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Abstract

Hot Mixed Asphalt (HMA) is one of the most common types of pavement, which exists on the
surface of the roads, inside and outside of cities. One of the main destresses in HMA is moisture-
related damage, which mainly occurs in the form of stripping. The process of losing adhesion and
cohesion of asphalt cement due to the presence of moisture and cyclic loads is called “stripping”.
Several test procedures have been designed and conducted on different types of asphaltic mixtures
to identify and measure moisture damages, especially stripping. Stripping evaluations could be
divided into two classes: tests on compacted mixtures and tests on loose mixtures. Test procedures
for loose mixture have been adopted by different highway agencies, such as the Ministry of
Transportation Ontario (MTO), and pavement industries, because they are easy to perform, cost-
effective, and do not require complex equipment. But since stripping estimation is based on visual
assessment, the results could be inconsistent when they are estimated by inexperienced operators.
One of the most common tests on loose mixtures is static immersion test, and a modified version
of the static immersion test has been used by MTO, listed as LS-285 R29. To evaluate stripping in
this test procedure, 104g of loose asphaltic mixture should be immersed inside water for 24 hours
and then the retained coating areas should be measured by a skilled technician as a percentage of
the total surface area.

Image processing methods are proper examples of using smart agents in visual assessment
problems, such as object detection and pattern recognition. In this research, a vision-based
algorithm and a low-cost light improvement system were developed as an alternative for manual
judgment. The system receives images of samples captured in a controlled lighting condition,

which is called illumination box, and then it applies Contrast Limited Adaptive Histogram
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Equalization to enhance contrast intensity of the image. In addition, the system uses inpainting to
reconstruct specular highlights in the image, and then classifies the regions on the image, i.e.
coated and stripped areas, using combinations of K-means clustering and K-Nearest Neighbors
and Support Vector Machines classifiers. The developed system is able to overcome most of the
shortcomings of prior methods, such as evaluation of the stripping on mixtures with dark-colour
aggregates and processing test images without alteration of the test samples. The differences of the
results in the best configuration of classifiers from manual estimations had the mean of 4.8 % and
the standard deviation of 5.2 %. Moreover, application of illumination box and contrast

enhancement module proved to be effective to improve the performance of this system.
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Chapter 1: Introduction

1.1. Background and Research Motivation

Asphalt pavements are among the most common type of pavements which could be divided
into warm-mixed asphalt (WMA) and hot-mixed asphalt (HMA) pavements. There are continuous
research efforts to improve the durability of asphalt pavements, which include the research on
identifying causes of damages and how to assess the quality of the pavements. The durability of
asphalt pavements is directly influenced by the moisture sensitivity of the mixture (Chen, 2007;
Liu et al., 2014). The destructive effect of moisture in asphalt pavements was recognized in the
1930s, and highway agencies and pavement industries started to investigate the damages caused
by moisture in the 1980s (Lantieri et al., 2017). Moisture damage is the degree of reduction in an
asphaltic system’s performance which is caused by moisture. Moisture transports into an asphaltic
system by various transportation modes and causes cohesive and adhesive failure in the asphalt
cement coating (Caro et al., 2008). One of the main forms of moisture damage is stripping.
Stripping is a phenomenon in which the asphalt cement coating detaches from the aggregate
surface, and it is mainly due to the failure in the internal texture of asphalt in the presence of
moisture and cyclic traffic load (Mehrara and Khodaii, 2013).

The most common test procedures to evaluate the moisture susceptibility of loose asphalt
mixtures are boiling water, rolling bottle, and static immersion tests. The Ministry of
Transportation Ontario has been utilizing a modified version of static immersion test, named LS-
285 R29, which is conducted using 100g of sample aggregate and 4 grams of asphalt cement
(Ministry of Transportation Ontario, 1996). Static immersion and rolling bottle (EN 12697-11)
methods are subjective test procedures, because the stripping is measured by evaluating the

retained coating percentage based on the judgment of a technician. To overcome possible
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subjectivity image processing-based algorithms were proposed to provide consistent and accurate
results (Kim et al., 2012; Amelian et al., 2014).

Also, Artificial Intelligence (Al) methods have been able to facilitate informed decision making
and uncover information and patterns where the traditional approaches fail to recognize. Image
processing and machine learning algorithms, including supervised (classification) and
unsupervised learning (e.g. clustering), are potential Al tools to improve visual assessment
problems. Supervised learning methods aim at classifying test data based on the provided training
data set, whereas unsupervised learning methods process test data based on predefined rules and
without training data (Nemati et al., 2002).

In addition, images and videos are valuable sources of data, and numerous image and video
processing methods have been developed to enhance the use of the embedded data. A digital image
consists of a group of small data units, called pixels, and each unit holds the data about the intensity
of colours in the pixel’s location. Since human errors and inconsistency could negatively affect
the manual evaluation of striping assessment test methods, researchers have tried to use image
processing techniques as an alternative for human judgment. The proposed method by Amelian et
al. (2014) could be mentioned as an example of image processing techniques, where the results of
boiling water test were analyzed by an image analysis method, in which the samples were placed
out of water on a plane background and the operator had to alter a colour value threshold to
differentiate coated from uncoated pixels (Amelian et al., 2014). MATLAB image processing
ToolboxTM was used to improve the moisture suitability estimations for the direct tensile strength
(DTS) test on HMA and WMA. The resulting images from samples were analyzed using Colour
Look-Up Table (CLUT) provided by MATLAB. Furthermore, by means of capturing a minimum

of 20 images from different angles of a sample, and merging these images using Autodesk 123D



Catch software, a three-dimensional model of the sample was created to evaluate the stripping;
however, the results were tend to underestimate the adhesion failure percent in some cases
(Hamzah et al., 2017). Another study tried to evaluate the stripping by simple thresholding of the
test images in two steps: a) a Cyan-coloured background was removed by simple thresholding and;
b) stripped parts were removed using secondary thresholding. The method, however, was not able
to properly evaluate stripping of dark colour aggregates and shadows also caused error in the
estimations (Lantieri et al., 2017). Moreover, Image Pro-Plus software was used as a thresholding
tool to detect objects of interest and to evaluate the stripping by segmenting the remained parts in
the images captured from rolling bottle test samples in the controlled lighting conditions (Yuan et
al., 2015).

