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Abstract 

     Hot Mixed Asphalt (HMA) is one of the most common types of pavement, which exists on the 

surface of the roads, inside and outside of cities. One of the main destresses in HMA is moisture-

related damage, which mainly occurs in the form of stripping. The process of losing adhesion and 

cohesion of asphalt cement due to the presence of moisture and cyclic loads is called “stripping”. 

Several test procedures have been designed and conducted on different types of asphaltic mixtures 

to identify and measure moisture damages, especially stripping. Stripping evaluations could be 

divided into two classes: tests on compacted mixtures and tests on loose mixtures. Test procedures 

for loose mixture have been adopted by different highway agencies, such as the Ministry of 

Transportation Ontario (MTO), and pavement industries, because they are easy to perform, cost-

effective, and do not require complex equipment. But since stripping estimation is based on visual 

assessment, the results could be inconsistent when they are estimated by inexperienced operators. 

One of the most common tests on loose mixtures is static immersion test, and a modified version 

of the static immersion test has been used by MTO, listed as LS-285 R29. To evaluate stripping in 

this test procedure, 104g of loose asphaltic mixture should be immersed inside water for 24 hours 

and then the retained coating areas should be measured by a skilled technician as a percentage of 

the total surface area. 

     Image processing methods are proper examples of using smart agents in visual assessment 

problems, such as object detection and pattern recognition. In this research, a vision-based 

algorithm and a low-cost light improvement system were developed as an alternative for manual 

judgment. The system receives images of samples captured in a controlled lighting condition, 

which is called illumination box, and then it applies Contrast Limited Adaptive Histogram 
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Equalization to enhance contrast intensity of the image. In addition, the system uses inpainting to 

reconstruct specular highlights in the image, and then classifies the regions on the image, i.e. 

coated and stripped areas, using combinations of K-means clustering and K-Nearest Neighbors 

and Support Vector Machines classifiers. The developed system is able to overcome most of the 

shortcomings of prior methods, such as evaluation of the stripping on mixtures with dark-colour 

aggregates and processing test images without alteration of the test samples. The differences of the 

results in the best configuration of classifiers from manual estimations had the mean of 4.8 % and 

the standard deviation of 5.2 %. Moreover, application of illumination box and contrast 

enhancement module proved to be effective to improve the performance of this system. 
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Chapter 1: Introduction  

1.1. Background and Research Motivation 

      Asphalt pavements are among the most common type of pavements which could be divided 

into warm-mixed asphalt (WMA) and hot-mixed asphalt (HMA) pavements. There are continuous 

research efforts to improve the durability of asphalt pavements, which include the research on 

identifying causes of damages and how to assess the quality of the pavements. The durability of 

asphalt pavements is directly influenced by the moisture sensitivity of the mixture (Chen, 2007; 

Liu et al., 2014). The destructive effect of moisture in asphalt pavements was recognized in the 

1930s, and highway agencies and pavement industries started to investigate the damages caused 

by moisture in the 1980s (Lantieri et al., 2017). Moisture damage is the degree of reduction in an 

asphaltic system’s performance which is caused by moisture. Moisture transports into an asphaltic 

system by various transportation modes and causes cohesive and adhesive failure in the asphalt 

cement coating (Caro et al., 2008). One of the main forms of moisture damage is stripping. 

Stripping is a phenomenon in which the asphalt cement coating detaches from the aggregate 

surface, and it is mainly due to the failure in the internal texture of asphalt in the presence of 

moisture and cyclic traffic load (Mehrara and Khodaii, 2013). 

     The most common test procedures to evaluate the moisture susceptibility of loose asphalt 

mixtures are boiling water, rolling bottle, and static immersion tests. The Ministry of 

Transportation Ontario has been utilizing a modified version of static immersion test, named LS-

285 R29, which is conducted using 100g of sample aggregate and 4 grams of asphalt cement 

(Ministry of Transportation Ontario, 1996). Static immersion and rolling bottle (EN 12697-11) 

methods are subjective test procedures, because the stripping is measured by evaluating the 

retained coating percentage based on the judgment of a technician. To overcome possible 
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subjectivity image processing-based algorithms were proposed to provide consistent and accurate 

results (Kim et al., 2012; Amelian et al., 2014).  

     Also, Artificial Intelligence (AI) methods have been able to facilitate informed decision making 

and uncover information and patterns where the traditional approaches fail to recognize. Image 

processing and machine learning algorithms, including supervised (classification) and 

unsupervised learning (e.g. clustering), are potential AI tools to improve visual assessment 

problems. Supervised learning methods aim at classifying test data based on the provided training 

data set, whereas unsupervised learning methods process test data based on predefined rules and 

without training data (Nemati et al., 2002).  

     In addition, images and videos are valuable sources of data, and numerous image and video 

processing methods have been developed to enhance the use of the embedded data. A digital image 

consists of a group of small data units, called pixels, and each unit holds the data about the intensity 

of colours in the pixel’s location. Since human errors and inconsistency could negatively affect 

the manual evaluation of striping assessment test methods, researchers have tried to use image 

processing techniques as an alternative for human judgment. The proposed method by Amelian et 

al. (2014) could be mentioned as an example of image processing techniques, where the results of 

boiling water test were analyzed by an image analysis method, in which the samples were placed 

out of water on a plane background and the operator had to alter a colour value threshold to 

differentiate coated from uncoated pixels (Amelian et al., 2014). MATLAB image processing 

ToolboxTM was used to improve the moisture suitability estimations for the direct tensile strength 

(DTS) test on HMA and WMA. The resulting images from samples were analyzed using Colour 

Look-Up Table (CLUT) provided by MATLAB. Furthermore, by means of capturing a minimum 

of 20 images from different angles of a sample, and merging these images using Autodesk 123D 
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Catch software, a three-dimensional model of the sample was created to evaluate the stripping; 

however, the results were tend to underestimate the adhesion failure percent in some cases 

(Hamzah et al., 2017). Another study tried to evaluate the stripping by simple thresholding of the 

test images in two steps: a) a Cyan-coloured background was removed by simple thresholding and; 

b) stripped parts were removed using secondary thresholding. The method, however, was not able 

to properly evaluate stripping of dark colour aggregates and shadows also caused error in the 

estimations (Lantieri et al., 2017). Moreover, Image Pro-Plus software was used as a thresholding 

tool to detect objects of interest and to evaluate the stripping by segmenting the remained parts in 

the images captured from rolling bottle test samples in the controlled lighting conditions (Yuan et 

al., 2015). 

     In addition, some research efforts employed special illumination systems to improve the 

accuracy of computer vision-based stripping estimations, such as indirect illumination using a 

shooting chamber (Merusi et al., 2010), and a LED-based illumination (Light-Emitted Diode) 

embedded in an image acquisition system (Yuan et al., 2015), which all were either using 

expensive equipment or failed to detect partially coated parts. In another research by Källén et al. 

(2016), an illumination system consisting of a quarter circle lamp and a camera located in a 

particular angle with respect to the light directions and the sample was used to capture a number 

of images from different angles of a sample. This system identifies coated parts based on the 

assumption that the coated areas reflect the light more than the aggregate surfaces (Källén et al., 

2016). Different colour-based segmentation methods, such as graph-cut method (Källén et al., 

2012) and K-means clustering (Källén et al., 2016), were performed on the test samples to 

distinguish coated parts. 
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    Despite all these advances, there are some shortcomings which need to be addressed. These 

methods were unable to accurately measure the stripping, on dark-colour aggregates (Hamzah et 

al., 2014; Lantieri et al., 2017; Källén et al., 2016), and in addition, the test samples required 

manual preparation, such spreading the particles on a plane background inside or outside of water 

(Hamzah et al., 2014; Yuan et al., 2015; Källén et al., 2016), which changes some of the original 

test procedures, namely MTO’s LS-285, which requires the mixture to remain intact within the 

water container. Lastly, specular highlights and shadows could still cause error for the submerged 

samples (Amelian et al., 2014; Hamzah et al., 2014). 

1.2. Research Objectives 

     The objectives of this research are to improve the recent developments in the computer vision-

based stripping assessment. This research attempts to develop a system without altering the 

existing test procedure of MTO’s LS-285 (i.e. no need to remove the particles out of the water and 

spread them on a plane sheet), therefore, the following objectives were determined: 

• Investigate automated methods to enhance lighting and contrast of the regions of interest in the 

images of samples  

• Reconstruct specular highlights by detection of the highlights and image inpainting 

• Automatically segment the images’ pixels based on the similarity of colour intensities 

• Classify the detected clusters automatically to determine whether they represent coated or 

uncoated regions 

1.3. Research Methodology 

     This research includes development of an especial illumination system and an automated image 

processing algorithm, which consists of three modules: a) image preprocessing by enhancing 
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contrast intensity of the image and reduction of specular highlights; b) segmenting image pixels 

into different clusters; and c) identifying the nature of each cluster (whether it is a coated part or 

not). The step by step workflow of the methodology is provided in Figure 1. 

 

Figure 1: Research methodology 

1.4. Thesis Organization 

     This thesis consists of five chapters. Chapter 1 provides an introduction to the research 

background, main concepts, and test procedures to evaluate stripping of asphalt mixtures. Then, 

research motivations, objectives, and methodology of this research are presented. Chapter 2 

provides a comprehensive literature review on the topics related to this research. Chapter 3 

explains the details of the methodology and development of the proposed system. In this chapter, 

the details of the designed illumination system, descriptive information regarding the employed 

algorithms, and the supporting concepts of the methodology are provided.  Chapter 4 presents 

experimental results on a number of test samples from three types of aggregates and then discusses 

the results. In this chapter, the effects of a number of factors, including preprocessing of the input 

images, number of segmentation clusters, application of two supervised classifiers, and the impact 
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of using an illumination system, on the final results are discussed. Chapter 5 presents the 

conclusions for this research which summarizes the results, mentions the existing limitations, and 

provides recommendations for future developments.   
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Chapter 2: Literature Review 

2.1. Introduction 

This chapter presents a summary of research efforts which investigated the moisture-related 

damages in asphalt pavements, namely stripping of the asphalt coating, and also discusses the 

application of artificial intelligence in this area. Therefore, this literature review consists of two 

main sections. Moisture damages and their mechanisms, affecting factors, related measurement 

test procedures, and controlling factors are presented in part one. Part two discusses research 

projects related to evaluating moisture-related damages using artificial intelligence algorithms. 

2.2. Part 1: Moisture-related Damages of Hot-mix Asphalt  

     The moisture damage sensitivity of the hot-mixed asphalt pavements is an important issue in 

the durability of the highway networks. One of the main factors is the precipitation in the highway 

location, which could be more critical in high-latitude and tropical regions (Liu et al., 2014). 

Moisture damage can be defined as the degree of loss in the performance of an asphaltic system 

due to the moisture. The damage process initiates through various moisture transportation modes 

and results in cohesive and adhesive failures of the asphalt cement coating (Caro et al., 2008). 

     Stripping phenomenon is one of the main manifestations of the moisture damage and is defined 

as a detachment of the asphalt cement from aggregate surface. Stripping usually occurs when the 

internal texture of the asphalt fails in the presence of water moisture and cyclic traffic loads. The 

moisture can be either water, water vapor, or both. (Mehrara and Khodaii, 2013). 

     In one hand, many researchers initially believed that the stripping occurs due to the loss of the 

bond between asphalt cement and aggregate in presence of water (Badru and Roberts, 1988; 

Kennedy et al., 1984). On the other hand, some other researchers have provided more 

comprehensive failure mechanisms. They believed that the loss of mixture adhesiveness and 
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cohesiveness could contribute to the moisture damage. For evaluating the moisture damages on 

asphalt pavements, some scholars applied cyclic traffic loads together with the moisture as a 

combined failure factor, but other researchers believed that the long-term presence of the moisture 

in asphalt voids could provide a proper and realistic presentation of damages (Mehrara and 

Khodaii, 2013). Based on the stripping reasons, physio-chemical incompatibility and mechanical 

failure were listed as the main classes of the stripping (Kandhal and Rickards, 2001). First class 

relates stripping to the asphalt components’ sensitivity in the presence of moisture, whereas 

failures in the second class occur due to the cyclic hydraulic stresses in saturated conditions, which 

result in scouring of the asphalt binder from the aggregate surface. Also, three affecting factors for 

stripping were identified: the presence of water, high pressure, and high temperature (Kandhal and 

Rickards, 2001).  

2.2.1.  Moisture damage mechanisms  

     A mechanism is generally defined as a process that produces a new state or condition in a 

system by altering external and/or internal conditions (Caro et al., 2008). If a mechanism 

deteriorates the previous state, it is considered as a damage mechanism. Moisture damage 

mechanism is based on two steps, moisture transport and response of the system. Moisture 

transport is a process in which the moisture, in any form, penetrates to the asphalt and reaches the 

interface of asphalt cement and aggregate. The response of the system is the internal structural 

changes which reduce the load carrying capacity of the system (Caro et al., 2008). Some of the 

environmental conditions, including relative humidity, severe freeze-thaw cycles, intense rainfall 

periods, and in-service conditions, such as dynamic loads of traffic and aging, increase the damage 

potential (Lu and Harvey, 2006). Several pavement cores were studied to identify affecting factors 

in the moisture-related damages. The most important factors were identified as pavement structure, 
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rainfall, air void content, and ageing. The effect of cumulative truck traffic and repeated loading 

found to be marginal (Caro et al., 2008). 

     The response of an asphalt mixture system to the moisture penetration, (i.e. stripping effect), is 

caused by penetration of the moisture (water) into the asphalt mixture and it could decrease the 

durability of the mixture due to thermal stresses and traffic cyclic load in various forms (Mehrara 

and Khodaii, 2013). The first type is detachment, which can be defined as placement of a thin film 

of water in the intersection of the aggregate surface and asphalt cement. This separation is not 

obvious and has a thermodynamic or chemical nature. The second type is displacement which is a 

mechanical effect and causes the loss of bonds in an asphalt mixture and separates asphalt cement 

from aggregates. Third, the cohesion of the asphalt mixture becomes weak due to the long-term 

dispersion periods and erosion of the mixture material. This effect is mechanical failure. Forth, the 

film rapture and micro-crack theory investigate ruptures in the binder or aggregates, which could 

be thermos-dynamical or mechanical. Fifth, desorption is a random movement of the binder as the 

outer layer of mastic is washed away by the existing flow. This mechanical phenomenon occurs 

after the diffusion process. Sixth, the chemical emulsification is related to the emulsion of water 

droplets which are inserted into the binder (Mehrara and Khodaii, 2013). 

