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Abstract 

Fuel has become an essential commodity in our day to day life. Increase in global population 

and decreasing fuel reserves have forced mankind to look for other fuel alternatives. Forest 

biomass serves as a potential renewable resource for substituting the conventional fossil-

based fuels. In the last few decades, several chemical, physical and microbial based methods 

were being developed for the breakdown and conversion of lignocellulosic components to 

commercially valuable products including bioethanol and other platform chemicals. The 

separation of lignocellulosic biomass plays a significant role in conversion of lignocellulosic 

biomass to ethanol and other valuable products respectively. Naturally, lignocellulosic 

components are arranged in intricate networks leading to its high recalcitrance nature. Over 

years research groups around the world have isolated and characterized several 

lignocellulose degrading microorganims. Naturally, fungi play a crucial role in maintaining 

the geo-carbon cycle by decaying all the dead organic matter on the earth’s surface. Majority 

of the wood-decaying fungi are grouped under Basidiomycota division. Based on their decay 

patterns the basidiomycetous fungi were classified into white-rot, brown-rot and soft-rot 

fungi. Understanding these natural fungal decaying mechanisms will benefit the growing 

biofuel, biorefining and bioremediation industries. 

Next generation sequencing techniques have significantly enhanced our present day’s 

knowledge about various biological mechanisms. Phanerochaete chrysosporium was the first 

basidiomycetous fungi with complete annotated genome sequence, which has inspired the 

whole-genome sequencing studies of different wood-decaying fungi. Increasing whole 

genome sequencing studies have led to the enrichment of public repositories especially JGI-

MycoCosm, 1000 fungal genome project, Hungate 1000 projects have played a significant role 

in supporting these sequencing projects. As of today, there are 443 published and completely 

annotated fungal genome sequences in the JGI-MycoCosm repository. Thus, the availability 

of whole annotated genome sequences has significantly helped in designing genome-wide 

transcriptomic studies for understanding the molecular mechanisms underlying the process 

wood-decay. A total of 11 genome-wide transcriptomic studies of P. chrysosporium were 

reported and are publicly available under the NCBI-GEO repository. However, 

transcriptomic studies give a snapshot of gene expression at a given growth conditions and 

time period. Thus, we have developed a robust and efficient metadata analysis approach for 

re-analyzing gene expression datasets of P. chrysosporium and Postia placenta for 

understanding the common significant gene expression patterns of this model white and 

brown rot fungi cultured on different growth substrates (simple customized synthetic media 

and natural plant biomass media).  

We have reported a significant list of genes encoding for various lignocellulolytic enzymes 

significantly expressed among all the gene expression datasets. Based on the common gene 

expression patterns obtained from our analysis we have tentatively derived the molecular 

network of genes and enzymes employed during the breakdown and conversion of lignin, 

cellulose, hemicellulose components of plant biomass. For the first time, we have reported, 

and classified lignin degrading genes expressed during the ligninolytic conditions of P. 

chrysosporium. It is well-known that fungi experience a significant amount of stress during the 

process wood-decay. Plant secondary metabolites such as quinones, tannins, stilbenes, 
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flavonoids and other phenolic compounds exhibits a fungicidal activity. Thus, wood-decaying 

fungi wood decaying fungi would have developed an efficient detoxification and stress 

responsive mechanisms for sustaining this effect. Using the results obtained in our study we 

have reported and classified as phase-I and phase-II metabolic genes involved in 

detoxification and stress responsive mechanisms respectively. Compared to P. 

chrysosporium, P. placenta lacks several copies of genes encoding for cellulolytic, 

hemicellulolytic, ligninolytic and pectinolytic enzymes. However, our gene expression 

metadata analysis has reported that P. placenta is strongly dependent on Fenton’s reaction for 

the degradation of lignocellulosic components. We have also observed that genes encoding 

for several hemicellulolytic enzymes were differentially expressed even during cellulolytic 

conditions. Based on the present metadata analysis we have also tentatively developed 

cellulose and hemicellulose metabolic mechanism.  

In the last few decades, genome sequencing studies of wood-decaying fungi have been 

extensively reported. Presently, the JGI-MycoCosm database resides 1165 whole genome 

sequences of fungi, out of which about 443 fungal genome sequences are published. It is hard 

to choose a particular fungus specifically for the degradation of plant biomass. Thus, we have 

developed an efficient metadata analysis pipeline for comparing and understanding the 

genome-wide annotations of fungi. The metadata analysis pipeline reported in our study can 

be used for selecting a wood-decaying fungus for the Invitro degradation of studies. We have 

compared the genome-wide annotations of about 42 wood-decaying basidiomycetous fungi 

(white-rot, brown-rot and soft-rot fungi) and reported a tentative comparison method 

explaining the total cellulolytic, hemicellulolytic, ligninolytic and pectinolytic abilities. 

Similarly, we have also specifically compared and analyzed the genome wide annotations of 

anaerobic fungi belonging to Neocallimastigomycota division fungi. This study has reported 

the complete genetic makeup of these peculiar fungi and their carbohydrate degrading 

abilities (plant cell wall carbohydrates), as they completely lack lignin degrading enzymes. 

We have also delineated and compared the genes coding for structural and functional 

components of cellulosomes and hydrogenosomes.  

We have also performed an extensive homology modeling and protein docking study of 

white-rot, brown-rot and soft-rot fungal laccases protein sequences using 6 different types of 

lignin model compounds. This study has revealed the structural and functional variations of 

white, brown and soft rot fungal laccases. Results obtained in this study reported that white 

and brown rot fungal laccases reported higher catalytic efficiencies compared to that of soft 

rot fungal laccases. This study also reported that soft rot fungal laccases exhibited small but 

significant variations in its structural and physicochemical properties. However, further 

molecular dynamic simulation and high throughput proteomic studies must be performed to 

understand the structural and functional properties of these laccases. 

The metadata analysis work frame reported in this thesis can be extended to understand the 

natural wood-degrading mechanisms of various microorganisms (e.g. fungi, bacteria). The 

highly reactive significant list of proteins obtained in this study can be used Invitro for 

developing highly resistant enzyme mixes used for the breakdown and conversion of various 

organic compounds including plant biomass. The above reported strategies also can be used 

as a preliminary analysis for designing large scale experiments. 
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Chapter-1 

Fungal Enzymes Involved in Lignocellulose Degradation 

Naturally, lignocellulose is degraded by a large group of fungi and bacteria [1]. Fungi have 

evolved progressively with their dominant degrading abilities to decay organic debris 

including plant biomass by penetrating through their hyphae and  spores (for long distance 

dispersal) [2]. Wood rotting fungi are categorized into white, brown and soft rot fungi based 

on their growth substrate preferences and wood decaying patterns [3]. Moreover, white rot 

fungi exhibit excellent decaying abilities and solely responsible for the degradation of lignin 

and polysaccharides in plant biomass. Microscopy based studies have differentiated the 

white rot decay patterns morphologically into a) simultaneous degradation of lignin and wood 

polysaccharides. For e.g. Phanerochaete chrysosporium, Trametes versicolor. b) selective 

degradation of plant biomass components. For e.g. Phlebia radiata [1, 4, 5]. However, some 

fungi like Heterobasidium annosum exhibits both simultaneous and selective decay patterns 

[6].  

Brown rot fungi are well characterized as rapid cellulose and hemicellulose 

degraders, they access plant polysaccharides by potentially modifying or degrading lignin 

[7]. These fungi are the major invaders of forest biomass and wood-based constructions. 

Studies have reported that brown rot fungi have evolved from the saprotrophic white rot fungi 

by losing several essential genes encoding for lignocellulose degrading enzymes [8]. It was 

reported that hyphae of the brown rot fungi penetrates the cell lumen, colonizes the ray cells 

and axial parenchymal cells to access carbohydrates [8].  

Most of the ascomycetes and fungi imperfecti cause soft rot decay in the presence of 

excessive moisture, soft rot decayed wood exhibits a greyish discoloration and fragmentation 

which is similar as brown rot. Previous morphological studies have divided the soft rot fungi 

decay into a) type-I (where hyphae penetrates secondary cell walls by forming characteristic 

cavities) b) type-II (attacks similarly as ascomycetes and white rot fungi leading to wood cell 

wall thinning) [1]. Wood decaying fungi and its secreted enzymes are being used 

commercially in biopulping, kraft pulping (xylanase bleaching), cellulases based refining, 

pitch removal (lipases), slime removal (using enzyme cocktail), fiber modification (pulp and 

paper industries) etc. Thus, finding its applications in biodegradation of plant polymers, 

detoxification and bioremediation of several toxic aromatic compounds and also in bio based 
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industries [1].The depolymerizing abilities of the wood rotting fungi are directly proportional 

to its ability to secrete an array of lignocellulolytic enzymes, aromatic compound and 

detoxifying enzymes. 

Table 1.1: Illustrates potential wood degrading fungal phylum and their properties 

 

1.1. Lignocellulolytic Enzymes 

Cellulose is the earth’s most abundant plant polysaccharide containing large array of 

glucose units linked through β (1→4) linkages by existing in both crystalline and amorphous 

forms. Cellulose is widely distributed in plants by constituting up to 40 to 50% overall dry 

weight of the plant biomass. Microbial degradation of cellulose (and other plant biomass 

units) is considered as environmentally friendly, cost effective and potentially efficient 

method. Majorly cellulose degrading enzymes secreted by microorganisms can be classified 

as endoglucanases or 1,4-β-d-glucan-4-glucanohydrolases (EC 3.2.1.4) which are involved in 

random fragmentation of amorphous cellulose units resulting in oligosaccharides units of 

varying lengths. Exoglucanases which includes cellodextrinases or 1,4-β-D-glucan 

glucanohydrolases (EC 3.2.1.74) and cellobiohydrolases or 1,4-β-d-glucan 

cellobiohydrolases (EC 3.2.1.91) these set of enzymes act on reducing and non-reducing ends 

of cellulose or microcrystalline cellulose and β-glucosidases or β-glucoside glucohydrolases 

Type of 

Wood Rot 

Phyla and 

Order 

Wood Degradation Property Decaying wood Fungal strain 

 

 

White Rot 

 

Basidiomycota 

Agaricales 

Aphyllophorales 

Causes cell wall erosion in cell 

lumina by occupying large spaces 

with its mycelium.  

Efficiently degrade lignin. 

Moist, spongy 

appearance white 

or yellow 

Phanerochaete 

chrysosporium, 

Ceriporiopsus 

subvermispora, 

 

Brown Rot 

 

Basidiomycota 

Agaricales 

Aphyllophorales 

Penetrates through cell wall pores, 

by effecting the S2 layer of cell 

wall in lumen. 

Efficiently degrades cellulose and 

hemicellulose. 

Dry, shrunken, 

cracked, in brown 

colored fragments 

Gleophylum 

trabeum, 

Postia placenta, 

Serpula 

lacrymans, 

 

 

 Soft Rot 

 

 

Ascomycota 

 

Deuteromycota 

Type I fungi forms cylindrical, 

biconical cavities in secondary 

cell walls.  

Type II fungi are erosive wood 

degraders. 

Decayed wood is 

brown in color with 

soft look which 

further cracks and 

becomes dry. 

Fusarium solani, 

Penicilium 

chrysogenum, 

Daldinia 

concentrica, 
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(EC 3.2.1.21) are required for solubilizing cellodextrins and cellobiose to simple glucose 

residues [1]. Several extensive and informative reviews are already available on microbial 

degradation of cellulose units [1-7] 

It was well-established that complete hemicellulose degradation requires a combination 

of hemicellulolytic enzymes such as endo-β-l,4-xylanase, β-xylosidase and other accessory 

enzymes, like α.-arabinofuranosidase, α.-glucuronidase, acetyl xylan esterase and ferulic 

acid esterases [9]. Zhang et al (2011),have reported that even after the application of 

hydrothermal, steam explosion pre-treatments on plant biomass most of the substituents such 

as acetyl residues might remain intact with the xylan chain and obstruct the action of xylanases 

during the enzyme hydrolysis [10]. Xylan hydrolysis is significantly increased by the removal 

of acetyl side chains and the hydrolysis is hindered by the degree of acetylation [11]. 

Grohmann et al (1989) have reported that, chemical deacetylation of aspen wood and wheat 

straw xylan units have enhanced the enzymatic hydrolysis of xylan and thus increased the 

cellulose accessibility [12].  

Naturally, most of the fungi, bacteria and yeast secretes wide range of pectin methyl 

esterases and pectin depolymerizing enzymes for the degradation of pectin. Previous studies 

have extensively reported about various endogenous pectinases secreted by plants [13-16]. 

Based on their specific location of activity protopectinases were classified as A-type (inner 

site/reacts at the polygalacturonic acid region) and B-type (outer site/polysaccharide chains 

connected to polygalacturonic acid chain). A-type proto-pectinases were majorly reported to 

be secreted in the cultures of yeast and yeast like fungi, whereas B-type proto-pectinases 

were majorly reported in the cultures of Bacillus strains and especially in Bacillus subtilis 

cultures [13-15]. Polygalacturonases are class of pectinolytic enzymes which performs the 

hydrolytic cleavage of polygalacturonic acid by introducing water across the oxygen bridge. 

Based on its reactivity polygalacturonases are divided into endo (widely reported among 

fungi, bacteria and yeast, and were also reported in higher plants and parasitic nematodes) 

[17-22] and exo-polygalacturonases (well-studied in Erwinia carotovora, Agrobacterium 

tumefaciens, Bacteroides thetaiotamicron, E. chrysanthemi, Alternaria mali, Fusarium 

oxysporum, Ralstonia solanacearum, Bacillus sp) [23-28]. Pectin lyases catalyze non-hydrolytic 

cleavage of pectates or pectinates, lyases cleaves the glycosidic linkages at C-4 by 

simultaneously eliminating the H at C-5 by producing 4:5 double bonded unsaturated 

products. Polygalacturonate lyases were majorly reported to be secreted by bacteria and 
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some pathogenic fungi especially soft rot fungi (Figure 1.1). Pectin esterases are a class of 

carbohydrate esterases which are involved in de-esterification of methyl ester linkages 

present on the galacturonan chains of pectic substances present in the plant cell wall [29-32]. 

The de-esterified pectin is further degraded by the polygalacturonases and lyases (Figure 

1.1) [13, 31]. The mode of action of the pectin esterases differs significantly based on its origin, 

pectin esterases secreted by fungi acts through a multichain mechanism to cleave methyl 

groups randomly. Whereas, pectin methyl esterases originated from plant acts either on the 

non-reducing ends or it acts on the groups next to free carboxyl groups by a single chain 

mechanism [32, 33].  

1.2. Lignin Oxidizing Enzymes (LO):  Non-specificity and high oxidation potential are 

the main attributes of lignin oxidizing enzymes. Lignin oxidizing enzymes are categorized into 

four classes LO1 (Laccases), LO2 (Lignin peroxidases, Manganese peroxidases, Versatile 

peroxidases and Chloroperoxidases) and LO3 (Cellobiose dehydrogenase) (Figure 1.1). The 

most thoroughly studied fungal enzymes involved in lignin attack are described below: 

 

Figure 1.1: Schematic representation of different lignin oxidizing enzymes namely, laccases 

(PDB ID: 3FPX), lignin peroxidase (LiP) (PDB ID: 1B85) [34], manganese peroxidase (MnP) 

(PDB ID: 1YYD) [35], versatile peroxidase (VP) (PDB ID: 3FKG) , cellobiose dehydrogenase 

(PDB ID: 1KDG) [36].  All the enzyme structures were obtained from the PDB RCSB repository. 
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1.2.1. Laccases (EC 1.10.3.2, benzenediol: oxygen Oxidoreductase)   

Laccases represents the largest sub group of blue multicopper oxidases (MCO) and 

are widely distributed among eukaryotes (fungi, plants) prokaryotes (bacteria) [37] They 

perform varied functions based on the source organism [37]. Laccase was first discovered in 

the sap of the Japanese lacquer tree Rhus vernicifera [38] and then it was also demonstrated in 

fungi [39]. Although laccases were discovered during early 19th century they have received 

much attention during the last five decades for their application to biofuel and biorefinery 

fields. The involvement of laccase in the degradation of wood by fungal groups such as 

basidiomycetes, ascomycetes has attracted scientific communities to study the structure, 

function and mechanisms of laccases [40]. Many fungal species belonging to the 

basidiomycetes phylum such as Abortiporus biennis, Agaricus bisporus, Agaricus brunnescens, 

Armillaria mellea, Aspergillus nidulans, Botrytis cinerea, Ceriporiopsis subvermispora, 

Ganoderma lucidum, Lentinus edodes, Myceliophthora thermophile, Neurospora crassa, 

Penicillium crysogenum, Phanerochaete chrysosporium, Phlebia brevispora, Phlebia radiata, 

Pleurotus erygii, Pleurotus ostreatus, Pleurotus sojar-caju Polyporus species, Rhizoctonia Solani, 

Trametes hirsuta, Trametes versicolor and Trichoderma were reported to secrete laccase  [41]. 

Laccases are widely studied for two major functions a) there role in lignin polymerization 

(lignification) in plants, b) lignin depolymerization by fungi [42]. The contrasting role of 

laccases on lignin depolymerization was proved in vitro by Hatakka 1994 and Youn et al 1995, 

showing the oxidative reaction of laccases on lignin, resulting in loss of an electron from 

phenolic hydroxyl groups of lignin resulting in phenoxy radicals [43, 44]. These studies have 

also showed that these radicals can spontaneously reorganize leading to the cleavage of alkyl 

side chains of polymer. At the same time, the polymerizing activity of the laccase might result 

in the polymerization of low molecular weight compounds [41]. These studies suggested that 

lignin degradation by fungi in nature occurs by the synergistic effect of other lignin degrading 

enzymes and non-enzymatic components which establishes a balanced environment between 

lignin depolymerization and enzymatic polymerization [41]. Although studies have reported 

the involvement of laccases in both lignin polymerization and depolymerization, the exact 

role of laccases and other partnering enzymes in the degradation and modification of lignin 

were still under investigation [41, 42]. Apart from wood decay, laccases play important role 

in fungal physiological processes such as morphogenesis, fungal plant pathogen/host 

interactions, stress defense and lignin degradation [41, 45]. In fungi, laccases are expressed 
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during different stages of fungal development (morphogenesis, growth of rhizomorphs, 

sporulation, pathogenesis and virulence). According to Leatham and Stahmann 1981, 

increased laccase activity was observed in the developing fruiting bodies of Lentinus edodes 

(a commercially cultivable mushroom) [46]. The role of laccases on mushroom development 

was proved by Ikegaya et al (1993), in this study the developing fruiting bodies of L. edodes 

were treated with diethyldithiocarbamate (a potential inhibitor of laccase) which resulted in 

the decreased growth of L. edodes fruiting bodies, thus proving the role of laccase in fungal 

development [47]. A similar study was conducted on Armillaria mellea by Worrall et all (1986) 

which showed the requirement of laccase for the development and growth of rhizomorphs 

[48]. Laccases are also involved in imparting specific virulence properties to the fungi, Botrytis 

cinerea (common plant infecting fungi) secretes laccases which causes infection in some 

plants especially carrot and cucumber by triggering plant toxins such as cucurbitacins and 

tetracyclic triterpenoids. However, the virulence of these laccases was inhibited in EDTA 

pretreated plant tissues [49]. Thus, fungal laccases play three major functions: lignin 

degradation, detoxification and pigment formation. Industrially laccases are important in 

paper and pulp, bio bleaching, textile industries etc. 

Mechanism: Laccases use their distinctive redox ability of copper ions for catalyzing the 

oxidation of various aromatic substrates concurrently reducing the molecular oxygen to water 

[50]. Laccases are able to catalyze direct oxidation of ortho, para-diphenols, aminophenols, 

polyphenols, polyamines, aryl diamines and also some inorganic ion [41, 51-55]. Laccases 

depends on copper (Cu) for their catalytic action, based on the number of copper ions 

laccases can be classified as dimeric or tetrameric glycoproteins. In addition, based on the 

types of copper ion centers they are classified as: a) Type-I (blue copper center) b) Type-II 

(normal copper center) c) Type-III (coupled binuclear copper center) that differ in their 

characteristic electronic paramagnetic resonance (EPR) signals [56, 57]. Type-I copper 

coordinates with four amino acids as ligands: two histidines, one cysteine and one methionine. 

Type-I copper containing laccases are generally a deep blue color, which can be detected 

by its absorbance at 600 nm wavelength. However, laccases which fail to absorb at 600 nm 

were reported in Pleurotus ostreatus (called white laccase) [58] Panus tirinus (called yellow 

laccases) [59]. Type-II copper coordinates with two histidine and water as ligands, Type-III 

copper coordinates with three histidines and a hydroxyl bridge which imparts strong anti-

ferromagnetic coupling between the type-III copper atoms [60]. Type-II copper atoms do not 

absorb in the visible spectrum, while type-III copper atoms have an electron absorption at a 
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wavelength of 330 nm. Based on the structural properties of type of copper ions laccases are 

divided into high and low redox potential enzymes. Bacteria and plants secrete low redox 

potential laccases, whereas white rot fungi and some basidiomycetes secrete high-redox 

potential laccases [61, 62]. 

Different copper centers present in the laccase participate and completes the 

enzymatic reaction. Unlike peroxidases laccases does not require hydrogen peroxide for the 

oxidation of monolignols. Enzyme catalysis can be divided into three main stages: the copper 

ion of type-I is reduced by the reducing substrate followed by internal electron transfer 

between the type-I, type-II and type-III Cu clusters [37]. Finally, the reduction of oxygen takes 

place at the type-II and III Cu’s resulting in water formation (Figure 1.2). Invitro lignin 

degradation by laccase primarily oxidizes phenolic hydroxyl groups of lignin to form 

phenoxy radicals which further reorganize to cleave the alkyl side chains. Laccase can 

degrade β-1 and β-O-4 dimer linkages between Cα-Cβ and cause Cα oxidation and aryl-alkyl 

cleavages [37]. Thus the generated reactive radicals further release monomers by breaking 

down covalent bonds [63].  Due to the steric hindrance of laccase it cannot directly contact 

large polymers, thus small organic compounds or metals such as veratryl alcohol, manganese 

and 3-hydroxy anthranilic acid are oxidized and further activated to mediate radical catalyzed 

depolymerization of lignin [63, 64]. 
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Figure 1.2: Catalytic cycle of laccase. Reprinted with permission from ref [64], Copyright © 

2008 Springer Science+Business Media B.V. 

1.2.2. Peroxidases (EC:1.11.1.x): Peroxidases are large group of enzymes widely 

distributed among plants, animals and microbes. Peroxidases play a wide variety of activities 

based on the source of the organism. Peroxidases are involved in several physiological 

processes such as plants defense mechanisms (response to pathogens), wound healing, auxin 

catabolism, lignification and suberization [65]. Microbes such as fungi and bacteria are well 

known for their ability of delignification which is efficiently fulfilled by the different types of 

peroxidases such as (LiP, MnP and VP). Peroxidases can also efficiently decolorize synthetic 

dyes and bioremediation of waste water and degradation of several toxic chemicals such as 

phenolic contaminants, polychlorinated biphenyls, chlorinated alkanes and alkenes, 

chlorinated dioxins, chlorinated insecticides and removal of endocrine disruptive chemicals 

etc, thus playing variety of roles in the environment [66]. Molecular structures of lignin 

degrading peroxidases share several common characteristics such as [67], Ligninolytic 

peroxidases generally contain a haem cofactor located internally in a cavity (haem pocket), 

which is connected to the protein by two small access channels [67-71]. Larger channel are 

common among all haem peroxidases, they are required for the hydrogen peroxide to reach 

the haem and react with (Fe+3) forming an activated two electron enzyme form called 

compound I [67-71]. The entrance of this channel forms the substrate binding site in some 

peroxidases. A second channel extends to the heme propionate substrate where some 

specific lignolytic enzymes oxidize Mn2+ and Mn3+ which acts a diffusible oxidizer of phenolic 

lignin and other organic molecules [67-71]. In this section we will be focusing on the 

delignification mechanisms of lignin peroxidases, manganese peroxidases, and versatile 

peroxidase. 

1.2.3. Lignin Peroxidases (E.C. 1.11.1.14) 

Lignin peroxidases (LiP) the most studied lignin depolymerizing enzymes, LiP was first 

discovered in the extracellular medium of P.  chrysosporium under nitrogen limited conditions 

[72]. Similar to classic peroxidases, LiP are dependent on hydrogen peroxide. The overall 

reaction mechanism of LiP is 1,2-bis(3,4-dimethoxyphenyl) propane-1,3-diol + H2O2 ⇌ 3,4-

dimethoxybenzaldehyde + 1-(3,4-dimethoxyphenyl)ethane- 1,2-diol + H2O [64]. LiP can 

oxidize a wide range of phenolic compounds, organic compounds and also different lignin 
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model non-phenolic compounds by using hydrogen peroxide with a redox potential up to 1.4 

V, thus showing its non-specificity towards substrates [73]. 

Mechanism: Lignin peroxidase resembles horse radish peroxidase (a classical peroxidase 

highly studied) by containing Fe (III) as a cofactor which is pentacoordinated to four heme 

tetrapyrrole nitrogens and to a histidine residue [74]. Lignin peroxidases are dependent on 

H2O2 for their reaction. H2O2 oxidize LiP resulting a two electron-oxidized intermediate 

(Compound I) in which iron is present as Fe (IV) leaving a free radical on the tetrapyrrole ring 

or on a nearby amino acid. Compound I then oxidizes a donor substrate to form a second 

intermediate (Compound II) and a substrate free radical (Figure 1.3) [74]. Later reduction of 

the enzyme to its resting state can be accomplished either by the same substrate molecule or 

with a second substrate molecule by giving off substrate-free radical [74]. An important 

functional difference between LiP and other classical peroxidases is that lignin peroxidases 

can oxidize aromatic rings that are moderately activated by electron donating substituents, at 

the same time classical peroxidases act only on strongly activated aromatic substrates. 

Therefore, LiP and horseradish peroxidase can oxidize 1, 2, 4, 5-tetra-methoxybenzene, 

phenols and anilines, at the same time LiP are capable of abstracting an electron from 

aromatics that carry only two or three ether like the major nonphenolic structures of lignin 

[75]. Primary products of this oxidation are temporary cation radical intermediates which 

certainly breakdown. Majorly Cα-Cβ bonds of propyl side chains are broken down to give 

benzaldehydes which are the precursors of benzoic acid molecules, these benzoic acid 

molecules are mainly observed in lignin decaying white rot fungi (Figure 1.3) [76]. The 

unusual activity of lignin peroxidases is due to two structural differences, an electron-deficient 

iron atom in the porphyrin compared to classical peroxidases which makes LiP a stronger 

oxidant [77] and an invariant Trp171 in the isozyme of LiPA. This residue is present on the 

enzyme surface and is known to participate in a wide range electron transfers from aromatic 

substrates since they cannot contact the oxidized haem directly [78]. This important feature 

of LiP is responsible for oxidizing complex lignin and its related substrates directly. This 

function of Trp171 in LiPA was proved by a site directed mutagenesis in which the Trp171 was 

replaced by serine, which resulted in the loss of activity [79]. It was shown that the efficiency 

of LiP catalyzed oxidation of lignin molecules markedly decreases with an increase in size of 

the lignin molecule. LiP catalyzed oxidation of lignin trimers was found to be only 4% of the 

rate of oxidation of a monomer model [80]. Oxidation of lignin molecules by LiP takes place 

in the presence of veratryl alcohol, and the role of VA in oxidation by LiP are given below 
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[74]. Studies have showed that the VA cation radical  oxidizes has a long half-life of 40ms even 

at acidic conditions [81, 82]. VA is the substrate of LiP. It was suggested that the VA cation 

radical oxidizes lignin molecules at remote locations [83]. VA acts as an efficient electron 

donor to protect LiP from oxidative inactivation by hydrogen peroxide. As LiP oxidizes large 

and complex lignin substrates, which is a slow reaction, VA prevents oxidization of LiP [84]. 

VA is also essential for the reduction of LiP compound II. Compound I is reduced by non-

methoxylated lignin structures. As these lignin structures are difficult to oxidize since they 

carry only one electron donating ether group. Compound II of LiP is a comparatively weaker 

oxidant than compound I [85]. 

Figure 1.3: Chemical structures and reactions discussed in the text. (a) The principal β-O-4 

structure of lignin and pathway for its Cα–Cβ cleavage by LiP. (b) A phenylcoumaran lignin 

structure. (c) A resinol lignin structure. (d) LiP-catalyzed oxidation of the fungal metabolite 

veratryl alcohol. Gymnosperms contain lignin’s in which most subunits have R1 = OCH3 and 

R2 = H. Angiosperm lignin’s also contain these structures but have in addition subunits in 

which R1 = OCH3 and R2 = OCH3. Grass lignin’s contain both types of structures but have in 

addition some subunits in which R1 = H and R2 = H. These nonmethoxylated lignin structures 

are more difficult to oxidize than those that contain one or two methoxyl groups. In the 

predominating nonphenolic structures of lignin, R3 = lignin, whereas R3 = H in the minor 

phenolic structures. Reprinted with permission from ref [74], Copyright © 2008, Elsevier. 
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1.2.4. Manganese Peroxidases (EC 1.11.1.13): 

Wood decaying white rot fungus and other litter decomposing fungi efficiently degrade lignin 

in wood. These fungi secrete several non-specific oxidoreductases, among them manganese 

peroxidase plays an important role [86]. Manganese peroxidase (MnP) was first discovered 

in P.  chrysosporium two decades ago [87, 88], however it received less attention then lignin 

peroxidase in beginning. Later it was found that LiP is not produced by all white rot fungi [43, 

89, 90]. Production of MnP is limited only to basidiomycetes. Mainly two ecophysiological 

groups of fungi i.e. wood degrading fungi causing white rot and soil litter decomposing fungi 

secrete manganese peroxidase [90]. Wood decaying fungi belonging to families such as 

Meruliaceae, Coriolaceae, Polyporaceae and soil litter decomposing fungi such as 

Strophoriaceae, Tricholomataceae are known fungal families, which secrete MnP. Some 

prominent MnP producing fungi are Abortiporus biennis, Agaricus bisporus, Armillaria mellea, 

Auricularia sp. M37, Bjerkandera adusta, Ceriporiopsis subvermispora, Coriolopsis polyzona, 

Dichomitus squalens, Ganoderma lucidum, Heterobasidion annosum, Hypholoma fasciculare, 

Lentinula (Lentinus) edodes, Panus tigrinus, Phaeolus schweinitzii, Phallus impudicus, 

Phanerochaete chrysosporium, Phanerochaete sordida, Phlebia brevispora, Phlebia radiata, 

Pleurotus enryngii, Pleurotus sajor-caju, Stropharia aeruginosa, Stropharia coronilla, Trametes 

hirsuta, Trametes versicolor [86].  

Mechanism: MnP is different from other peroxidases as it uses Mn (II) as the reducing 

substrate. MnP oxidizes Mn (II) to Mn (III), which then catalyzes the oxidation of a wide range 

of monomeric phenols, lignin model phenolic compounds and dyes [87, 91, 92]. The reaction 

mechanism of MnP proceeds as: first oxidation of Mn (II) by compound I (MnP-I), followed by 

oxidation of compound II (MnP-II) yielding Mn (III). MnP is a strong oxidizing agent like LiP, 

it cannot oxidize nonphenolic lignin related compounds because it lacks the invariant Trp171 

residue which is required for electron transfer to aromatic substrates [74]. MnP has a 

manganese binding site which contains many acidic amino acids and also a heme propionate 

group. Thus, one electron transfer to compound I of MnP takes place from bound Mn+2. Further 

Mn+3 is released from the active site in presence of the bidentate chelators such as oxalate, 

which helps prevent the disproportionation to Mn+2 and insoluble Mn+4. This reaction is 

required for the transfer of oxidizing power of MnP to Mn3+, which diffuses into the lignified 

cell wall thus attacking it from inside [74]. An important feature of MnP is to oxidize the low 

permeable  lignocellulose network making it different from other peroxidases [64]. Chelators 
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such as oxalate increase the electron density on Mn+3 which makes it a weak oxidant, thus 

Mn+3 organic acid chelates produced by MnP cannot oxidize the nonphenolic substrates of 

lignin. Mn+3 chelates cannot cause extensive ligninolysis as they can only attack rare phenolic 

structures of lignin, which often are the end groups of lignin. The catalytic cycle of MnP begins 

with the binding of hydrogen peroxide or an organic peroxide to the native ferric enzyme 

resulting in the formation of an iron-peroxide complex (Figure 1.4). Further the breakdown of 

the oxygen-oxygen peroxide bond depends on a 2-electron transfer reaction from the heme 

resulting in the formation of MnP compound I (i.e. a Fe4+-oxo-porphyrin radical complex). The 

dioxygen bond is cleaved resulting in removal of water and further reduction proceeds via 

MnP compound II. The Mn2+ ion (monochelated) donates one electron to the porphyrin 

intermediate and is oxidized to Mn3+. Similarly compound II is reduced by releasing another 

Mn3+ and a second water molecule, thus leading to the resting state of the enzyme (Figure 

1.4) [93-95]. 

Figure 1.4: Catalytic cycle of manganese peroxidase. Reprinted with permission from ref [86], 

Copyright © 2002, Elsevier. 

The oxidation of phenolic compounds by MnP occurs by Mn (III) chelator complexes, which 

diffuses and catalyzes one electron oxidation of phenolic compounds producing a phenoxy 

radical intermediate. The phenoxy radical intermediate undergoes bond cleavages, 

rearrangements and degradation of compounds non-enzymatically to produce different 
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breakdown products [92, 96, 97]. In contrast unchelated Mn (III) causes the formation of 

reactive radicals as second mediators for the oxidation of non-phenolic compounds. 

Oxidation of non-phenolic compounds by MnP is different from LiP, as LiP oxidizes by 

abstracting electrons from the aromatic ring resulting in a radical cation. In presence of thiols 

like glutathione, Mn (III) causes the oxidation of benzyl alcohol and diarylpropane structures 

to their corresponding aldehydes [98, 99]. 

1.2.5. Versatile Peroxidases: 

Versatile peroxidases a new family of lignolytic peroxidases were reported for the first time 

in P. chrysosporium along with other lignolytic enzymes such as LiP and MnP [67]. Several 

fungi belonging to genera such as Pleurotus, Bjerkandera, Lepista, Panus and Trametes species 

were reported to produce versatile peroxidase (VP). Versatile peroxidase have important 

properties which combines the substrate specificity characteristics of the three fungal 

peroxidases such as manganese peroxidase, lignin peroxidase and Coprinus cinereus 

peroxidase [67]. Two well-known studies have revealed the occurrence of versatile 

peroxidases in nature, in the first study a Mn2+ binding site was introduced into the LiP of P. 

chrysosporium by site directed mutagenesis, the resulting enzyme had MnP activity [100]. In 

the second study a tryptophan residue similar to that in LiP was introduced into the MnP of P. 

chrysosporium and the enzyme acquired LiP activity [101]. Versatile peroxidase coding genes 

were first cloned and sequenced from Pleurotus eryngii. Studies of the catalytic properties of 

VP suggested that they were due to its hybrid molecular construction combining different 

oxidation and substrate binding sites[102, 103].  
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Figure 1.5: Schemes of VP catalytic cycle. (a) Basic cycle described by [102] including two-

electron oxidation of the resting peroxidase (VP, containing Fe3+) by hydroperoxide to yield 

compound I (C-I, containing Fe4+-oxo and porphyrin cation radical), whose reduction in two 

one-electron reactions results in the intermediate compound II (C-II, containing Fe4+-oxo after 

porphyrin reduction) and then the resting form of the enzyme. As shown in the cycle, VP can 

oxidize both: (i) aromatic substrates (AH) to the corresponding radicals (A·); and (ii) Mn2+ to 

Mn3+, the latter acting as a diffusible oxidizer. (b) Extended cycle including also compounds 

IB (C-IB, containing Fe4+-oxo and Trp radical) and IIB (C-IIB, containing Fe3+ and Trp radical) 

involved in oxidation of veratryl alcohol (VA) and other high redox potential aromatic 

compounds (C-IB and C-IIB are in equilibrium with C-IA and C-IIA respectively, which 

correspond to C-I and C-II in (a) (other low redox potential aromatic compounds are probably 

oxidized by both the A and B forms but they are not included for simplicity). The active Trp in 

C-IB and C-IIB would be Trp164 (the part of the cycle showing aromatic substrate oxidation 

would be also applicable to LiP, being Trp171 the active amino acid).. Reprinted with 

permission from ref [67], Copyright © 2005, Elsevier. 

 

Mechanism: Basic features of versatile peroxidase are similar to those of all other classical 

peroxidases, however it is unique as far as the substrates that it is able to oxidize. A complete 

catalytic cycle combining those of other fungal peroxidases such as LiP and MnP was 

proposed by Ruiz-Duenas et al. Similar to LiP, versatile peroxidase also initiates the LRET 

pathway (Long range electron transfer) at an exposed tryptophan residue [67, 104]. Studies 

have examined the catalytic mechanism of VP using veratryl alcohol (reducing substrate) and 

its transitory states in the catalytic cycle. On reaction with one molecule of hydrogen peroxide 

the ferric group of VP (resting state) was converted to Compound I (Fe4+-oxo-porphyrin+ 

complex) causing spectral changes (Figure 1.5) [67, 105, 106]. Compound I oxidizes a 

molecule of veratryl alcohol resulting in Compound II (Fe4+-oxo), which will further oxidize 

another molecule of veratryl alcohol further reducing the enzyme back to its resting state [67, 

106]. VP can oxidize high redox potential dyes like reactive black 5 (RB5) and also can oxidize 

low redox potential compounds such as phenolic monomers, simple amines, Mn2+ etc [104]. 

Compared to LiP and MnP the oxidization capacity of VP is higher for phenolic compounds; 

this ability might be due to its relatively more accessible distal main solvent channel allowing 

a third lower redox potential substrate oxidation site as in CiP. A research study conducted 

by Parez-Boada et al reported that the spectral changes occurring during the oxidation of 
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phenolic compounds by VP shows that VP in its resting state has a higher absorbance at 407 

nm. Similarly, during charge transfer, the transient states such as Compound I and II have an 

absorbance at 505 nm and 637 nm respectively [67, 106]. Two major enzymes MnP and VP are 

known for their ability to oxidize Mn2+ to Mn3+, the Mn2+ oxidation site of P. eryngii VP is similar 

to that of P. chrysosporium MnP. In VP, the Mn2+ binding site is formed by the side chains of 

Glu36, Glu40 and Asp175 located in front of the internal propionate of heme. Carboxylate 

groups of the amino acids and heme propionate are responsible for Mn2+ binding and for 

succeeding electron transfer to the activated heme of VP compounds I and II. Studies of the 

VP crystal structure showed a variable orientation of the Glu36, and Glu40 sidechains by 

interaction with Asp175 [104]. The position of these amino acids in recombinant VP shows an 

open gate conformation before exposure to Mn2+, thus enabling the oxidation of the Mn2+. At 

the same time native P. eryngii VP shows that the two glutamate side chains are pointed 

towards the Mn2+ corresponding to a closed gate conformation. In this conformation the 

carboxylate groups of Glu36, Glu40, Asp 175 and the propionate heme groups are at a 

distance from Mn2+. VP also oxidizes high redox potential substrates similar to LiP (a classic 

ligninolytic enzyme) through the LRET pathway. This pathway occurs in several redox 

proteins like cytochrome-c-peroxidase, which oxidizes cytochrome-c on its surface by 

transferring electrons to tryptophan residues [104-106]. The LRET pathway was known earlier 

for its involvement in lignin degradation by different ligninolytic enzymes, thus overcoming 

steric hindrance which prevent the direct interaction of the heme group and the lignin 

polymer. Structural studies of VP show that three possible LRET pathways are involved during 

the oxidation of aromatic substrates by VP [104]. Oxidation of aromatic substrates starts at Trp 

164 or His232 of VPL and at His82 or Trp170 of VPS1. VP can also efficiently oxidize low 

reduction potential compounds like ABTS, p-hydroquinone and 2, 6 dimethoxy phenol. 

Enzyme kinetics studies have showed that VP has two independent oxidation sites 

characterized by high and low specificities. Site directed mutagenesis of VP Trp164 

performed by Ruiz-Duenas et al showed that in Trp164 mutants the high specificity active site 

was removed while the low specificity site remained intact [104, 105]. Studies have confirmed 

a similar effect of a W164S mutation on VP oxidation of phenols. Based on these studies we 

conclude that the catalytic features of VP are due to its hybrid molecular architecture which 

includes different oxidation sites for Mn2+, high redox potential substrates (aromatic 

compounds) and low redox potential substrates (phenols and dyes) [104, 105]. 
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1.2.6. Cellobiose dehydrogenase 

Cellobiose dehydrogenase is an extracellular enzyme involved in carbohydrate metabolism 

that was shown to be involved in lignin degradation [107, 108]. It was first isolated from an 

imperfect form of P. chrysosporium (Sporotrichum pulverulentum) [109]. Cellobiose 

dehydrogenase is a flavocytochrome enzyme which can oxidize various carbohydrates such 

as cellobiose (major product of cellulose degradation) and mannobiose (product of mannose 

degradation) [110]. Several fungi were reported to produce cellobiose dehydrogenase, 

mostly white rot fungi such as P. chrysosporium (Sporotrichum pulverulentum), Trametes 

versicolor, Pycnoporus cinnabarinus, Polyporus dichrous, Merulius tremellosus, Phlebia radiata, 

Pleurotus ostreatus and Fomes annosus. Coniophora puteana (brown rot fungi) soft rot fungi, 

such as Sporitrichum thermophile (Myceliophthore thermophile), Schizophyllum commune, 

Humicola insolens, Sclerotium Rolfsii, Chaetomium cellulolyticum, imperfect soft rot fungi such 

as Monilla sitophila, Agaricus bisporus (Mushroom, Stachybotrys (Mold), Cladodporium(Mold) 

[109]. CDH degrades cellobiose and mannobiose to lactones by removing two electrons, 

which can be further transported to electron acceptors such as quinones, phenoxyradicals 

and dioxygen [110]. In CDH two prosthetic groups, FAD and heme, makes the enzyme 

suitable for the reduction of one electron acceptors such as radicals and metal ions. CDH has 

a high specificity for amorphous cellulose and less towards microcrystalline cellulose a 

unique property among non-hydrolytic enzymes [110]. CDH can produce hydroxyl radicals 

by reducing Fe3+ to Fe2+ and O2 to H2O2, These reactive species depolymerize cellulose, xylan 

and to some extent lignin polymers [110]. 

Mechanism: CDH has the properties of a typical dehydrogenase with both oxidative and 

reductive reactions. CDH oxidizes the C1 position of a saccharide to a lactone which is 

spontaneously hydrolyzed to a carboxylic acid. The electrons taken up by the enzyme are 

later transferred to one or two electron acceptors [111, 112]. Substrate specificity of CDH is 

higher for cellobiose, cellodextrins, lactose, mannobiose and galactosylmannose. However, 

the later substrates have higher Km-values, the true substrates for CDH are di or 

oligosaccharides with reducing ends containing glucose or mannose residues. 

Monosaccharides such as glucose, mannose and maltose have very high Km values 

suggesting that there is binding of two glucose residues to the active site in separate subsites, 

at the same time monosaccharides have lower Kcat values then the di or oligo saccharides 

which suggests that binding of the β-dihexosides to the active site stimulates the catalysis 
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creating an induced fit [113]. CDH also generates highly reactive hydroxyl radicals by a 

Fenton type reaction in the presence of an electron donor. Several studies were conducted to 

study the individual roles of the two prosthetic groups (flavin and heme domains) in the 

oxidation of compounds, which showed that oxidation of cellobiose (electron donor) is carried 

out by the FAD group which is further converted to FADH2 and later transfers the electrons to 

the heme group (Figure 1.6) [111, 112, 114]. Several groups have proposed a role for CDH in 

lignin depolymerization by reducing phenoxy radicals thus preventing repolymerization of 

the radicals. Studies conducted by Henriksson et al (1995) have showed that the CDH could 

stop the repolymerization of lignin model compounds, this was showed by incubating CDH 

with cellobiose, ferric ions, hydrogen peroxide and lignin model compounds. CDH generates 

highly reactive hydroxyl molecules that depolymerized the polymers showing that CDH does 

not depolymerize lignin or its subunits directly but hydroxyl radical groups are involved in 

the degradation of lignin related compounds [107, 115-117]. 

Figure 1.6: Reactions of cellobiose dehydrogenase based on [118]. ‘Fe’ represents the heme 

iron, ‘A’ represents the one-electron acceptor. Reprinted with permission from ref [119], 

Copyright ©2008, Oxford University Press.         
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Table 1.2: Lists the catalytic mechanism and structural studies of different lignin oxidizing 

enzymes. 

 

 

1.3. Lignin Degrading Auxiliary Enzymes (LDA): Lignin degrading auxiliary enzymes 

are mostly H2O2 producers, as lignin degrading enzymes such as lacccase, LiP, MnP, VP 

require the presence of extracellular H2O2. Currently there are 7 enzymes classified as lignin 

degrading auxiliary enzymes (LDA): aryl alcohol oxidase (LDA1), vanillyl alcohol oxidase 

(LDA2), glyoxal oxidase (LDA3), pyranose oxidase (LDA4), galactose oxidase (LDA5), 

glucose oxidase (LDA6) and benzoquinone reductase (LDA7) (Figure 1.7) [143]. Among these 

7 different enzymes aryl alcohol oxidase, glyoxal oxidase are the most active H2O2 generating 

enzymes [108, 144]. 

 

 

Enzyme, FOLy,  

E.C number 
Catalytic Reaction Popular Strain Reference 

Laccase (LO1) 

(EC 1.10.3.2) 

4-benzendiol + H2O2 →4-benzosemiquinone + 

2H2O 

Trametes versicolor [60] 

Coprinus cinereus [120] 

Melanocarpus albomyces 

[121] 

Cerrena maxima [122] 

Thielavia arenaria [123] 

Lentinus tigrinus [124] 

Lignin Peroxidase 

(LO2) 

(EC 1.11.1.14) 

LiP oxidizes alkyl side chains and benzyl alcohol, 

it is involved in breakdown of C-C side chains 

and aromatic rings of lignin 

Trametes cervina [125] 

Phanerochaete 

chrysosporium 

[126, 127] [128-132] 

Manganese 

Peroxidase (LO2) 

(EC 1.11.1.13) 

MnP’s catalytic mechanism is dependent on 

hydrogen peroxide and Mn2+ ions. 

Phanerochaete 

chrysosporium [35, 133-

136] 

Versatile 

Peroxidase (LO2) 

(EC 1.11.1.16) 

VP has substrate specificity features similar to that 

of MnP and LiP 

Pleurotus eryngii [105, 106, 

137-139] 

Cellobiose 

Dehydrogenase 

(LO2) 

(EC 1.1.99.18) 

CDH catalyzed reactions [110] 

Cellobiose + 2 Fe3+  → Cellobionolactone +2 Fe2+ 

Cellobiose + +O2   →  Cellobionolactone + H2O2 

(Spontaneous reaction) 

Fe2+ + H2O2      →       Fe3+ + OH- + OH* 

Phanerochaete 

chrysosporium [36, 140-

142] 
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Figure 1.7: Schematic representation of lignin degrading auxiliary enzymes namely, aryl 

alcohol oxidase (PDB ID: 3FIM) [145], vanillyl alcohol oxidase (PDB ID:1W1J) [146], glucose 

oxidase (PDB ID: 1CF3) [147], galactose oxidase (PDB ID: 2WQ8) [148], pyranose oxidase 

(PDB ID: 4MIF) [149]. benzoquinone reductase (PDB ID: 4LA4). All the above enzyme 

structures were obtained from PDB RCSB repository. 

1.3.1. Aryl Alcohol Oxidase: 

Aryl alcohol oxidase (AAO) (EC.1.1.3.7) was first observed in Polystictus versicolor (or 

Trametes versicolor) during the 1960s. Aryl alcohol oxidase was detected and characterized 

in white rot basidiomycetes such as Pleurotus species (P. eryngii), Bjerkandera adusta and a 

few ascomycetous fungi [150-154]. White rot fungi were found to be involved in efficient 

degradation of lignin, aryl alcohol oxidase was found to be involved in lignin 

depolymerization process by generating H2O2 and fueling ligninolytic peroxidases [150]. 

AAO is an FAD containing enzyme belonging to the glucose-methanol-choline oxidase (GMC) 

family of oxidoreductases. It was reported that AAO of Pleurotus eryngii was found to be 

involved in generation of peroxide by redox cycling of p-anisaldehyde (a fungal extracellular 

metabolite), in addition AAO also was found to be involved in oxidation of polyunsaturated 

primary alcohols [155]. Redox cycling of p-methoxylated benzylic metabolites by P. eryngii 

takes places through an oxygen activation reaction by AAO. Amino acid sequence 
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comparisons of AAO revealed homology with glucose oxidase. AAO genes from P. eryngii 

and Pleurotus pulmonarius were cloned and sequenced [156]. For several years only the AAO 

sequence from P.eryngii was available, however recent advancements in genome sequencing 

and the sequencing of basidiomycetes genomes has revealed the sequence of around 40 AAO 

sequences and 112 GMC (glucose-methanol-choline oxidases) superfamily sequences were 

reported [157]. Kinetic isotope studies have showed that alcohol oxidation by AAO occurred 

by hydride transfer to the flavin domain and then hydroxyl proton transfer to the base [157]. 

At the same time site directed mutagenesis studies of AAO have showed that His502 is 

involved in activation of alcohol substrates by proton abstraction, this mechanism was later 

extended to other GMC oxidoreductases [157].  

Mechanism: Structural and functional studies of AAO isolated from P. eryngii show that it has 

a variety of substrates, catalyzing the oxidation of primary and polyunsaturated alcohols 

[155]. The overall reaction mechanism of AAO can be divided into an oxidative and a 

reductive reaction, first AAO catalyzes the oxidative dehydrogenation of the substrate 

(reductive reaction) later the flavin adenine dinucleotide is reoxidized by molecular oxygen, 

generating H2O2 (Figure 1.8) [150]. Comprehensive studies of the substrate specificities of 

AAO  revealed that it catalyses the oxidation of aromatic alcohols such as p-anisyl alcohol and 

aliphatic polyunsaturated primary alcohols to their corresponding aldehydes [155]. It was 

reported that phenolic hydroxyls  strongly inhibits the enzymatic activity of AAO. The redox 

cycling of p-Anisaldehyde (important extracellular metabolite of P. eryngii) involves 

intracellular aryl-alcohol dehydrogenase along with AAO which results in hydrogen peroxide 

generation (Figure 1.8) [158]. AAO seems to have a similar catalytic mechanism to choline 

oxidase (GMC oxidoreductase family)  which catalyzes the oxidization of alcohol substrates 

resulting in the production of aldehydes. Earlier studies on AAO of P. eryngii shows that it 

catalyzes the conversion of primary alcohols of varied structural properties. AAO exhibits a 

wide range of electron donor substrate specificity by catalyzing the oxidation of aromatic and 

π-system containing primary alcohols such as benzylic alcohol, napthylic alcohol and 

aliphatic polyunsaturated alcohols [150, 155, 159]. The  π-systems cause an increase in 

electron availability  at the benzylic position causing hydride abstraction by the flavin N5 

atom. The structural  of the AAO active site prevents the oxidation of secondary alcohols as 

they cannot be accommodated at the approbriate distance from the catalytic histidine and 

flavin N5 atom due to the presence of Phe501 [160]. Bisubstrate kinetic analysis with different 

benzylic alcohols shows the overall AAO catalytic cycle is highly influenced by the nature of 
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substituents on the benzene ring. AAO catalysis is divided into a reductive and oxidative 

reactions, when it is treated with electron withdrawing substrates such as 3-chloro and 3-

fluorobenzyl alcohols both t half reactions become independent resulting in aldehyde 

product dissociation before the oxygen reaction by a ping-pong steady state mechanism 

[161].  In electron donor substituents such as methoxylated benzyl alcohols, oxygen reacts 

with the reduced AAO-aldehyde complex resulting in a ternary complex prior to aldehyde 

product release [161]. The catalytic cycle of AAO depends on the stacking and stabilizing 

interactions of aromatic substrate and product at the active site Tyr92 residue (involved in 

stabilization of alcohol substrate) which occur by switching between ternary and ping-pong 

mechanisms [161]. 

Figure 1.8: Chemical structure of various substrates of Pleurotus AAO (I, benzyl alcohol; II, p-

anisyl alcohol; III, cinnamyl alcohol; IV, 2-naphthalenemethanol; and V, 2,4-hexadien-1-ol) 

and relative activity estimated as O2 consumption [155]. Scheme for H2O2 production by 

anisaldehyde redox-cycling involving extracellular AAO and intracellular AAD. Reprinted 

with permission from ref [162], Copyright © 2000, Elsevier. 

1.3.2. Vanillyl Alcohol Oxidase: 

Vanillyl alcohol oxidase (EC.1.1.3.38) is a flavin containing protein which was first isolated 

from Penicillium simplicissimum based on its ability to oxidize vanillyl alcohol to vanillin, 

4(methoxymethyl) phenol to 4-hydroxybenzaldehyde [163]. It was also studied for its ability 

to degrade lignin. Vanillyl alcohol oxidase (VAO) can convert phenolic compounds by 
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different catalytic processes such as oxidation, deamination, demethylation, hydroxylation 

and dehydrogenation [164]. The reaction mechanism of VAO for oxidation of 4(methoxy 

methyl) phenol  involves a primary transfer of hydride from the substrate to the flavin leading 

to the formation of a two electron reduced enzyme complex with a p-quinone methide 

compound as an intermediate. Further the reduced flavin is reoxidized  by oxygen associated 

with hydration of p-quinone methide [165] VAO is an industrially important enzyme for the 

production of  the compounds: vanillin, 4-hydroxybenzaldehyde, coniferyl alcohol and pure 

phenolic derivatives [164]. 

Mechanism: Based on spectroscopic and kinetic studies it was shown that substrate oxidation 

commenses via direct hydride transfer from the Cα atom to N5 of flavin adenine dinucleotide. 

As a result a p-quinone methide (intermediate) is formed which is further activated by the 

preferential binding of the phenolate form of the substrate, this is supported by the three 

dimensional structure of the VAO [166]. Studies of VAO binding with VAO-isoeugenol, VAO-

2-nitro-p-cresol complexes shows that VAO achieves hydride transfer from the Cα atom 3.5Ao 

from N5 atom. The hydroxyl oxygen is bound to three residues: Arg504, Tyr503 and Tyr108 

through hydrogen bonds which stabilize the negative charge of the phenolate ion [166]. 