In addition, some research efforts employed special illumination systems to improve the
accuracy of computer vision-based stripping estimations, such as indirect illumination using a
shooting chamber (Merusi et al., 2010), and a LED-based illumination (Light-Emitted Diode)
embedded in an image acquisition system (Yuan et al., 2015), which all were either using
expensive equipment or failed to detect partially coated parts. In another research by Kéllén et al.
(2016), an illumination system consisting of a quarter circle lamp and a camera located in a
particular angle with respect to the light directions and the sample was used to capture a number
of images from different angles of a sample. This system identifies coated parts based on the
assumption that the coated areas reflect the light more than the aggregate surfaces (Kéllén et al.,
2016). Different colour-based segmentation methods, such as graph-cut method (Kéllén et al.,
2012) and K-means clustering (Kéllén et al., 2016), were performed on the test samples to

distinguish coated parts.



Despite all these advances, there are some shortcomings which need to be addressed. These
methods were unable to accurately measure the stripping, on dark-colour aggregates (Hamzah et
al., 2014; Lantieri et al., 2017; Killén et al., 2016), and in addition, the test samples required
manual preparation, such spreading the particles on a plane background inside or outside of water
(Hamzah et al., 2014; Yuan et al., 2015; Kallén et al., 2016), which changes some of the original
test procedures, namely MTO’s LS-285, which requires the mixture to remain intact within the
water container. Lastly, specular highlights and shadows could still cause error for the submerged

samples (Amelian et al., 2014; Hamzah et al., 2014).

1.2. Research Objectives

The objectives of this research are to improve the recent developments in the computer vision-
based stripping assessment. This research attempts to develop a system without altering the
existing test procedure of MTO’s LS-285 (i.e. no need to remove the particles out of the water and

spread them on a plane sheet), therefore, the following objectives were determined:

Investigate automated methods to enhance lighting and contrast of the regions of interest in the
images of samples

e Reconstruct specular highlights by detection of the highlights and image inpainting

e Automatically segment the images’ pixels based on the similarity of colour intensities

e C(lassify the detected clusters automatically to determine whether they represent coated or

uncoated regions

1.3. Research Methodology

This research includes development of an especial illumination system and an automated image

processing algorithm, which consists of three modules: a) image preprocessing by enhancing



contrast intensity of the image and reduction of specular highlights; b) segmenting image pixels
into different clusters; and c) identifying the nature of each cluster (whether it is a coated part or

not). The step by step workflow of the methodology is provided in Figure 1.

N

Image enhancement

Improve physical
S Ll using CLAHE (B)

lighting (A)

Classification of the Specular highlights

reconstruction (C)

clusters (E)

Clustering of pixels
using k-means (D)

Figure 1: Research methodology

1.4. Thesis Organization

This thesis consists of five chapters. Chapter 1 provides an introduction to the research
background, main concepts, and test procedures to evaluate stripping of asphalt mixtures. Then,
research motivations, objectives, and methodology of this research are presented. Chapter 2
provides a comprehensive literature review on the topics related to this research. Chapter 3
explains the details of the methodology and development of the proposed system. In this chapter,
the details of the designed illumination system, descriptive information regarding the employed
algorithms, and the supporting concepts of the methodology are provided. Chapter 4 presents
experimental results on a number of test samples from three types of aggregates and then discusses
the results. In this chapter, the effects of a number of factors, including preprocessing of the input

images, number of segmentation clusters, application of two supervised classifiers, and the impact
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of using an illumination system, on the final results are discussed. Chapter 5 presents the
conclusions for this research which summarizes the results, mentions the existing limitations, and

provides recommendations for future developments.



Chapter 2: Literature Review

2.1. Introduction

This chapter presents a summary of research efforts which investigated the moisture-related
damages in asphalt pavements, namely stripping of the asphalt coating, and also discusses the
application of artificial intelligence in this area. Therefore, this literature review consists of two
main sections. Moisture damages and their mechanisms, affecting factors, related measurement
test procedures, and controlling factors are presented in part one. Part two discusses research

projects related to evaluating moisture-related damages using artificial intelligence algorithms.
2.2. Part 1: Moisture-related Damages of Hot-mix Asphalt

The moisture damage sensitivity of the hot-mixed asphalt pavements is an important issue in
the durability of the highway networks. One of the main factors is the precipitation in the highway
location, which could be more critical in high-latitude and tropical regions (Liu et al., 2014).
Moisture damage can be defined as the degree of loss in the performance of an asphaltic system
due to the moisture. The damage process initiates through various moisture transportation modes
and results in cohesive and adhesive failures of the asphalt cement coating (Caro et al., 2008).

Stripping phenomenon is one of the main manifestations of the moisture damage and is defined
as a detachment of the asphalt cement from aggregate surface. Stripping usually occurs when the
internal texture of the asphalt fails in the presence of water moisture and cyclic traffic loads. The
moisture can be either water, water vapor, or both. (Mehrara and Khodaii, 2013).

In one hand, many researchers initially believed that the stripping occurs due to the loss of the
bond between asphalt cement and aggregate in presence of water (Badru and Roberts, 1988;
Kennedy et al., 1984). On the other hand, some other researchers have provided more

comprehensive failure mechanisms. They believed that the loss of mixture adhesiveness and
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cohesiveness could contribute to the moisture damage. For evaluating the moisture damages on
asphalt pavements, some scholars applied cyclic traffic loads together with the moisture as a
combined failure factor, but other researchers believed that the long-term presence of the moisture
in asphalt voids could provide a proper and realistic presentation of damages (Mehrara and
Khodaii, 2013). Based on the stripping reasons, physio-chemical incompatibility and mechanical
failure were listed as the main classes of the stripping (Kandhal and Rickards, 2001). First class
relates stripping to the asphalt components’ sensitivity in the presence of moisture, whereas
failures in the second class occur due to the cyclic hydraulic stresses in saturated conditions, which
result in scouring of the asphalt binder from the aggregate surface. Also, three affecting factors for
stripping were identified: the presence of water, high pressure, and high temperature (Kandhal and

Rickards, 2001).
2.2.1. Moisture damage mechanisms

A mechanism is generally defined as a process that produces a new state or condition in a
system by altering external and/or internal conditions (Caro et al., 2008). If a mechanism
deteriorates the previous state, it is considered as a damage mechanism. Moisture damage
mechanism is based on two steps, moisture transport and response of the system. Moisture
transport is a process in which the moisture, in any form, penetrates to the asphalt and reaches the
interface of asphalt cement and aggregate. The response of the system is the internal structural
changes which reduce the load carrying capacity of the system (Caro et al., 2008). Some of the
environmental conditions, including relative humidity, severe freeze-thaw cycles, intense rainfall
periods, and in-service conditions, such as dynamic loads of traffic and aging, increase the damage
potential (Lu and Harvey, 2006). Several pavement cores were studied to identify affecting factors

in the moisture-related damages. The most important factors were identified as pavement structure,



rainfall, air void content, and ageing. The effect of cumulative truck traffic and repeated loading
found to be marginal (Caro et al., 2008).