     Mechanisms of the moisture damage can also be divided into two major categories. The first 

category is micro-mechanisms which focuses on the bonding forces inside the mixture, such as 

adhesion of aggregate and asphalt cement as well as the cohesion of asphalt texture in a molecular 

scale. The second category discusses the failure of mixture bonds on a macro-scale through 

mechanical effects, known as macro-mechanisms (Mehrara and Khodaii, 2013). 
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2.2.1.1. Macro-Mechanism 

     Research on macro mechanisms studies only the effects of physical stresses, such as traffic 

load, thermal stresses, and voids’ internal hydraulic flow. Evaluating moisture damage includes 

different sub-mechanisms. First sub-mechanism includes extra pressure created by traffic load, 

thermal stresses, or evaporation of internal water within the asphalt voids. Second sub-mechanism 

is the effect of cyclic traffic load on an asphaltic system that causes hydraulic scouring (pumping 

effect), and then the high velocity of hydraulic flows in the interior voids causes physical erosion 

to the system (Kringos, 2007; Kettil et al., 2005). 

2.2.1.2. Micro-Mechanism  

     There were some studies on the adhesion theory which investigated adhesion of mixtures in a 

micro-mechanism scale and could be divided into five individual groups: mechanical, chemical 

reaction, molecular orientation, surface energy, and weak boundary. In addition, there are some 

research studies on stripping mechanisms which are categorized into six theories. These theories 

are detachment, displacement, dispersion of the mastic, film rupture and micro-crack, desorption 

and spontaneous emulsification. There are also other mechanisms of moisture damage that were 

investigated. For example, osmosis phenomenon is considered as another possible mechanism 

where the dissolved salts inside the droplets of water or a film of absorbed water cause osmotic 

pressure (Mehrara and Khodaii, 2013); however, some researchers believe that the effect of this 

phenomenon is negligible (Thelen, 1958).  

 
2.2.2. Moisture Transport Modes 

     Moisture movement in asphalt mixtures is classified into three main modes: 1. Penetration: 

infiltration of the surface water; 2. Diffusion, permeation of water vapour; and 3. Subsurface 
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water’s capillary rise (Masad et al., 2007). The main mode of moisture transport in asphalt 

pavements is the penetration of water from the subsurface. This mode of moisture transport is 

related to drainage conditions, rainfall, and material properties. All of these three modes are 

important in moisture transport (Caro et al., 2008). 

• Permeability is the capability of the material to transmit fluids (Park and Koumoto, 2004). 

Three types of common asphalt mixtures were studied, and the permeability ranges were 

presented (Chen et al., 2004). It was demonstrated that the air voids and permeability have a 

correlation with each other. Voids structure in an asphalt mix provides measures of the 

effective permeability value. Construction factors, such as lift thickness, density, homogeneity, 

and compaction effort also affect the air void content. For example, lift thickness has an inverse 

relationship with permeability (St Martin et al., 2003; Mohammad et al., 2003). Since there is 

a lack of clear relationship between the field and laboratory permeability measurements, the 

laboratory results could not substitute actual field permeability outcomes (Cooley et al., 2002; 

Caro et al., 2008). 

• Subsurface water is transported into the interconnected paths and capillaries due to the 

capillary action phenomenon. The rate and the height of the capillary rise is controlled by the 

r (capillaries geometric characteristics), 𝜌 (the water density), α (the liquid-solid contact angle), 

and 𝑇𝑠 (the surface tension of water). The capillary rise in an asphalt pavement hypothetically 

should not occur, but it sometimes happens; because water is in contact with mastic, mixture 

of fine aggregate and binder, instead of pure binder (Masad et al., 2007; Caro et al., 2008). 

• The volume of water vapour and its storage rate inside a mixture are determined by relative 

humidity and material properties. Holding potential with storage rate, capacity, and diffusion 

coefficient are the controlling material properties. There are many studies in terms of moisture 
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diffusion. The relationship between storage capacity, vapour transport, and moisture damage 

was demonstrated (Sasaki et al., 2006). A new method, which was able to measure the suction 

value using thermocouple psychrometers, was developed and moisture diffusion was studied 

on samples, which were resulted from suction value test. A direct relation between the size of 

air void and the suction value was observed, where the smaller air voids had higher suction 

values (Kassem et al., 2006). Also, it was observed that moisture damage could be minimized 

in an optimal suction value (Kassem et al., 2006). Moreover, suction values and moisture 

damage level have inverse relation due to the direct relation of relative humidity gradients 

inside voids and suction values (Caro et al., 2008). 

2.2.3. Controlling Moisture Damage 

2.2.3.1. Moisture Damage Controlling Factors 

     Based on the mentioned mechanisms, moisture damage can be controlled by two types of 

factors. The first type includes internal factors, which are related to the nature of the mixture and 

properties of its components. The second type includes external factors, which depend on external 

stresses and the surrounding environment (Mehrara and Khodaii, 2013). 

     Internal factors include properties of asphalt cement, aggregate, and the mixture. Asphalt 

cement properties are determined by its viscosity, thickness of asphalt film, the water-bearing 

capacity, which is the volume of water that can be kept inside the material, and its chemical 

structure (Birgisson et al., 2003; Kanitpong and Bahia, 2003; Caro et al., 2009). Aggregate 

properties can be determined by surface texture, coating, moisture, chemical characteristics, 

mineralogy, porosity, and content of mineral fillers (Kandhal, 1992; Bahia and Ahmad, 1999; 

Terrel et al., 1993). Asphalt mixture properties are affected by void ratio, distribution and the 
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average size of voids, permeability, asphalt content, asphalt age, gradation, additives, and type of 

mixture’s fine aggregates (Caro et al., 2008; Kim and Coree, 2005; Kanitpong and Bahia, 2005). 

     External factors can be varied by the conditions during and after pavement’s construction. 

Conditions during the construction of pavement such as precipitation, compaction, temperature, 

and the time gap between friction layer construction and the new layer (Kandhal and Rickards, 

2001; Bahia and Ahmad, 1999; Tunnicliff and Root, 1982). Conditions of after construction are 

listed as precipitation, temperature, freeze-thaw cycles, drainage condition, wet-dry cycles, traffic 

load, sub grade water content, micro-organisms activity, and the PH level of the water flowing 

through the pavement (Cheng et al., 2003; Kandhal and Rickards, 2001; Bahia and Ahmad, 1999).  

Table 1 illustrates the favourable conditions for these characteristics in which the asphalt pavement 

performs as designed and it is the most durable condition due to the related factors (Mehrara and 

Khodaii, 2013). 
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Table 1: External factors contribute to the moisture sensitivity of the asphalt mixture (Mehrara and 
Khodaii, 2013) 

Component condition Affecting factors Favourable condition 

During the construction Environmental temperature Warm 

Precipitation None 

Compaction Enough 

Time interval between the 
construction of new HMA 

and the old pavement 

Roughly two summers 

After construction Precipitation None + dry season after 

F_T cycle None 

Temperature Mild- low day and night 
temperature fluctuation 

W-D cycle None at high temperature 

Sub-grad water content Low 

Drainage condition Good 

Traffic load Low 

Activity of micro-organisms Using additives which are 
compatible with the micro-

organisms 

PH of through-pavement-
flowing water 

Acidic conditions 

 

     Initially, some transportation agencies, such as MTO (Ministry of Transportation of Ontario), 

tried to limit the moisture damage by lowering the air void percentage (El Hussein et al., 1993). In 

contrast, it was demonstrated that just the air void content is not a proper measure for asphalt 

mixture’s moisture transport (Masad et al., 2007). Investigation of asphalt pavement structure with 

different techniques revealed a better understanding of the void structures. For instance, obtaining 
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2D (two dimensional) images of materials’ cross-section with electron microscopy or 

spectroscopic scanning techniques determined the chemical composition of the mixture (Kosek et 

al., 2005). Moreover, 3D (three dimensional) imaging techniques, such as nuclear magnetic 

resonance, x-ray computed tomography, and transmission electron microscopy visualization 

(Kosek et al., 2005; Barrie, 2000), facilitated studying characteristics of voids structure, such as 

distribution, tortuosity of the flow path, connectivity, and their sizes. Aggregate properties, the 

process of compaction, and mix design are the controlling factors in the distribution and size of 

the air voids in an asphalt mixture. Air voids in asphalt mixture are categorized into effective (top-

down connections), impermeable (scattered without any connection with borders), and semi-

effective (not fully connected through the material) (Chen et al., 2004). The air void structure and 

tortuosity were determined for 14 samples with different total air-void percentages to measure their 

permeability (Al Omari, 2005). The Pessimum air void size is referred to the average air void size 

in which the moisture sensitivity of the asphalt mixture is maximum. The penetration of moisture 

in the mix is low when the air voids are small. Although penetration of the moisture is high in large 

air voids, the drainage rate is also high. Thus, Pessimum air void size is the worst scenario which 

traps water inside the material and provides a suitable environment for the progress of moisture 

damage. The Pessimum air void size range for limestone was estimated at 0.8 mm to 1.0 mm and 

for granite was 1.2 mm to 1.4 mm (Masad et al. 2006). There was some more research on 

characterizing the internal air void structure of the asphalt mixtures. They limited the air void 

content to 6-7 percent for the same material samples and examined the structure through analyzing 

X-ray CT images. It was observed that different samples have different susceptibility based on the 

air void structure of the sample (Caro et al., 2008; Arambula et al., 2007). 
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     It was found that the cracks, termed as checks, are generated in some compaction processes, 

such as in conventional steel-wheeled compaction in the first two passes. The length and apart 

sizes of the checks usually vary from 1 inch to 4 inches and 1 inch to 3 inches, respectively (El 

Hussein et al., 1993). These checks ease the access of moisture and air in the mixture. Cracks 

increase the air void content and affect the moisture resistance of the mixture in the same manner 

as the air void, because cracks are able to make new connected paths and create links through the 

air voids (Chen et al., 2004; Caro et al., 2008; St Martin et al., 2003). 

     There are two types of cracks in the asphalt mixture. The first type is cohesive cracks and grows 

in the binder. The second type includes adhesive cracks which expand through the binder-

aggregate interface. The former type occurs typically in asphalt mixtures with a very thick binder. 

The latter cracking, the more important in moisture damage, usually happens in very thin asphaltic 

binders (Lytton et al., 2004).  

 
2.2.3.2. Preventing Procedures  

     To minimize moisture-related damages, some practical recommendations were proposed 

(Kandhal and Rickards, 2001). The moisture content of the pavement could be examined by visual 

observation and by dry sampling using a jack hammer. A saturated asphalt mixture is highly 

vulnerable to the stripping phenomenon (Kandhal and Rickards, 2001). Inadequate pavement 

subsurface drainage also allows the moisture to move upward via capillary action and makes the 

asphalt course saturated. By utilizing Asphalt Treated Permeable Material (ATPM) to replace the 

base course, which is expanded through the drainage edges of the asphalt pavement, moisture 

penetration could be restricted. Experiments on a dense-graded HMA with a maximum of 8% air 

voids showed that the air void percentage gradually decreases to 4-5% through the first three years 



 

17 
 

of serviceability due to the application of traffic load. If this reduction does not occur, the thermal 

pumping of moisture has a high potential (Kandhal and Rickards, 2001). 

2.2.3.2.1. Additives  

     Many research projects focused on identifying additives which can affect the moisture 

susceptibility of asphalt mixtures (Palit, 2001; Pundhir et al., 2005; ASTM, 1996). The tests for 

the moisture damage susceptibility are mostly carried on the loose mixtures, such as static 

immersion and boiling water tests, and compacted samples like tensile strength and retained-

strength ratio tests. The modification of the mixture with crumb rubber showed about 50% and 

10% less stripping in boiling and static immersion tests, respectively (Palit et al., 2004; Pundhir et 

al., 2005; ASTM. 1996). Five different aggregate types, two antistripping agents, and 60/70 

penetration graded asphalt binder were used for the moisture susceptibility experiments. It was 

observed that high carbonate material, such as limestone and slag-limestone, provide a stronger 

bond with asphalt binder. In contrast, granite, quartzite and andesite containing a high amount of 

silica are vulnerable to stripping (Amelian et al., 2014). Antistripping binder filler, namely 

hydrated lime and liquid anti-stripping agent (e.g. Nano-based material termed as Zycosoil), are 

highly effective in moisture susceptibility reduction, restricting the stripping to less than 3.5 

percent (Kim and Moore, 2009). 

2.2.4. Moisture Damage Assessments 

     The destructive effect of moisture in asphalt pavements was firstly identified in the 1930s and 

highway agencies and pavement industries laboriously investigated moisture-related damages in 

the 1980s (Taylor and Khosla, 1983). As a result, a number of tests procedures were developed to 

assess the susceptibility of mixture designs to the moisture-related damages (Terrel et al., 1993; 

Aschenbrener et al., 1995). Although these tests are mostly simple and adopted by most of the 
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highway agencies, there have been some instances of poor correlation between laboratory results 

and the field observations. Experimental studies on the effects of air voids distribution and 

connectivity, moisture movements, mixture adhesive bond, and materials physical characteristics 

provide great opportunities to understand moisture damage causes and mechanisms (Bhasin et al., 

2006a; Bhasin et al., 2006b; Copeland and Kringos, 2006: Kassem et al., 2006).  

In addition, test methods were proposed with better correlation with field performance results, 

which also used for evaluation of the antistripping agents’ effects on moisture-vulnerable mixtures 

(Atud et al., 2007; Kvasnak and Williams, 2007; Wasiuddin, 2007). Moisture damage has been 

investigated in three main ways: laboratory investigation, field studies, and modeling and 

numerical analysis (Mehrara and Khodaii, 2013). 