Under anerobic conditions, VAO reaction with 4-methoxymethyl phenol results in a stable 

reduced enzyme-p-quinone methide complex, however the final product is synthesized and 

released immediately after exposure to oxygen, following FAD reoxidation. From three 

dimensional structures of VAO, it is suggested that charge stabilizations between the flavin , 

quinone intermediate and Arg-504  regulate the catalytic cycle. Besides its role in interacting 

with the phenolate oxygen, Arg-504 is involved in balancing the negative charge on the N1-

C2=O2 locus of the anionic reduced cofactor. The C2 atom of flavin deviates from its expected 

position due to the oxygen atom of p-quinonemethide molecule binding to the reduced 

enzyme [166]. Thus in the reduced enzyme, the negative charge of the flavin C2 atom causes 

electrostatic repulsion which prevents the formation of a phenolate ion resulting in the 

stabilization of the quinone intermediate form. Upon reoxidation of flavin, Arg-504 lacks an 

anioinic partner which triggers the development of negtive charge on the oxygen atom of the 

quinone group.  The electrophilicity of  the methide carbon is increased enabling 

hydroxylation of 4-methoxymethyl phenol or deprotonation of the intermediate (vanillyl-

alcohol) thus generating the final product (Figure 1.9) [166, 167]. 
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Figure 1.9: The reaction mechanism for the oxidation of 4-(methoxymethyl) phenol. In the 

first step, the substrate is oxidised via a direct hydride transfer from the substrate Cα atom to 

the N5 of flavin. The reduced cofactor is then reoxidised by molecular oxygen with the 

production of a hydrogen peroxide molecule. In the next step, the p-quinone-

methoxymethide intermediate is hydroxylated by a water molecule, possibly activated by 

Asp170. The resulting 4-hydroxy-benzaldehyde and methanol products are released. 

Reprinted with permission from ref [166], Copyright © 1997, Elsevier. 

1.3.3. Glyoxal Oxidase: 

Glyoxal oxidase an extracellular hydrogen peroxide producing enzyme secreted by 

lignolytic cultures of P. chrysosporium [168]. Glyoxal oxidases catalyzes the oxidation of wide 

range of aldehydes and α-hydroxyl carbonyl compounds by reducing O2 to H2O2, thus glyoxal 

oxidase fuels the process of lignin degradation by generating H2O2 which is used by 

ligninolytic peroxidases (such as lignin peroxidase, manganese peroxidase) [168, 169]. 

Glyoxal (OHCCHO) and methylglyoxal (CH3COCHO) are two well known substrates for 

glyoxal oxidase in the extracellular fluids of lignolytic cultures [170]. 

Mechanism: Studies have revealed that P. chrysosporium secretes three extracellular 

enzymes: lignin peroxidase, manganese peroxidase and glyoxal oxidase. Glyoxal oxidase 

fuels the complete ligninolytic mechanism by generating extracellular H2O2, which is 

required for the functioning of lignolytic peroxidases [171]. Pure glyoxal oxidase is inactive, 
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however it is activated by peroxidases and peroxidase substrates) [171]. Though glyoxal and 

methylglyoxal (substrates) of glyoxal oxidase were observed in ligninolytic cultures, there 

are other substrates such as formaldehyde, acetaldehyde, glycoaldehyde, glyoxalic acid, 

dihydroxyacetone, glyceraldehyde. In addition, downstream lignin degradation products act 

as substrates for glyoxal oxidase [171]. Glyoxal oxidase has an efficient sequential oxidation  

process by converting glycoladehyde to oxalate (glycoaldehyde→ glyoxal→glyoxalate 

→oxalate)   The catalytic mechanism behind oxidation of aldehydes by glyoxal oxidase is not 

known, however it was suggested that it oxidizes substrates similarly to galactose oxidase.  

1.3.4. Pyranose Oxidase: 

Pyranose oxidase (EC.1.1.3.10; oxygen 2-oxidoreductase) is a hydrogen peroxide producing 

enzyme. Pyranose oxidase catalyzes the oxidation of the C-2 of several aldopyranoses, D-

glucose is a ideal substrate for the enzyme [172-174]. Several fungi belonging to 

basidiomycetes and particularly members of the order Aphyllophorales secrete extracellular 

pyranose oxidase[175]. The structure and catalytic mechanism of pyranose oxidase were 

extensively studied in Trametes multicolor fungi,. Its amino acid sequence suggests that it 

belongs to the glucose-methanol-choline (GMC) family of flavin adenine dinucleotide (FAD) 

dependent oxidoreductases [176]. Pyranose oxidase is a large flavoproteins which can 

oxidize a number of monosaccharides at their carbon-2 position in the presence of molecular 

oxygen, producing 2-keto sugars and hydrogen peroxide [175].  

Mechanism: Pyranose oxidase is an hydrogen peroxide generating enzyme which catalyzes 

the oxidation of D-glucose and other aldopyranoses at the C-2 position resulting in the 

production of  2-keto sugars it was also found to be involved in lignin depolymerization. It 

catalyses the regioselective oxidation of different aldopyranoses at their C-2 position using 

molecular oxygen resulting in 2-keto aldoses and H2O2. The whole reaction can be divided 

into an oxidative and  a reductive reaction, in the reductive half reaction the sugar is oxidized 

to a keto sugar followed by reduction of FAD. The oxidative reaction involves the reduction of 

O2 to H2O2 and reoxidization of the FAD [175, 177]. Pyranose oxidase also oxidizes certain 

compounds at the C-3 position such as 2-deoxy-D-glucose, 2-keto-D-glucose and methyl-β-

D-glucosides [178, 179]. The (kcat/Km) is highest for  β-D-glucose. Studies have reported that 

pyranose oxidase also oxidizes monosaccharides such as D-xylose, D-galactose and L-

arabinose (constituents of hemicellulose) with lower catalytic efficiencies, which may extend 

the enzymes ability to generate hydrogen peroxide from the lignincellulose derived sugars. 
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The optimum pH of the enzyme varies based on the type of electron acceptors used ie  

oxygen, various quinones and radicals. Quinones and radicals are the best substrates of 

pyranose oxidase, suggesting its role in lignin depolymerization is as a hydrogen peroxide 

generating and quinone reducing enzyme. It was reported that pyranose oxidase from 

Phlebiopsis gigantea has the ability to hydrolyze β 1→4 linked disaccharides (cellobiose and 

lactose) and α 1→ 4 linked disaccharides (such as maltose) to the corresponding 

monosaccharides at their C2 position [180]. β glycosides of higher alcohols such as hexyl, 

phenyl, o-nitrophenyl and p-nitrophenyl) are converted to disaccharides by pyranose 

oxidase through a glycosyl transferase reaction [180]. 

1.3.5. Galactose Oxidase: 

Galactose oxidase (EC 1.1.3.9) an extracellular enzyme secreted by Fusarium spp. Galactose 

oxidase is a monomeric enzyme containing a single copper ion, catalyzing the oxidation of 

primary alcohol substrates (D-isomers) such as D-galactose and other polysaccharides 

containing D-galactose on their reducing ends resulting in the production of aldehydes and 

hydrogen peroxide [181, 182]. Galactose oxidase belongs to the alcohol oxidoreductase 

family (also known as alcohol oxidase), enzymes belonging to this generally use molecular 

oxygen as electron acceptors for generating hydrogen peroxide [183]. Most alcohol 

oxidoreductases are flavoproteins that use FAD+ as  primary electron acceptors, however 

some of these enzymes are copper radical  containing oxidases (CROs) such as galactose 

oxidase, glyoxal oxidase and hexose-1-oxidase [183].   

Mechanism: Galactose oxidizes primary alcohols resulting in the production of aldehydes 

and hydrogen peroxide. This is a two electron reaction with only one copper ion at the active 

site and a second redox active center, a tyrosine residue. Tyr-272 also acts as ligand to the 

copper ion [184]. The catalytic mechanism of galactose oxidase can be divided into two 

reactions a) proton transfer from the O-6 position of galactose to the axial tyrosine anion 

(hydrogen atom transfer)  then from the C6 of galactose to the Tyr-Cys radical cofactor 

followed by electron transfer from the carbohydrate, generating an aldehyde and Cu+ [183]. 

In the second half of the reaction electron transfer continues from Cu+ to oxygen by 

producing  superoxide then through hydrogen  transfer, a proton is transferred from the 

phenolic hydroxyl group of the Tyr-Cys cofactor to  superoxide, producing a metal bound 

hydroperoxide. The final proton transfer from the axial tyrosine to hydroperoxide generates 

hydrogen peroxide and Cu2+ (resting state of the enzyme) [183]. 
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1.3.6. Glucose Oxidase:  

Glucose oxidase (E.C.1.1.3.4) is an important H2O2 generating oxidoreductase produced by 

ligninolytic cultures of P. chrysosporium. Glucose oxidase catalyzes the oxidation of β-D-

glucose to gluconic acid, using molecular oxygen (as electron acceptor) thus producing H2O2 

[185, 186]. Glucose oxidase has several commercial applications such as increasing the 

quality of  food materials (color, flavor and shelf life), oxygen removal from fruit juices and 

canned food etc [186]. Apart from these applications, glucose oxidase also inhibits different 

food-borne pathogens such as Salmonella infantis, Staphylococcus aureus, Clostridium 

perfringens, Bacillus cereus, Campylobacter jejuni and Listeria monocytogens [187].  

Mechanism: The reaction of GOD can be divided into an oxidative step and  a reductive step. 

The reductive step of GOD oxidizes β-D-glucose to D-glucano-δ-lactone which is further 

hydrolyzed to gluconic acid (non-enzymatically).  In A. niger a lactonase catalyzes the 

hydrolysis of  D-glucano-δ-lactone to gluconic acid. It also reduces the FAD domain of GOD 

to FADH2 [188]. Reduced GOD is re-oxidized by molecular oxygen to H2O2 in the the oxidative 

reaction, H2O2 from the above rection is cleaved by catalase producing water and oxygen 

[189].  The flavin domains of GOD are involved in the redox reaction, during the oxidative 

reaction of GOD and electrons from electron donors are transferred to the isoalloxazine 

nucleous of flavin doman (FMN) and then to the electron acceptor [190]. GOD catalyzes the 

reaction by transferring the electrons from glucose to oxygen, producing H2O2, thus placing 

GOD in the oxidoreductase class of enzymes. Overall enzyme catalysis of GOD depends on 

oxidation and reduction reaction steps of its flavin group (FAD) primarily glucose reduces the 

FAD to FADH2 by producing gluconic acid (product) without forming free radical containing 

semiquinone (intermediate). At the same molecular oxygen (electron acceptor) reduces the 

FADH2 back to FAD generating H2O2 as a product (Figure 1.10) [190]. 
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Figure 1.10: Reaction mechanism of glucose oxidase (GOD) [188]. Reprinted with permission 

from ref [185], Copyright © 2009, Elsevier. 

1.3.7. Benzoquinone Reductase:  

The 1,4-Benzoquinone reductase (EC.1.6.5.6) is an intracellular enzyme which was purified 

and characterized from the agitated cultures of P. chrysosporium. 1,4-Benzoquinone reductase 

was expressed in both nitrogen sufficient and limited conditions [191, 192]. P. 

chrysosporium,one of the highly studied lignin degrading fungi, secretes two classes of 

ligninolytic peroxides: lignin peroxidase(LiP )and manganese peroxidase(MnP) along with 

several H2O2 generating enzymes. These enzymes catalyze the primary steps of lignin 

depolymerization resulting in a wide variety of intermediate products such as substituted 

quinones, hydroquinones, benzaldehydes and other ring opened fragments. Methoxylated 

lignin derived quinones are reduced by intracellular quinone reductases [191, 192]. 

Mechanism: Benzoquinone or quinone reductases are significant enzymes secreted by 

several fungi especially P. chrysosporium. 1,4-Benzoquinone reductase is a NADPH 

dependent intracellular enzyme, it contains flavin mononucleotide (FMN). 1,4-Benzoquinone 

reductase was active during bothprimary and secondary metabolism but the enzyme 

inducers are stronger during the primary metabolic porcesses [191-193]. Studies showed that 

when vanillate or methoxy-p-quinone are added to cells, carrying out primary metabolism, 

enzyme expression was increased. However, the effect was small when the same compounds 

were added to secondary metabolic cells, which suggests that quinone reductase is regulated 

independently of lignin and manganese peroxidase [191]. LiP and MnP are expressed only 

during the secondary metabolic stage of the growth and the there expression is not induced 

by aromatic substrates. The regulation of quinone reductases is similar to that of vanillate 

hydroxylase, which suggests its involvement in vanillate metabolism [191-193]. Quinone 

reductase was expressed during the lignolytic phase of P. chrysosporium, sugesting a role in 

the reduction of quinones generated during lignin degradation. It was reported that quinone 

reductases are induced upon quinone addition, suggesting the involvement of quinone 

reductase in lignin and quinone degradation [191-193]. Besides degrading of quinone and 

lignin derived compounds, it is also reported that quinone reductases protects P. 

chrysosporium from oxidative stress by acting as redox active toxins. Quinones obtained by 

metabolic conversion are reduced by one electron generating semiquinone radicals, which 

are then oxidized by oxygen generated super oxide anion, this superoxide anion is further 
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converted to H2O2 through superoxide dismutase and later in the presence of suitable 

electron donors it results in production of highly reactive hydroxyl radicals from H2O2 [191-

193]. The detailed mechanisms of the regulation and catalytic mechanism of quinone 

reductase need to be explored (Table 1.3). 

Table 1.3: Catalytic mechanisms and structural studies of different lignin degrading auxiliary 

enzymes (LDA). 

 

 

 

 

 

 

 

Enzyme and 

FOLy class  
Catalytic mechanism 

Structural studies and 

Reference  

Aryl alcohol 

oxidase (LDA1) 

EC 1.1.3.7 

Aromatic primary alcohol + O2 →Aromatic aldehyde + H2O2 
Pleurotus eryngii 

[145, 194-196] 

Vanillyl alcohol 

oxidase (LDA2) 

 EC 1.1.3.38 

Vanillyl alcohol + O2  →  vanillin + H2O2 
Penicillium simplicissimum 

[163, 166, 197-199] 

Glyoxal oxidase 

(LDA3) EC 1.1.3.-

. 

Glyoxal oxidase catalyzes oxidation of wide range of simple 

aldehydes, α-hydroxy carbonyl compounds by producing 

hydrogen peroxide 

Aspergillus nidulans, Pichia 

pastoris, Phanerochaete 

chrysosporium  

[169, 200, 201]  

Pyranose oxidase 

(LDA4) EC 

1.1.3.10 

FAD(Oxidized) +D-Glucose  → FAD(Reduced) + 2-keto-D-glucose 

FAD(Oxidized) + O2      →  FAD(Reduced) + H2O2 

Trametes multicolor [202-

205], Peniophora sp. [206, 

207] Phanerochaete 

chrysosporium [149] 

Galactose 

oxidase (LDA5) 

EC 1.1.3.9 

D-Galactose + O2   → D-Galacto-hexodialdose + H2O2 
Aspergillus nidulans, Pichia 

pastoris,[181-184, 208, 209] 

Glucose oxidase 

(LDA6) EC 1.1.3.4 
β-D-glucose + O2   → D-glucono-l,5-lactone + H2O2 Aspergillus niger [210, 211] 

Benzoquinone 

reductase (LDA7)  

EC 1.6.5.6 

NADPH + H+ +   p-benzoquinone  → NADP+   + hydroquinone 

Phanerochaete 

chrysosporium 

[191-193] 
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1.4. Plant Cell-Wall Deacetylating Carbohydrate Esterases: 

1.4.1. Acetyl Xylan Esterases: Acetyl and methyl esterifications are two major naturally 

found substitutions in the plant cell wall polysaccharides. The non-cellulosic plant cell wall 

polysaccharides such as pectin and hemicellulose are differentially esterified by the O-acetyl 

and methyl groups to cease the action of various hydrolytic enzymes secreted by different 

fungi and bacterial species. Thus, microorganisms have emerged with a special class of 

enzymes known as carbohydrate esterases. Carbohydrate esterases catalyze O-de, N-

deacetylation of acetylated saccharide residues (esters or amides, where sugars play the role 

of alcohol /amine / acid). Carbohydrate active enzyme (CAZy) database, has classified 

carbohydrate esterases into 16 classes, of which hemicellulose deacetylating carbohydrate 

esterases (CE) were grouped into 8 classes (CE-1 to CE-7, CE-16). Various plant biomass 

degrading fungi and bacteria secretes acetyl xylan esterases, however these enzymes exhibit 

varied substrate specificities. Acetyl xylan esterases and xylanases coupled pre-treatment 

methods exhibit significant applications such as enhancing animal feedstock, baking 

industry, production of food additives, paper and pulp, xylitol production and biorefinery 

industries-based industries respectively. Thus, understanding the structural and functional 

properties of acetyl xylan esterase will significantly aid in developing the efficient acetyl 

xylan esterases with wide range of industrial applications.  

Acetyl xylan esterases (AXE) are secreted by microorganisms for the deacetylation of 

xylan polymers and xylooligosaccharides (E.C. 3.1.1.72) [212]. Acetyl xylan esterases are 

widely distributed among different carbohydrate esterase classes (CE-1 to CE-7). Biely et al 

(1985), have found the occurrence of acetyl xylan esterase in the cellulolytic and 

hemicellulolytic microorganisms [213]. After that several studies have reported the 

occurrence of the acetyl xylan esterase as they have found to act on acetyl glucuronoxylan, 

however later it was found that AcXE is active on other acetylated polysaccharides other than 

xylan [212]. The microbial endoxylanases were found to work in synergy with carbohydrate 

esterase, especially the activity of endoxylanases on acetyl xylan increased with the presence 

of acetyl xylan esterases [214]. Acetyl xylan (O-acetyl-4-O-methyl-Dglucurono- D-xylan) the 

naturally occurring form of hemicellulose in hardwood, alternate xylopyranosyl units of the 

polymeric xylan contains one acetyl group [212, 214]. Selig et al (2008), have showed that 

combinatorial action of endoxylanases and acetyl xylan esterases have significantly improved 

the hydrolysis of xylan polymer [215]. Selig et al (2009) have reported that when AXE’s were 
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used in combination with endoxylanases on different corn stover substrates, a linear 

relationship in removal of acetyl groups and depolymerization of xylan was observed [216]. 

The hydrolysis of xylan from the pretreated wheat straw and giant reed using xylanolytic 

enzymes and AXE was conducted by Zhang et al (2011). This study has showed clearly that 

removal of acetyl groups by AXE enhanced the accessibility of xylan by the xylanolytic 

enzymes, and solubilization of xylan have progressively increased the availability of cellulose 

to cellulases, resulting in hydrolysis of cellulose [10]. Cellulolytic and xylanolytic enzymes 

function in synergistic effect and the combined use of cellulases, xylanases and AXE has 

resulted in higher hydrolysis of cellulose revealing the occurrence of acetylated xylan in the 

cellulose matrix [10]. In this article, we have extensively reviewed the structural and 

functional properties of acetyl xylan esterases occurring in different carbohydrate esterase 

classes (Table 1.5). 

Table 1.5: Different classes of carbohydrate esterase (CE) family and their corresponding 

representing enzymes with note on their protein 3D structure: 

 

 

1.4.2. Pectin Carbohydrate Esterases: Enzymes required for the breakdown of pectin can 

be majorly classified into three categories as protopectinases (involved in breaking insoluble 

protopectin and results in soluble polymerized pectin), depolymerizing enzymes (required 

CE- Class Representing Enzymes E.C. Number 3D Structure Status 

 

 

 

CE-1 

acetyl xylan esterase, 

cinnamoyl esterase, 

feruloyl esterase, 

carboxylesterase, 

S-formylglutathione hydrolase, 

diacylglycerol O-acyltransferase, 

trehalose 6-O-mycolyltransferase 

(EC 3.1.1.72) 

(EC 3.1.1.-) 

(EC 3.1.1.73) 

(EC 3.1.1.1) 

(EC 3.1.2.12) 

(EC 2.3.1.20) 

(EC 2.3.1.122) 

 

 

(α/β /α)-sandwich 

CE-2 acetyl xylan esterase (EC 3.1.1.72) α/β+β-sheet 

CE-3 acetyl xylan esterase (EC 3.1.1.72) (α/β/α)-sandwich 

 

 

CE-4 

acetyl xylan esterase, 

chitin deacetylase, 

chitooligosaccharide deacetylase, 

peptidoglycan GlcNAc deacetylase, 

peptidoglycan N-acetylmuramic acid 

deacetylase 

(EC 3.1.1.72) 

(EC 3.5.1.41) 

(EC 3.5.1.-) 

(EC 3.5.1.-) 

(EC 3.5.1.-) 

 

 

(β/α) 7 barrel 

 

CE-5 

acetyl xylan esterase, 

Cutinase, 

(EC 3.1.1.72) (α/β/α)-sandwich 

CE-6 acetyl xylan esterase (EC 3.1.1.72) (α/β/α)-sandwich 

 

CE-7 

acetyl xylan esterase, 

Cephalosporin-C deacetylase 

(EC 3.1.1.72) 

(EC 3.1.1.41) 

 

(α/β/α)-sandwich 
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for breaking down α(1→4) glycosidic linkages of pectin) and esterases (required for the de-

esterification and de-acetylation of pectin) [217]. Pectinolytic enzymes are widely observed 

among plants, bacterial and fungal species and most of the pectin methyl esterases can be 

divided based on their optimum pH, bacteria and plant PME exhibit an optimum pH range 

between 6 to 8 and PME secreted by fungi exhibit a pH 4 to 6 [217, 218]. Pectin degrading 

enzymes have attained high commercial importance since early 1930’s in wine and fruit juice 

industries, pectinolytic enzymes secreted by Aspergillus species is highly used in industries 

[219]. Pectin present in vegetable tissues and majorly in fruits, contains complex hetero 

polysaccharides at a molecular weight ranging between 25 to 360kDa. Calcium and 

magnesium pectate forms the major constituent of the plant cell walls especially in middle 

lamella [218]. The gelling property of pectin majorly employed in the food industries is 

directly dependent on its degree of esterification, pectin’s with higher degree of esterification 

gel around pH 3.0 in the presence of sugar, whereas pectin’s with low degree of esterification 

gels in the presence of calcium ions under wide pH ranges and with or without sugar.[217, 

220, 221] (Table 1.6).  

Pectin methyl esterases or alkaline reagents were majorly used to demethoxylate large 

galacturonic chain for reducing the overall pectin methoxylation content [217]. Majorly 

pectinolytic enzymes were highly applied in fruit juice and wine industries for the clarification 

of the fruit juices, modification of fruits and vegetables [222]. Apart from these applications, 

pectinolytic enzymes were also used for extracting oils from germ, palm, coconut, sunflower 

seed and kernel rape seeds, by replacing the conventionally used carcinogenic solvents like 

hexane. These pectinolytic enzymes extract oil from different crops by liquefying the 

structural components of the cell walls. Commercial pectinase preparations called Olivex® 

were applied in olive oil industries for the extraction of oil and to increase the quality [223, 

224]. Rhamnogalacturonan a complex polysaccharide unit present in the primary cell walls 

and middle lamella of higher plants, with alternating rhamnose and galacturonic acid residues 

acetylated majorly at C-2 and C-3 positions [225] As the acetylation of these residues 

sterically hinders the catalytic function of the corresponding lyases and hydrolases on the 

glycosidic linkages thus deacetylation facilitates the action of the lyases and hydrolases. Thus, 

rhamnogalacturonan acetyl esterase belonging to CE-12 family has gained significance in 

deacetylation of these residues and also been used industrially for the production of β-lactam 

antibiotics and paper bleaching purposes [226] (Table 1.6). 
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Table 1.6: Different types of pectic substances and pectinolytic enzymes responsible for its 

degradation: 

S.no Different types of pectic substances 

1 Protopectin: Protopectin is present in the inner tissues of plant cell walls which is 

insoluble in water. Upon restricted hydrolysis yields pectin or pectic acids. 

2 Pectic acid: Pectic acids are soluble pectic substances (galacturonans) with lesser 

number of methoxyl groups. Normal and pectic acid salts are called as pectates 

3 Pectinic acids are long polygalacturonans with <75% methylated galacturonate units, 

salts of pectinic acids are called pectinates 

4 Pectin: (or) polymethyl galacturonate is a polymeric material with 75% of the carboxyl 

groups are esterified with methanol. Pectin provides rigidity to the plant cell walls. 

 Pectinolytic enzymes 

1 Pectin methyl esterases: These esterases catalyzes the de-esterification pectin by 

releasing methoxy esters, resulting in pectic acids and methanol. 

2 Pectin Depolymerizing Enzymes:  

a) Protopectins are enzymatically hydrolyzed by set of enzymes called as 

protopectinases (PPase). PPase are classified into two types a) A-type PPase, which 

reacts with polygalacturonic acid regions and b) B-type PPase reacts with the 

polysaccharide chains on outer region. (Protopectin (insoluble) + H2O--(PPase)--→ Pectin 

(soluble)) 

b) The pectin depolymerizing enzymes can be majorly classified as hydrolases divided 

into: Endo and Exo polygalacturonases such as (Exo-polygalacturonan-digalacturono 

hydrolase, Oligo galacturonate hydrolase, Delta 4:5 Unsaturated oligo galacturonate 

hydrolases, Endo-polymethyl-galacturonases, Endo-polymethyl-galacturonases). Lyases 

which majorly contains enzymes such as Endo and Exo polygalacturonase lyases. 

 

Lignin-Carbohydrate De-Esterases: Plants contain a range of hydroxycinnamic acids like 

caffeic, p-coumaric, ferulic and sinapic acids which can be broadly classified as phenolic 

compounds and highly abundant among foods [227]. Feruloyl esterases (or ferulic acid 

esterases) or cinnamoyl esterases are carbohydrate esterase class of enzymes which 

hydrolyze the ester linkages between hydroxycinnamic acids and plant cell wall 

carbohydrates by releasing ferulic and cinnamic acid [228]. Combinatorial usage of feruloyl 

esterase or cinnamoyl esterases with glycoside hydrolases for the liberation of free 

carbohydrate residues and phenolic acids can significantly aid in different preprocessing 

steps of biofuel and biorefining industries [229]. The activity of FAE and CAE are chiefly 

limited to the position and conformations of the feruloyl groups present in the feruloylated 

polysaccharides and other surrounding cell wall components. Recent studies conducted by 

Faulds et al. (2003, 2006) have revealed the preferential partnership between glycoside 

hydrolase class-11 (GH-11) xylanases and FAE for liberating ferulic acid from the insoluble 

biomass, while partnership between GH-10 xylanases and FAE will liberate 5,5’dimers [230, 
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231]. Glucuronoyl esterases are the class of carbohydrate esterases involved in hydrolysis of 

the ester linkages present between 4-O-methyl-d-glucuronic acid residues of 

glucuronoxylans and aromatic alcohols of lignin [232]. Glucuronoyl esterase which is 

involved in plant cell wall degradation was discovered in Schizophyllum commune for the first 

time [232]. Duranova et al. (2009) have purified and characterized using a series of synthetic 

substrates containing methyl esters of uronic acids and their glycoside derivatives [233]. 

These studies have revealed the specificity of GE towards 4-O-methyl-D-glucuronic acid, its 

methyl esters and D-glucuronic acid containing 4-nitophenyl aglycon, showing that GE attack 

the ester bonds between 4-O-methyl-D-glucuronic acid of glucuronoxylan and alcohols of 

lignin [233, 234]. Glucuronoyl esterase finds its applications in growing biofuel and 

biorefinery industries as it breaks down and separates the hemicellulose and lignin. 

Pretreatment step is currently being used in bioethanol industries for releasing free 

carbohydrate residues from the other aromatic components of the cell wall. The 

heterophenolic lignin compounds interacting with the polysaccharide units increases the 

recalcitrant nature of the plant cell wall and the percentage of lignin in plant tissues is directly 

proportional to its digestibility. It has been assumed that FAE’s and CAE’s are required for 

breaking the lignin and carbohydrate linkages. According to Benoit et al. (2006), type-C and 

type-B FAE’s isolated from Aspergillus niger release higher proportions of ferulic acid and p-

coumaric acid from the steam exploded wheat straw [235]. The Type-A FAE from A. niger was 

found to be effective against the steam exploded wheat straw in the presence of cellulases 

and xylanases, and at 50oC the rate hydrolysis increased significantly [236]. Similarly, Selig 

et al. (2008), have used a combination of cellobiohydrolase Cel7A, xylanase, feruloyl esterase 

and acetyl xylan esterase and reported enhanced breakdown of the hot-water treated corn 

stover cellulose [215]. Apart from its long list of applications, FAE’s were also used for the 

utilization of straws in paper industries [237, 238], detoxification of animal feed [239], for the 

removal of cinnamic acids and p-coumaric acids from coffee pulp [235]. 
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Chapter-2 

Metadata Analysis of Phanerochaete chrysosporium Gene Expression Data 

Identified Common CAZymes Encoding Gene Expression Profiles Involved in 

Cellulose and Hemicellulose Degradation  

[This work has been published in “International journal of biological sciences”13, no. 1 

(2017): 85-99.] 

Ayyappa Kumar Sista Kameshwar and Wensheng Qin* 

2.1. Abstract 

In literature, extensive studies have been conducted on popular wood degrading white rot 

fungus, Phanerochaete chrysosporium about its lignin degrading mechanisms compared to the 

cellulose and hemicellulose degrading abilities. This study delineates cellulose and 

hemicellulose degrading mechanisms through large scale metadata analysis of P. 

chrysosporium gene expression data (retrieved from NCBI GEO) to understand the common 

expression patterns of differentially expressed genes when cultured on different growth 

substrates. Genes encoding glycoside hydrolase classes commonly expressed during 

breakdown of cellulose such as GH-5,6,7,9,44,45,48 and hemicellulose are GH-

2,8,10,11,26,30,43,47 were found to be highly expressed among varied growth conditions 

including simple customized and complex natural plant biomass growth mediums. Genes 

encoding carbohydrate esterase class enzymes CE (1,4,8,9,15,16) polysaccharide lyase class 

enzymes PL-8 and PL-14, and glycosyl transferases classes GT (1,2,4,8,15,20,35,39,48) were 

differentially expressed in natural plant biomass growth mediums. Based on these results, P. 

chrysosporium, on natural plant biomass substrates was found to express lignin and 

hemicellulose degrading enzymes more than cellulolytic enzymes except GH-61 (LPMO) 

class enzymes, in early stages. It was observed that the fate of P. chrysosporium transcriptome 

is significantly affected by the wood substrate provided. We believe, the gene expression 

findings in this study plays crucial role in developing genetically efficient microbe with 

effective cellulose and hemicellulose degradation abilities. 

Keywords: Phanerochaete chrysosporium, Transcriptome, Lignocellulose, Gene Expression 

Omnibus (GEO), GEO2R, Bioconductor, Carbohydrate Active Enzyme database (CAZy) 
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2.2. Introduction 

Recently, production of second generation fuel substrate (lignocellulose) gained much 

attention as the first generation fuel substrate (corn starch) faces the food vs fuel challenge 

[1]. Abundant availability of lignocellulosic biomass and its potential for fuel production, 

encourage the research interest in biorefining scientists to substitute renewable substrates 

for fossil based products [1]. However, major bottlenecks include the highly recalcitrant 

nature of lignocellulosics due to which various steps such as thermochemical pre-treatment 

followed by enzymatic hydrolysis and fermentation in upstream processing are required [2-

4]. These tedious process increases the costs involved in the production of fuels [2-4]. Though 

chemical pre-treatment methods of polysaccharide degradation do exist, but world-wide 

biorefining strategies are enzyme based [5]. Usually the pretreated biomass is 

depolymerized by supplementing the enzyme cocktail which breakdowns the 

polysaccharides to pentoses and hexoses. Enzyme cocktails produced from the Trichoderma 

reesei are highly used for the degradation of polysaccharides [6]. 

Structurally plant cell wall components can be majorly divided into polysaccharide 

units and polyphenolic lignin units. Plant polysaccharide units are divided into cellulose, 

hemicellulosic polysaccharides (xyloglucans, xylans, glucomannans and mixed linkage 

glucans) [7] and pectic polysaccharides (homogalacturonan and rhamnogalacturonan I, II) [8, 

9]. Cellulose is the characteristic chemical constituent in all the plant cell walls. Structurally, 

cellulose is comprised of glucose molecules with β-1,4 glycosidic linkages [9, 10]. These 

cellulose chains are bound by hydrogen bonds and van der Waals interactions resulting in 

microfibrils which are crystalline in nature and poses difficulty in enzymatic saccharification 

[11]. Naturally cellulose exists in crystalline (well-ordered) and amorphous (disordered) 

forms [11]. Hemicelluloses are hetero polysaccharides including xylans, glucans, mannans 

and glucomannans with (β-1,4) and (β-1,3) glycosidic linkages. Enzymatic breakdown of 

hemicellulose was considered easy and simple when compared to cellulose. However, due 

to the presence of certain recalcitrant oligomeric structures and its complex branching and 

acetylation patterns make the depolymerization difficult [12]. The enzymatic breakdown of 

cellulose results only in glucose whereas hemicellulose degradation results in a mixture of 

different sugars which significantly contain pentoses which are difficult to ferment further [13, 

14]. 



 

68 | P a g e  

 

Fermentation of cellulose and hemicellulose monomeric units of plant biomass using 

microorganisms for the production of bioethanol has gained significance in the recent years. 

Among different microorganism’s, fungi are the efficient plant biomass degraders, especially 

Basidiomycota phylum. Based on their wood decaying properties, Basidiomycetes fungi are 

classified into white, brown and soft rot. Phanerochaete chrysosporium, a white rot fungi, can 

efficiently degrade all the components of plant biomass cellulose, hemicellulose and 

particularly lignin [15]. Complex structure of lignin enables its degradation by specific 

microorganisms, thus several studies conducted on P. chrysosporium were based on lignin 

degradation while few studies were based on cellulose and hemicellulose degradation 

mechanisms. Although, whole genome sequence of P. chrysosporium showed that it harbors 

around 240 carbohydrate active enzymes (CAZymes) [15]. Secretome and computational 

analysis performed by Wymelenberg et al. (2006) has revealed eighteen putative peptide 

sequences which are allotted to eight specific glycosyl hydrolases [16]. Glycosyl hydrolases 

were found to be associated with hemicellulose and pectin degradation, putative xylanase 

and exo glucanase encoding genes xyn10D, exg55A were detected in ground wood 

submerged cultures [17, 18]. Three unidentified peptides encoding for glycosyl hydrolases 

were noticed in carbon limited growth conditions [18]. Availability of annotated whole 

genome sequence of P. chrysosporium have led to the current understanding of its 

degradative patterns. Based on the PubMed results, 12 large scale gene expression studies 

were conducted on P. chrysosporium, out of which 10 microarray studies, one RNA-Seq and 

one Long SAGE studies. These studies have revealed various significant facts about the genes 

and enzymes involved in cellulose, hemicellulose and lignin degradation mechanisms.  

Development of online based genome and enzyme databases like CAZy 

(Carbohydrate Active Enzyme database) [19], FOLy (Fungal Lignin Oxidizing Enzymes) [20], 

DOE-JGI (Joint Genome Institute) [21] and FungiDB [22] etc., has significantly influenced the 

present understanding of fungal genomic and proteomic studies. The CAZy database was 

developed by Vincent et al. (2014), to consolidate various enzymes that are involved in 

synthesis and breakdown of carbohydrates and other glycoconjugates [19]. CAZy database 

was divided into five major classes and distributed into 135 glycoside hydrolases, 99 glycosyl 

transferases, 24 polysaccharide lyases, 16 carbohydrate esterases and 13 auxiliary activities, 

it also consists of carbohydrate binding module (CBM) [19]. Levasseur, A et al. (2008) has 

developed FOLy based on the CAZy database structure and is dependent on family based 

management of sequence information and their respective accession from different public 
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repositories and its descriptions [20]. FOLy database is divided into two major sections as 

LO’s (Lignin Oxidizing enzymes) and LDA’s (Lignin Degrading Auxiliary enzymes) [20]. 

The availability of whole genome sequences and recently performed genome wide 

transcriptome studies on P. chrysosporium have inspired us for the current metadata analysis. 

In the last decade, several studies were conducted to understand the molecular mechanisms 

underlying lignocellulose degradation by P. chrysosporium. Although, these gene expression 

studies have explained about the expression of several cellulolytic and hemicellulolytic 

enzymes, understanding the common significant genes expressed under varied growth 

conditions will play a crucial role in biofuel production. In our current study, we have 

rigorously analyzed the whole transcriptome metadata retrieved from NCBI GEO using 

GEO2R and Bioconductor packages. To the best of our knowledge this is the first metadata 

analysis report on P. chrysosporium to understand the common gene expression patterns 

employed for cellulose and hemicellulose degradation. 

2.3. Data Analysis Methodology 

2.3.1. Data Collection: Microarray datasets were retrieved from Gene Expression Omnibus 

NCBI-GEO (https://www.ncbi.nlm.nih.gov/geo/), a public repository for gene expression 

datasets. All the microarray datasets collected were based on white rot fungus P. 

chrysosporium cultured on different growth substrates. Till date there are 6 Microarray, 1 RNA 

sequencing and 1 Long-SAGE (Serial Analysis for Gene Expression) studies based on P. 

chrysosporium, out of which we have analyzed the microarray and RNA sequencing studies to 

understand the cellulolytic and hemicellulolytic degradation mechanisms. Accession IDs of 

microarray datasets retrieved from NCBI GEO are GSE14734 [23, 24], GSE14735 [23, 24] 

GSE54542 [25], GSE27941[26], GSE52922 [27], GSE69008 [28] GSE69461[29] details of these 

gene expression datasets were shown in the Table 2.1.  

2.3.2. Data Analysis: The microarray datasets were analyzed using GEO2R an interactive 

online tool (https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html) and using Bioconductor 

packages GEOquery and limma based on R software version 3.2.2 and. Following settings 

were used for analyzing the microarray datasets using GEO2R data analysis tool a) auto detect 

option used for the log transformation of the data, b) samples and value distribution were 

obtained using the box-whisker plot c) submitter provided annotations were used for the 

current analysis. The samples were grouped based on their experimental conditions and 

further differentially expressed genes were obtained using “Top250” function which 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html
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internally uses limma (linear models for microarray data). The top differentially expressed 

genes are obtained after performing multiple testing correction using Benjamini and 

Hochberg false discovery rate (FDR) method with a p-value 0.05. The supplier provided 

annotations for the microarray platform were used for analyzing the obtained differentially 

expressed genes. Gene annotations mainly InterPro Hits, protein ID and genome position 

were retrieved for the current analysis. The P. chrysosporium RP-78 v2.2 genome annotations 

were obtained from the MycoCosm (fungal genome repository) [30, 31]. Different analysis 

tool options such as Gene Ontology (GO), EuKaryotic Orthologous Groups (KOG) and CAZy 

were used for understanding and biological contextualization of the results. The expression 

values of differentially expressed genes were used to develop hierarchical clusters using the 

Cluster 3.0 software [32] (http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm)  

with options selected cluster for both genes and arrays using the complete linkage. The 

obtained cluster output files were used as input for the Java Treeview [33] software to develop 

the dendrograms using the standard conditions.   

The differentially expressed genes obtained from each datasets were compared using 

Venny 2.1 [34] (http://bioinfogp.cnb.csic.es/tools/venny/)  online software to obtain the 

common genes list. We have retrieved RPKM (Reads Per Kilobase Million sample value for 

the conditions 96-hour and 40-hour were obtained from the supplementary data provided for 

GSE69461[29]. The RPKM values from all the samples were further subjected to statistical 

analysis using R-Bioconductor packages: limma [35], Glimma and edgeR [36-39] 

Bioconductor packages. The statistically significant genes among different samples were 

obtained based on the fold change values more than 2.0 also subjected to false discovery rate 

correction at a p-value 0.05. From the obtained gene list, genes encoding for cellulolytic and 

hemicellulolytic enzymes and CAZymes were specifically recovered based on the InterPro 

annotations provided. The fold change values were used for the clustering analysis and the 

differentially expressed gene list was further compared with other datasets to obtain 

commonly expressed genes among the above-mentioned gene expression datasets. 

 

 

 

http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
http://bioinfogp.cnb.csic.es/tools/venny/
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Table 2.1: Details of the P. chrysosporium transcriptome metadata retrieved from NCBI GEO 

and NCBI SRA 

 

2.3.3. Overview of Data Analysis 

The whole transcriptome datasets considered for our present study can be divided into 

customized growth medium (Highley’s basal medium supplemented with cellulose, glucose 

or other commercially available nutrients) and complex natural plant biomass medium (ball 

milled aspen, ball milled pine, spruce wood and poplar wood substrates) based on the media 

composition used for culturing P. chrysosporium. The customized growth mediums were used 

in gene expression studies with accession Ids GSE14734 and GSE14735. Growth medium 

consisting HBM supplemented with 0.5 % (wt/vol) of BMA or cellulose or glucose as sole 

carbon source was used for the culturing of P. chrysosporium (GSE14734) [23, 24]. For 

GSE14735 dataset P. chrysosporium was cultured on three different growth mediums a) 

replete B3 medium (with adequate carbon and nitrogen source), b) carbon limited medium 

c) nitrogen limited medium [23, 24]. The complex natural plant biomass growth medium was 

used in gene expression studies with accession numbers GSE27941, GSE52922, GSE54542, 

GSE69008 and GSE69461. Growth medium used for GSE27941 consists of  0.5% of ball milled 

aspen and ball milled pine as the sole carbon source supplemented with HBM [26]. Similarly, 

growth medium used for GSE52922 consisted Wiley milled chemically distinct wood 

substrates of Populus trichocarpa P717 (parental hybrid clone line) with 65 mol% of syringyl 

units and the two transgenic lines 64 and 82 with 94 and 85 mol % of syringyl units, 

supplemented with HBM [27]. GSE69461 medium consists of microtomed tangential sections 

GEO-ID’s Platform and Technology Substrate # Samples Reference

s 

GSE54542 NimbleGen Phanerochaete 

chrysosporium arrays 

Oak acetonic extractives 6 [25] 

GSE27941 NimbleGen Phanerochaete 

chrysosporium arrays 

Ball milled aspen, Ball milled 

pine 

6 [26] 

GSE52922 NimbleGen Phanerochaete 

chrysosporium arrays 

P717 hybrid line, Transgenic line 

82 

Transgenic line 64 

9 [27] 

GSE14734 NimbleGen Phanerochaete 

chrysosporium arrays 

Cellulose, Glucose, Ball milled 

aspen 

9 [23, 24] 

GSE14735 NimbleGen Phanerochaete 

chrysosporium arrays 

Replete medium, Carbon limited 

Nitrogen limited 

9 [23, 24] 

GSE69008 NimbleGen Phanerochaete 

chrysosporium arrays 

Poplar wood substrates 

 

24 [28] 

GSE69461 Illumina HiSeq 2000 Picea glauca (spruce sapwood) 18 [29] 



 

72 | P a g e  

 

of Picea glauca (40mm long, 10mm wide and 40 mm thick with a dry weight of 7mg) covered 

with 90µl of agar supplemented with nitrogen mineral salt medium [29]. GSE54542 medium 

contained Oak heartwood fine powdered samples extracted using acetone and resuspended 

further in DMSO followed by a set of extraction processes [25]. Finally, GSE69008 growth 

medium consisted of chemically distinct Populus trichocarpa wood substrates, which can be 

divided in to A (high lignin-low glucose) B (low lignin-high glucose) and C (average lignin-

average glucose) conditions [28]. 

2.4. Results 

2.4.1. Distribution of CAZymes in P. chrysosporium Genome: Several studies have 

already proved the eccentric lignin degrading abilities of P. chrysosporium. However, very 

few studies were conducted till today to understand the cellulose and hemicellulose 

degradation mechanisms employed by this organism. Whole genome studies of P. 

chrysosporium conducted in 2004 by Martinez et.al, have reported that it encodes around 240 

putative carbohydrate active enzymes, which mainly encodes 66 glycoside hydrolases, 14 

carbohydrate esterases and 57 glycosyltransferases [15]. Present day annotated genome of 

P. chrysosporium RP-78 version 2.2, genome codes for around 440 putative carbohydrate 

active enzymes divided into 89 Auxiliary activity enzymes, 65 carbohydrate binding modules, 

20 carbohydrate esterases, 181 glycoside hydrolases, 70 glycosyl transferases and 6 

polysaccharide lyases (Figure 2.1). Extracellular cellulases and hemicellulases secreted by 

fungi can be grouped under glycoside hydrolases [40]. According to Martinez et al. (2004), 

the genome of P. chrysosporium encodes at least 40 genes for putative endoglucanases (GH5, 

GH9, GH12, GH61, GH74) 7 exo-cellobiohydrolases (GH6, GH7) 9 β-glucosidases (GH1, GH3) 

and 5 polygalacturonase (GH28) [15].  
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Figure 2.1: Schematic representation of CAZymes distribution in Phanerochaete 

chrysosporium genome, GH (glycoside hydrolase), GT (glycosyl transferases), AA (Auxiliary 

activities), CBM (Carbohydrate binding modules), CE (Carbohydrate esterases) and PL 

(Polysaccharide lyases); the numbers represented on top of each box represents the number 

of genes encoding for that particular class of enzymes respectively. 

Pedro M et al. (2003) have reported the global correlation studies of CAZymes and 

their corresponding total number of open reading frames among the bacterial and eukaryotic 

genomes [41]. The number of genes encoding glycosyl transferases exceeds occasionally by 

large factor compared to glycoside hydrolases encoding genes observed in eukaryote 

genome sequences such as Saccharomyces cerevisiae, Saccharomyces pombe, Caenorhabditis 

elegans, Arabidopsis thaliana, Homo sapiens and Drosophila melanogaster. Contrastingly, the 

genomic studies of P. chrysosporium revealed large number of glycosyl hydrolases encoding 

genes rather than glycosyl transferases [15].   

Some of the significant findings from the P. chrysosporium gene expression studies with 

respect to CAZymes were discussed as follows. Wymelenberg et al. (2009) have reported the 
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gene expression data of P. chrysosporium cultured on cellulose, glucose and ball milled aspen 

(GSE14736) [23, 24]. It revealed several transcripts encoding various cellulases belonging to 

GH-5, 6, 7 and hemicellulose depolymerizing enzymes such as xylanases, mannases, α-β-

galactosidases, xyloglucanase, arabinofuranosidase, polygalacturonase and feruloyl 

esterases found to be highly upregulated in ball milled aspen along with GH-61 proteins. 

CAZy encoding genes were not expressed in nitrogen limited medium [23, 24]. 

Wymelenberg et al. (2011) have conducted the P. chrysosporium gene expression study by 

culturing it on ball milled aspen and ball milled pine (GSE27941) [26]. The obtained results 

have supported earlier investigations on the cellulolytic system of P. chrysosporium, various 

transcripts coding for endo and exoglucanases (CBH1, CEL7D, CBH2, CEL5A) and GH-61 

were significantly expressed in BMA samples. While genes encoding cellobiose 

dehydrogenase (CDH) and aldose-1-epimerase transcripts were highly expressed in BMP but 

not in BMA [26]. Thuillier, A et al. (2014) have performed the whole transcriptomic study of P. 

chrysosporium cultured on oak acetonic extractives (GSE54542) [25]. Genes encoding various 

CAZymes such as cellobiohydrolases, endoglucanases, β-glucosidase, endoxylanases, endo 

glucanases and mannases were found to be expressed in control conditions and the same 

genes were downregulated in oak extractives [25]. In 2014, Gaskell et al. has performed gene 

expression studies on P. chrysosporium to understand the influence of Populus genotype 

(P717, 82 and 64 transgenic lines) on its gene expression (GSE52922) [27]. Results from this 

study showed that genes coding for GH-6 (CBH2), AA-3 (CDH), AA9 (LPMO), GH5 

(endoglucanases) were highly upregulated in P717. It was also reported that transcripts 

coding for LPMO’s, cellobiose dehydrogenase and aldose-1-epimerase were highly 

expressed in all the three cultures. In order to understand the lignocellulolytic abilities of P. 

chrysosporium on spruce wood samples, Korripally et al. (2015) have conducted a gene 

expression study (GSE69461) [29] and reported that 23 transcripts coding for putative 

hemicellulases showed more than 4-fold expression. Along with the hemicellulases, genes 

coding for carbohydrate esterases were also found to be highly expressed in 40 hour 

samples, which show that these hemicellulases and carbohydrate esterases are mutually 

involved in depolymerization [29]. Recently, Skyba et al. (2016) has conducted a gene 

expression study to understand the involvement of specific genes and enzymes involved in 

lignocellulose degradation by culturing P. chrysosporium on chemically distinct P. trichocarpa 

wood substrates [28]. Results from this study revealed the genes coding for AA9 (LPMO), 

GH13 were down regulated when cultured on low glucose substrates [28]. The metadata 
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analysis results from the above-mentioned gene expression studies have resulted in 

differentially expressed common gene lists involved in cellulose and hemicellulose 

degradation (Figure 2.2). 

Figure 2.2: Three way and four-way Venn diagrams showing the common differentially 

expressed genes of P. chrysosporium involved in cellulose and hemicellulose degradation; 

(A) Differentially expressed genes and (B) Differentially expressed CAZymes, resulted from 

the datasets GSE14734, GSE14735 and GSE27941; (C) Differentially expressed genes and (D) 

Differentially expressed CAZymes resulted from the datasets GSE54542, GSE52922, 

GSE69008 and GSE69461. 

C D 

A B 



 

76 | P a g e  

 

2.4.2. Expression of Cellulose Degrading Glycoside Hydrolases 

Glycoside hydrolases are present in large numbers among carbohydrate active enzymes with 

wide variety of functional properties. Enzymes belonging to this class cleaves the glycosidic 

bond linkages of glycosides, glycans and other glycoconjugates [42]. Metadata analysis of P. 

chrysosporium gene expression studies have resulted in common differentially expressed 

glycoside hydrolase classes involved in cellulose degradation such as GH-5, GH-6, GH-7, GH-

9, GH-44, GH-45, GH-48 and GH-61 [Table 2.2]. Genes encoding GH-5, GH-6, GH-7 and GH-

61 (AA9) were found to be differentially expressed by P. chrysosporium cultured on cellulose 

(GSE14734), ball milled aspen (GSE14734, GSE27941). It was reported that, in Trichoderma 

reesei genes coding for cellulolytic and xylanolytic enzymes are regulated by XYR1 and CRE1 

transcriptional factors corresponding to the carbon source used for its growth [43]. It was also 

seen that, presence of glucose in the growth media represses the expression of cellulolytic 

and xylanolytic genes [44-47]. Above mentioned glycoside hydrolases significantly down 

regulated in nitrogen limited, carbon limited growth mediums (GSE14735). When P. 

chrysosporium was cultured on (P. trichocarpa) P717, 82 transgenic lines (GSE52922), genes 

encoding for GH-2, GH-3, GH-5 were differentially expressed when compared to 64 

transgenic line. In growth mediums containing chemically distinct P. trichocarpa, glycoside 

hydrolase encoding genes GH-5, GH-6, GH-7, GH-61 were found to be highly expressed in 

high glucose-low lignin and average lignin-average glucose (GSE69008) samples. Most of the 

cellulose degrading glycoside hydrolase encoding genes were found to be down-regulated 

in oak acetonic extracts (GSE54542). Glycoside hydrolases involved in cellulose breakdown 

such as GH-2, 5, 6, 7, 45, 48, 61, were significantly expressed in 96-hour spruce wood samples 

(GSE69461). 

Table 2.2: Glycoside hydrolases differentially expressed among different gene expression 

datasets 

Glycoside 

Hydrolases 

 

Representing 

enzyme 

(Cellulose 

degrading) 

Glycoside 

Hydrolases 

Representing 

enzyme 

(Hemicellulose 

degrading) 

Glycoside 

Hydrolases 

Representing 

enzyme 

(Oligosaccharide) 

 

 

 

GH-1 

 

 

 

 

β-Glucosidase 

β-Galactosidase 

 

GH-1 

β-glucosidase 

β-galactosidase 

β-mannosidase 

β-glucuronidase 

 

 

 

 

GH-1 

β-glucosidase 

β-galactosidase 

β-mannosidase 

β-glucuronidase  

GH-2 

β-Galactosidase 

β-Mannosidase 



 

77 | P a g e  

 

 

2.4.3. Expression of Hemicellulose Degrading CAZymes 

Most of the naturally occurring plant polysaccharides are partly esterified by acetic acid to 

protect from microbial glycoside hydrolases as they cannot breakdown acetylated glycosyl 

units. As a result, microorganisms secrete a set of enzymes known as carbohydrate esterases 

which targets the acetyl groups of plant polysaccharides [48]. Carbohydrate esterases (CE) 

catalyze O-de or N-deacetylation of saccharides substituted with either esters or amides, 

where these sugars play the role of alcohol or amine [48]. Substrates for CEs can be majorly 

 

GH-5 

Endo-β-1,4-glucanase, 

β-glucosidase, 

Endo-β-1,4-xylanase 

 

 

GH-8 

Endo-1,4-β-xylanase 

Chitosanase 

Cellulase 

 

GH-3 

β-glucosidase 

xylan 1,4-β-

xylosidase 

 

GH-5 

Endo-β-1,4-

glucanase, β-

glucosidase, 

Endo-β-1,4-

xylanase 

 

GH-6 

 

Endoglucanase 

Cellobiohydrolase 

 

GH-10 

Endo-1,4-β-xylanase 

Endo-1,3-β-xylanase 

 

GH-2 

β-galactosidase 

β-mannosidase 

β-glucuronidase 

 

GH-7 

Endo-β-1,4-

glucanase, 

endo-β-1,3-1,4-

glucanase 

 

GH-11 

Endo-1,4-β-xylanase 

Endo-1,3-β-xylanase 

 

GH-3 

β-glucosidase 

xylan-1,4-β-

xylosidase 

α-L-

arabinofuranosidase 

 

GH-9 

Endoglucanase 

Endo-β-1,4-

glucanase 

β-glucosidase 

 

GH-12 

 

Endoglucanase 

Xyloglucan hydrolase 

GH-28 

Polygalacturonase 

Exo-

polygalacturonase 

Rhamnogalacturonase 

 

 

 

GH-44 

 

Endoglucanase 

Xyloglucanase 

 

 

GH-26 

β-Mannanase 

exo-β-

1,4mannobiohydrolase 

β-1,3-xylanase 

Mannobiose 

producing exo-β-

mannanase 

 

GH-29 

α-L-fucosidase 

α-1,3-1,4-L-fucosidase 

 

GH-45 

 

Endoglucanase 

 

GH-38 

α-mannosidase 

mannosyl-

oligosaccharide, α-1,2-

mannosidase 
 

 

GH-35 

 

β-galactosidase 

exo-β-

glucosaminidase 

exo-β-1,4-galactanase 
 

GH-48 

Reducing end-

acting 

cellobiohydrolase, 

endo-β-1,4-

glucanase 

 

GH-43 

β-xylosidase 

α-L-

arabinofuranosidase 

GH-47 α-mannosidase 

 

GH-61 

 

Lytic Polysaccharide 

Monoxygenase 

(LPMO) 

 

GH-39 

β-xylosidase 

α-L-iduronidase 

 

GH-61 

Lytic 

Polysaccharide 

Monoxygenase 

(LPMO) 

 

GH-42 

β-galactosidase, 

α-L-

arabinopyranosidase 
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classified into pectin methyl esters (acid form of sugar) and acetylated xylan (sugar alcohol). 