The response of an asphalt mixture system to the moisture penetration, (i.e. stripping effect), is
caused by penetration of the moisture (water) into the asphalt mixture and it could decrease the
durability of the mixture due to thermal stresses and traffic cyclic load in various forms (Mehrara
and Khodaii, 2013). The first type is detachment, which can be defined as placement of a thin film
of water in the intersection of the aggregate surface and asphalt cement. This separation is not
obvious and has a thermodynamic or chemical nature. The second type is displacement which is a
mechanical effect and causes the loss of bonds in an asphalt mixture and separates asphalt cement
from aggregates. Third, the cohesion of the asphalt mixture becomes weak due to the long-term
dispersion periods and erosion of the mixture material. This effect is mechanical failure. Forth, the
film rapture and micro-crack theory investigate ruptures in the binder or aggregates, which could
be thermos-dynamical or mechanical. Fifth, desorption is a random movement of the binder as the
outer layer of mastic is washed away by the existing flow. This mechanical phenomenon occurs
after the diffusion process. Sixth, the chemical emulsification is related to the emulsion of water
droplets which are inserted into the binder (Mehrara and Khodaii, 2013).

Mechanisms of the moisture damage can also be divided into two major categories. The first
category is micro-mechanisms which focuses on the bonding forces inside the mixture, such as
adhesion of aggregate and asphalt cement as well as the cohesion of asphalt texture in a molecular
scale. The second category discusses the failure of mixture bonds on a macro-scale through

mechanical effects, known as macro-mechanisms (Mehrara and Khodaii, 2013).



2.2.1.1. Macro-Mechanism

Research on macro mechanisms studies only the effects of physical stresses, such as traffic
load, thermal stresses, and voids’ internal hydraulic flow. Evaluating moisture damage includes
different sub-mechanisms. First sub-mechanism includes extra pressure created by traffic load,
thermal stresses, or evaporation of internal water within the asphalt voids. Second sub-mechanism
is the effect of cyclic traffic load on an asphaltic system that causes hydraulic scouring (pumping
effect), and then the high velocity of hydraulic flows in the interior voids causes physical erosion

to the system (Kringos, 2007; Kettil et al., 2005).
2.2.1.2. Micro-Mechanism

There were some studies on the adhesion theory which investigated adhesion of mixtures in a
micro-mechanism scale and could be divided into five individual groups: mechanical, chemical
reaction, molecular orientation, surface energy, and weak boundary. In addition, there are some
research studies on stripping mechanisms which are categorized into six theories. These theories
are detachment, displacement, dispersion of the mastic, film rupture and micro-crack, desorption
and spontaneous emulsification. There are also other mechanisms of moisture damage that were
investigated. For example, osmosis phenomenon is considered as another possible mechanism
where the dissolved salts inside the droplets of water or a film of absorbed water cause osmotic
pressure (Mehrara and Khodaii, 2013); however, some researchers believe that the effect of this

phenomenon is negligible (Thelen, 1958).

2.2.2. Moisture Transport Modes

Moisture movement in asphalt mixtures is classified into three main modes: 1. Penetration:

infiltration of the surface water; 2. Diffusion, permeation of water vapour; and 3. Subsurface
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water’s capillary rise (Masad et al., 2007). The main mode of moisture transport in asphalt

pavements is the penetration of water from the subsurface. This mode of moisture transport is

related to drainage conditions, rainfall, and material properties. All of these three modes are

important in moisture transport (Caro et al., 2008).

e Permeability is the capability of the material to transmit fluids (Park and Koumoto, 2004).
Three types of common asphalt mixtures were studied, and the permeability ranges were
presented (Chen et al., 2004). It was demonstrated that the air voids and permeability have a
correlation with each other. Voids structure in an asphalt mix provides measures of the
effective permeability value. Construction factors, such as lift thickness, density, homogeneity,
and compaction effort also affect the air void content. For example, lift thickness has an inverse
relationship with permeability (St Martin et al., 2003; Mohammad et al., 2003). Since there is
a lack of clear relationship between the field and laboratory permeability measurements, the
laboratory results could not substitute actual field permeability outcomes (Cooley et al., 2002;
Caro et al., 2008).

e Subsurface water is transported into the interconnected paths and capillaries due to the
capillary action phenomenon. The rate and the height of the capillary rise is controlled by the
r (capillaries geometric characteristics), p (the water density), a (the liquid-solid contact angle),
and T (the surface tension of water). The capillary rise in an asphalt pavement hypothetically
should not occur, but it sometimes happens; because water is in contact with mastic, mixture
of fine aggregate and binder, instead of pure binder (Masad et al., 2007; Caro et al., 2008).

e The volume of water vapour and its storage rate inside a mixture are determined by relative
humidity and material properties. Holding potential with storage rate, capacity, and diffusion

coefficient are the controlling material properties. There are many studies in terms of moisture
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diffusion. The relationship between storage capacity, vapour transport, and moisture damage
was demonstrated (Sasaki et al., 2006). A new method, which was able to measure the suction
value using thermocouple psychrometers, was developed and moisture diffusion was studied
on samples, which were resulted from suction value test. A direct relation between the size of
air void and the suction value was observed, where the smaller air voids had higher suction
values (Kassem et al., 2006). Also, it was observed that moisture damage could be minimized
in an optimal suction value (Kassem et al., 2006). Moreover, suction values and moisture
damage level have inverse relation due to the direct relation of relative humidity gradients

inside voids and suction values (Caro et al., 2008).

2.2.3. Controlling Moisture Damage

2.2.3.1. Moisture Damage Controlling Factors

Based on the mentioned mechanisms, moisture damage can be controlled by two types of
factors. The first type includes internal factors, which are related to the nature of the mixture and
properties of its components. The second type includes external factors, which depend on external
stresses and the surrounding environment (Mehrara and Khodaii, 2013).