     The field studies mostly focused on observing pavement performance exposed to moisture 

damage in actual conditions. These studies tried to estimate potential moisture damage of the 

mixture or effectiveness of the additives in asphalt.  Kandhal and Rickards (2001) are among the 

scholars who conducted research in the field to investigate stripping causes. It was observed that 

the lack of proper drainage results in some undesirable moisture effects in asphalt pavements. The 

prevailing mechanism for initiation and propagation of these effects, and some pre-diagnostic 

symptoms to detect the moisture damage were introduced (Kandhal and Rickards, 2001). 

     However, most of the research projects for studying moisture-related damages have been 

conducted in a laboratory setting. These laboratory-based studies aimed at evaluation of anti-

stripping additives effectiveness, development of new experimental methods and comparison of 

new methods with existing methods. A comprehensive literature review studied parameters and 

criteria of different test methods. They grouped existing experimental tests by dividing them into 

a single parameter and multi-parameter tests (Caro et al., 2008; Reinke et al., 2010). Tests can also 
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be categorized into five main groups based on their performance. These groups include tests on 

loose mixtures, destructive mechanical tests on loose mixtures, non-destructive mechanical tests 

on the compacted mixture, energy-based methods, and non-destructive non-mechanical tests 

(Mehrara and Khodaii, 2013). Destructive tests on compacted mixtures assess stripping potential 

via fatigue index, permanent deformation index, and indirect tensile strength test. Energy based 

test methods measure adhesion and cohesion potentials in a mixture using energy-based indexes 

fracture mechanics, which are measured by means of mechanical and non-mechanical tests on 

materials in the mixture. Non-destructive non-mechanical test methods evaluate the stripping 

potential using two types of parameters: permeability and moving velocity of the mechanical 

waves. There are also many tests investigating stripping on compacted and loose asphalt mixture 

(Mehrara and Khodaii, 2013). Direct Tensile Strength (DTS) provides the most representative 

measurement for the tensile properties of the materials (Azari, 2010). A comprehensive list of tests 

on compact asphalt mixture, the required parameters, criteria, and their application was gathered 

by Mehrara (2013). Detailed discussions about the test methods on loose mixtures are available in 

the literature (Mehrara and Khodaii, 2013). 

     Another field of the study investigated parameters independent of size, which could 

demonstrate actual behaviour of the material and mixtures. The parameters should reflect the main 

environmental conditions and loading stresses. Analytical models were also developed to simulate 

the behaviour of mixtures (Mehrara and Khodaii, 2013). For instance, a model was developed by 

Kettil (2005) which used fracture energy analysis method by establishing mass and momentum 

conservation to model water velocity, pressure, and related deformation in a pavement mixture 

(Kettil et al., 2005). 
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 2.2.4.1. Tests on Loose Asphalt Mixture  

     There are many different test methods for assessment of moisture-related damages on the loose 

asphalt mixtures. Some of these tests are focused on calculating cohesive energy using surface 

energy theory or cohesive failures such as Time Temperature Superposition (TTS) (Kanitpong and 

Bahia, 2005) and Wilhelmy plate (Cheng et al., 2002; Cheng et al., 2003). Some other investigate 

additive and mineral effects, such as Methylene blue (Kandhal et al., 1989) and bottle test 

(Tunnicliff and Root, 1982; Williams and Breakah, 2010). Some others are concentrating on 

adhesive energy such as Universal Sorption Device (USD) (Mehrara and Khodaii, 2013) and 

Pneumatic Adhesion Test (PATTI) (Kanitpong and Bahia, 2005). There is another group of test 

method which investigates adhesion bond failures such as Static immersion (Tunnicliff and Root, 

1982), Dynamic immersion, Chemical immersion (Williams and Breakah, 2010), Boiling water 

(Badru and Roberts, 1988) and Surface reaction (Williams and Breakah, 2010). Qualitative or 

quantitative estimations can be obtained directly or indirectly from these tests. In one hand, the 

main shortcoming of these tests is that the limited range of granules’ sizes is considered to measure 

the stripping. This approach may not fully indicate the coupling effect of load or moisture.  On the 

other hand, these tests are easy, low-cost, quick, and do not require complex equipment (Mehrara 

and Khodaii, 2013). 

     Static immersion, RBT (Rolling Bottle Test), total water immersion, BWT (Boiling Water 

Test), and ultrasonic test methods are some examples of test procedures on loose mixtures and are 

used to assess the susceptibility of mixtures of aggregate and asphalt cement against moisture 

damages (Mehrara and Khodaii, 2013).  

     The most common tests on loose mixtures for evaluation of stripping percentage are static 

immersion, rolling bottle, and boiling water tests. LS-285 is a modified version of static immersion 
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test developed by MTO, which conducts the experiment on 100g of aggregate which is sieved in 

three sizes (Ministry of Transportation Ontario, 1996). Four grams of hot asphalt cement is mixed 

with the preheated aggregate in the mixing temperature of 141℃ and the asphalt mixture is 

transferred into a 600ml beaker. The sample rests till it reaches the ambient room temperature and 

then the beaker is filled to three-quarter of its capacity. After 24 hours, the stripping percentage of 

the sample is evaluated by a skilled operator (Ministry of Transportation Ontario, 1996). 

Moreover, the rolling bottle test could be used to measure the stripping percentage through the 

manual evaluation of the mixture by a skilled technician (Paliukaitė et al., 2016). According to the 

test procedure EN 12697-11(clause 5) (Estonian Centre for Standardisation, 2019), mechanical 

stringing action is introduced to the non-compact sample in the presence of water by rolling bottle. 

The aggregate particles are fully coated with asphalt cement and are immersed inside distilled 

water. After the mixture cools down, the sample is rolled in a bottle and the remained coating is 

evaluated in different time intervals. Both static immersion and rolling bottle are subjective tests 

(Estonian Centre for Standardisation, 2019) and stripping is characterized by a coating index which 

evaluates the retained coating degree for each sample.  

     Boiling water is another test procedure, in which the asphalt cement is preheated for 24-26 

hours and is fully mixed with 100g of aggregate, which is preheated for 1.5 hours prior to the test. 

Then, the loose mixture is placed in 500cc of boiling water and after a specific time, the sample is 

cooled down and is dried and will be ready to be evaluated manually (Paliukaitė et al., 2016; 

Kennedy et al., 1984).  

     Most of the test methods on loose mixtures use aggregate grains ranging from 6.3 to 9.5 mm. 

It was observed that the static immersion test is subjective, and no performance strength qualifying 

tests are involved in the test (Liu et al., 2014). Moreover, the image-based algorithm was utilized 
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to improve the stripping measurement of static immersion test for asphalt mixtures (Kim et al., 

2012; Amelian et al., 2014). In the other research same approach was utilized to evolve the 

estimation of stripping for HMA with a diverse synthetic wax modifier (Merusi et al., 2010; 

Amelian et al., 2014). 

2.3. Part 2: Artificial Intelligence Integrated Asphalt Quality Control 

2.3.1. Artificial Intelligence 

2.3.1.1. Smart Agents 

     Advances in Information Technology (IT) storage, reuse, and its execution integrated with 

internet provide ample opportunities to implement IT into various processes and make industries 

more productive. Therefore, meaningful and precise data collection and appropriate analysis have 

become important, but these efforts rise challenges, such as big data management and analysis 

(Demirkan and Delen, 2013). The initial step for a better understanding of multi-agent systems is 

to define intelligent agents, the fundamental cell of MAS (Multi_Agent System). An intelligent 

agent could be defined as ‘‘a self-contained program capable of controlling its own decision-

making and acting based on its perception of its environment, in pursuit of one or more objectives’’ 

(Ren and Anumba, 2004). To have a smart agent, the agent should have at least two out of three 

behavioural attributes which are illustrated with blue circles in Figure 2. These behavioural 

attributes are (Ren and Anumba, 2004): 

• Autonomy: Independent operation of the agent without the interference of human. Each 

agent has a specific objective(s) and acts to achieve it(them). The key factor in this attribute 

is pro-activeness; for example, the capability to interactively respond, instead of a simple 

reaction to the environment. 






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mining can be categorized into two main types: classification (supervised learning) and clustering 

(unsupervised learning). Supervised learning includes construction of a model for certain 

objectives and to optimally classify test datasets based on the patterns in the training dataset. In 

contrast, unsupervised learning does not require a specific goal or historical data to predict. 

Clustering and detection of associated rules could be considered as unsupervised learning types 

(Nemati et al., 2002). 

2.3.1.2. Agent Learning 

     An agent interacts in a complex environment. The complexity of the environment is due to a 

number of factors, such as environmental uncertainty, the degree of clustering, the density of the 

solution constraints and space, time obligations, the existence of multi-goals, the verity of 

comparing options and preferences, knowledge level of each individual agent and agents’ skills 

(Ren and Anumba, 2004). It is critical for an agent to have the ability of adaptation and learning. 

Agent learning has main two reasons: to automatically improve its performance and to gain a more 

appropriate understanding of the learning processes in a MAS (Ren and Anumba, 2004). From the 

operational point of view, learning in MAS is the ability to do new tasks which it could not do 

before or to improve its performance. Learning process begins when an agent starts to 

communicate with other agents and the environment and receives some responses. Based on the 

prescribed criteria, it decides the next required action to obtain proper results. To achieve an 

effective learning process, some parameters should be determined before and after the process; 

such as the goals and scope of learning, and the methods of learning. Knowledge compilation, 

explanation-based learning, support vector machines, concept and multi-strategy learning, neural 

networks, reinforcement learning, deep learning and genetic algorithm are some examples of agent 

learning methods (Ren and Anumba, 2004).  
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2.3.2. Image Processing 

     Digital images and videos are heavily used in different sectors of service and industry, and 

numerous algorithms have been developed to facilitate processing these valuable sources of 

information. Machine learning and statistical methods have been adopted in the field of computer 

vision research to enable automated data extraction from images and videos. Object detection, 

classification, tracking, and segmentation in images and videos provide a better and deeper 

understanding of the captured items and events. Many fields, such as medical imaging, search 

engines, photo management, robot navigation, and quality control in production lines, benefit from 

computer vision-based methods (Jalled et al., 2016).  

     Image processing is related to signal processing where the input is an image (i.e. matrix or 

matrices of pixel intensities) and the output could be a modified image or some numerical results, 

or in other words, image processing extracts required information or modifies an image. These 

operations usually use signal processing methods which consider an image as a 2D signal. There 

are three main steps for image processing. 

• Input: capturing and importing images with an image capturing device, such as a digital 

camera. 

• Analyze and modify: data compression, image alteration, and detection of patterns. 

• Output: modified image or the information of interest from the input image (Jalled et al., 

2016). 

     Digital images are comprised of small units, called pixels, and an alteration in an image is the 

reflection of changes on the related pixels. Each pixel contains the intensity of colours and a digital 

image is represented as a matrix, or matrices in multi-channel images, and each matrix element is 

the related pixel value.  
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2.3.2.1. Application of Image processing in Striping Assessments 

     Some of the main stripping measurement test procedures, such as static immersion and boiling 

water, are subjective and could be unreliable when assessed by inexperienced technicians. To 

overcome this major shortcoming, many research efforts have employed image processing 

techniques. For example, water boiling test results were improved with the use of an image analysis 

method (Amelian et al., 2014). 

     Digital images were captured from the boiling water test specimens and two image processing 

software were used to replace manual evaluation. First, captured images were imported to the 

Image-Pro Plus software and then the green background and glares were segmented and removed 

from the images. Then the software converts the images into an 8-bite grayscale format and a 

thresholding process was applied to create binary images. The thresholding value was set to 65 to 

isolate stripped areas and their percentage was calculated by counting the number of remained 

pixels. Due to the glares on the surface of the coated areas, major errors were observed. Two 

approaches were proposed to overcome this issue (Amelian et al., 2014). First, using special 

cameras and lighting systems, which require an expert operator and expensive equipment. Second, 

using image enhancing software to reduce the glares. Uniform and indirect lighting could reduce 

glares and then the rest of the reduction could be made by using image enhancement software. 

Moreover, the samples should be manually spread on a plain background and the thresholding was 

hardcoded (Amelian et al., 2014). 

     There are two main types of classifications in image processing: supervised (with training 

dataset) and unsupervised (automatically clustered) classification (Hamzah et al., 2014). Two main 

phases for supervised classification are training and testing, in which specific training dataset is 

created and then the test samples are classified based on the training samples (Karathanassi et al., 
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2000). Using this approach, a method was proposed to estimate the moisture susceptibility of 

compacted HMA and WMA in the direct tensile strength test procedure (Hamzah et al., 2014). 

The adhesion failures of 48 cylindrical mixture samples were investigated by ENVI (environment 

for visualizing image) image analysis software and MATLAB image processing ToolboxTM. The 

software transformed the colour-structure of images based on CLUT, Colour Look-Up Table. A 

10 mega pixel high-resolution digital camera was used to capture images from samples, which 

included three mix designs and compaction temperatures, and three conditioning and two anti-

stripping fillers. In particular, ENVI, as a supervised training platform, provided a tool for 

classification of ROI (region of interest), which was used to restrict fusion of marked area with 

other classes. Two ROIs, including failure in the coating (stripped parts) and failure in aggregate 

(broken aggregate), were defined in this research. The presented results were promising, but 

classification based on greyscale images may result in potential inaccuracies, namely in the 

samples with close grayscale colour intensities.  DTS test samples are not inside water which does 

not suffer from the errors (such as glares and shades) that occur in images of the submerged 

samples, such as the samples in static immersion and rolling bottle tests.  