Presently carbohydrate esterases are classified into 16 different classes in the CAZy database. 

Therefore, in contrast to cellulose, hemicellulose degradation is commenced by a set of 

glycoside hydrolase and carbohydrate esterase class enzymes. P. chrysosporium secretes 

several hemicellulose degrading glycoside hydrolase class enzymes such as endo-1,4-β-

xylanase, β-mannosidase, β-xylosidase and several other enzymes. Metadata analysis of the 

above mentioned publicly available gene expression datasets have resulted in following 

hemicellulose depolymerizing glycoside hydrolase classes GH-5, GH-8, GH-10, GH-11, GH-

12, GH-26, GH-38, GH-43, GH-47 [Table 2.2]. When P. chrysosporium was cultured on ball 

milled aspen (GSE14734, GSE27941), genes encoding glycoside hydrolase such as GH-1, GH-

2, GH-39, GH-43 which was also expressed in cellulose, and GH-47 were differentially 

expressed along with acetyl xylan esterases (CE-1).  When cultured on replete nutrient 

medium (GSE14735) genes encoding GH-1, GH-5, GH-7, GH-39, GH-61 glycoside hydrolases 

were highly expressed.  Glycoside hydrolase encoding genes GH-2, GH-16, GH-20 were 

found to be highly expressed in oak acetonic extractives and GH-3, GH-43, GH-47 were highly 

expressed in control samples (GSE54542). In GSE52922, P. chrysosporium differentially 

expressed glycoside hydrolase classes such as GH-2, GH-10, GH-39 in transgenic line 82 and 

P717, whereas GH-43 encoding genes were expressed in transgenic line 64 growth 

substrates. We have also observed that hemicellulose degrading glycoside hydrolase GH-5, 

GH-10, GH-13, GH-43, GH-47 were expressed when P. chrysosporium cultured on high lignin 

and low glucose samples of P. trichocarpa wood substrates (GSE69008). In GSE69461, when 

P. chrysosporium cultured on spruce wood samples glycoside hydrolase encoding genes such 

as GH-5, GH-10, GH-47, GH-53, GH-115, GH-125 and GH-131 were highly upregulated in 96-

hour growth samples. Along with these glycoside hydrolases, genes encoding carbohydrate 

esterases such as acetyl xylan esterase (CE-1) (CE-4), pectin methyl esterase (CE-8), 4-O-

methyl-glucuronoyl methylesterase (CE-15) and acetylesterase (CE-16) were also highly 

expressed in 96-hours samples. At the same time, acetyl xylan esterase (CE-4) and N-

acetylglucosamine 6-phosphate deacetylase (CE-9) were highly expressed by P. 

chrysosporium in 40-hours spruce wood samples. 

 

 

2.4.4. Glycoside Hydrolases Involved in Fungal Cell-Wall Synthesis 
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Composition of fungal cell walls are dynamic and differs significantly from that of cellulose 

based plant cell walls [49]. Fungal cell wall majorly consists of polysaccharide units and 

glycoproteins in which chitin and glucan chains are significantly high. However, other cell 

wall components vary among the fungal species. Principally, fungal glucan component occurs 

in long chains of β-1,3-linked glucose units and chitin is synthesized as chains of beta-1,4-

linked N-acetylglucosamine units, however chitin is less abundant in fungal cell wall when 

compared to glucan chains or the glycoprotein portion [49].  Thus, several genes encoding 

for the enzymes involved in synthesis of β-1,3-glucans and chitin are constantly expressed in 

fungal cell by protecting the fungi from changes in osmotic pressure and various 

environmental stress [49]. Glycoside hydrolases encoding genes such as GH-16 (chitin β-1,6-

glucanosyltransferase), GH-18 (chitinase), GH-37 (α,α-trehalose), GH-55 (exo-endo-β-1,3-

glucanases), GH-71 (α-1,3-glucanse) GH-128 (β-1,3-glucanase). Genes coding for the GH-18 

was found to be differentially expressed by P. chrysosporium in all the datasets among various 

growth conditions. We have also found that GH-16 encoding genes were highly upregulated 

in oak acetonic extractives. While genes coding for glycoside hydrolase classes such as GH-

16, GH-37, GH-55, GH-71, GH-128 were found to be highly expressed in complex natural plant 

biomass growth substrates (40-hours spruce wood, high lignin-low glucose, average lignin-

average glucose), which might be due to the exposure of fungal cell to the various stressful 

conditions. 

2.4.5. Expression of Glycosyl Transferases Encoding Genes 

Glycosyl transferase enzymes catalyze glycosidic linkages utilizing activated sugar donor 

containing a phosphate group (mostly nucleoside diphosphate sugars e.g. UDP Gal, GDP 

Man). In simple terms GT’s catalyzes the reactions for joining sugars to aglycone, thus playing 

a significant role in synthesis of oligosaccharides [50]. From the current metadata analysis, 

we have found that differentially expressed common glycosyl transferase classes were GT-1, 

GT-2, GT-4, GT-8, GT-15, GT-20, GT-35, GT-39, GT-48. The type of growth mediums on which 

P. chrysosporium was cultured, have significant effect on the expression of glycosyl 

transferase classes. Genes encoding GT-4, GT-8, GT-48 enzyme classes were highly 

expressed on cellulose growth medium whereas GT-1, GT-2, GT-20, GT-39 were expressed 

on ball milled aspen, and GT-8, GT-48 genes were upregulated on glucose and replete 

growth mediums. GT-2 class of enzymes were highly expressed on Oak acetonic extractives 

and on control conditions GT-8 encoding genes were upregulated. P. chrysosporium when 

cultured on chemically distinct P. trichocarpa medium, discrete glycosyl transferase classes 



 

80 | P a g e  

 

were highly expressed, they are a) GT-1, GT-4, GT-20 on high lignin- low glucose conditions 

b), GT-2, GT-8, GT-15, GT-35, GT-39, GT-48 on low lignin-high glucose mediums c) GT-2, GT-

8, GT-15, GT-20, GT-35, GT-39, GT-48 on average lignin-average glucose samples. Similarly, 

class of GT-39 encoding genes were expressed on P717 and 82 transgenic lines. Genes 

encoding glycosyl transferases such as GT-1, GT-2, GT-15, GT-48 were highly upregulated in 

40-hour spruce wood samples. 

2.4.6. Gene Expression of Polysaccharide Lyases 

Polysaccharide lyases are class of enzymes which are involved in breakdown of activated 

glycosidic bonds involved in joining certain acidic polysaccharide units [51]. Polysaccharide 

lyases cleave the polysaccharide units through a eliminase mechanism rather than a 

hydrolysis resulting in oligosaccharide units [51]. Present day CAZy database has classified 

polysaccharide lyases into 24 different classes. The metadata analysis of gene expression 

datasets has shown that, hyaluronate lyase or chondroitin AC lyase (PL-8) encoding genes 

were down regulated in oak acetonic extracts and upregulated in 96-hour spruce wood, ball 

milled aspen, nitrogen and carbon limited and 64, 82 transgenic line samples. Genes coding 

for β-1,4-glucuronan lyase or alginate lyase (PL-14) is highly upregulated in 40-hour spruce 

wood samples. 

Table 2.3: Glycosyl transferases and carbohydrate esterases differentially expressed among 

different gene expression datasets 

Glycosyl 

Transferases 

Representing enzyme Carbohydrate  

Esterases 

Representing enzymes Polysaccharide 

Lyases 

Representing 

enzyme 

 

GT-1 

 

UDP-glucuronosyltransferase, 

zeatin O-β-xylosyltransferase, 

indole-3-acetate β-

glucosyltransferase 

 

CE-1 

acetyl xylan esterase,  

cinnamoyl esterase, 

feruloyl esterase,  

carboxylesterase,  

S-formylglutathione 

hydrolase, 

 

 

 

 

 

 

 

PL-8 

 

 

 

 

 

 

 

Hyaluronate lyase, 

Chondroitin AC lyase, 

Xanthan lyase 

GT-2 cellulose synthase,  

chitin synthase, 

dolichyl-phosphate β-D-

mannosyltransferase, 

CE-4 acetyl xylan esterase,  

chitin deacetylase,  

chitooligosaccharide 

deacetylase, 

GT-4 sucrose synthase, 

sucrose-phosphate synthase, 

α-glucosyltransferase,  

lipopolysaccharide N-

acetylglucosaminyltransferase 

 

CE-8 

 

Pectin methylesterase 

GT-8 lipopolysaccharide α-1,3-

galactosyltransferase, 

 

CE-9 

 

N-acetylglucosamine 6-

phosphate deacetylase, 
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2.4.7. Major Facilitator Superfamily Encoding Genes 

Major facilitator superfamily is one of the largest membrane transporter proteins involved in 

the intracellular transport of a wide variety of chemical compound by solute uniport, 

solute/solute antiport, solute/cation antiport and solute/cation symport [52]. MFS proteins are 

involved in transport of simple sugars, oligosaccharides, amino-acids, nucleosides, 

organophosphate esters and many other compounds [52].  Sugar transporters are class of 

membrane proteins involved in binding and transport of different carbohydrates, alcohols 

and acid compounds [53]. Efficient degradation and metabolism of plant cell wall 

polysaccharides by P. chrysosporium requires sugar transporters along with extracellular 

glycoside hydrolases [54]. Genes encoding for sugar transporters were highly expressed in 

cellulose, glucose, replete, ball milled aspen, high glucose-low lignin, average lignin-

average glucose, 96-hours culture samples.  

 

2.4.8. Genes Encoding for Carbohydrate Metabolism 

Several genes involved in expression and regulation of glycolysis were also highly expressed 

in the actively growing cultures of P. chrysosporium. Genes encoding for aldose-1-epimerase 

were highly expressed in cellulose, glucose, control, high glucose-low lignin, average lignin-

average glucose, 40-hour spruce wood cultures. Genes coding for enzymes involved in 

regulation of the glycolysis such as hexokinase, phosphofructokinase and pyruvate kinase 

were differentially expressed in cellulose, carbon-limited, high glucose-low lignin and 

average glucose-average lignin, 40-hour spruce wood samples. Fructose-2,6 bisphosphatase, 

UDP-lipopolysaccharide α-1,2-

glucosyltransferase, 

lipopolysaccharide 

glucosyltransferase 1, 

PL-14 Alginate lyase, 

exo-oligo alginate 

lyase, 

β-1,4-glucuronan lyase 

GT-15 glycolipid 2-α-

mannosyltransferase, 

GDP-Man: α-1,2-

mannosyltransferase, 

CE-15 4-O-methyl-glucuronoyl 

methylesterase, 

GT-20 α, α-trelhalose-phosphate 

synthase, 

Glucosylglycerol-phosphate 

synthase, 

trehalose-6-P phosphatase, 

 

 

CE-16 

 

 

 

 

 

 

Acetylesterase 

GT-35 glycogen or starch 

phosphorylase 

GT-39 protein α-mannosyltransferase 

GT-48 1,3-β-glucan synthase 
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phosphoglucomutase genes were upregulated in glucose, replete, ball milled aspen samples. 

Enzymes involved in pentose phosphate pathway such as fructose-6-phosphoketolase, 

transketolase, transaldolase encoding genes were expressed in replete, high glucose-low 

lignin, average lignin-average glucose and 40-hour spruce wood growth samples. Alpha 

amylase, aldo/keto reductase, aldehyde dehydrogenase, zinc-containing alcohol 

dehydrogenase encoding genes were expressed in cellulose, glucose, nitrogen limited, 

carbon-limited, ball milled aspen, control, 64 transgenic line, high glucose-low lignin, 

average lignin-average glucose, 40-hours samples. Genes coding for pyruvate 

decarboxylase, pyruvate kinase was highly upregulated in carbon-limited, nitrogen limited, 

oak acetonic extractive and 40-hour spruce wood samples.  

2.4.9. Genes Encoding for Carbohydrate Binding Modules (CBM) 

The cellulose and hemicellulose degrading hydrolytic enzymes secreted by polysaccharide 

degrading microorganisms contains a discrete module with composite molecular 

architecture linked by unstructured sequences, which consists of a catalytic module and a 

carbohydrate binding module (CBM) [55]. Carbohydrate binding modules were firstly 

classified as cellulose binding modules (CBD) as various modules were found to bind with 

cellulose [56-58]. However, several studies have reported the modules binding to the 

carbohydrates other than cellulose, which was the main reason behind renaming these 

modules as CBMs [55]. Currently, the carbohydrate binding modules (CBMs) are divided into 

80 major classes in CAZy database. CBM-12 encoding genes were highly expressed in 

cellulose (GSE14734) ball milled aspen (GSE27941). Genes encoding CBM-1 and CBM-13 

were expressed in 96-hour samples and CBM12, CBM-21, CBM-48 and CBM-50 were found to 

be expressed in 40-hours samples respectively (GSE69461). Similarly, genes encoding CBM-

12, CBM-48, were expressed in high glucose-low lignin and average lignin-average glucose 

growth conditions. The genes coding for carbohydrate binding WSC domain were 

differentially expressed in cellulose, nitrogen limited, ball milled aspen, control, high lignin-

low glucose growth conditions. According to Wymelenberg et al (2006), careful inspection of 

cro3, cro4 and cro5 cDNA sequences revealed 2 to 4 tandem copies of WSC domain which 

might be having a role in cell wall integrity and stress component [59]. The exact function of 

WSC-domain containing proteins in P. chrysosporium is not clear till today [59]. In 

Trichoderma harzianum, β-1,3- exoglucanase protein which is  associated with host cell wall 

degradation was found to contain 2 copies of WSC domain [60], contrastingly in 
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Saccharomyces cerevisiae, the WSC-containing proteins are involved in maintaining cell wall 

integrity and heat shock response [61] . 

2.5. Discussion 

Analyzing the common gene expression patterns of P. chrysosporium involved in degradation 

of plant biomass will considerably enhance our current understanding. We have analyzed the 

gene expression datasets retrieved from public repositories based on P. chrysosporium 

growth conditions by using GEO2R and Bioconductor packages, to find the common 

differentially expressed genes among various datasets. Several genes encoding for 

carbohydrate active enzymes were found to be commonly expressed in P. chrysosporium 

gene expression datasets (Figure 2.3). Classically, it was well known that the process of 

cellulose degradation by P. chrysosporium (filamentous fungus) occurs through combination 

of hydrolytic reactions caused by a) endo-1,4-β-glucanases b) exo-1,4-β-glucanases 

(cellobiohydrolases) c) β-glucosidases [6]. Initial cellulose degradation by the filamentous 

fungus occurs through cellulases which are majorly classified under glycoside hydrolases, 

resulting in cellobiose [62]. Cellobiose, the major product obtained during the cellulose 

biodegradation is hydrolyzed into two molecules of glucose by cellobiose dehydrogenase 

(CDH) and β-glucosidase (BGL) [62]. It was reported that P. chrysosporium secretes a single 

isozyme coding for both BGL and CDH, initially CDH acts on cellobiose resulting in glucose 

and gluconolactone which are hydrolyzed by BGL [63]. Gene expression studies of P. 

chrysosporium conducted in the recent years have revealed several significant facts on 

expression patterns of cellulose degrading glycoside hydrolases and other carbohydrate 

active enzymes. Endoglucanase (endo-1,4-β-glucanase or 1,4-β-D-glucan 4-

glucanohydrolases) is required for the initial hydrolysis of cellulose for breaking internal 

glycosidic bonds. Majority of the genes encoding for endo and exo glucanases belonging to 

GH-5, GH-6, GH-7, GH-9, GH-44, GH-45 and GH48 glycoside hydrolase classes were 

differentially expressed when cultured in cellulose, ball milled aspen as the carbon source 

(GSE14734), average lignin- average glucose (B10, C10, B20 and C20) (GSE69008) ball milled 

aspen (GSE27941). While these genes were down regulated in nitrogen limited, carbon 

limited (GSE14735), ball milled pine (GSE27941) transgenic line 64 (GSE52922), oak acetonic 

extracts (GSE54542) spruce wood 40-hour samples. In fact, several genes encoding 

cellulolytic and hemicellulolytic enzymes were not expressed in nitrogen and carbon limited 

conditions (GSE14735). Lytic polysaccharide monoxygenases (LPMO) are class of enzymes 
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which can potentially breakdown the recalcitrant plant polysaccharide units by cooperating 

with cellobiose dehydrogenase enzyme (not necessarily as some organisms lack the CDH 

coding genes) resulting in production of oxidized and non-oxidized chains [64-67]. Glycoside 

hydrolase class 13 enzymes with alpha-amylase activity functions similar to AA-9 class 

enzymes which also act on polysaccharide units. Genes coding the AA-9 (LPMO) class 

enzymes were downregulated in low glucose-high lignin and also in only glucose (GSE14734) 

conditions, which might be due to its preference for lignocellulosic substrates [68]. The genes 

encoding these enzymes were also found to be down regulated in 40- hours samples, while 

these genes were highly expressed in 96-hours (GSE69461), which can be explained by 

expression of LPMO’s during the initial days of fungal incubation [69].  

 

Figure 2.3: Venn diagram showing the cellulose degrading glycoside hydrolases (left), 

oligosaccharide metabolizing (center) hemicellulose degrading (right) and other CAZy 

enzyme classes. 

Several studies have reported that occurrence of plant polymers such as cellulose, 

xylan in the growth medium of T. reesei induces the increased production of cellulolytic and 

hemicellulolytic enzymes [70-73]. The oligosaccharides such as sophorose [74, 75], β-

cellobiono-1,5-lactone, xylobiose, D-galactose, D-xylose and lactose in the growth medium 

have also been reported to increase the genes encoding cellulolytic and hemicellulolytic 

enzymes [76-81]. It was always a fascinating fact that how these large insoluble polymers 
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cellulose and xylan can induce the production of cellulases and hemicellulases, as the fungal 

cells usually do not incorporate these polymers [82]. Researchers investigated on this fact and 

postulated that soluble low molecular weight compounds derived from cellulose induce the 

hydrolytic enzyme production by the fungal cells. Another proposed mechanism is that, 

minimal levels of extracellular cellulases especially CEL7A and CEL6A produced by fungal 

cells act on cellulose liberating a soluble inducer which enter the cell and induces the 

production of hydrolytic enzymes [83, 84]. These facts can explain the higher expression of 

endoglucanases and exo-glucanases in growth conditions mentioned above (Figure 2.4). 
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Figure 2.4: Tentative network of genes coding for P. chrysosporium cellulose degrading 

enzymes and cellulose degradation mechanism; O (CAZymes involved in oligosaccharide 

degrading), C (cellulolytic CAZymes), CDH (cellobiose dehydrogenase encoding CAZymes) 

and LPMO (CAZymes coding for lytic polysaccharide monoxygenases). 

Most of the polysaccharide degrading microorganisms breakdown the hemicellulose 

units into monomeric sugars and acetic acid [85]. Most of the known hemicellulases are 

frequently classified based on their action on discrete substrates. Xylan forms the major 

carbohydrate constituent of hemicellulose and its degradation requires the parallel action of 

various hydrolytic enzymes [85]. Initially, xylan is degraded by endo-1,4-β-xylanase 

generating oligosaccharide chains and later xylan 1,4-β-xylosidase breaks the xylan 

oligosaccharides to xylose units [86]. Enzymes such as acetyl xylan esterases, α-L-

arabinofuronosidases, α-4-O-methyl glucuronosidases and ferrulic, p-coumaric esterases are 

also efficiently required for the breakdown of wood xylan and mannans. along with the above 

mentioned major xylan degrading enzymes [85].  As mentioned by Pérez et al. (2002) 

degradation of highly occuring hemicellulosic polymer, O-acetyl-4-O-methylglucuronxylan 

takes place through synergistic action of endo-1,4-β-xylanases (which breaks down the whole 

polymer to oligosaccharide units) acetyl esterases (eliminates acetyl groups), α-

glucuronidase or α-galactosidases removes galactose residues and finally β-mannosidase or 

β-glycosidase (cleaves the endomannose generated oligomer β-1,4-bonds) [85]. It was 

known that P. chrysosporium produces several endoxylanase encoding genes [87]. Glycoside 

hydrolases such as endoxylanases, β-xylosidases, β-galactosidases, β-mannosidases and 

other hemicellulases encoding genes such as GH-1, GH-2, GH-8, GH-10, GH-11, GH-26, GH-

38, GH-43 and GH-47 were majorly found to be differentially expressed when P. 

chrysosporium was cultured in plant biomass containing growth mediums. We have observed 

that, process of hemicellulose degradation by P. chrysosporium occurs by combinatorial 

action of glycoside hydrolases and carbohydrate esterases (CE-1, 4, 8, 9, 15 and16) as 

observed in the gene expression profiles of GSE69008, GSE69461 datasets. Based on our 

metadata analysis we have found that P. chrysosporium secrete a wide range of hydrolytic 

enzymes involved in the degradation of lignin and hemicellulose followed by secretion of 

cellulolytic enzymes when cultured on complex natural plant biomass (Figure 2.5). 
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Figure 2.5: Tentative network of genes coding for P. chrysosporium hemicellulose degrading 

enzymes and hemicellulose degradation mechanism  

Whole genome and transcriptome studies of P. chrysosporium conducted in the recent 

years have revealed several significant facts on the molecular mechanisms employed by this 

white rot fungus during degradation of plant cell wall components. Our present study based 

on metadata analysis of P. chrysosporium gene expression data provides a list of common 

cellulolytic and hemicellulolytic  enzymes expressed among various datasets under different 

growth conditions (customized medium and complex plant biomass containing medium). This 

study proves that gene expression of P. chrysosporium is strongly influenced by the growth 

substrates and the incubation periods. The gene expression profiles observed in GSE69008 

and GSE69461 show that, when P. chrysosporium is cultured on plant biomass it initially 
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secretes various lignin and hemicellulolytic enzymes followed by secretion of cellulolytic 

enzymes in the later growth stages. The future prospects of this work would be determining 

the precise functions of various significantly expressed hypothetical proteins, as most of them 

were classified as proteins with unknown functions. We believe that our present work will 

potentially enhance the present day understanding about P. chrysosporium and its 

lignocellulosic degrading patterns and will also play a crucial role in developing 

overexpressed gene products of P. chrysosporium for targeting the cellulosic and 

hemicellulosic feedstocks. 
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Chapter-3 

Gene Expression Metadata Analysis Reveals Molecular Mechanisms 

Employed by Phanerochaete chrysosporium During Lignin Degradation and 

Detoxification of Plant Extractives  

[This work has been published in “Current Genetics” (2017): 1-18] 

Ayyappa Kumar Sista Kameshwar and Wensheng Qin* 

3.1. Abstract 

Lignin, most complex and abundant biopolymer on the earth’s surface, attains its stability 

from intricate polyphenolic units and non-phenolic bonds, making it difficult to depolymerize 

or separate from other units of biomass. Eccentric lignin degrading ability, availability of 

annotated genome makes Phanerochaete chrysosporium ideal for studying lignin degrading 

mechanisms. Decoding and understanding the molecular mechanisms underlying the 

process of lignin degradation will significantly aid the progressing biofuel industries and lead 

to the production of commercially vital platform chemicals. In this study, we have performed 

a large-scale metadata analysis to understand the common gene expression patterns of P. 

chrysosporium during lignin degradation. Gene expression datasets were retrieved from 

NCBI GEO database and analyzed using GEO2R and Bioconductor packages. Commonly 

expressed statistically significant genes among different datasets were further considered to 

understand their involvement in lignin degradation and detoxification mechanisms. We have 

observed three sets of enzymes commonly expressed during ligninolytic conditions which 

were later classified into primary ligninolytic, aromatic compound degrading and other 

necessary enzymes. Similarly, we have observed three sets of genes coding for detoxification 

and stress responsive, phase-I and phase-II metabolic enzymes. Results obtained in this study 

indicate the coordinated action of enzymes involved in lignin depolymerization and 

detoxification-stress responses under ligninolytic conditions. We have developed tentative 

network of genes and enzymes involved in lignin degradation and detoxification mechanisms 

by P. chrysosporium based on the literature and results obtained in this study. However, 

ambiguity raised due to higher expression of several uncharacterized proteins necessitates 

for further proteomic studies in P. chrysosporium. 

Keywords: Phanerochaete chrysosporium; Transcriptome; Lignocellulose; Gene Expression 

Omnibus (GEO); GEO2R; Detoxification responses; Phase-I and Phase-II metabolic enzymes 
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3.2. Introduction 

Naturally, wood is composed of two organic compound groups a) carbohydrates (65-

75%) b) lignin (20-30%) along with organic extraneous compounds (4-10%) and inorganic 

minerals (calcium, potassium etc.) [1]. Lignin constitutes second most abundant biopolymer, 

found in closer associations with cellulose and hemicellulosic units, complex polyphenolic 

units and non-phenolic linkages provides lignin with high stability. Lignin is considered as 

major bottleneck in biofuel industries, as it is necessary to separate lignin from other units of 

biomass for the efficient production of biofuels. Also, if degraded efficiently lignin can be 

used to produce commercially important platform chemicals. Only few microorganisms were 

reported till today with efficient lignin degrading abilities. Phanerochaete chrysosporium is a 

wood degrading white rot fungus belonging to basidiomycetes fungi, well known for its 

eccentric lignin degrading ability [2, 3]. Apart from lignin, P. chrysosporium also exhibits 

great ability in degrading and mineralizing various synthetic dyes, organic pollutants such as 

2,4-dichlorophenol, 2,4-dinitrotoluene, endosulfan, pentachlorophenol, phenanthrene and 

several other harmful organic chemicals [4-7]. Degrading ability of P. chrysosporium is 

credited to its highly efficient enzyme system, it secretes a wide range of oxidative and 

hydrolytic enzymes for the successful degradation of various organic compounds. Several 

studies have reported about the lignin degrading enzyme system of P. chrysosporium, which 

majorly consists of ligninolytic peroxidases such as lignin peroxidase (LiP), manganese 

peroxidase (MnP) and hydrogen peroxide generating enzymes. P. chrysosporium induces its 

enzyme arsenal under nutrient deficient culture conditions during its secondary metabolism 

[8]. Studies have reported that P. chrysosporium enzyme system can catalyze the primary 

oxidation of various persistent xenobiotic compounds such as chloroaromatic, polyaromatic 

compounds and dioxins [9]. 

Martinez et al (2004) has sequenced and annotated the whole genome of P. 

chrysosporium, in fact it was first whole genome sequence from phylum Basidiomycota [10]. 

The 30 Mb haploid genome of P. chrysosporium with 11, 777 protein coding genes, has 

revealed several significant facts about the genes and enzymes involved in wood decaying 

process [10]. Genome of P. chrysosporium majorly codes for cytochrome P450 superfamily, 

glucose methanol choline oxidoreductases, protein kinases, alcohol oxidases, short chain 

reductases, aspartyl proteases, von Willebrand factor, lectin type proteins and several other 

ligninolytic enzymes. Present day annotated genome of P. chrysosporium RP-78 v2.2 encodes 
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about 444 CAZymes (glycoside hydrolase (181), glycosyl transferases (70), auxiliary activity 

(89), carbohydrate binding domains (65), carbohydrate esterases (20) and polysaccharide 

lyases (6)) out of which auxiliary activity, carbohydrate esterases and glycosyl transferases 

were found during lignin degradation. [10, 11]. Genome level transcriptome studies 

conducted during last decade has revealed several significant facts about the differential 

expression patterns of several genes involved in lignin depolymerization.  

Minami et al (2007) have performed a Long SAGE analysis on P. chrysosporium to 

understand the changes in transcriptome during the initiation of manganese peroxidase and 

lignin peroxidase enzymes. Long SAGE analysis have revealed about several candidate gene 

sequences involved in regulation of the LiP and MnP enzyme production [12] (GSE6649). 

Wymelenberg et al (2009) have studied the extracellular protein products of P. chrysosporium 

grown under nutrient limited and replete conditions. Results obtained by them has confirmed 

the expression of several lignocellulose degrading enzymes under nutrient limited conditions 

and also reinforced the role of novel proteins [13](GSE14735). To study the extracellular 

proteins secreted by P. chrysosporium under standard cellulolytic conditions Wymelenberg 

et al (2009) have performed a whole transcriptome study. This gene expression study has 

confirmed the significance of carbohydrate active enzymes and supported the function of 

many novel proteins involved in lignocellulose degradation [13, 14] (GSE14734). 

Wymelenberg et al (2011) have conducted transcriptome study to analyze the gene 

expression patterns of Postia placenta and Phanerochaete chrysosporium colonized on (aspen) 

Populus grandidentata and (pine) Pinus strobus. Results have showed that transcriptome of 

these fungi are significantly influenced by wood species and this study has majorly 

differentiated molecular mechanisms employed by white and brown rot decay patterns [15] 

(GSE27941). Thuillier, Anne, et al (2014) have performed a transcriptome study of 

Phanerochaete chrysosporium cultured on oak acetonic extracts and reported that P. 

chrysosporium employs both intracellular antioxidative detoxification mechanisms along with 

extracellular enzymes for lignin degradation. This study has also revealed the functional 

characteristics of PcGTT2.1 a glutathione-s-transferase isoform, involved in reducing the 

cellular toxicity caused by lipid peroxidation and also reported the loss of GTT2.1 isoform in 

some of the non-wood decaying fungi [16] (GSE54542). Gaskell, J et al (2014) have conducted 

experiments to understand the gene expression patterns of P. chrysosporium, colonized on 

hybrid poplar (Populus alba x tremula), 82 and 64 transgenic derivatives (syringyl rich). The 

microarray results have showed that gene expression patterns of P. chrysosporium are 
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considerably influenced by lignin composition of the growth substrate, especially peptides 

corresponding to various oxidoreductases were found to be highly expressed in 82 and 64 

transgenic line substrates [17] (GSE52922). Korripally et al (2015) have performed a whole 

transcriptome study of P. chrysosporium by culturing it on spruce wood samples with an 

efficient oxidant sensing beads at 40 and 96-hours incubation periods. This study has also 

revealed the functional properties of 72 unknown proteins available under the P. 

chrysosporium genome database v2.2 , cytochrome P450 monoxygenases and transporters 

[18] (GSE69461). Skyba et al (2016), have performed a whole transcriptome study of P. 

chrysosporium and P. placenta, cultured on three Populus trichocarpa (poplar) wood substrates 

with different chemical compositions [19]. This study has clearly showed the influence of 

growth substrate (wood composition) and incubation period on the gene expressions of P. 

chrysosporium and P. placenta [19] (GSE69008). All the above genome wide studies have 

significantly influenced the present day understanding about the plant cell wall degrading 

abilities of P. chrysosporium and revealed functional properties of several uncharacterized 

proteins.  

During the process of wood degradation P. chrysosporium is exposed to various highly 

toxic phenolic plant extractives such as flavonoids, quinones, stilbenes, tannins [16, 20, 21]. 

Among these plant extractives, flavonoids and stilbenes possess strong antifungal properties 

and are also required for the durability of wood [20, 22, 23]. However, the ligninolytic white 

rot fungi have developed an efficient enzyme systems involved in antioxidant and 

detoxification mechanisms [16]. Majorly the detoxification system of white rot fungi can be 

classified into phase I (cytochrome P450 group, epoxide hydrolases) and phase II 

(Glutathione-S-transferase, quinone oxidoreductase, UDP-glucuronosyltransferases) enzyme 

systems. These enzyme systems are specifically induced by a variety of xenobiotics and plant 

extractive compounds [24]. Thus, most of the white rot fungi maintain a complementary 

system of extracellular enzymes involved in wood degradation and a simultaneous 

intracellular antioxidant and detoxification systems. 

Studies have reported that P. chrysosporium is equipped with large number of genes 

coding for cytochrome P450 monoxygenases, phase I and phase II metabolic enzymes and 

signaling cascade genes [24]. In the last decade, extensive research has been performed on 

the cytochrome P450 monoxygenases and its role in several physiological and catalytic 

processes of P. chrysosporium such as ligninolysis, secondary metabolism and xenobiotic 
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degradation processes. Doddapaneni and Yadav (2005) has performed global gene 

expression studies of P. chrysosporium to explain the differential expression patterns of 

cytochrome P450 monoxygenases using a custom designed 70-mer oligonucleotide 

microarray. For the first time this study has proved the involvement of cAMP and MAP kinase 

signaling pathways during the biodegradation and secondary metabolism of P. chrysosporium 

[24]. Later, studies have also reported that cAMP and calmodulin (CaM) signaling 

mechanisms play crucial role in expression of ligninolytic peroxidases, as expression of 

calmodulin inhibitor W-7 in P. chrysosporium has resulted in regulation of lip and mnp genes 

and their isoforms [25, 26].  Subramanian and Yadav (2009) have proved the significance of 

P450 monoxygenases in degradation of nonylphenol (endocrine disrupting chemical) under 

different nutrient conditions using a custom designed microarray. This study has shown the 

involvement of P450 monoxygenases in nonylphenol degradation [27]. In the year 2009 Jiang 

et al, has performed genome wide expression analysis specifically for identifying the genes 

involved in secondary metabolism of P. chrysosporium. This study has revealed the 

expression of genes coding for enzymes such as aryl alcohol dehydrogenase, cytochrome 

P450, alkyl hydroperoxide reductase, catalase, ABC transporters etc. [28]. Subramanian and 

Yadav (2009) have reported the transcriptome profiles of cytochrome P450 in P. 

chrysosporium under varied nutrient conditions [29]. Expression of P450 enzymes under 

different nutrient conditions suggests the role of P450 enzymes in the catalytic activity of P. 

chrysosporium. Differential expression of certain P450 enzymes during low and high nutrient 

conditions reveals the specific role played by these enzymes under ligninolytic and non-

ligninolytic conditions [29]. Chigu et al (2010) have performed transcriptomic profiling of P. 

chrysosporium cytochrome P450 monoxygenases (PcCYPS) involved in anthracene 

metabolism [30]. This study has revealed that 14 PcCYP genes are involved in step by step 

conversion of anthracene to anthraquinone. 12 PcCYPS are upregulated upon exogenous 

addition of anthracene. Out of 12 PcCYPS, five genes showed high catalytic activity against 

anthracene and also reported that these genes play major role in in vivo anthracene 

metabolism [30]. 

In this study, we have conducted a large-scale metadata analysis on P. chrysosporium 

gene expression datasets, specifically to demonstrate the common gene expression patterns 

involved during extracellular lignin degradation and intracellular detoxification mechanisms. 

To the extent of our knowledge this is the first report on metadata analysis of P. chrysosporium 

for demonstrating lignin degradation and detoxification, stress responsive mechanisms. 
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3.3. Data Retrieval and Methodology 

3.3.1. Data retrieval: We have used the term Phanerochaete chrysosporium to search for the 

gene expression datasets available in NCBI Gene expression omnibus (GEO) 

(https://www.ncbi.nlm.nih.gov/geo/) a public repository for gene expression datasets. All 

the gene expression dataset corresponding to P. chrysosporium listed under “GEO Datasets” 

window was carefully analyzed by accessing experimental information provided by 

corresponding research team under “Accession display” window. Totally, there are 10 gene 

expression datasets which are currently available in GEO database out of which we have 

retrieved total of 8 P. chrysosporium gene expression datasets (six were microarray datasets, 

one RNA sequencing and one Long-SAGE dataset). The NCBI GEO accession IDs of gene 

expression datasets retrieved were GSE14734, GSE14735, GSE54542, GSE27941, GSE52922, 

GSE69008, GSE69461 and GSE6649. Substrate and platform level details of these gene 

expression datasets were shown in the Table 3.1. We have specifically considered P. 

chrysosporium gene expression datasets which were based on the natural plant biomass and 

simple synthetic compounds containing growth mediums to monitor the change in gene 

expression patterns under ligninolytic conditions. 

Table 3.1: Details of the P. chrysosporium transcriptome metadata retrieved from NCBI GEO 

and NCBI SRA. 

GEO- ID Platform and Technology Substrate #Samples Ref 

GSE54542 NimbleGen Phanerochaete 

chrysosporium arrays 

Oak acetonic 

extractives 

6 [16] 

GSE27941 NimbleGen Phanerochaete 

chrysosporium arrays 

Ball milled aspen, Ball 

milled pine 

6 [15] 

GSE52922 NimbleGen Phanerochaete 

chrysosporium arrays 

P717 hybrid line, 

Transgenic line 82 

Transgenic line 64 

9 [17] 

GSE14734 NimbleGen Phanerochaete 

chrysosporium arrays 

Cellulose, Glucose, Ball 

milled aspen 

9 [13, 14] 

GSE14735 NimbleGen Phanerochaete 

chrysosporium arrays 

Replete medium 

 Carbon limited 

Nitrogen limited 

9 [13, 14] 

GSE69008 NimbleGen Phanerochaete 

chrysosporium arrays 

Poplar wood substrates 24 [19] 

 

 

GSE6649 

 

Long Serial analysis of gene 

expression 

Basal III medium (1% 

(v/v), 1% (w/v) 

glucose, 20 mM Na-

2,2dimethylsuccinate 

2 [12] 

https://www.ncbi.nlm.nih.gov/geo/
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3.3.2. Data Analysis: The microarray datasets retrieved were analyzed using GEO2R (an R 

based interactive online tool) (https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html) and 

Bioconductor packages GEOquery and limma based on R software version 3.2.2. The settings 

used in GEO2R for analyzing the microarray datasets were listed below autodetect option (for 

log transformation of the data), box-whisker plot (samples and value distributions) and 

submitter provided annotations (for gene level annotations). The experimental design and 

sample grouping information was obtained from the gene expression datasets and the 

corresponding literature. Top 250 function was used to obtain the differentially expressed 

genes statistically significant genes, the Top 250 function internally uses limma (linear models 

for microarray data) for the statistical analysis and the genes are ranked based on their P-

values. The differentially expressed genes were obtained after performing Benjamini and 

Hochberg false discovery rate multiple testing correction method with a p-value 0.05. As we 

have mentioned earlier, the process of biological contextualization was based on the supplier 

provided annotations and supplementary information which included mainly InterPro Hits and 

Protein IDs. The gene and protein level annotations of P. chrysosporium were also obtained 

from MycoCosm (fungal genome repository) [31, 32]. We have also used other analysis 

options available in JGI-MycoCosm such as Gene Ontology (GO)[33, 34], EuKaryotic 

Orthologous Groups (KOG) [35] and CAZy [36, 37] for analyzing the results obtained. The 

differentially expressed genes were also represented as hierarchical clusters using the 

Cluster 3.0 software [38] based on cluster for both genes and arrays using the complete 

linkage options, thus obtained cluster output files were used for visualization and 

development of dendrograms using Java Treeview software using the standard conditions 

[39]. We have used Venny 2.1 [40] and Jvenn [41] softwares to get the common differentially 

expressed gene lists among different datasets. The GSE69461 dataset was analyzed by 

retrieving the sample level RPKM (Reads Per Kilobase Million) values from supplementary 

data file provided of GSE69461[18]. Further analysis was performed using RPKM values using 

limma [42], Glimma (http://bioconductor.org/packages/release/bioc/html/Glimma.html) 

and edgeR [43-46] Bioconductor packages, to get statistically differentially expressed genes 

(pH 4.5), 0.0001% 

thiamine, and 1.2 mM 

ammonium tartrate) 3 

mM veratryl alcohol 

GSE69461 Illumina HiSeq 2000 Picea glauca (spruce 

sapwood) 

18 [18] 

https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html
http://bioconductor.org/packages/release/bioc/html/Glimma.html
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with a fold change value 2.0 and p-value 0.05 with Benjamini and Hochberg FDR multiple 

correction method. From the obtained results genes encoding for ligninolytic and 

detoxification, stress responsive pathways were specifically retrieved based on their InterPro 

annotations. Long SAGE samples were analyzed using the Identification of Differentially 

Expressed Genes 6 (IDEG6) orphan tags were removed (sequential errors) further statistical 

analysis was performed using Audic-Claverie test [47]. We have reported the process of data 

analysis earlier in our previous work which reported the metabolic and molecular gene 

networks employed by P. chrysosporium during cellulose and hemicellulose degradation 

[48].  

3.3.3. Summary of Data Analysis 

Based on the growth substrates used for culturing of P. chrysosporium, the gene expression 

datasets considered for the present study were divided as customized synthetic growth 

medium (containing cellulose, glucose or other commercially available nutrients 

supplemented with Highley’s basal medium) and complex natural plant biomass medium 

(containing ball milled aspen, ball milled pine, spruce wood and poplar wood substrates) 

reported earlier [48]. The accession IDs of gene expression datasets belonging to customized 

synthetic growth mediums were GSE14734 (HBM supplemented with 0.5 % (wt/vol) of BMA 

or cellulose or glucose as sole carbon source), GSE14735 (replete B3 medium, carbon limited 

medium and nitrogen limited medium) [13, 14] and GSE6649 [12]. The GEO accession IDs of 

complex natural plant biomass medium were GSE27941(0.5% of ball milled aspen and ball 

milled pine as the sole carbon source supplemented with HBM) [15], GSE52922 (parental 

hybrid clone line- Populus trichocarpa P717 with [65 mol% of syringyl], transgenic line 64  

[94% syringyl] and transgenic line 82 with [85 mol % of syringyl]) [17], GSE54542 (fine 

powdered oak heartwood samples extracted using acetone and further resuspended in 

DMSO followed by a set of extraction processes) [16], GSE69461 (microtomed tangential 

sections of Picea glauca coated with 90µl of agar supplemented with nitrogen mineral salt 

medium) [18]. Similarly GSE69008 contained chemically distinct Populus trichocarpa wood 

substrates: high lignin-low glucose (A), low lignin-high glucose (B) and average lignin-

average glucose (C) [19]. The detailed explanation about the experimental conditions and 

growth protocols performed for the gene expression study protocol can be followed from the 

corresponding literature cited. 
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3.4. Results 

3.4.1. Lignin Oxidizing and Auxiliary Enzymes: Degradation of lignin and its derivatives 

are subject of interest since several years. Advancement of high throughput genomic and 

proteomic methods in the recent years have revealed various significant facts about lignin 

degradation mechanisms employed by P. chrysosporium. According to Kirk, T.K et al (1987), 

an array of oxidases and peroxidases are secreted by white rot fungi for the initial 

degradation of lignin, these reactions release highly reactive and non-specific free radicals 

which leads to a complex series of spontaneous cleavage reactions [10, 49, 50]. Most of the 

Basidiomycetes fungi and especially white rot fungi secrete extracellular laccases, which are 

involved in the single electron oxidation of phenols, phenoxy radicals, aromatic amines and 

electron rich compounds, ultimately transferring four electrons to O2 and reducing it to H2O 

molecule [49, 51]. The whole genome sequencing studies have showed that P. chrysosporium 

doesn’t code for any conventional laccase however, it codes for a cluster of four multi copper 

oxidases (MCO) and ferroxidase enzymes. Thus, multi copper oxidases and ferroxidases 

secreted by P. chrysosporium are involved in extracellular oxidation of lignin along with other 

lignin oxidizing enzymes [10]. P. chrysosporium genome consists of 10 lip genes coding for 

lignin peroxidases, 5 mnp genes coding for manganese peroxidase and 1 hybrid peroxidase 

(pc.91.32.1) encoding gene sequences [10]. From the metadata analysis, we have observed 

that expression of peroxidase encoding genes in P. chrysosporium varies differentially based 

on the source of nutrients and time of infection. Gene expression studies mainly GSE14735, 

GSE69008, GSE69461 and GSE52922 have provided a significant evidence on differential 

expression of the ligninolytic peroxidases. Earlier studies have reported the differential 

expression of lignin peroxidase under nutrient limited conditions, but the mechanism behind 

its expression is not clear. Current metadata analysis supports previous findings on the 

expression of lignin degrading peroxidases in P. chrysosporium both in synthetic and natural 

supplemented medium.  

Fungal lignin peroxidase coding genes were highly expressed when P. chrysosporium 

was cultured on ball milled aspen, nitrogen and carbon limited medium, hybrid line P717, 

transgenic line 82, transgenic line 64, control, high lignin–low glucose, day 3 cultures of 

GSE6649 and spruce wood at 96-hours of incubation. The genes encoding manganese 

peroxidases were only found to be highly expressed in spruce wood 96-hour incubation 

sample. Animal haem peroxidases were expressed in cellulose, carbon and nitrogen limited, 
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ball milled aspen, transgenic line 82, hybrid line P717, and low lignin-high glucose, average 

lignin-average glucose mediums. Chloroperoxidases were highly expressed in ball milled 

aspen, cellulose growth medium, transgenic line 64.  GMC oxidoreductases coding genes 

were highly expressed in ball milled aspen, cellulose medium, transgenic line 64, high lignin-

low glucose and 40-hour incubation period. Glyoxal coding genes were highly expressed in 

cellulose, glucose, carbon limited nutrient mediums. Multicopper oxidases encoding genes 

were differentially expressed in spruce wood 96 hours incubated, high lignin- low glucose 

conditions. Genes encoding amine oxidase or flavin amine oxidase, copper amine oxidase 

were differentially expressed in high lignin-low glucose, average lignin-average glucose, 

nitrogen limited conditions, 40-hour incubation period growth samples. Genes encoding for 

copper radical oxidase and aryl alcohol dehydrogenase were found to be highly expressed 

in 40-hour incubation period samples.  

Delta-9 acyl-CoA desaturase which is involved in unsaturated fatty acid biosynthesis 

was found to be highly expressed in nitrogen limited, glucose, cellulose, ball milled pine, 64 

and 82 transgenic lines, oak acetonic extractives and low lignin-low glucose, average 

glucose- average lignin conditions. Major intrinsic protein genes were expressed in nitrogen 

and carbon limited, ball milled aspen, spruce wood 96-hour incubated samples. ABC 

transporter genes were expressed in glucose, transgenic line 82, parent line P717, low lignin-

high glucose, average lignin-average glucose, control, spruce wood 40-hour incubated 

conditions. Major facilitator superfamily coding genes were highly expressed in ball milled 

aspen, carbon, nitrogen limited medium, high lignin- low glucose, transgenic line 64, 96-hour 

incubation and control growth conditions. Tetra/Oligopeptide transporters were 

differentially expressed in nitrogen limited medium, ball milled aspen, low lignin-high 

glucose, average lignin- average glucose growth conditions. Fumaryl acetoacetase encoding 

genes were expressed in high lignin-low glucose, fumarate reductase gene was expressed in 

spruce wood 40-hour incubation samples.  Short chain dehydrogenase /reductases encoding 

genes were expressed in carbon and nitrogen limited, spruce wood 96-hours samples, 

control samples (GSE54542), transgenic line 64, low lignin-high glucose, average lignin-

average glucose samples. Aromatic ring hydroxylase encoding genes are differentially 

expressed in cellulose, spruce wood 40 hours of incubation, average lignin-average glucose, 

low lignin- high glucose conditions, transgenic line 64 growth conditions. Dienelactone 

hydrolase coding genes are highly expressed in glucose, ball milled aspen, average lignin–

average glucose conditions. Due to their little reactivity, aromatic compounds derived from 
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lignin degradation are usually attacked with the help of oxygen by oxygenases which results 

in intermediates like catechol or protocatechuate [52, 53]. Mainly the process of peripheral 

degradation is commenced through central ring cleavage which is oxidatively catalyzed by 

ring cleavage dioxygenases [54, 55]. Extradiol ring hydroxylase genes are highly expressed 

in parent line P717, transgenic line 82, intradiol ring cleavage dioxygenase is highly 

expressed in high lignin-low glucose conditions.  

Aldehyde dehydrogenase encoding genes were differentially expressed in glucose, 

replete, nitrogen limited, ball milled aspen, transgenic line 64, low lignin-high glucose and 

spruce wood 96 hour incubated conditions. Zinc alcohol dehydrogenase encoding genes 

were highly expressed in replete, ball milled aspen, transgenic line 64, low lignin-high 

glucose (20 days) growth conditions. Aldo/keto reductase encoding genes were highly 

expressed in glucose, carbon limited, transgenic line 64. According to Robson et al, aldo/keto 

reductases support the process of lignin degradation by providing hydrogen peroxide and 

ROS through oxidation of NADPH [56]. Beta keto acyl synthase gene is highly expressed in 

glucose, ball milled aspen, low lignin- high glucose, average lignin- average glucose growth 

conditions. Acetamidase or formamidase is expressed in nitrogen limited, low lignin- high 

glucose, average lignin- average glucose conditions. It was reported that genes encoding for 

enzymes acetamidase, formamidase, uricase and amidohydrolase were found to be highly 

expressed by P. chrysosporium during nitrogen limitations [57]. Acetate kinase gene was 

expressed in replete, ball milled aspen conditions, earlier studies have reported that 

metabolism of hydroxycinnamic acids (vanillin, p-coumaric and ferrulic acids) in 

Streptomyces setonii resulted in accumulation of acetic acid by causing shift in activities of 

alcohol dehydrogenase to acetate kinase [58, 59]. Taurine catabolic dioxygenase is highly 

expressed in ball milled aspen growth condition, 3-hydroxyacyl-CoA dehydrogenase gene 

is highly expressed in glucose medium. Genes coding for 2-nitropropane dioxygenase were 

highly expressed in low lignin-high glucose, average lignin average glucose conditions. 

Carbonic anhydrase genes were highly expressed in transgenic line 64 and average lignin- 

average glucose conditions.  

Haloacid dehalogenase genes were highly expressed in transgenic line 82, average 

lignin- average glucose and ball milled aspen conditions. Phenylalanine ammonia lyase 

encoding genes were highly expressed in nitrogen and carbon limited growth mediums, ball 

milled aspen, transgenic line 64, oak acetonic extracts, average lignin-average glucose 

growth conditions. Homogentisate 1,2-dioxygenase encoding genes were highly expressed 
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in control, transgenic line 64 conditions and high gene expression values were observed for 

ball milled aspen, replete, carbon, nitrogen limited growth mediums. Generic 

methyltransferases (or) O-methyltransferase encoding genes were highly upregulated in 

average lignin-average glucose, low lignin-high glucose, spruce wood 96 hour incubated and 

replete samples. Gene expression studies conducted earlier have proved that lignin and its 

derivatives induces the higher expression of cytochrome P450 monoxygenase encoding 

genes which are also involved in further degradation of lignin and its derivatives [24, 29, 60]. 

Studies have already proved that plant cell wall polymers lignin and hemicellulose occur in 

deacetylated forms, it was also reported that these polymers are linked with p-coumaric acid 

and ferulic acid which are deacetylated by carbohydrate esterases such as feruloyl esterases 

respectively [61-63]. While deacetylases belonging to carbohydrate esterase classes are of 

high significance as the acetylated plant cell wall polymers cease the action of microbial 

enzymes. Genes encoding carbohydrate esterases (CE) classes CE-4 and CE-9 where found 

to be highly expressed in natural plant biomass growth substrates 40-hour spruce wood 

samples and CE-1, CE-4, CE-8, CE-15 and CE-16 in 96-hours spruce wood samples [48] (Table 

3.2).  

Table 3.2: Lists differentially classified lignin degrading enzymes obtained from different 

gene expression datasets of P. chrysosporium 

 

P. chrysosporium Genes involved in lignin degradation 

 

Lignin degrading 

enzymes 

(First level) 

Lignin peroxidase, Manganese peroxidase, Glucose oxidase, Glyoxal 

oxidase, Benzoquinone reductase, Amine oxidase, Aryl alcohol oxidase, 

Chloroperoxidase, Copper radical oxidase, 

Multi copper oxidase, Pyranose-2-oxidase, copper amine oxidase, 

Phenylalanine ammonia lyase 

 

Aromatic 

compound 

degrading enzymes 

(Second level) 

Intradiol dioxygenases, Extradiol dioxygenases, Aromatic ring hydroxylase, 

Homogentisate 1,2-dioxygenase, Epoxide hydrolase, Cytochrome P450 

Monoxygenase, Alcohol dehydrogenase, Dioxygenase, 2-nitropropane 

dioxygenase, Acireductone dioxygenase, Ferredoxin, Flavin containing 

monoxygenase, Iron reductases,  fumarate reductase, catalase, 

Alcohol/methanol oxidases, Formate dehydrogenase, Haloacid 

dehalogenase hydrolase, Oxidoreductase, Prenyl transferase /Squalene 

oxidase, Acetamidase, Formamidase, Uricase 

 

 

Other necessary 

enzymes 

(Tertiary level) 

Esterase/ lipase/thioesterase, GMC oxidoreductase, 

Metallophosphoesterase, Short-chain dehydrogenase/ reductase, D-isomer 

specific 2-hydroxyacid dehydrogenase, Beta-ketoacyl synthase, Beta 

lactamase, 2-oxo acid dehydrogenase, Aldo/keto reductase, Aldehyde 

dehydrogenase, Alkyl hydroperoxide reductase, Amidohydrolase, delta-1-

pyrroline-5-carboxylate dehydrogenase, 2-hydroxyacid dehydrogenase, 

FAD- linked oxidase, Thiolase, 

Hydroxymethylglutaryl-CoA synthase, Carbohydrate esterases, Glycosyl 

transferases 
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3.4.2. Detoxification and Stress Responsive Genes 

During the process of initial infection P. chrysosporium and other basidiomycetes fungi 

produce extracellular reactive oxygen species (ROS) which are involved in breakdown of 

lignin, while studies have reported that expression of lignin peroxidase is linked with ROS 

production [16]. However, during the process of wood decay fungi comes across with highly 

reactive and toxic plant extractives which also exhibit a strong antifungal activity. So, efficient 

ligninolytic fungi should also exhibit the strong capacity to resist from the anti-fungicidal 

properties of plant extractives and lignin derivatives [16]. Thus, fungi have developed a 

significant detoxification system which majorly includes cytochrome P450 complex enzymes, 

glutathione-s-transferases [16]. Gene expression studies especially GSE52922 and other 

growth substrates containing natural plant biomass growth mediums (GSE69461, GSE54542, 

GSE69008, GSE27941) have showed higher expression of various genes encoding for 

detoxification and stress responsive enzymes. The cellular ROS level significantly influences 

the redox state controlled by the degree of oxidation/reduction of active redox species, 

further regulating the cellular metabolism among which pyridine nucleotides and 

thiol/disulfide compounds play a crucial role as they bridge enzymes of intricate metabolic 

networks [64]. Genes coding for 2-oxo acid dehydrogenase were highly expressed in 

cellulose, nitrogen limited, 64-transgenic line, average lignin-average glucose (10-days) 

growth mediums. 2-oxoglutarate dehydrogenase was highly expressed in 96-hours spruce 

wood growth medium. Thioredoxin encoding genes were highly expressed in carbon and 

nitrogen limited, BMA, oak acetonic extractives, P717, transgenic line 82, high lignin-low 

glucose, 40-hours spruce wood growth samples, at the same time peroxiredoxin (ubiquitous 

group of antioxidant enzymes) encoding genes were expressed in 96-hours growth samples. 