Internal factors include properties of asphalt cement, aggregate, and the mixture. Asphalt
cement properties are determined by its viscosity, thickness of asphalt film, the water-bearing
capacity, which is the volume of water that can be kept inside the material, and its chemical
structure (Birgisson et al., 2003; Kanitpong and Bahia, 2003; Caro et al., 2009). Aggregate
properties can be determined by surface texture, coating, moisture, chemical characteristics,
mineralogy, porosity, and content of mineral fillers (Kandhal, 1992; Bahia and Ahmad, 1999;

Terrel et al., 1993). Asphalt mixture properties are affected by void ratio, distribution and the
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average size of voids, permeability, asphalt content, asphalt age, gradation, additives, and type of
mixture’s fine aggregates (Caro et al., 2008; Kim and Coree, 2005; Kanitpong and Bahia, 2005).
External factors can be varied by the conditions during and after pavement’s construction.
Conditions during the construction of pavement such as precipitation, compaction, temperature,
and the time gap between friction layer construction and the new layer (Kandhal and Rickards,
2001; Bahia and Ahmad, 1999; Tunnicliff and Root, 1982). Conditions of after construction are
listed as precipitation, temperature, freeze-thaw cycles, drainage condition, wet-dry cycles, traffic
load, sub grade water content, micro-organisms activity, and the PH level of the water flowing
through the pavement (Cheng et al., 2003; Kandhal and Rickards, 2001; Bahia and Ahmad, 1999).
Table 1 illustrates the favourable conditions for these characteristics in which the asphalt pavement
performs as designed and it is the most durable condition due to the related factors (Mehrara and

Khodaii, 2013).
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Table 1: External factors contribute to the moisture sensitivity of the asphalt mixture (Mehrara and

Khodaii, 2013)
Component condition Affecting factors Favourable condition
During the construction Environmental temperature Warm
Precipitation None
Compaction Enough

Time interval between the
construction of new HMA
and the old pavement

Roughly two summers

After construction

Precipitation None + dry season after
F Tcycle None

Temperature Mild- low day and night

temperature fluctuation

W-D cycle None at high temperature
Sub-grad water content Low
Drainage condition Good
Traffic load Low

Activity of micro-organisms

Using additives which are
compatible with the micro-
organisms

PH of through-pavement-
flowing water

Acidic conditions

Initially, some transportation agencies, such as MTO (Ministry of Transportation of Ontario),
tried to limit the moisture damage by lowering the air void percentage (El Hussein et al., 1993). In
contrast, it was demonstrated that just the air void content is not a proper measure for asphalt
mixture’s moisture transport (Masad et al., 2007). Investigation of asphalt pavement structure with

different techniques revealed a better understanding of the void structures. For instance, obtaining
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2D (two dimensional) images of materials’ cross-section with electron microscopy or
spectroscopic scanning techniques determined the chemical composition of the mixture (Kosek et
al., 2005). Moreover, 3D (three dimensional) imaging techniques, such as nuclear magnetic
resonance, x-ray computed tomography, and transmission electron microscopy visualization
(Kosek et al., 2005; Barrie, 2000), facilitated studying characteristics of voids structure, such as
distribution, tortuosity of the flow path, connectivity, and their sizes. Aggregate properties, the
process of compaction, and mix design are the controlling factors in the distribution and size of
the air voids in an asphalt mixture. Air voids in asphalt mixture are categorized into effective (top-
down connections), impermeable (scattered without any connection with borders), and semi-
effective (not fully connected through the material) (Chen et al., 2004). The air void structure and
tortuosity were determined for 14 samples with different total air-void percentages to measure their
permeability (Al Omari, 2005). The Pessimum air void size is referred to the average air void size
in which the moisture sensitivity of the asphalt mixture is maximum. The penetration of moisture
in the mix is low when the air voids are small. Although penetration of the moisture is high in large
air voids, the drainage rate is also high. Thus, Pessimum air void size is the worst scenario which
traps water inside the material and provides a suitable environment for the progress of moisture
damage. The Pessimum air void size range for limestone was estimated at 0.8 mm to 1.0 mm and
for granite was 1.2 mm to 1.4 mm (Masad et al. 2006). There was some more research on
characterizing the internal air void structure of the asphalt mixtures. They limited the air void
content to 6-7 percent for the same material samples and examined the structure through analyzing
X-ray CT images. It was observed that different samples have different susceptibility based on the

air void structure of the sample (Caro et al., 2008; Arambula et al., 2007).
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It was found that the cracks, termed as checks, are generated in some compaction processes,
such as in conventional steel-wheeled compaction in the first two passes. The length and apart
sizes of the checks usually vary from 1 inch to 4 inches and 1 inch to 3 inches, respectively (El
Hussein et al., 1993). These checks ease the access of moisture and air in the mixture. Cracks
increase the air void content and affect the moisture resistance of the mixture in the same manner
as the air void, because cracks are able to make new connected paths and create links through the
air voids (Chen et al., 2004; Caro et al., 2008; St Martin et al., 2003).

There are two types of cracks in the asphalt mixture. The first type is cohesive cracks and grows
in the binder. The second type includes adhesive cracks which expand through the binder-
aggregate interface. The former type occurs typically in asphalt mixtures with a very thick binder.
The latter cracking, the more important in moisture damage, usually happens in very thin asphaltic

binders (Lytton et al., 2004).

2.2.3.2. Preventing Procedures

To minimize moisture-related damages, some practical recommendations were proposed
(Kandhal and Rickards, 2001). The moisture content of the pavement could be examined by visual
observation and by dry sampling using a jack hammer. A saturated asphalt mixture is highly
vulnerable to the stripping phenomenon (Kandhal and Rickards, 2001). Inadequate pavement
subsurface drainage also allows the moisture to move upward via capillary action and makes the
asphalt course saturated. By utilizing Asphalt Treated Permeable Material (ATPM) to replace the
base course, which is expanded through the drainage edges of the asphalt pavement, moisture
penetration could be restricted. Experiments on a dense-graded HMA with a maximum of 8% air

voids showed that the air void percentage gradually decreases to 4-5% through the first three years
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of serviceability due to the application of traffic load. If this reduction does not occur, the thermal

pumping of moisture has a high potential (Kandhal and Rickards, 2001).
2.2.3.2.1. Additives

Many research projects focused on identifying additives which can affect the moisture
susceptibility of asphalt mixtures (Palit, 2001; Pundhir et al., 2005; ASTM, 1996). The tests for
the moisture damage susceptibility are mostly carried on the loose mixtures, such as static
immersion and boiling water tests, and compacted samples like tensile strength and retained-
strength ratio tests. The modification of the mixture with crumb rubber showed about 50% and
10% less stripping in boiling and static immersion tests, respectively (Palit et al., 2004; Pundhir et
al., 2005; ASTM. 1996). Five different aggregate types, two antistripping agents, and 60/70
penetration graded asphalt binder were used for the moisture susceptibility experiments. It was
observed that high carbonate material, such as limestone and slag-limestone, provide a stronger
bond with asphalt binder. In contrast, granite, quartzite and andesite containing a high amount of
silica are vulnerable to stripping (Amelian et al., 2014). Antistripping binder filler, namely
hydrated lime and liquid anti-stripping agent (e.g. Nano-based material termed as Zycosoil), are
highly effective in moisture susceptibility reduction, restricting the stripping to less than 3.5
percent (Kim and Moore, 2009).

