.1)
b = %’; (2.2)
= Xio. (2.3)
o= %‘; (2.4)

where [ represents any material property, such as conductivity or density. ® represents
a general dependent variable, X is a reference length and qay is the thermal diffusivity
in the liquid. For the individual scalar fields, the reference scalar variables are

g = ‘X—o (2.3)
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P = pivo’ (26)

_ e — € 2 7
“ = AT (2.7)
ATG = T‘i_Tw (28)

The subscripts i and w refer to reference temperature, they can be taken as maximum
and minimum temperatures, respectively.

The key dimensionless quantities are the Stefan number (Ste). Prandtl number (Pr)
and the Rayleigh number (Ra). They are defined as

Ste = “"‘f“ (2.9)
v
PT = O'—t (210)
3
R, = 280X (2.11)
vay

where L is the latent heat. § is the thermal expansion coefficient and v is kinematic

viscosity.

In all subsequent governing equations, all variables are in a dimensionless form
without the superscripts * (removed for brevity}).

2.2.2 Governing Equations

The solidification problem with fluid flow may arise from natural convection in the
liquid and two-phase regions. The governing equations are obtained by applying the
principles of conservation of mass, momentum and energy to a finite control volume
located at a given position in the region. [n this situation, mass, momentum and en-

ergy equations need to be considered simultaneously.

(i) Mass equation

17



Consider the model for a finite control volume fixed in the region. The fundamental
physical principle that mass is conserved is applied to this control volume. [t means
that

(2.12)

time rate of decrease of \ _ [ Net mass flow out of control
mass inside control volume | ~ volume through surface

Assuming the fluid is incompressible and the density remains constant, the mass
equation is written as:
g——z + % =0 (2.13)
When phase transition is considered, the this mass balance is applied in each phase
separately, and then results from all phases are summed to éive the mixture equation.
The form of the resulting equation appears identical to the above equation, but de-
pendent scalars (i.e. u,v) are interpreted instead as the mass fraction-weighted sum of
individual phase values, i.e. v = f,v, + fiy is the mixture velocity, where f, and f;

refer to solid and liquid fractions, respectively.
(ii) Momentum equation

Similarly, the momentum equation is obtained for a control volume as follows.

Mass acceleration | _ ( Body forces on Surface forces on (2.14)
in control volume / = \ control volume control volume ’

It can be written as

(x-direction)

Op Otz OTy =

— =e—t+ =4+ L 4+ B +G; 2.1

S+ - (puV) = —2= + == 3y +B:+G (2.15)
(y-direction)

g = Op Orm Oy o

at(p”) + V (pr) - ay + aT + ay + Bll + GII ("'16)
where p can be expressed as

p=po+pglh—y)+pa (2.17)
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Here py refers to the dynamic pressure component and po refers to the hydrostatic
pressure component. Also, h refers to free surface height; in this thesis, free surface
motion will not be considered.

In Eqgs.(2.13)-(2.16), the terms on the left hand side of the equations represent time
rate of momentum change inside the control volume and the advection momentum flux,
respectively. The terms on the right hand side of the equations refer to the pressure
force, viscous forces, body forces and momentum production due to phase interactions,
respectively. For example, momentum production due to phase interactions may arise
due to fluid acceleration through pockets or channels in the solid dendritic matrix of
the two-phase mixture. Darcy’s Law will be employed for these terms since the process
appears analogous to fluid flow through a porous medium. In particular, Darcy's Law
is given by

R.G: = v(fiur) (2.18)

where K refers to x-direction permeability and u, = u;—u, represents the x-component
relative phase velocity. The permeability coefficient decreases as f; (liquid fraction) de-
creases to a limiting value of zero as the multiphase region becomes completely solid.

In adopting mixture quantities in the above momentum equations, their form ap-
pears very similar to the corresponding single phase equations. In writing the con-
servation equations in terms of these mixture quantities, we then obtain a standard
form for the fluid flow equations (i.e. 3 equations for mixture u,v.p) rather than mul-
tiple equations for individual phase quantities. However, the source terms, G, and
G,. include permeability effects (as discussed above), as well as convection terms (i.e.
convection differences between mixture and individual phase quantities) resulting from
summation of the individual phase equations.

We will assume that the fluids are Newtonian fluids, i.e. shear stress in fluid is
proportional to time-rate-of-strain (velocity gradients). The Newtonian constitutive
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relationships apply to the phase stress tensor, such that

e = A7V + 2/1% (2.19)
r = ATV + 2% (2.20)
oy = #(%"g_:. + gy_u (2.21)
where
A= —§/z (2.22)

This result holds under conditions with moving monotonic gases (Stokes relation).
In certain situations, such as ultrasonic waves involving more complex fluids, experi-
ments also indicate the validity of the Stokes relation. This relation is often adopted in
order that the viscous transport can be written in terms of a single viscosity coeflicient.

Also, we will assume that the fluid is Boussinesq-incompressible; in other words, p is
constant except in the body force term of the y momentum equation. The Boussinesq
approximation assumes a linear dependence of density on temperature. Therefore,

p =pB(T-T.) (2.23)
where p is the density in the ambient medium, T, is the ambient temperature and 3 is

the thermal expansion coefficient.

Substituting Eqs.(2.19)-(2.21) and Eq.(2.23) into Eqgs.(2.15)-(2.16) and using Eq.
(2.13), we obtain the following momentum equations for an incompressible fluid :
(x-direction)

ou ou Oou_ 10p . (Pu a%) oo
at“%*"ay“'pam*”(aﬂ*ay? +G: (2.24)

(v-direction)

v Ov  Ov 19p (6211 v

v \ ) i
o et ey oyt +gBT-T)+G,  (2.29)
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where we have assumed a zero solid phase velocity. The above equations apply to the

liquid region in the phase change problem.
(iii) Energy equation

Consider the model of a finite control volume fixed in the region. The fundamental
physical principle that energy is conserved is applied to this control volume. It means

" Rate of increase of energy | _ { Net flux of heat into 2.26)
inside the control volume / = | the control volume (2.
The conservation equation for energy then has the following form.
6 -
5 PH)+V (pVH) =V (kVT) (2.27)

where H is the phase enthalpy and p is density. For most solid-liquid phase change
materials, the assumption may be employed that

AH =~ Ae (2.28)

where e is internal energy and it is defined as

T
e= /T crk(C)dC + er(T) (2.29)

where ¢.x(T) represents the effective specific heat of phase k.

In the above equations, the specific heat is set constant in each phase region and
the density is set constant throughout the domain. Problems that involve a density
difference across the phase change require an additional advection term in the heat
transfer equation to account for shrinkage driven flows. However, this effect will not

be considered in the present work.

2.2.3 The General Conservation Equation

The foregoing equations can be considered as particular cases of the general equation

-

2 (o) + 7 (o78) = v () +3 (2:30)
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The general equation consists of four terms; they are the unsteady term, the con-
vection term. the diffusion term and the sonrce term, respectively.

2.2.4 Special case: Stefan Problem without fluid flow

The solidification problem without fluid flow involves heat conduction and the release
(/absorption) of latent heat. Since no fluid flow arises, mass and momentum conser-
vation do not need to be considered. The governing equation for two-dimensional,

solid-lignid phase transition of a pure material, is written as follows.

2 pe)=v-k9T) (2.31)

After a supplementary equation of state has been specified, e=e(T), then the energy
equation may be written in terms of the temperature field alone.