Genes encoding thaumatin pathogenesis related protein were highly expressed in BMA, low 

lignin-high glucose growth mediums. The constant rates of NAD(P)H/NAD(P)+ and SH/S-S 

facilitate the redox reaction by directly effecting on the proteins [64]. Alkylhydroperoxide 

reductase and thiol specific antioxidant are involved in reducing the reduced dithiol form of 

organic hyperoxides and protect against sulphur containing radicals, genes encoding these 

enzymes were differentially expressed in glucose, replete, BMA, P717, transgenic line 82 

growth samples. The three-major cell damaging units such as hydrogen peroxide, ROS and 

superoxide dismutase (SOD) are efficiently tackled by the fungal cells, if not leads to strong 

toxic stress to the cell and completely damages the cellular material, enzymes pertaining to 

it are catalase, peroxiredoxin, superoxide dismutase. Genes encoding to catalase and 
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superoxide dismutase enzymes are BMA, replete, high lignin-low glucose growth mediums, 

and transgenic line 64, control, high glucose-low lignin growth samples respectively. Heat 

shock proteins (HSP) and Ubiquitin conjugating systems were highly expressed gene systems 

among the P. chrysosporium detoxification and stress responsive mechanisms. Heat shock 

protein 20 (Hsp20) encoding genes were highly expressed in replete, BMA, high glucose-low 

lignin, average lignin-average glucose growth conditions. Similarly, several ubiquitin 

conjugating enzymes and complexes were highly expressed in plant biomass growth 

conditions such as P717, transgenic line 64, high lignin-low glucose, average lignin-average 

glucose growth conditions. Abortive infection protein was found to be highly expressed in 

high lignin-low glucose, control and stress responsive proteins were highly expressed in 40-

hours spruce wood samples. According to Robson et al, aldo/keto reductases are required 

for various metabolic reactions such as degradation of β-aryl ethers present in lignin, 

degradation of carbohydrates and detoxification of xenobiotic compounds [56] (Table 3.3). 

Table 3.3: Lists differentially classified lignin degrading enzymes obtained from different 

gene expression datasets of P. chrysosporium 

 

3.4.3. Phase I Metabolic Enzymes  

The biotransformation of xenobiotic compounds in fungal cells commences majorly through 

phase-I and phase-II reactions. The phase-I metabolic reactions majorly include 

P. chrysosporium cells genes involved in detoxification and stress responsive pathways  

 

 

Detoxification and stress 

responsive enzymes 

2-oxo acid dehydrogenase, Alkylhydroperoxide reductase, 

Peroxiredoxin, Manganese/iron superoxide dismutase, 

Amidohydrolase 

Beta lactamase, Urease, Isoflavone reductase, Dihydroorotate 

dehydrogenase, Abortive infection protein, Heat shock protein, 

Ubiquitin enzyme complex, Thaumatin, Thioredoxin, 

Ferredoxin, Flavodoxin, Thiolase, Catalase, Aldo/Keto 

reductases, etc., 

Phase-I metabolic enzymes 

encoding genes 

Cytochrome P450 monoxygenases, Epoxide hydrolases 

Phase-II metabolic enzymes 

encoding genes 

UDP-glucuronosyltransferases, Sulfotransferases, N-acyl 

transferases, Glutathione-S-transferases, Thioredoxin 
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transformation of parent compound to polar metabolites through de novo formation of 

functional groups such as -OH, -NH2, -SH [60, 65]. Phase-I metabolic enzymes such as 

cytochrome P450 monoxygenases, epoxide hydrolases and dioxygenases are involved in N- 

and O-dealkylation, hydroxylation of aliphatic and aromatic compounds, N- and S- oxidation 

and deamination reactions [65].The ability to protect against harmful toxic external xenobiotic 

compounds can be majorly imparted to the complex enzymatic defense systems majorly 

including cytochrome P450 monoxygenases. In 2005 Doddapaneni and Yadav, have 

performed a customized genome wide microarray of P. chrysosporium for studying the global 

expression of cytochrome P450 monoxygenases under nutrient rich and nutrient limited 

growth conditions.  Out of 150 cytochrome P450 encoding genes expressed, 23 genes were 

differentially expressed by 2.0 to 9.0-fold in nitrogen rich conditions and 4 genes expressed 

by 2.0 to 20-fold in low nitrogen conditions respectively. Subramanian V and Yadav, J.S (2009), 

have performed a genome wide role of cytochrome P450 monoxygenases in nonylphenol 

degradation by P. chrysosporium. This study has revealed that nonylphenol has induced 

multiple P450 monoxygenases out of which 18 genes were expressed with a fold change of 2 

to 195 in nutrient-rich conditions, in low-nutrient growth conditions 17 genes with fold change 

of 2 to 6 and 3 genes were found to be expressed common among both these conditions. The 

current metadata analysis study has revealed the expression of cytochrome P450 

monoxygenase encoding genes especially in natural plant biomass containing growth 

substrates. In GSE14736, cytochrome P450 encoding genes were found to be expressed in 

BMA (GSE14734, GSE27941), Replete and nitrogen-limited conditions with two-fold 

expression. In 52922 dataset genes encoding cytochrome P450 monoxygenases were 

differentially expressed in 64 and 82 transgenic lines respectively. In GSE54542, GSE69008 

and GSE69461 datasets cytochrome P450 encoding genes were highly expressed in control, 

low lignin-high glucose, average lignin-average glucose and 40-hours spruce wood growth 

samples. Epoxide hydrolases one of the important phase-I metabolic enzymes are required 

for the cellular epoxide or oxiranes transformation. These enzymes majorly exhibit three 

functions a) detoxification b) catabolism and regulation of signaling molecules [66]. Oxiranes 

or epoxides are highly toxic compounds effecting the cellular growth and development, 

epoxide hydrolases released by fungal cells catalytically add water molecules to the 

epoxides by resulting in corresponding 1,2-diols or glycols [66, 67]. Genes encoding epoxide 

hydrolases were found to be highly expressed in 40-hours spruce wood, high glucose-low 

lignin, average lignin-average glucose transgenic lines, control, BMA growth conditions. 
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Based on the normalized values epoxide hydrolase was found to be differentially expressed 

in transgenic line 82 and glucose growth samples. 

3.4.3. Phase II Metabolic Enzymes  

The phase-II enzymes also play a crucial role biotransformation of xenobiotic and 

endogenous compounds by inactivating the active substances and converting it to easily 

excretable forms[65]. Phase-II enzymes majorly perform conjugating reactions by employing 

transferases such as glutathione-S-transferases, UDP-glucuronosyltransferases, 

sulfotransferases, GCN5-acyltransferases, O-methyltransferases, NAD(P)H quinone 

oxidoreductases, MAPEG (Membrane-associated proteins in eicosanoid and glutathione 

metabolism) and GFA (glutathione dependent formaldehyde activating enzyme) [65]. As 

reported in our previous work glycosyl transferases belonging to GT-1, GT-2, GT-4, GT-8, 

GT-20, GT-35, GT-39 and GT-48 were found commonly expressed among various datasets. 

Glycosyl transferases were found to be highly upregulated in growth mediums containing 

complex plant biomass. Genes encoding glycosyl transferases expressed among the datasets 

were BMA (GT-1, GT-2, GT-20 and GT-39), glucose and replete (GT-8, GT-48), oak acetonic 

extracts (GT-2), high lignin-low glucose (GT-1, GT-4, GT-20), low lignin-high glucose (GT-2, 

GT-8, GT-15, GT-35, GT-39, GT-48), average glucose-average lignin (GT-2, GT-8, GT-15, GT-

20, GT-35, GT-39, GT-48), P717 hybrid line and transgenic line 82 (GT-39), 40-hours spruce 

wood samples (GT-1, GT-2, GT-15, GT-48) respectively. Genes encoding GCN5-

acyltransferase were highly expressed in carbon limited and replete growth mediums, 

transgenic line 64, low lignin-high glucose, average lignin-average glucose and 96-hour 

spruce wood samples. O-methyltransferases encoding genes were highly expressed in low 

lignin-high glucose, average lignin-average glucose, 40-hours and 96-hours spruce wood 

samples, transgenic line 64, carbon and nitrogen limited, BMA, control growth samples. 

Glutathione-s-transferases encoding genes were differentially expressed in glucose, 

nitrogen limited, BMA, oak acetonic extracts, transgenic line 64, low lignin-high glucose and 

average lignin-average glucose growth conditions 96-hour spruce wood samples. Other 

enzymes constituting for the glutathione system such as glutathione dependent formaldehyde 

activator were differentially expressed in control and 96-hour spruce wood samples and high 

lignin-low glucose based on their expression values. MAPEG encoding genes were 

expressed in transgenic line 64 and oak acetonic extract growth samples. Folate cycle plays 

a crucial role in the maintenance of glutathione levels by sequestering formaldehyde (a toxic 
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compound) formed from endo and exogenous compounds. Our present data analysis has 

revealed that genes encoding for methylenetetrahydrofolate reductase and dihydrofolate 

reductase enzymes were found commonly expressed by P. chrysosporium when cultured on 

complex plant biomass growth mediums. MTHFR encoding gene was highly expressed in 

glucose, nitrogen-limited, low lignin-high glucose, average lignin-average glucose and 96-

hour spruce wood growth samples, DHFR encoding gene were differentially expressed in 

high lignin-low glucose. In oak acetonic extract samples tetrahydrofolate dehydrogenase 

encoding gene was highly expressed. Thiolase encoding gene was highly expressed in oak 

acetonic extract, replete, BMA and 40-hours spruce wood samples. 

3.4.4. Effect of Growth Substrate and Incubation Period 

Based on the gene expression studies and present metadata analysis we have found that P. 

chrysosporium gene expression is strongly influenced by the growth substrate. The gene 

expression profiles of P. chrysosporium were significantly different when cultured on synthetic 

(such as glucose, cellulose, carbon-limited, nitrogen-limited and replete growth mediums) 

and natural plant biomass growth substrates (such as ball milled aspen, ball milled pine, oak 

acetonic extracts, natural and genetically modified Poplar wood substrates). When P. 

chrysosporium was cultured on simple synthetic growth substrates (glucose, cellulose and 

replete) genes encoding for CAZymes were highly expressed along with genes required for 

the normal cell progression, growth and metabolism were found to be highly expressed.  

Importantly, genes encoding were animal haem peroxidases, chloroperoxidases were down 

regulated in carbon, nitrogen limited and replete mediums but highly expressed in glucose, 

cellulose and ball milled aspen growth substrates (Figure 3.1). At the same time, several other 

genes encoding for lignin degrading enzymes such as lignin peroxidase, glyoxal oxidase, 

copper amine oxidase, flavin amine oxidase, cytochrome P450 monoxygenase, glycosyl 

transferases 2OG-Fe(II) oxygenase family and several other enzymes were up regulated 

when cultured in carbon and nitrogen limited growth mediums. When P. chrysosporium was 

cultured in natural plant biomass growth substrates various genes encoding aromatic 

compound degrading enzymes were highly expressed (Table 3.2). Genes encoding stress 

and detoxification responsive enzymes were found to be highly expressed in these datasets, 

as natural plant biomass substrates also contain different plant extractives like flavonoids, 

tannins, quinones and stilbenes which cause severe toxicity to the fungal cells. Apart from the 

toxic plant extractives lignin and its degraded products also induce toxicity and stress on the 
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fungal cells, due to which several stress responsive genes were highly expressed by the 

fungal cells such as cytochrome P450 monoxygenases, glutathione-s-transferase, thaumatin, 

abortive infection, heat shock and ubiquitin complex proteins. Genes involved in DNA, RNA 

and protein modification genes especially proteases (serine/threonine, aspartic) were also 

found to be highly expressed in natural plant biomass growth substrates.  

Figure 3.1: Hierarchical clusters showing the differentially expressed genes obtained, 1st and 

2nd columns lists the fold change expression values up regulated in cellulose and glucose (A) 

GSE14734, Carbon and nitrogen limited in (B) GSE14735 and 3rd, 4th and 5th columns in A and 

B lists the log transformed gene expression values of BMA, cellulose, glucose, carbon-limited, 

nitrogen-limited and replete growth mediums respectively. 

The gene expression pattern of P. chrysosporium is also significantly influenced by the 

incubation period, gene expression studies especially GSE69008, GSE69461 and GSE6649 

A
) 

B
) 



 

111 | P a g e  

 

confirms it. Lignin being a large heterophenolic polymers requires a wide range of enzymes 

and complex systems for its degradation. In studies GSE69008, GSE69461 and GSE6649, P. 

chrysosporium gene expression was monitored for 10, 20, 30-days, 40-hours and 90-hours and 

Day-2, Day-3 respectively. Results obtained from GSE69461 dataset show that genes 

encoding for lignin and manganese, chloro-peroxidases, alcohol oxidase, amine oxidases, 

multicopper oxidases, phenyl ammonia lyase (forming lignin degrading enzyme system) 

were highly expressed in 90-hours incubation periods. Where as in 40-hours incubation 

period samples genes encoding for cytochrome P450 monoxygenase, fumarate reductase, 

aryl alcohol dehydrogenase, alternative oxidase, copper radical oxidase, FAD binding, 

phenol 1,2 monoxygenases were highly expressed. In GSE69008 dataset gene expression 

was significantly influenced by both the substrate and incubation period. The genes encoding 

for lignin degradation and genes involved in detoxification responses were also expressed 

among the 10 and 20-days incubation period samples (Figure 3.2). 

 

 

A B C 
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Figure 3.2: Venn diagrams of differentially expressed genes obtained from the gene 

expression datasets A) GSE14734 B) GSE14735 C) GSE69008 (where A, B, C represents high 

lignin-low glucose, high glucose-low lignin, average lignin-average glucose, 10, 20, 30 

represents number of days) D) GSE52922 (where P717, 82 and 64 represents parent and 

transgenic lines of Poplar trichocarpa species respectively) E) GSE27941, GSE52922, 

GSE54542, GSE69008, GSE69461 (Picea glauca species). 

3.5. Discussion 

The complex and stable structure of lignin makes its degradation process slow, except few 

aerobic fungi, aerobic and anaerobic bacteria even plants lack the metabolic pathways 

required for recycling lignin [52]. Lignin oxidizing enzymes of P. chrysosporium includes 

lignin peroxidase (10 lip), manganese peroxidase (5 mnp) and 1(NoP/ VP). These 

peroxidases are haem containing proteins by containing a ferric heme group [Fe (III)] at its 

resting state which reacts with hydrogen peroxide (H2O2) resulting in Compound-I oxo-ferryl 

intermediate (two-electron oxidized) containing [Fe (IV)]. The compound-I further oxidizes 

the donor substrate forming a second intermediate Compound-II, both the reactions releases 

free radicals [68, 69]. The catalytic action of lignin peroxidase is aided by veratryl alcohol 

(diffusible oxidant) produced by P. chrysosporium (as a metabolite) VA cation radical reacts 

with lignin molecule on remote locations. VA also supports in functioning and higher 

D E 
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expression of LiP enzyme [68, 70]. Veratryl alcohol is produced by phenylalanine ammonia 

lyase (PAL) which catalyzes the first step in the VA formation by oxidizing L-phenylalanine to 

cinnamic acid and free ammonium ion through non-oxidative deamination [71]. Another 

enzyme O-methyltransferase which transfers two-ring methoxyl group on VA [18]. Whereas 

Mn(II) being a highly oxidant acts as diffusible oxidant reacts with the lignin molecule even 

on the remote locations of lignin without the catalytic active center getting involved through 

oxidizing the lipid peroxidation reactions where in delta-9 fatty acid desaturases supports the 

catalytic function of MnP [69].  

Ligninolytic peroxidases are similar to classic peroxidases in their function as they are 

dependent on hydrogen peroxide for their function. The process of hydrogen peroxide 

generation in P. chrysosporium is controlled by set of enzymes glyoxal oxidase, pyranose 

oxidase, aryl alcohol oxidase, veratryl alcohol oxidase, amine (copper amine) copper radical 

oxidase and alcohol oxidases. Genes encoding glyoxal oxidase, copper amine oxidase, 

alcohol oxidase, copper radical oxidase were commonly expressed among various datasets 

as explained above. Two unconventional genes encoding for chloroperoxidase, animal haem 

peroxidase was also being highly expressed on cellulose, BMA, replete, transgenic line 64 

and low lignin-average glucose growth substrates. Based on the expression of genes coding 

for ferric reductase, ferroxidase, cellobiose dehydrogenase, LPMO and quinone reductase in 

plant biomass containing growth substrates proposes that P. chrysosporium depends on these 

enzymes for generation of toxic hydroxy radicals and in iron homeostasis. The hydroxy 

radicals generated upon reaction of hydrogen peroxide and iron-oxalate complex, these 

highly toxic radicals (OH*) attack the complex lignin molecules [69]. The above-mentioned 

enzymes can be classified to participate in primary ligninolytic reactions based on their 

functional properties and due to their common expression among all the growth substrates 

(Figure 3.3). Along with the above-mentioned lignin oxidizing enzymes, a wide range of 

aromatic compound degrading enzymes, stress responsive and detoxifying enzymes operate 

in coordination to degrade lignin and its derived products.   
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Figure 3.3: Shows the primary enzymatic reactions of P. chrysosporium involved in lignin 

Degradation LiP (lignin peroxidase), MnP (Manganese peroxidase), VP (Versatile 

peroxidase), VA (Veratryl Alcohol), PAL (Phenylalanine ammonia lyase), MCO (Multicopper 

oxidase). 

Degradation of lignin molecules by P. chrysosporium results in various low-molecular 

weight chemical compounds, if progressive and controlled lignin breakdown strategies are 

developed it can lead to the production useful renewable and green platform chemicals [69]. 

Studies conducted previously on spruce wood degradation by P. chrysosporium has resulted 

in total 28 low molecular weight chemical compounds out of which 10 were aromatic 

carboxylic acids [72] and 13 were acyclic 2,4-hexadiene-1,6-dioic acids obtained through 

oxidative ring cleavage [73].  The chemical compounds obtained from lignin degradation 

were derivatives of benzoic acids by oxidative cleavage of Cα-Cβ of lignin components. The 

biphenyl and diphenyl ether dicarboxylic acids obtained were derivatives of biphenyl and 

diphenyl ether components of lignin [69]. Studies have also reported that metabolism of β-

aryl ether model compound by P. chrysosporium involves Cα-Cβ oxidative cleavage resulting 

in vanillin [74]. Lignin peroxidase of P. chrysosporium catalyzes the oxidative cleavage of Cα-

Cβ bond of various lignin derivative compounds [49] such as diarylpropane [75], β-aryl ether 

model [74], phenylcoumarane [76] compounds resulting in aromatic aldehyde products, 

vanillin compounds respectively. It is well known that lignin peroxidase is also involved in 

degradation of non-phenolic units of lignin polymer (which constitutes to 90% of lignin 

polymer) at the same time MnP is involved in degradation of both phenolic and non-phenolic 
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units of lignin compound [68, 69]. According to Fumiaki et al (1981), the degradation process 

of alkylated phenylcoumarane by P. chrysosporium is directed via primary oxidation of side 

chains followed by the oxidation of heterocyclic ring to furan and then performs the oxidative 

cleavage of Cα-Cβ bond [76].  

 

Figure 3.4: Bird’s eye view of tentative and proposed general molecular mechanisms and 

pathways involved in lignin degradation. 
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The process of lignin degradation results in a wide range of aromatic compounds 

which are further degraded by a set of aromatic compound degrading enzymes. Enzyme 

systems involving oxygenases attack these aromatic compounds in the presence of oxygen 

resulting in two central intermediate compounds catechol and protocatechuate which are 

further degraded by intra and extradiol dioxygenases which catalyze the oxidative cleavage 

of central ring [52]. Microorganisms employ variety of metabolic pathways divided as upper 

pathways (resulting in catechol and protocatechuate) and lower pathways (acetyl-CoA, 

succinyl-CoA and pyruvate) to efficiently utilize wide range of aromatic substrates generated 

due to the process of degradation (Figure 3.4) [52]. The up regulation of genes encoding for 

central ring cleaving dioxygenases (Intra and extradiol dioxygenase), cytochrome P450 

monoxygenases, aromatic ring hydroxylase dioxygenases, catechol 1,2-dioxygenase and 

other dioxygenases in complex plant biomass growth substrates supports the involvement of 

upper and lower pathways by P. chrysosporium.  
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Figure 3.5: Tentative network of P. chrysosporium genes and enzymes involved in lignin 

degradation mechanisms. 

Naturally, plant cell wall components especially hemicellulose and lignin occurs in 

acetylated forms to cease the activity of various hydrolyzing enzymes of microbial origin [61]. 

Higher expression of genes encoding for carbohydrate esterases endorses earlier reports on 

deacetylation of lignin units. According to Del Rio et al (2007) in lignin, acetyl groups were 

found to be associated with gamma carbon of aliphatic side chains situated on the syringyl 

and guaiacyl monomers of lignin with highest degree of acetylation observed in jute fibers, 

abaca and kenaf with 0.8 DA, acetylation of lignin in hardwood varies between the range of 1 

to 50% (w/w) [77]. Along with carbohydrate esterases genes encoding for various glycosyl 

transferase class enzymes were found to be highly expressed in both customized synthetic 

and complex natural plant biomass growth substrates suggesting their role in controlling 

cellular toxicity. During the process of plant biomass degradation P. chrysosporium reacts 

with the toxic properties of lignin and its derivatives, thus there might be potential 

involvement of glycosyl transferases in changing the toxic properties of lignin derivative 

compounds. According to Julien et al (2016), glycosyl transferases are significantly involved 

in detoxification of plants during the secondary metabolite synthesis (flavonoids, lignin and 

phenylpropanoids) and process of glycosylation modifies their solubility, stability and 

toxicity [78]. In our analysis, we have also found that several genes involved in the process of 

DNA synthesis, modification and repair were highly expressed along with a set of 

transcription factors among the top differentially expressed genes. Genes encoding for 

various proteases especially serine, cysteine carboxyproteases were found to be commonly 

and differentially expressed among all the datasets (Figure 3.5). 

As discussed earlier, fungal cells are exposed to highly toxic and stressful 

environments during the process of degradation fungal cells encounter polyphenolic lignin 

units and its degraded products along with other wood extractives [1, 21]. It was also reported 

that various chemical bioproducts such as aldehydes, aliphatic acids, phenolic and furan 

derivatives are obtained because of lignocellulosic biotreatment methods which majorly 

inhibit the action of ligninolytic enzymes and further microbial fermentation [79]. In order to 

protect from these toxic substances (degraded products of lignin and its derivatives, plant 

extractives and ROS, hydroxy radicals and superoxides /free radicals) P. chrysosporium 

secretes a wide range of antioxidant and stress responsive enzymes such as cytochrome P450 
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monoxygenases, glutathione-s-transferases, catalases, superoxide dismutases majorly 

classified as phase-I and phase-II metabolic systems. We have clearly observed the 

differential expression of genes encoding for phase-I and phase-II enzyme systems by P. 

chrysosporium when cultured on complex plant biomass growth substrates (Figure 3.6). The 

process of lignin degradation in P. chrysosporium is associated with ROS production, reactive 

oxygen and hydroxyl radicals which also cause additional toxicity. Results obtained from our 

present study and gene expression studies reported earlier strictly convey that the process 

of lignin degradation is interdependent on the intracellular detoxification systems and 

cellular redox states. Cellular redox states were characterized by redox-active species (such 

as thiol disulfide and pyridine nucleotide compounds) and their degree of 

oxidation/reduction reactions [64]. While the balanced ratios of NADPH/NADP+ and SH/S-S 

facilitate the process of redox regulation by effecting the proteins directly, at the same time 

NADPH/NADP+ and SH/S-S ratios are directly related to the cellular ROS level [64]. Genes 

coding for 2-oxoacid dehydrogenase multienzyme complexes which play a crucial role in 

regulating the cellular redox states were found to be highly expressed on complex natural 

plant biomass-based growth substrates. Similarly, higher expression of thioredoxin, 

glutathione-S-transferases, peroxiredoxin, NADPH oxidases etc. explains that P. 

chrysosporium continuously maintains the cellular redox state and controls the toxic 

conditions developed due to lignin degradation. The present metadata analysis is in complete 

accordance with previous reporting’s made on production of ligninolytic enzyme machinery 

upon nitrogen repression and natural plant biomass containing growth substrates. We have 

also observed the expression of genes encoding for ligninolytic enzymes and intracellular 

antioxidant mechanisms simultaneously by P. chrysosporium when cultured on synthetic 

growth substrates mimicking ligninolytic conditions GSE6649, GSE14735 (nitrogen limited, 

carbon limited). Especially lignin and manganese peroxidases and lignin degrading auxiliary 

enzymes, were highly expressed in day 3 cultures and nitrogen limited mediums of GSE6649 

and GSE14735 datasets respectively, followed by expression of enzymes such as cytochrome 

P450, thioredoxin, Mn2+superoxide dismutase and other intracellular anti-oxidant enzymes 

support the above process of degradation. Similar gene expression patterns were observed 

in P. chrysosporium when cultured on natural plant biomass growth substrates with clear 

expression of various enzymes involved in lignin degrading and detoxification, stress 

responsive mechanisms.  
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Through our present analysis, we have demonstrated the functional involvement of 

various enzymes in lignin degradation and detoxification by P. chrysosporium. These 

outcomes clearly indicate that unlike cellulose, hemicellulose P. chrysosporium invests high 

proportions of molecular and metabolic systems in the process of lignin degradation. Based 

on the results obtained we propose that process of lignin degradation in P. chrysosporium 

commences through synchronous expression of both ligninolytic enzymes and detoxification-

stress responsive systems. Both previous reports and present results convey that P. 

chrysosporium involves highly toxic ROS, free radicals etc. along with conventional 

ligninolytic enzymes to create random cuts in the lignin structure, by creating the platform for 

detoxification and stress responsive enzymes. However, there is certain ambiguity related 

with lignin degradation and detoxification-stress responsive pathways proposed, as we have 

observed that several highly-expressed genes were annotated as uncharacterized proteins. 

Further proteomic studies must be continued to understand their involvement in lignin 

degradation and detoxification-stress responsive mechanisms of P. chrysosporium. 
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Figure 3.6: Tentative network of P. chrysosporium genes and enzymes involved in 

detoxification mechanisms involving phase-I, phase-II and stress responsive pathways. 
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Chapter-4 

Analyzing Phanerochaete chrysosporium Gene Expression Patterns Controlling 

the Molecular Fate of Lignocellulose Degrading Enzymes  

[This work has been published in “Process Biochemistry” 64 (2018): 51-62] 

Ayyappa Kumar Sista Kameshwar and Wensheng Qin* 

4.1. Abstract 

The outstanding degrading abilities of Phanerochaete chrysosporium is solely dependent on 

its lignocellulolytic, aromatic compound degrading and detoxifying enzymes. However, the 

gene expression and protein turnover of lignocellulolytic enzymes are controlled at cellular 

level by various genes involved in information storage and processing KOG group. 

Understanding the gene expression patterns and mechanisms involved in regulation of 

lignocellulose degrading enzymes will significantly help in strain improvement and 

developing recombinant strains. To study the common expression patterns, we have 

retrieved P. chrysosporium gene expression datasets from NCBI GEO and analyzed using 

GeneSpring® software based on the genome wide KOG annotations retrieved from JGI-

MycoCosm database. Statistically significant genes obtained from our analysis were 

separated into replication, repair and recombination, chromatin structure and dynamics, 

transcription factors, RNA processing and modification and translation, ribosomal structure 

and biogenesis processes. We have observed various genes encoding for DNA damage, 

repair and recombination, mRNA splicing, amidases, polyadenylate binding factors, heat 

shock, helix loop helix, HMG-box, CCAAT (HAP5), CRE-B transcription factors, histone acetyl 

transferases (MYST, SAGA) commonly expressed among the datasets of natural plant biomass 

growth substrates. Further studies must be conducted to understand the role and involvement 

of these significant genes in plant biomass degradation by P. chrysosporium.  

Keywords: Phanerochaete chrysosporium, Information, storage and processing, Eukaryotic 

orthologous groups (KOG), Transcription factors, Gene expression datasets, NCBI GEO 
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4.2. Introduction 

In the past few years, genome and transcriptome of Phanerochaete chrysosporium were 

intensively studied because of its efficient lignocellulose degrading abilities and availability 

of highly annotated genome. These studies have mostly delineated the genes and 

mechanisms responsible for the process of lignocellulose degradation [1-7]. However, 

mechanisms involved in cellular regulation of genetic material coding for lignocellulolytic 

enzymes were not clearly explained till today. Recent genomic studies conducted by various 

research groups and development of fungal genome repositories such as JGI (Joint Genome 

Institute) MycoCosm [8] and 1000 fungal genome project have revealed various significant 

facts. The eukaryote specific classification of KOG (clusters of orthologous groups) is 

significantly used for finding the ortholog and paralog proteins [8]. All the sequenced 

genomes deposited in JGI-MycoCosm database are provided with their respective KOG 

classification or KOG ID. The present day JGI sequencing protocol predicts and classifies the 

sequenced genome into four major classes a) Cellular processes and signaling b) Information 

storage and processing c) Metabolism d) poorly characterized.  

The KOG group information, storage and processing is further classified into five 

groups as RNA processing and modification (KOG-ID: A), chromatin structure and dynamics 

(KOG-ID: B), translation, ribosomal structure and biogenesis KOG-ID: J), transcription (KOG-

ID: K) and replication, recombination and repair (KOG-ID: L). Present day KOG classification 

of P. chrysosporium harbors 1713 gene models coding for Information storage and processing 

group which were further divided into 489 (RNA processing and modification), 201 (chromatin 

structure and dynamics), 366 (translation, ribosomal structure and biogenesis), 415 

(transcription) and 242 (replication, recombination and repair) gene models respectively. 

Large number of gene models were mostly present in single copies with few numbers of gene 

models occur in multiple copies (Figure 4.1). Gene models involved in RNA processing and 

modification plays a crucial role in converting cellular genetic information from genes to 

proteins, thus determining the fate of cellular function and structure. However, RNA 

undergoes prior modifications and processing before performing the above functions. 

Majorly, RNA processing steps can be classified into three types a) trimming of RNA end 

segments resulting in a mature RNA form b) RNA splicing and c) sequence level modification 

of RNA segments. 
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Figure 4.1: Pie diagram showing the distribution of gene models A- RNA processing and 

modification, B-chromatin structure and dynamics, J- translation, ribosomal structure and 

biogenesis, K- transcription and L- replication, recombination and repair. And heatmaps 

showing the gene models occurring more than 3 copies in the P. chrysosporium genome. 

Gene regulation is an important physiological process and was extensively studied in 

fungi. The process of gene regulation assures the up and down regulation of genes based on 

the growth conditions. According to Richard et al (2014), in fungi, thirty-seven classes of gene 

regulators have been identified as zinc finger transcription factor proteins (C2H2 and 

binuclear zinc cluster protein (Zn2Cys6)), fungal specific transcription factors, bZIP, histone-

like transcription, basic helix-loop-helix (HLH), heat shock factor (HSF), Myb-DNA binding , 

transcription enhancer factor (TEA) and GATA factors [9]. The production and secretion of 

extracellular fungal enzymes and their gene regulatory mechanisms especially cellulases and 

hemicellulases encoding genes were extensively studied in Trichoderma and Aspergillus 

species [10, 11]. These transcription factors are required for coordination various cellular 
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processes when cultured on different growth substrates. Occurrences of the gene sequences 

encoding for the above-mentioned transcription factors also might have been strongly relate 

to the fungal diversity. P. chrysosporium genome contains the gene sequences coding for the 

above-mentioned crucial transcription factors.  

The enormous genomic DNA of eukaryotes is well packed in the nucleus by the 

conserved histone proteins to form a complex ordered structure such as chromatin. After 

numerous stages of organization chromatin are further organized into chromosomes which 

allows precise cellular divisions [12]. Chromatin dynamics in eukaryotes can be introduced 

majorly by three ways a) ATP-dependent remodeling which might also lead to the 

interchanges in primary structures of histones [12-14] b) histones are also subjected to post 

translational modifications resulting in structural and functional outcomes [12, 15] and c) DNA 

is also subjected to methylations [12, 16]. All three processes chromatin modifications, 

chromatin remodeling and DNA methylation were found to be strongly interdependent. 

Steinfeld et al (2007), have revealed the crucial role of chromatin modifiers in transcriptional 

regulation of common yeast, Saccharomyces cerevisiae [17].  

Gene models classified under translation, ribosomal structure and biogenesis are 

required for the accurate conversion of genetic code to proteins. Fungal ribosomes (cellular 

nanomachines) majorly comprises two ribonucleoprotein subunits 40S (in turn contains 33 

ribosomal proteins and a 18S ribosomal rRNA) and 60S subunits (consists of three ribosomal 

rRNA 25S, 5.8S, 5S and 46 ribosomal proteins) [18]. P. chrysosporium genome codes for 254 

genes involved in ribosome structure, biogenesis and translation processes. DNA replication, 

repair and recombination events are complex and basic molecular processes in the living 

organisms. Process of DNA replication in eukaryotes is one of the highly studied molecular 

process and various genes and proteins involved in this key process have been clearly 

explained. The genome of P. chrysosporium harbors 155 unique gene models which includes 

various genes involved in the process of DNA replication, repair and recombination. The 

proteome, transcriptome and secretome studies conducted in the past have revealed the 

involvement of various oxidases, hydrolytic enzymes in degradation of plant biomass, 

however additional research must be conducted to reveal the regulation of the 

lignocellulolytic enzymes at molecular level [2, 3, 7, 19]. 

In our present study, we have analyzed the gene expression patterns of P. 

chrysosporium to understand the common and significant expression of genes involved in RNA 



128 | P a g e  

 

processing and modification, chromatin structure and dynamics, translation, ribosomal 

structure and biogenesis, transcription and replication, recombination and repair processes 

among P. chrysosporium gene expression datasets. To the best of our knowledge, this is the 

first comprehensive report on P. chrysosporium genes involved in information, storage and 

processing processes and their expression patterns. 

4.3. Methods 

4.3.1. Data Retrieval 

The gene expression datasets of P. chrysosporium cultured on different growth substrates, 

were retrieved from NCBI-GEO (Gene expression omnibus database) 

(https://www.ncbi.nlm.nih.gov/geo/) using the term P. chrysosporium. Details about these 

gene expression datasets analyzed were reported in Table 4.1. All the relevant experimental 

metadata corresponding to the gene expression datasets were retrieved using the “Accession 

display” option of NCBI GEO website and from the corresponding literature available. In 

NCBI GEO database, there are 8 gene expression datasets which are specifically studied on 

P. chrysosporium, out of which we have selected 7 (GSE14734, GSE14735, GSE27941, 

GSE54542, GSE52922, GSE69008 and GSE69461) gene expression datasets for our current 

analysis (Table 4.1). These datasets were considered mainly because of the varied substrate 

conditions (from simple synthetic growth medium to complex plant biomass medium) used 

for the culture of P. chrysosporium. The experimental metadata accession ID’s, gene 

expression platform details substrate used for the growth of P. chrysosporium and sample 

information were reported in Table 4.1.  

 Table 4.1: List of the P. chrysosporium gene expression datasets retrieved from NCBI GEO 

repository: 

GEO- ID Platform and Technology Substrate #Samples Ref 

GSE54542 NimbleGen P. 

chrysosporium arrays 

Oak acetonic extractives 6 [20] 

GSE27941 NimbleGen P. 

chrysosporium arrays 

Ball milled aspen, Ball milled 

pine 

6 [21] 

GSE52922 NimbleGen P. 

chrysosporium arrays 

P717 hybrid line, Transgenic 

line 82 

Transgenic line 64 

9 [22] 

https://www.ncbi.nlm.nih.gov/geo/
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4.3.2. Data Analysis 

All the datasets were analyzed using GeneSpring v14.8 (http://genespring-

support.com/get-gs) software. The expression experiments were created using generic 

single-color workflow, by creating a prior generic single-color technology with the available 

supplementary information. Gene expression datasets with accession IDs GSE14734, 

GSE14735, GSE27941, GSE54542, GSE52922, GSE69008 were log transformed with 2 log-

base, normalized using 75th percentile normalization, with a threshold value of raw signals set 

to 1.0 and baseline transformation to median of all samples. The experimental details of all 

the samples were retrieved from the corresponding literature and experimental metadata 

and later this data was used for grouping the samples. The probe sets were filtered using the 

option “Filter probe sets by expression” by selecting the raw data and filtered using the filter 

by percentile option (upper and lower percentiles set to 100 and 20 respectively).  

Differentially expressed significant genes were obtained using the “Statistical 

analysis” option and based on the experimental grouping and created interpretations T-test 

or one-way Anova was performed. However, for GSE69461 dataset, we have not performed 

any of the pre-processing steps such as normalization, log transformation or thresholding, as 

we have retrieved RPKM data for the individual samples. Based on the sample grouping T-test 

was performed with asymptotic p-value computation and Benjamini-Hochberg False 

discovery rate for multiple testing correction. Differentially expressed significant list of genes 

were retrieved from all the datasets and compared using Venny and Jvenn online softwares 

for obtaining common gene lists. We have retrieved the list of gene level annotations of P. 

chrysosporium RP78v2.2 encoding for information, storage and processing (KOG Group) 

which includes RNA processing and modification, chromatin structure and dynamics, 

GSE14734 NimbleGen P. 

chrysosporium arrays 

Cellulose, Glucose, Ball 

milled aspen 

9 [3, 4] 

GSE14735 NimbleGen P. 

chrysosporium arrays 

Replete, Carbon-limited 

Nitrogen-limited 

9 [3, 4] 

GSE69008 NimbleGen P. 

chrysosporium arrays 

Poplar wood substrates 24 [1] 

GSE69461 Illumina HiSeq 2000 Picea glauca (spruce 

sapwood) 

18 [23] 

http://genespring-support.com/get-gs
http://genespring-support.com/get-gs
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translation, ribosomal structure and biogenesis, transcription and replication, recombination 

and repair processes, from JGI MycoCosm database.  

4.4. Results 

The extrinsic plant biomass degrading properties of P. chrysosporium is majorly 

credited to its lignocellulolytic CAZymes and wide range of aromatic compound degrading 

and detoxifying enzymes [6, 24]. The expression of these enzymes is majorly regulated by a 

wide range of enzymes belonging to the information storage and processing group. Statistical 

analysis of GSE14734, GSE14735, GSE27941, GSE54542, GSE52922, GSE69008 and GSE69461 

gene expression dataset has resulted in 691, 583, 146, 320, 275, 865 and 1235 unique 

differentially expressed genes belonging to information storage and processing KOG group 

(Table 4.2). Several genes encoding for various lignocellulolytic CAZymes, aromatic 

compound degrading and large array of detoxifying enzymes were also found to be highly 

upregulated which were extensively discussed in our previous works [6, 24].  

Table 4.2: The total number of differentially expressed and statistically significant genes 

(unique) belonging to information storage and processing group among the selected 

datasets: 

(Note: A: RNA processing and modification, B: chromatin structure and dynamics, J: 

translation, ribosomal structure and biogenesis, K: transcription and L: replication, 

recombination and repair) 

Unique genes after statistical analysis (Log 2) Fold change ≥2.0 

Dataset A B J K L Total A B J K L Total 

GSE14734 172 90 145 164 120 691 3 0 2 3 0 8 

GSE14735 129 73 192 114 75 583 0 2 41 8 2 53 

GSE27941 25 12 53 36 20 146 0 1 0 2 0 3 

GSE54542 99 36 50 90 45 320 99 36 50 90 45 320 

GSE52922 87 20 69 75 24 275 17 8 15 16 2 58 

GSE69008 213 91 205 204 152 865 36 14 67 51 13 181 

GSE69461 346 146 261 302 180 1235 310 127 248 274 160 1119 
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We have observed a total of 8, 53, 3, 320, 58, 181 and 1119 unique genes encoding for 

information, storage and processing group were highly up regulated with higher fold change 

values (log2 FC>2.0) among GSE14734. GSE14735, GSE27941, GSE54542, GSE52922, 

GSE69008 and GSE69461 datasets respectively (Table 4.2). The violin plots (sample and 

group level data on x-axis and normalized intensity values on y-axis) showing the distribution 

of normalized and baseline transformed samples, which briefly represents the differential 

expression of the normalized genes of all the samples at dataset level were shown (Figure 

4.2).  Similarly, the volcano plots (log2 fold change values on x-axis and -log 10 corrected P-

values on y-axis) and profile plots (experimental condition information on x-axis and 

normalized intensity values on y-axis) briefly representing the differentially expressed genes 

(with higher fold change values) among individual experimental conditions were shown 

(Figure 4.3). 

 

Figure 4.2: Violin plots for the selected datasets GSE14734, GSE14735, GSE27941, GSE52922, 

GSE54542 (normalized and baselined) and GSE69461 (only baselined) briefly showing the 

distribution of samples 

 

 

GSE14734 GSE27941 GSE14735 

GSE52922 GSE54542 GSE69461 



132 | P a g e  

 

 

Figure 4.3: Profile plots (GSE14734 and GSE14735) and volcano plots (GSE27941, GSE54542 

and GSE69461) of the significant and differentially expressed genes with fold change cut-off 

>2.0 among the selected datasets. 

4.4.1. RNA Processing and Modification (KOG ID: A) 

The eukaryotic mRNA is substantially processed through 5’ capping, splicing and 3’ end 

processing before it gets exported, thus, these processes play a crucial role in determining 

the fate of transcripts [25]. Several studies conducted in the past have clearly explained that 

a wide range of enzymes coordinately function together to enhance the regulation information 

which affects in transcript export, localization and stability [25]. As mentioned earlier genome 

of P. chrysosporium encodes 489 genes involved in the RNA processing and modification class. 

Majorly, mRNA guanylyl transferases, methyltransferases are involved in 5’capping which 

happens immediately after early transcription by RNA polymerase II [26]. The 3’end 

processing involves mRNA cleavage and polyadenylation factors, polyadenylate polymerase, 

polyadenylate binding protein-II, polyadenylation factor complex, mRNA cleavage factor I 

GSE14735
6 

GSE14734 

GSE54542 (Control vs OAK) GSE27941(BMA vs 
BMP) 

GSE69461 (40h vs 96h) 
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and II [27, 28]. Spliceosomes performs the complex splicing reactions on pre-mRNA in 

eukaryotes, a large set of proteins along with U1 to U6 small nuclear RNPs (snRNPs) [25, 27, 

29]. In P. chrysosporium genome 19, 36 and 237 gene models were found to be involved in 

5’end capping, 3’ end processing and mRNA splicing processes.   

Genes encoding for ATP dependent helicases, DEAD-box superfamily, RNA binding 

proteins, mRNA guanylyl and methyl transferases (5’end capping) and mRNA cleavage and 

polyadenylation factor, polyadenylation binding protein and other associated enzymes were 

found to be statistically significant and commonly expressed among all the gene expression 

datasets. However, in dataset GSE14734 and GSE14735 genes encoding for ATP-dependent 

RNA helicase (Phch1_5340), Fibrillarin and related nucleolar RNA-binding (Phch1_610), 

splicing factor hnRNP-F and related RNA-binding proteins (Phch1_4943) and ribosomal 

protein RPL1 (Phch1_128104) were found to be highly upregulated in cellulose, glucose, 

replete and nitrogen limited mediums and down regulated in ball milled aspen and carbon 

limited growth mediums. Whereas in GSE27941 dataset few genes encoding for RNA 

processing and modification were found to be statistically significant but were not highly 

expressed. In GSE54542, GSE52922, GSE69008 and GSE69461 gene expression datasets a 

large set of genes encoding for RNA processing and modification processes were found to be 

highly expressed. Total of 46 genes encoding for RNA processing and modification were 

found to be common among GSE69008 and GSE69461 datasets. In GSE54542 dataset 99 genes 

coding for RNA processing and modification were differentially expressed, transcripts 

encoding for spliceosomal proteins, U1, U4, U5 snRNP, WD40 repeats, ribosomal proteins 

(RPL1 and RPL2) and mRNA export factors and SWAP mRNA splicing regulator were found to 

be up regulated (with fold change ≥2.0) in oak acetonic extractive samples and down 

regulated in control samples. In GSE52922 dataset, 17 genes (ATP dependent RNA helicase, 

decapping enzyme complex, mRNA cleavage and polyadenylation factor and splicing 

coactivator and other splicing factors) were up regulated in 82 and 64 growth substrates. In 

GSE69008 dataset genes encoding for various RNA processing and modification processes 

were down regulated in A (high lignin and low glucose) growth substrates, were as found to 

be differentially up regulated in B (low lignin and high glucose) samples. Especially 

transcripts encoding for alternative splicing factor (SRp55/SRp75), mRNA cleavage and 

polyadenylation factor, mRNA deadenylase, RNA binding protein (p54nrb) up regulated in C 

(average lignin and average glucose) substrates. Finally, in GSE69461 dataset total of 310 

genes encoding for RNA processing and modification were found to be expressed with fold 
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change ≥2.0. We have found that 199 genes were highly up regulated in 96 hours and 111 

genes were highly upregulated in 40 hours growth substrates. Out of which 40 genes 

encoding for DEAD-box family, decamping enzyme complex, histone H3 (Lys4) and mRNA 

methyl transferase, mRNA cleavage and polyadenylation factors, polyadenylating 

polymerase, RNA binding proteins, spliceosomes and splicing factors U1 to U6 snRNP were 

highly up regulated in 40 hours growth substrate (Figure 4.4). 

 

Figure 4.4: List of commonly expressed and statistically significant genes among the selected 

gene expression datasets encoding for RNA processing and Modification group (KOG 

functional ID:  

4.4.2. Chromatin Structure and Dynamics (KOG ID: B) 

It is a well-known fact that vast eukaryotic genomes are efficiently packaged in to chromatin 

and further into stable chromosomes. Several state-of-the-art reviews were already available 
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on eukaryotic chromatin structure and dynamics and few were listed here [30-35]. As 

discussed, earlier genome of P. chrysosporium codes 201 genes classified under chromatin 

structure and dynamics. Genes encoding for chromatin remodeling protein (PHD-Zn finger), 

chromosome condensation complex, histone acetyltransferase, and SWI-SNF chromatin 

remodeling complex proteins were found to be statistically significant and commonly 

expressed among GSE14734, GSE14735 and GSE27941 datasets. And in GSE54542, 

GSE52922, GSE69008 and GSE69012 datasets genes encoding for DNA binding centromere 

protein B, heterochromatin associated protein (HP1), histone acetyltransferase (SAGA) and 

type b catalytic unit, histones H3 and H4 and SWI-SNF chromatin remodeling complex 

proteins were significantly common. In GSE14734, GSE14735 and GSE2794 datasets total of 

90, 73 and 12 genes were found to be statistically significant with a p-value <0.05 after multiple 

testing correction.  Total of 57 transcripts were found to be common between GSE14734 and 

GSE14735 datasets which majorly contain histone proteins (H1, H2A, H2B, H3, H4, H5), histone 

methyltransferases, histone acetyl transferases (MYST, SAGA/ADA, PCAF/SAGA), sirutin 5, 

structural maintenance of chromosome, SWI-SNF remodeling protein encoding genes. 

Chromatin remodeling complexes, heterochromatin associated protein, nucleosome 

assembly protein, histone deacetylase complexes, histone tail methylase, SWI-SNF (Snf5 

subunit) chromatin remodeling, telomerase catalytic unit were up regulated in ball milled 

aspen samples. Only genes encoding for DNA-binding centromere protein B (Phchr1_5151) 

(in GSE14735), SWI-SNF chromatin remodeling complex protein (Phchr1_5319) (both in 

GSE14735 and GSE27941 datasets) were highly upregulated in ball milled aspen samples with 

fold change ≥2.0. However, no genes involved in chromatin structure and dynamics were 

found to be expressed with fold change <2.0 (not very highly expressed).   

In GSE54542 dataset, chromatin remodeling complex (Phchr_7694), heterochromatin 

associated protein (Phchr_1386), histone acetyltransferase (MYST) (Phchr_1138, 42216), 

histone acetyltransferase (SAGA) (Phchr_932), histone H3 methyltransferase complex 

(Phchr_136167), histone tail methylase (Phchr_136398) and telomerase length regulating 

protein kinase (Phchr_2237) were highly up regulated with fold change ≥ 2.0 in control 

samples. At the same time genes encoding for chromatin remodeling complex 

(Phchr_130373, 6773, 7315), DNA binding centromere (Phchr_5151), histone acetyl 

transferase (SAGA/ADA) (Phchr_2529, 3745 and 29427), histone deacetylase (Phchr_5894), 

histone H3 methyl transferase (Phchr_820, 3326), histone tail methylase (Phchr_5894) and 

SWI-SNF chromatin remodeling complex proteins were highly up regulated in oak acetonic 
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extract samples. In GSE52922 dataset, genes encoding for DNA binding centromere protein, 

histone proteins (H2A, H2B, H3, H4) and SWI-SNF chromatin remodeling complex protein 

were highly upregulated in P717 growth samples and down regulated in 64 and 82 growth 

substrates. Similarly, in dataset GSE69008, genes encoding for heterochromatin associated 

protein (HP1), histone acetyl transferase (SAGA/ADA) and sirtuin 5 (SIR2 family) proteins 

were highly expressed in A (high lignin-low glucose) proteins. In B (low lignin -high glucose) 

growth substrate genes encoding for chromatin remodeling complex, histone acetyl 

transferase, histone (H3 and H4), nucleosome binding factor, sirtuin 5 (SIR2) and SWI-SNF 

chromatin remodeling complex proteins were highly up regulated. In dataset GSE69461, 

genes encoding for chromatin assembly factor, cell cycle regulated histone H1, chromatin 

remodeling complex, chromosome condensation complex, DNA topoisomerase, DNA 

binding centromere binding, heterochromatin associated protein, histone proteins (H1, H2A, 

H2B, H3, H4), histone acetyl transferases (SAGA/ADA, MYST), histone deacetylase complex 

(HDA1, RPD3, SIN3), nucleosome assembly and remodeling factors, histone tail methylase, 

sirtuin 4, 5 , chromosome structural maintenance protein and SWI-SNF chromatin remodeling 

complex were highly up regulated in 96-hour growth substrates (Figure 4.5).  

 

Figure 4.5: List of commonly expressed and statistically significant genes among various 

datasets encoding for chromatin structure and dynamics group (KOG functional ID: B) 
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4.4.3. Translation Ribosomal Structure and Biogenesis (KOG ID: J)  

Translation is the central and crucial process for the conversion of nucleotide 

sequence to cellular expressing units. The process of translation is majorly dependent on 

ribosomes, which are highly conserved cellular nanomachines. Biogenesis of ribosomes 

happens in nucleolus of eukaryotic cells, where it synthesizes rRNA molecules (precursors) 

through DNA directed RNA polymerase I and III, these nascent rRNA molecules are further 

subjected to a set of RNA cleavage reactions and other chemical modifications [18, 36]. A 

large set of ribosome biogenesis proteins are required for the proper rRNA folding and 

enzymatic processing to produce active ribosomal subunits [18, 36]. Thus, a serious 

coordination of all the DNA dependent RNA polymerases  is involved in synthesizing 

structurally active ribosomal subunits [36]. As mentioned above genome of P. chrysosporium 

encodes for 366 gene models classified to be involved in translation, ribosomal structure and 

biogenesis. Our present metadata analysis has revealed that total of 15 and 8 commonly 

expressed statistically significant genes among GSE14734, GSE14735, GSE27941 and 

GSE54542, GSE52922, GSE69008 and GSE69461 datasets, with various other genes found to 

be common between the datasets (Figure 4.3). Genes encoding for 60S acidic ribosomal 

protein P2 was up regulated in glucose substrate and translation initiation factor 4F (elF-4G) 

was highly upregulated in ball milled aspen and cellulose with fold change ≥2.0. In GSE14735 

dataset, various genes encoding for translation ribosomal structure and biogenesis were 

significantly expressed with fold change values ≥ 2.0. Genes encoding for 40S ribosomal 

proteins (S2, S3, S3A, S4, S6, S8, SA, S12, S15, S26, SA/P40), 60S acidic ribosomal (P0, P2), 60S 

ribosomal protein (L3, L5, L6, L7, L7A, L10A, L11, L13, L14, L15/27, L18, L22, L24, L39), ABC 

transporters with ATPase domain, glutamyl tRNA synthetase, translation initiation factor (elF-

2B, elF-4A and EF-1), ubiquitin/40S ribosomal protein S27A and  ribosomal proteins S18 and 

S7 were highly up regulated in replete and ball milled aspen growth substrates. Several 

transcripts encoding for amidases were found to be highly up regulated in nitrogen limited 

followed by carbon-limited growth substrates, no genes were found to be expressed above 

fold change ≥2.0 in GSE27941 dataset. 

In GSE54542 dataset, most of the genes involved in translation, ribosomal structure 

and biogenesis were found to be down regulated in control samples with genes encoding for 

amidases (Phchr_3719 and 6738), mitotic cell division protein, mitochondrial ribosomal 

protein L16, NMD protein affecting stability, RNaseP, translation initiation factor 6, tRNA 
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splicing endonuclease and tRNA methyl transferase (GCD10). However, in oak acetonic 

extractives samples genes encoding for 40S (S14, S26, SA) 60S acidic protein P1, 60S (L13, 

L22) ribosomal proteins, amidases, tRNA synthetase (asparaginyl, aspartyl, glutamyl, glycyl, 

leucyl, lysyl), mitochondrial ribosomal proteins (L28, S14/S29, polyadenylate binding 

protein, RNA binding protein, translation initiation inhibitor, translation initiation factor (elF-

2c, elF-3, elF4E, elF-4G, elF-6), translation repressor MUT5/PUF4 and tRNA methyl 

transferases were highly up regulated with fold change ≥2.0.  In dataset GSE52922, genes 

encoding for 40S (S10, S3A, S7, SA), 60S (L15/L27, L3, L30, L39) ribosomal proteins, S4 and S7 

ribosomal proteins were comparatively highly expressed in P717 growth substrate. Amidase, 

ABC transporters with ATPase domain, polyadenylate binding protein, translation initiation 

factor 4F and translation repressor MPT5/PUF4 were comparatively up regulated in 82 and 64 

growth substrates (Figure 4.3).  