2.2.4. Moisture Damage Assessments

The destructive effect of moisture in asphalt pavements was firstly identified in the 1930s and
highway agencies and pavement industries laboriously investigated moisture-related damages in
the 1980s (Taylor and Khosla, 1983). As a result, a number of tests procedures were developed to

assess the susceptibility of mixture designs to the moisture-related damages (Terrel et al., 1993;

Aschenbrener et al., 1995). Although these tests are mostly simple and adopted by most of the
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highway agencies, there have been some instances of poor correlation between laboratory results
and the field observations. Experimental studies on the effects of air voids distribution and
connectivity, moisture movements, mixture adhesive bond, and materials physical characteristics
provide great opportunities to understand moisture damage causes and mechanisms (Bhasin et al.,
2006a; Bhasin et al., 2006b; Copeland and Kringos, 2006: Kassem et al., 2006).

In addition, test methods were proposed with better correlation with field performance results,
which also used for evaluation of the antistripping agents’ effects on moisture-vulnerable mixtures
(Atud et al., 2007; Kvasnak and Williams, 2007; Wasiuddin, 2007). Moisture damage has been
investigated in three main ways: laboratory investigation, field studies, and modeling and
numerical analysis (Mehrara and Khodaii, 2013).

The field studies mostly focused on observing pavement performance exposed to moisture
damage in actual conditions. These studies tried to estimate potential moisture damage of the
mixture or effectiveness of the additives in asphalt. Kandhal and Rickards (2001) are among the
scholars who conducted research in the field to investigate stripping causes. It was observed that
the lack of proper drainage results in some undesirable moisture effects in asphalt pavements. The
prevailing mechanism for initiation and propagation of these effects, and some pre-diagnostic
symptoms to detect the moisture damage were introduced (Kandhal and Rickards, 2001).

However, most of the research projects for studying moisture-related damages have been
conducted in a laboratory setting. These laboratory-based studies aimed at evaluation of anti-
stripping additives effectiveness, development of new experimental methods and comparison of
new methods with existing methods. A comprehensive literature review studied parameters and
criteria of different test methods. They grouped existing experimental tests by dividing them into

a single parameter and multi-parameter tests (Caro et al., 2008; Reinke et al., 2010). Tests can also
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be categorized into five main groups based on their performance. These groups include tests on
loose mixtures, destructive mechanical tests on loose mixtures, non-destructive mechanical tests
on the compacted mixture, energy-based methods, and non-destructive non-mechanical tests
(Mehrara and Khodaii, 2013). Destructive tests on compacted mixtures assess stripping potential
via fatigue index, permanent deformation index, and indirect tensile strength test. Energy based
test methods measure adhesion and cohesion potentials in a mixture using energy-based indexes
fracture mechanics, which are measured by means of mechanical and non-mechanical tests on
materials in the mixture. Non-destructive non-mechanical test methods evaluate the stripping
potential using two types of parameters: permeability and moving velocity of the mechanical
waves. There are also many tests investigating stripping on compacted and loose asphalt mixture
(Mehrara and Khodaii, 2013). Direct Tensile Strength (DTS) provides the most representative
measurement for the tensile properties of the materials (Azari, 2010). A comprehensive list of tests
on compact asphalt mixture, the required parameters, criteria, and their application was gathered
by Mehrara (2013). Detailed discussions about the test methods on loose mixtures are available in
the literature (Mehrara and Khodaii, 2013).

Another field of the study investigated parameters independent of size, which could
demonstrate actual behaviour of the material and mixtures. The parameters should reflect the main
environmental conditions and loading stresses. Analytical models were also developed to simulate
the behaviour of mixtures (Mehrara and Khodaii, 2013). For instance, a model was developed by
Kettil (2005) which used fracture energy analysis method by establishing mass and momentum
conservation to model water velocity, pressure, and related deformation in a pavement mixture

(Kettil et al., 2005).
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2.2.4.1. Tests on Loose Asphalt Mixture

There are many different test methods for assessment of moisture-related damages on the loose
asphalt mixtures. Some of these tests are focused on calculating cohesive energy using surface
energy theory or cohesive failures such as Time Temperature Superposition (TTS) (Kanitpong and
Bahia, 2005) and Wilhelmy plate (Cheng et al., 2002; Cheng et al., 2003). Some other investigate
additive and mineral effects, such as Methylene blue (Kandhal et al., 1989) and bottle test
(Tunnicliff and Root, 1982; Williams and Breakah, 2010). Some others are concentrating on
adhesive energy such as Universal Sorption Device (USD) (Mehrara and Khodaii, 2013) and
Pneumatic Adhesion Test (PATTI) (Kanitpong and Bahia, 2005). There is another group of test
method which investigates adhesion bond failures such as Static immersion (Tunnicliff and Root,
1982), Dynamic immersion, Chemical immersion (Williams and Breakah, 2010), Boiling water
(Badru and Roberts, 1988) and Surface reaction (Williams and Breakah, 2010). Qualitative or
quantitative estimations can be obtained directly or indirectly from these tests. In one hand, the
main shortcoming of these tests is that the limited range of granules’ sizes is considered to measure
the stripping. This approach may not fully indicate the coupling effect of load or moisture. On the
other hand, these tests are easy, low-cost, quick, and do not require complex equipment (Mehrara
and Khodaii, 2013).

Static immersion, RBT (Rolling Bottle Test), total water immersion, BWT (Boiling Water
Test), and ultrasonic test methods are some examples of test procedures on loose mixtures and are
used to assess the susceptibility of mixtures of aggregate and asphalt cement against moisture
damages (Mehrara and Khodaii, 2013).