2.2.5 Enthalpy Equation of State

An enthalpy equation of state is also required in order to write the energy equation in
terms of temperature alone. The piecewise linear equation of state can be expressed in
one equation, where the subscripts k=1,2 refer to the solid and liquid phases, respec-
tively, as

e = erk(T) + cru(T)T — Trs) (2.32)

where the subscript r denotes a reference value.

Reference values can be obtained by integration of the Gibbs equation from a point
in the liquid region to another point in the solid region. These values have been

consistently set to

(k=1)
e; = 0 (2.33)
T, = 0 (2.34)
1 = E (2.35)
22

r——e



(k=2)

é Cs 1 .
€2 = a(n-Ta)'{'an'FgE (2.36)
Tr.2 = 71 (237)
= 1 (2.38)

In this way, latent heat transfer occurs through the above g term since phase
change requires an energy change corresponding to the latent heat of fusion.

2.3 Boundary Conditions and Initial Conditions

The governing equations above present several different possibilities. The temperature
fields and flow felds are quite different for these cases, although the governing equa-
tions are similar. This is partly because they have different boundary conditions and
different initial conditions. The boundary conditions and the initial conditions dictate
the particular solutions to be obtained from the governing equations. So, the formula-
tion of a problem requires appropriate boundary and initial conditions.

Spatial boundary conditions in direct heat transfer problems are of three general
types. They may be stated in a simplified mathematical form as follows.

1. Dirichlet Boundary condition: specified value of surface temperature. i.e.
b= f (2.39)

where &=temperature and f);= its specified value.

2. Neumann Boundary condition: specified value of outward normal heat flux or
temperature gradient. i.e.

ad

—— 2,40
o fa (2.40)
3. Robin boundary condition: convection condition, i.e.
o
A o +B fa | (2.41)

2

-



For the case of heat transfer with fluid flow, the boundary conditions on the flow vari-
ables are expressed in terms of fluid velocities. Zero velocity conditions are prescribed
along all solid boundaries. Other possibilities include Neumann (zero flux) conditions
along a line of symmetry, or prescribed values at a flow inlet.

For the inverse problem, with the exception of the boundary where the temperature
needs to be controlled, all boundary conditions can be treated as in a direct problem
(Dirichlet, Neumann and Robin boundary conditions). At the controlling boundary,
the temperatures are unknown and they represent the solutions of the problem. The
temperature at this boundary is obtained by iterations following an initial estimate; in
other words, at the beginning of each time step, an estimated temperature is initially
given. Usually, it is set equal to the temperature at the last time step. During each
time step in the solution, the controlling boundary temperature (i.e. x=0) is updated
at each iteration until the predicted movement of the interface agrees, within a given
tolerance. with the specified movement. The update used in this work is given by:

+l _m
Tém-“) =T + Tgn___P_ (2.42)

R,

where m is the iterative counter, the subscript p refers to nodal point p and R is the

sensitivity coefficient (discussed in next chapter).

Since the problem is time dependent (transient), i.e. the variables change with time.
the initial condition should give the distribution of the temperature and the velocities
over the entire region at the initial time, t = 0.



Chapter 3

Numerical Model

Finite Element Method and Finite Difference (Volume) Methods are the most common
numerical methods for heat transfer analysis. The principal advantages of the finite el-
ement approach are the ability to handle irregular geometries and treatment of difficult
boundary conditions. Also, the overall flexibility of the approach in terms of changing
geometries or physical properties, without altering the solution algorithm, is a major
benefit. On the other hand, finite element codes for heat transfer and fluid flow are
still far from optimal and are currently undergoing further development. They may be
less efficient or less easy to code initially in comparison to finite difference methods.

A finite element method is a mathematical procedure for solving a partial differential
equation in an integral sense across a finite element. It requires that an integral rep-
resentation of a partial differential equation is constructed. The solution of a physical
problem by a finite element method follows a well-defined sequential process. Firstly,
the physical region is discretized into elements. The number. type, and allocation of
elements are often a matter of judgment. Secondly, interpolation or shape functions
are selected for the elements. The interpolation functions represent the assumed form
of the spatial solution in the elements and are related to the number of nodes in the
elements. Thirdly. the matrix equations for an individual element are formulated using
the integral statement for the element. Fourthly. the matrix equations for the overall
system. consisting of all the elements, are assembled. The global equations have the
same form as the element equations but they have a larger dimension. Finally, the

[~
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global equations are solved. Post-processing of results can also be pursued.

Some aspects of the finite element program discussed in this chapter (i.e. fluid flow
algorithm) have been developed elsewhere [25] in the context of direct problem. The
contributions of this thesis appear through the extensions to inverse problems. As a
result, the entire formulation is described as it relates to implementation of the inverse

proceduire.

3.1 Discretization of Solution Domain

The first step in a finite element approach is to subdivide the volume into a set of
subvolumes while nodes are distributed throughout the domain. A two-dimensional
domain and linear, four-noded quadrilateral elements are used. A typical element is
shown in Fig. 3.1 with the local non-orthogonal coordinate system. These coordinates
are denoted by s and t. The range of both coordinates is from -1 to 1, with the nodes
numbered from 1 to 4. Figure 3.2 shows the control volume which is divided into four
sub-control-volumes (SCVs). The boundaries of sub-control-volumes are called sub-
surfaces (SS). An integration point (ip) is defined as the midpoint of each sub-surface.
Shape functions are employed to relate the local and global coordinates.

A general variable. b. global coordinates. and derivatives of the general variable ¢

are expressed in the following form.

1
B(s.t) = Y Ni(s,t)®; (3.1)
k=1
1
x(s,t) = Y Ni(s,t); (3.2)
k=1
1
y(s.t) = Y Ni(s, By (3.3)
k=1
0‘I> u aN,- 9
FrEP O e (34)
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Figure 3.1: A single clement

% _ SN

ay - k=1 ay

where finite element shape functions NV; are used to relate global Cartesian coordinates

®; (3.5)

and scalar values, @, to local element values in a bilinear fashion. They represent the
local shape functions N; (i=1,2,3,4) for the linear quadrilateral elements at the local
coordinate (s,t).

Ni(s.b) = i(1+s)(1+t) (3.6)
Na(s.) = i(l—s)(l-&-t) 3.7)
Nyl 1) = (L=s)(1 =1 (3.8)
Nifs,t) = (L +8)(1-1) (39)

However, the x and y derivatives of the shape functions are not yet known. They are

determined using the chain rule with the following results.

ay, & _d [N
az 1 a as ads
= = (3.10)
aN, J| _oe oz aN;
dz ot ds at




where

Figure 3.2: Countrol volume

is the Jacobian determinant. Also,

g 0x%y 0yoz
T st st
ar BN,-
or 1. 9N;
& = X
3y 4 6N,-
3 = 25
ay 4 3N,v

Control Volume

Element

(3.11)

(3.12)
(3.13)
(3.14)

(3.13)

These geometric quantities are computed at an element level at each time step.
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3.2 Discretization of Governing Equations

The discrete control volume equations can be derived by integration of the continuum
equations, Eqs. (2.13), (2.24), (2.25) and (2.27) over finite control volumes and time
intervals. This includes a net surface flow balance with source and temporal storage
volume integrals. For SCV1 within the shaded control volume (Fig. 3.2), Egs. (2.13),
(2.24), (2.25) and (2.27) are integrated to yield the following integral conservation laws,

535 [ peeav + [ Fodi+ [ Fé-dii= [ Seav (3.16)

The vector F* denotes advection flux and F¢ denotes diffusion flux. Also, Sp
represents the source term. Integration over a time interval At = t"*! — " yields the

equation

_f_’ﬂ) 'n+l_(fﬁ) in - e g [nt+l d pd | = ntl o
(&)= (50)8 +.z=:1/s.-p dit | +§/S.F di™ + 5 (3.17)

where J; is the SCV1 area. The control volume (node n) equation will be completed
when each element SCV contribution is assembled into the global system of discrete
equations.