In GSE69008 dataset, most of the translation, ribosomal structure and biogenesis 

proteins were comparatively down regulated in A (high lignin-low glucose) and highly 

upregulated in C (average lignin-average glucose) samples. Genes encoding for 40S (S2, S3, 

S3A, S4, S6, S8, S15, S15/22, S23), 60S (L2/L8, L3, L5, L6, L7, L10, L10A, L13, L14, L15) and 60S 

acidic ribosomal protein P0, amidases, tRNA synthetase (asparaginyl, methionyl, threonyl), 

polyadenylate binding protein, ATP-dependent RNA helicase, translation initiation factor (EF-

1, elF-1/SUI1, elF-2 alpha, beta, gamma, elf-4G, elf-5A and ubiquitin/40S ribosomal protein 

S27a were highly up regulated in C growth substrates. Although genes encoding for 40S 

(S2/S26, SA/P40), 60S (L15/L27, L19, L22, L44), 60S acidic ribosomal protein P2, tRNA 

synthetase (alanyl, aspartyl, glycyl, prolyl), ABC transporter with ATPase domain, Exosomal 

3’-5’ exoribonuclease complex, RNA binding protein (translation regulation), translation 

initiation factor (elF-2, elF-3a, EF-1, elF-2C, elF-3C, 3D, elF-4F) and tRNA isopentenyl 

pyrophosphate transferase were significantly up regulated in B (low lignin- high glucose) 

samples (Figure 4.3). Finally, in GSE69461 dataset a large set of genes encoding for 

translation, ribosomal structure and biogenesis were highly down regulated (with fold change 

≥2.0) in 40-hour samples. Several transcripts encoding for 40S and 60S ribosomal proteins, 

amidases, tRNA synthetases (asparaginyl, aspartyl, glutaminyl, glutamyl, isoleucyl, leucyl, 

lysyl, methionyl, phenylalanyl, tyrosyl), translation initiation factors, tRNA 

methyltransferases, ribosomal proteins, mitochondrial ribosomal proteins, ABC transporters, 

Exosomal 3’-5’ exoribonuclease complex and WD40 nucleolar protein (translation) were 

highly up regulated in 96-hour growth substrate (fold change ≥2.0). In 40-hours growth 
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substrates genes encoding for 40S (S2), 60S (P2, L10, L11, L30) ribosomal proteins, amidases, 

aspartyl, asparaginyl and cysteinyl tRNA synthetases and various translation initiation factors 

were found to be highly up regulated (Figure 4.6). 

 

Figure 4.6: List of commonly expressed and statistically significant genes among various 

datasets encoding for translation, ribosomal structure and biogenesis group (KOG functional 

ID: J) 

4.4.4. Transcription (KOG ID: K) 

Previous studies have extensively determined that a wide range of transcription 

factors are involved in regulating the expression of lignocellulolytic enzymes [9, 37-39].  

Genome of P. chrysosporium encodes 415 gene models classified under the transcription 

group. Our present metadata analysis has revealed a large set of commonly expressed 

statistically significant genes coding for the essential transcription factors. We have observed 

that a total of 14 and 21 genes were found to be common among GSE14734, GSE14735, 

GSE27941 and GSE54542, GSE52922, GSE69008, GSE69461 datasets respectively. In 

GSE14734 dataset, genes encoding for CREB/ATF transcription factor, TATA box binding 

protein and transcription coactivator encoding genes were highly down regulated in both ball 

milled aspen and cellulose growth substrates, while comparatively highly expressed in 



140 | P a g e  

 

glucose substrates. In dataset GSE14735, genes encoding for TATA box binding protein, HMG 

box transcription factors were found to be highly up regulated in carbon limited, ball milled 

aspen and nitrogen limited growth substrates, while genes encoding for GATA-4/5/6 

transcription factors and elongation factor 1 were highly upregulated in cellulose containing 

growth substrates. And genes encoding for elongation factor 1 beta, protein arginine N-

methyl transferases (PRMT1) related enzymes, RNA polymerase II were highly up regulated 

in replete growth substrates. In GSE27941 dataset, only genes encoding for TATA binding 

protein (RNA polymerase II) and component of TFIID and TFIIIB were found to be highly up 

regulated with fold change ≥2.0 in ball milled aspen samples, however genes encoding for a 

large set of transcription factors especially CREB/ATF, CCAAT (HAP5), class transcription 

repressor, HMG box, heat shock transcription factor were found to be statistically significant 

and highly up regulated in ball milled aspen with fold change ≥1.5 (Figure 4.3). 

Interestingly we have observed that in dataset GSE54542, a large set of genes 

encoding for various transcription factors were highly up regulated in oak acetonic extractive 

than control samples. Transcripts encoding for CAAT-binding factor, CREB/P300, CREB/ATF, 

calcium responsive transcription coactivator, chromatin remodeling complex, GATA-4/5/6, 

HMG-box, heat shock (HSF), helix loop helix (HLH), KEKE containing transcription regulator, 

Mlx related, nuclear receptor coregulator, transcription factor DATF1, RFX, TATA- binding 

factor, forkhead/HNF3, CCR4, upstream (L-myc-2) transcription factors were highly up 

regulated in oak acetonic extractive samples. However, genes encoding for CCAAT (HAP2), 

Cdk activating kinase, HMG box, leucine permease transcription regulator, TBP associated 

transcription factor, transcription factors (MEIS1, TCF20, Myb, CCAAT displacement CDP1), 

transcription repressor, Zn-finger transcription factors were highly up regulated in control 

samples with fold change ≥2.0. In GSE52922 dataset, genes encoding for GATA-4/5/6, helix-

loop-helix (HLH), HMG-box, NAD+ADP-ribosyltransferase Parp, RFX, RNA polymerase II, 

TATA box binding protein, TFIIF interacting CTD phosphatase, transcription coactivator, 

upstream (L-myc-2) transcription factors and ubinuclein nuclear proteins were highly up 

regulated in 82 growth samples. 

In GSE69008 dataset we have observed that genes classified under transcription were 

highly up regulated in B (low lignin-high glucose) followed by C (average lignin-average 

glucose) samples. Genes encoding for calcium responsive transcription coactivator, casein 

kinase II, cell cycle control protein, chromodomain helicase, dosage compensation 
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regulatory complex, E3 ubiquitin ligase, GATA-4/5/6, glucose repressible alcohol 

dehydrogenase transcriptional effector (CCR4), heat shock (HSF), helix-loop-helix (HLH), 

transcription factors, negative regulation of transcription, nuclear receptor coregulator, 

transcription factors 5qNCA, RFX, OCT1, transcription coactivator(FOSB/c-Fos)  and 

transcription initiation factor (TFIIB, TFIID) were comparatively highly up regulated in B (low 

lignin-high glucose). While genes encoding for HMG-box, KEKE-transcription regulatory, 

NAD+ADP-ribosyltransferase Parp, elongation factor 1, nuclear localization sequence 

binding protein, ubinuclein nuclear protein and upstream L-myc-2 transcription factors were 

down regulated in B samples. Total of 177 transcripts were highly regulated when cultured on 

P. glauca wood species of GSE69461 dataset, most of the genes encoding for transcription 

were found to be highly down regulated in 40-hours samples and highly up regulated in 96- 

hour samples. Especially genes coding for transcription factors bZIP, CCAAT (HAP5), CCR4 

(NOT5), GATA-4/5/6, leucine zipper transcription factors, Glucose-repressible alcohol 

dehydrogenase transcriptional effector, HSF, HLTF/DNA helicase, HMG-box, MADS-box, 

MOT2, RFX, TATA-box binding protein, BLIMP-1, CA150, E2F, MBF1, MEIS1, NERF, OCT-1, 

HNF3-forkhead, PHOX2, TCF20, Myb, CCAAT (CDP1) transcription factors and nuclear 

receptor coregulator (SMRT, Myb domains) were highly up regulated in 96-hour samples. 

Simultaneously, wide range of transcripts encoding for alpha-1,2-glucosyltransferase, CCR4 

(NOT5), cell cycle control protein, CREB/ATF, GATA-4/5/6, glucosyltransferase-Alg8p, HSF, 

HLH, HMG-box, homeobox, CCR4 associated factor, 5qNCA, FET5, RFX, TATA-box binding 

protein, MES1, NERF, NF-X1, HNF3-forkhead, PRD, TCF20, Myb, L-myc-2 transcription factors 

were highly up regulated in 40-hour samples with fold change ≥2.0 (Figure 4.3) (Figure 4.7).  
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Figure 4.7: List of commonly expressed and statistically significant genes among various 

datasets encoding for transcription group (KOG functional ID: K) 

4.4.5. Replication, Repair and Recombination (KOG ID: L)  

DNA is the storehouse for the cellular genetic material from which other molecular 

components such as RNA and protein are derived. However, eukaryotic DNA experiences 

various DNA-damaging events every moment and the damaged DNA inhibits various 

necessary cellular mechanisms and pathways such as DNA replication and transcription, thus 

challenging the cellular fate [40]. Thus, eukaryotic cells have evolved with various repair 

mechanisms to reserve DNA from different types of damages. Eukaryotic cells employ five 

different types of repair mechanisms a) base excision repair, b) mismatch repair c) nucleotide 

excision repair d) homologous recombination and e) non-homologous end joining, state of 

the art review articles are already available on eukaryotic repair mechanisms [40]. As 

mentioned earlier P. chrysosporium genome encodes 242 genes classified under replication, 

repair and recombination group, based on the annotations these genes we have further 

tentatively grouped the genes based on their function as 60 (base excision repair), 20 

(mismatch repair), 17 (nucleotide excision repair), 8 (homologous recombination) and 6 (non-

homologous end joining). In GSE14734, GSE14735 and GSE27941 datasets, various genes 



143 | P a g e  

 

encoding for replication, repair and recombination were expressed statistically significant, 

however no genes were expressed with fold change ≥2.0. Total of 52, 6, 5 genes were found 

to statistically significant and commonly expressed among GSE14734-GSE14735, GSE14734-

GSE14735-GSE27941 and GSE14734 -GSE27941 datasets respectively. Most of the genes 

encoding for replication, repair and recombination were up regulated in cellulose grown 

samples followed by ball milled aspen. Transcripts encoding for 33 genes (5'-3' exonuclease 

(HKE1/RAT1, XRN1/KEM1/SEP1) ATP-dependent DNA helicase, DNA mismatch repair protein 

(MLH2, MutS), DNA polymerase, DNA repair protein RAD18, DNA licensing factor (MCM3, 

MCM4, MCM6, MCM7), DNA damage check point RHP9/CRB2/53BP1, Replication factor C, 

Signaling protein SWIFT and BRCT domain proteins, Single-stranded DNA-binding 

replication protein A) were found to be up regulated in glucose and down regulated in BMA 

and cellulose samples. Similarly, most of the replication, repair and recombination genes 

were up regulated in carbon and nitrogen limited growth conditions followed by replete 

medium. 

In GSE54542 dataset, total of 45 genes were differentially expressed with a fold change 

≥2.0, 28 genes (5'-3' exonuclease, ATP-dependent DNA helicase, Cdk activating kinase 

(CAK), DNA damage checkpoint protein RHP9/CRB2/53BP1, DNA mismatch repair protein - 

MLH1, DNA polymerase, Eukaryotic-type DNA primase, DNA repair protein XPA-interacting 

protein, Mismatch repair ATPase (MSH4, MSH5, MSH6), origin of recognition complex, DNA 

damage inducible protein, Replication factor C (RFC2, RFC4), SNF2 family DNA-dependent 

ATPase and Tam3-transpose) were highly up regulated in control. In oak acetonic extract 

samples, 17 genes were highly up regulated (3'-5' DNA helicase, 3'-5' exonuclease, 5'-3' 

exonuclease, ATPase related to holliday junction resolvase, damage specific DNA binding 

complex (DDB1), DNA polymerase, DNA repair and recombination protein (RAD52/RAD22, 

RHP57), DNA replication licensing factor (MCM2, MCM3, MCM4), endonuclease-III, 

HLTF/DNA helicase RAD5, NER factor (NEF2), origin recognition subunit1).  In GSE52922 

dataset, total of 24 replication, repair and recombination genes were found to be statistically 

significant out of which only 2 genes (DNA polymerase sigma, NAD+ ATP ribosyltransferase 

Parp) were significantly up regulated in 82 followed by P717 growth substrates. In GSE69008 

dataset, genes encoding for 5’-3’ exonuclease, transpose, ribonuclease HI, tam3-transposase 

(AC family) were significantly up regulated in A (high lignin-low glucose) and genes 

encoding for DNA topoisomerase I, nucleosome binding factor SPN, tam3-transposase were 

up regulated in B (low lignin-high glucose). In C (average lignin-average glucose) samples, 
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5’-3’ exonuclease, NAD+ ADP-ribosyltransferase Parp, nucleotide excision repair (NEF2), 

ribonuclease HI were up regulated and down regulated in A and B samples. Finally, in 

GSE69461 dataset total of 120 and 40 genes were found to be highly upregulated with a fold 

change ≥2.0. In 40-hour samples genes encoding for 3-methyladenine DNA glycosidase, ATP-

dependent helicase and ligase, damage specific DNA binding complex, DNA damage check 

point, damage inducible protein, DNA polymerase, topoisomerase I, G/T mismatch DNA 

glycosylase, DNA repair protein XPA, MSH2, NAD+ADP ribosyltransferase Parp were highly 

expressed. Genes involved in DNA replication and various repair mechanisms were found to 

be highly up regulated in 96-hour samples (Figure 4.8). 

 

 

Figure 4.8: List of commonly expressed and statistically significant genes (A), (B) among 

the selected gene expression datasets encoding for Replication, repair and recombination 

group (KOG functional ID: L) 
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4.5. Discussion 

Extracellular digestion of the growth substrate by secreting highly oxidative and 

degradative enzymes, before the absorption of nutrients is one of the significant 

characteristics of fungi. White rot fungi such as P. chrysosporium secretes an array of oxidative 

and hydrolytic enzymes for the degradation of plant cell wall components, as a primary 

degrader of lignin. Thus, white rot fungi play a crucial role in maintaining the global carbon 

cycle [7]. However, the expression and turnover of P. chrysosporium’s lignocellulolytic 

enzymes are directly controlled by wide range of genes at DNA and RNA level. We have 

clearly listed some important set of genes encoding for different protein models classified 

under information, storage and processing in P. chrysosporium’s genome (Figure 4.9). The 30 

million base pair genome of P. chrysosporium has revealed variation within complex gene 

families encoding for oxidases, peroxidases, cytochrome P450 monoxygenases and glycosyl 

hydrolases [7].  

Maintaining the integrity and stability of eukaryotic genomic DNA is of primary 

importance to the cell, as the DNA damage compromises some of the essential cellular 

processes (transcription and replication) and sometimes it might even challenge cell’s 

survival [40]. The genomic DNA experiences different types of damages such as endogenous 

or DNA replication related damage (DNA mismatches introduced at a rate of 10-4 to 10-6, 

chemically altered nucleotides ex: 8-oxo-dUTP and dGTP), exogenous or environmental 

damage (ultraviolet rays, ionizing radiations) and chemical damage (alkylating agents, 

heterocyclic amines, polycyclic aromatic hydrocarbons) [40]. Thus, eukaryotic cells have 

developed a five different types of specific repair mechanisms (BER, MMR, NER, HR and NHEJ) 

[41]. Degradation of polyphenolic compounds (lignin) and other plant components present in 

the growth substrates (GSE54542, GSE52922, GSE69008 and GSE69461) might result in 

chemical damage to the DNA. Thus, resulting in higher expression of genes involved in DNA 

repair mechanisms. Various studies have confirmed the involvement of reactive oxygen 

species (ROS), hydroxy radicals (OH*) and hydrogen peroxide (H2O2) by ligninolytic 

peroxidases during the degradation of lignin [6, 42-45]. Interaction of ROS, OH*, H2O2 and 

superoxide anion with DNA and other macromolecules results in various forms of DNA lesions 

challenging the cell survival by causing various detrimental effects [46]. According to Evan 

and Littlewood 1998, multicellular eukaryotic organisms employ programmed cell death 

process known as apoptosis for the elimination of cells possessing irreparable damaged DNA 
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[47]. However, unicellular organisms like Saccharomyces cerevisiae adapts the cells with 

irreparable damaged DNA and reenter into the cell cycle [48]. According to Glass et al (2000), 

filamentous fungi might use apoptosis for removal of hyphal cells which have undergone 

anastomosis with a discordant pattern [49]. Recent studies conducted by Jung et al (2016) on 

Cryptococcus neoformans (radiation resistant basidiomycetes fungus, usually found in 

radioactive habitats) have reported a special transcription factor Bdr1 containing basic 

leucine zipper domain which regulates the expression of genes coding for DNA repair genes 

[50]. However, the expression of Bdr1 is dependent on DNA damage response protein kinase 

(Rad53) [50]. Significantly common expression of genes encoding DNA repair protein (RAD1, 

RAD3, RAD5, RAD14, RAD16, RAD17, RAD18, RAD51 and RAD52) among the natural plant 

biomass growth substrates explains the occurrence of DNA lesions in P. chrysosporium. Thus, 

DNA repair is a vital procedure for protecting the cellular genetic information.  

A B 

C 

D 
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Figure 4.9: Heat map (Color scales) listing the important groups of genes encoding for A) 

transcription factors B) translation ribosomal structure and biogenesis C) chromatin structure 

and dynamics D) DNA repair mechanisms in genome of P. chrysosporium. 

DNA repair biochemical studies are usually performed using naked DNA substrates. 

However, this procedure is not physiologically applicable as the naked DNA is susceptible to 

nuclease digestion. Naked DNA will require more space and prone to other cellular insults 

until and unless it is organized [51]. Thus, eukaryotic naked DNA is structurally organized into 

nucleosomes (147 base pair DNA is packed around core histone proteins H2A, H2B, H3 and 

H4) which are further packed into chromatin. Subsequently, this chromatin condenses into 

chromosomes which enable accurate cellular division [52]. Chromatin’s dynamic structure 

controls gene expression by controlling the nuclear processes such as DNA replication, 

transcription and DNA repair. During DNA replication, eukaryotic chromatin is exposed to 

proof reading and DNA repair mechanisms to ensure accurate transfer of genetic information. 

Present data analysis of the gene expression data revealed the genes involved in chromatin 

remodeling such as chromatin remodeling protein, histone acetyltransferase (MYST, 

SAGA/ADA, TRRAP), histone methyltransferases, chromatin remodeling complex (SWI-SNF, 

RSC, WSTF-ISWI and PHD Zn-finger), histone deacetylase complex (SIN3, RPD3). Along with 

these enzymes, genes coding for sirtuin 4, 5 (SIR2 family) structure maintenance of 

chromosome protein 4, nucleosome assembly protein and remodeling factors were common 

among the datasets. Based on our observations above-mentioned enzymes involved in 

chromatin structure, remodeling and dynamics were found to be highly expressed in natural 

plant biomass growth substrates. 

Gene regulation is of higher priority in physiology of all the organisms which ensures 

the up and down regulation of genes by responding to the growth conditions [9]. Studies have 

reported that 37 different classes of regulatory proteins were identified in fungi which control 

and coordinate fungal growth [9]. According to Tiziano et al (2017), initial recognition of the 

growth substrate by fungi initiates the expression and secretion of plant biomass utilizing 

enzymes and the respective metabolic networks [53]. Plant cell wall components such as 

polysaccharides and lignin cannot act as inducers due to their large size as they cannot enter 

the fungal cell. Fungi identify the presence or absence of polymers by secreting polymer 

derived low molecular weight components (ex: mono (or) disaccharides). Majorly, the 

transcription factors regulating fungal plant cell wall degrading enzymes belong to zinc 
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cluster family (contains Zn-fingers and cysteine/histidine residues). Studies have reported 

that most positive and negative regulators of fungal plant cell wall degrading enzymes belong 

to Zn2Cys6 and Cys2His2 classes [53]. Reports on commercially important fungi such as 

Aspergillus nidulans, Trichoderma reesei, Neurospora crass, Fusarium sp, Colletotrichum 

gloeosporioides, Botrytis cinerea, Magnaportha oryzae, Aspergilus aculeatus etc., have 

revealed about important transcription factors regulating the expression of plant cell wall 

polysaccharide utilizing enzymes (Table 4.3) [53].  

Table 4.3: Transcription factors involved in regulation of plant cell wall utilizing enzymes 

studied in various commercially important fungi: 

 

Genes encoding for various transcription factors were statistically significant and 

commonly expressed among P. chrysosporium gene expression datasets. Genes encoding for 

transcription factors CREB/ATF, HMG-box, MADS-box, CCAAT (HAP5, HAP2), CCR4, 

Plant biomass 

component 

Transcription factors Enzymes  

 

 

Cellulose 

CLR-1, CLR-2, ClrA/1 (Cellulase regulators-Zn2Cys6-

class) 

XlnR (Xylanolytic transcriptional activator-Zn2Cys6) 

ACE2, ACE3 (Activators of cellulase expression-

Zn2Cys6) 

ClbR (Cellobiose response regulator-Zn2Cys6) 

McmA (MADS-box protein-MADS-box) 

HAP2, HAP3, HAP5 (Multimeric protein complex) 

ACE1, CreA/1, BglR/COL-26 (Cellulase enzyme 

repressors) CRE1, CREA, CREB, CREC 

 

 

Cellulases 

Hemicellulose XlnR/XYR1 (Xylanolytic transcriptional activator-

Zn2Cys6) 

 AraR, ARA1 (Arabinose responsive regulators Zn2Cys6) 

GalR (GalX) (Galactose responsive regulator-Zn2Cys6) 

Xylanases, 

Arabinases, 

Galactases 

Starch, Inulin InuR (Inulinolytic regulation-Zn2Cys6) 

AmyR, MalR (Amylolytic regulation-Zn2Cys6) 

Inulases, 

Amylases, 

Maltases,  

Pectin RhaR, GaaR (GaaX) (Pectinolytic regulation-Zn2Cys6) Rhamnosidases, 

Pectinases 



149 | P a g e  

 

calcium-responsive transcription coactivator, GATA/4/5/6 and L-myc2 were statistically 

significant and commonly expressed among all the datasets. Previous reports suggest that 

carbon catabolite repression (CCR) regulates the expression and secretion of plant cell wall 

utilizing enzymes when cultured on certain carbon sources [10, 38, 54-56]. Foreman et al 

(2003) have revealed that genes encoding for plant cell wall utilizing enzymes were 

coregulated by XYR1, ACE2, HAP-2/3/5 complex (positive regulators) with repressors being 

ACE1 and CRE1 [57].  The cis acting element CCAAT motif is present on promoter and 

enhancer regions in most of the eukaryotic genes. In filamentous fungi, all the CCAAT box 

binding proteins were mostly classified under HAP-like factors [56, 57]. Previous reports 

suggest that HAP-2/3/5 complex is involved in generation of open chromatin structure which 

subsequently required for the total transcriptional activation of cellulases [58, 59]. Studies 

conducted on Aspergillus sp. have reported that CRE-A, CRE-B and CRE-C are involved in 

carbon catabolite repression regulatory mechanisms [60-64]. According to de Vries, Ronald 

P, and Jaap Visser (2001), expression of genes encoding for cellulase, xylanase, arabinase, 

and various endoxylanase, xylosidase, feruloyl esterase and few pectinase are affected by 

CRE-A mediated repression [54]. Significant expression of heat shock, HMG-box, helicase 

like, RFX, Myb, L-myc2 transcription factors only among the natural plant biomass growth 

substrates might reveal the increased cellular stress on P. chrysosporium during degradation 

of lignin and other plant extractives. According to Jessica. M et al (1997), expression of P. 

chrysosporium genes encoding for manganese peroxidase (MnP) is strongly regulated by 

manganese (Mn), heat shock and hydrogen peroxide (H2O2) when cultured on nitrogen 

limited growth substrates [19, 65]. 

Before the process of translation in the cellular cytoplasm, messenger RNA is 

subjected to 5’ capping, mRNA-splicing, 3’end processing and mRNA export, these cellular 

events are strongly interdependent and influence cellular fate of a transcript [25]. Genes 

encoding for ATP-dependent RNA helicase, DEAH-box RNA helicase, fibrillarin related 

nucleolar RNA binding proteins, polyadenylation factor complex, splicing coactivator SRM 

160/300, splicing factor RNPS1, hnRNP-F, 3b-subunit 4, mRNA splicing factor were statistically 

significant and commonly expressed among all the datasets. Serine-arginine nuclear matrix 

protein (SRM 160/300 protein) play crucial role in regulating alternative splicing, possibly by 

localizing splicing machinery components to the transcription active site. SR proteins are 

regulated by phosphorylation and dephosphorylation reactions as these are phosphoproteins 

in nature [66]. Higher expression of genes encoding for splicing factors in the natural plant 
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biomass growth substrates might be due to its involvement in regulation of lignocellulolytic 

enzymes. Besides the abovementioned common enzymes genes encoding for various 40S and 

60S ribosomal proteins, amidases, translation initiation factor 2C, 4F, PUF3, were expressed 

commonly among GSE14734, GSE14735 and GSE27941 datasets. In natural plant biomass 

substrates (GSE54542, GSE52922, GSE69008 and GSE69461) Exosomal 3’-5’ exoribonuclease, 

polyadenylate binding protein, translation initiation inhibitor UK114, initiation factor 4F and 

repressor MPT5 proteins were commonly expressed. Studies have confirmed the involvement 

of the enzymes in regulation and maintenance of the protein turnover, however the exact 

involvement and role of the abovementioned enzymes in expression and regulation of 

lignocellulolytic and detoxification enzymes in P. chrysosporium is not explained till today.  

In this study, we have revealed the common gene expression patterns of P. 

chrysosporium involved in regulation of protein expression and turnover of lignocellulolytic 

enzymes. We have extensively reported about various genes involved in information storage 

and processing of P. chrysosporium. Higher and significant expression of various genes 

encoding for information storage and processing especially DNA damage, repair and 

recombination mechanisms, mRNA splicing, histone acetyltransferases by P. chrysosporium 

were common and highly expressed among datasets cultured on natural plant biomass 

growth substrate. Thus, degradation of natural plant biomass containing lignin and other plant 

extractives along with plant polysaccharides causes various DNA level lesions. These results 

also convey that expression of lignocellulolytic genes internally depends on expression or 

repression of various genes involved in information storage and processing. However, further 

investigations must be performed to understand and analyze the exact involvement of the 

abovementioned genes in expression and regulation of P. chrysosporium lignocellulolytic 

enzymes. Application of next generation sequencing techniques such as ChIP (chromatin 

immunoprecipitation), RNA sequencing and mRNA splicing studies might reveal the 

functional involvement of the reported genes which would significantly help in strain 

improvement and production of recombinant strains. 
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Molecular Networks of Postia placenta Involved in Degradation of 
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Gene Expression Data 
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5.1. Abstract 

To understand the common gene expression patterns employed by P. placenta during 

lignocellulose degradation, we have retrieved genome wide transcriptome datasets from 

NCBI GEO database and analyzed using customized analysis pipeline. We have retrieved the 

top differentially expressed genes and compared the common significant genes among two 

different growth conditions. Genes encoding for cellulolytic (GH1, GH3, GH5, GH12, GH16, 

GH45) and hemicellulolytic (GH10, GH27, GH31, GH35, GH47, GH51, GH55, GH78, GH95) 

glycoside hydrolase classes were commonly up regulated among all the datasets. Fenton’s 

reaction enzymes (iron homeostasis, reduction, hydrogen peroxide generation) were 

significantly expressed among all the datasets under lignocellulolytic conditions. Due to the 

evolutionary loss of genes coding for various lignocellulolytic enzymes (including several 

cellulases), P. placenta employs hemicellulolytic glycoside hydrolases and Fenton’s reactions 

for the rapid depolymerization of plant cell wall components. Different classes of enzymes 

involved in aromatic compound degradation, stress responsive and detoxification 

mechanisms (cytochrome P450 monoxygenases) were found highly expressed in complex 

plant biomass substrates. We have reported the genome wide expression patterns of genes 

coding for information, storage and processing (KOG), tentative and predicted molecular 

networks involved in cellulose, hemicellulose degradation and list of significant protein-ID’s 

commonly expressed among different lignocellulolytic growth conditions. 

Keywords: Postia placenta, Brown-rot decay, Gene expression, NCBI-Gene Expression 

Omnibus (GEO), Lignocellulose, Fenton’s reaction 
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5.2. Introduction 

Postia placenta a filamentous basidiomycete, which causes brown rot decay of the 

wood, and is one of the major destructors of wood-based constructions. P. placenta also 

exhibits the unique decaying property of brown rot fungi by rapidly breaking down cellulosic 

units of plant biomass with-out efficiently depolymerizing lignin units [1]. Whereas white rot 

fungi such as Phanerochaete chrysosporium attack plant biomass by efficiently degrading 

lignin followed by carbohydrate units of the plant biomass. Collectively these fungi are major 

inhabitants of forest biomass thus, playing a major role in carbon cycling and recycling of 

nutrients [1, 2]. Apart from their contrasting decay patterns, both P. chrysosporium and P. 

placenta belong to order Polyporales and are classified under Phlebia clade [3]. Phylogenetic 

studies conducted earlier have reported that brown rot fungi have progressively evolved 

from white rot fungi, the morphological properties and their choice of substrates also supports 

the above fact [4]. Martinez et al (2009), have completed the total genome sequence of P. 

placenta and performed genome wide transcriptome and secretome analysis, through which 

he has revealed the functional properties of various genes regulated during the process of 

wood decay [1]. This study has revealed a surprising fact that P. placenta genome codes for 

fewer number of cellulases (glycoside hydrolases) and other CAZymes when compared to P. 

chrysosporium. Present day JGI MycoCosm database harbours the genomes of P. placenta 

MAD 698-R v1.0 and P. placenta MAD-698-R-SB12 v1.0, coding for about 242 CAZymes and 

324 CAZymes respectively [1] (Figure 5.1.). Though brown-rot fungi are well known for 

extensive cellulose depolymerization, P. placenta genome reveals that number of genes 

coding for cellulases are less when compared to P. chrysosporium. Thus, it is highly significant 

to understand the molecular mechanisms responsible for lignocellulose degradation by P. 

placenta. 

Studies were also being conducted to understand and reveal the genes encoding 

enzymes involved in Fenton’s reactions employed during lignocellulose degradation [5]. 

Brown rot fungi generally involve several non-enzymatic pathways to commence the Fenton’s 

reactions which are required for the generation of ROS, OH*, H2O2 etc. The probable 

mechanisms involved are a) location and solubilization of iron (Fe (oxyhydroxide) complexes 

in plant wood cell lumen, which is reduced to ferrous iron) [6, 7], b) hydrogen peroxide 

generation (reduction of molecular oxygen and oxidation of methanol)[8-10], c) iron reducing 

agents (reduction of Fe3+ to Fe 2+ by reductants like 2,5-dimethoxy hydroquinone) [5, 6, 11, 
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12]. When compared to commercial cellulase producers like Trichoderma reesei, brown rot 

fungi such as P. placenta lacks genes coding for cellulases/carbohydrate binding domains, 

exo-cellobiohydrolases [1]. According to Ratto et al (1997), free radicals generated from 

Fenton’s reactions will initially attack the cell walls, followed by breakdown of native and 

holocellulose happens through action of hydrolytic enzymes (hemicellulases and 

endoglucanases) [5, 13]. It is well-known that brown-rot fungi only modify lignin without 

significantly altering or degrading the structure of lignin, recent studies show that brown rot 

fungi cause extensive demethylation, oxidation of side chains, depolymerization and also can 

potentially repolymerize lignin, however brown-rotted lignin is observed in polymeric form 

supporting earlier statement [5, 14, 15]. However, exact mechanisms involved in iron 

reduction and homeostasis, extracellular H2O2 and free radical generation and enzymes 

involved in lignocellulose degradation were unclear. 

Figure 5.1: Pictorial representation of CAZymes distribution (GH-glycoside hydrolases, GT-

glycosyl  transferases, AA-auxiliary activity, CBM-carbohydrate binding domains, CE-

carbohydrate esterases, EXPN-expansin like protiens, PL-polysaccharide lyases) in P. 

placenta MAD-698- Rv1.0 (A) and the top number denotes for the number of genes coding for 

particular class of enzymes and each bar internally shows different sub-classes of enzymes 

and the number of genes encoding for the corresponding enzymes, (B) Comparison of 

genome wide CAZymes between P. placenta and P. chrysosporium 

A 

B 
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Martinez et al (2009) and Wymelenberg et al (2010) have conducted a genome level 

transcriptome and proteome studies on P. placenta by culturing it on wood-derived 

microcrystalline cellulose, glucose (sole carbon source) and ball milled aspen, supplemented 

with Highley’s basal salt medium (GSE12540). These studies have reported following facts A) 

P. placenta genome lacks genes encoding for exocellobiohydrolases and carbohydrate 

binding domains (commonly observed in cellulolytic microorganisms), B) several genes 

encoding for hemicellulases β-1-4 endoglucanases, iron and quinone reductases, 

extracellular iron Fe (II) and H2O2 generating oxidases were found to be highly expressed 

when P. placenta was cultured in cellulose medium. Wymelenberg et al (2011) has performed 

a microarray study to reveal the gene expression of P. chrysosporium and P. placenta 

colonized on ball milled aspen and pine. This study has reported that gene expression 

patterns of these fungi were significantly influenced by type of wood species (BMA or BMP) it 

colonizes and differences in gene expression patterns of these fungi reveal their preferences 

for carbon sources and their central decaying properties [16]. Daniel et al (2011) has 

developed a method for solubilization and multidimensional 1H-13C NMR spectroscopy study 

to analyze the degradation of aspen wood by P. placenta. Obtained results showed that P. 

placenta majorly degraded the content of principal aryl glycerol-β-aryl ether interunit 

linkages of the lignin, by employing reactive oxygen species (ROS) free hydroxy radicals 

(OH*) obtained through extracellular Fenton system [17]. According to Micales (1991), oxalic 

acid which is highly produced and found accumulated in huge quantities by brown rot fungi, 

also might involve in iron chelation, pH gradient, free radical formation and acid hydrolysis 

of cellulose and hemicellulosic units etc [18]. In order to estimate the quantity of reactive 

oxygen species (ROS) produced by P. placenta laccase during the process of wood 

degradation, Wei et al (2010) has performed proteomic and gene expression studies of 

laccase and reported that oxidation of every hydroquinone molecule results in production of 

single perhydroxyl radical [19]. Oleksandr et al (2016) has performed, a genome wide 

transcriptome study to understand the effect of chemical composition of wood (Populus 

trichocarpa) on the gene expression of P. placenta and P. chrysosporium. Results obtained by 

them has proved that gene expression of these fungi is significantly influenced by the wood 

substrate composition and the incubation periods [20]. Recently Jiwei et al (2016) has 

performed a genome wide transcriptome study to examine differential expression of lignin 

oxidizing components involved in ROS generation earlier than differential expression of 

genes encoding for glycoside hydrolases [21]. Higher expression of ROS generating lignin 
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oxidizing components in hyphal front, followed by higher expression of genes encoding for 

glycoside hydrolases (GH) in lower hyphal front regions confirms the fact [21]. Zhang et al 

(2016), has developed a spatial mapping method to resolve temporal sequence in P. placenta 

by considering thin sections of directionally colonized wood wafers [21].  

Understanding the fundamental molecular mechanisms employed by P. placenta 

during wood decay will significantly help the growing biofuel industries to develop novel and 

efficient methods for the breakdown of carbohydrate units (cellulose and hemicellulose) by 

selective modification of lignin (by demethoxylation and limited ring cleavage). In this study, 

we have performed gene expression metadata analysis on publicly available microarray and 

RNA-Seq datasets performed on P. placenta to understand the common gene expression 

patterns required during the progression of Fenton’s reactions, oxalate metabolism, H2O2 and 

free radical generations, lignocellulose degradation (CAZymes and oxidoreductases).  

5.3.1. Data Retrieval 

Gene expression datasets used in our present study were retrieved from NCBI GEO 

(Gene Expression Omnibus is a public repository for gene expression datasets) by using the 

term “Postia placenta”. Present day GEO repository resides four functional genomics datasets 

of P. placenta out of which three were microarray datasets (GSE12540, GSE29656, GSE69004) 

and one was RNA-Seq (GSE84529) dataset. All the microarray datasets were based on 

NimbleGen P. placenta MAD-698 whole genome microarray platform and cultured on 

different growth substrates. Dataset GSE12540 was based on P. placenta cultured on 

microcrystalline cellulose (Avicel), glucose, 0.5% (w/v) ball milled aspen (BMA) as sole 

carbon source and supplemented with Highley’s basal medium [1, 22]. Similarly, GSE29656 

dataset, P. placenta was cultured on 0.5% (w/v) ball milled white pine (Pinus strobus), 0.5% 

(w/v) ball milled bigtooth aspen (Populus grandidentata) as the sole carbon source and 

supplemented with Highley’s basal medium for macro and micronutrients [16]. In dataset 

GSE69004, P. placenta was cultured on chemically distinct A (high lignin-low glucose), B (high 

glucose-low lignin) and C (average lignin-average glucose) Populus trichocarpa wood 

substrates [20]. The dataset GSE84529 P. placenta was cultured on wood wafers cut in 

dimensions (60 x 25 x 2.5mm) where the largest face of the wood wafers is cross sectioned 

and the tangential plane was arranged to be in contact with P. placenta mycelium, hyphal 

growth was allowed till 50 mm up on the wafers and later sectioned to A) 0-5 mm B) 15-20 mm 

C) 30-35 mm RNA-Seq analysis [21]. All the experimental conditions in these datasets were 
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designed with three replicates each and complete details about the gene expression 

platforms and sample information were listed in Table 5.1.  

Table 5.1: Platform details of Postia placenta gene expression data: 

 

5.3.2 Data Analysis Methodology 

Microarray GSE12540, GSE29656 and GSE69004 datasets were analyzed using GEO2R 

and customized programming scripts. The literature and supplementary information for the 

corresponding datasets were studied to understand the experimental design for performing 

the statistical analysis. Following options were applied when using GEO2R website A) 

autodetect option (for log transformation of the data), B) box-whisker plot (samples and value 

distributions), C) submitter provided annotations (for gene level annotations) and D) 

Benjamini & Hochberg (False discovery rate correction) for multiple testing correction of p-

values was used. Once the samples are grouped according to their experimental conditions, 

Top 250 option was used for obtaining statistically significant genes expressed in each 

dataset. We have retrieved Top 1000 differentially expressed genes to understand P. placenta 

gene expression by using the function “Save all results” and the obtained results were 

analyzed further. The ranking of differentially expressed genes (Top 250) and statistical 

analysis in GEO2R internally happens through limma package and the statistically significant 

genes were ranked based on their corrected p-value (0.05). Thus, obtained statistically 

significant genes were analyzed by the supplier provided annotations Protein-ID and Best hit 

BlastP. Gene and protein level annotations of P. placenta MAD-698R were retrieved from 

MycoCosm (fungal genome repository) [23, 24]. Custom linux based scripts were written to 

retrieve the annotations for differentially expressed gene list using KOG, GO and InterPro 

Accessio

n ID 

Substrate Platform Sample

s 

Ref 

GSE84529 Wood wafers Illumina HiSeq (Postia placenta) 9 [21] 

GSE69004 Poplar wood 

stems 

NimbleGen_UW/FPL Postia placenta 

MAD-698 whole genome 37K 

expression array version 1 

23 [20] 

GSE29656 Ball milled 

aspen 

Ball milled 

pine 

NimbleGen_UW/FPL Postia placenta 

MAD-698 whole genome 37K 

expression array version 1 

6 [16] 

GSE12540 Glucose 

Cellulose 

Ball milled 

aspen 

NimbleGen_UW/FPL Postia placenta 

MAD-698 whole genome 37K 

expression array version 1 

9 [1, 

22] 
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annotations of P. placenta MAD-698R v1. We have also used other analysis options available 

in JGI-MycoCosm such as Gene Ontology (GO)[25, 26], EuKaryotic Orthologous Groups 

(KOG) [27] and CAZy [28, 29] for analyzing the results obtained. The differentially expressed 

gene lists of the respective experimental conditions were compared using Venny 2.1 [30] and 

Jvenn [31] softwares. We have retrieved sample level FPKM (Fragments Per Kilobase of 

transcripts per Million) values, P-values and log fold change values from supplementary files 

provided for GSE84529 dataset, gene list was sorted based on their P-values and top 1000 

genes were retrieved and compared among the conditions. The data analysis was similar as 

explained earlier in our previous studies [32-34].  

Simultaneously, the datasets were also analyzed using GeneSpring® v.14.8 software.  

Gene expression datasets were retrieved using the option “Import NCBI GEO experiment” 

by saving the GEO sample files in the local folder. The experiments were created as generic 

single color by applying the following preprocessing conditions “Threshold value set at 1.0”, 

“Normalization using shift 75th percentile”, sample values were log base 2 transformed and 

baselined to the median of all samples. The experimental conditions were retrieved from the 

corresponding GEO experiment and literature, was used for the grouping the samples. The 

samples were filtered using “Probesets by expression” with the parameters set to data filter 

on normalized data and filter by percentile (upper percentile set to 100.0 and lower percentile 

20.0) respectively. Based on the experimental conditions one-way Anova and Moderated T-

test was performed respectively. However, for the dataset GSE84529, the samples were 

retrieved, and the experiment was created without any preprocessing steps. We have 

performed fold change analysis on the grouped samples using the FPKM values and the 

transcripts differentially expressed >2.0 were retrieved for the analysis. The detailed step by 

step workflow used for the metadata analysis of P. placenta gene expression datasets were 

showed in Figure 5.2. 



 

161 | P a g e  

 

Figure 5.2: Customized step by step workflow used for the metadata analysis of Postia 

placenta gene expression datasets.  

5.4. Results 

The rapid cellulolytic capacity of the brown rot fungi P. placenta surely will be credited 

to the potential cellulolytic enzymes and uncompromising Fenton’s reactions. Apart from 

these enzymes P. placenta also secretes a large list of aromatic compound degrading and 

detoxifying enzymes. Statistical analysis of the P. placenta gene expression datasets based on 

the provided experimental conditions has resulted in 5174, 7519, 6390 and 10,754 

differentially expressed transcripts among GSE12540, GSE29656, GSE69004 and GSE84529 

datasets respectively (Figure 5.3).  
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Figure 5.3: Profile plot (GSE12540, GSE69004 and GSE84529) and volcano plots (GSE29656) 

of the significant and differentially expressed genes among the conditions. 

5.4.1. Genes Encoding for Carbohydrate Active Enzymes (CAZymes) and Metabolism 

The genome of the P. placenta MAD-698 Rv1 harbors around 245 CAZymes, when 

compared to the genome of P. chrysosporium RP78 (450 CAZymes), several genes encoding 

for glycoside hydrolase and glycosyl transferase classes were reduced to 1 or absent. Genes 

encoding for various classes of glycoside hydrolases were found to be absent in the genome 

of P. placenta such as GH6, GH7, GH9, GH11, GH25, GH30, GH43, GH53, GH74, GH79, GH89, 

GH-92, GH115, GH125, GH131, GH133 and GH135. Several other GH-classes were reduced 

to one gene such as GH-10, GH38, GH45, GH55, GH72, GH78, GH88 and GH95 [1]. Similarly, 

P. placenta genome codes only for 24 glycosyl transferase encoding genes which were 

classified under GT (1), GT15 (1), GT20 (1), GT22 (1), GT66 (1), GT4 (2), GT69 (2), GT2 (7) and 

GT8 (8) classes and several GT-classes were found to be absent such as GT3, GT5, GT17, 

GT21, GT24, GT31, GT32, GT33, GT35, GT39, GT41, GT48, GT49, GT50, GT57, GT58, GT59, 

GSE12540 

GSE29656 
GSE84529 

GSE69004 
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GT76 and GT90 [1]. Also, genes coding for polysaccharide lyase class 8, carbohydrate 

esterase class 1 and carbohydrate binding module class 1, 35 and 50 were found to be absent 

in P. placenta genome [1]. The statistically significant differentially expressed genes obtained 

under different growth conditions were compared to find the genes which were expressed 

commonly. When P. placenta was cultured on simple culture medium containing cellulose, 

glucose and ball-milled aspen growth conditions in GSE12540 dataset. Several genes 

encoding CAZymes such as glycoside hydrolases (GH-1, 2, 3, 5, 8,10, 16, 18, 27, 28, 31, 35, 

37, 51, 55, 71, 88, 95 and 128), glycosyl transferases (GT-8), carbohydrate esterase (CE-4 and 

CE-8), auxiliary activity (GMC oxidoreductases, ferroxidases) EXPN related proteins were 

commonly expressed. Similarly, when P. placenta was cultured on ball milled aspen (BMA) 

and ball milled pine (BMP), CAZymes such as glycoside hydrolase classes 16,18, 28, 55, 71, 

glycosyl transferases class-1, and laccase encoding genes were highly and differentially 

expressed. In gene expression datasets GSE69004 and GSE84529, P. placenta was cultured on 

natural plant biomass growth substrates. In GSE69004, genes encoding for CAZymes GH-5, 

GH-16, GH-18, GH-71 and GH-128, carbohydrate binding module CBM-18 and CBM-21 and 

carbohydrate esterase class CE-4 were found be commonly expressed among all the 

conditions of A-B-C-10 days, A-B-C-20 days and A-B-C-30 days. Similarly, in GSE84529 

dataset, genes encoding for CAZymes GH-1, 2, 3, 5, 8, 12 13, 16, 17, 18, 28, 51 and 78 GT-20, 

CE-8, 9 and 15, CBM-13 and GMC oxidoreductases, AA-3 were found to be commonly 

expressed among the growth conditions (Figure 5.3). On comparison of Top-1000 

differentially expressed genes from the datasets GSE12540, GSE29656, GSE69004 and 

GSE84529, CAZymes encoding genes for GH-2, GH-3, GH-5, GH-16, GH-18, GH-27, GH-28, 

GH-55, GH-71 and GH-95, GT-1 were found to be commonly expressed among the datasets. 

 

Figure 5.4: Four-way and three-way Venn diagrams showing the commonly expressed 

statistically significant CAZymes among the gene expression datasets A) glucose-cellulose, 

C B D
x 

A 
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glucose-BMA, BMA-cellulose and GSE29656 B) high lignin and low glucose (A) high glucose 

and low lignin (B) average lignin and average glucose at incubation periods of 10-days, 20-

days and 30-days, C) 15mm-20mm vs 0mm-5mm, 30mm-35mm vs 0mm-5mm and 30mm-

35mm vs 15mm-20mm D) GSE29656, GSE69004, GSE12540 and GSE84529 datasets. 

In dataset GSE12540, when P. placenta was cultured on glucose, cellulose and ball 

milled aspen several glycoside hydrolases involved in cellulose and hemicellulose 

degradation were found to be highly expressed. Genes encoding for cellulases GH-1, GH-3, 

GH-5, GH-12, GH-16 were found to be highly up-regulated in ball milled aspen followed by 

cellulose growth mediums. Similarly, genes encoding for hemicellulases GH-10, GH-27, GH-

31, GH-35, GH-47, GH-51, GH-55 and GH-95 were also found to be up-regulated mostly in ball 

milled aspen followed by cellulose growth mediums. Based on the previous reports it is 

known that microorganisms release several carbohydrate esterases for the deacetylation of 

carbohydrates, genes encoding for acetyl xylan esterase CE-4 and pectin methyl esterase 

CE-8 and carbohydrate esterase type-B were highly expressed in ball milled aspen followed 

by cellulose growth medium. We have observed that in dataset GSE29656, where P. placenta 

was cultured on complex plant cell wall materials of ball milled aspen and ball milled pine, 

out of top-1000 differentially expressed genes only few CAZymes encoding genes were 

found. Genes encoding for glycosyl transferase class-1, glycoside hydrolases GH-18 

(Ppl118230), GH-28 were highly up regulated in ball milled pine, GH-18 (Ppl1107968), and 

GH-28, in ball milled aspen GH-16 GH55 and GH71, carboxyl esterase type B and laccase 

(AA1) were found to be highly expressed. 

When cultured on composite natural plant biomass growth substrates (GSE69004), 

containing chemically modified Populus trichocarpa cell wall components. We have observed 

that the gene expression patterns of P. placenta fluctuated upon different incubation periods. 

The top-1000 genes obtained for the 10-days incubation period of all the three conditions 

showed genes encoding for cellulases GH-3, GH-5, GH-16, CBM-18 and CBM21, 

hemicellulases GH-2, GH-27, GH-47, GH-55, GH-95 and CE-4 were highly expressed in low 

lignin-high glucose and average lignin-average glucose conditions. While with 20- days 

incubation period samples genes encoding for cellulases GH-5, GH-16, CBM-18, CBM-21 and 

hemicellulases GH-35, GH-47, CE-4. Similarly, 30-days incubation samples genes coding for 

hemicellulases GH-37, GH-55 along with GH-16, GH-128 and GT-20 encoding genes. 
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5.4.2. Enzymes Coding for Fenton’s Reaction 

Absence of genes encoding for lignin (LiP) and manganese peroxidase (MnP) is 

one of the major reason for minimal the lignin degrading abilities of P. placenta. 

Interestingly, P. placenta is completely dependent on the hydroxy radical (OH*) and 

ferric ion (Fe3+) generated through Fenton’s reaction for the process of lignin 

modification (or) depolymerization [6, 35]. Previous studies have reported that Fenton’s 

reactions in wood rotting basidiomycetes is deployed by three different mechanisms a) 

cellobiose dehydrogenase based reactions b) small glycopeptide catalyzed reactions 

generating hydroxy radicals c) cyclic redox based reactions by low molecular weight 

redox compounds (such as quinones and oxalates) [35]. Fenton’s reaction is majorly 

dependent on a) extracellular hydrogen peroxide generation and b) metabolite and 

enzyme based reduction of iron from ferric state to ferrous state (cellobiose 

dehydrogenase) [1]. However, absence of genes encoding for cellobiose 

dehydrogenase makes P. placenta solely dependent on the extracellular fungal 

metabolites such as hydroquinones and low molecular weight glycopeptides to catalyze 

the reduction of iron [1]. Hydrogen peroxide generating enzymes mainly glucose 

oxidase, copper radical oxidase, alcohol oxidase, glycolate oxidase and polyphenol 

oxidase were observed among the P. placenta gene expression datasets. Similarly, 

enzymes involved in iron reduction and homeostasis mainly quinone reductases, quinone 

transporters, phenylalanine ammonia lyase, ferric reductases, iron permeases and 

ferroxidases were significantly expressed among the datasets. In GSE12540 dataset, 

genes encoding for copper radical oxidase, 1,4-benzoquinone reductase, polyphenol 

oxidase, phenylalanine ammonia lyase, iron permease, ferroxidase and multicopper 

oxidase were found to be highly expressed in cellulose, ball milled aspen growth 

substrates. Similarly, in GSE29656 dataset genes encoding copper radical oxidase, 

polyphenol oxidase, phenylalanine ammonia lyase, iron permease, multicopper oxidase 

and ferroxidase were found to be differentially expressed in ball milled aspen and 1,4-

benzoquinone reductase, ferric reductase encoding genes were expressed in ball milled 

pine growth substrates. Results obtained from GSE69004 dataset showed that genes 

encoding for GMC oxidoreductases, iron permease were highly expressed in A 10, 20, 

30 (low glucose-high lignin) growth substrates, alcohol oxidase, glucose oxidase and 

glycolate oxidase were highly expressed in low lignin- high glucose and average 

glucose-average lignin growth substrates. 
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5.4.3. Lignin Degrading and Detoxifying Enzyme systems 

Due to the lack of genes encoding for ligninolytic peroxidases, the process of lignin 

modification or depolymerization is majorly dependent on other auxiliary activity enzymes 

such as multicopper oxidases, laccases and oxidoreductases. Genes encoding for auxiliary 

enzymes such as ferroxidase, multicopper oxidase, laccase, GMC Oxidoreductases, alcohol 

oxidases, glyoxal oxidase 1,4-benzoquinone reductases, polyphenol oxidase and lytic 

polysaccharide monoxygenases were found to be highly expressed under different culture 

conditions as mentioned above.  Apart from the auxiliary enzymes several other enzymes 

involved in aromatic compound degradation and metabolism were also found to be highly 

expressed among the datasets. In GSE12540 dataset, genes encoding for aromatic ring 

hydroxylase, catechol dioxygenase, intradiol ring dioxygenase, Tannase and feruloyl 

esterase, taurine catabolism dioxygenase, 2-nitropropane dioxygenase, 4-coumarate 

coenzyme A ligase, O-methyl transferase, FAD-linked oxidoreductase, alpha aminoadipate 

reductase, aldo/keto reductases, alcohol dehydrogenases, zinc alcohol dehydrogenases 

were found to be highly expressed in cellulose and ball milled aspen growth substrates. In 

GSE29656 dataset, genes encoding for aldehyde dehydrogenase, acyl-coA thioesterase, 

homocitrate synthase, flavodoxin, epoxide hydrolase, HMG-CoA lyase, isoflavone reductase, 

FAD monoxygenase, NADH flavin dependent oxidoreductase, short chain dehydrogenase, 

transketolase, terpene synthase, zinc alcohol dehydrogenase, 4-coumarate coA ligase, O-

methyl transferase and various genes encoding for cytochrome P450 class monoxygenases 

were highly expressed in ball milled pine growth substrate. However, genes encoding for 

esterases, Tannase and feruloyl esterase, phenylalanine ammonia lyase, polyphenol oxidase, 

laccase and copper radical oxidase were found to be highly expressed in ball milled aspen 

growth substrates. In GSE69004 dataset, where P. placenta was cultured on Populus 

trichocarpa with chemically distinct growth substrates genes encoding for aldo keto 

reductases, cytochrome c, several genes coding for cytochrome P450, dienelactone 

hydrolases, E-class P450 group IV, induced cAMP protein, iron permease, NADH flavin 

oxidoreductase, class-I auxiliary activity enzymes were found to be expressed in high lignin-

low glucose conditions (A10, A20 and A30). Several genes encoding for acyl-CoA 

dehydrogenase, carboxyl esterase type B, several genes encoding for cytochrome c, 

cytochrome b5, dienelactone hydrolase, esterase, haloacid dehalogenase/epoxide 

hydrolase, mandelate racemase, Metallophosphoesterase, FAD monoxygenase, 

oxidoreductase, Thiolase, UbiA prenyltransferase, alcohol oxidase, 2-nitropropane 
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dioxygenase, flavin monoxygenase and peroxidase were found to be highly expressed 

among low lignin-high glucose and average lignin-average glucose growth conditions. 

In GSE84529 dataset among the top 1000 differentially expressed genes, we have 

commonly observed  genes encoding for aromatic ring hydroxylase, 2-nitropropane 

dioxygenase, flavoprotein monoxygenase, carboxylesterase type B, esterase, flavoprotein 

monoxygenase, aldo/keto reductase, zinc alcohol dehydrogenase, short chain 

dehydrogenase/reductase, 2OG-Fe(II) oxygenase superfamily, isoflavone reductase, GMC 

oxidoreductase, generic and O-methyltransferase, UbiA prenyltransferase and  D-isomer 

specific 2-hydroxyacid dehydrogenase in the early (0mm to 5mm) and late (15mm-20mm) 

conditions. Along with above mentioned enzymes several genes encoding for cytochrome 

P450 monoxygenases were found to be highly expressed in early (0mm to 5mm) and few in 

late (15mm to 20 mm) conditions. According to Zhang et al (2016), lignin oxidizing and Fenton 

chemistry related enzymes required for the production of H2O2 and iron reduction and 

homeostasis were found to be highly expressed during early decay (0mm to 5mm) process 

[21]. This study also reported that during early decay phase (0mm to 5mm) genes coding for 

lignin oxidation, Fenton chemistry, cytochrome P450 enzymes were highly expressed when 

compared to late decay phases (15mm to 20mm and 30mm to 35mm) where genes coding for 

various CAZymes, sugar metabolism, Fenton chemistry and aldo keto reductases were found 

to be differentially expressed [21] (Figure 5.4). 