The most common tests on loose mixtures for evaluation of stripping percentage are static

immersion, rolling bottle, and boiling water tests. LS-285 is a modified version of static immersion
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test developed by MTO, which conducts the experiment on 100g of aggregate which is sieved in
three sizes (Ministry of Transportation Ontario, 1996). Four grams of hot asphalt cement is mixed
with the preheated aggregate in the mixing temperature of 141°C and the asphalt mixture is
transferred into a 600ml beaker. The sample rests till it reaches the ambient room temperature and
then the beaker is filled to three-quarter of its capacity. After 24 hours, the stripping percentage of
the sample is evaluated by a skilled operator (Ministry of Transportation Ontario, 1996).
Moreover, the rolling bottle test could be used to measure the stripping percentage through the
manual evaluation of the mixture by a skilled technician (Paliukaité¢ et al., 2016). According to the
test procedure EN 12697-11(clause 5) (Estonian Centre for Standardisation, 2019), mechanical
stringing action is introduced to the non-compact sample in the presence of water by rolling bottle.
The aggregate particles are fully coated with asphalt cement and are immersed inside distilled
water. After the mixture cools down, the sample is rolled in a bottle and the remained coating is
evaluated in different time intervals. Both static immersion and rolling bottle are subjective tests
(Estonian Centre for Standardisation, 2019) and stripping is characterized by a coating index which
evaluates the retained coating degree for each sample.

Boiling water is another test procedure, in which the asphalt cement is preheated for 24-26
hours and is fully mixed with 100g of aggregate, which is preheated for 1.5 hours prior to the test.
Then, the loose mixture is placed in 500cc of boiling water and after a specific time, the sample is
cooled down and is dried and will be ready to be evaluated manually (Paliukaité et al., 2016;
Kennedy et al., 1984).

Most of the test methods on loose mixtures use aggregate grains ranging from 6.3 to 9.5 mm.
It was observed that the static immersion test is subjective, and no performance strength qualifying

tests are involved in the test (Liu et al., 2014). Moreover, the image-based algorithm was utilized
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to improve the stripping measurement of static immersion test for asphalt mixtures (Kim et al.,
2012; Amelian et al., 2014). In the other research same approach was utilized to evolve the
estimation of stripping for HMA with a diverse synthetic wax modifier (Merusi et al., 2010;

Amelian et al., 2014).

2.3. Part 2: Artificial Intelligence Integrated Asphalt Quality Control
2.3.1. Artificial Intelligence

2.3.1.1. Smart Agents

Advances in Information Technology (IT) storage, reuse, and its execution integrated with
internet provide ample opportunities to implement IT into various processes and make industries
more productive. Therefore, meaningful and precise data collection and appropriate analysis have
become important, but these efforts rise challenges, such as big data management and analysis
(Demirkan and Delen, 2013). The initial step for a better understanding of multi-agent systems is
to define intelligent agents, the fundamental cell of MAS (Multi_Agent System). An intelligent
agent could be defined as “‘a self-contained program capable of controlling its own decision-
making and acting based on its perception of its environment, in pursuit of one or more objectives’’
(Ren and Anumba, 2004). To have a smart agent, the agent should have at least two out of three
behavioural attributes which are illustrated with blue circles in Figure 2. These behavioural
attributes are (Ren and Anumba, 2004):

e Autonomy: Independent operation of the agent without the interference of human. Each
agent has a specific objective(s) and acts to achieve it(them). The key factor in this attribute
is pro-activeness; for example, the capability to interactively respond, instead of a simple

reaction to the environment.
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e Co-operation: Interactive capability is required to achieve this main feature; such as
interaction with human or other agents involved in the system.
e Learning: In the process of interacting with the surrounding environment, the agent should be

able to learn to be considered as a smart agent (Ren and Anumba, 2004).

Figure 2: Requirements to have a smart agent (Ren and Anumba, 2004)

Al is vital in modern problem-solving processes because traditional techniques failed to
discover and interpret various types of information and patterns in data sources, and utilization of
Al methods facilitates informed decision making.

Data mining is an important field in the Al domain; a process which is categorized into
verification-driven and discovery-driven. In the first category, a prior hypothesis is formed about
the nature of relationships among data. The result of the data mining process is then used to reach
a conclusion about the validity of the hypothesis. The methods in the second category, however,
initiate without a fixed hypothesis about the nature of relationships in the dataset. It is the duty of

the data mining algorithm to discover important patterns among the data. Discovery-driven data
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mining can be categorized into two main types: classification (supervised learning) and clustering
(unsupervised learning). Supervised learning includes construction of a model for certain
objectives and to optimally classify test datasets based on the patterns in the training dataset. In
contrast, unsupervised learning does not require a specific goal or historical data to predict.
Clustering and detection of associated rules could be considered as unsupervised learning types

(Nemati et al., 2002).
2.3.1.2. Agent Learning

An agent interacts in a complex environment. The complexity of the environment is due to a
number of factors, such as environmental uncertainty, the degree of clustering, the density of the
solution constraints and space, time obligations, the existence of multi-goals, the verity of
comparing options and preferences, knowledge level of each individual agent and agents’ skills
(Ren and Anumba, 2004). It is critical for an agent to have the ability of adaptation and learning.
Agent learning has main two reasons: to automatically improve its performance and to gain a more
appropriate understanding of the learning processes in a MAS (Ren and Anumba, 2004). From the
operational point of view, learning in MAS is the ability to do new tasks which it could not do
before or to improve its performance. Learning process begins when an agent starts to
communicate with other agents and the environment and receives some responses. Based on the
prescribed criteria, it decides the next required action to obtain proper results. To achieve an
effective learning process, some parameters should be determined before and after the process;
such as the goals and scope of learning, and the methods of learning. Knowledge compilation,
explanation-based learning, support vector machines, concept and multi-strategy learning, neural
networks, reinforcement learning, deep learning and genetic algorithm are some examples of agent

learning methods (Ren and Anumba, 2004).
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2.3.2. Image Processing

Digital images and videos are heavily used in different sectors of service and industry, and
numerous algorithms have been developed to facilitate processing these valuable sources of
information. Machine learning and statistical methods have been adopted in the field of computer
vision research to enable automated data extraction from images and videos. Object detection,
classification, tracking, and segmentation in images and videos provide a better and deeper
understanding of the captured items and events. Many fields, such as medical imaging, search
engines, photo management, robot navigation, and quality control in production lines, benefit from
computer vision-based methods (Jalled et al., 2016).

Image processing is related to signal processing where the input is an image (i.e. matrix or
matrices of pixel intensities) and the output could be a modified image or some numerical results,
or in other words, image processing extracts required information or modifies an image. These
operations usually use signal processing methods which consider an image as a 2D signal. There
are three main steps for image processing.

e Input: capturing and importing images with an image capturing device, such as a digital
camera.

e Analyze and modify: data compression, image alteration, and detection of patterns.

e Output: modified image or the information of interest from the input image (Jalled et al.,

2016).