3.2.1 Conservation of Mass, Momentum Equations

The algebraic representations of the integration point equations are required to form
the integration point equations. The current approach is based on the co-located al-
gorithm developed by Schneider and Raw [26]. The algebraic approximations of the
integration point values are given as follows.

(i) Convection Operator

The convection operator at an integration point is represented by an upstream

difference, 5 o ®
= —_— 4 i:_ﬁ 3.
C(®) = V'3 = pV [ - ] (3.18)
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where V represents the fluid velocity magnitude,
=vVu2+n? (3.19)

and s is the local streamwise direction
u v
ds = Vd.’l‘ + de (3.20)

Also. L. is the convection length scale and &, represents the upwind value of . The
upwind values, ®, were determined by two different models as described in ref. [25].

(ii) Diffusion Operator

The diffusion operator in all transport equations is represented differentially by the
Laplacian, L(®) = ?(®). It is approximated by a central difference,
Tioi Nj®; — &

L
where Ly is a diffusion length scale. It was approximated by extensions from one-

val JIE (3.21)

dimensional results. In particular,

Ar? 3Ay?
2 _ —
Ly = 5 + 3

where Ar and Ay refer to length scales perpendicular and tangential. respectively. to

(3.22)

the sub-surface in question.
(iii) Pressure Gradient Operator

An approximation to the local pressure gradient in the x and y directions was also
required. Shape functions were employed in this approximation,

= -Z,_l af (3.23)

where the upper-case convention represents nodal variable dependence. The pressure

gradient in the y direction is constructed in a similar fashion.
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(iv) Transient operator

A transient term at an integration point is approximated by a backward-difference,

a(p (I’ipn+1 _ (pipn .
1ty v (3.24)

where the superscripts n+1, n denote current and previous time steps, respectively.

Now, we can add the various operators to form the complete integration point
equation approximation. These integration point equations, at element level, can be in-
verted to determine the integration point variables in terms of the nodal point variables.
The above integration point operators are substituted into the momentum transport
equation, i.e. i

%+C(ﬁ)=—vp+L(ﬁ)+B—+§ : (3.25)

Assembling each of the component operators in Eq. (3.25) and inverting the 4
element integration point equations for #;, explicitly in terms of the nodal values,

{a} = JC*|{U} + [IC*?|{P} + {RS"} (3.26)
and similarly for the y-momentum equation,

{#} = [IC"|{V} + [IC*?]{P} + {RS"} (3.27)
where the [C matrices represent Influence Coefficient matrices and { RS} refers to the

right side source vector.

The conservation of mass equation can then be obtained from Eq.(3.17) with ®(f,t) =
1. F* =0 and F® = . For the conservation of momentum equation. ®(7.t) = #(¥.t)
and the mean mixture diffusion, advection and source term components of Eq. (3.17)
are modelled by

2 4
Flp = (P u Y Uy (3.28)
k=1

i=1
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4 4
Fllp = pi" Z([C)f/Uj,i + Z5i.jpi (3.29)

i=1 i=l

SU = u. ot l,p Zﬁ:la;‘ld PrRaT)—(T T) (330)

where the subscripts i, j. k denote local nodes, coordinate directions and phases, re-

spectively.

The cntire fluid flow system is a pressure-velocity coupled system of equations whose
solution consists of the three variables u, v and p at each nodal point. Meanwhile, there
are three equations (mass equation and two momentum equations). This means that
the number of equations is equal to the number of variables. But the mass equation,
apparently having no direct link to pressure, but rather an indirect link through the
integration point equations, is an additional constraint on the velocity field. The mass
equation is considered to be the main equation for pressure and the momentum equa-
tions provide further equations for the velocity components.

The temperature-velocity coupling appears through the buoyancy terms in Sy,.
Although the pressure-velocity coupling was resolved simultaneously in these equations,
the velocity-temperature coupling remains segregated. In other words, the energy
equation obtains temperature separately, and inter-equation iterations (momentum-
energy equations). rather than a simultaneous coupling. are performed until acceptable

convergence is achieved.

3.2.2 Conservation of Energy Equation

The conservation of energy equation can be obtained by substituting ®(¥,t) = e(f, )
in Eq. (3.17). The diffusion, advection and source terms are approximated by

T, = kY ST (331)

x—l

FT)l, = 53 (IC)Fey(T) (3.32)

=1
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4
U = =0 3 UCH lers - Tl + 3310~ 2 UCT T (030

k=1 i=1
A Crank-Nicolson scheme is used to evaluate diffusion terms and sources at the in-
termediate time level. In particular, this intermediate time level refers to the midpoint
between the current time level and previous time level. For example, if we let the
superscripts n+1 and n refer to current and previous step, then the diffusion term in
Eq. (3.31) is evaluated as

d

2

The coefficients at step n+1 remain as active coefficients in the implicit solution

+1
_kzaN (T;" +T,-") (3.34)

whereas terms at step n are grouped together in the source term. The time marching
procedure then becomes second order accurate and algorithm essentially second order

accurate in space.

3.2.3 Boundary Conditions

At a solid wall, all velocity components are specified as zero. The momentum equations
for the elements at solid wall are replaced by these equations (all velocity components
are zero) in the global system. Furthermore, boundary conditions for the energy con-
servation equation may be specified for Dirichlet, Neumann or Robin conditions. The
specific types of conditions are problem dependent and in the example problems (next

chapter). we will identify these specific conditions.

For an inverse problem, the temperature at the boundary where the temperature is
required and predicted is initially unknown. Thus, it is considered a problem variable
instead of a boundary condition. It is obtained through an iterative procedure.

3.3 Sensitivity Coefficient

The sensitivity coefficient will be defined as follows,
a7,

= (3.35)
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where the subscript 0 refers to boundary and p refers to nodal position.

This coefficient essentially measures the influence of changes in the boundary tem-
perature Tj on the temperature at the point P (inside domain). The range of sensitivity
coefficient R is between 0 and 1. The value of R expresses the temperature connec-
tion between the point P and the boundary. As the sensitivity coefficient, R, becomes
larger, then the influence of the changes at the boundary temperature to the point P
beconies stronger. It is apparent that the closer the point lies relative to the boundary,
then the bigger the sensitivity coefficient becomes. This coefficient is used to update
the boundary temperature in the current inverse method.

Furthermore, if we write Tp™*! in terms of a Taylor series expansion, then it can
be expressed as

1 6°T,

T," =T, + (;WTP(TO"‘“ - To") + 55 (T — T 4 (3.36)
0 0

We will neglect the higher order terms and only the first 2 terms are retained. If we
rearrange Eq.(3.36), then it becomes the same as the boundary temperature equation
described earlier in Eq.(2.42).