 

Figure 5.5: Four-way and three-way Venn diagrams showing the commonly expressed 

statistically significant enzymes among the gene expression datasets A) glucose-cellulose, 

glucose-BMA, BMA-cellulose and GSE29656 B) high lignin and low glucose (A) high glucose 

and low lignin (B) average lignin and average glucose at incubation periods of 10-days, 20-

days and 30-days, C) 15mm-20mm vs 0mm-5mm, 30mm-35mm vs 0mm-5mm and 30mm-

35mm vs 15mm-20mm D) GSE29656, GSE69004, GSE12540 and GSE84529 datasets. 

A B C D 
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The comparison of significant differentially expressed gene lists obtained from all the 

datasets have revealed that overall 40 genes encoding for CAZymes were found to be 

common with each dataset sharing few common CAZymes. Common auxiliary activity 

enzymes include laccase (Pspl1_111314), ferroxidase (Pspl1_109824), GMC oxidoreductase 

(Pspl1_92024 and Pspl1_27847). Similarly, common cellulolytic enzymes include GH-3 

(Pspl1_128500 and Pspl1_46915), GH-5 (Pspl1_121831, Pspl1_116199, Pspl1_121713 and 

Pspl1_57386), GH-16 (Pspl1_112941, Pspl1_62300, Pspl1_94601 and Pspl1_51311). Finally, 

common hemicellulolytic enzyme classes include GH-27 (Pspl1_120395), GH-31 

(Pspl1_117029), GH-35 (Pspl1_127993), GH-51 (Pspl1_100251 and Pspl1_94557), GH-55 

(Pspl1_105490) and GH-95 (Pspl1_105952). Several genes encoding for aromatic compound 

degrading and metabolizing enzymes were found to be commonly expressed among the 

datasets. Importantly, genes encoding for cytochrome P450 monoxygenases (Pspl1_9739, 

Pspl1_98329, Pspl1_89741, Pspl1_92219 and Pspl1_21733), aromatic ring hydroxylase 

(Pspl1_90902, Pspl1_22746 and Pspl1_23052), dioxygenases including 2-nitropropane 

dioxygenase (Pspl1_24756, Pspl1_28683), intradiol dioxygenase (Pspl1_34850) and taurine 

catabolism dioxygenase (Pspl1_89958) (Figure 5.5).  

Figure 5.6: Four-way Venn diagrams showing the commonly expressed statistically 

significant protein-Ids among the gene expression datasets A) CAZymes among all the 

datasets B) All InterPro-IDs among all the datasets. 

5.4.4. Genes Encoding for Information, Storage and Processing processes 

Expression of the lignocellulolytic enzymes are controlled and regulated by genes 

encoding for the information, storage and processing processes. The eukaryotic orthologous 

group have classified these genes into RNA processing and modification (KOG: A), chromatin 

structure and dynamics (KOG: B), Translation, ribosomal structure and biogenesis (KOG: J), 

Transcription (KOG: K) and Replication, recombination and repair (KOG: L) groups. We have 

separated the differentially expressed gene list in to the KOG groups A, B, J, K and L using the 

A B 
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KOG classification list retrieved from MycoCosm database for P. placenta. We have observed 

that a total of 308, 496, 357 and 648 transcripts were significantly expressed among GSE12540, 

GSE29656, GSE69004 and GSE84529 datasets respectively (Figure 5.7). Total of 37 (A), 15 (B), 

89 (J), 38 (K) and 36 (L) were found to be commonly expressed among the gene expression 

datasets (Figure 5.7).  

Results obtained from these gene expression studies has revealed that total of 15 

proteins encoding for RNA processing and modification were found to be common and 

significantly expressed RNA helicase nonsense mRNA reducing factor, splicing coactivator 

SRm160/300, RNA directed polymerase QDE1, polyadenylation factor, dsRNA-specific 

nuclease Dicer and ribonuclease, mRNA capping enzyme, mRNA decay protein, RNA helicase 

BRR2, RNA binding protein p54nrb and polyadenylate binding protein. Similarly, four genes 

encoding for chromatin structure and dynamics structural maintenance of chromosome 

protein 4, Zn-finger-MYND type, chromosome condensation complex and ubiquitin 

component Cue were common and significantly expressed. 21 genes encoding for 

translation, ribosome biogenesis and structure were common and significantly expressed 40S 

ribosomal protein S6, SA(P40), 60S ribosomal protein L10, L3, L28, Ribosomal proteins L7A, 

L18e, L23, L5, S25, L6E, S14, S10, L32, translation initiation factors eIF-5B, eIF-3a, eIF-4G and 

mRNA export factor. 9 genes encoding for chromodomain helicase, transcription initiation 

factor, HMG1/2, nuclear receptor coregulator SMRT, transcription regulator XNP, Ssu72, bZIP, 

TGF-beta and SMAD protein, HLH-transcription factor was commonly expressed in 

transcription class. Finally, in replication, recombination, repair class 8 genes encoding for 

3-methyladenine DNA glycosidase, exonuclease, replication factor C, apurinic/apyrimidinic 

endonuclease, DNA replication-MCM7 factor, A/G-specific DNA glycosylase, excision repair 

protein RAD14/XPA and Nudix family hydrolase were commonly expressed among all the 

datasets.  Majority of the genes encoding for information storage and processing were highly 

expressed in glucose, cellulose, ball milled aspens, A (low glucose-high lignin) and 

0mm05mm and 30mm-35mm growth substrates.  
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Figure 5.7: Four-way Venn diagrams showing the commonly expressed statistically 

significant genes encoding for KOG groups A (RNA Processing and modification), B 

(Chromatin structure and dynamics), J (Translation, ribosomal structure and biogenesis), K 

(Transcription) L (Replication, recombination and repair) and heatmap showing total list of 

significant information storage and processing groups among the datasets. 

5.5. Discussion 

Genome wide evolutionary studies conducted earlier have revealed that during 

transition from white-rot to brown-rot, basidiomycete fungi have experienced an extensive 

gene loss. The whole genome studies has revealed that  P. placenta MAD-698-R v1 has suffered 

complete reduction of various genes coding for glycoside hydrolases such as GH-6, GH-7, 

GH-10, GH-11 and GH-61 [1]. Though the genome of P. placenta lacks genes encoding for 

various essential lignocellulolytic CAZymes the decay patterns of P. placenta suggest the 

rapid depolymerization of cellulose and hemicellulose units through modifying the lignin 

units. During initial degradation process P. placenta significantly reduces the degree of 

polymerization (DP) of cellulose from 1800-2000 glycosyl units to 150-200 units [36]. However, 

due to its large structure cellulases cannot enter through the pores of wood, thus brown rot 

fungi employ other oxidoreductases and Fenton’s system for the depolymerization of plant 

cell wall structures. Unlike other cellulose degrading microorganisms, P. placenta lack genes 

coding for conserved CBH1(GH7) and CBH2 (GH6) exo-cellobiohydrolases, carbohydrate 

binding module class-1 and cellulase binding endoglucanases. Hence, P. placenta must 

 KOG-ID: A  KOG-ID: B  KOG-ID: J  KOG-ID: K 

 KOG-ID: L 
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accomplish the process of cellulose and hemicellulose degradation through a set of 

endoglucanases, exo-glucanases, β-glucosidases and several other hemicellulases. Previous 

gene expression studies of P. placenta conducted on cellulose reported various genes coding 

for hemicellulases, laminarinases, chitinases, but it is still not clear whether these enzymes 

can attack crystalline cellulose [1]. It is well known that P. placenta genome lacks the 

sequences encoding for major ligninolytic such as lignin (LiP), manganese (MnP) and 

versatile (VP) peroxidases. However, the P. placenta genome was found to possess gene 

sequences coding for a low redox potential peroxidase (Protein-ID: 50226) which lacks the 

Mn(II) oxidation sites but possess a tryptophan residue which is involved in substrate 

oxidation similar to LiP and VP [1]. These genomic evidences support the stronger 

involvement of Fenton’s chemistry during depolymerization or modification of the 

lignocellulosic biomass.  

The process of Fenton’s chemistry in P. placenta is employed by a set of genes 

encoding for enzymes involved in hydrogen peroxide generation and iron reduction and 

homeostasis. Generation of non-specific highly powerful oxidative hydroxy radicals with a 

half-life period around 9 to 10 seconds by Fenton’s chemistry will play a crucial role in the 

depolymerization and modification of lignocellulosic components of plant cell wall [5, 6]. 

Studies have reported that Fenton’s chemistry is highly dependent on three factors they are 

iron (Fe3+), hydrogen peroxide (H2O2) and pH [5]. Earlier studies have reported that brown 

rot fungi might also depend on the insoluble iron oxyhydroxide complexes for the uptake of 

iron and reduction [6, 7]. We have commonly observed the genes encoding for hydrogen 

peroxide generating and iron homeostasis and reduction among various datasets. Expression 

of genes involved in the process of iron reduction and homeostasis such as ferroxidase, 

phenylalanine ammonia lyase, catalase, iron permease, flavin monoxygenases, dioxygenases 

quinone transporters and reductases proves the importance of Fenton’s system. According to 

Berry et al (1997), brown rot fungi secretes oxalic acid extracellularly which might be 

involved in solubilizing the iron from its naturally occurring iron oxyhydroxide complexes of 

the plant wood [6].  As reported by Suong oh et al (2006), dissolution of iron oxides 

(protonating OH groups resulting in weak Fe-O bond) is significantly influenced by the 

cellular pH conditions [37]. Several theories have been proposed on the process of iron 

chelation with oxalic acid under lower pH conditions by forming soluble and stable oxalate-

iron complexes which further diffuse into the plant cell wall through wood lumen [5-7]. Genes 

encoding for alcohol and methanol oxidases which are also involved in the extracellular 
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production of H2O2 were found to be highly expressed among the datasets. Studies have also 

reported that low molecular weight compound such as 2,5-dimethoxyhydroquinone are 

employed during the process of lignin depolymerization [38] (Figure 5.8).  

Figure 5.8: Tentative representation of Fenton’s reaction system observed in P. placenta 

mainly includes H2O2 generating and Iron reduction-homeostasis enzyme systems found to 

be commonly observed among the gene expression datasets. 

However, till date the exact reaction mechanisms involved during the 

depolymerization or modification of lignocellulosic biomass is not well understood. In our 

present analysis, we have clearly observed significant expression of genes encoding for 

enzymes involved in Fenton’s reaction. Apart from the above mentioned enzymatic fungal 

Fe3+ reductants, non-enzymatic low molecular weight iron reductants such as 2,5-

dimethyoxyhydroquinone (2,5-DMHQ) were also reported to be significantly involved in 

depolymerization of lignocellulose components. Previous studies have observed the 

presence of 2,5-DMHQ in the cultures of Gleophyllum trabeum[38], Postia placenta [19], 

Serpula lacrymans [11] and also in various cultures of Gleophyllum species [11, 12, 39].  The 
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low molecular weight 2,5DMHQ reduces fungal Fe3+ to Fe2+ by simultaneously generating a 

radical of semiquinone, which can reduce oxygen to *OOH later upon dismutation reaction it 

can generate H2O2 or it can reduce an extra Fe3+ to Fe2+ resulting in quinone formed due to 

original Fe3+ reductant [9, 39]. Along with these mechanisms there are other two iron 

reduction mechanisms a) cellobiose dehydrogenase dependent and b) low molecular weight 

glycopeptides. However, the genome of P. placenta lacks the genes encoding for cellobiose 

dehydrogenase (CDH) which rules out the CDH dependent iron reduction [1]. According to 

Martinez et al (2009), Low molecular weight glycopeptides were found to be expressed in the 

cultures of P. placenta [1]. Based on the results obtained in our present study, we have listed 

the common significant enzymes obtained among all the datasets which were listed in the 

Table 5.2.  

Table 5.2: Common differentially expressed significant class of enzymes among different 

growth conditions of gene expression datasets. 

Enzyme class Commonly Expressed P. chrysosporium Genes among the 

datasets 

Cellulose 

Degradation 

GH-1, GH-3, GH-5, GH-12, GH-16 and GH-45 

Hemicellulose 

Degradation 

GH-10, GH-27, GH-31, GH-35, GH-47, GH-51, GH-55, GH-78 and GH-

95 

Carbohydrate 

Metabolism 

GH-2, GH-13, GH-15, GH-17, GH-18, GH-20, GH-23, GH-28, GH-37, 

GH-38, GH-63, GH-71, GH-71, GH-72, GH-85 and GH-88 

 

 

 

 

 

 

Lignin 

Degradation 

Auxiliary Activity Enzymes: Laccase, Ferroxidase, Multicopper 

oxidase, Low redox potential lignin peroxidase, Glucose-Methanol-

Choline (GMC) oxidoreductase, Alcohol oxidase, Glyoxal oxidase, 

Lytic polysaccharide monoxygenase, Chloroperoxidase 

Aromatic compound degrading: Intradiol dioxygenases, Aromatic 

ring hydroxylase, Epoxide hydrolase, Cytochrome P450 

Monoxygenase, Alcohol dehydrogenase, Dioxygenase, 2-

nitropropane dioxygenase, Flavin containing monoxygenase, Iron 

reductases, Catalase, Alcohol/methanol oxidases, Haloacid 

dehalogenase, Oxidoreductase, Tannase and feruloyl esterase, 

Esterase/ lipase/thioesterase, Short-chain dehydrogenase/ 

reductase, D-isomer specific 2-hydroxyacid dehydrogenase, Beta-

ketoacyl synthase, 2-oxo acid dehydrogenase, Aldo/keto 

reductase, Aldehyde dehydrogenase, Alkyl hydroperoxide 

reductase, FAD- linked oxidase, Thiolase, Carbohydrate esterases, 

Glycosyl transferases 

Fenton’s 

Chemistry 

Ferroxidase, Ferric reductase, Iron permease, Quinone reductase, 

Quinone transporters, phenylalanine ammonia lyase, low molecular 

weight glycopeptides, alcohol oxidase, glucose oxidase, glycolate 

oxidase, polyphenol oxidase, copper radical oxidase, 1, 4-

Benzoquinone reductase 
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Detoxification 

&Stress 

Responsive 

enzymes 

2OG-Fe(II) oxygenase superfamily, Argonaut and dicer complex, 

Cytochrome P450, E-class P450, Thioesterase, flavin 

monoxygenase, Glutathione-S-transferase, Thiolase, Ubiquitin, 

Universal stress protein, Flavodoxin, Epoxide hydrolase, Isoflavone 

reductase, FAD monoxygenase, NADH flavin oxidoreductase, 

Dienelactone hydrolase, Thioredoxin, Thaumatin, Ferredoxin, Beta 

lactamase, Catalase, UbiA prenyltransferase, Universal stress 

protein, Ubiquitin system component, Cytochrome b5, Cytochrome 

c, amidohydrolase 

 

Wood decaying fungi majorly depend on the holocellulose for the carbon and energy 

requirements, however genome wide studies have revealed that cellulolytic systems of P. 

placenta and other brown rot fungi vary significantly when compared with popular fungi such 

as Trichoderma reesei and Phanerochaete chrysosporium (which employ an efficient set of 

hydrolytic enzymes involving endo and exo glucanases, beta-glucosidases and cellobiose 

dehydrogenases [5]. Despite the loss of various genes encoding for glycoside hydrolases in 

the genome P. placenta has found to cause rapid and significant depolymerization of 

holocellulose by significantly decreasing the degree of polymerization to 150-200 through 

reducing the amorphous regions of cellulose. Brown rot fungi likely opens the cell wall 

structure by extensive removal of hemicelluloses resulting in a 20% of weight loss which 

increases the accessibility of the cellulose [5, 12, 40, 41]. According to Cohen et al (2005), 

some fungi the absence of cellobiose dehydrogenase is compensated by the expression of 

functionally similar endoglucanase [42]. These earlier proposed reports suggest that 

hydrolytic enzymes including endoglucanases and hemicellulases contribute to the complete 

holocellulose depolymerization released after primary attack of the cell wall [5]. As reported 

by Ratto et al (1997), higher hydrolysis rates were observed when P. placenta and T. reesei 

were cultured on spruce sawdust containing growth substrates, after the initial Fenton 

reaction chemistry [13]. Ratto et al (1997) have also reported that initial oxidation will 

significantly increase the hydrolysable nature of cellulose by endoglucanases secreted by 

brown rot fungi [13]. Jung et al (2015), have conducted a study by mimicking Fenton reaction 

conditions on rice straw degradation, results obtained in this study have showed that 

composition of lignin and xylan present in the rice straw was significantly reduced by the 

Fenton reaction systems [43]. Results obtained in our present analysis is in accordance with 

previous studies and supports the highly dependent nature of brown rot fungi on Fenton’s 

reaction system for the process of lignocellulose degradation. We have also observed that 

genes encoding for hemicelluloses were highly up-regulated during the cellulolytic 
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conditions, when cultured on both simple synthetic and complex natural growth substrates 

(Figure 5.9). 

Studies conducted in the past have reported that reactive hydroxy radicals are 

involved in the polymerization and depolymerization of lignin [44, 45]. According to Goodell 

et al (1997), brown rot fungi exhibits similar mechanism for the process of  lignin 

depolymerization or modification, using chelator mediated Fenton reaction [5, 6]. Various 

studies have strongly reported that brown rot fungi affected wood experience extensive 

oxidative demethylation [15, 46-48] and side chain oxidation [15, 48, 49]. During the process 

of lignin modification various important processes were reported earlier which includes a) 

partial aromatic ring cleavages [48] b) aromatic ring hydroxylation [48] c) limited side chain 

hydroxylation and Cβ-ether cleavage [49] d) formation of aryl derivative side chains (aryl-o-

aryl, aryl-aryl etc.) [14]. It is well-known that unlike its counterparts P. placenta (brown rot 

fungi) do not secrete lignin degrading auxiliary enzymes such as LiP, MnP [1]. However it was 

reported that S2 layer of the secondary cell wall was found to contain brown rotted lignin 

whereas the above  mentioned ligninolytic auxiliary enzymes were expected to fail in 

penetration and causing attack [50].  Although brown rot fungi (P. placenta) affected lignin 

undergoes the above-mentioned modifications, it was reported that lignin does not lose its 

polymeric nature, which proves the fact that brown rot fungi are weak lignin degraders. 

Studies have also reported that reactive hydroxy radicals released due to Fenton reaction 

system might also lead to the repolymerization of lignin [14, 15, 51-54]. These reporting’s from 

the previous studies were observed in our study, genes encoding for various enzymes 

involved in aromatic compound degrading enzymes and iron reduction-homeostasis 

reactions of Fenton system were found to be highly expressed in P. placenta during the 

ligninolytic conditions. Along with the genes encoding for lignocellulolytic enzymes several 

detoxification and stress responsive related enzymes were found to be highly expressed 

during the ligninolytic conditions suggesting the release of highly toxic intermediates and 

conditions due to lignin modification. 
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Figure 5.9: Tentative network of genes involved in coding for enzymes involved during 

cellulose and hemicellulose degradation. 

Genes classified under information storage and processing are involved in controlling 

the expression of lignocellulolytic and detoxification enzymes. Present day genome of P. 

placenta encodes total of 1035 genes encoding for information storage and processing (KOG 

group) which are further classified into 296 (KOG: A), 103 (KOG: B), 253 (KOG: J), 244 (KOG: 

K) and 139 (KOG: L) [1]. The eukaryotic KOG process RNA processing and modification 

decides the cellular fate of transcripts. Several studies conducted in the past have clearly 

explained that mRNA is considerably pretreated by 5’ capping, splicing and 3’ end 

processing before the mRNA gets exported. The above reported commonly expressed genes 

RNA helicase, RNA polymerase QDE1 and RNA binding protein are involved in the initiation 

process. Genes encoding for mRNA guanylyl and methyl transferases are involved in 5’ end 

capping, splicing coactivator, dsRNA specific nuclease Dicer and related ribonuclease, non-
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sense mediated mRNA decay and polyadenylation factor complex protein are involved in 

elongation and termination of the transcripts [55-57]. Together these genes directly control 

the expression, localization, stability and export of the mature transcripts. Organization of 

large eukaryotic genomes into stable chromosomes requires a wide range of enzymes 

classified under chromatin structure and dynamics class. Maintaining the structural dynamics 

of eukaryotic chromatin and organizing it in stable chromosomes is of primary importance for 

the cell otherwise, it might bring various restrictions in various DNA related processes. 

Expression of histone methyl and acetyl transferases, chromatin condensation and SWI-SNF 

remodeling complex commonly among the gene expression datasets, expression of these 

genes is directly involved in regulation and control of various plant cell wall degrading 

enzymes. Similarly, genes involved in base excision repair, nucleotide excision repair, 

mismatch repair and homologous recombination were found to be commonly expressed 

among all the datasets. Results obtained from the gene expression studies that when P. 

placenta was cultured on natural plant biomass growth substrates expression of plant cell wall 

degrading and detoxifying enzymes are strongly influenced and regulated at various cellular 

and nuclear levels. However, the research must be conducted to understand the exact cellular 

mechanisms required for the expression of plant cell wall degrading enzymes. Previous 

studies have revealed that ascomycetes code for a wide range of transcription factors out of 

which zinc binuclear cluster proteins (XYR1, ACE2, XlnR and XLR1), multimeric proteins 

(HAP2, HAP3, HAP5), two zinc binuclear cluster (CLR-1/2), three Cys2-His2 Zn-finger (PacC) 

are well known as positive regulators of cellulolytic and hemicellulolytic enzymes. Whereas, 

ACE1, CRE1, CRE-A, CRE-B and CRE-C are considered as negative regulators of cellulolytic 

and hemicellulolytic enzymes [58]. Genes coding for the afore-mentioned transcription 

factors were not significantly expressed among the P. placenta gene expression datasets, 

however genes encoding for other transcription factors have been observed among the 

datasets. Studies must be conducted to understand the functional involvement of the common 

significantly expressed information storage and processing genes [34]. 

5.6. Conclusion 

Genome wide transcriptome and proteome studies of P. placenta conducted in the last decade 

have revealed about the functional properties of lignocellulolytic enzymes and various 

CAZymes. We have performed an extensive metadata analysis on the P. placenta gene 

expression datasets (GSE12540, GSE29656, GSE84529 and GSE69004) to understand the 
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common gene expression patterns involved during the lignocellulose degradation. For the 

first time, we have reported the genome wide common expression patterns of P. placenta 

when cultured on different plant biomass growth substrates. We have clearly observed the 

strong dependency of P. placenta on the Fenton’s reaction system for the modification and 

degradation of lignocellulosic components. The higher expression of genes encoding for 

hemicellulolytic glycoside hydrolases even under cellulolytic conditions proves the 

synchronized action of both cellulolytic and hemicellulolytic hydrolytic enzymes. Based on 

the reports from previous plant biomass degradation studies and the results obtained in our 

present study clearly show that, P. placenta exhibits stronger ability to degrade cellulose and 

hemicellulose by selectively modifying lignin. Even though P. placenta has experienced an 

evolutionary loss of genes encoding for CAZymes, it is well known for its rapid cellulolytic 

and lignin modifying abilities which can be credited to its outstanding oxidizing capacities. 

The significant differentially expressed genes from all the datasets were compared and the 

protein Id’s of the common highly expressed genes were also reported. However, level of 

gene expression does not completely explain the lignocellulose degradation mechanisms 

employed by the P. placenta, as the gene expression studies are the snapshot of the cell at a 

particular moment. Simultaneously, several functionally uncharacterized proteins were also 

found to be highly expressed among the P. placenta datasets. Further studies must be 

conducted to exactly understand and reveal the functional roles of these commonly observed 

significant genes and various other uncharacterized proteins. Understanding the rapid 

degradation of cellulosic and hemicellulosic units by brown rot fungi will significantly benefit 

the growing biofuel and biorefining industries, through exploring its unprecedented 

oxidizing abilities. 
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Chapter-6 
 

Comparative Study of Genome-Wide Plant Biomass Degrading CAZymes in 

White Rot, Brown Rot and Soft Rot Fungi 

[This work has been published in Mycology (2017): 1-13.] 

Ayyappa Kumar Sista Kameshwar and Wensheng Qin* 
 

6.1. Abstract 

We have conducted a genome-level comparative study of basidiomycetes wood rotting fungi 

(white, brown and soft rot) to understand the total plant biomass (lignin, cellulose, 

hemicellulose and pectin) degrading abilities. We have retrieved the genome level 

annotations of well-known 14 white rot fungi, 15 brown rot fungi and 13 soft rot fungi. Based 

on the previous literature and the annotations obtained from CAZy (carbohydrate active 

enzyme) database, we have separated the genome wide CAZymes of the selected fungi into 

lignin, cellulose, hemicellulose and pectin degrading enzymes. Results obtained in our study 

reveals that white rot fungi especially Pleurotus eryngii and Pleurotus ostreatus potentially 

possess high ligninolytic ability and soft rot fungi especially Botryosphaeria dothidea and 

Fusarium oxysporum sp potentially possess high cellulolytic, hemicellulolytic and pectinolytic 

abilities. The total number of genes encoding for cytochrome P450 monoxygenases and 

metabolic processes were high in soft and white rot fungi. We have tentatively calculated the 

overall lignocellulolytic abilities among the selected wood rotting fungi which suggests that 

white rot fungi possess higher lignin and soft rot fungi potentially possess higher cellulolytic, 

hemicellulolytic and pectinolytic abilities. This approach can be applied industrially to 

efficiently find lignocellulolytic and aromatic compound degrading fungi based on their 

genomic abilities. 

 

Keywords: Plant biomass, Lignocellulose, CAZy, White rot fungi, Brown rot fungi, Soft rot 

fungi,  
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6.2. Introduction 

Naturally, lignocellulose is degraded by a large group of fungi and bacteria [1]. Fungi 

have evolved progressively with their dominant degrading abilities to decay organic debris 

including plant biomass by penetrating through their hyphae and  spores (for long distance 

dispersal) [2]. Wood rotting fungi are categorized into white, brown and soft rot fungi based 

on their growth substrate preferences and wood decaying patterns [3]. Moreover, white rot 

fungi exhibit excellent decaying abilities and solely responsible for the degradation of lignin 

and polysaccharides in plant biomass. Microscopy based studies have differentiated the 

white rot decay patterns morphologically into a) simultaneous degradation of lignin and wood 

polysaccharides. For e.g. Phanerochaete chrysosporium, Trametes versicolor. b) selective 

degradation of plant biomass components. For e.g. Phlebia radiata [1, 4, 5]. However, some 

fungi like Heterobasidium annosum exhibits both simultaneous and selective decay patterns 

[6].  

Brown rot fungi are well characterized as rapid cellulose and hemicellulose 

degraders, they access plant polysaccharides by potentially modifying or degrading lignin 

[7]. These fungi are the major invaders of forest biomass and wood-based constructions. 

Studies have reported that brown rot fungi have evolved from the saprotrophic white rot fungi 

by losing several essential genes encoding for lignocellulose degrading enzymes [8]. It was 

reported that hyphae of the brown rot fungi penetrates the cell lumen, colonizes the ray cells 

and axial parenchymal cells to access carbohydrates [8].  

Most of the ascomycetes and fungi imperfectii cause soft rot decay in the presence of 

excessive moisture, soft rot decayed wood exhibits a greyish discoloration and fragmentation 

which is similar as brown rot. Previous morphological studies have divided the soft rot fungi 

decay into a) type-I (where hyphae penetrates secondary cell walls by forming characteristic 

cavities) b) type-II (attacks similarly as ascomycetes and white rot fungi leading to wood cell 

wall thinning) [1]. Wood decaying fungi and its secreted enzymes are being used 

commercially in biopulping, kraft pulping (xylanase bleaching), cellulases based refining, 

pitch removal (lipases), slime removal (using enzyme cocktail), fiber modification (pulp and 

paper industries) etc. Thus, finding its applications in biodegradation of plant polymers, 

detoxification and bioremediation of several toxic aromatic compounds and also in bio based 

industries [1]. 
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The depolymerizing abilities of the wood rotting fungi are directly proportional to its 

ability to secrete an array of lignocellulolytic enzymes, aromatic compound and detoxifying 

enzymes. The plant cell wall modifying and degrading enzymes secreted by microorganisms 

were been classified into six classes by CAZy database [9]. They are glycoside hydrolases 

(GH), glycosyl transferase (GT), auxiliary activity (AA), carbohydrate esterase (CE), 

polysaccharide lyases (PL) and carbohydrate binding domains (CBD) [9]. Cellulose, 

hemicellulose and pectin are the most important and major polysaccharides of the plant cell 

walls.  The presence of lignin (heterophenolic aromatic polymer) along with these 

components  make the plant cell wall recalcitrant [10]. Structurally and functionally plant cell 

walls are unique, and they can be divided into a) middle lamella b) primary cell wall and c) 

secondary cell wall. Chemical composition of plant cell walls varies considerably among 

monocots, dicots, softwood and hardwood. Primary cell walls of renewable energy crops 

(monocots, grasses etc,) contain cellulose and hemicellulose similarly secondary cell walls 

contains higher amounts of cellulose, varied compositions of hemicellulose and substantial 

amounts of lignin [10, 11]. Where as in dicots primary cell walls contain low xylan, high 

xyloglucan and mannan, secondary cell walls contain cellulose, hemicellulose and lignin, in 

dicot plant cell walls pectin is considerably higher [10, 11].  

Most abundant plant polysaccharide cellulose, provides rigidity to the plant cell walls 

by constituting upto 40-50% of its dry weight. Cellulose is made up of β (1→4) linear chains 

of D-glucose repeating units linked through hydrogen bonds, wherein the ratio of crystalline 

to amorphous regions differs between the layers of primary and secondary cell walls and also 

among the plant species [12, 13]. Hemicellulose constitutes to 20 to 30% dry weight of the 

plant biomass, it is mainly composed of xylan (β (1→4) D-xylose units), xyloglucan, β-glucans 

(β (1→3) (1→4) D-glucose), and mannan (β 1→4 D-mannose), it also contains oligomers of 

galactose, xylose, arabinose, fucose, glucuronic acid [10, 13]. The hemicellulose occurs in 

close association with cellulose, by supporting the microfibrillar structure of cellulose. In 

plant cell walls pectin occurs as homogalacturonan (α (1→4) D-galacturonic acid), 

xylogalacturonan (galacturonan and β (1→3) D-xylose), rhamnogalacturonan-I and 

rhamnogalacturonan-II. Thus, pectin is the non-cellulosic plant polysaccharide which occurs 

in intricate associations with other plant cell wall components [10, 13]. Fungi secretes an array 

of CAZymes and lignin degrading enzymes (which includes aromatic compound degrading 

and detoxifying enzymes) for the degradation of lignocellulose [10] (Figure 6.1).  
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Figure 6.1: Tentative network of CAZymes involved in depolymerization of lignin, cellulose, 

pectin and hemicellulose observed in selected popular white rot, brown rot and soft rot fungi 

Several genomic studies were conducted in the past to reveal the genes encoding for 

plant biomass degrading enzymes. In this study, we have selected popular white rot, brown 

rot and soft rot fungal strains and retrieved their genome wide annotations to reveal the 

number of cellulolytic, hemicellulolytic, pectinolytic, lignin degrading and detoxifying 

enzymes (especially cytochrome P450). Present comparative analysis approach can be 

applied industrially to efficiently find lignocellulose and xenobiotic compound degrading 

fungal strains, which can be applied in production of commercially important enzymes and 

growing biofuel and biorefinery industries. 

6.2. Data retrieval and Analysis 

6.2.1 Data Retrieval 

We have selected A) 14 popular white rot fungal strains (Ceriporiopsis subvermispora B [14], 

Heterobasidion annosum v2.0 [15], Fomitiporia mediterranea v1.0 [16], Phanerochaete carnosa 

HHB-10118 [17], Pycnoporus cinnabarinus BRFM 137 [18], Phanerochaete chrysosporium R78 
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v2.2 [19, 20], Dichomitus squalens LYAD-421 SS1 [16], Trametes versicolor v1.0 [16], Punctularia 

strigosozonata v1.0 [16], Phlebia brevispora HHB-7030 SS6 [21], Botrytis cinerea v1.0 [22], 

Pleurotus ostreatus PC15 v2.0 [23-25], Stereum hirsutum FP-91666 SS1 v1.0 [16], Pleurotus 

eryngii ATCC90797 [26-29]. B) 15 popular brown rot fungal strains (Postia placenta MAD 698-

R v1.0 [30], Fibroporia radiculosa TFFH 294 [31], Wolfiporia cocos MD-104 SS10 v1.0 [16], 

Dacryopinax primogenitus DJM 731 SSP1 v1.0 [16], Daedalea quercina v1.0 [32], Laetiporus 

sulphureus var v1.0 [32], Postia placenta MAD-698-R-SB12 v1.0 [30], Neolentinus lepideus v1.0 

[32], Serpula lacrymans S7.9 v2.0 [33], Calocera cornea v1.0 [33], Gloeophyllum trabeum v1.0 

[16], Fistulina hepatica v1.0 [34], Fomitopsis pinicola FP-58527 SS1 [34], Hydnomerulius pinastri 

v2.0 [35] and Coniophora puteana v1.0 [35]. C) 13 popular soft rot fungal strains (Trichoderma 

reesei v 2.0 [36], Rhizopus oryzae 99-880 from Broad [37], Aspergillus wentii v1.0 [38], 

Penicillium chrysogenum Wisconsin 54-1255 [39], Daldinia eschscholzii EC12 v1.0, Hypoxylon 

sp. CI-4A v1.0 [40], Aspergillus niger ATCC 1015 v4.0 [41], Hypoxylon sp. EC38 v3.0 [40], 

Hypoxylon sp. CO27-5 v1.0 [40], Neurospora crassa OR74A v2.0 [42], Lecythophora sp. AK0013 

v1.0 [43, 44], Botryosphaeria dothidea [45-49], Fusarium oxysporum sp. lycopersici 4287 v2 

[50] with available annotated genomes were retrieved from the JGI (Joint genome institute) 

MycoCosm database. Genome level annotations of the selected fungal strains especially 

InterPro, KOG and CAZy were retrieved from the JGI-MycoCosm database. 

6.2.2.  Data Analysis 

Based on the previous literature and the available CAZy annotations we have classified the 

genome wide CAZymes of the above selected white, brown and soft rot fungi. List of CAZymes 

retrieved from the JGI-MycoCosm database were individually classified into cellulases, 

hemicellulases and ligninolytic enzymes. We have used Microsoft Excel 2016 to represent the 

number of genes coding for plant cell wall degrading enzymes present in the genome wide 

annotations of fungi. The images were generated using the option “conditional formatting 

followed by selecting option color scales”. Present CAZy database is classified into 145 

glycoside hydrolases, 104 glycosyl transferases, 27 polysaccharide lyases, 16 carbohydrate 

esterases and 13 auxiliary activity enzymes. We have used the available annotations and 

literature, to separate the CAZymes into plant cell wall degrading (cellulolytic, 

hemicellulolytic, pectinolytic and ligninolytic) enzymes. Similarly, we have analyzed the 

number of protein models encoding for various significant cellular processes using the 

retrieved KOG (eukaryotic orthologous groups) and genome wide InterPro annotations 
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retrieved from JGI-MycoCosm database. We have also calculated the tentative overall 

lignocellulolytic abilities of white, brown and soft rot fungi based on the genome wide 

distribution of lignocellulolytic enzymes in selected fungi. We have performed the 

hierarchical clustering analysis of the genome level data (CAZy, InterPro and KOG) of the 

above selected fungi, using Cluster 3 [51] and visualized the obtained trees using Java 

Treeview softwares. Following options were used in Cluster3.0 software: we have uploaded 

the sample files (containing number of genes encoding for CAZymes, KOG) and selected 

“hierarchical” clustering, “cluster” options for both the genes and arrays with complete 

linkage clustering method. The. CDT file obtained from the Cluster3.0 software was imported 

into the Java Treeview software and the corresponding images were generated and further 

exported. The hierarchical dendrograms of the plant cell wall degrading CAZymes, 

ligninolytic, cellulolytic, hemicellulolytic, pectinolytic and Eukaryotic orthologous groups 

(KOG).  

6.3. Results and Discussions 

Basidiomycetes fungi were highly studied and classified based on their plant biomass 

decaying abilities into white rot, brown rot and soft rot fungi. White rot fungi are the efficient 

plant biomass degraders with its specialty lying in degradation of aromatic compounds, thus 

giving a characteristic white appearance to the decayed wood. Brown rot fungi represents 

about 6 to 7 percent of the basidiomycete fungi. Phanerochaete chrysosporium genome was 

the first basidiomycete complete genome sequence to be published in the year 2004 by 

Martinez et al (2004), which has revealed various significant facts about lignocellulose 

degradation mechanisms [19, 20]. After this study, the complete genome sequences of 

several basidiomycetes fungi were reveled in the recent years [52]. Development and 

advancement of genome repositories such as 1000 fungal genome project and JGI MycoCosm 

have fastened various findings about the fungal metabolism, physiology and degrading 

mechanisms [53]. As mentioned above we have selected 14 white rot fungi, 15 brown rot fungi 

and 13 soft rot fungi whose complete annotated genome sequences are published and 

publicly available. We have retrieved the genome wide annotations such as InterPro, CAZy, 

KOG for all the selected fungal strains. Based on the available literature and CAZy 

architecture we have separated lignocellulose CAZymes into their respective cellulose, 

hemicellulose, pectin and lignin depolymerizing enzymes.  
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The JGI-MycoCosm database classifies and annotates the fungal genomes using the 

KOG tool (a eukaryotic version of cluster of orthologous groups) KOG tool is used for 

identifying the ortholog and paralog proteins. The KOG groups are divided into four 

functional groups a) cellular processes and signaling b) information storage and processing 

c) metabolism and d) poorly characterized. These four functional groups are further divided 

into different classes based on their functional characteristics. We have retrieved the 

classified genome KOG groups and their respective function level annotated gene numbers 

for all the selected wood rotting fungi. We have observed that T. reesei, Lecythophora sp, P. 

placenta, F. mediterranea, C. subvermispora, genomes contain lower number of genes 

classified under the above mentioned four functional KOG groups. At the same time, higher 

number of genes encoding for the KOG functional groups were observed among the F. 

oxysporum, R. oryzae, P. brevispora, S. hirsutum, C. puteana, F. pinicola fungi (Figure 6.2A). In 

this study, we have specifically compared the total number of genes encoding for KOG 

functional processes encoding for energy production and conversion (C), carbohydrate 

transport and metabolism (G) and secondary metabolite biosynthesis and transport (Q). The 

descending order of fungi based on the number of genes encoding for KOG processes C, G, 

Q were F. oxysporum, B. dothidea, P. brevispora, S. hirsutum, C. puteana and F. pinicola 

respectively. Similarly, lower number of genes were observed among Lecythophora sp, T. 

reesei, N. crassa (soft rot), P. cinnabarinus, P. ostreatus (white rot) and P. placenta MAD-698 R 

1.0 respectively (Figure 6.2B).  

Several studies have proved the strong involvement of cytochrome P-450 

monoxygenases in the degradation of aromatic and xenobiotic compounds present in the 

environment by fungi[54, 55]. In fungi, cytochrome P450 monoxygenases occur in multiple 

copies as they play wide range of roles especially in detoxification and degradation [56]. 

Among the selected wood rotting fungi, P. carnosa (253), P. brevispora (238), B. dothidea (237), 

C. puteana (229), F. oxysporum (211) contains higher and N. crassa (39), R. oryzae (47), T. reesei 

(69), Lecythophora sp (76) lower number of genes encoding for cytochrome P450 

monoxygenase encoding genes (Figure 6.2B). White rot fungi harbor higher number of genes 

encoding for cytochrome P450 monoxygenases followed by brown rot fungi and soft rot fungi.   
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Figure 6.2: Heatmaps showing the genome wide distribution of A) Metabolism (C = energy 

production and conversion, G = carbohydrate transport and metabolism and Q = secondary 

metabolites biosynthesis, transport and catabolism) and B) number of cytochrome P450 

encoding genes in selected popular white rot, brown rot and soft rot fungi 

6.3.1. Distribution of CAZymes among white rot, brown rot and soft rot fungi 

Present day CAZy database comprises of 145 glycoside hydrolases (GH), 104 glycosyl 

transferases (GT), 27 polysaccharide lyases (PL), 16 carbohydrate esterases (CE), 13 auxiliary 

activity (AA) and 81 carbohydrate binding modules (CBM) [9, 57]. Further to this classification 

glycoside hydrolases classes GH-5, GH-13, GH-30, GH-43 is further divided into 53, 42, 8, 37 

subfamilies respectively [58, 59].  Total number of CAZymes distributed among the selected 

fungi ranges between 370 (C. subvermispora) to 588 (P. eryngii) in white rot fungi, 245 (P. 

placenta) to 426 (C. puteana) in brown rot fungi and 408 (T. reesei) to 881 (F. oxysporum) in 

soft rot fungi respectively (Figure 6.1). On average, the total number of CAZymes distributed 

among the selected fungi were 366 in brown rot, 480 in white rot and 553 in soft rot fungi 

respectively. Genome wide distribution of CAZymes among the selected white rot, brown rot 

and soft rot fungi were clearly listed in the heatmaps (Figure 6.3). 
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Figure 6.3: Heatmap showing the genome wide distribution of CAZymes from selected 

popular white rot, brown rot and soft rot fungi. 
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6.3.2. Lignin degrading CAZymes 

Fungi secretes an array of oxidative enzymes for the degradation of lignin and other 

various aromatic compounds. The FOly (Fungal oxidative lignin enzymes) database has 

classified lignin degrading enzymes into two major classes lignin oxidizing enzymes (LO) and 

lignin degrading auxiliary enzymes [3, 60]. Lignin oxidizing enzymes includes laccase (LO1), 

lignin peroxidase (LO2), manganese peroxidase (LO2), versatile peroxidase (LO2) and 

cellobiose dehydrogenase (LO3). Similarly, lignin degrading auxiliary enzymes majorly 

includes hydrogen peroxide generating enzymes such as aryl alcohol oxidase (LDA1), 

vanillyl alcohol oxidase (LDA2), glyoxal oxidase (LDA3), pyranose oxidase (LDA4), galactose 

oxidase (LDA5), glucose oxidase (LDA6) and benzoquinone reductase (LDA7) [3, 60].  

In CAZy, lignin degrading enzymes are classified under the auxiliary activity (AA) 

enzyme class. We have used CAZy database structure and previous literature to determine 

the genome wide lignin degrading CAZymes and ligninolytic capacities of the selected wood 

rotting fungi [61]. Lignin oxidizing enzymes (Laccase, Peroxidases (LiP, MnP, VP) and 

cellobiose dehydrogenase) were classified among AA-1, AA-2, AA-3_1 enzyme classes. 

Lignin degrading auxiliary enzymes were classified among AA-3, AA-4, AA-5, AA-6, AA-8 

enzyme classes. The genome wide distribution of lignin degrading auxiliary activity enzymes 

among the selected white rot, brown rot and soft rot fungi were listed.  These results convey 

that white rot fungi possess higher number of laccase encoding genes when compared to 

brown rot and soft rot fungi (e.g. >10 laccase encoding genes were observed in S. hirsutum, 

H. annosum, P. ostreatus, F. mediterranea, D. squalens, P. strigosozonata, B. cinerea, P. eryngii). 

Genes encoding for ferroxidases were found to be mostly reduced to 1 to 2 copies in white 

and brown rot fungi. However, most of the soft rot fungi possessed 2 ferroxidases genes and 

other fungi harbored 3 to 4 ferroxidase genes.  

Genes encoding for AA2 class enzymes (lignin (LiP), manganese (MnP), versatile (VP) 

peroxidases) were found to be reduced among brown and soft rot fungi to few copies (0 to 4 

genes). While genomes of white rot fungi harbors more than 5 gene copies for AA2 class 

enzymes with higher number (26) of AA2 encoding genes were observed in T. versicolor. 

Total number of genes encoding for glucose methanol choline (GMC) oxidoreductases or 

auxiliary activity class 3 enzymes dominate in number when compared to other lignin 

degrading auxiliary activity enzymes. Especially the number of genes encoding for aryl 

alcohol oxidase and glucose-1-oxidase (AA-3_2 subclass) outnumbers other AA-class 
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enzymes. Higher number of AA-3 class enzymes were observed in white rot fungi (48 in S. 

hirsutum) followed by soft rot fungi (46 in B. dothidea) and brown rot fungi (30 in L. sulphureus) 

respectively. In most of the white and brown rot fungi genes encoding for vanillyl alcohol 

oxidase (AA4) were reduced to 0, with some fungi comprises around 1 to 3 genes sequences.  

Except in T. reesei, R. oryzae and N. crassa all the selected soft rot fungi possessed the gene 

sequences coding for vanillyl alcohol oxidase. Genes encoding for AA5 class enzymes 

(galactose, glyoxal and alcohol oxidase), AA6 (benzoquinone reductases) were 

comparatively higher among thewhite rot fungi. These results convey that white rot fungi 

harbor multiple gene copies encoding for lignin degrading and its auxiliary enzymes when 

compared to brown and soft rot fungi (Figure 6.3). Finally, the number of genes encoding for 

lytic polysaccharide monoxygenases (LPMO) classified under AA-9, AA-10, AA-11 and AA-13 

enzyme classes were higher in number among the white rot fungi followed by the soft rot 

fungi respectively (Figure 6.3). Based on the total number of genes encoding for lignin 

degrading auxiliary activity enzymes, we propose that ligninolytic ability of white rot fungi is 

higher followed by soft rot fungi.  

Studies have revealed that fungi secretes a wide range of aromatic compound 

degrading and detoxifying enzymes during the process of lignin degradation [56]. Large 

group of enzymes encoding for aromatic ring and epoxide hydroxylases, intra and extra 

dioxygenases, alcohol dehydrogenases, (Fentons reagents) iron reductase, ferredoxin, 

catalase, oxidoreductases, cytochrome P450 monoxygenases and other large set of enzymes 

were involved in degradation of lignin [56]. Previous studies have reported the strong 

dependence of white rot and brown rot fungi on Fenton’s chemistry in the degradation of 

lignocellulosic units of plant biomass. Apart from the lignin degrading auxiliary activity 

CAZymes, aromatic compound degrading, detoxifying enzymes and highly reactive free 

radicals such as hydrogen peroxide, hydroxy radicals, superoxide and reactive singlet 

oxygen ions also play a crucial role in degradation of lignocellulosic units. 

6.3.3. Cellulose degrading CAZymes 

Fungi mainly secretes three classical enzymes endoglucanses, exoglucanases and β-

glucosidases for the hydrolysis of cellulose [10]. Endoglucanases/β-(1→4)-endoglucanases 

hydrolases cellulose chains by releasing glucooligosaccharides while 

cellobiohydrolases/exoglucanases liberates cellobiose from end chains of cellulose. 

Cellobiohydrolases (CBH) are divided into CBHI and CBHII, based on location of the cleavage 
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sites either on reducing or non-reducing ends of the cellulose. β-glucosidases releases 

individual glucose units from the shorter oligosaccharide chains [10]. We have reported the 

most commonly expressing cellulase encoding genes among the selected fungal strains. In 

most of the selected wood rotting fungi especially brown and soft rot fungi, we have 

commonly observed that, the genes encoding for GH-8, GH-44, GH-48 enzyme class 

(cellulases) were totally reduced to 0. Similarly, in brown and soft rot fungi genes encoding 

for GH-9, GH-45, GH-74 and GH-38 enzyme classes were reduced to single copies. In white 

and brown rot fungi genes encoding for GH-1, GH-2 class enzymes were found to occur in 

between the range of 1-5 gene copies.   Most of the soft rot fungal genomes contain 2 -3 gene 

copies of GH-1 class enzymes and 5-10 gene copies of GH-2 class enzymes respectively. 

However, among all the cellulolytic glycoside hydrolases, the number of genes encoding for 

the GH-3, GH-5 enzyme classes outnumbered other cellulolytic GH enzyme classes among 

the white, brown and soft rot fungi. Among the selected wood rotting fungi, the total number 

of cellulases were higher among P. eryngii (69), P. ostreatus (68) (white rot fungi), H. pinastri 

(51), C. puteana (49) (brown rot fungi) and F. oxysporum (73) and Lecythophora sp (63) (soft 

rot fungi) respectively (Figure 6.3). Our analysis reports that among all the selected wood 

rotting fungi, glycoside hydrolase enzyme classes GH-1, GH-2, GH-3, GH-5 and GH-7 occurs 

in higher copy numbers. At the same time, lower number of cellulases were found in H. 

annosum (39), C. subvermispora (38) (white rot), P. placenta (29), F. radiculosa (29) (brown rot) 

and N. crassa (36), R. oryzae (26) (soft rot) respectively. Recent studies have reported that 

along with classical cellulases strong oxidoreductases such as cellobiose dehydrogenase 

(CDH) and lytic polysaccharide monoxygenases (LPMO) also partake in degradation of 

cellulose. Based on total number of genes encoding for cellulases among the selected white, 

brown and soft rot fungi, we report that the cellulolytic ability is lower in white rot fungi when 

compared to brown rot and soft rot fungi. Cellobiose dehydrogenase and LPMO enzymes 

work cooperatively for depolymerizing cellulose, as CDH produces highly reactive hydroxy 

radicals through Fenton’s chemistry which plays a dual role by modifying lignin and 

providing electrons for LPMO based cellulose degradation [10]. 

6.3.4. Hemicellulose degrading CAZymes 

Compared to cellulose, the microbial degradation of hemicellulose is performed by a 

specific set of CAZymes, which is majorly due to its complex structure. Classical enzymes 

such as β (1→4) endoxylanases, xylobiohydrolase, β (1→4) xylosidases which are involved in 
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hydrolysis of xylan backbone, xylan into xylobiose, releases D-xylose units from 

xylooligosaccharides and hydrolyzes xylobiose units to monomeric units respectively [10, 62-

64]. Studies have reported that cellulases (endoglucanases, cellobiohydrolases and beta 

glucosidases) are involved in hydrolysis of cellulose like xyloglucan and β-glucan backbone 

structures [62-64]. Other enzymes such as β (1→4) endo mannanases and β (1→4) 

mannosidases cleaves mannan back bone structures by releasing monomeric D-mannose 

units [62-64]. Apart from these glycoside hydrolases enzymes such as cellobiose 

dehydrogenases, lytic polysaccharide monoxygenases are involve in oxidative cleavage of 

hemicellulose and carbohydrate esterases are involved in O-de-N-deacylation of acetylated 

plant cell wall residues especially hemicellulose, pectin and lignin. In most of the selected 

white and brown rot fungi, genes encoding for carbohydrate esterase classes CE-2, CE-3, CE-

5, CE-6, CE-7 and glycoside hydrolase classes GH-11, GH-39 were completely reduced 

between 1 to 2 gene copies. Based on the total number of genes coding for hemicellulolytic 

enzymes, we have calculated the hemicellulolytic ability of the selected wood rotting fungi. 

In white rot fungi, total number of hemicellulolytic genes varies in between 31 C. 

subvermispora (low), 63 B. cinerea (high), where as in brown rot fungi number of genes varies 

between 23 P. placenta MAD-698 Rv.1.0 (low), 52 C. puteana (high). Contrastingly, soft rot 

fungi harbors higher number of genes encoding for hemicellulolytic enzymes varying in 

between 43 T. reesei (low) to 135 F. oxysporum (high). These results convey that soft rot fungi 

exhibit higher hemicellulolytic ability followed by white rot fungi. 

6.3.5. Pectin degrading CAZymes 

Pectin (a non-cellulosic polysaccharide present in plant cell walls) majorly comprises 

of galacturonic acid which is intricately connected with the cellulose and hemicellulose units. 

Majorly pectin occurs in primary and middle lamella of plant cell walls [10].  Structurally 

pectin can be classified as simple e.g. homogalacturonan (linear polymer of α (1→4) D-

galacturonic acids, methylated at C-6 and acetylated at C-3 positions), xylogalacturonan 

(chain of galacturonic acid is connected to β (1→3) D-xylose units) and complex pectin e.g. 

rhamnogalacturonan-I and II ( which contains glycosyl residues such as 2-O-methyl xylose, 2-

O-methyl fucose, acetic acid, 2-keto-3-deoxy-D-lyxo heptulosaric acid, and 2-keto-3-deoxy- 

D-mannooctulosonic acid) [10, 13]. Wood rotting fungi secretes an arsenal of enzymes 

involved in depolymerization of pectin which includes endo-polygalacturonases, exo-

polygalacturonases, xylogalacturonan hydrolases, endo-rhamnogalacturonase, 
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rhamnogalacturonan rhamnohydrolase, pectin and pectate lyases, rhamnogalacturonan 

hydrolases. Endo and exo polygalacturonases acts on starting and terminal ends by cleaving 

the linear chain of α (1→4)-D-galacturonic acid present in the homogalacturonan and releases 

D-galacturonic acid. Similarly, enzymes xylogalacturonan hydrolases and endo-

rhamnogalacturonase, rhamnogalacturonan rhamnohydrolase and α-rhamnosidase are 

involved in depolymerization of xylogalacturonan and rhamnogalacturonan respectively [10]. 

In most of the white rot fungi, genes encoding for polysaccharide lyase classes PL-1, PL-3 and 

PL-9 were completely reduced to 0. The number of pectinolytic enzymes encoding genes 

varied between 10 (P. carnosa) to 49 (B. cinerea). Genes encoding for the polysaccharide 

lyase (PL-1, PL-3, PL-4 and PL-9) and carbohydrate esterase class-12 were completely 

reduced to 0 or 1, in all the selected brown rot fungi. Compared to white rot and brown rot 

fungi, total number of pectinolytic enzymes encoding genes varies in between 11 in T. reesei 

(low) to 24 F. hepatica (high). Interestingly in R. oryzae, genes encoding for pectinolytic 

enzymes were completely reduced to 0 (except GH-28(18) and CE-8). These results convey 

that tentative overall pectinolytic ability of the soft rot fungi is higher than the selected white 

rot and brown rot fungi.  