Digital images are comprised of small units, called pixels, and an alteration in an image is the
reflection of changes on the related pixels. Each pixel contains the intensity of colours and a digital
image is represented as a matrix, or matrices in multi-channel images, and each matrix element is

the related pixel value.
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2.3.2.1. Application of Image processing in Striping Assessments

Some of the main stripping measurement test procedures, such as static immersion and boiling
water, are subjective and could be unreliable when assessed by inexperienced technicians. To
overcome this major shortcoming, many research efforts have employed image processing
techniques. For example, water boiling test results were improved with the use of an image analysis
method (Amelian et al., 2014).

Digital images were captured from the boiling water test specimens and two image processing
software were used to replace manual evaluation. First, captured images were imported to the
Image-Pro Plus software and then the green background and glares were segmented and removed
from the images. Then the software converts the images into an 8-bite grayscale format and a
thresholding process was applied to create binary images. The thresholding value was set to 65 to
isolate stripped areas and their percentage was calculated by counting the number of remained
pixels. Due to the glares on the surface of the coated areas, major errors were observed. Two
approaches were proposed to overcome this issue (Amelian et al., 2014). First, using special
cameras and lighting systems, which require an expert operator and expensive equipment. Second,
using image enhancing software to reduce the glares. Uniform and indirect lighting could reduce
glares and then the rest of the reduction could be made by using image enhancement software.
Moreover, the samples should be manually spread on a plain background and the thresholding was
hardcoded (Amelian et al., 2014).

There are two main types of classifications in image processing: supervised (with training
dataset) and unsupervised (automatically clustered) classification (Hamzah et al., 2014). Two main
phases for supervised classification are training and testing, in which specific training dataset is

created and then the test samples are classified based on the training samples (Karathanassi et al.,

26



2000). Using this approach, a method was proposed to estimate the moisture susceptibility of
compacted HMA and WMA in the direct tensile strength test procedure (Hamzah et al., 2014).
The adhesion failures of 48 cylindrical mixture samples were investigated by ENVI (environment
for visualizing image) image analysis software and MATLAB image processing ToolboxTM. The
software transformed the colour-structure of images based on CLUT, Colour Look-Up Table. A
10 mega pixel high-resolution digital camera was used to capture images from samples, which
included three mix designs and compaction temperatures, and three conditioning and two anti-
stripping fillers. In particular, ENVI, as a supervised training platform, provided a tool for
classification of ROI (region of interest), which was used to restrict fusion of marked area with
other classes. Two ROIs, including failure in the coating (stripped parts) and failure in aggregate
(broken aggregate), were defined in this research. The presented results were promising, but
classification based on greyscale images may result in potential inaccuracies, namely in the
samples with close grayscale colour intensities. DTS test samples are not inside water which does
not suffer from the errors (such as glares and shades) that occur in images of the submerged
samples, such as the samples in static immersion and rolling bottle tests.

The adhesion failure on the fractured surface of WMA samples in DTS test was quantified by
a 3D image processing technique (Hamzah et al., 2017). Minimum of 20 images, which were
captured from equally distributed spots in different angels, were required to create a 3D model,
which also enabled consistent lighting within the image. The gray pixel values in the model varied
from low to high (from 0 to 255) which represented coated and stripped areas, respectively. Then
the model was processed with a certain threshold value which was determined through a trial and
error process (Hamzah et al., 2017). One of the main challenges in using this method was that the

image and the fracture plane were not parallel with each other which could underestimate the
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adhesion failure (Hamzah et al., 2017).) Autodesk 123D catch software was utilized to merge 2D
pictures in order to create a 3D model of the sample for stripping evaluation (Chandler and Fryer,
2013). The images were converted from RGB (red, green and blue) to the grayscale colour space
(Turner et al., 2015).

A simple, cost-efficient method was proposed to evaluate the stripping percentage of the loose
asphalt mixture samples which were resulted from rolling bottle test (Lantieri et al., 2017)
procedure. The images were processed by an open-source image processing program, named
ImageJ, in YUV colour space. The method was conducted on mixture particles which were placed
separately from each other on a plane sheet. The method was applied on three types of aggregate
(porphyry, basalt and limestone) as well as different binders which consisted of different
combinations of a 70/100 based bitumen and two waxes in the amount of 1%, 2%, and 3% of the
weight of bitumen. This vision-based system firstly removed the background via using a simple
threshold function; therefore, the aggregate particles were separately identified in images. Then
the stripped parts were detected by another thresholding as well, but the aggregates’ shadows
caused inaccuracy in the results. The method was tested by comparing the machine results with
three skilled operator estimations, and by pixel by pixel manual-clustering. The comparison of the
machine-measured results with operator estimations revealed differences in the range of 0-32.84%.
Moreover, the results showed smaller differences from the manual evaluation than the skilled
operators’ estimations. It was also observed that the method provides results closer to the ground-
truth for aggregates with lighter colour comparing to the darker ones (Lantieri et al., 2017).

Image illumination could also significantly affect the image analysis outcomes. To implement
digital image processing more efficiently in measuring the stripping areas, many image processing

techniques have been developed together with specialized physical lighting systems (Amelian et

28



al., 2014; Rombi, 2014). Some examples, such as indirect illumination through a shooting chamber
(Amelian et al., 2014) and image acquisition system combined with a LED-based illumination
(Yuan etal., 2015), were used for improvement of the illumination; however, all these illumination
systems included complex equipment and may still produce inaccuracy when the stripping is
measured in the partially stripped samples.

When light arrays hit opaque material, some portion of lights are absorbed, and the rest is
reflected. For example, darker colours absorb more than lighter ones. The direction of light, and
shapes, angels, texture or any pattern on the surface of the material affect the reflections (Yuan et
al., 2015). A lighting system was developed to improve the vision-based evaluation of stripping
percentage on loose mixture samples (rolling bottle test). Six red-coloured LED lights with 660
nm wavelength were installed on the side-walls of a black box, and a white plane surface was
provided at the bottom, as a platform for placing the scattered specimens, to adjust and control the
light conditions (Yuan et al., 2015). Mixture particles were separated from other objects in the
resulted image by using a thresholding tool in Image Pro-Plus software. The method was tested on
three types of aggregates, such as basalt and two types of limestone, and the results revealed lower
measured values than visual estimations (Yuan et al., 2015). Research efforts on the stripping
measurement by computer vision mostly focus on classifying pixels based on their colours. For
example, a graph-cut segmentation method was used to detect the stripped parts of the samples
(Kéllén et al., 2012; Kéllén et al., 2016). In the graph-cut method, a graph consisting of different
nodes, which are determined based on the colour histograms, is created and the weights for the
graph is calculated with respect to the smallest distance between the aggregate and the asphalt

cement colours. As a result, in the cases where the colour of aggregate and the asphalt cement were
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too close to each other, the colour distances were small which made the method impractical for
those samples (Kéllén et al., 2012; Kéllén et al., 2016).