Now. we will consider how to perform the numerical calculation of the sensitivity
cocfficient. Substituting Eq.(2.32) into Eq.(2.31). we find that the heat conduction
equation becomes an equation in terms of temperature alone. Then. taking derivatives
with respect to T; on both sides of the equation, the terms in Eq.(3.31) and Eq.(3.33)
will be taken (derivatives, one by one). The first term on the right hand side of Eq.(3.33)
is not a function of Ty (i.e. zero derivative). Then,we obtain a resulting equation in
terms of the sensitivity coefficient. R. The resulting equations can be written in the

following form:

(EAJ_;) R = (le) Rn+2/ F4. di™* + (3.37)

J4
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where J; refers to sub-control volume area. Also,

FYR), = ki-a‘ﬁn (3.38)
T g o .
2 4
S = Y ¥ (65— i (IC)] e (R:) (3.39)
k=1i=1

Furthermore, we have the following boundary condition where
R*¥=1 (k>0 (3.40)

and the initial condition
R®=0 allj ' (3.41)

where the subscript denotes node point and the superscript denotes the time level.
Through a similar procedure as in the solution of the direct problem, the resulting
equation can be solved numerically and the solution R can be obtained.

In Eq. (3.37), R is a matrix and every node point has a corresponding R value.
It can be solved numerically in the same manner as a direct problem. The boundary
conditions and initial conditions are known (Eq.(3.40) and Eq.(3.41)). By solving
Eq.(3.37), we obtain the sensitivity coefficients for every node point. While solving this
equation. iterations are needed. When the difference between values at two iterations
is smaller than the specified tolerance. then. the calculation is terminated.

When we update the boundary condition during the iterations in the inverse method.
only the sensitivity coefficients on the interface points are used. Since the interface is
moving at each time step, the sensitivity coefficient at a different location is adopted.
When the controlling boundary is parallel with the y-axis, the sensitivity coefficients
vary only with x. For two dimensional solidification problems. the interface profile is
not a vertical line and the sensitivity coefficients on the interface have different values.

In this case. each point would use its own corresponding value.

In the inverse problem, the governing equations are the same as in direct prob-

lem. The difference is that the interface position is given and the temperatures at



the controlling boundary are unknown. The other boundary conditions are given as
in the direct problem. During each time step, initially. a guessed temperature at the
controlling boundary is used and the equations are solved as a direct problem. The
temperatures at the controlling boundary are updated continuously through iterations
until the predicted movement of the interface comes within a given tolerance of the
desired path. Then the solution is terminated.

In the inverse method, the interface is moving: it moves across one grid spacing
at each time step during the calculation. Given the movement of the interface (i.e.
prescribed velocity of interface), we then select a constant time step. During the
calculations, in order to ensure that at any time step the interface moves from one
node point to the next adjacent point, a fixed numerical grid is specified. The grid can
be uniform or non-uniform according to the different interface velocities in a particular
problem.

3.4 Entropy Based Method for Numerical Stability

Due to the diffusive nature of heat flow, the inverse heat transfer problem is ill-posed
in the sense that arbitrarily small errors in the temperature measurements or interface
position can lead to arbitrarily large errors in the estimated values of the boundary
temperature. Numerical simulations have shown that numerical instability often occurs
in the inverse heat transfer problem. During inverse calculations. when the interface
moves farther and farther from the boundary, it becomes more and more difficult to
control the interface by adjusting the boundary temperature. Then. numerical oscil-
lations are likely to occur. In order to enhance solution performance and improve the
stability of the algorithm. an entropy based method will be proposed here.

The scheme currently used in the numerical solution of heat and fluid flow is con-
servative. This means that it conserves mass, momentum and energy in any control
volume. The First Law of Thermodynamics is satisfied for each control volume. How-
ever, the Second Law has not received the same treatment. This is unfortunate because,

36



without an entropy condition, the equations have many solutions, some of which are
reasonable and smooth, whereas other possible results may seem non-physical (i.e. os-
cillations). Furthermore, it has been shown that satisfaction of a cell entropy inequality

is sufficient, in some cases, to guarantee non-linear stability in numerical computations.

A few research studies have investigated the Second Law of Thermodynamics for
numerical stability in solidification problems. Naterer [27, 28] used an entropy based
method successfully in direct heat transfer problems. Entropy may become a mecha-
nism for providing convergence enhancement in phase change computations.

3.4.1 The Second Law and Generalized Entropy

Although the First Law of Thermodynamics allows for conversion from one form of
energy to another, as long as the overall quantity is conserved, experimental evidence
indicates that in certain types of energy conversion, a restriction must be placed in
terms of the direction and extent of transformation. For example, it is a fact that
although work can be completely converted into heat, heat cannot be completely con-
verted into work in a continuous manner. It is the Second Law of Thermodynamics that
imposes restrictions on the direction and extent of energy transformation processes.

The Second Law is a fundamental law of nature. It can be stated in many different
forms. such as the Clausius statement of the Second Law. as follows: it is impossible
for any device to operate in a cycle in such a manner that the sole effect is the transfer
of heat from one body to another body at a higher temperature. [n the case of a
heat pump, or refrigerator, heat does flow from a region of low temperature to high
temperature, but only when work is added to the machine from an outside source.
The Second Law of Thermodynamics, through the property called entropy, permits a
quantitative evaluation of thermodynamic systems and predicts the directional nature
of physical processes. [t provides information that complements an analysis based on
the conservation of mass and energy.

Also, recent research on computational interpretations of entropy and entropy pro-
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duction has shown that entropy is related to discretization errors, artificial dissipation
and non-physical numerical results. This means that in addition to physical mech-
anisms producing entropy, we find that computational procedures can also produce
entropy. We can refer to “generalized entropy” as the combined computational and
physical entropy. Then, the Second Law of Thermodynamics in a numerical scheme
can be expressed in terms of “generalized” (computational plus physical) entropy as
follows,

P.E%+V‘Fk20 (3.42)

where P, refers to the entropy production rate and Sy and F} represent the thermo-
dynamic entropy and entropy flux in phase k, respectively. The equality refers to
reversible processes whereas the inequality refers to irreversible processes. We will use

the following variables,

Sk = Sk (3.43)

F. = pVese—q/T (3.44)

In these equations, s, represents the specific entropy in phase k,
T -
Sk = Spk + Cylog [-f;-] (3.43)

where the additional subscript r refers to values at a reference state.

In a similar way as the construction of the enthalpy equation of state. we must
include an entropy of fusion term in the above reference entropy in the liquid phase.
Since entropy is calculated after the solution of the conservation equations is obtained,
then iterations will not be required in this case. The elements are re-assembled for the
computation of volumetric entropy production rate following the solution of the con-
servation equations. This assembly includes the transient entropy term (using entropy
equation of state and backward difference in time), advective term (using pressure-
weighted upwinding) and diffusive term (using bilinear interpolation with shape func-
tions). At the boundaries, a positive-definite expression for entropy production (see
below), rather than completion of the transport equation, is given as the boundary
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condition.

Another expression for the entropy prodiiction rate involving heat conduction is
given as follows[27)],

kg T-9T
T

where k denotes the thermal conductivity. The temperature is measured on an absolute

P, = (3.46)

temperature scale. Since YT - 7. k and T? are all greater than or equal to zero, then,
P,>0 (3.47)

This result is the Second Law of Thermodynamics. It applies to all physical processes
such as heat conduction. However, non-physical behaviour in the numerical solution,
arising from discretization errors (i.e. coarse grid refinement, lack of solution conver-
gence, large time steps) may violate the Second Law in a discrete control volume.