6.3.6. Total lignocellulolytic abilities of selected fungi 

The total number of lignin, cellulose, hemicellulose and pectin degrading CAZymes in 

all the selected white rot, brown rot and soft rot fungi were separated. We have tentatively 

calculated the total ligninolytic, cellulolytic, hemicellulolytic and pectinolytic abilities by 

taking average of all the lignocellulolytic CAZymes individually. These results have revealed 

that, highest ligninolytic ability was observed in P. eryngii, P. ostreatus, S. hirsutum (white rot 

fungi), H. pinastri, C. puteana (brown rot fungi) and B. dothidea, F. oxysporum (soft rot fungi) 

respectively. Similarly, the highest cellulolytic ability was observed in P. eryngii, P. ostreatus 

(white rot fungi), H. pinastri, C. puteana (brown rot) and F. oxysporum, Lecythophora sp (soft 

rot fungi) respectively. Highest hemicellulolytic ability was observed in B. cinerea, S. hirsutum 

(white rot fungi), C. puteana, F. pinicola (brown rot fungi) and B. dothidea, F. oxysporum (soft 

rot fungi) respectively. Finally, highest pectinolytic ability was observed in B. cinerea, P. 

eryngii (white rot fungi), F. hepatica, F. pinicola, G. trabeum (brown rot fungi) and B. dothidea, 

F. oxysporum (soft rot fungi) respectively (Figure 6.4). We have averaged the total number of 

genes encoding for lignocellulolytic enzymes to tentatively, to find the overall highest 

lignocellulolytic abilities. Results obtained from this analysis suggests that white rot fungi (85) 
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possess highest ligninolytic capacity followed by soft rot fungi (71). At the same time, soft rot 

fungi exhibited potentially highest cellulolytic, hemicellulolytic and pectinolytic abilities by 

harboring higher number of genes (Figure 6.4). Interestingly, the total average of genes 

encoding for various enzymes involved in cellular processes and signaling were higher in 

white rot fungi followed by soft rot fungi. Whereas genes encoding for information storage 

and processing, metabolism processes where higher in soft rot fungi followed by white rot 

fungi respectively (Figure 6.4). 

Figure 6.4: Heatmaps showing the genome wide distribution of total ligninolytic, cellulolytic, 

hemicellulolytic and pectinolytic CAZymes in selected popular white rot, brown rot and soft 

rot fungi and tentative overall  

6.4. Conclusions 

Degradation of plant biomass by fungi is a highly researched subject for several years. Fungi 

are the most efficient degraders of the plant biomass (most abundant carbon source on the 

earth’s surface) and natural scavengers in the environment thus playing a key role in 

maintenance of the global carbon cycle. Enzyme systems secreted by fungi are commercially 

applied in various industries such as paper, pulp, detergents, textile, wine industries and 
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especially fungi are highly studied and applied in the growing biofuel, biorefinery and 

bioremediation industries [65]. The decaying ability of the wood rotting fungi is directly 

proportional to its ability to secrete plant biomass degrading enzymes. In this study, we have 

performed a comparative analysis to understand the genome wide distribution of 

lignocellulolytic CAZymes among well-known 14 white rot, 15 brown rot and 13 soft rot fungi. 

We have separated and classified genome wide wood rotting fungal CAZymes into lignin, 

cellulose, hemicellulose and pectin degrading enzymes. The total number of genes encoding 

for ligninolytic, cellulolytic, hemicellulolytic and pectinolytic enzymes calculated in this study 

reveals that white rot fungi are well equipped with efficient enzyme machinery for the 

degradation of lignin. The total ligninolytic abilities of white rot fungi (lignin degrading 

auxiliary activity enzymes and cytochrome P450 monoxygenases) was significantly higher 

than that of soft rot fungi and brown rot fungi. In contrast, total cellulolytic, hemicellulolytic 

and pectinolytic abilities were highest in soft rot fungi followed by white rot and brown rot 

fungi. These results suggest that white rot fungal strains are highly suitable for the 

degradation of lignin, other aromatic compounds and environmental pollutants, soft rot fungal 

strains are highly suitable in cellulose, hemicellulose and pectin degradation studies thus 

highly suitable in biofuel and biorefining industries. We understand that the number of 

protein encoding (lignocellulolytic enzymes) genes do not totally determine the complete 

lignocellulolytic capacity of the fungi as the expression and turnover of these lignocellulolytic 

enzymes is dependent on various factors and enzymes. However, this study provides 

preliminary genomic details which are enough to decide on a strain which is comparatively 

better from the other strains. We believe that understanding the genetic material coding for 

the lignocellulolytic enzymes will significantly benefit researchers to choose genetically 

better strain for their studies. However, further relevant studies must be conducted to 

optimize the appropriate growth and environmental conditions to enhance the expression and 

protein turnover of these lignocellulolytic enzymes. 
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Chapter-7 

 
Genome Wide Analysis Reveals the Extrinsic Cellulolytic Abilities of 

Neocallimastigomycota Fungi 

[This work has been published in “Journal of Genomics” 6 (2018): 74-87] 

Ayyappa Kumar Sista Kameshwar and Wensheng Qin* 
 

7.1. Abstract 

Ruminating animals, especially cattle lack the carbohydrate active enzyme encoding genes 

which are required for the degradation of the glycosidic linkages of plant cell wall 

carbohydrates (such as cellulose, hemicellulose, lignin and pectin). Thus, ruminating animals 

are completely dependent on the microorganisms (anaerobic bacteria and fungi, 

methanogenic archaea and protozoa) residing in their rumen (hindgut). In this study, we have 

retrieved and analyzed the complete genome wide annotations of the Neocallimastigomycota 

division fungi such as Anaeromyces robustus, Neocallismatix californiae, Orpinomyces sp, 

Piromyces finnis, Piromyces sp E2. We have retrieved the InterPro, CAZy, KOG, KEGG, SM 

Clusters and MEROPS genome level data of these anaerobic fungi from JGI-MycoCosm 

database. Results obtained in our study reveals that, the genomes of anaerobic fungi 

completely lack genes encoding for lignin degrading auxiliary activity enzymes. 

Contrastingly, these fungi outnumbered other fungi by having highest number of CAZyme 

encoding genes. The genes encoding for dockerins and carbohydrate binding modules 

exaggerated other CAZymes which are involved in the structure and functioning of 

cellulosomes. Presence of cellulosomes and higher number of carbohydrate transport and 

metabolism genes also endorses the plant cell wall carbohydrate degrading abilities of these 

fungi. We also reported the tentative total cellulolytic, hemicellulolytic and pectinolytic 

abilities. And we have explicitly reported the genes, enzymes and the mechanisms involved 

in structure and functioning of the cellulosomes. Our present work reveals the genomic 

machinery underlying the extrinsic plant cell wall degrading abilities of the anaerobic fungi. 

Results obtained in our study can be significantly applied in improving the gut health of cattle 

and especially in the fields of biofuel, biorefining and bioremediation-based industries. 

Keywords: Ruminating animals (cattle), Neocallimastigomycota (Anaerobic fungi), Cellulose, 

Plant biomass, Cellulosomes,  
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7.2. Introduction 

Increasing global temperatures, over dependence and depletion of fossil fuels to meet 

the increasing fuel needs, have forced the mankind to produce sustainable renewable energy 

systems. Plant biomass which contains lignocellulose polymers constitutes the most abundant 

component on the earth’s surface. Separation and production of renewable energy from the 

lignocellulosic biomass is a complex procedure and requires application of different 

chemical, physical and mechanical methods. However, biological way of biofuel production 

from lignocellulosic biomass is the most preferred and researched due to its ecofriendly and 

cost-effective nature. Naturally, enormous amounts of cellulose are digested by the 

herbivorous ruminating animals (having plant biomass containing diets e.g. cows, sheep, 

buffalo, sheep, deer, goats etc.)  and this process of digestion is solely supported by 

microorganisms residing in its rumen. Gut of the ruminating animals can be divided into four 

chambers they are rumen, reticulum, omasum, abomasum (or stomach).  The process of food 

digestion starts from the rumen, saliva mixed food is mechanically broken down to smaller 

pieces which is passed into the reticulum where it separates the food into digestible and non-

digestible forms into cuds (partly degraded food). The partially digested cuds are 

regurgitated, which is further rechewed and swallowed by the ruminating animals. Thus, from 

the partially digested food, omasum absorbs water, nutrients, vitamins, fatty acids etc. Major 

part of the cellulose fermentation happens in the rumen due to the presence of cellulolytic 

microorganisms. Studies have reported that anaerobic bacteria such as Ruminococcus genus 

(e.g. Ruminococcus albus, Ruminococcus flavefaciens) Streptococcus, Escherichia, 

Megasphaera, Fibrobacter are significantly involved in cellulose degradation [1-5].  

In the year 1970, Colin Orpin has identified the anaerobic fungi based on its zoospores 

and chitin containing cell walls, which are now classified under the division of 

Neocallimastigomycota. This peculiar group of anaerobic fungi has raised considerable 

curiosity among mycologists worldwide. Two major reasons which brings 

Neocallimastigomycota fungi under the lime light are its distinctive physiology and potential 

applications in the fields of biomass conversion and animal nutrition [6]. Naturally these 

anaerobic fungi reside in the gastrointestinal tracts of herbivores and significantly aids in 

digestion of different plant biomass components. Anaerobic fungi were observed among all 

the foregut fermenters (where most of the digestion occurs before the gastric digestion) e.g. 

ruminants, pseudo-ruminants and foregut non-ruminants and also in most of the hindgut 

fermenters (where the most of the fermentation occurs after gastric digestion in the large 
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intestine and caecum) [7]. Significantly, the anaerobic fungi residing in the gut of ruminating 

animals performs two major functions plant biomass digestion and forming a dedicated 

digestive chamber with neutral pH conditions [7]. Herbivorous animals lack the ability to 

digest plant biomass components as they cannot secrete cellulolytic/hemicellulolytic 

enzymes, in turn they depend on symbiotic gut microorganisms such as anaerobic bacteria 

and fungi, methanogenic archaea and protozoa [7]. Among the above-mentioned 

microorganisms, anaerobic fungi were found to play a crucial role in degradation of 

lignocellulosic components of plant biomass.  

Studies conducted by Heath et al (1986), has revealed that reproduction in anaerobic 

fungi commences through asexual reproduction by releasing flagellated zoospores from 

sporangia[8]. Previous reports reveal that ingestion of food by the ruminating animals induces 

the anaerobic fungi to release its zoospores from the sporangia and it was also reported that 

within 30-60 minutes the density of zoospore peaks in the rumen [7, 9-12]. According to Orpin 

& Greenwood (1986), haem and other related porphyrin compounds released from the 

ingested plant materials trigger the sporangia of anaerobic fungi which induces the process 

of differentiation and maturation of zoospore in the rumen [13]. The flagellated zoospores of 

anaerobic fungi are motile and they colonize on the plant material based on the chemotactic 

responses from the surrounding sugars and phenolic compounds [14]. Flagellated zoospores 

transform to a cyst by shedding its flagella, once it attaches to the plant material. Formation 

and germination of cyst is involved by thickening of the cell wall and production of germ tube 

from the polar end and further development of cyst varies from monocentric to polycentric 

based on the organism. Endogenous cyst germination is observed in monocentric taxa as the 

nucleus is situated in the cyst forming a zoosporangium, by leaving rhizoids anucleate. 

Contrastingly, exogenous cyst germination is observed in polycentric taxa where the nucleus 

migrates to the rhizoids thus leading to the formation of multiple sporangia [7, 15]. The 

rhizomycelium (bulbous or filamentous) of the anaerobic fungi performs two major and 

important functions, it provides support to the growing sporangium (monocentric) or 

sporangia (polycentric) and performs the enzymatic digestion through penetrating into the 

plant material. Penetration of developing rhizoids into the rigid plant material, opens the 

internal plant tissues, making them susceptible to the enzymatic hydrolysis, which supports 

the developing sporangia with the nutrients for the development and maturation of the 

sporangia. Mature sporangia will produce zoospores ranging between 1 (less) to 80 (high), 

under suitable conditions (inducers), mature sporangium undergoes differentiation and 
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further releases zoospores by dissolving the sporangial cell wall. Previous studies report that 

it is tough to free host animals from anaerobic fungi, as they exhibit efficient dispersal of 

anaerobic fungi among the host animals through forming aerotolerant cellular structures with 

extreme survival abilities (e.g. 2-4 chambered spores of Anaeromyces sp) [16, 17]. Studies 

have also confirmed that, anaerobic fungi can be cultured from the faecal material of host 

animals followed by air drying, freezing and from the long-settled cow dung [7, 18-20]. 

Industrially, anaerobic fungi exhibit various biotechnological applications especially 

applied as microbial probiotic supplement to improve the process of digestion and thus 

utilizing the low-quality forages. Several studies were already being conducted on improving 

the feed intake, efficiency, development-growth rate of animals and especially in milk 

production [21-24]. Previous findings suggest that, dietary supplementation of anaerobic 

fungal enzymes (e.g. glycoside hydrolases) in cattle resulted to be more effective than the 

viable cultures (e.g. swine and poultry). According to Azain et al., (2002), dietary 

supplementation of glycoside hydrolases (to support in depolymerization of plant biomass 

components) obtained from anaerobic fungi improved the growth and development of broiler 

chicken by 25% [7, 25]. Anaerobic fungi were of high interest in brewing, food, paper, textile 

and biofuel industries, due to its ability to secrete polysaccharide degrading enzymes. 

Studies were also being conducted for developing anaerobic fungi based and fermentative 

production of cellulosic ethanol and renewable fuels from the agricultural residues. Youssef 

et al., (2013) has reported the lignocellulose degradation study using Orpinomyces sp strain 

C1A by simultaneously producing cellulosic ethanol, Orpinomyces sp was found to degrade 

61.3% of corn stover (dry weight) resulting in 0.045 to 0.096 mg of ethanol per mg of biomass 

[26]. In this study we have specifically analyzed the genome wide architecture of five 

completely sequenced genomes of anaerobic fungi classified under Neocallimastigomycota 

division. We have compared the genome wide lignocellulolytic abilities of these fungi 

specifically by comparing genome wide annotations such as CAZy, InterPro, MEROPS and SM 

(secondary metabolite) Clusters databases. Our study will reveal lignocellulolytic, 

detoxifying and degrading abilities of the anaerobic fungi.  

7.3. Data Retrieval and Analysis 

7.3.1. Data retrieval: In our present study, we have selected and retrieved the genome level 

data of 5 anaerobic fungi classified under the Neocallimastigomycota division (Anaeromyces 

robustus v1.0 (Anasp1) [27], Neocallimastix californiae G1 v1.0 (Neosp1) [27], Orpinomyces 
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sp. (Orpsp1_1) [26], Piromyces finnis v3.0 (Pirfi3) [27], Piromyces sp. E2 v1.0 (PirE2_1)  [27]). 

The genome level data of all the above selected fungi were retrieved from the JGI-MycoCosm 

repository (https://genome.jgi.doe.gov/programs/fungi/index.jsf ).  

7.3.2. Data Analysis: From JGI-MycoCosm database we have specifically selected and 

retrieved the genome wide annotations such as InterPro (a database for the protein families, 

domains and functional sites), CAZy (database for carbohydrate active enzymes), KOG 

(eukaryotic orthologous group) and SM Clusters (database for secondary metabolite gene 

clusters) of the above listed fungi. To understand and reveal the distribution of plant cell wall 

degrading enzymes and their evolutionary gene losses among the selected fungi. We have 

segregated and compared the total number of genome wide InterPro annotations of the 

selected fungi into protein domains occurring in a) multiple copies and b) single copies. 

Similarly, we have segregated and compared the total number of genes encoding for the 

glycoside hydrolases (GH), glycosyl transferases (GT), carbohydrate binding modules 

(CBM), auxiliary activity (AA), polysaccharide lyases (PL), dockerin (DOC) and expansin 

(EXPN) classes and total number of genome wide carbohydrate active enzymes among the 

selected fungi. We have also retrieved and compared the KOG (eukaryotic orthologous) 

groups a) cellular signaling and processing (CSP) b) information storage and processing (ISP) 

c) metabolism and d) poorly characterized. Finally, we have retrieved and compared the SM 

(secondary metabolite) clusters such as DMAT (Di Methyl Allyl Tryptophan Synthase), 

HYBRID (hybrid genes), NRPS (Non-Ribosomal Peptide Synthetases), Poly-ketide Synthases 

(PKS) and MEROPS (database for the peptidases) for comparing the distribution of proteases 

among the selected fungal genomes We have used Microsoft excel program for comparing 

and representing the genomes of the selected fungi. The analysis pipeline implemented in 

our present study is extensively represented in the Figure 7.1. 

 

 

 

 

 

 

https://genome.jgi.doe.gov/programs/fungi/index.jsf
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Figure 7.1: Workflow pipeline implemented for analyzing and comparing the genomes of 

Neocallimastigomycota division fungi 

7.4. Results and Discussions 

Genomic studies of Neocallimastigomycota fungi has revealed various interesting facts 

about its plant cell wall decaying abilities and about the evolutionary loss of several other 

genes involved in various metabolic processes. Neocallimastigomycota fungi were found to 

be closely related to the phylum Chytridiomycota. Though Neocallimastigomycota fungi share 

some of the key morphological characters as Chytridiomycota fungi, they exhibit some of the 

unique features such as their cellular physiology suitable for its anaerobic living and peculiar 

flagellar movement [7]. Later conducted genomic studies have endorsed the separation of 
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Neocallimastigomycota into a separate clade basal to Chytridiomycota fungi [28-30]. 

Neocallimastigomycota fungi comprises of six different genera which can be separated based 

on its distinguishable morphological properties such as rhizoidal and bulbous morphologies 

of thallus and zoospore flagellation (mono vs polyflagellate) [7, 31, 32]. Currently, 

Neocallimastigomycota division comprises of nine genera Anaeromyces, Buwchfawromyces, 

Caecomyces, Cyllamyces, Neocallimastix, Oontomyces, Orpinomyces, Pecoramyces and 

Piromyces, where each genus possesses some unique and distinguishable morphological 

characteristics. Phylogenetic studies conducted in the past, based on the conserved DNA 

sequences such as 18S RNA and ITS (Inter transcribed spacer regions) sequences have 

reported the close relationship among Neocallimastix, Orpinomyces and Caecomyces, 

Cyllamyces genera respectively [7, 33, 34]. Recent whole genome sequencing studies of 

anaerobic fungi  have reported the complete assembled and annotated genomes, with total 

number of assembled gene models raging between 10,992-Piromyces finnis, 12,832-

Anaeromyces robustus, 14,648-Piromyces E2 18,936-Orpinomyces and 20,219-Neocallimastix 

californiae respectively [26, 27] (Figure 7.2).  

Genomes of Neocallimastigomycota fungi exhibited nearly about 3221 (Anasp1-

Anaeromyces robustus v1.0 [27]), 3313 (Neosp1-Neocallimastix californiae G1 v1.0 [27]), 2598 

(Orsp1-Orpinomyces sp. [26]), 3190 (Pirfi3-Piromyces finnis v3.0 [27]) and 2795 (Piromyces sp. 

E2 v1.0 [27]) unique InterPro annotated domains respectively. Majority of these protein 

domains were found to occur in multiple copies in the genomes, making the genome wide 

distribution of InterPro protein domains to 30969 (Anasp1), 46794 (Neosp1), 35585 (Orsp1), 

27050 (Pirf3) and 28577 (PirE2) respectively. Results obtained in our study reveals that genes 

encoding for ankyrin, WD-40 repeat, chitin-binding type-I, Src homology-3, cellulose binding 

region, protein kinases, leucine rich repeats, ABC transporters, dockerin (cellulose binding 

family 5), RNA recognition motif (RNP-1), calcium binding EF, Armadillo-type fold, 

serine/threonine protein kinase, zinc finger (RING, C2H2-type), tyrosine protein kinase, 

glycoside hydrolase, heat shock protein (DnaJ), tetratricopeptide region, AAA+ ATPase, 

spore coat protein and kinesin protein domain were observed in high numbers among the 

genomes of anaerobic fungi. 
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Figure 7.2: (A) Hierarchical delineation of Neocallimastigomycota division and well-studied 

fungi with available annotated genomes, (B) phylogenetic relationship of the 

Neocallimastigomycota fungi based on the conserved ITS (Inter Transcribed Spacer regions) 

and other morphological characteristics, where the legend shows the phylogenetic 

relatedness among the selected fungi. 

To understand the genomic distribution of proteins we have analyzed the genome 

wide KOG annotations of the selected anaerobic fungi. We have retrieved the total number of 

gene models classified under cellular signaling and processing, information storage and 

processing, metabolism and poorly characterized KOG categories. The total KOG classified 

gene models where further analyzed to understand the proteins occurring in unique and 

multiple copies among the genomes of anaerobic fungi. Genes encoding for chitinases, 

leucine rich repeat, serine/threonine protein kinases, RNA-binding protein, lipid exporter, 

Legend:
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ankyrin have outnumbered all other protein encoding genes (Figure 7.3A). We have 

observed that Neosp1 genome harbors higher number of gene models compared to other 

anaerobic fungal genomes, followed by Orsp1genomes respectively (Figure 7.3A). The 

ascending order of the anaerobic fungi based on their total KOG classified gene models Pirfi3-

8462 < Anasp1-9556 < PirE2-9810 < Orsp1-12559 < Neosp1-14,449 respectively (Figure 7.3B).  

 

Protein Description Neosp1 Anasp1 Orsp1 Pirfi3 PirE2
Chitinase 684 372 393 317 461

Uncharacterized conserved protein 541 377 396 362 333
FOG: Leucine rich repeat 233 185 311 168 147

Serine/threonine protein kinase 224 245 248 129 201
RNA-binding protein (RRM, Pumilio-like repeats) 201 276 303 136 188

Lipid exporter ABCA1 and related proteins 196 112 182 64 254
Ankyrin 189 173 482 114 263

FOG: Ankyrin repeat 175 176 222 63 214
ER-Golgi vesicle-tethering protein p115 164 77 133 147 77

Nucleolar GTPase/ATPase p130 163 68 111 84 147
C-type lectin 156 126 132 66 114

beta-1,6-N-acetylglucosaminyltransferase 154 72 130 76 122
Predicted transporter (major facilitator superfamily) 154 48 49 34 45
RNA-binding Ran Zn-finger protein, related proteins 137 82 97 44 77

Uncharacterized conserved coiled-coil protein 120 53 84 87 53
von Willebrand factor related coagulation proteins 116 112 122 92 154

Extracellular protein SEL-1, related proteins 114 57 78 60 57
FOG: Zn-finger 99 73 52 68 68

Gluconate transport-inducing protein 94 64 120 50 82
Ca2+-modulated nonselective cation channel polycystin 84 68 56 48 64

Predicted chitinase 84 26 71 48 119
Signaling protein SWIFT and BRCT domain proteins 80 44 48 64 60

FOG: RRM domain 59 34 38 32 36
Carboxylesterase and related proteins 57 33 50 29 42

Mitotic checkpoint protein MAD1 56 38 54 28 35
Molecular chaperone (DnaJ superfamily) 52 36 34 32 27

WD40 repeat-containing protein 51 30 38 31 26
Predicted E3 ubiquitin ligase 49 34 35 33 29
Myosin class II heavy chain 45 28 44 30 24

Subtilisin-related protease/Vacuolar protease B 45 121 97 25 71
Kinesin-like protein 39 26 43 35 26

A 

CSP
M

ISP
PC
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Figure 7.3: A) Genome wide distribution of KOG classified proteins under CSP (cellular 

signaling and processing), ISP (Information storage and processing), M (metabolism) and PC 

(poorly characterized) B) total number of KOG classified proteins C) unique genes D) proteins 

with multiple gene copies (>2 gene copies).  

Results obtained from the classification of carbohydrate active enzymes (CAZymes) 

among Neocallimastigomycota (anaerobic) fungi, reveal that these fungi have suffered a 

severe evolutionary loss of genes encoding for lignin degrading enzymes. The total number 

of genes encoding for the auxiliary activity class enzymes such as lignin oxidizing enzymes 

(laccase, lignin peroxidase, manganese peroxidase, versatile peroxidase and cellobiose 

dehydrogenase) and lignin degrading auxiliary enzymes (aryl alcohol oxidase, vanillyl 

alcohol oxidases, glyoxal oxidases, pyranose oxidases, galactose oxidases, glucose oxidases 

and benzoquinone reductases) were completely reduced to zero. Importantly, genes 

encoding for GMC (glucose methanol choline) oxidoreductases, lytic polysaccharide 

monoxygenases (LPMO), cellobiose dehydrogenase (CDH) and iron reductase enzymes 

were completely reduced among the selected Neocallimastigomycota division fungi. Genes 

encoding for glycoside hydrolases, glycosyl transferases were found to range between 262-

Anasp1(low) and 548-Neosp1 (high),104-Pirfi3(low) and 196-Neosp1 (high) respectively. 

While genes encoding for carbohydrate esterases, expansin and polysaccharide lyases 

ranges between 92-Pirfi3 (low) and 213-Neosp1(high), 9-Pirfi3 (low) and 29-Neosp1(high), 11-

Anasp1(low) and 82-Neosp1(high) respectively (Figure 7.4A).    

Contrastingly, the genomes of Neocallimastigomycota division fungi harbors higher 

number of genes encoding for carbohydrate binding domains (CBM) and dockerin proteins, 

which are found to be involved in the formation of cellulosomes (a complex structure involved 

in degradation of plant cell wall polysaccharides especially cellulose). The number of gene 

B C D 
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models encoding for CBM and dockerin proteins ranges between 494-Pirfi3 (low) and 857-

Neosp1(high), 469-Pirfi3 (low) and 838-Neosp1(high) respectively. Totally, the number of 

CAZymes encoding genes ranges between Neosp1-2763 (high) and Pirfi3-1468 (low) 

respectively (Figure 4A). Studies have reported that anaerobic fungi residing in the animal 

guts are majorly involved in digestion of plant biomass components (cellulose, hemicellulose, 

pectin and lignin). Previous studies have classified the CAZyme classes coding for cellulases, 

hemicellulases, ligninases and pectinolytic enzymes [35, 36]. The glycoside hydrolase 

enzyme classes GH-1, GH-2, GH-3, GH-5, GH-6, GH-8, GH-9, GH-38, GH-45, GH-48 and GH-

74 code for cellulases respectively. Based on the total number of cellulase encoding genes 

Anasp1 exhibits lower and Neosp1 exhibits higher cellulolytic activity comparatively.  

Glycoside hydrolase classes GH-10, GH-11, GH-30, GH-31, GH-38, GH-39, GH-43, GH-45, GH-

47, GH-53, GH-115, and carbohydrate esterase class enzymes CE-1, CE-2, CE-3, CE-4, CE-6 

and CE-16 codes for hemicellulases respectively. Based on the total number of hemicellulase 

encoding genes Pirfi3 exhibits lower and Neosp1 exhibits higher hemicellulolytic activity. 

Similarly, polysaccharide lyase class enzymes PL-1, PL-3, PL-4, PL-9, PL-11 glycoside 

hydrolase class enzymes GH-28, GH-78, GH-95, GH-105, GH-115 and carbohydrate esterase 

class enzymes CE-8, CE-12 and CE-16 are involved in degradation of pectin respectively. We 

have theoretically predicted the total cellulolytic, hemicellulolytic and pectinolytic enzyme 

activities by calculating the total number of cellulases, hemicellulases and pectinolytic 

enzymes. Anasp1 and Pirfi3 exhibits lower total cellulolytic, hemicellulolytic and pectinolytic 

activities. Neosp1 exhibits higher total cellulolytic, hemicellulolytic and pectinolytic 

activities, whereas Orsp1 and PirE 2_1 exhibits total activities similarly (Figure 7.4B).  

 

Anasp1 Neosp1 Orpsp1 Pirfi3 PirE2

AA 0 0 0 0 0

GH 261 548 379 279 472

GT 131 196 111 106 104

CBM 650 857 744 494 821

CE 121 213 119 92 139

DOC 583 838 628 469 692

EXPN 14 29 18 9 18

PL 11 82 30 15 32

Total 1771 2763 2029 1468 2282

CAZy

OrganismsA 
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Figure 7.4: Genome wide distributions of A) CAZymes, B) cellulolytic, hemicellulolytic and 

pectinolytic activities (GH- Glycoside hydrolases, CE- Carbohydrate esterases and PL-

polysaccharide lyases) where Anasp1 (Anaeromyces robustus), Neosp1 (Neocallimastix 

californiae), Orpsp1 (Orpinomyces sp), PirE2 (Piromyces sp. E2) and Pirfi3 (Piromyces finnis) 

respectively. 

The cluster of orthologous groups (COG) is a prokaryotic database used for the 

identification of ortholog and paralog proteins. Similarly, KOG the eukaryotic version for 

cluster of orthologous groups detects the ortholog and paralog proteins in the given 

eukaryotic genome. The descending order of fungi based on their total number of KOG 

classified gene models are Neosp1>Orsp1>PirE2>Anasp1>Pirfi3 respectively (Figure 7.5A) 

The SM cluster database identifies the secondary metabolites of fungal genomes into three 

major classes as a) non-ribosomal peptide synthetases (NRPS) b) polyketide synthetases 

(PKS) and c) terpene synthetases (TS) respectively [37]. These key enzymes are involved in 

the production of the important fungal secondary metabolites a) non-ribosomal peptides and 

amino acid-derived compounds, (b) polyketides and fatty acid-derived compounds and (c) 

terpenes [37]. Using a set of modules (single ATC module or multimodule model with ATC 

Class Anasp1 Neosp1 Orpsp1 PirE2 Pirfi3

GH-10 15 60 32 29 21

GH-11 33 30 52 72 41

GH-30 2 4 3 3 1

GH-31 7 10 19 5 2

GH-38 2 1 2 2 1

GH-39 5 9 3 5 2

GH-43 18 48 32 31 14

GH-45 14 29 16 20 15

GH-47 5 6 1 3 2

GH-53 1 3 0 2 1

GH-115 1 9 3 4 3

CE1 28 48 33 37 17

CE2 11 8 6 10 1

CE3 1 1 1 3 0

CE4 47 88 45 41 43

CE6 11 14 8 18 11

CE16 10 26 15 12 7

Hemicellulases

Class Anasp1 Neosp1 Orpsp1 PirE2 Pirfi3

GH-1 7 16 10 17 10

GH-2 1 7 1 1 1

GH-3 15 53 18 26 15

GH-5 26 72 51 46 29

GH-6 13 28 49 35 22

GH-8 2 2 1 2 1

GH-9 9 14 13 12 12

GH-38 2 1 2 2 1

GH-45 14 29 16 20 15

GH-48 7 21 14 14 13

GH-74 1 4 2 4 3

Cellulases

Class Anasp1 Neosp1 Orpsp1 PirE2 Pirfi3

PL-1 6 33 19 17 10

PL-3 1 30 8 6 3

PL-4 3 17 3 9 2

PL-9 1 0 0 0 0

PL11 0 2 0 0 0

GH-28 0 1 0 1 0

GH-78 1 1 2 1 0

GH-95 2 2 0 1 1

GH-105 0 2 0 2 1

GH-115 1 9 3 4 3

CE-8 5 14 9 8 5

CE-12 6 8 2 7 6

CE16 10 26 15 12 7

Pectinolytic Enzymes

C 

B 
Total activity Anasp1 Neosp1 Orpsp1 PirE2 Pirfi3

Cellulolytic 97 247 177 179 122

Hemicellulolytic 211 394 271 297 182

Pectinolytic 36 145 61 68 38
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repeating units) NRPS catalyzes the biosynthesis of small peptides (a ribosome independent 

mechanism) [38]. According to Finking and Marahiel (2004), three core domains (adenylation 

(A), thiolation (T) and a condensation domain (C)) containing module catalyzes the peptide 

bond formation on the megasynthase complex [39]. Polyketide synthetase (PKS) fungal 

modules containing three domains a) ketoacyl synthase (KS), b) acyl transferase and c) 

phosphopantetheine site [40] (Figure 7.5C).  

Type of Peptidase Anasp1 Neosp1 Orpsp1 PirE2 Pirfi3

Aspartic Proteases 3 6 25 11 3

Cysteine Proteases 30 55 54 33 37

Metallo Proteases 37 49 33 34 27

Mixed Proteases 1 12 14 4 4

Serine Proteases 60 41 52 47 26

Zincin 48 45 116 66 30

Ntn-hydrolase 15 31 17 15 17

alpha/beta hydrolase 91 125 118 127 58

Unassigned 25 37 11 19 5

D 

C KEGG Classes Anasp1 Neosp1 Orpsp1 PirE2 Pirfi3

Amino Acid Metabolism 270 418 266 229 224

Biosynthesis of Polyketides and Nonribosomal Peptides 43 63 54 31 41

Biosynthesis of Secondary Metabolites 126 203 137 118 121

Carbohydrate Metabolism 440 816 420 381 418

Energy Metabolism 90 153 87 89 78

Glycan Biosynthesis and Metabolism 217 309 199 149 196

Lipid Metabolism 201 332 177 175 185

Metabolism of Cofactors and Vitamins 250 368 219 183 224

Metabolism of Other Amino Acids 57 140 49 52 58

Nucleotide Metabolism 562 739 573 416 511

Overview 202 346 193 180 189

Xenobiotics Biodegradation and Metabolism 106 165 78 80 91

A KOG Anasp1 Neosp1 Orsp1 Pirfi3 PirE2

CSP 3303 5217 4485 3021 3435

ISP 1792 2603 2155 1730 1764

M 1980 3077 2499 1670 2103

PC 2481 3552 3460 2041 2504

B Genome DMAT HYBRID NRPS NRPS-Like PKS PKS-Like TC Total

Anasp1 0 0 28 4 6 8 0 46

Neosp1 0 0 10 6 14 9 0 39

Orsp1 0 0 97 49 2 7 0 155

Pirfi3 0 1 1 1 8 2 0 13

PirE2 0 0 34 18 5 8 0 65
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Figure 7.5: Genome wide distributions of A) KOG (Eukaryotic orthologous groups), B) SM 

(secondary metabolite) clusters C) distribution of proteins among KEGG classified pathway 

groups and D) clan-based classification of proteolytic enzymes  

To broadly understand the genome wide distribution of genes involved in various 

cellular mechanisms, we have retrieved and compared the KEGG (Kyoto Encyclopedia of 

Genes and Genomes) annotations of the selected fungi. We have totally selected genes 

classified under 12 pathway classes (Figure 7.5B), out of these higher number of genes were 

classified under the carbohydrate and nucleotide metabolism pathways among all the 

selected anaerobic fungi. The descending order of the fungi based on the number of gene 

models classified among the 12 pathway classes were 

Neosp1>Orsp1>Anasp1>Pirfi3>PirE2_1 respectively (Figure 7.5B). The proteases 

(proteolytic enzymes or peptidases) play a crucial role in various molecular and biological 

processes. We have also analyzed the genome wide occurrence of proteolytic enzymes 

among the selected anaerobic fungi. MEROPS is public database for the proteolytic enzymes 

and their corresponding substrates and inhibitors respectively [41]. In MEROPS the 

proteolytic enzymes are classified based on its similitude of the protein structure at the 

tertiary and primary levels by specifically comparing the active and reactive sites of the 

proteases. The proteases are classified into families and clans respectively. Results obtained 

in our analysis shows that aspartic, mixed and zincin class proteases were high in Orsp1, 

cysteine, mixed, metallo, Ntn-hydrolase, alpha-beta hydrolase class proteases were high in 

Neosp1, serine proteases are high in Anasp1 and alpha/beta hydrolase protases were high in 

PirE2 genomes respectively (Figure 7.5D).  

Our analysis explicitly reports that the selected anaerobic fungi harbors large number 

of genes encoding for the carbohydrate transport and metabolism. Thus, we have specifically 

focused on the total number of genes involved in carbohydrate transport and metabolism.  

Interestingly, we have observed that genomes of the selected anaerobic fungi harbor higher 

number of chitinase encoding gene models ranging between 293 (Pirfi3) to 639 (Neosp1). 

Previous studies have already reported that amino acid tryptophan was found to conserved 

in the chitin binding domain in bacteria, these domains were also found to be involved during 

binding of cellulase with cellulose [42]. For our present analysis we have only considered 

only the enzymes with multiple gene copies (<2). We have observed that 20 protein encoding 

gene models involved in carbohydrate transport and metabolism were found to be occur in 
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multiple copies in the genomes of the selected anaerobic fungi genomes. Genes encoding for 

β-1,6-N-acetylglucosaminyltransferase, gluconate transport-inducing protein, β-glucosidase, 

Golgi mannosyltransferase, maltase glucoamylase (GH-31) were found to occur more than 

five copies in the genomes of anaerobic fungi respectively.  Occurrence of higher number of 

gene models encoding for the carbohydrate transport metabolism proteins the ascending 

order based on the genomes were 492 (Pirfi3) > 578 (Anasp1) > 676 (Orsp1) > 693 (PirE2_1) 

> 1037 (Neosp1) respectively. These genomic evidences suggest that anaerobic fungi 

classified under Neocallimastigomycota has developed sophisticated organelles such as 

cellulosomes for the degradation of plant cell wall components [27, 43].  

To understand the carbohydrate breakdown and metabolism by the 

Neocallimastigomycota division fungi, we have analyzed and compared the genomes of the 

selected anaerobic fungi to reveal the carbohydrate binding modules (CBM) and the 

corresponding carbohydrate interacting residues (Figure 7.6A). Our results report that genes 

encoding for carbohydrate binding modules (CBM18) interacting with chitin residues were 

found to be high in PirE2_1-640 and low in Pirfi3-288 respectively. We have analyzed and 

compared the total number of genes encoding for the carbohydrate binding module classes 

interacting with cellulose residues such as CBM-1, CBM-6 CBM-10, CBM-63. Similarly, we 

have analyzed and compared the CBM’s interacting with xylan (CBM6, CBM13, CBM22 and 

CBM35) plant cell walls (CBM6, CBM13, CBM22, CBM29, CBM32, CBM35, CBM50, CBM52 and 

CBM61), alpha-glucans (CBM21, CBM25, CBM26 and CBM48) and chitin (CBM1, CBM12, 

CBM18 and CBM50) residues respectively. We have tentatively calculated the total number 

of genes encoding for CBM interacting with cellulose, xylan, chitin, alpha-glucans, plant cell 

wall and bacterial cell wall sugars. These results suggest that Neosp1 harbors higher number 

of cellulose, xylan, plant cell wall sugar binding CBM, whereas Orsp1 contains higher number 

of alpha glucan binding CBM and PirE2 contains higher number of chitin binding CBMs 

respectively (Figure 7.6B). Thus, anaerobic fungal resides higher number of genes encoding 

for the carbohydrate binding modules, dockerin proteins involved in maintenance of the 

structure and functioning of cellulosomes.  

Recent genomic studies of the anaerobic fungi conducted by Haitjema, C.H et al 

(2017), have clearly proved the occurrence of 1600 dockerin domain proteins (DDP). About 

20% of these dockerin domain proteins can be classified under CotH spore coat protein, these 

proteins were expected to be involved in binding with the plant cell wall components 
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however, the exact function of it is not known till today [27]. Studies have also reported that 

majority of the lignocellulolytic enzymes contain non-catalytic dockerin domains (NCDDs) 

which facilitate the assembly of multiprotein cellulosome complexes and further required for 

the binding of carbohydrates and degradation of plant biomass [27].  It was reported that 

anaerobic fungal cellulosomes exhibits 13% higher GH activity due to the presence of 

glycoside hydrolase classes GH-3, GH-6 and GH-45 compared to bacterial cellulosomes. 

Especially the supplementary GH-3 class enzyme (Beta glucosidase) activity empowers 

fungal cellulosomes in converting cellulose to single fermentable sugars (monosaccharides) 

when compared to low molecular weight oligosaccharides generating bacterial cellulosomes 

(eg: Clostridium sp) [27]. Thus, the complete genome sequencing studies of Anaeromyces 

robustus (Anasp1), Neocallimastix californiae (Neosp1) and Piromyces finnis (Pirf3) by 

Haitjema, C.H et al (2017) and Orpinomyces sp Strain C1A (Orsp1) by Youssef, N. H et al (2013), 

have clearly reported that genomic sequences of fungal dockerin and scaffoldin proteins are 

not like that of bacterial cellulosome components. Which explains that the gut residing 

anaerobic fungi have exclusively evolved (bacterial independent) in developing the 

cellulosome based degradation of plant cell wall components [26, 27].  

 

Interacting residues CBM Anasp1 Neosp1 Orpsp1 PirE2 Pirfi3

Cellulose /Chitin CBM1 94 145 104 102 103

Cellulose /Xylan /Plant cell wall CBM6 6 15 7 14 7

Cellulose CBM10 12 33 29 2 20

Chitin CBM12 1 2 2 3 6

Xylan /Plant cell wall CBM13 20 48 23 12 17

Chitin CBM18 447 521 500 640 288

Alpha-glucans CBM21 4 8 4 2 5

Xylan /Plant cell wall CBM22 1 1 0 0 1

Alpha-glucans CBM25 11 4 13 1 1

Alpha-glucans CBM26 20 10 26 15 1

Plant cell wall CBM29 2 15 12 7 18

Plant cell wall CBM32 0 5 1 2 0

Xylan / Plant /Bacterial cell wall CBM35 5 8 2 6 4

Alpha-glucans CBM48 8 17 5 5 9

Chitin / Plant cell wall CBM50 5 4 4 4 5

Plant cell wall/Bacterial cell wall CBM52 5 11 5 3 5

Plant cell wall CBM61 1 3 1 1 1

Cellulose CBM63 6 7 3 2 3

Bacterial cell wall sugars CBM66 2 0 3 0 0

A 
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 Figure 7.6: A) Carbohydrate binding modules (CBM) and the corresponding carbohydrate 

interacting residues, B) total tentative number of genes encoding for cellulose, xylan, alpha-

glucans, plant cell walls and chitin binding CBM. 

 7.5. Conclusion 

Genetically cattle lack the ability to encode for the lignocellulolytic enzymes, thus they are 

solely dependent on their rumen microbiota for the degradation of plant cell wall 

components. Improving the feeding efficiency and digestibility of the low-quality plant 

biomass components by manipulating the rumen microbiota and rumen fermentation is 

gaining its prominence in the recent times. Studies were being conducted to increase the 

number of lignocellulolytic microorganisms in rumen and their overall catalytic efficiency 

respectively [44]. Several microorganisms including bacteria (Ruminococcus genus, 

Megasphaera, Fibrobacter, Streptococcus, Escherichia), archaea (methanogens), fungi 

(Chytridiomycetes and Neocallimastigomycetes) were observed among the rumen. However, 

earlier studies have predicted that about 70% of the rumen microbiota is still unknown till 

today [45]. Anaerobic fungi potentially secrete higher number of lignocellulolytic enzymes 

such as cellulase (microcrystalline cellulose), xylanase, pectinase and proteases 

respectively. Anaerobic fungi degrade the plant biomass by breaking the fibrous plant 

components through penetrating its rhizoids and facilitate the access for the rumen 

microorganisms to the secondary cell wall components, thus playing a crucial role in 

degradation of the poor quality plant cell wall components.[46-48]. In this study we have 

analyzed and compared the genomic properties of the recently sequenced five anaerobic 

fungi. The genome level data and the corresponding annotations were retrieved from the JGI-

B 
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MycoCosm database. Genome level annotations of the selected anaerobic fungi were 

compared among the Neocallimastigomycota division fungi. We have observed that several 

genes and protein domains occurred in multiple copies among the genomes of the selected 

anaerobic fungi. Genome of Neocallimastix californiae outnumbered other anaerobic fungi 

based on the total number of genes categorized under CAZy, SM Clusters, KOG and thus the 

KEGG pathways. Anaerobic fungi also encode for higher number of genes involved in 

carbohydrate transport and metabolism with most of the genes (carbohydrate binding 

modules and dockerins) involved in formation of complex multienzyme organelles employed 

for efficient degradation of plant cell wall carbohydrates. Using the results obtained we have 

tentatively calculated the degradation potentials of these fungi, which suggests that Neosp1 

possess highest cellulolytic, hemicellulolytic and pectinolytic abilities than other anaerobic 

fungi. We have also tentatively reported the mechanism involved during the carbohydrate 

metabolism by these fungal organelles respectively. In this study we have specifically 

emphasized on the genomic properties of the anaerobic fungi by analyzing the genome wide 

annotations of these fungi. Understanding the genomic complexities of anaerobic fungi will 

significantly enhance the gut health of the cattle (increases the total enzyme activity) and 

supports the biofuel and biorefining industries in making eccentric enzyme mix with efficient 

catalytic properties. 
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Chapter-8 

Comparative Modeling and Molecular Docking Analysis of White, Brown and 

Soft Rot Fungal Laccases Using Lignin Model Compounds for Understanding 

the Structural and Functional Properties of Laccases 

[This work has been published in “Journal of Molecular Graphics and Modelling”79 

(2018): 15-26] 

Ayyappa Kumar Sista Kameshwar, Richard Barber, Wensheng Qin* 

8.1. Abstract  

Extrinsic catalytic properties of laccase enable it to oxidize a wide range of aromatic (phenolic 

and non-phenolic) compounds which makes it commercially an important enzyme. In this 

study, we have extensively compared and analyzed the physico-chemical, structural and 

functional properties of white, brown and soft rot fungal laccases using standard protein 

analysis software. We have computationally predicted the three-dimensional comparative 

models of these laccases and later performed the molecular docking studies using the lignin 

model compounds. We also report a customizable rapid and reliable protein modelling and 

docking pipeline for developing structurally and functionally stable protein structures. We 

have observed that soft rot fungal laccases exhibited comparatively higher structural 

variation (higher random coil) when compared to brown and white rot fungal laccases. White 

and brown rot fungal laccase sequences exhibited higher similarity for conserved domains of 

Trametes versicolor laccase, whereas soft rot fungal laccases shared higher similarity towards 

conserved domains of Melanocarpus albomyces laccase. Results obtained from molecular 

docking studies showed that aminoacids PRO, PHE, LEU, LYS and GLN were commonly found 

to interact with the ligands. We have also observed that white and brown rot fungal laccases 

showed similar docking patterns (topologically monomer, dimer and trimer bind at same 

pocket location and tetramer binds at another pocket location) when compared to soft rot 

fungal laccases. Finally, the binding efficiencies of white and brown rot fungal laccases with 

lignin model compounds were higher compared to the soft rot fungi. These findings can be 

further applied in developing genetically efficient laccases which can be applied in growing 

biofuel and bioremediation industries. 

Keywords: Multicopper oxidase, Laccases, White rot, Brown rot, Soft rot fungi, Homology 

Modeling, Molecular Docking 
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8.2. Introduction 

Laccase (EC 1.10.3.2) is highly studied commercially important enzyme representing 

the major subgroup of multicopper oxidase (MCO) family, widely distributed among bacteria 

(prokaryotes), fungi and plants (eukaryotes) [1]. The function of laccases varies widely based 

on their host organisms, in plants it is involved in lignin biosynthesis, where as in fungi and 

bacteria it is involved in lignin degradation [1, 2]. It was first discovered in the sap of plants 

(Rhus vernicifera) [3] and later it was demonstrated in fungi [4]. Other enzymes belonging to 

multicopper oxidases (copper containing enzymes) family are ferroxidase (EC 1.16.3.1), 

ascorbate oxidase (EC 1.10.3.3), ceruloplasmin monoxygenases, dioxygenases and various 

manganese oxidases [5]. Multicopper oxidase family enzymes usually found to contain one to 

six copper atoms per molecule, with the aminoacids ranging between 100 to 1000 per a single 

peptide chain [5, 6]. Laccases are characterized by the presence of four catalytic copper 

atoms: the T1 copper site and the T2/T3 trinuclear copper cluster [7]. Substrate oxidation 

occurs at the T1 copper due to its high redox potential (up to +800 mV). The one electron 

substrate oxidation is coordinated with the four electron reduction of molecular oxygen at the 

T2/T3 cluster; oxidation of four substrates is necessary for complete reduction of molecular 

oxygen to water [7].  

Laccases extensively uses the redox ability of copper ions for oxidation of various 

aromatic substrates concomitantly reducing the molecular oxygen to water [2, 8]. Laccases 

directly oxidize ortho, para-diphenols, aminophenols, polyphenols, polyamines, aryl 

diamines and also some inorganic ions [2]. The use of the laccase mediator system allows for 

oxidation of non-phenolic compounds and substrates too large to bind to the active site [9-

12]. A mediator is a low molecular weight compound (acting as electron shuttle) with higher 

redox potential than the T1 copper (> 900 mV) [13]. The most common laccase mediators used 

are 2,2´-azino-bis (3-ethybenzthizoline-6-sulfonic acid) (ABTS) and triazole 1-

hydroxybenzotriazole (HBT). The mediator is initially oxidized at the T1 site, generating a 

strong oxidizing intermediate, which then diffuses out of the active site and oxidizes the 

substrate [13]. In this way, the laccase mediator acts as an electron transport shuttle. Laccases 

typically show low substrate-specificity, and the range of substrates oxidized can vary 

between laccases. Oxidizing ability of laccases also depends on the nature of substrate 

whether it is monomeric, dimeric, or tetrameric [13]. Possible substrates of laccases include 

polyphenols, methoxy-substituted phenols, aromatic amines, and ascorbate [14].  
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The comparative modeling of fungal and bacterial laccases was reported in the past, 

however studies on fungal laccases typically focused on white rot basidiomycetes due to the 

extrinsic lignolytic abilities. Rivera-Hoyos et al.(2015), reported the three dimensional (3D) 

homology models of white rot fungal (Ganoderma lucidum and Pleurotus ostreatus) laccase 

proteins, which revealed the laccase interactions with ABTS [15]. The 3D homology models of 

white rot fungi Pycnoporus cinnabarinus [16], Lentinula edodes [17], were reported earlier. 

Tamboli et al (2015) has compared physio-chemical properties of bacterial and fungal 

(Cryphonectria parasitica, Ganoderma lucidum, Phomopsis liquidambaris, Pycnoporus 

coccineus and Trametes sanguine) laccases and generated the 3D comparative models of 

bacterial and fungal laccase proteins which can be used for molecular docking studies [18]. 

Molecular docking studies with fungal laccases were performed using various chemical 

substrates such as ABTS [15] and also with lignin model compounds such as sinapyl alcohol, 

dimer, trimer and tetramer [19] were reported earlier.  However, studies comparing the 

structural and functional properties of white, brown and soft-rot fungal laccases were not been 

reported till today. As these fungi exhibit differential wood decaying properties white rot (can 

efficiently degrade lignin, cellulose and hemicellulose), brown rot fungi (efficient cellulose, 

hemicellulose degrading with lignin modifying) and soft rot fungi (exhibits partial decaying 

abilities). It would be interesting to understand the structural and functional differences 

among the laccases of these fungi. 

In our present study, we have reported the three-dimensional homology models of the 

selected white, brown and soft fungal laccase protein sequences retrieved from public 

repositories and extensively discussed about their structural and functional properties using 

standard tools. Using a set of lignin model compounds (monomers, dimer, trimer and 

tetramer) we have performed the molecular docking experiments. Results obtained in our 

study demarcates the structural and functional properties of white, brown and soft rot fungi 

and highlights the significant aminoacids which are involved in its catalysis. These results can 

be further applied for designing and developing recombinantly efficient laccases having 

wide range applications in clinical, chemical, environmental and industrial sectors. 

8.3. Materials and Methods 

8.3.1. Selection and Retrieval of Laccase Protein Sequences 

Laccase protein sequences of six different fungi viz., Phlebia brevispora HHB-7030 SS6 

v1.0 [20], Dichomitus squalens CBS463.89 (White rot), Fomitopsis pinicola FP-58527 SS1 [21], 
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Wolfiporia cocos MD-104 SS10 [21] (Brown rot) and Chaetomium globosum v1.0 [22], 

Cadophora sp. DSE1049 (Soft rot), were retrieved from JGI (Joint Genome Institute) 

MycoCosm database. The D. squalens CBS463.89 and Cadophora sp. DSE1049 laccase protein 

sequences (Dsqual_59186 and Cadophora_560981) were produced by the “US Department of 

Energy Joint Genome Institute http://www.jgi.doe.gov/ in collaboration with the user 

community”. We have used CAZy (Carbohydrate active enzymes), KOG (Eukaryotic 

orthologous groups) and GO (Gene Ontology) tools of JGI MycoCosm database during the 

retrieval of laccase protein sequences. Initially, we have retrieved a total of 56 laccase protein 

sequences (P. brevispora (5), D. squalens (12), F. pinicola (6), W. cocos (4), C. globosum (6) 

and Cadophora sp (22)) respectively, from JGI MycoCosm database. All the retrieved laccase 

protein sequences from each organism was queried through BLAST against protein data bank 

(PDB) database using PSI-BLAST algorithm a variation of BLAST (sensitive to low-similarity, 

provides biologically relevant sequences and three times faster than regular BLAST) [23]. 

Laccase protein sequences showing highest sequence similarity and query coverage was 

designated as the template for the comparative modeling studies.  

8.3.2. Phylogenetic Analysis 

All the retrieved laccase protein sequences of each organism were aligned using 

ClustalW algorithm (fast, accurate, and robust method, which uses a residue comparison 

matrix and position specific gap penalties to align sequences) of MEGA v7 software [24]. The 

ClustalW aligned sequences were considered for the construction of phylogenetic trees using 

Neighbour Joining method and Bootstrap resampling of 1000 replicates parameters were 

used for the estimation of phylogenetic tree topologies [25]. The phylogenetic trees were 

constructed for both intra and inter organism level to determine the laccase target sequences 

which are closely related to the template during the evolution. 

8.3.3. Physico-Chemical Properties of Selected Laccases 

Physico-chemical properties of above selected laccase protein sequences were 

determined using the ExPASy ProtParam tool [26]. Our analysis included the parameters such 

as aminoacid composition, number of positively (+R) and negatively (-R) charged aminoacid 

residues, predicted molecular weight, theoretical isoelectric point (pI), extinction coefficient 

(EC) [27], instability index (Ii) [28], aliphatic index (Ai) [29] and GRAVY (grand average 

hydropathicity) [30].  
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8.3.4. Structural and Functional Properties of Laccases 

The above selected laccase protein sequences were studied for their structural and 

functional properties for which we have used SOPMA (Self-optimized prediction method with 

alignment) tool for determining secondary structure elements [31]. We have used Motif Scan 

web server to identify the well-known motif sequences using the motif sources such as 

PeroxiBase, HAMAP, PROSITE patterns and profiles, More profiles, Pfam HMM (both local and 

global) profiles [32]. To understand the cellular localization of selected laccases, the protein 

sequences were subjected CELLO v2.5 web server [33]. We have used EDBCP (Ensemble-

based Disulfide Bonding Connectivity Pattern) for understanding the presence of cysteine 

residues and to predict the most possible disulfide (S-S) bonds [34]. To predict the location 

and presence of signal peptide cleavage sites the protein sequences of laccases were 

analyzed using SignalP v4.1 web server [35]. And to predict the presence of transmembrane 

helices we have analyzed the selected protein sequences using TMHMM v2.0 web server 

(http://www.cbs.dtu.dk/services/TMHMM/). Acetylation of the selected fungal laccase 

proteins are assessed using the NetAcet v1.0 web server [36]. 