     The adhesion failure on the fractured surface of WMA samples in DTS test was quantified by 

a 3D image processing technique (Hamzah et al., 2017). Minimum of 20 images, which were 

captured from equally distributed spots in different angels, were required to create a 3D model, 

which also enabled consistent lighting within the image. The gray pixel values in the model varied 

from low to high (from 0 to 255) which represented coated and stripped areas, respectively. Then 

the model was processed with a certain threshold value which was determined through a trial and 

error process (Hamzah et al., 2017). One of the main challenges in using this method was that the 

image and the fracture plane were not parallel with each other which could underestimate the 
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adhesion failure (Hamzah et al., 2017).)  Autodesk 123D catch software was utilized to merge 2D 

pictures in order to create a 3D model of the sample for stripping evaluation (Chandler and Fryer, 

2013). The images were converted from RGB (red, green and blue) to the grayscale colour space 

(Turner et al., 2015).  

     A simple, cost-efficient method was proposed to evaluate the stripping percentage of the loose 

asphalt mixture samples which were resulted from rolling bottle test (Lantieri et al., 2017) 

procedure. The images were processed by an open-source image processing program, named 

ImageJ, in YUV colour space. The method was conducted on mixture particles which were placed 

separately from each other on a plane sheet. The method was applied on three types of aggregate 

(porphyry, basalt and limestone) as well as different binders which consisted of different 

combinations of a 70/100 based bitumen and two waxes in the amount of 1%, 2%, and 3% of the 

weight of bitumen. This vision-based system firstly removed the background via using a simple 

threshold function; therefore, the aggregate particles were separately identified in images. Then 

the stripped parts were detected by another thresholding as well, but the aggregates’ shadows 

caused inaccuracy in the results. The method was tested by comparing the machine results with 

three skilled operator estimations, and by pixel by pixel manual-clustering. The comparison of the 

machine-measured results with operator estimations revealed differences in the range of 0-32.84%. 

Moreover, the results showed smaller differences from the manual evaluation than the skilled 

operators’ estimations. It was also observed that the method provides results closer to the ground-

truth for aggregates with lighter colour comparing to the darker ones (Lantieri et al., 2017).  

     Image illumination could also significantly affect the image analysis outcomes. To implement 

digital image processing more efficiently in measuring the stripping areas, many image processing 

techniques have been developed together with specialized physical lighting systems (Amelian et 
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al., 2014; Rombi, 2014). Some examples, such as indirect illumination through a shooting chamber 

(Amelian et al., 2014) and image acquisition system combined with a LED-based illumination 

(Yuan et al., 2015), were used for improvement of the illumination; however, all these illumination 

systems included complex equipment and may still produce inaccuracy when the stripping is 

measured in the partially stripped samples. 

     When light arrays hit opaque material, some portion of lights are absorbed, and the rest is 

reflected. For example, darker colours absorb more than lighter ones. The direction of light, and 

shapes, angels, texture or any pattern on the surface of the material affect the reflections (Yuan et 

al., 2015). A lighting system was developed to improve the vision-based evaluation of stripping 

percentage on loose mixture samples (rolling bottle test). Six red-coloured LED lights with 660 

nm wavelength were installed on the side-walls of a black box, and a white plane surface was 

provided at the bottom, as a platform for placing the scattered specimens, to adjust and control the 

light conditions (Yuan et al., 2015). Mixture particles were separated from other objects in the 

resulted image by using a thresholding tool in Image Pro-Plus software. The method was tested on 

three types of aggregates, such as basalt and two types of limestone, and the results revealed lower 

measured values than visual estimations (Yuan et al., 2015). Research efforts on the stripping 

measurement by computer vision mostly focus on classifying pixels based on their colours. For 

example, a graph-cut segmentation method was used to detect the stripped parts of the samples 

(Källén et al., 2012; Källén et al., 2016). In the graph-cut method, a graph consisting of different 

nodes, which are determined based on the colour histograms, is created and the weights for the 

graph is calculated with respect to the smallest distance between the aggregate and the asphalt 

cement colours. As a result, in the cases where the colour of aggregate and the asphalt cement were 
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too close to each other, the colour distances were small which made the method impractical for 

those samples (Källén et al., 2012; Källén et al., 2016). 

     Considering the fact that reflection on the surface of asphalt cement is typically more than the 

uncoated aggregate surfaces, a colour-independent method was developed using a rotating table 

which was illuminated by a quarter-circle light to maximize the reflections. Retained coating 

percentages of samples, which were produced by a rolling bottle test, were measured using this 

illumination system (Källén et al., 2016; Mulsow and Marschke, 2011). The quarter-circle light 

and the camera had a particular angle from the sample, which directed light arrays to hit the coated 

parts and reflect toward the camera. This system spun around the sample to capture images from 

different angles. The coated parts appeared with as bright spots on a few images, but they appeared 

with a dark colour on the rest of the images (Källén et al., 2016) and the same approach was utilized 

using two laser lines illumination system which still had issues to fully determine the stripping 

part (Mulsow and Marschke, 2011). The mixture particles were placed separately on a plain (such 

as cyan) background and a simple threshold function was used to remove the background (Källén 

et al., 2016). In addition, check point shapes were prepared and placed on the plane surface where 

the aggregates had already been placed, and then by rotating the table, images were taken and then 

were combined using these check points. The stripped percentage was determined by classifying 

the combined image using K-means clustering in a gray scale space with K (number of clusters) 

equal to 5. The results of the technique were evaluated for the light-coloured aggregates and were 

compared with graph-cut method results (Källén et al., 2016). The K-means segmented the particle 

surfaces into different clusters with promising accuracy, but it was not able to determine which 

classes represent the stripped areas, and the labelling process for the created clusters was done 

manually. This manual classification could result in potential subjectivity. 
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2.4. Summary 

     Summary of the research efforts related to computer vision-based assessment of moisture-

related damages, namely stripping, was presented. There has been considerable progress in the 

application of image processing techniques, especially on the loose asphalt mixtures. Performance 

of the developed methods is mainly affected by the employed image processing algorithms and 

the illumination systems. These studies used digital cameras to capture images of samples which 

were then analyzed by different image processing methods, such as simple thresholding and more 

sophisticated clustering algorithms. In addition, illumination of the samples was modified by some 

digital (Hamzah et al., 2017; Källén et al., 2016; Mulsow and Marschke, 2011) and physical 

(Merusi et al., 2010; Amelian et al., 2014; Yuan et al., 2015) alterations. Although promising 

results were obtained using these methods; However, some shortcomings still exist and could be 

addressed, which include: 

• These methods had difficulty in evaluation of dark-coloured aggregates as well as in some 

partially coated areas (Hamzah et al., 2014; Lantieri et al., 2017; Källén et al., 2016). 

• Samples were usually altered prior to capturing of the images. In all of the research works on 

loose mixtures, aggregates were spread on a plane platform, which some were inside water 

and some others were removed out of water (Amelian et al., 2014; Yuan et al., 2015; Källén 

et al., 2016). This could change some of the original test procedures. For example, static 

immersion test procedure requires the samples to remain in the container. 

• Glares and shadows in the samples caused errors in some of the estimations (Amelian et al., 

2014; Hamzah et al., 2014; Lantieri et al., 2017). Some portion of the errors were due to the 

glares, and the shadows for out of water samples could be removed by using complex 

illumination systems (Amelian et al., 2014; Yuan et al., 2015; Källén et al., 2016). 
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• Most of the studies used greyscale images which may hinder the quality of the results, namely 

on the edges of the particles or aggregates with specific patterns on their surfaces (Hamzah et 

al., 2014; Hamzah et al., 2017; Källén et al., 2016). 
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Chapter 3: System Development 

3.1. Static Immersion Test 

     As discussed in the literature, the static immersion test is a common method for evaluation of 

the susceptibility of asphalt mixtures exposed to moisture. This test can determine the stripping 

potential of the mixtures made of different bitumen grades, aggregate from different types and 

sources, and effectiveness of antistripping additives. The details of the Ministry of Transportation 

Ontario’s static immersion test are available in test method LS-285 R29 (Ministry of 

Transportation of Ontario, 2018). Method A in this test procedure was used in this research, which 

is used for asphalt cement mixtures. This test procedure is designed for a single grade asphalt 

cement with up to one antistripping additive. All the test samples should be conducted in duplicate, 

where two samples are made in each test. In this test procedure, 4 grams of asphalt cement and 

100 grams of aggregate in three different size ranges are required. The 100-gram aggregate should 

contain 50 grams, 35 grams, and 15 grams of 9.5 mm, 6.7 mm, and 4.75mm sieve sizes, 

respectively. The aggregate should be dried in an oven with a temperature of about 141°C for 24 

hours. Then the aggregate sample should be heated for 10 minutes in a quick heat oven to reach 

the surface temperature range of 149°C to 177°C for mixing. The heated aggregate and mixing 

tools (metal container and spatula) are transferred into an oven with a temperature of 143°C for 15 

min.  Then the preheated aggregate is mixed with the 4.0 ± 0.1 grams of 143°C asphalt cement 

using the preheated mixing tools till the surface of aggregate particles are fully coated (the 

aggregates’ surface should become fully coated with bitumen). The mixture is immediately 

transferred into a 600 ml container (beaker) and it will rest there until it reaches the ambient room 

temperature. In the final preparation step, the beaker is slowly filled with water up to three-quarter 

of the container volume. The beaker should be covered with a lid to prevent evaporation of water 
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and then it is placed in a water bath with a temperature of 49 ± 0.5°C for 24 hours. The beaker 

should be taped until the removal of almost all the trapped bubbles. 

     Finally, the beaker is removed from the water bath and the surface of the mixture is evaluated. 

This visual evaluation is based on manual percentage estimation of the total remaining aggregate’s 

visible coated area. The operator should estimate the retained coating area via comparing the 

observation with Figure 3 (Ministry of Transportation of Ontario, 2018). The fundamental issue 

with this procedure is the subjectivity of the estimates in different labs and by inexperienced 

technicians. This could result in inconsistent assessments.  

 

Figure 3: Percentage estimation chart for visual evaluation (Ministry of Transportation of Ontario, 
2018) 
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3.2.1. Physical Illumination  

     A number of sample images are required for development, training and evaluation of this 

system. For instance, high-quality images (noise-free) could result in accurate and reliable 

outcomes. Specular highlights and shaded areas (too dark because of the shadows) were identified 

as important challenges in previous research. Specular highlights are light reflections on the 

surface of the sample, which mainly occur on the coated surfaces, air bubbles (Figure 5), and water 

surface (Figure 6). In the process of making test samples, the container should be slightly knocked 

(hit) from different sides. This process releases a considerable amount of air bubbles which were 

trapped inside the sample, and therefore eliminates them from the images. Despite this process, 

some bubbles may remain in the sample. The top view of the container holding the sample was 

chosen as the best view for evaluating the sample. All the analysis was carried out on this view 

and the striping percentage will be calculated based on this view. Also, it should be noted that the 

vision in an underwater environment is limited due to light absorption and scattering phenomenon 

(Fabio et al., 2014).  

     Illuminated samples with ambient room lighting could have sever specular highlights. 

Moreover, direct illumination from above creates a bright layer on the image (due to the surface 

reflection of water), which blocks large parts of the sample (see Figure 6). Another issue is the 

“specular highlights” which sometimes occur on the coated areas. In addition, illumination from 

the sides could create shadows on the opposite side of the illumination source. Even, illumination 

of the samples with indirect diffuse ring light could not provide ideal illumination for the images 

(Figure 6.b and Figure 7). 
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Figure 5: Trapped-bubbles in the sample after immersion inside water (without tapping) 

     The lighting from the bottom does not improve the conditions due to over-illumination of the 

bubbles and low contrast on the surface of the captured images. Quality of the image mostly 

depends on the camera’s quality, a method of capturing, and lighting conditions. This project aims 

at using regular digital cameras and also to offer a practical and user-friendly approach. Therefore, 

complex and expensive illumination systems and sophisticated cameras were set aside. Although 

certain digital camera models were used in this research (e.g. Panasonic DMC-ZS20), any regular 

digital camera could be utilized for this purpose.  

 

Figure 6: A bright layer on the image due to the surface reflection of the water: a) sample provided 
by MTO (room illumination); and b) sample illuminated by a diffuse lamp 
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Figure 7: Illumination of static immersion samples with diffuse light: a) the indirect light reflected 
from the inner surface of the illumination system; b) the LEDs which provide the illumination; c) 

sample image using diffuse illumination 

     Thus, the quality of the images should be improved by using a low-cost illumination system, 

which provides uniform and indirect (to minimize specular highlights) lighting for the entire 

sample. A simple but novel approach was designed to create this lighting system, which is 

described in the following subsection. 
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3.2.1.1. Illumination box 

     The illumination box is a melamine box with specific characteristics to provide a uniform and 

indirect lighting for capturing images from samples. The beakers should be filled to at least 500ml 

to avoid reflections on the surface of the water. The overall size of the illumination box is 19 cm 

× 19 cm ×  19 cm, consisting of five 19 cm × 19 cm ×  0.3 cm melamine boards, where four 

boards are used for the sides walls (Figure 8) and one board is used for the top of the box with a 

hole in the center (Figure 9). The illumination box consists of three main parts: First part is the 

illumination source and L-shaped pieces, which were designed to direct the emitted light toward 

the inner surfaces of the box. This part is installed at the top surface of the box surrounding the 

sides of the lighting source (Figure 8 section C). Since the box is symmetric and there is no outside 

lighting disruption, the inner surfaces of the box uniformly reflect the light toward the sample 

(Figure 10). The uniform lighting was tested using a lux meter. The light receiver (sensor) of the 

lux meter was placed on different spots within the box and all spots recorded the light intensity as 

1214 lux (Figure 11). The light source is a LED string, which is attached inside the L-shaped piece. 