The difference between the two forms of the expressions for P, is that in Eq. (3.46),
the local entropy production rate will be greater than or equal to zero, both analyt-
ically and numerically. On the other hand, Eq. (3.42) is a transport equation and
non-physical numerical results may lead to negative entropy production rates in the
numerical formulation.

3.4.2 Improving Stability of Inverse Method

The principle of increasing entropy during an irreversible process provides a means for
analyzing processes on the basis of the Second Law of Thermodynamics. The processes
that result in a total positive entropy production are possible according to the Second
Law. Any processes that suggest a decrease in the total entropy for an isolated system
are impossible, and only totally reversible processes can produce a zero change in the
total entropy. Numerical studies suggest that satisfaction of the Second Law is im-
portant because a sufficient condition for stability of a scheme can be given in terms
of a positive entropy production rate in the computations, i.e. non-physical solutions
are accompanied by a negative entropy production. To exclude non-physical solutions
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and to seek a physically relevant solution, additional modifications may be required in
the numerical formulation. In the current model, this modification will be based on
the Second Law of Thermodynamics, which states that the entropy production must
remain positive. The method will be called an entropy based method.

For the inverse problem with solidification from the left boundary, experience has
shown that as time increases, the interface moves further away from the left boundary
and the effect of the boundary temperature on the interface movement becomes weaker
and weaker. The thermal information cannot be effectively carried from the boundary
to the interface. As a result, it will be more and more difficult to control the interface
movement by the temperature at the left boundary. Then, oscillations in the inverse
solution may start to occur. Also, from the calculation of the sensitivity coefficient, it
can be seen that as the interface moves further and further away from the left bound-
ary, the sensitivity coefficients become smaller and smaller. When the values of the
sensitivity coefficient are very small, the resulting roundoff error may lead to numeri-
cal instability. Meanwhile, from the updating equation for the boundary temperature,
Eq.(2.42), during the iterations, it can be shown that when the sensitivity coefficient
becomes very small, the updated boundary temperature will exhibit big changes from
one iteration to the next iteration. The solution will become unstable as the iterative

values change drastically.

By calculating the entropy production rate. numerical studies in the present work
have shown that the entropy production rate becomes negative when the simulation be-
comes unstable. The scheme may violate the Second Law of Thermodynamics. There-
fore, the algorithm will be modified in order to stabilize the calculations. In the current
formulation, the entropy production will be employed as a criterion, i.e. if the value of
entropy production becomes negative, it suggests that an instability occurs and thus a
correction of the solution needs to be used. The correcting procedure should only be
applied when the non-physical solution behavior arises. In this way, we reduce compu-
tational time and avoid corrections of the solution at every time step.
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During the simulation, the entropy production rate is computed based on Eq.(3.42)
following each time step. If the nodal value of P, is negative, then the local solution is
not physically correct. Therefore, instead of proceeding to the next time step, a cor-
rection is performed based on the magnitude of entropy production within the control
volume.

From Eq.(3.46), the conductivity can be expressed in terms of entropy production
P as follows.
_TA|
- gT-vT
Thus, k is related to the entropy production rate and the local temperature gradient.

(3.48)

In order to calculate the above expression, we need to estimate the value of tempera-
ture gradient corresponding to the related entropy production rate. Recall that P, was
obtained for a specific control volume and it was based on the transient entropy term
and the net entropy flux across the boundaries of the control volume. As a result, it
was comprised of a volumetric summation of terms in sub-control-volumes correspond-
ing to a given node in the mesh. On the other hand, the temperature gradient in Eq.
(3.48) is a pointwise value based on the temperature distribution obtained from the
solution of the energy equation. In order to match representations, the area-weighted
value of temperature gradient is also calculated and assembled with the calculation of
P, such that an overall or characteristic 7T is employed for the volumetric value in

the calculation cf k. This approximation becomes more accurate as the grid is refined.

If the Second Law is violated locally, then the conductivity can be computed in
Eq.(3.48) using the entropy production P, from Eq.(3.42). Then this entropy based
conductivity is used to calculate the sensitivity coefficients again and modified sen-
sitivity coefficients are obtained. These new sensitivity coefficients can be employed
to update the boundary temperature during the iteration. It will be shown that this
method prevents potentially non-physical solution behaviour in numerical calculations

in inverse problems.
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3.5 Solution Procedure

The numerical procedure for the inverse solution can now be summarized as follows.

1. Specify the movement of the phase interface (i.e. interface velocity) and choose

a constant time step based on this interface velocity.

2. Based on the velocity of the interface and the chosen time step, then a fixed
numerical grid is specified such that at any time step the interface moves from one grid
point to the next grid point. If a variable interface velocity is specified, then either a
variable time step or non-uniform grid is selected. In this work, the latter approach is
adopted.

3. Within each time step, an estimate of the unknown controlling boundary temper-
ature is given and then the energy conservation equation is solved in a direct manner

for the temperature, T.

4. The sensitivity coefficients are obtained and the unknown (controlling) boundary
temperature is updated. Then, the energy equation is solved again. An entropy based
correction of conductivity is provided for the sensitivity coefficients whenever the Sec-

ond Law is locally violated.

3. Repeat steps 3-4 for each iteration in solving the energy conservation equation.
The solution is terminated when the predicted movement of the interface agrees, to a
given tolerance, with the specified (desired) interface movement.

6. Assemble the internal mass-momentum conservation equations. The current
temperature solution is used for construction of buovancy terms in the y-momentum

equation.

7. Apply the velocity and pressure boundary conditions.
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8. Solve the simultaneous mass-momentum equation set for the fluid velocity, 7,
and pressure, p, in the liquid region. The velocity in the solid phase is taken as zero.

9. Repeat steps 6-8 for iterations of the mass-momentum conservation equations
until solution convergence involving the p — ¥ coupling is obtained.

10. Return to item 3 for solution convergence in the T-U coupling. After the
inter-equation residuals decrease below a specified small tolerance, the calculation is
terminated for this time step. Then we begin the next time step.

For the inverse problem without the effects of fluid flow, the numerical procedure

follows step 1 to step 5. If the effects of fluid flow are considered, the numerical
procedure follows step 1 to step 10.
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Chapter 4

Applications and Results

In this chapter, numerical results are presented to indicate some general features, per-
formance and accuracy of the proposed methodology. The goal of the study involves
determining the boundary temperature, which produces a prescribed moving phase in-
terface shape and motion. The following problems are considered: (1) Stefan problem
with variable interface velocity, (2) Stefan problem with constant interface velocity,
(3) two-dimensional solidification process involving pure aluminum, (4) solidification
process with pure gallium and the effects of fluid flow. The finite element computer
code was verified through comparisons with results obtained from a direct problem
and by comparisons with available exact solutions. Calculations were performed with
a Pentium 233 MHz processor and the solution at each time step generally required

only a few seconds.