Considering the fact that reflection on the surface of asphalt cement is typically more than the
uncoated aggregate surfaces, a colour-independent method was developed using a rotating table
which was illuminated by a quarter-circle light to maximize the reflections. Retained coating
percentages of samples, which were produced by a rolling bottle test, were measured using this
illumination system (Kaillén et al., 2016; Mulsow and Marschke, 2011). The quarter-circle light
and the camera had a particular angle from the sample, which directed light arrays to hit the coated
parts and reflect toward the camera. This system spun around the sample to capture images from
different angles. The coated parts appeared with as bright spots on a few images, but they appeared
with a dark colour on the rest of the images (Kéllén et al., 2016) and the same approach was utilized
using two laser lines illumination system which still had issues to fully determine the stripping
part (Mulsow and Marschke, 2011). The mixture particles were placed separately on a plain (such
as cyan) background and a simple threshold function was used to remove the background (Kéllén
et al., 2016). In addition, check point shapes were prepared and placed on the plane surface where
the aggregates had already been placed, and then by rotating the table, images were taken and then
were combined using these check points. The stripped percentage was determined by classifying
the combined image using K-means clustering in a gray scale space with K (number of clusters)
equal to 5. The results of the technique were evaluated for the light-coloured aggregates and were
compared with graph-cut method results (Kéllén et al., 2016). The K-means segmented the particle
surfaces into different clusters with promising accuracy, but it was not able to determine which
classes represent the stripped areas, and the labelling process for the created clusters was done

manually. This manual classification could result in potential subjectivity.
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2.4. Summary

Summary of the research efforts related to computer vision-based assessment of moisture-
related damages, namely stripping, was presented. There has been considerable progress in the
application of image processing techniques, especially on the loose asphalt mixtures. Performance
of the developed methods is mainly affected by the employed image processing algorithms and
the illumination systems. These studies used digital cameras to capture images of samples which
were then analyzed by different image processing methods, such as simple thresholding and more
sophisticated clustering algorithms. In addition, illumination of the samples was modified by some
digital (Hamzah et al., 2017; Kaéllén et al., 2016; Mulsow and Marschke, 2011) and physical
(Merusi et al., 2010; Amelian et al., 2014; Yuan et al., 2015) alterations. Although promising
results were obtained using these methods; However, some shortcomings still exist and could be
addressed, which include:

e These methods had difficulty in evaluation of dark-coloured aggregates as well as in some
partially coated areas (Hamzah et al., 2014; Lantieri et al., 2017; Kéllén et al., 2016).

e Samples were usually altered prior to capturing of the images. In all of the research works on
loose mixtures, aggregates were spread on a plane platform, which some were inside water
and some others were removed out of water (Amelian et al., 2014; Yuan et al., 2015; Kéllén
et al., 2016). This could change some of the original test procedures. For example, static
immersion test procedure requires the samples to remain in the container.

e Glares and shadows in the samples caused errors in some of the estimations (Amelian et al.,
2014; Hamzah et al., 2014; Lantieri et al., 2017). Some portion of the errors were due to the
glares, and the shadows for out of water samples could be removed by using complex

illumination systems (Amelian et al., 2014; Yuan et al., 2015; Kéllén et al., 2016).
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e Most of the studies used greyscale images which may hinder the quality of the results, namely
on the edges of the particles or aggregates with specific patterns on their surfaces (Hamzah et

al., 2014; Hamzah et al., 2017; Kéllén et al., 2016).
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Chapter 3: System Development

3.1. Static Immersion Test

As discussed in the literature, the static immersion test is a common method for evaluation of
the susceptibility of asphalt mixtures exposed to moisture. This test can determine the stripping
potential of the mixtures made of different bitumen grades, aggregate from different types and
sources, and effectiveness of antistripping additives. The details of the Ministry of Transportation
Ontario’s static immersion test are available in test method LS-285 R29 (Ministry of
Transportation of Ontario, 2018). Method A in this test procedure was used in this research, which
is used for asphalt cement mixtures. This test procedure is designed for a single grade asphalt
cement with up to one antistripping additive. All the test samples should be conducted in duplicate,
where two samples are made in each test. In this test procedure, 4 grams of asphalt cement and
100 grams of aggregate in three different size ranges are required. The 100-gram aggregate should
contain 50 grams, 35 grams, and 15 grams of 9.5 mm, 6.7 mm, and 4.75mm sieve sizes,
respectively. The aggregate should be dried in an oven with a temperature of about 141°C for 24
hours. Then the aggregate sample should be heated for 10 minutes in a quick heat oven to reach
the surface temperature range of 149°C to 177°C for mixing. The heated aggregate and mixing
tools (metal container and spatula) are transferred into an oven with a temperature of 143°C for 15
min. Then the preheated aggregate is mixed with the 4.0 £ 0.1 grams of 143°C asphalt cement
using the preheated mixing tools till the surface of aggregate particles are fully coated (the
aggregates’ surface should become fully coated with bitumen). The mixture is immediately
transferred into a 600 ml container (beaker) and it will rest there until it reaches the ambient room
temperature. In the final preparation step, the beaker is slowly filled with water up to three-quarter
of the container volume. The beaker should be covered with a lid to prevent evaporation of water
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and then it is placed in a water bath with a temperature of 49 + 0.5°C for 24 hours. The beaker
should be taped until the removal of almost all the trapped bubbles.

Finally, the beaker is removed from the water bath and the surface of the mixture is evaluated.
This visual evaluation is based on manual percentage estimation of the total remaining aggregate’s
visible coated area. The operator should estimate the retained coating area via comparing the
observation with Figure 3 (Ministry of Transportation of Ontario, 2018). The fundamental issue
with this procedure is the subjectivity of the estimates in different labs and by inexperienced

technicians. This could result in inconsistent assessments.

10%

Figure 3: Percentage estimation chart for visual evaluation (Ministry of Transportation of Ontario,
2018)
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3.2. Test Improvement

Image processing and machine learning methods have demonstrated strong visual assessment
results in different sectors and this project intends to develop a system that can provide consistent
and reliable results for assessment of the static immersion test samples. In this approach, a system
could be created through the process of training, where the data will be collected from different
experiments. Some visual aspects of the samples, resulting from experiments, could help in the
differentiation of the samples, such as colour intensity or texture of the samples. These visual
aspects are called “features”, and each could be labelled individually. The proposed system
includes five main modules to enhance, extract, and analyze these features, which are illustrated

in Figure 4. The following sections describe the details of each step and their implementation in

this research.

Improv