The L-shaped pieces direct the lights into the walls in order to keep the specimen away from direct 

illumination (Figure 8 section C and Figure 10. b). The second part consists of four 19 cm ×  19 

cm ×  0.3 cm melamine white board walls which distribute the light uniformly inside the box 

(Figure 8 and Figure 10. a). The boards are made of high-quality MDF with a white melamine 

surface bonded on one side. The box material is known as white melamine backing boards. The 

White Melamine Backing offers both the strength of an MDF (Medium-Density Fiberboard) 

product combined with a smooth Melamine finish. With a clean, hard-wearing surface, melamine 

backing boards are suitable for internal cabinetry, draw and lining. The surface material has plastic 

texture, so it can reflect the light as well as disturbing it; this material does not absorb the light and 
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due to its uneven surface, it diffuses the reflected arrays in different angles (Figure 12). This is 

suitable for the designed illumination box because regular reflections might create bright spots in 

some parts of the specimen. The third part is the board on the top of the box. This part has a square 

shape and there is a hole, with radius of 2.5 cm, at the center of the board. The hole is provided to 

allow the camera’s lens to capture an image from the samples (Figure 9). The non-reflective (dark) 

side of the lid should face toward the inside of the box because reflections from the top-inner 

surface of the box could create reflections on the surface of the water. All the pieces of the box are 

made from the same material and the box could be placed easily on the top of the specimen 

container. The illumination box and a sample inside it are illustrated in Figure 13. 

 

Figure 8: Illumination box drawings 
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Figure 9: The top part of the illumination box  

 

Figure 10: Illumination box: a) top view: diffusion of the light reflecting from the side walls; b) 
bottom view: The illumination source for the box is provided by an LED string on L shaped covers 
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Figure 11: (a) Lux meter used for measuring the light intensity; (b) The receiver sensor of the Lux 
meter 

 

Figure 12: Schematic illustration of light reflections on different types of surfaces. A smooth surface 
reflects the lights regularly (on the left), but the melamine white board diffuse the reflections (on 

the right side) 
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Figure 13: The illumination box placed on the top of a sample 

3.2.2. Image Enhancement (preprocessing data) 

     Despite using the light-box, underwater samples still might suffer from a reduction of light 

dispersion. The light directions will be changed and the light energy will be decreased inside the 

water. As a result, images of the samples in water suffer from poor contrast, because some of the 

light arrays are reflected when they enter the water (Ancuti et al., 2012). 

     The original images could be enhanced to improve the outcome of this system. A suitable image 

for subsequent processing (e.g. clustering and classification) is the one with distributed colour 

intensities, illumination contrast, and low level of noise. The enhancement process in this research 

consists of regional contrast enhancement of the images using CLAHE (Contrast Limited Adaptive 

Histogram Equalization) method and correction of the specular highlights occurring on the surface 

of the coated areas (Figure 14). These enhancement processes could reduce errors in the 

subsequent clustering and classification of test images.  

     This system was implemented using the open-source OpenCV 3.3.0 library (“OpenCV library”, 

2017) in C++ Visual Studio Community 2015 environment. OpenCV library includes more than 
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2500 machine learning and computer vision algorithms, which includes both state of the art and 

classic algorithms and is aimed to offer a platform for application of computer vision methods and 

to establish machine perception for practical uses. The fast operation of C++ and the availability 

of various algorithms make OpenCV as a suitable platform for the development of computer 

vision-based applications. 

 

Figure 14: A sample image inside the illumination box. Some specular highlights are marked with 
red circles 

3.2.2.1. Image Cropping 

     Since the samples are placed in a beaker, the region of interest in the images is usually a circle 

surrounding the actual mixture. The other parts of the image are useless in this research and should 

be removed and set to zero (their pixel intensity). The assumption is that the cropped area 

represents the attributes of the entire sample. A function was developed to select a circular area in 

the image manually. This function enables the operator to draw a circle around the area of interest, 
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and a circle could be drawn by clicking and holding the left button of the mouse and dragging the 

mouse pointer till the circle covers the desirable area. The circle is visible to the user through the 

process of the drawing (Figure 15). The codes of this process are provided in Figure 16. 

 

Figure 15: a) Circular cropping process; b) Resulted image after cropping 
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    A proper view of the object inside the water should be obtained to address the difficulties of the 

lighting conditions. Images of objects inside water usually suffer from back-scattered lighting and 

limited contrast. The undesirable conditions could be even worse due to the existence of suspended 

particles (Fabio et al., 2014). Next subsections describe methods to enhance the lighting 

conditions. 

3.2.2.2. Histogram Equalization 

     Histogram equalization is a technique for pixel intensity adjustment to enhance the contrast of 

images. Histogram equalization could be implemented on single-channel images. For example, an 

8-bit single-channel image has pixel values between 0 and 255, varying from black at the weakest 

intensity (0) to white at the strongest (255). Histogram of an image could be drawn by plotting 

intensity vs frequency of the pixel intensity or probabilities of the pixel intensity. The total number 

of pixels associated with each pixel intensity is calculated and the frequency of each pixel intensity 

in the image metrics is then measured (Hum et al., 2014; Kim, 1997). 

     The histogram equalization aims at the reconstruction of an image with a better contrast, which 

is an important characteristic of this research because it can signify the visual difference between 

coated and uncoated areas. This method expands the histogram of the image and makes a histogram 

of intensities more distributed. The local and global maximums in the histogram are more 

scattered. This way, the histogram of the image becomes more balanced via neglecting 

unpopulated parts of the histogram and stretching out the intensity range. Since this method 

enhances the global contrast of the image, some of the bright pixels can become too bright. In other 

words, intensities of the pixels at the right end of the histogram are amplified, which creates shiny 

noises in some of the bright parts in the image.  
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     By considering L as a representation of a grayscale image’s pixel intensities, which is 

normalized in the intervals of [0,  𝑟 − 1], the transformation function can be expressed in equation 

1 and equation 2 (Gonzalez and Woods, 2002).  

 𝑠 = 𝑇(𝑟)         0 ≤ 𝑟 ≤ 𝐿 (1) 

 𝑟 = 𝑇−1(𝑠)        0 ≤ 𝑠 ≤ 1 (2) 

     Each normalized grey level is confined in the range of [0,1]. If the transformation function T(r) 

be implemented, the inverse transformation T-1(s) should exist, and the increasing order from value 

0 to 1 should result in the output image, and also both the output and input grey levels should be 

in the same range. So, by definition, the satisfactory assumption of the T(r) are defined as 

(Gonzalez and Woods, 2002) 

• T(r) is single-valued and monotonically increasing in the interval 0 ≤ 𝑟 ≤ 𝑙. 

• 0 ≤ T(r) ≤ 1 for 0 ≤ 𝑟 ≤ 𝑙. 

     Considering an image is denoted as X = {X (i, j)}, in which X (i, j) is the intensity representor 

of the image at location of (i, j). The image is composing of L discrete gray levels {X0, X1, …, XL-

1}. The probability density function (PDF) could be written as P ( 𝑋𝑘) (equation 3) (Gonzalez and 

Woods, 2002; Wang et al., 1999; Szeliski, 2010). 

 P (𝑋𝑘) = 𝑛𝑘

𝑛
 (3) 

     𝑛𝑘 is the frequency of the level 𝑋𝑘  happening in the image X, in which the k is varying from 0 

to L-1. n is the total number of pixels or samples in the image. The cumulative probability density 

function (CDF) or c(x) will be calculated as equation 4 (Wang et al., 1999; Szeliski, 2010; Kim, 

1997).  












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Figure 20: a) Original grayscale image; b) image after histogram equalization; c) histogram of the 
original image; d) histogram of the processed image 

     The histogram equalizing is carried out using the equalizeHist(src, dst ) function, where the 

command receives a single channel image of src and provides the result in the dst. Since the global 

histogram equalization creates some errors in the modification process, a more advanced version 

of histogram equalization, called Contrast Limited Adaptive Histogram Equalization, was 

employed for enhancement of the image contrast. 

 
3.2.2.3. Contrast Limited Adaptive Histogram Equalization (CLAHE) 

     A potential alternative for the contrast enhancement in the image pre-processing is CLAHE. 

The contrast-limited adaptive histogram equalization is performed in the channel L of CIELAB 
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colour space to enhance the luminance of the image. The CIELAB colour space is the same as CIE 

L*a*b* or in short form “Lab”. This colour space includes three channels, which contain values 

regarding the lightness, green_red and blue-yellow elements and are represented as “L”, “a” and 

“b” channels, respectively. The Lab is one of the closest colour spaces to the human’s vision, since 

it is perceptually uniform for the human vision (Lukac and Plataniotis, 2006).  

    The application of CLAHE deduces the light attenuation and decreases the impact of specular 

highlights on the objects (Fabio et al., 2014). CLAHE technique tries to enlarge the intensity range 

of the initial image by increasing the interested features’ contrast. The improvement is gained since 

the surface between each adjacent structure is excellently drawn (Ancuti et al., 2012). 

     The gradient of transformation function defines the contrast amplification from a given 

neighbouring pixel’s value through the application of CLAHE. The gradient is in close relation 

with the histogram of the image at pixel’s value, as well as the gradient of the neighbouring 

cumulative distribution function. Prior to the computation of the CDF, CLAHE horizontally cuts 

the intensity histogram at a certain limit to confine the contrast amplification range (green line in 

Figure 21). The limit value, which is known as “clip_limit’, restricts the gradient of the 

transformation function. The neighbouring region size and normalized histogram are the 

controlling factors affecting the clip_limit. After cutting of the histogram on the clip_limit, the part 

above the limit (the blue area on the left image in Figure 21) is distributed equally (the purple area 

on the right image in Figure 21) in each histogram’s bins. Therefore, after the redistribution, the 

value of some bins exceeds the clip_limit again (the blue area on the right image in Figure 21). 
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Depending on the histogram of the image, a new larger limit is defined. This iterative process stops 

when the exceeding values of the bins are smaller than a certain small value (Pizer et al., 1987). 

 

Figure 21: An exaggerated visualization for application of CLAHE on the intensity histogram of an 
image 

     An M × M pixel block (or tile) is defined to subdivide the image and perform histogram 

equalization on each subdivision. To avoid artifacts in the resulting image, either sliding window 

or deriving the equalization function of blocks with no overlap and using a transfer function to 

smoothly transit between blocks, could be employed. The later approach is called “Adaptive 

Histogram Equalization (AHE)” technique which is used in this research (Szeliski, 2010). The 

regular AHE tends to cause some noises due to the overamplification of the contrast at a near-

constant area. This problem of noise amplification is restricted by CLAHE (Pizer et al., 1987). The 

contrast limited version of AHE is CLAHE. 

 
3.2.2.3.1. CLAHE Implementation 

     The code loads an image and creates a matrix variable (Mat) to save the image. Then the image 

is converted via cvtColor()from BGR into Lab. A vector is defined and the Lab version of the 

image is split into the three channels in the Lab space. Then the CLAHE function is recalled, and 

the limit of the clipping is determined using the setClipLimit() function, and finally, the CLAHE 

is applied on the lightness channel (L) of the image. Figure 22 compares the differences in the 
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set and also applying fast marching method (FMM), the missing information regarding the image 

is estimated (Kandhal, 1992). This method is suitable for applying in various problems, such as 

problems related to the shapes created by shades, arrival time and developing of lithographic in 

magnification of microchips. The method attempts to follow the movement of a boundary (two or 

three dimensions) which separates two regions. The assumption is that the boundary moves due to 

a speed function F in a normal direction. A proper week solution is provided by adding curvature 

to the speed law with considering related smooth flow. Given an initial position of boundary 

interface 𝛤  (a closed curve in ℝ2) and a function speed 𝛤 which is in normal direction with speed 

function F, level set zero for the function could be represented as 𝛷(𝑥, 𝑡 = 0) from ℝ2 →  ℝ. The 

main function is 𝛷(𝑥, 𝑡 = 0) = ±𝑑, where distance between x and 𝛤 is d and assigning positive 

or negative sin to d depends on the position of the point which if the point is locating inside 

boundary 𝛤  the sign is positive and if it is placing outside of the boundary the sign is negative and 

that is how it evolves using chain rule to the equation presented in equation 7 and equation 8.  

𝛷𝑡 + 𝐹|∇𝛷| = 0 (7) 

𝛷(𝑥, 𝑡 = 0) = 0 (8) 

     This process is time-consuming if it processes all the points. Therefore, points of interest are 

grouped into three classes, such as alive, landmines, and faraway, which mean inside, near and 

outside of the boundary, respectively. The computation is only performed on alive points and the 

boundary evolves when the landmine points are reached and the fast marching is an extreme on-

cell version of the mentioned method (Sethian, 1996). The advantages of using this method are a 

simple implementation, fast processing, relatively accurate results (compared to other methods) 

and compatibility with different local inpainting methods (Telea, 2004). 
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3.2.2.4.1. Inpainting Implementation 

     The image is converted into LAB colour space and split into three channels. Simple 

thresholding is applied to the channel L to isolate high-intensity specular highlights from the image 

and keep the remaining pixels in a “mask” (Figure 25-b). The isolated part, i.e. specular highlights, 

are assigned as white and other pixels are assigned as black (0 value). The thresholding value is 

considered 230 by practical judgment. The thresholding value could be increased to 235 and the 

best value should be defined based on trial and error values between 230 to 235. The resulting 

mask is displayed in Figure 25-b. The code for splitting an image into Lab channels and 

thresholding is provided in Figure 26 and Figure 27 shows the implementation of inpainting. An 

example of applying inpainting function on an image is illustrated in Figure 25. 

 

Figure 25: (a) An input image (after CLAHE); (b) A binary mask by thresholding; (c) The binary 
mask after dilating; (d) An image after inpainting 




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3.2.3. Clustering of Pixels (choosing the model) 

     After image enhancement, the pixels of the sample should be clustered to identify the stripped 

and coated areas. Out of many available clustering methods, K-means is chosen for its various 

advantages. 

3.2.3.1. K-means  

     The K-means algorithm was initially proposed by Steinhaus in 1956 and then it was used by 

Lioyd for PCM (pulse code modulation) signal quantization, and thereby, the standard k-means 

algorithm is sometimes referred as Lioyd and fogy algorithm (Bock, 2007). K-means method for 

image segmentation operates based on the colour intensity of the pixels.  K-means is one of the 

derivations of the EM (expectation maximization), where isotropic Gaussian assumes to be prior. 