4.1 Stefan Problem with Variable Interface Velocity

One of the classical direct problems reported by Carslaw and Jaeger(29] is the so-
lidification of a pure material initially at the phase-change temperature (Tp = 0) in a
semi-infinite region. All parameters in this example are reported in dimensionless form.
The temperature at the surface x=0 (left boundary) is maintained at the temperature
T(0.t) = —1. The solution of this direct problem describes how the position of the

phase interface moves with time, i.e.

r=0.314v% (4.1)
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where the interface velocity, V, is variable, with
0.157
Vi

Let us now reverse this direct problem and use it as an example of an inverse problem

V=

(4.2)

to verify the performance of the present method. We have a one dimensional problem.
However, the computer program is written for two-dimensional problems. So, for this
example, the variables in the y direction will be uniform. Given the interface position,
Eq.(4.1), and the variable interface velocity, Eq.(4.2), the phase change will be con-
trolled by conduction in the solid behind the phase interface. We require the estimation
of the boundary temperature, T(0,t), at x=0. The following problem parameters are
adopted,

a =1
c =1
Ste = 0.05

where a, ¢ and Ste are thermal diffusivity, specific heat and Stefan number in dimen-
sionless form, respectively. Using a constant time step in the numerical solution, it is
determined that

_ 1
"~ 0.0986n.

where n is the number of nodal points in the grid. This time step refers to a dimen-

At

sionless time step (i.e. Fourier number increment).
In order to ensure that the interface moves one grid point in one time step in the x

direction, a non-uniform grid in the x direction is used. The grid in the y direction is
uniform. The x grid coordinate is expressed as follows.

\/75
T=\/—
n

where P refers to node point.



time step | Boundary Temperature

1 -1.0311662
2 -0.9931377
3 -1.02479G8
4 -0.9912896
5 -1.0215482
6 -0.9911610
7 -1.0192622
8 -0.9916910
9 -1.0173930
10 -0.9925229
11 -1.0157434
12 -0.9945080
13 -1.0142196
14 -1.0142196
15 -0.9945795
16 -1.0127866
17 -0.9956929
18 -1.0114311

Table 4.1: Boundary temperature at x=0 for Stefan problemn with variable interface velocity (with
40 x § clement mesh)

The analytical solution for this problem shows that the boundary temperature re-

mains constant, i.e.

T(0,t)=-1.0

The results from the current inverse algorithm are shown in Table 4.1. It ap-
pears that the results are in good agreement with the analytical solution. This one-
dimensional problem is solved in a two-dimensional domain with a 5x40 element mesh
(Table 4.1). In the heat flow direction (x direction), 40 elements are employed, whereas
5 elements are sufficient in the y direction since the problem is one-dimensional. The
temperature predictions are within the range -0.9911610 to -1.0311662. These results
indicate that the algorithm remains stable and it exhibits good accuracy.

Since a specified interface velocity is used. the problem remains identical upon re-
finement of the grid and refinement of the time step. Considering different refinements
of the grid. the results for a 5x20 and 5x10 element mesh are shown in table 4.2-4.3.
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time step | Boundary Temperature

1 -1.0314784

2 -0.9907735

3 -1.0250678

4 -().9891495
] -1.0219077
6 -().98924G5
7 -1.0196872
8 -0.9899748
9 -1.0178328
10 -0.9910083
11 -1.0161370
12 -0.9922191
13 -1.0145171
14 -0.9935507
15 -1.0129205
16 -0.9949734

Table 4.2: Boundary temperature at x=0 for Stefan problem with variable interface velocity (with
20 x 5 element mesh)

tiine step | Bouncdary Temperature
~ 10626889
~().9956860
~ 10336510
~0.986-4 186
-1.0280416
-0.98-44545
-1.0255967
-(0.98.1068.3

|| s=] ]| —

Table 4.3: Boundary temperature at x=0 for Stefan problem with variable interface velocity (with
10 x § clement mesh)
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The temperature predictions are now within the range -0.9891495 to -1.0314784 and
-0.9840683 to -1.0626889. Thus, Thus, improved accuracy is obtained for the refined
grid. A balance between the refinement of the grid and the length of computing time
should be considered since more grid points are taken in the calculations, but more
calculations are needed and the computing time will be longer.

4.2 Stefan Problem with Constant Interface Velocity

The problem involves the solidification of a pure material initially at the phase-change
temperature (T = 0) as described in section 2.1.1. It requires the estimation of the
boundary temperature, T(0,t), at x=0, such that this boundary temperature provides
a constant phase interface velocity, V. Since the top, bottom and right boundaries of
the cavity are insulated, no temperature gradients will occur in the liquid region and
the phase change will be essentially controlled by conduction in the solid. In physical
terms, this case represents solidification of a liquid initially at the melting temper-
ature, which is cooled at the left boundary (x=0). Solidification starts at x=0 and
proceeds rightward. The liquid portion of the mold remains at the melting tempera-
ture during the process. This problem was chosen as a test problem because the exact
solution is available in the technical literature{29]. The following problem parameters
(dimensionless) are adopted here,

a = 1

c =1

Ste = 2
V = 20

where Ste, a and c are Stefan number, thermal diffusivity and specific heat, respectively.

The exact analytic solution for this situation involving a constant-velocity interface
motion. V = constant, was first obtained by Stefan and later reported by Carslaw and
Jaeger [29] as ,

T(r,t)=Tg+ —i—‘- [1 —exp (%t - -‘&/-J’)} , r<Vt (4.3)
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and
T(xr,t)=Th, 22>Vt (4.4)

At r = 0. the surface temperature required to produce the prescribed motion becomes
2
T(0.t) =Ty + —5— [1 —exp (%t)] ,t>0 (4.5)

The exact solution for our example can be obtained by substitution of the parameters

into the above general solution. Then it becomes

T(0,t) = %[1 — exp(4t)] (4.6)
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Figure 4.1: T(0, ¢t) for pure gallium as a function of time for three different interface velocities (o =
L3762« 1073m? /5. L = 80160.J/kg, ¢» = 381.5J/kg°C, T = 29.8°C)

Carslaw and Jaeger[29] commented that this is an impractical case at large t due to
the exponential nature of the time-varying boundary condition. The above example is
difficult to achieve in a large casting for long time periods since it is required eventually
to have an infinitely low temperature at x=0 to maintain a constant velocity at the
interface. But, this example is a good way to examine the effectiveness of the present
algorithm. Also, it does represent many practical circumstances during early stages of
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Figure 4.2: Boundary temperature at x=0 for Stefan problem with constant interface velocity (di-
mensionless time step=0.1)

solidification. Figure 4.1 displays the boundary temperature 7°(0,+) as a function of
time resulting from three specified interface velocities for pure gallium. From the fig-
ure, the interface position can be determined based on the given interface velocity and
time level. Additionally, although the exact solution displayed in Eq.(4.3) is defined
in terms of an exponential function, it is evident that low-order polynomials could be
used to describe T°(0, t).

The numerical solution uses a constant time step and a uniform grid. The results
are shown in Figs. 4.2-4.4 together with the exact solutions. The results are compared
with exact solutions given by Eq.(4.6) for three different time steps: At = 0.1, 0.05
and 0.003.

From Figs. 4.2-4.4. it can be observed that very good accuracy is achieved at early
time stages where the distance between the interface and the left boundary is small.
Also. with a smaller time step. a more accurate numerical solution is obtained. For
example, when the time step is 0.005, the accuracy of the solution is the best and
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Figure 4.3: Boundary temperaturce at x=0 for Stefan problem with constant interface velocity (di-
wensiouless time step=0.05)
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Figure 4.4: Boundary temperature at x=0 for Stefan problemn with constaut interface velocity (di-
mensionless time step=0.005)
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At | x5 error
0.1 10 | 0.0459124
000 | 20 | 0.0059122
0.01 | 100 | (.0002432
0.005 | 200 | 0.0000649

Table 4.4: Time step sensitivity (with t=0.1)

At | = error

AL
0.1 | 10 | 1.34398G5
0.05 | 20 | 0.3701153

Table 14.5: Time step sensitivity (with t=0.8)

when the time step is 0.1, less accuracy is obtained. Tables 4.4-4.5 show the time step
sensitivity, i.e. the relation between time step (At) and solution error at the given
moment in time (t=0.1 and t=0.8). It is apparent that the numerical error decreases
when a smaller time step, At, is taken.

Also, as time passes, the interface moves further away from the left boundary and
the solution becomes more unstable and oscillations (or divergence) in the analytical
solution occur (in Figs. 4.2-4.4, only the stable region has been plotted). The algorithm
loses recognition of the correct houndary condition. From Figs. 4.2-4.4, it can be seen
that at a smaller time step, oscillations occur earlier. In other words, the calculated
boundary temperature becomes unstable at an earlier time in the case of small time
steps. Thus. the calculation eventually does not predict the desired boundary temper-
ature. For example. when At=0.005. the numerical solution rapidly diverges from the
exact solution at about t= 0.225; while using At=0.03, the oscillations start only after
t= 1.1.

Figures 4.5-4.6 show the results for different Stefan number (Ste=0.2 and Ste=0.05).
The dimensionless time step is 0.05. It is shown that accurate results are achieved over
a fairly wide range of Stefan numbers.

In the above numerical simulations, we find that when the distance between the in-
terface and the left boundary becomes large, it is more difficult to control the interface
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Figure 4.5: Boundary temperature at x=0 for Stefan problem with constant interface velocity (di-
mensionless time step=0.05, Ste=0.2)
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Fignre 4.6: Bonndary temperature at x=0 for Stefan problemn with constant interface veloeity (di-
mensionless time step=0.03, Ste=0.05)
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Figure 4.7: Boundary temperature at x=0 with At = 0.05 (no cntropy based modification)

movement with the left boundary temperature. An instability will occur. This is illus-
trated in Fig. 4.7 (time step At=0.05). From Fig. 4.7, the results indicate that before
t= 1.1, the simulation performs well in predicting the required boundary temperature;
after t= 1.1, the oscillations start and they become larger and larger as time passes.
The calculation no longer predicts the required boundary temperature after large t.

An entropy based method is used here to improve the numerical stability. The ra-

tionale for this approach has been described in chapter 3.

The Second Law is employed to provide a criterion for the application of an entropy
based modification. During each time step, the entropy production rate is computed
and it should be positive within a control volume. Otherwise, it means that the Second
Law is violated and the process is not physically plausible (i.e. the numerical instability
will happen). Thus, an entropy based method can be used. The thermal conductivity
is corrected based on the local calculation of the entropy production rate. Then it is
used to compute and modify the sensitivity coefficient prior to the next update of the

boundary temperature in the iterative procedure.
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Figure 4.8: Boundary temperature at x=0 with At = 0.05 (with entropy based modification)

The results shown in Fig. 4.8 illustrate that the entropy based method performs
well in improving the numerical stability of the computations. Notice that the os-
cillations are reduced for the next few time steps. The entropy based modification
permits stable computations of the controlling boundary temperature for additional
time steps. Since the entropy based modification is only applied after local violations
of the Second Law. it does not affect accuracy during early stages of the results since
it is not applied at those times. After it is applied for the boundary temperature, it
reduces the oscillations in the boundary temperature (i.e. improves accuracy). Also,
since an improved boundary estimate is obtained in this manner, it is anticipated that
a more accurate temperature distribution is obtained in permitting proper conduction
transport back to the interface through the solid. It is worthwhile comparing this ap-
proach to another conventional technique for stabilizing inverse computations, namely
future time stepping. In future time stepping. the boundary temperature is assumed
as fixed for r future time steps, and the system of equations is solved over this time
range. Then the boundary temperature is updated and iterations continue until a
sum of squares difference (involving interface temperature at future time and phase

[4.]
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change temperature) is minimized. In addition to the potential cost savings in terms
of computational time, the current entropy based approach provides a physically based
alternative to future time stepping. [t is anticipated that entropy is a natural mecha-
nism (often overlooked) which can stabilize results exhibiting non-physical behaviour

(i.e. numerical oscillations).

4.3 Solidification of Pure Aluminum

4.3.1 One-dimensional Problem

Figure 4.9: One-dimensional solidification of pure aluminum

Svtbol Value Uuits
Speeitic heat in liquid o 1056.88 A/ kg°C
Specitic heat in solid Cs 1056.88 J/kg°C
Heat coudnctivity in liguid ky 229.28 W/mneC
Heat conductivity in solid ke 220.28 W/meC
Ditfusivity in solid g 81865« 107> | m°/x
Diffusivity in liquid o 8.1865= 107> | m*/s
Deunsity p 2650 kg/m?
Latent heat L 397480 J/kg
Reference length Xo 0.1 m
Time step At 125.0 s
Melting temperatire Tm 660 °C

Table 4.6: Thermal properties of pure alumnimum



By considering the following solidification process involving pure aluminum, we are
able to understand further the possibility of implementing the method in a practical
application. The enclosure (Fig. 4.9) is initially occupied by liquid aluminum with
properties as given in Table 4.6. The top, bottom and right walls are insulated and no
temperature gradients are initially present in the liquid region. The liquid is initially
at the melting temperature. The interface is then prescribed to move uniformly at
a constant velocity (V' = 0.04mm/s) as a vertical straight line (i.e. one dimensional
phase change). The temperature at the left boundary will be predicted in order to

control the interface shape and motion.
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Figure 4.10: Boundary temperature for solidification process of pure aluminum (time step=125s)

The predicted boundary temperature at x=0 is a function of time. The results are
shown in Fig. 4.10. These results agree well with the exact solution. In this example,
the velocity of the interface is 0.04mm/s. The dimensionless interface velocity equals
0.0488. Comparing this example with the last example (dimensionless interface velocity
= 2). this result is like the early part of the solution. As a result, the solutions have
the good agreement. The entire solidification process takes 41.6 min (time step = 125
seconds). The program is executed on a personal computer and computations require
a few seconds for each time step. If we compare execution time in the program with an
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actual time step in practice, then the physical time scale is substantially larger than
the computational time scale. Thus, it is feasible to apply the program in a practical
control setting for solidification processes. In other words, since the computational
time required to advance the phase interface a given distance is more than an order
of magnitude less than the physical time in the interface advance, then it appears
that the algorithm may be suitable for a real-time control setting. The results from
the predictions can allow the control engineer to modify the boundary temperature
in time to have the desired interface movement in a given time increment. In more
complicated problems, such as three dimensional predictions with fluid flow, it is likely
that the computational time may exceed the corresponding physical time. However,
with the rapid advance of computing technology and processor speed, it is anticipated
that control engineering, merged with CFD (Computational Fluid Dynamics), will
become a viable alternative to conventional control techniques. For example, recent
studies involving the NASA Lewis Research Center [30] have facilitated the use of CFD
by control engineers designing propulsion controls.