The classic principle of least squares is a fundamental of the K-means algorithm. The inputs are a 

set of data points {x1, ..., xn} and K is the number of types (clusters) in the K-means algorithm. As 

the algorithm initiates, K centroids {c1, …, ck} are placed in random locations within the data, and 

then the following two steps are iteratively followed: Step one, the nearest centroid to each of the 

data points (xi) is found, as presented in equation 9, and the then this point is assigned to the related 

cluster. In the second step, the centroid is recomputed equal to mean of all the points, assigning as 

the same label (the mathematics are provided in equation 10). Moreover, the new centroids are 

relocated to new spots. The mentioned steps are continued until none of the points change their 

cluster. The algorithm reached the converging point at this stage and the iterations will stop. The 

algorithm is basically aimed to minimize the WCSS (within-cluster sum of squares) as presented 

in equation 11 (Kandhal and Rickards, 2001). 

 arg min 𝐷(𝑥𝑖, 𝑐𝑗)  (9) 



 

60 
 

 𝑐𝑗(𝑎) =  
1

𝑛𝑗
 ∑ 𝑥𝑖(𝑎)

𝑥𝑖→𝑐𝑗

      for a = 1, … , d   
 

(10) 

 
𝑊𝐶𝑆𝑆 = ∑ ∑ ∑ (𝑥𝑖𝑗 − 𝑦𝑖𝑗)2

𝑥,𝑦 ∈ 𝑐𝑖
𝑜𝑏𝑗𝑒𝑐𝑡

𝑗=1 𝑡𝑜 4
𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

𝑐𝑖∈𝑘
𝑐𝑙𝑢𝑠𝑡𝑒𝑟

 
(11)  

 

     The 𝐷(𝑥𝑖, 𝑐𝑗) function is the distance of the instance 𝑥𝑖 from centroid 𝑐𝑗. The distance could be 

any distance function, but the Euclidian distance is considered to make sure that algorithm is 

converging eventually.  The parameter a is a particular attribute value. It should be noted that the 

K-means algorithm is compatible with numeric values and does process characters. Comparing to 

the other available clustering methods, K-means is fast, although it is computationally hard (NP-

hard). The computation time t for the algorithm is calculated using equation 12, which depends on 

the number of iterations (Kriegel et al., 2017).  The Lioyd algorithm’s slow computation could be 

improved through the application of the triangle inequality and caching. The main reason of the 

slow progress is that the standard algorithm is instantly calculating a large number of distances, 

which is not required for most of the points, in all iterations. 

 t =  #iteration ∗ k ∗ n ∗ d (12) 

     In this equation, #iteration is the number of iterations, n is the number of instances and d is the 

number of dimensions in the clustering. The Hartigan and Wong (1979) and Wong method in ℝ 

is the fastest method but it sometimes fails to converge (Kriegel et al., 2017).  The quality of the 

clustering was meaured by adding up variation within each cluster. It is probable for K-means that 

it does not reach the best classification (MacKay, 2003). The solution is to monitor the resulting 

clusters and relating total variance and repeats the algorithm with new initial points (Kriegel et al., 

2017) 
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     The K is defined as an input, so it needs to be chosen before the start of the algorithm. Different 

values for K are used and the total variation for each K is measured. All the results are compared 

together in order to find the best K (i.e. number of clusters). 

     The Euclidian distance for two- and three-dimension datasets could be calculated using 

equations 13 and equation 14, respectively. The same principle could be expanded to the data sets 

with more dimensions; however, the K-means works better in datasets with low dimensions 

(Kriegel et al., 2017). x, y and z are different dimensions of the points a and b in the following 

equations. 

 𝐷(𝑏, 𝑎)  =  √(𝑎𝑥 − 𝑏𝑥)2 + (𝑎𝑦 − 𝑏𝑦)2 (13) 

 𝐷(𝑏, 𝑎)  =  √(𝑎𝑥 − 𝑏𝑥)2 + (𝑎𝑦 − 𝑏𝑦)2 + (𝑎𝑧 − 𝑏𝑧)2 (14) 

     The K-means algorithm may have some deficiencies in some cases. Three main drawbacks are 

consideration of the distance of means from the data points with the same weight in each cluster, 

the size or shape of the cluster is not fully known, and the algorithm is ‘hard’; However, ‘soft’ is 

preferable) (MacKay, 2003). The implementing code is provided in Figure 28. 

3.2.3.1.1. K-means Implementation 

• double kmeans (InputArray data, int K, InputOutputArray bestLabels, 

TermCriteria criteria, int attempts, int flags, OutputArray centers=noArray() ) 

parameters: 

The k-means receives “K” as a number of clusters and an array of points having N 

dimensions “data” and saves the processed labels (cluster ID) for each point in 

“bestLabels”. The accuracy of the algorithm is defined as “criteria” and “attempts” 

representing the number of times that algorithm runs with different initial points. 
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Figure 29: (a) an input image for the K-means algorithm (after applying CLAHE);  (b), (c), and (d) 
are three resulted clusters 

     Each of the classes has some zero pixels as well as some none zero ones representing points 

that are clustered in that class. A total number of pixels in each class can be calculated with 

countNonZero() in the code. If the class representing stripped area is identified, the striping 

percentage can be calculated by dividing a total number of the pixels counted in the stripping class 

by the total number of pixels in the original enhanced image. 
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3.2.4. Classification (Model Training)  

     To overcome the issue of subjective human judgment on the test results, a fully automated code 

without any interaction of human is required. Hence, there is a need to develop an automated 

classifier which could identify the clusters that represent stripped areas.  

3.2.4.1. Supervised Classifier  

     By providing positive and negative training samples for the system, the label of each test sample 

(recognizing the stripping cluster) will be estimated automatically. Depending on the number of 

the available samples for the training, different supervised machine learning methods could be 

employed. In the case of having a large number of training samples, some advanced methods, such 

as deep learning, could be used. In contrast, if the training samples are limited, other methods, 

such as K-Nearest Neighbor (K-NN), Support Vector Machines (SVM), decision tree, and Naïve 

Bayes, are practical options for the estimation. In this research, the number of training samples is 

limited, and therefore the K-NN and SVM methods were used which were trained by the same 

training sets.  

3.2.4.1.1. K-Nearest Neighbors 

     K-nearest neighbours (K-NN) classification method attempts to recognize patterns and it is one 

of the basic methods in machine learning (Weinberger and Saul, 2009). The K-NN method consists 

of different processes. The function extracts a vector of features from the data, which contains two 

separate vectors of values. The resulted vectors are an input for the classification function 

(classifier). The classifier compares the features with the provided training set, where it measures 

k nearest points to the input data (Weinberger and Saul, 2009). Figure 30 shows an illustration of 

this process.  
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Figure 30: Schematic visualization for the K-NN classifier 

     The K-nearest neighbours method classifies test data through the K closest neighbours around 

the data’s vector. The closest available data (points) are located by Euclidian distances in most 

methods (Weinberger and Saul, 2009).  Depending on the location of the test data in the feature 

space, the closest neighbours are detected. Computation of distances affects the performance of K-

NN classifier. The algorithm usually uses Euclidean distances, but it does not consider the 

statistical irregularities deriving from large training labelled-dataset.  There are other available 

types of distances which could be utilized for computing distances. The algorithm can significantly 

evolve via learning the distance metrics from the training set (Weinberger and Saul, 2009).  There 

are a few distance measurement techniques for K-NN, such as Euclidean, Manhattan, and 

Minkowski, which are all provided in Table . 

Table 2: Different methods of measuring distances between data points 

Method Distance mathematical calculation 

Euclidean 
√∑ (𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1
 

Manhattan 
∑ |𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1
 

Minkowski 
(∑ (|𝑥𝑖 − 𝑦𝑖|)𝑞

𝑛

𝑖=1
)

1
𝑞⁄  

n is the # dimensions. x represents datapoint from the dataset. y is the new data point which should be estimated. 
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     The algorithm uses distances to determine the label of the test sample 𝑌𝑗which the label depends 

on the majority of labels in the K nearest neighbors in the training data set (labels for 𝑋𝑖 → 𝑤 where 

𝑖 = 0, 1, … , 𝐾 − 1). The distance shall be measured using equation 15. Labels for these K decision-

making neighbors in the training set could be defined as decision rules (D(Y→ 𝑤)) (Peterson and 

Coleman, 2008). 

 𝐷(𝑋𝑖, 𝑌𝑗) = 𝑚𝑖𝑛𝑗  {𝐷(𝑋𝑖, 𝑌𝑗)} (15) 

     The accuracy of the classifier depends on the value of K. The value of K could be determined 

via a trial and error process with different K values.  

     The K-NN ensures the generalization since it estimates the distances for all the points. 

Moreover, using Parzen Window in addition to K-NN to improve the performance of estimations 

detecting the K nearest neighbours over training data which is described with details in Bermejo 

and Cabestany’s (2000) work in the reference (Bermejo and Cabestany, 2000). 

 

3.2.4.1.1.1.  K-NN Implementation 

     Three main steps are required for implementation of the K-NN. First and second steps are 

designed to train the model using negative and positive samples. The negative samples include 

non-coated areas of the sample mixtures. In contrast, the positive samples include samples of 

coated areas. Fourteen positives and fourteen negative samples are provided for training, where 

the negative samples are extracted from an image of a raw aggregate sample. The code iteratively 

reduces the size of a circle and uses the circle to crop the image. Histograms for each cropped area 

are calculated and will be considered as a separate negative training sample. The histograms of all 

the three channels of the negative samples are stored in a training matrix as “Negative” with the 
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Figure 34: Classification process: a) segmented clusters; b) histogram of clusters’ pixel intensities; 
c) classification 

 
3.2.4.1.2. Support Vector Machine 

     One of the popular regression and classification methods is support vector machines (SVMs). 

SVM-based classification typically includes two major steps: training of the classifier using 

training dataset and predicting test data using the trained classifier (Chang, 2011). OpenCV library 

includes an implementation of SVM with different kernels, such as linear, Polynomial, Sigmoid, 

and Radial basis function (“OpenCV library”, 2017).  

3.2.4.1.2.1.  C-support vector classification (C_SVC) 

     Considering a number of training samples such as 𝑖 = 1, … , 𝑙,  which are labelled in two 

separate classes, the C_SVC tries to solve a fundamental optimization problem which is presented 

in equation 16 (Chang, 2011). Equation 16 considers both equation 17 and equation 18, which are 

the conditions (assumptions). The regularization parameter, named C, is assumed to be always 
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positive (equation 16) and the link between 𝑥𝑖  and higher dimensional spaces (more contributing 

features in the mentioned optimization problem) is function 𝜙(𝑥𝑖). indicator vector 𝑦 ∈ ℝ𝑙  that 

𝑦𝑖 ∈ {−1,1} and training vectors 𝑥𝑖 ∈ ℝ𝑛 were used as inputs (Chang, 2011).  

min
𝜔,𝑏,𝜉

   
1

2
𝜔𝑇𝜔 + 𝐶 ∑ 𝜉𝑖

𝑙
𝑖=1    (16) 

𝑦𝑖(𝜔𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖  (17) 

𝜉𝑖 ≥ 0 ,    𝑖 = 1, … , 𝑙   (18) 

     Since 𝜔 is a high-dimensional vector of variables (lots of contributing features), a dual problem 

is provided in equation 19 with the conditions presented in equation 20 and equation 21. After 

solving the dual problem, an optimal 𝜔 could be calculated using equation 22 and the decision 

function (equation 23) is derived (Chang, 2011). 

min
𝛼

  
1

2
𝛼𝑇𝚀𝛼 − 𝑒𝑇𝛼   (19) 

𝑦𝑇𝛼 = 0    (20) 

0 ≤ 𝛼𝑖 ≤ 𝐶  ,   𝑖 = 1, … , 𝑙   (21) 

     𝚀 in equation 19 refers to a 𝑙 × 𝑙  positive semi-defined matrix which can be obtained as  𝚀𝑖𝑗 =

𝑦𝑖𝑦𝑗  𝐾(𝑥𝑖 , 𝑥𝑗). Moreover, 𝑒 in equation 19 was considered as a vector of ones 𝑒 = [1, … , 1]𝑇  and 

the kernel function in equation 23 was defined as 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜙(𝑥𝑖)
𝑇𝜙(𝑥𝑗)  (Chang, 2011). 

𝜔 = ∑ 𝑦𝑖𝛼𝑖𝜙(𝑥𝑖)
𝑙
𝑖=1    (22) 

𝑠𝑔𝑛(𝜔𝑇𝜙(𝑥) + 𝑏) = 𝑠𝑔𝑛(∑ 𝑦𝑖𝛼𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏𝑙
𝑖=1 )  (23) 

     The target values (the labels for the test data) for data is predicted using decision function 

resulting from solving the optimization problem. The detailed information regarding SVM 

technique is available in the reference paper (Chang, 2011).  

    An OpenCV implementation of SVM in C++ environment is provided in Figure 35. First, the 

training type was set to C-SVC, and a linear kernel was used to process the data. Second, the 
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Chapter 4: Results and Discussions 

4.1. Introduction 

     This system was created in Visual Studio Community 2015 environment and the functions from 

open source OpenCV 3.3.0 library were used for image processing and machine learning 

algorithms (OpenCV, 2017). Performance of the system was evaluated using 125 samples which 

were prepared according to the Ministry of Transportation Ontario stripping by static immersion 

test procedure LS-285 (Ministry of Transportation Ontario, 2018). The test samples included two 

groups: 1) images of 70 loose mixture samples which were prepared at the Lakehead University 

asphalt laboratory; 2) images of 55 samples which were provided by MTO’s Materials Engineering 

and Research Office.  

     The images of the samples prepared at Lakehead University were captured using the 

illumination box (details are provided in Chapter 3), and the MTO’s images were captured in 

ambient room lighting. One of the main objectives was to assess whether using this illumination 

system improves the lighting condition of captured images, and therefore can reduce the 

differences of machine-measured results from technician evaluations.  

4.2. Experiments 

     The retained coating percentage for each sample was evaluated by expert technicians in MTO’s 

Materials Engineering and Research Office and provided to the research team. Samples in this 

study had different retained coating percentages, which enabled to test the system in different 

possible scenarios. The technician assessments for the test samples are shown in Figure 36. The 

retained coating percentage for all samples were divided into two separate data sets, including the 

samples provided by MTO (marked as MTO samples) and the house lab samples which were made 
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in Lakehead university laboratory (see Figure 36). The blue curve represents manual assessments 

for the 55 samples provided by MTO and the retained coating percentages varied from 5% to 

100%. The orange curve demonstrates the 70 samples which were made at Lakehead University 

Lab, and the retained coating percentages were in the range of 20% to 100%. According to the 

MTO’s procedure, the percentages were rounded at 5% intervals. In Figure 36, it could be seen 

that most of the retained coating percentages of the house lab dataset were more than 80% (59 out 

of 70). 

 

Figure 36: The retained coating percentage for samples in two data sets: a) samples provided by 
MTO (blue curve) and b) samples provided in the house lab (orange curve) 

     The effect of capturing images using the illumination box was evaluated by testing the two sets 

of images: the image set from House Lab (i.e. with controlled lighting) and the image set provided 

by MTO (i.e. without controlled lighting). In addition, the effectiveness of preprocessing of the 

images before classification and the performance of the system using different combinations of 

classifiers were tested. For example, test images were clustered into three and four clusters using 
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K-means (K=3 or 4), and then the clusters were classified as coated or non-coated by supervised 

classifiers, including Support Vector Machine (SVM) and K-Nearest Neighbors (K-NN) methods.  

 
4.2.1. Results of the House Lab Samples  

     To evaluate the effectiveness of performing CLAHE on the images, all the samples were 

analyzed with and without performing CLAHE and their differences from manual assessments 

were calculated. The differences of manual assessments with machine-measured results with 

different combinations of classifiers are illustrated in Figure 37 and Figure 38. Figure 37 presents 

the differences of machine-measured estimations from technician’s evaluations on the images 

without preprocessing, and Figure 38 shows the differences in the images which were enhanced 

by CLAHE. The tested combinations include K-means clustering with three and four classes, 

combined with SVM or K-NN classifiers. In this setting, SVM 3 means SVM classifier combined 

with K-means with three clusters, K-NN 3 represents K-NN classifier combined with K-means 

with three clusters, SVM 4 means SVM classifier combined with K-means with four clusters, and 

K-NN 4 represents K-NN classifier combined with K-means with four clusters. The horizontal 

axes in Figure 37 and Figure 38 show ranges of differences between machine-measured values 

using K-NN 3, K-NN 4, SVM 3 and SVM 4 combinations and the manual assessment values. The 

vertical axes in Figure 37 and Figure 38 represent a population of the samples in each of the related 

difference ranges. 

     The differences were divided into five ranges in Figure 37: [0% -5%], (5% -10%], (10% -15%], 

(15% -25%] and (25% -45%], and the most populated group is the difference range of [0% -5%]. 

The least populated difference range is (25% -45%], which presents the largest differences in 

machine-measured results from the manual assessments (evaluated by MTO’s skilled technicians). 
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For example, there were ten samples with the differences of 5 to 10% from the corresponding 

manual assessments when a combination of K-NN and three-cluster K-means was used. 

     In Figure 38, the differences between manual assessments and four different combinations of 

classifiers are presented in four ranges: [0% -5%], (5% -10%], (10% -15%], (15% -25%]. The 

most populated range is [0% -5%] which contains more samples compared to the same difference 

range in Figure 37. The biggest differences are in the difference range of (15% -25%], which is 

the least populated range as well. 

     These two figures show that the differences are leaning more toward the left side of the figures, 

which are the smaller differences from manual assessments. Moreover, all ranges in Figure 38, 

expect the range [0% -5%], contain fewer samples compared to the same ranges in Figure 37, and 

in particular, the largest difference range, (25% -45%], only exists in Figure 37. These results 

indicate that application of CLAHE limited the differences to 25%, compared to 45% in the images 

without preprocessing. Given the findings that the differences tend to be more in the smallest range 

[0% -5%] in Figure 38, and also the maximum range of differences was smaller in Figure 38, it 

could be concluded that application of CLAHE on images improves classification and estimation 

of stripped and coated areas. 





 

78 
 

related to SVM3, SVM4, K-NN3 and K-NN4 were 4.507 %, 6.549 %, 4.788 % and 6.408 %, 

respectively. In addition, the standard deviation of the differences related to SVM3, SVM4, K-

NN3 and K-NN4 were 4.939 %, 4.597 %, 5.24 % and 4.643 %, respectively.  Combination of 

three-cluster K-Means with classifiers provided smaller differences, and SVM 3 provided the 

lowest mean.  Based on Figure 38, differences of SVM 3 results from manual assessments are 

presented as the blue dataset and its most populated range had 61 samples in the range of [0% -

5%], which drastically decreases to 5 samples and then slightly decreases by 1 and increases by 2 

in the last range (15% -25%]. The resulted differences related to K-NN3 and SVM3 were identical 

in 94 % of the test samples (66 out of 70 samples). 

4.2.1.1. Wilcoxon Signed-rank test on the Combinations with Three-

cluster K-means 

     The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test which aims at 

finding a possible significant difference between two paired data sets. Wilcoxon signed-rank test 

has three initial conditions for the data: data should be paired, chosen randomly, and be in interval 

scale. All the assumptions are met by the existing data sets. The test initiates with two null 

hypotheses (the null hypothesis and the alternative). The null hypothesis is that the differences 

between two paired datasets are symmetric around zero. Through the procedure of the Wilcoxon 

signed-rank test, the differences between two data sets are calculated and they should be ranked 

based on the absolute value of the differences. The total sums of positive and negative ranks are 

calculated and the smaller one will be considered as the variable T. This value should be compared 

with a critical value, which could be converted to the z distribution and can be obtained through 

an equation or a critical value table based on the significance level 𝛼  , which was considered 0.05 

in this study (Wilcoxon, 1945). If the T is less than the critical value, the first hypothesis of the 
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test will be rejected, which means that the differences between the two datasets are not symmetric 

around zero, and if the T is more than the critical value, the first hypothesis of the test will be 

satisfied. Detailed information about Wilcoxon signed-rank test is available in (Wilcoxon, 1945). 

     Wilcoxon signed-rank test was performed in SPSS application on two data sets, including 

manual and machine-estimated results using K-NN with three-cluster K-means, and the summary 

of SPSS results are provided in Figure 39. The results indicate the rejection of the null hypothesis 

in a significance level of 0.05, which means that the differences are not random and it could be 

presumed that the system tends to overestimate the retained coatings (positive ranks outnumber 

negative ranks) 

     Descriptive Statistics of the analysis shows that 70 paired-samples were tested (total N=70), in 

which there were 24 tie samples (machine and manual estimations were the same) and there were 

42 cases that the machine estimations had larger retained coating percentages than the manual 

assessments, and there were four cases where the manual assessments were larger than machine-

measured estimations (Figure 39). 

     The Wilcoxon signed-rank test result on manual estimation and machine estimated data, 

resulted from the combination of SVM classifier with three-cluster K-means, also indicates 

rejection of null hypothesis (see Figure 40).  In this combination, the system estimated 41 samples 

with larger retained coating percentages than the manual estimations, whereas five samples were 

estimated with lower retained coatings and 24 samples had similar estimations (Figure 40). 
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Figure 39: Wilcoxon signed-rank test results (using  SPSS) conducted on manual and machine-
estimated percentages using K-NN with three clusters 

 

Figure 40: Wilcoxon signed-rank test results (using SPSS) conducted on manual and machine-
estimated percentages using SVM with three clusters 
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     Table 3 provides the statistics of the differences between the results of SVM3 and K-NN3, with 

technician estimations. Mean, Standard deviation, standard error, median, and minimum and 

maximum differences are presented in Table . In addition, Wilcoxon signed-ranks test results for 

K-NN3 and SVM3 are available in Table 3. By comparing the differences, it was revealed that the 

results are more toward the positive ranks, where the machine-estimated retained coating 

percentages were typically larger than technician assessments. 

Table 3: Summary of statistical measures of comparison between manual and machine-measured 
results for the samples captured using illumination box 

 K-NN SVM 

Mean 4.8% 4.5% 

Standard Error 0.6% 0.6% 

Median 5.0% 5.0% 

Standard Deviation 5.2% 4.9% 

Minimum 0.0% 0.0% 

Maximum 25.0% 25.0% 

Count 70 70 

Null hypothesis H0 Rejected Rejected 

 

     The combination of K-NN classifier with three-cluster K-means was selected for further 

investigations. The average differences of manual assessments from machine-measured results in 

K-NN3 configuration are illustrated in Figure 41 for four different coating ranges. The coating 

ranges were [0% - 40%], [45% - 55%], [60% - 80%] and [85% - 100%] with average differences 

between machine-measured and manual assessments of 20%, 6.8%, 7.8%, and 3.1%, respectively. 

The highest differences occurred in the [0% - 40%] coating range with an average difference of 
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the largest differences. For example, the coating range of [0% -40%] had the largest average 

differences of 20% (Figure 41) were identified under 60 % (failed samples). Moreover, machine-

measured estimations were always larger or equal to the manual assessments, in the samples with 

retained coating percentages above 85 %. 

     The performance of the system (using K-NN3) was promising on the samples in the coating 

range of [60% - 80%], where the system correctly passed the samples and vice versa. However,  it 

is recommended to consider a safe margin of 10% for the samples estimated around the rejection 

criteria (65% retained coating), because the system had an average difference of 7.8% in the 

coating range of [60% - 80%]. Thus, manual assessment by an expert should be considered to 

double-check the machine estimations in the coating percentages of  55%, 60%, 65%, 70 and 75%. 

4.2.2. Results of the Samples Provided by MTO 

     The performance of the system in processing the images captured without illumination box (55 

samples which were provided by MTO) was also investigated. The difference between manual 

assessments and machine estimations for four different combinations of classifiers were studied to 

find the best machine-measured outcomes, and the results are provided in Figure 42. The vertical 

axis presents the average difference of manual and machine-measured estimations for the related 

coating ranges in horizontal axis. The samples are divided into five ranges based on their retained 

coating percentage with a width range of 20 percent, such as [0% - 20%], (20 % -40%], ..., (80% 

- 100%]. Differences between manual assessment and machine assessments using K-NN and SVM 

combined with three-clusters K-means (illustrated as blue and orange columns, in Figure 42) 

behave similarly through all coating ranges. Moreover, they have larger differences compared to 

the results of K-NN and SVM combined with four-cluster K-means, except in the coating range 

of (40% ,60%]. 
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intensities, the supervised classifiers, such as SVM and K-NN, incorrectly labelled the clusters in 

many cases, which were due to the poor illumination conditions. Thus, the labelling process was 

done manually (called semi-automated) as an alternative method to assess the retained coating 

percentages, and the average differences of the new results from technician assessments are 

illustrated in Figure 43.  The differences of semi-manual estimations from manual assessments 

versus a combination of classifiers using four-cluster and K-NN from manual assessments were 

illustrated in Figure 43. The blue data set, which represents differences of manual assessments 

from the results of the semi-manual method started from peak with 22 samples in the difference 

range of [0% -5%], and experienced a decrease by 8 samples in the difference range of (5% -10%], 

and remained same in the difference range of (10% -15%], and then has the lowest population in 

the range of (15% -35%] with only two samples. Also, the differences related to the combination 

of K-NN and four-cluster K-means were illustrated as orange bars in Figure 43. This data set 

initiates with 9 samples in the difference range of [0% -5%], and increases to 11 and 17 samples 

in the next difference ranges of (5% -10%] and (10% -15%], respectively, and then slightly drops 

by 1 sample in the difference range of (15% -35%]. It can be concluded that the semi-automated 

estimations tend to shift to the lower differences (left side of Figure 43) and have a low population 

in the largest differences range (2 samples) compared to the fully-automated method (16 samples). 

As a result, it is recommended to use semi-automated approach (i.e. manually classify clusters) 

when an illumination box is not available for capturing an image from the sample. 
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symmetrically around zero and the semi-manual system has a tendency to overestimate the retained 

coating percentage on the samples. 

 

Figure 44: Wilcoxon signed-rank test results in SPSS software which is conducted on semi-manual 
estimated percentages and manual assessments using K-NN with four classes 

     By detailed comparison of the machine-measured estimations and semi-manual method’s 

results with the technician assessments, specific trends were observed. Resulted differences for 

different retained coating ranges are presented in Figure 45 to illustrate the performance of both 

classification methods (full automated and semi-automated methods) in different retained coating 

percentages. In Figure 45 retained coating percentages were divided into 5 separate coating 

ranges. The blue and the orange bars present average differences of manual assessments from the 

results of semi-automated and fully-automated methods (using combination of four-cluster K-

means and K-NN), respectively. As it can be seen in Figure 45, the fully-automated method tends 

to estimate the retained coating percentages with larger differences as the retained coated 
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percentages increase, which means that the K-NN classifier labelled some of the four K-means’ 

clusters incorrectly, especially for samples with high retained coating percentages. The best 

performance of the semi-manual method was for samples in the coating range of [85% - 100%] 

(Figure 45). 

 

Figure 45: The average differences between manual and machine-measured estimations using K-
NN4 versus average differences between semi-manual method results on the samples provided by 

MTO 

    The descriptive statistics for differences related to both K-NN 4 and semi-manual methods for 

samples, which were captured in ambient room lighting, are provided in Table . These data reveal 

that the semi-manual method is a better alternative for evaluating the retained coated percentage 

of the images captured in ambient room lighting  
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Table 4: Summary of the main statistical measures of comparison between manual and machine-
measured results for the samples captured in uncontrolled illumination conditions 

 
K-NN4 Semi-Manual 

Mean 15.0% 8.1% 
Standard Error 1.1% 0.8% 
Median 15.0% 9.0% 
Standard Deviation 8.1% 5.8% 
Minimum 1.0% 0.0% 
Maximum 34.0% 26.0% 
Count 55 55 

 
 
4.3. Discussion 

     Machine-measured estimations, their differences from the manual assessment, and the resulted 

clusters were analyzed to find the possible causes of errors in the classification process of the house 

lab samples (controlled illumination system), and the shaded areas within the images were found 

to be a possible cause of error, because they were classified as a coated part (Figure 46). This is 

mainly due to the dark colour of the shades, which mislead the classifiers, because the colour of 

the shaded area was close to the coated samples. These undesirable assignments resulted in the 

largest errors in the evaluations, especially in the samples with low retained coating percentages. 