4.3.2 Two-dimensional Problem
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Figure 4.11: Two-dimensional solidification of pure alumimim
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Figure 4.12: Mecsh structure

In this problem, we consider solidification in a region (Fig. 4.11) occupied initially by
pure aluminum at the melting temperature T,,. The top, bottom and right boundaries
of the cavity are insulated. We require that the interface velocity in the x direction
varies with y, while the shape of the interface remains as a straight line and all points on
the interface reach the right boundary at the same time. The position of the interface
will be controlled by the temperature of the left boundary of the cavity. We will solve
this problem to obtain the manner in which the temperature of the left boundary
should vary with time and position y, i.e. Tp(t,y). This example is a 2-D problem.
The dimensional parameters in this simulation are the same as in Table 4.6.

Figure 4.12 shows the mesh structure for the finite element discretization. The
simulation is performed on a 20 x 20 mesh. The results for midpoint boundary temper-
ature are shown in Fig. 4.13. Although no exact solution is available for comparisons,
we can still compare the temperature at the mid-point of the left boundary to the
average of an equivalent 1-D problem. Meanwhile, Fig. 4.14 shows the results for the
distribution of temperature at the left boundary at different times and the trend of
temperature is correct, i.e. the average left boundary temperature decreases with time
and the temperatures along the left boundary increase from the bottom to the top
boundary. Also, comparing the temperature for a point at the left boundary with the
exact solution of an equivalent one-dimensional problem, at the top, we find that the
temperature is higher than the exact solution; at the bottom, the temperature is lower
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Fignre 4.13: Boundary temperature at mid-point for solidification of pure aluminumn

than the exact solution. It reveals the correct trends of the two dimensional effects
in this problem. Heat transfer occurs from the top to the bottom regions. So, at the
top, the houndary temperature does not need such a cold value as the one-dimensional
problem. At the bottom, the boundary temperature should be colder than the temper-
ature in the equivalent one-dimensional problem. Thus, in overall terms, the current
inverse algorithm appears suitable for applications to multi-dimensional problems.

4.4 Solidification Problem for Pure Gallium with the Effects
of Fluid Flow

Consider a solidification process with pure gallium in a two-dimensional rectangular
enclosure of aspect ratio=2 (height=0.045m, width=0.09m). The top, bottom and
right walls are insulated. The liquid is initially superheated, i.e. the initial tempera-
ture is larger than the melting temperature. The boundary conditions and geometry
for this example are shown in Fig. 4.15. The interface is prescribed to move at a
constant velocity (V = 0.076mm/s) and we require it to move as a vertical straight
line. The dimensional parameters used in calculation are listed as follows (Table 4.7).
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Figure 4.14: Boundary temperature for solidification of pure aluminum
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Figure 4.15: Solidification of pure gallium in a rectangular enclosure

The prediction of the boundary temperature is required.

Svtubol Value Uuits
Specific heat in liquid « 381.5 Jlkg°C
Specific heat in solid ey 381.5 Jikg°C
Heat conductivity in liquid ky 32.0 w/meC
Heat conductivity in solid ky 32.0 W/meC
Kinematic viscosity v 0.00181 mef/s
Diffusivity in solid a, | 1.3762+10-5 | m>/s
Diffusivity in liquid ar | 13762+ 1075 | m*/s
Density p 6095 kg/m®>
Lateut heat L 80160 I/kg
Reference length Xo 0.0045 "
Titue step At 58.80 8
The interface velocity vV 7.6455 = 10~ mfs
Melting temperature Tm 29.8 °C

Table 4.7: Thermal properties of pure gallinum

We can observe some important practical benefits in performing this particular sim-
ulation. e are effectively trying to reduce the interface distortion due to natural
convection arising at the interface. In this example. if a uniform left boundary tem-
perature was specified. then cold liquid would descend along the phase interface. and
warmer liquid would rise in the bulk liquid region as a result of buoyancy forces. In
practical circumstances. such as materials processing and casting, this situation leads
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to undesirable defects in the final material, since the convection process often leads to
non-uniform dispersion of alloy constituents (i.e. defect called macro segregation) or
an undesirable interface structure. This partly explains recent interests in microgravity
materials testing in space since these effects of buoyant-induced flow are reduced or
eliminated.

In our example, we will modify the boundary temperature in an attempt to re-
tain a uniform interface shape rather than a profile distorted by the effects of natural
convection. From a practical perspective, it means that the procedure can outline a
manner by which the control engineer should orient cold regions along the boundary to
produce desirable material characteristics. For example, once the boundary conditions
are outlined, the grain boundaries may grow into the liquid, during solidification, in a
manner such that the final material can effectively resist conditions of maximum stress.

So. in this example, if the temperatures at the left boundary remain uniform, then
the shape of the phase interface would not be a vertical straight line as a result of fluid
flow. Thus. the temperatures at the left boundary should be a function of time, t, and
position, y, in order to obtain the desired shape of the interface (vertical straight line).

22.1 4
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21.95 +

Boundary temperature (C)
N
L
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L ]

21-9 T ipe————
0 1 2 3 4 5§ 6 7 8 9 10 1

The number of grid (y)
Figure 4.16: Boundary temperature for solidification with fluid flow
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Figure 4.16 shows the results of the temperatures at the left boundary at early stages
of solidification. It can be seen that the boundary temperature is not uniform and it
decreases from the bottom to the top in order to eliminate the effect of convection on

shape distortion in the interface. The distribution of velocity (direction) in the liquid
region is shown in Fig. 4.17.
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Figure 4.17: Distribution of velocity in liquid region (same scale for magnitude)

The results illustrate that a somewhat steeper temperature change is required at
the two ends (upper and lower ends) of the boundary to retain the linear interface
shape. This can be explained partly by the larger lateral pressure gradients in these
sections resulting in larger u-velocity magnitudes there. For example, the enhanced
rate of convective heat transfer near the top section of the phase interface from the
bulk liquid implies that a colder temperature is required there in order to maintain a
similar freezing rate as a lower section with less interfacial heat transfer. In the middle
section of the boundary, the temperature change is more uniform. In any case, the
main trend. involving the vertical temperature change along the boundary, due to the
effect of natural convection in the liquid. can be observed in the present results. As

a result, it is anticipated that the current model is suitable for applications involving
phase change together with fluid flow.
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions

The Enthalpy Method and Finite Element Method were employed effectively to simu-
late one and two-dimensional inverse solidification problems where a desired interface
velocity was specified. The Enthalpy Method is based on a node—jumpiné algorithm
which calculates the boundary temperature for a given interface velocity. The interface
velocity can be constant or variable and the grids could be uniform or non-uniform. The
finite element method permits flexibility in inverse problems with irregular geometries.
Before oscillations appear in certain examples, the solutions show good agreement with
exact solutions. Also. an entropy based method is used to improve the stability of the
calculations whenever oscillations appear. The entropy production rate is considered
as a quantitative measure to judge when the non-physical solutions arise. By entropy
based modifications, the solutions become stable for more time steps. The effects of
fluid flow during solidification are also considered. The computational code simulated
natural convection in the lignid during solidification. Further studies of inverse solidi-
fication problems can lead to automated control of various processes, such as casting,
where the boundary temperature can be used to control the interface shape and motion
as well as the properties of the solidifying crystals.
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5.2 Recommendations for Future Research

Some suggestions for future research will now be provided. Firstly, experimental testing
should be pursued for further validation of the procedure and an assessment of its
suitability in practical applications involving materials processing. Secondly, current
work on the effects of fluid flow give initial developments and further studies should be

undertaken for the investigation of the inverse fluid flow algorithm.
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