In the case of samples with a high percentage of retained coating, the shaded areas did not cause 

major errors, because a large portion of the shaded areas was coated as well. In addition, specular 

highlights, especially the ones on the surface of the water, were mostly considered as stripped area 

by the classifiers (Figure 47), which caused large differences from the technician’s assessments on 

the samples captured in ambient room lighting. Figure 48 (left image) shows another example of 

this problem in one of the samples provided by MTO. This issue was particularly evident in the 

samples provided by MTO, which were captured under ambient room lighting. The machine-

measured estimations for the samples in the coating range of [0% -40%] were significantly affected 
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by both shadows and surface reflections, which resulted in large differences from manual 

assessments (compared to the other coating ranges). Samples of these undesirable conditions are 

illustrated in Figure 48. By comparing the results of the test samples from MTO (semi-manual 

classification was used) and house lab (combination of K-NN and three-cluster K-means was 

utilized), which had the mean errors of 8.768 % and 4.787 % respectively, it was demonstrated 

that the illumination box had a positive effect on the performance of the system. This was mainly 

due to uniform lighting and reduction of specular highlights and shaded areas.  

 

Figure 46: A sample image on the left and the shaded areas between aggregate particles were 
classified as retained coating areas (right side) 

 

Figure 47: Sample image on the left hand and stripped detected area on the right hand (the 
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specular highlight was counted as stripped area) 

 

Figure 48: Images which were taken under regular direct lighting. 

     One of the challenges in similar research projects (Lantieri et al., 2017; Källén et al., 2016) was 

observed in the mixtures made from the dark or patterned aggregate. The performance of the 

proposed system was investigated on a variety of aggregate colours. Three aggregate types were 

used in the samples, which were Dolomitic Sandstone, Granite-Gneiss, and Quartzite, and the 

estimated results were in similar ranges. For instance, of the machine-measured results on 38 

sample images of mixtures with dark aggregate (Dolomitic Sandstone) had a mean difference of 

4.565 % with the technician assessment. 

     Based on the test procedure provided by MTO for the Static Immersion test (LS-285), samples 

with retained coating percentage of less than 65% are rejected. To this end, estimated results for 

any sample with less than 65% coated area should be less than 65% to be rejected correctly and 

vice versa. Although the system provides results with some differences near this critical limit 

(samples in the coating range [60 % -80%]), no test sample was incorrectly rejected or passed. 

Even in highly stripped samples, which had the largest differences in evaluations, (first two ranges 

in Figure 41), the maximum diffrence did not cause an incorrect passing of a sample.  
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     Despite these results, it is recommended that any machine-measured percentages with an 

estimated coating percentage around 65 %, i.e. [55% -75%], to be evaluated by an expert 

technician.   

     It is also recommended that if an accurate estimation is required for the sample with low 

retained coating percentages [0% -40%], the manual evaluation is performed by an expert 

technician, because the performance of this system could have large differences from manual 

assessments in this range. In addition, while cropping the image in the early stages of the process, 

specular highlights and shaded areas should be avoided as much as possible to obtain more realistic 

results. 

     The preprocessed images, which were captured using the illumination box, had the closest 

results to the technician assessments. In contrast, the images which were captured in ambient room 

lighting (samples provided by MTO) were poorly correlated with the manual estimations. 

     There were two main issues in the processing of these images: incorrect clustering by the 

unsupervised classifier (K-means), and incorrect assignment of labels to some of the clusters by 

the supervised classifiers. The second issue was due to the lack of proper negative samples and 

poor contrast of the images. The second problem was the main factor and was due to the lighting 

conditions. The illumination varied dramatically and created considerable reflections on the 

surface of the water, as well as notable amount of specular highlights on the coated parts and 

shaded areas between the mixture particles. These visual noises misled the unsupervised classifier 

(K-means) to group some pixels from different areas (coated and stripped) into the same cluster, 

which did not truly represent a separate coated or stripped area.   
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     A semi-manual method was proposed to improve the results in these samples, where the k 

clusters could be labelled manually by a skilled operator based on the visual comparison of the 

clusters with the available sample. 
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Chapter 5: Conclusions and Recommendations 

5.1. Summary 

     A computer vision-based system was developed to automatically evaluate striping in loose 

asphalt mixtures by static immersion test. The proposed system consists of two parts: first part was 

the physical lighting improvement using an innovative low-cost illumination box, which provides 

uniform and non-direct illumination for capturing images from samples; and the second part 

included development of a program in visual studio 2015 environment using OpenCV library to 

enhance the test image, classify image’s pixels into different clusters, and finally classify each 

cluster and calculate the retained coating percentage. Two sets of test samples, including 55 

samples provided by the MTO (captured without controlled lighting conditions), and 70 samples 

captured in a controlled illumination condition (illumination box) at Lakehead University, were 

tested using a different combination of classifiers. Moreover, the impact of CLAHE (preprocessing 

images before classification) was investigated, where the test images were processed with and 

without CLAHE. Four combinations of classifiers were used in this research, including K-means 

segmentation using three and four clusters combined with SVM and K-NN classifiers. The 

mentioned four combinations of classifiers were used to estimate the retained coating percentage 

of 70 samples created in Lakehead University laboratory respect to the MTO’s test procedure LS-

285 (Ministry of Transportation Ontario, 2018), in different coating ranges.  

5.2. Conclusions 

     Through detailed observation of the results, it was concluded that application of the illumination 

box positively affected the performance of the system, which could be concluded by comparing 

the differences between the results on the images captured with (inhouse) and without (MTO) 

illumination box. Moreover, application of CLAHE decreased the differences between the 
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machine-measured results and manual assessments. In addition, it was observed that using K as 3 

in the K-means algorithm provides closer results than utilizing K as 4, in case of the samples 

created at Lakehead University laboratory. 

     Moreover, results, which were revealed from SVM, were almost the same as results provided 

by K-NN. The average, standard deviation and the maximum difference of manual assessments 

from a combination of three-cluster K-means and K-NN were 4.8 %, 5 % and 25 %, respectively.  

The results of using a combination of four-clusters’ K-means and K-NN showed a better 

correlation with the MTO technicians’ assessments than the other methods for the samples 

provided by MTO, where the average differences from the manual assessment were 15%, the 

standard deviation was 8.1 %, and the maximum difference was 35 %. To improve the results for 

these samples, a semi-manual method, which manually classifies the three clusters, which were 

resulted from K-means, was used. The average differences related to the semi-manual method, 

standard deviation and the maximum difference were 8.1 %, 9 % and 25 %, respectively. 

     The performance of the system is promising in the estimation of retained coating percentage 

(striping evaluation) in loose asphalt mixture, which is immersed inside water, in the sense of 

removing the subjectivity of the test. This subjectivity is rising mainly due to a human judgment 

errors in evaluation of striping. This system addresses some of the limitations in previous studies, 

such as evaluating samples with dark colour aggregates and minimizing the effect of specular 

highlights and shadows (image noises) without changing the test procedure and samples.  

 

5.3. Suggestions for End-users 

• Since the system performs better when the illumination box is utilized, it is recommended to 

apply such a system to capture an image from a sample. 
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• The 65 % limit is a critical threshold value, which results in rejection of the samples with lower 

retained coating percentages. Since this limit is significant in the rejection or acceptance of a 

sample, the samples with retained coatings in the range of 60% to 70% should be considered 

as caution zone and these samples should be evaluated manually as well. 

5.4. Limitations 

The main limitations of the proposed system are provided below. 

• The system had poor performance in the assessment of the samples with retained coating 

percentages between 0 to 40%. Although the system properly rejects the samples in this range, 

the machine-measured percentages had relatively large differences from manual assessments, 

and this could be problematic in the cases that require precise evaluations in these coating 

ranges. 

• The skilled technicians are indecisive toward evaluating partially retained coatings, called 

stained areas, as coated or stripped parts. Similarly, this system has difficulty in evaluation of 

stained areas due to the colour-similarity of darker colour aggregates and partially retained 

coatings. 

• Analyzing 3D models could provide more accurate results due to higher dimensions and 

comprehensive coverage of the samples, but the proposed system operates based on the 

analysis of 2D images. 

• Shadows within the sample images negatively affect machine-measured estimations and these 

areas were mostly considered as coated parts due to their dark colours. 

• The background of the samples in some cases could remain in the processed areas which causes 

inaccuracy in the evaluations. 
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5.5. Recommendations for Future Work 

There are some recommendations for future research projects to advance this system:  

• An automated cropping algorithm could be adopted at the initial step for the code to avoid 

major noises, including shadows and specular highlights. 

• Deep learning could be evaluated as a supervised classifier in this system to improve the 

accuracy of the evaluations because this method has been able to outperform other supervised 

learning approaches.  

• More investigations should be carried out to address the existing problems in the assessment 

of the stained areas. 
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Appendix 

At the following tables the machine-measured results for different combinations of the 

classifiers are provided. The first table is related to house lab samples and the second table is 

respect to samples provided by the MTO.  

Manual and different machine-measure estimations for house lab samples 

ID Manual KNN4 KNN3 SVM4 SVM3 

1 95% 90% 95% 90% 95% 

2 95% 95% 95% 85% 95% 

3 95% 100% 95% 100% 95% 

4 100% 100% 100% 100% 100% 

5 95% 100% 95% 100% 95% 

6 95% 100% 100% 100% 100% 

7 100% 100% 100% 95% 100% 

8 100% 100% 100% 100% 100% 

9 95% 100% 100% 100% 100% 

10 95% 100% 100% 100% 100% 

11 95% 100% 100% 100% 100% 

12 90% 95% 95% 95% 95% 

13 95% 100% 95% 100% 95% 

14 85% 90% 90% 90% 90% 

15 70% 85% 80% 85% 80% 

16 85% 90% 90% 90% 90% 
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17 80% 90% 95% 90% 85% 

18 50% 55% 55% 55% 55% 

19 80% 75% 75% 75% 75% 

20 80% 70% 70% 70% 70% 

21 95% 100% 100% 100% 100% 

22 95% 100% 95% 100% 95% 

23 95% 100% 100% 100% 100% 

24 95% 100% 100% 100% 100% 

25 95% 100% 100% 100% 100% 

26 95% 100% 100% 100% 100% 

27 95% 100% 100% 100% 100% 

28 95% 100% 100% 100% 100% 

29 95% 100% 95% 100% 95% 

30 95% 100% 100% 100% 100% 

31 95% 100% 100% 100% 100% 

32 90% 100% 95% 100% 95% 

33 90% 100% 95% 100% 95% 

34 100% 100% 100% 100% 100% 

35 95% 100% 95% 100% 95% 

36 95% 100% 95% 100% 95% 

37 95% 100% 100% 100% 100% 

38 90% 100% 100% 100% 100% 

39 90% 95% 95% 95% 95% 
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40 85% 100% 95% 100% 95% 

41 60% 50% 55% 50% 55% 

42 70% 65% 65% 65% 65% 

43 95% 95% 95% 95% 95% 

44 95% 90% 100% 90% 100% 

45 95% 100% 95% 100% 95% 

46 95% 100% 95% 100% 95% 

47 90% 75% 90% 75% 90% 

48 90% 85% 95% 85% 95% 

49 90% 90% 95% 90% 95% 

50 100% 100% 100% 100% 100% 

51 90% 95% 95% 95% 95% 

52 95% 100% 95% 100% 95% 

53 95% 100% 100% 100% 100% 

54 90% 95% 95% 95% 95% 

55 95% 100% 95% 100% 95% 

56 95% 100% 95% 100% 95% 

57 95% 100% 95% 95% 95% 

58 95% 100% 100% 100% 100% 

59 95% 100% 95% 100% 95% 

60 95% 100% 100% 100% 100% 

61 80% 90% 95% 90% 75% 

62 70% 85% 75% 85% 75% 
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63 85% 90% 85% 90% 85% 

64 80% 90% 80% 90% 80% 

65 55% 60% 60% 60% 60% 

66 40% 55% 60% 55% 60% 

67 20% 45% 45% 45% 45% 

68 50% 60% 60% 60% 60% 

69 40% 55% 55% 55% 55% 

70 30% 50% 50% 50% 50% 
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Manual and different machine-measure estimations for samples provided by MTO 

ID Manual Semi-manual KNN4 

72 85% 80% 68% 

73 85% 76% 82% 

74 55% 55% 28% 

75 70% 80% 62% 

76 65% 70% 70% 

77 60% 67% 50% 

78 10% 24% 26% 

79 10% 24% 29% 

80 20% 29% 30% 

81 25% 28% 15% 

82 35% 33% 69% 

83 40% 30% 61% 

84 50% 37% 67% 

85 65% 65% 44% 

86 80% 72% 71% 

87 85% 86% 48% 

88 70% 72% 46% 

89 70% 78% 78% 

90 90% 88% 51% 

91 100% 100% 78% 

92 100% 100% 76% 
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93 45% 31% 64% 

94 60% 54% 43% 

95 25% 34% 40% 

96 25% 31% 22% 

97 65% 64% 34% 

98 98% 88% 70% 

99 98% 83% 71% 

100 75% 65% 77% 

101 75% 81% 49% 

102 65% 55% 40% 

103 70% 58% 46% 

104 75% 75% 53% 

105 80% 65% 73% 

106 70% 74% 69% 

107 70% 71% 36% 

108 75% 73% 36% 

109 80% 75% 39% 

110 65% 51% 37% 

111 65% 52% 40% 

112 80% 65% 34% 

113 85% 70% 78% 

114 45% 44% 52% 

115 50% 51% 74% 
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116 5% 20% 38% 

117 60% 50% 66% 

118 60% 53% 37% 

119 15% 0% 39% 

120 15% 0% 38% 

121 60% 70% 77% 

122 60% 86% 79% 

123 55% 66% 45% 

124 50% 39% 43% 

125 80% 65% 78% 

126 80% 81% 78% 

127 50% 40% 41% 

 

 
 
 
 
 
 