8.3.5. Initial protein model generation and refinement 

Laccase protein sequences exhibiting highest sequence similarity and highest query 

coverage (obtained from the BLAST analysis), were further considered as input to SWISS-

MODEL protein prediction web server (generates tertiary protein structure from a queried 

protein sequence based on the SWISS-MODEL template library), for the generation of initial 

unrefined 3D modelled structure of the target protein [37]. The 3D structures of modelled 

laccase proteins were further refined using GalaxyRefine (method improves both local and 

global qualities of template-based predicted protein structures) [38] and KoBaMIN 

(knowledge based minimization method, which minimizes the potential of mean force derived 

from the experimental structures of PDB) [39] web servers. GalaxyRefine server optimizes the 

side chain conformations and performs the energy minimization on each conformation and 

subsequently relaxes the overall protein structure through molecular dynamic simulation 

methods. Whereas KoBaMIN refined structures are stereochemically optimized with MESHI 

software, KoBaMIN energy function indirectly includes the effects of both solvent interactions 

and the crystal environments. The refined laccase protein structures were validated to assess 

the stereochemical quality, using a set of software such as PROCHECK [40], RAMPAGE [41], 

ERRAT [42] and PROQ [43].  

http://www.cbs.dtu.dk/services/TMHMM/
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8.3.6 Preparation of Ligands (Lignin model compounds) 

The NMR based structural studies of lignin and plant cell wall compounds explained 

by Ralph, S. A et al (2004), were derived for the present study [44]. The lignin model 

compounds considered for the present study were monomers (sinapyl alcohol, coniferyl 

alcohol and p-coumaryl alcohol), dimer (guaiacyl 4-O-5 guaiacyl), trimer (syringyl β- O-4 

syringyl β-O-4 sinapyl alcohol) and tetramer (guaiacyl β-O-4 syringyl β-β syringyl β-O-4 

guaiacyl) were sketched using ChemDraw Ultra v7.0. and later internally transferred to 

Chem3D Pro v7.0 software and further saved the structure in protein data bank format. The 

ligands were subjected for energy minimization before using it for the protein docking 

simulation experiments using AutoDock software [45]. 

8.3.7 Protein Docking of Refined Models 

The refined and validated 3D modelled laccase proteins were used for further protein 

docking studies. We have used AutoDock Tools v1.5.6 and AutoDock Vina v1.1.2 [46] for the 

simulated protein docking experiments. The refined protein model in PDB file format were 

initially opened in AutoDock Tools and following functions were performed a) add all 

hydrogens b) merge non-polar hydrogens c) compute Gasteiger charges d) finally, save the 

protein model in PDBQT format. The ligand (lignin model compounds) are loaded into 

AutoDock Tools and following functions were performed a) detect root using the option 

torsion tree b) the number of torsions were set to maximum c) then finally save the ligand in 

PDBQT format. Later we have prepared the AutoDock Vina configuration files for all the 

laccase modelled structures and ligands, the above prepared files were used for performing 

the protein docking analysis. Ligand docking was performed using AutoDock Vina which is 

installed on an instance of the Galaxy platform based on In-house High-Performance 

Computing Cluster (LUHPCC). We have performed blind docking with all the lignin ligand 

models with the exhaustiveness set to 32. The best-fit ligand conformations were selected 

based on their minimum binding energies. Aminoacid residues which established a contact 

with ligand and the residues which are involved in hydrogen bonding with ligands were 

recorded using AutoDock Tools using the results obtained from AutoDock Vina. The validated 

3D laccase modelled structures were compared using the root mean square deviation (RMSD) 

using SWISS-PDB viewer v4.1 [47]. We have used Edu PyMOL v1.7.4 

(https://pymol.org/educational) for visualizing the interactions of the ligand and modelled 

protein structure and for developing the respective docked images. 

https://pymol.org/educational
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8.4. Results: 

8.4.1. Sequence Retrieval, Analysis and Physico-Chemical Properties 

We have retrieved genome wide laccase encoding protein sequences from P. 

brevispora and D. squalens (white rot fungi), F. pinicola and W. cocos (brown rot fungi), and 

C. globosum and Cadophora sp (soft rot fungi). Total of 56 laccase protein sequences from P. 

brevispora (5), D. squalens (12), F. pinicola (6), W. cocos (4), C. globosum (6) and Cadophora 

sp (22), were retrieved from JGI MycoCosm database. The laccase protein sequences 

exhibiting highest sequence similarities with the known laccase structures from PDB database 

upon BLASTP search, were considered for the present study. The following protein sequences 

of fungi exhibiting higher sequence identities were used for the modeling studies: Phlbr1-

25201, Dsqual-59186, Fompi3-45001, Wcocos-139080, Chagl1-12114 and Cadophora-560981.  

The selected laccase protein sequences were found to contain about 520 to 619 

aminoacid residues with an exception of 479 (W. cocos), with a theoretical molecular weight 

and pI ranging between 52277.43 to 68515.16 Daltons and 4.46 to 6.88 respectively (Table 

8.1). All the above fungal laccase protein sequences were found to be stable with an instability 

index value ranging between 28.04 to 38.02, with an exception of W. cocos laccase protein 

instability index of (40.44) (Table 8.1). Aliphatic index values of the laccase proteins were 

under the range of 74.44 to 90.4. The grand average of hydropathicity (GRAVY) index values 

of the laccase proteins were mostly negative indicating the hydrophilic nature of these 

proteins, with an exception of P. brevispora laccase protein which gave a positive value 

indicating its hydrophobic nature and the hydropathicity plots generated using 

DiscoveryStudio ® 2016 Client® were also found to be in accordance with the GRAVY results 

(Table 8.1). The selected laccase protein sequences exhibited higher evolutionary 

similarities with the template protein sequences. All the above considered laccase protein 

sequences were found to contain sequences coding for cupredoxin superfamily conserved 

domains specifically trinuclear Cu binding site (CuRO_1_Tv-LCC_like), domain 3 interface 

(CuRO_2_Tv-LCC_like) and type-1 copper binding site (CuRO_3_Tv-LCC_like) with an 

exception of W. cocos laccase only CuRO_3_Tv-LCC_like domain sequences. Laccase protein 

sequences of soft rot fungi contain cupredoxin superfamily conserved domains matching to 

Melanocarpus albomyces, whereas white and brown rot fungi possessed cupredoxin 

superfamily conserved domains matching to Trametes versicolor (Figure 8.1).  
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Table 8.1: Lists the physico-chemical properties of laccase protein sequences calculated 

from ExPASy ProtParam and EDBCP tools: 

 

(Note: M.W* = Molecular weight in Daltons, pI* = Theoretical pI values, EC = Extinction 

coefficient (M-1 cm-1), -R = number of negatively charged amino acids, +R = number of 

positively charged amino acids, Ii = Instability index, Ai = Aliphatic index, GRAVy= grand 

average of hydropathy, #. Of Cys= Number of cysteine residues) 

The selected laccase protein sequences were also subjected to series of analysis using 

SignalP (for the detection of signal peptides cleavage sites), TMHMM (for detecting 

transmembrane helices in proteins) and NetAcet (for predicting N-acetyltransferase A 

substrates) webservers. According to Nakai (2000), the signal peptide ranges between the 15 

to 40 aminoacid residues, required for the protein secretion and eventually these sites are 

cleaved from the mature protein [48]. We have observed that all the laccases except W. cocos 

(13980) possessed a signal peptide, which supports that these laccases are secretory 

proteins. The amino acid sequence involved in formation of transmembrane helices were only 

found to be present in D. squalens and these results explains that majority of aminoacid 

residues occur in the outside region. Results obtained from CELLO v2.5 subcellular location 

predictor showed that the laccase proteins of P. brevispora (3.981), D. squalens (4.644), F. 

pinicola (3.688), W. cocos (3.871), C. globosum (3.995) and Cadophora (3.782) where located 

in the extracellular regions of fungi. All the selected laccase protein sequences showed N-

Myristoylation, N-glycosylation, Amidation (except Cadophora sp), Casein kinase-II 

phosphorylation site, protein kinase c phosphorylation site and multi copper oxidase type-

Organism  

(protein-ID) 

Length M.W* pI* EC -R +R Ii Ai GRAVy #.Cys Predicted 

S-S bonds 

Phlebia brevispora 

(25201) 

520 55977.21 5.20 69705 

 

45 23 31.55 90.04 0.082 

 

7 106-509, 

138-227 

Dichomitus squalens 

(59186) 

520 56477.01 4.63 71195 

 

48 22 28.04 84.79 -0.044 6 106-509, 

138-226 

Fomitopsis pinicola 

(45001) 

539 58990.52 4.75 67185 

 

55 26 34.35 88.85 -0.055 7 109-513, 

141-228, 

349-352 

Wolfiporia cocos 

(139080) 

479 52277.43 4.46 68550 

 

54 18 40.44 83.47 -0.135 5 64-468, 96-

183 

Chaetomium 

globosum 

(12114) 

619 68515.16 6.11 12082

0 

 

55 45 35.90 74.44 -0.295 8 51-344, 112-

378, 161-

586 

Cadophora sp. 

DSE1049 

(560981) 

582 63262.99 6.88 12781

0 

 

34 33 38.02 75.74 -0.231 8 26-34, 135-

563, 

327-361 
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1&2 (Cu_oxidase_1, 2 and 3) motif sites (Table 8.2). Analysis from NetAcet v1.0 server has 

showed that laccase proteins of P. brevispora and Cadophora sp possess the substrates for N-

acetyltransferases with values of 0.511 and 0.522 respectively. Whereas laccase protein 

sequences of D. squalens (0.491), F. pinicola (0.478), W. cocos (0.483) and C. globosum (no 

Ala, Gly, Ser or Thr at positions 1-3) do not show any possible substrates for N-

acetyltransferases. We have also analyzed the number of cysteine residues present and 

reported the number of predicted disulfide bridges in the selected laccase protein sequences 

using EDBCP web server. We have observed that laccase protein sequences of P. brevispora, 

D. squalens and W. cocos contain two disulfide bridges, laccase protein sequences of F. 

pinicola, C. globosum and Cadophora sp contain three disulfide bridges. The secondary 

structure elements of the selected laccase proteins were calculated using the SOPMA web 

server. These results show that higher percentage of aminoacids were found to be involved 

in formation of random coils, the alpha helical content of soft rot fungi is less when compared 

to brown and white rot fungi (Table 8.3).  

 

Figure 8.1: Shows the analysis of fungal laccase protein sequences A) phylogenetic analysis 

of laccase protein sequence (P. brevispora, D. squalens, F. pinicola, W. cocos, C. globosum) 

and experimentally determined laccases T. versicolor (1GYC) and M. albomyces (1GW0), B) 

sequence logos of MCO signature 1 (PS00079) and 2 (PS00080) patterns. 

Table 8.2: Computationally predicted motifs in P. brevispora, D. squalens, F. pinicola, W. 

cocos, C. globosum and Cadophora laccase protein sequences obtained from the MOTIF 

SCAN server: 

A 

B 
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Organism, Protein-ID Motif Description / Aminoacid residues (# of sites) 

 

 

P. brevispora (25201) 

Multi copper oxidase 1: 125-145 (1) 

Multi copper oxidase (Cu_oxidase): 163-307 (1) 

Multi copper oxidase (Cu_oxidase_2): 369-494 (1) 

Multi copper oxidase (Cu_oxidase_3): 30-152 (1) 

 

 

D. squalens (59186) 

Multi copper oxidase 1: 125-145 (1) 

Multi copper oxidase (Cu_oxidase): 163-305 (1) 

Multi copper oxidase (Cu_oxidase_2): 365-494 (1) 

Multi copper oxidase (Cu_oxidase_3): 30-152 (1) 

 

 

F. pinicola (45001) 

Multi copper oxidase 1: 128-148 (1) 

Multi copper oxidase (Cu_oxidase): 166-310 (1) 

Multi copper oxidase (Cu_oxidase_2): 372-497 (1) 

Multi copper oxidase (Cu_oxidase_3): 33-155 (1) 

 

 

W. cocos (139080) 

Multi copper oxidase 1: 83-103 (1) 

Multi copper oxidase (Cu_oxidase): 121-267 (1) 

Multi copper oxidase (Cu_oxidase_2): 327-453 (1) 

Multi copper oxidase (Cu_oxidase_3):1-110, 10-110 (1) 

 

 

C. globosum (12114) 

Multi copper oxidase 1, 2: 543-563, 548-559 

Multi copper oxidase (Cu_oxidase): 212-361 (1) 

Multi copper oxidase (Cu_oxidase_2):  427-569 (1) 

Multi copper oxidase (Cu_oxidase_3): 87-206 (1) 

 

Cadophora sp (560981) 

Multi copper oxidase 1, 2: 523-543, 528-539 (2) 

Multi copper oxidase (Cu_oxidase): 186-344 (1) 

Multi copper oxidase (Cu_oxidase_2): 410-549 (1) 

Multi copper oxidase (Cu_oxidase_3): 61-180 (1) 
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Table 8.3: Computationally predicted secondary structure elements of laccase protein 

sequences calculated using SOPMA web server: 

 

 

 

 

 

8.4.2.  Homology Modeling and Model validation: The selected laccase protein sequences 

were used to develop the corresponding 3D protein structures using SWISS-MODEL server. 

In SWISS-MODEL server the best suitable template protein structures for the target protein 

sequence were identified using BLAST and HHblits. The server will also evaluate the global 

and local qualities of the modelled protein structure using QMEAN (a complex function used 

for the estimation of both local and global qualities calculation which includes four parameters 

all atom, Cβ, solvation and torsion) and GMQE (global model quality estimation, which 

retrieves information from template and target alignment). All the selected laccase protein 

sequences were found by BLAST search with >60% of sequence identity. The 3D modelled 

protein structures of fungal laccase proteins were found to be statistically acceptable with 

higher QMEAN and GMQE scores, P. brevispora (1.08), D. squalens (0.55) and C. globosum 

(0.41), F. pinicola (-1.6), W. cocos (-0.19) and Cadophora sp (-1.66). Both the QMEAN and 

GMQE scores were expressed as a number in a range between 0 to 1, where the higher 

number represents higher quality (Figure 8.2) (Table 8.4). These initial protein models were 

refined using GalaxyRefine and KoBaMIN web servers which performs the side chain 

refinement, energy minimization and relaxes the overall modelled structure. The above 

obtained refined laccase protein structures were validated using PROCHECK software and 

Ramachandran plots. The results obtained from Ramachandran plots were found to be 

statistically acceptable, all the laccase refined models attained >90% residues in most favored 

regions (except for F. pinicola-89.3% and Cadophora sp 89.4%) (Table 8.4). The refined 

protein structures were also validated using PROQ, ERRAT and RAMPAGE.  PROQ web tool 

provides mainly LG (a -log P-value, models are good if the score is >3 and very good if the 

score is >5) and Max sub scores (ranges between 0 to 1, 1 being highly reliable and 0 is 

insignificant). All the refined laccase structures achieved significant scores with an LG score 

Protein-ID Alpha helix 

(%) 

Extended Strand 

(%) 

Beta turn 

(%) 

Random coil 

(%) 

Phlbr1_25201 15.96 (83) 30.77 (160) 10.96 (57) 42.31 (220) 

Dsqual1_59186 15.38 (80) 31.92 (166) 11.73 (61) 40.96 (213) 

Fompi3_45001 16.70 (90) 29.31 (158) 9.09 (49) 44.09 (242) 

Wcocos _139080 10.23 (49) 31.94 (153) 10.65 (51) 47.18 (226) 

Chagl1_12114 12.12 (75) 33.12 (205) 10.82 (67) 43.94 (272) 

Cadoph_560981 9.79 (57) 28.01 (163) 9.28 (54) 52.92 (308) 
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of >4 and Max sub score of > 0.3 (except W. cocos). Similarly, overall quality factor values 

obtained from ERRAT server for the refined structures were >84 (except F. pinicola). 

Generally, the predicted protein models attaining overall quality factor >50% infers that the 

homology models were stable and reliable. Results from RAMPAGE server showed that all 

the refined laccase structures exhibited >93% of residues in most favored regions. Results 

obtained from QMEAN4, Ramachandran plots, PROQ, ERRAT and RAMPAGE web servers 

convey that predicted fungal laccases were of good quality (Table 8.5) (Figure 8.2 & 8.3). The 

structural variation observed in the Ramachandran plots generated from PROCHECK and 

RAMPAGE web servers can be explained by the advanced refined and more reliable protein 

structure validation methods implemented by the RAMPAGE web server [41].  

 

Figure 8.2: QMEAN scores for the 3D modelled laccase structures obtained from SWISS-

MODEL server for fungal protein sequences P. brevispora, D. squalens, F. pinicola, W. cocos, 

C. globosum and Cadophora sp 

P. brevispora_25201 F. pinicola_45001 D. squalens_59186 

W. cocos_139080 Cadophora_560981 C. globosum_12114 
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Figure 8.3: Homology models of laccase protein sequences A) Phlebia brevispora B) 

Fomitopsis pinicola C) Dichomitus squalens D) Wolfiporia cocos E) Chaetomium globosum F) 

Cadophora DSE1049 v1.0. 

Table 8.4: Comparison of results obtained from the Swiss model server (BLAST and HHblits) 

and BLASTP (NCBI PSI-BLAST against PDB server): 

Organism, 

Protein-ID 

Template 

Swiss PDB-server 

Sequence 

Identity  

GQME QMEAN Template 

BLASTP 

Sequence  

Identity 

Phlbr1 (25201) 5a7e.1A 70.24 0.86 1.08 3KW7 71 

Dsqual1 (59186) 1kya.1A 80.92% 0.97 0.55 2QT6 82 

Fompi3 (45001) 5ehf.1A 60.57 0.78 -1.6 3KW7 63 

Wcocos (139080) 5anh.1A 63.83% 0.84 -0.19 3KW7 66 

Chagl1 (12114) 1gw0.1A 80.29 0.84 0.41 1GW0 80 

Cadophora 

(560981) 

3pps.1A 61.75% 0.79 -1.66 3PPS 59 
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Table 8.5:  Ramachandran plot scores of laccase modelled protein structures obtained after 

customized refining pipeline using different model refining softwares and results from 

RAMPAGE, PROQ, ERRAT and RMSD (initial and final protein structures) webservers:  

 

Note: (The pipeline used for refining the protein models was SWISS model → Galaxy Refine 

→ KoBaMIN; only KoBaMIN, RAMPAGE results were RFR= residues in favored regions, 

RAR= residues in allowed regions and ROR = residues in outlier regions; The highlighted 

regions represent the final refined laccase modelled structures used for the molecular 

docking analysis and their respective Ramachandran plot scores) 

8.4.3. Molecular Docking of Modelled Laccases with Lignin Model Compounds 

Molecular docking experiments of 3D modelled fungal laccases (white rot, brown rot and soft 

rot) with lignin model compounds that is monomers (sinapyl, coniferyl and p-coumaryl 

alcohol), dimer (guaiacyl 4-O-5 guaiacyl), trimer (syringyl β-O-4 syringyl β-O-4 sinapyl 

alcohol) and tetramer (guaiacyl β-O-4 syringyl β-β syringyl β-O-4 guaiacyl) was performed 

using AutoDock Tools and Vina software. Results obtained from this study were reported in 

Table 8.6, 8.7 and 8.8. Based on the results obtained we have observed a sharp increase in 

Method Used Phlbr1 

(25201) 

Dsqual 

(59186) 

Fompi3 

(45001) 

Wcocos 

(139080) 

Chagl1 

(12114) 

Cadophora 

(560981) 

SWISS model  

(Initial quality) 

87.0 87.1 82.7 82.4 85.9 81.6 

Galaxy Refine  

(after SWISS) 

90.5 90.4 88.3 90.3 91.3 89.4 

KoBaMIN (after GR) 90.7 92.3 89.3 89.5 90.5 88.3 

Only KoBaMIN 91.7 89.4 87.8 90.0 92.2 87.9 

RAMPAGE (RFR, 

RAR, ROR) 

97.6, 2, 0.4 97.4, 1.8, 

0.8 

94.8, 2.6, 

2.6 

93.9, 4, 

2.1 

98.4, 

1.4, 0.2 

96.2, 2.3, 

1.4 

RMSD (Initial vs 

Final Model) 

0.36 Ao 0.40 Ao 0.34 Ao 0.33 Ao 0.35 Ao 0.40 Ao 

RMSD (Final vs 

Template) 

0.35 Ao 0.52 Ao 0.37 Ao 0.34 Ao 0.41 Ao 0.51 Ao 

PROQ (LG and Max 

Sub) 

4.631, 

0.348 

5.002, 

0.359 

5.228, 

0.389 

4.486, 

0.295 

4.562, 

0.369 

5.050, 

0.325 

ERRAT Server 87.780 86.735 75.102 87.152 89.091 84.432 
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binding efficiencies from monomers to tetramers with increase in size of the ligand with all 

the fungal (white, brown and soft rot) laccases (Table 8.6). The binding efficiencies of white 

rot fungal laccases (P. brevispora and D. squalens) has exhibited a clear ascending order of 

minimum binding efficiencies from monomers to tetramers (-6.0 to -8.2). Brown rot fungal 

laccases (F. pinicola and W. cocos) has also shown a clear increase in minimum binding 

efficiencies from monomers to tetramers however, unlike white rot laccases brown rot 

laccases exhibited selective specificity among the ligands. When compared to white rot and 

brown rot fungal laccases, soft rot fungal laccases (C. globosum and Cadophora sp) exhibited 

lesser minimum binding efficiencies and were variably specific among the ligands. Based on 

these results we can conclude that fungal laccases exhibit higher minimum binding 

efficiencies for lignin model compounds and out of which trimers and tetramers bind more 

efficiently to the fungal laccases. The higher binding efficiencies exhibited by white rot fungal 

laccases towards lignin model compounds are evident to their extrinsic lignin degrading 

abilities. 

Table 8.6: Lists the final predicted minimum binding energy scores (kcal/mol) of predicted 

laccase models with lignin model compounds obtained from AutoDock Vina software:  

 

The lignin model compounds sinapyl (SA), coniferyl (CA), p-coumaryl alcohol (CoA), 

dimer, trimer and tetramer were found to interact with a total of 7, 7, 3, 6, 10,13 aminoacid 

residues of P. brevispora respectively. Out of which following aminoacid ligand interactions 

were found to be common among SER134, GLU481, PHE471, PHE369 (SA: CA), PRO371, 

HIS132 (SA: CA: CoA), ALA101 (SA: CoA) and PRO371, PHE102 (dimer and trimer). We have 

observed that hydrogen bond formations were between SA-ALA101, CA-HIS132 and GLU481, 

Ligand 

(Modelled Protein-ID) 

Phlbr1 

(25201) 

Dsqual 

(59186) 

Fompi3 

(45001) 

Wcocos 

(139080) 

Chagl1 

(12114) 

Cadophora 

(560981) 

Sinapyl alcohol  -6.0 -5.4 -5.7 -5.8 -6.0 -5.6 

Coniferyl alcohol  -6.0 -6.2 -7.0 -6.0 -5.6 -5.8 

p-coumaryl alcohol  -6.1 -6.3 -6.7 -5.8 -5.5 -6.8 

Guaiacyl 4-O-5 guaiacyl  -6.9 -6.7 -6.2 -7.1 -6.5 -6.8 

Syringyl β-O-4 syringyl β-O-4 

sinapyl alcohol 

-7.8 -7.1 -7.0 -8.2 -6.8 -6.9 

Guaiacyl β-O-4 syringyl β-β 

syringyl β-O-4 guaiacyl 

-7.7 -7.4 -7.2 -7.0 -7.2 -6.1 
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CoA-HIS132 and tetramer GLU325 residues of P. brevispora laccase. Similarly, lignin model 

compounds were found to interact with 4, 6, 7, 6, 10 and 11 aminoacid residues of D. squalens 

laccase protein. Following aminoacid ligand interactions were observed in common LEU480 

(SA-Tetramer), ALA101 (CoA-Tetramer), PHE102, TYR512 (SA-Dimer-Tetramer), PHE365 (CA-

CoA-Dimer), ASP481, HIS132 (CA-CoA-Tetramer), SER134 (CA-Dimer-Tetramer), LEU133 

(SA-CA-Dimer-Tetramer) and PRO367 (CA-CoA-Dimer-Tetramer). And hydrogen bond 

formations were observed between SA-LEU480, CA-SER134 and PHE365, CoA- HIS132 and 

ASP481, Trimer- LEU115 and Tetramer-ASP481.  

Brown rot fungal laccases considered for this study F. pinicola and W. cocos were found 

to interact with lignin model compounds (SA, CA, CoA, dimer, trimer and tetramer) through 

4, 7, 6, 5, 12, 12 and 5, 6, 7, 8, 16, 11 aminoacids residues respectively. F. pinicola laccase 

protein and ligands were involved in hydrogen bond formations between SA-ARG95, CA-

ALA187, CoA-ASP229, dimer-VAL169, trimer-SER374 and tetramer-ASP152, with commonly 

interacting residues ASP229, TYR176 and CYS141 between CA and CoA, ILE183 between CA-

tetramer respectively. In W. cocos laccase protein following aminoacids were found in 

common GLU204 (CoA-trimer), ASN205(dimer-trimer), GLY203 (SA, CA, CoA, dimer), PHE85 

(SA, CA, dimer, trimer) and GLN81, SER384, ALA82 (SA, CA, CoA, dimer and tetramer) with 

formation of hydrogen bonds between SA-SER384, CA-ALA82, CoA-ALA82, dimer-GLN81, 

trimer-ALA82, ASN424 and tetramer-GLN214 respectively (Table 8.7).  

Soft rot fungal laccases considered for this study C. globosum and Cadophora sp were 

found to interact with lignin ligand model compounds SA, CA, CoA, dimer, trimer and 

tetramer by 7, 7, 8, 7, 9, 12 and 5,5,8,7,9, 10 aminoacid residues respectively. In C. globosum 

laccase following aminoacid residues were found to interact commonly GLY192, TYR222, 

ASP220, TYR221 with SA and CoA, ARG400, GLY402, ILE451, VAL452, GLN453, TYR462 with 

trimer and tetramer respectively. We have observed hydrogen bond formation between SA-

TYR222, CoA-THR280, dimer-ARG513, trimer-ARG400, ILE451, GLN453 and tetramer-

THRE447, ILE451, GLN459, TYR462 residues respectively. In Cadophora sp laccase protein 

following residues SER536, VAL400 and GLN537 found to be interact commonly with SA and 

CA, whereas THR144, ARG148, LYS143, ASN123, SER146, ASN126, ILE125 with trimer and 

tetramer respectively. And hydrogen bond formation was observed between CoA- ALA532, 

dimer-ALA336, trimer-THR144, ARG148 and tetramer-ASN562 residues (Table 8.7). 
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Table 8.7: Lists the aminoacid residues of modelled fungal laccases in contact with the lignin- 

based model compounds Monomers (Sinapyl alcohol, Coniferyl alcohol and p-coumaryl 

alcohol), Dimer, Trimer and Tetramer (Note: aminoacids represented in bold are involved in 

hydrogen bonding between protein and ligand): 

Ligand Phlbr1 

(25201) 

Dsqual 

(59186) 

Fompi3 

(45001) 

Wcocos 

(139080) 

Chagl1 

(12114) 

Cadophora 

(560981) 

Sinapyl alcohol 

 

 

 

 

PRO371 

HIS132 

SER134 

GLU481 

PHE471 

GLY483 

PHE369 

PHE102 

LEU133 

TYR512 

LEU480 

ARG95 

PRO124 

ASN125 

GLN94 

GLN81 

PHE85 

SER384 

GLY203 

ALA82 

GLY192 

TYR222 

ASP220 

VAL196 

MET219 

TYR221 

THR278 

ASP579 

ALA397 

SER536 

VAL400 

GLN537 

Coniferyl alcohol SER134 

HIS132 

PRO371 

GLU481 

ALA101 

PHE369 

PHE471 

SER134 

LEU133 

PRO367 

ASP481 

HIS132 

PHE365 

PHE481, 

ILE183 

ASP229, 

ALA187 

TYR176, 

ARG46 

CYS141 

ALA82 

GLN81 

PHE48 

GLY203 

SER384 

PHE85 

PHE598 

VAL601 

THR134 

ASN135 

TRP430 

ASN596 

ASP227 

LYS401 

VAL400 

ARG410 

GLN537 

SER536 

p-Coumaryl alcohol HIS132 

PRO371 

ALA101 

PRO367 

GLY483 

PHE365 

ALA101 

ALA482 

ASP481 

HIS132 

ASP229 

TRP175 

CYS141 

CYS228 

ASP174 

TYR176 

ASP202 

ALA82 

GLY203 

GLU204 

GLN81 

ASP405 

SER384 

TYR221 

LYS101 

TRP553 

TYR222 

ASP220 

LEU229 

GLY192 

THR280 

VAL264 

LEU582 

TRP156 

TYR165 

VAL535 

ALA532 

SER170 

PRO262 

Guaiacyl 4-O-5 guaiacyl PRO371 

TYR512 

LEU133 

SER134 

PHE102 

PHE369 

LEU133 

PHE365 

PHE102 

PRO367 

SER134 

TYR512 

LEU59 

GLU166 

ILE211 

VAL169 

ASN195 

SER384, LYS19 

ALA82, PHE85 

ASN205, 

GLY203 

PHE48, 

GLN81 

GLY490 

VAL520 

ARG513 

ARG491 

PRO519 

PRO382 

VAL488 

TYR244 

PRO237 

ASN332 

TRP317 

ASN348 

ALA336 

VAL235 
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Syringyl β-O-4 syringyl 

β-O-4 sinapyl alcohol 

GLU481, 

PRO371 

PHE102, 

LEU480 

LYS178, 

ALA101 

PHE471, 

PRO182 

VAL370, 

LYS361 

LYS92 

TRP96 

ARG64 

PRO502 

ALA504 

GLN119 

ASP117 

THR94 

LEU115 

TRP505 

ASP82, 

GLU523 

LEU483, 

SER181 

LEU138, 

PRO110 

SER374, 

ALA484 

ILE183, 

ALA104 

PHE105, 

GLY137 

PHE48, 

ASN424 

GLU204, 

ASN205 

ALA82, 

HIS383 

LEU291, 

ARG403 

ASP422, 

PHE85 

SER384, 

GLU292 

PRO111, 

SER386 

PRO297, 

GLN81 

ARG400 

ASN403 

GLY402 

ILE451 

PHE397 

VAL452 

GLN453 

TYR462 

VAL398 

THR150 

THR144 

ARG148 

LEU121 

LYS143 

ASN123 

SER146 

ASN126 

ILE125 

Guaiacyl β-O-4 syringyl 

β-β syringyl β-O-4 

guaiacyl 

ASN284, 

ASN324 

TYR261, 

GLN264 

LEU316, 

THR259 

TYR266, 

THR232 

GLU325, 

SER433 

PHE293, 

SER234 

LEU323 

THR369 

PRO367 

ALA101 

ASP481 

SER134 

LEU133 

TYR512 

ALA517 

LEU480 

HIS132 

PHE102 

THR340, 

PRO343 

ASP152, 

GLY338 

THR466, 

GLY341 

ARG448, 

PHE465 

PHE430, 

LYS64 

ASN250, 

SER431 

PRO282, 

GLN216 

LEU283, 

LEU284 

GLU285, 

SER408 

PHE218, 

SER279 

GLN214, 

ALA391 

GLY392 

VAL452 

GLN459 

ASP455 

GLY402 

TYR462 

THR447 

THR461 

ASN422 

ARG400 

ILE451 

GLN453 

TRP463 

ASN562 

THR144 

ARG148 

LYS143 

PHE147 

ASN123 

THR560 

SER146 

ASN126 

ILE125 



239 | P a g e  
 

 

Figure 8.4: Protein docking of laccase protein molecular models with syringyl -O-4 syringyl 

-O-4 sinapyl alcohol (Trimer) and guaiacyl -O-4 syringyl -  syringyl -O-4 guaiacyl 

(Tetramer), A) Phlebia brevispora, B) Wolfiporia cocos, C) Dichomitus squalens, D) Fomitopsis 

pinicola, E) Chaetomium globosum and F) Cadophora DSE1049 v1.0. 

8.5. Discussion 

In our present study, we have performed a comparative modeling and molecular 

docking study of fungal laccase protein sequences, to understand and reveal the lignin 

degrading abilities exhibited by white rot, brown rot and soft rot fungi. We have retrieved all 

the laccase protein sequences (genome wide) of the selected fungi however, based on the 

sequence similarity against experimentally validated protein structures (PDB) we have 

considered Phlbr1-25201, Dsqual-59186, Fompi3-45001, Wcocos-139080, Chagl1-12114 

Cadophora-560981. The above considered laccases possess the essential domains belonging 

to cupredoxin superfamily and specifically contains Cu_oxidase type 1, 2 and 3 of 

multicopper oxidase domains. We have observed that P. brevispora, D. squalens (white rot) 

A B C 

D E F 
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laccase sequences were closely related to the experimentally determined laccase of 

Trametes versicolor (1GYC) and laccase sequences of F. pinicola and W. cocos fall under the 

same branch and share good similarity with T. versicolor (1GYC) and white rot fungal 

laccases. Whereas soft rot fungal laccases C. globosum and Cadophora sp were found to be 

closely related to the experimentally determined laccase of Melanocarpus albomyces (1GW0) 

(Figure 8.1A). Multicopper oxidases (MCO) are group of enzymes performing single electron 

oxidation of various substrate with an associated four electron reduction of molecular oxygen 

to water molecule [49]. The enzymes belonging to MCO class were further classified into 

laccase, ferroxidase, ascorbate oxidase and ceruloplasmin. Previous studies have revealed 

that MCOs consists of two active sites a) substrate oxidizing site (blue type-1 (T1) copper site) 

and b) oxygen binding site (tri nuclear copper site containing three type-2 (T2) or type-3 (T3) 

coppers) [49]. The electrons are transferred from T1 copper site to T2/T3 copper site through 

a set of highly conserved amino acid residues (MCO-specific patterns) [6, 50, 51] (Figure 

8.1B). Except ceruloplasmin (six domains) and bacterial laccases (two domains), most of the 

MCOs contain three cupredoxin domains, based on the presence of these domains the length 

of MCOs ranges between 300 to 1000 residues and can contain up to six copper ions [6, 49]. 

All the fungal laccase protein sequences selected for the present study ranges 

between 479 to 619 (Table 8.1) containing four copper ions mostly in contact with histidine 

residues. The aminoacid composition of the selected laccases show the higher content of 

negatively charged amino acids (aspartic and glutamic acids) can explain about the acidic 

nature (theoretical pI values obtained) of the laccases. The concentration of tyrosine, 

tryptophan and cysteine residues reflects the extinction coefficients of fungal laccases [27]. 

The physico-chemical properties such as theoretical pI and molecular weight, extinction 

coefficient values for soft rot fungal laccases (C. globosum and Cadophora sp) were 

comparatively higher than brown and white rot laccases. The lower extinction coefficients of 

white and brown rot laccases might be due to the lower content of phenylalanine, tyrosine, 

tryptophan and cysteine residues [27]. Studies have reported that proteins exhibiting an 

instability index lesser than 40 possess an in vivo half-life of 5h and instability index greater 

than 40 has an in vivo half-life period of 16h [52]. The instability index (used for estimation of 

in vivo half-life of proteins) values report that the selected laccases have a long in vivo half-

life period of 16 hours except for W. cocos laccase protein (in vivo half-life period of < 5 hours) 

[28, 52]. The aliphatic index (determined using the relative volume occupied by aliphatic side 

chains of alanine, valine, leucine and isoleucine) is used as a positive factor for increase in 
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thermal stability of globular proteins [29]. The selected fungal laccases exhibited aliphatic 

index values in the range of 74.44 to 90.04, which suggests the stability of selected laccases 

at wider temperature ranges. The hydrophobicity/hydrophilicity of protein can be defined 

using the GRAVY (grand average of hydropathicity) index values, where the positive and 

negative values denote for hydrophobic and hydrophilic natures of the protein. All the 

selected fungal laccase proteins except P. brevispora were found to be hydrophilic in nature 

reporting that these laccases interact better with water. The hydropathicity plots generated 

using Discovery studio visualizer® for the laccase protein sequences also support the above 

reported values.  

The secondary structure analysis of the selected laccase protein sequences using 

SOPMA web server has revealed that the percentage of random coiled secondary structures 

content is higher followed by extended strand percentage (Table 8.3). Earlier studies have 

reported that random coiled secondary structures are involved in imparting flexibility, 

turnover and conformational changes of the enzymes [53]. Upon Motif scan analysis, all the 

selected laccase proteins were commonly found to contain motif sequences for 

phosphorylation, glycosylation, myristoylation and multi copper oxidase patterns (Table 8.2). 

Phosphorylation is significant process which effects the functional and structural activities of 

proteins and regulates the cell behavior in eukaryotes, through controlling its intrinsic 

biological activity, cellular localization and interaction with other proteins [54]. The laccase 

protein sequences commonly showed casein kinase-II, protein kinase C and cAMP/cGMP 

dependent protein kinase (F. pinicola and W. cocos) phosphorylation sites. Similarly, we have 

observed myristoylation patterns commonly among the laccases, myristoylation 

(modification of proteins with myristic acid) alters the conformational stability of proteins 

through interacting with hydrophobic membranes and domains of the protein, it also plays 

crucial role in cellular signaling and extracellular export of the proteins [18, 55-57]. Other 

commonly observed patterns include glycosylation and amidation these post translational 

modifications are involved in imparting thermal stability, copper retention and retains its 

biological activities [58]. According to Marion et al (1998), most of the laccases are 

extracellular glycoproteins [59], results obtained from CELLO v2.5 subcellular location 

predictor showed that the above selected laccases were extracellular. We have observed two 

disulfide bonds in P. brevispora, D. squalens, W. cocos and three disulfide bonds in F. pinicola, 

C. globosum and Cadophora sp.  Previous studies have reported that extracellular proteins 

contain more cysteine residues and disulfide bonds, compared to intracellular proteins, thus 
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disulfide bonds in extracellular laccase proteins play crucial role during protein folding and 

stability of the protein [60, 61].  Presence of signal peptide cleavage sites (except W. cocos) 

and absence of transmembrane helices (except D. squalens), supports the extracellular nature 

of the selected fungal laccases.  

Homology modeling studies are highly significant in determining protein structures 

for the proteins which lack the experimental structures, in the past few decades a wide range 

of efficient tools and servers were developed which can perform modeling studies of proteins 

even with 30% of sequence identity with an accuracy achieved from low resolution X-ray 

structures [18, 62]. Thus performing computational studies predicting the structural and 

functional properties of commercially important enzymes will significantly support in 

planning biological experiments based on these enzymes [18]. Homology modeling of the 

selected fungal laccases was performed using SWISS Model automated server, it selects best 

template based on the sequence identity results obtained through BLAST and HHblits [37]. 

SWISS-Model server performs a range of quality checks and refines the side chains and loops 

of the targets using template structures, it generates quality scores such as QMEAN4 and 

GMQE scores. According to Benkert et al (2009), QMEAN is a compound scoring function used 

for the estimation of global and local model qualities [63]. QMEAN uses four structural 

descriptors a) torsion angle potential b) all atom c)C-beta interactions d) solvation potential, 

for the estimation of local and global qualities of the modelled structures between 0 

(unreliable) to 1(better model) [63]. Global model quality estimation (GMQE) combines 

properties from the template and target alignment, GMQE is estimated in between 0 

(unreliable) to 1 (reliable mode) [37]. We have obtained positive QMEAN scores for P. 

brevispora, D. squalens and C. globosum whereas negative QMEAN scores for F. pinicola, W. 

cocos and Cadophora sp laccases. SWISS Model server provides the quality estimations in the 

form of a chart where 3D modelled structures have a color gradient in between blue to red 

which defines the resolutions between 1 and 3.5Å respectively, where the greater blue values 

represents a reliable structures [37]. Estimated global model qualities (GMQE) for the 

modelled laccases where found to be in between the range of 0.78 to 0.97, which indicates a 

good quality and reliable structures (Figure 8.3).  

The above obtained 3D modelled structures of fungal laccases were further refined 

using GalaxyRefine and KoBaMIN web servers. KoBaMIN web server performs a knowledge 

based potential of mean force correction of the modeled structures, KoBaMIN internally uses 
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knowledge based potential derived from PDB structures which also uses the energy function 

which implements the effects of solvent and crystal environment and MESHI for optimizing 

stereochemistry of the models [39]. GalaxyRefine is online web server which primarily 

rebuilds the side chains and also performs repacking of side chains and later relaxes the 

overall structure through molecular dynamic simulation methods, It improves both local and 

global structural qualities of the predicted models [38]. We have applied a combination of 

above-mentioned model refining methods differentially to obtain a best protein model with 

reliable Ramachandran scores and higher acceptable residues. We have performed 

validation of the refined models using PROCHECK, RAMPAGE and ERRAT analysis (Table 

8.4). The refined selected laccase models upon Ramachandran plot analysis revealed that 3D-

modelled protein structures have >90% of residues in allowed regions. For the predicted 

protein structures, it is ideal to contain at least 90% of the residues must be in regions of 

allowed regions, which suggests the predicted laccase structures were of good quality. We 

have also validated the refined laccase structures using PROQ web server, it generates two 

quality metrics for the estimation of model quality they are LG score and Max sub-score [43]. 

Where LG score must be greater than 4 and max sub score must be greater than 0.8 (very 

good) for the reliable protein structures. All the predicted laccase models have attained LG 

and max sub scores between the range of (4.48-5.22) and (0.295-0.389) respectively, which 

suggests that the refined 3D models of fungal laccases were of good quality [43]. Finally, we 

have used ERRAT web server for the validation of the refined models, ERRAT analyses the 

non-bonded interactions among different atom types based on characteristic atomic 

interactions [42]. We have observed that all the predicted model structures have attained an 

overall quality factor >50 which confirms that the refined laccase models were of good quality 

[18, 42]. From the predicted 3D modelled fungal laccase structures, we can infer that soft rot 

fungal laccases C. globosum and Cadophora sp have shown significant differences in 

structural and physico-chemical properties when compared to white rot and brown rot fungal 

laccases. In order, to reveal these differences we have superimposed all the refined laccase 

models using SWISS PDB viewer. Results obtained from the superimposition studies have 

revealed that RMSD values obtained for soft rot fungal laccases (C. globosum and Cadophora 

sp) showed slight structural differences when compared to white and brown rot laccases 

(Table 8). 

Table 8.8: Lists the root mean square deviation (RMSD Å) values obtained from the 

comparison studies of white, brown and soft rot fungal laccases: 
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Several structural studies were conducted in the past which has revealed the structural 

and functional properties of plant cell wall-based compounds and especially lignin-based 

compounds. Ralph S.A et al (2004) has conducted structural studies of lignin and other plant 

cell wall compounds, and developed a single source database for lignin model compounds 

[44]. We have considered six lignin model compounds for the present protein docking 

studies, lignin building monomers (sinapyl, coniferyl and p-coumaryl alcohol), dimer 

(guaiacyl 4-O-5 guaiacyl), trimer (syringyl β-O-4 syringyl β-O-4 sinapyl alcohol) and tetramer 

(guaiacyl β-O-4 syringyl β-β syringyl β-O-4 guaiacyl) [19].  We have used AutoDock Vina and 

Tools for achieving the protein docking studies using the above-mentioned lignin model 

compounds [46]. AutoDock Vina is a fast and accurate method of ligand protein docking tools 

which will facilitate flexible docking studies [46]. We have clearly observed that in P. 

brevispora, W. cocos laccase protein, monomers, dimer and trimer were mostly found to bind 

to the same pocket in different conformations, with tetramer binding at different (large) 

pocket. Whereas in D. squalens laccase protein we have observed that monomers, dimer and 

tetramer bind at the same pocket and contrastingly trimer binds separately at different 

pocket. The lignin model compounds (monomer, dimer, trimer and tetramers) were found 

bind separately at different pockets in F. pinicola laccase protein. Both soft rot fungal 

(Cadophora sp and C. globosum) laccases when docked with lignin model compounds, 

showed similar binding patterns monomers, dimer bound at different pockets however, 

Organism 

P. 

brevispora 

D. 

squalens 

F. 

pinicola 

W. 

cocos 

C. 

globosum 

Cadophora 

sp 

P. brevispora n/a 0.62 0.83 0.46 1.11 1.06 

D. squalens 0.62 n/a 0.84 0.68 1.13 1.08 

F. pinicola 0.83 0.84 n/a 0.80 1.23 1.17 

W. cocos 0.46 0.68 0.80 n/a 1.07 1.12 

C. globosum 1.11 1.13 1.23 1.07 n/a 0.68 

Cadophora 

sp 1.06 1.08 1.17 1.12 0.68 n/a 
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trimer and tetramer bound at the same pockets respectively. The binding patterns of trimer 

and tetramer by modelled fungal laccases were shown below (Figure 8.4). 

We have compared the aminoacid residues of fungal laccases which are occurring in 

close interactions with lignin model compounds. Commonly found aminoacid residues 

between the white rot fungal laccases were PRO, HIS, SER, PHE, GLY, ALA, TYR, LEU, LYS, 

GLN, THR. Similarly, common aminoacid residues between brown rot fungal laccases were 

ARG, PRO, ASN, GLN, PHE, ASP, ALA, LEU, GLU, SER, GLY and LYS. Finally, common 

aminoacid residues between soft rot fungal laccases were TYR, ASP, VAL, THR, PHE, ASN, 

TRP, LYS, LEU, ARG, PRO, ILE and GLN. The commonly occurring aminoacid residues among 

the selected white, brown and soft rot fungal laccases were found to be PRO, PHE, LEU, LYS 

and GLN, other commonly found aminoacids were SER, GLY, ALA (white and brown rot), ARG, 

ASN, ASP (brown and soft rot) and TYR, THR (white and soft rot) respectively. 

In support of our present study, protein docking studies using lignin model 

compounds (sinapyl alcohol, dimer, trimer and tetramer) earlier by Awasthi et al (2015), has 

revealed the, interactions of 11 aminoacid residues commonly (LEU, ASP, ASN, PHE, SER, PHE, 

GLY, ALA, PRO, ILE, and HIS) with all the lignin models [19]. Crystallographic studies of 

Melanocarpus albomyces laccase using lignin model compounds by Kallio et al (2009),, has 

revealed the interactions of seven amino acid residues (ALA, PRO, GLU, LEU, PHE, TRP, and 

HIS) with the lignin model compounds [64]. According to Awasthi et al (2015), fungal laccases 

exhibiting higher redox potential were found to include phenylalanine in the active binding 

site of the lignin model compounds, which is in accordance with the present results [19]. 

Molecular docking studies of G. lucidum and P. ostreatus 3D-predicted laccases with ABTS,  

has revealed the close interactions of aminoacid residues (Phe, Asp, Ser, Pro, Gly, Ile, His and 

Gly, Val, Pro, Asp, Ser, Asn, Phe, Ile, Trp and His) with the ligand [15]. Similarly, studies 

conducted by Morozova et al (2007) have revealed that laccases exhibiting high potential 

were usually found to contain phenylalanine residue at its axial ligand of type-T1 copper 

binding site. [65]. According to Xu (1996), laccases containing PHE residue at type-T1 copper 

binding site has showed higher redox potential than MET containing laccases [66].  

Results obtained in our present study highlights the structural and functional 

properties exhibited by white, brown and soft rot fungal laccase models. We have clearly 

observed that white and brown rot fungi exhibited clear and strong binding efficiencies 

towards lignin model compounds when compared to soft rot fungal laccases. We have also 
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seen that physico-chemical and structural properties of soft rot fungi exhibited little but 

significant differences upon comparison with white and brown rot fungi. Further molecular 

dynamic simulation and corresponding wet lab experiments must be performed to 

understand the catalytic efficiencies of fungal laccases. Increasing genome and transcriptome 

wide studies were continuously revealing the molecular complexities of several fungi. 

Efficient methods for fishing high potential laccases will play a crucial role in developing 

genetically efficient microorganisms for the degradation of lignin, which will significantly 

help the growing biofuel and bioremediation industries. 

References 

1. Dwivedi UN, Singh P, Pandey VP, Kumar A. Structure–function relationship among bacterial, fungal 

and plant laccases. Journal of Molecular Catalysis B: Enzymatic. 2011; 68: 117-28. 

2. Kameshwar AKS, Qin W. Lignin Degrading Fungal Enzymes.  Production of Biofuels and Chemicals 

from Lignin: Springer; 2016. p. 81-130. 

3. Yoshida H. LXIII.—chemistry of lacquer (Urushi). Part I. communication from the chemical society of 

Tokio. Journal of the Chemical Society, Transactions. 1883; 43: 472-86. 

4. Bertrand G. Sur la presence simultanee de la laccase et de la tyrosinase dans le suc de quelques 

champignons. CR Hebd Seances Acad Sci. 1896; 123: 463-5. 

5. Singh D, Sharma KK, Dhar MS, Virdi JS. Molecular modeling and docking of novel laccase from 

multiple serotype of Yersinia enterocolitica suggests differential and multiple substrate binding. 

Biochemical and biophysical research communications. 2014; 449: 157-62. 

6. Messerschmidt A, Huber R. The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin 

Modelling and structural relationships. European journal of Biochemistry. 1990; 187: 341-52. 

7. Yao B, Ji Y. Lignin biodegradation with laccase-mediator systems. Frontiers in Energy Research. 

2014; 2: 12. 

8. Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G. Laccases: a never-ending story. 

Cellular and Molecular Life Sciences. 2010; 67: 369-85. 

9. Eggert C, Temp U, Eriksson K-E. The ligninolytic system of the white rot fungus Pycnoporus 

cinnabarinus: purification and characterization of the laccase. Applied and Environmental 

Microbiology. 1996; 62: 1151-8. 

10. Bourbonnais R, Paice M, Freiermuth B, Bodie E, Borneman S. Reactivities of various mediators and 

laccases with kraft pulp and lignin model compounds. Applied and environmental microbiology. 

1997; 63: 4627-32. 

11. Camarero S, Ibarra D, Martínez MJ, Martínez ÁT. Lignin-derived compounds as efficient laccase 

mediators for decolorization of different types of recalcitrant dyes. Applied and environmental 

microbiology. 2005; 71: 1775-84. 

12. Rencoret J, Pereira A, José C, Martínez AT, Gutiérrez A. Laccase-mediator pretreatment of wheat 

straw degrades lignin and improves saccharification. BioEnergy Research. 2016; 9: 917-30. 

13. Kunamneni A, Ballesteros A, Plou FJ, Alcalde M. Fungal laccase—a versatile enzyme for 

biotechnological applications. Communicating current research and educational topics and trends 

in applied microbiology. 2007; 1: 233-45. 

14. Thurston CF. The structure and function of fungal laccases. Microbiology. 1994; 140: 19-26. 

15. Rivera-Hoyos CM, Morales-Álvarez ED, Poveda-Cuevas SA, Reyes-Guzmán EA, Poutou-Piñales RA, 

Reyes-Montaño EA, et al. Computational analysis and low-scale constitutive expression of laccases 

synthetic genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia 

pastoris. PloS one. 2015; 10: e0116524. 

16. Meshram RJ, Gavhane A, Gaikar R, Bansode T, Maskar A, Gupta A, et al. Sequence analysis and 

homology modeling of laccase from Pycnoporus cinnabarinus. Bioinformation. 2010; 5: 150. 



247 | P a g e  

 

17. Wong K-S, Cheung M-K, Au C-H, Kwan H-S. A novel Lentinula edodes laccase and its comparative 

enzymology suggest guaiacol-based laccase engineering for bioremediation. PloS one. 2013; 8: 

e66426. 

18. Tamboli AS, Rane NR, Patil SM, Biradar SP, Pawar PK, Govindwar SP. Physicochemical 

characterization, structural analysis and homology modeling of bacterial and fungal laccases using 

in silico methods. Network Modeling Analysis in Health Informatics and Bioinformatics. 2015; 4: 17. 

19. Awasthi M, Jaiswal N, Singh S, Pandey VP, Dwivedi UN. Molecular docking and dynamics simulation 

analyses unraveling the differential enzymatic catalysis by plant and fungal laccases with respect to 

lignin biosynthesis and degradation. Journal of Biomolecular Structure and Dynamics. 2015; 33: 

1835-49. 

20. Binder M, Justo A, Riley R, Salamov A, Lopez-Giraldez F, Sjökvist E, et al. Phylogenetic and 

phylogenomic overview of the Polyporales. Mycologia. 2013; 105: 1350-73. 

21. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, et al. The Paleozoic origin of 

enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 2012; 336: 1715-9. 

22. Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, et al. Comparative genomic 

analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia 

terrestris. Nature biotechnology. 2011; 29: 922-7. 

23. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-

BLAST: a new generation of protein database search programs. Nucleic acids research. 1997; 25: 

3389-402. 

24. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for 

bigger datasets. Molecular biology and evolution. 2016: msw054. 

25. Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and 

Clustal X version 2.0. bioinformatics. 2007; 23: 2947-8. 

26. Gasteiger E, Hoogland C, Gattiker A, Duvaud Se, Wilkins MR, Appel RD, et al. Protein identification 

and analysis tools on the ExPASy server: Springer;  2005. 

27. Gill SC, Von Hippel PH. Calculation of protein extinction coefficients from amino acid sequence data. 

Analytical biochemistry. 1989; 182: 319-26. 

28. Guruprasad K, Reddy BB, Pandit MW. Correlation between stability of a protein and its dipeptide 

composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. 

Protein engineering. 1990; 4: 155-61. 

29. Atsushi I. Thermostability and aliphatic index of globular proteins. Journal of biochemistry. 1980; 

88: 1895-8. 

30. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. Journal 

of molecular biology. 1982; 157: 105-32. 

31. Combet C, Blanchet C, Geourjon C, Deleage G. NPS@: network protein sequence analysis. Elsevier 

Current Trends; 2000. 

32. Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel CV, Hau J, et al. MyHits: improvements to 

an interactive resource for analyzing protein sequences. Nucleic acids research. 2007; 35: W433-

W7. 

33. Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins: Structure, 

Function, and Bioinformatics. 2006; 64: 643-51. 

34. Lin H-H, Hsu J-C, Hsu Y-N, Pan R-H, Chen Y-F, Tseng L-Y. Disulfide connectivity prediction based on 

structural information without a prior knowledge of the bonding state of cysteines. Computers in 

biology and medicine. 2013; 43: 1941-8. 

35. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from 

transmembrane regions. Nature methods. 2011; 8: 785-6. 

36. Kiemer L, Bendtsen JD, Blom N. NetAcet: prediction of N-terminal acetylation sites. Bioinformatics. 

2005; 21: 1269-70. 

37. Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: an automated protein homology-modeling 

server. Nucleic acids research. 2003; 31: 3381-5. 

38. Heo L, Park H, Seok C. GalaxyRefine: protein structure refinement driven by side-chain repacking. 

Nucleic acids research. 2013; 41: W384-W8. 

39. Rodrigues JP, Levitt M, Chopra G. KoBaMIN: a knowledge-based minimization web server for 

protein structure refinement. Nucleic acids research. 2012: gks376. 



248 | P a g e  

 

40. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the 

stereochemical quality of protein structures. Journal of applied crystallography. 1993; 26: 283-91. 

41. Lovell SC, Davis IW, Arendall WB, de Bakker PI, Word JM, Prisant MG, et al. Structure validation by 

Cα geometry: ϕ, ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics. 2003; 50: 437-

50. 

42. Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. 

Protein science. 1993; 2: 1511-9. 

43. Cristobal S, Zemla A, Fischer D, Rychlewski L, Elofsson A. A study of quality measures for protein 

threading models. BMC bioinformatics. 2001; 2: 5. 

44. Ralph SA, Ralph J, Landucci L, Landucci L. NMR database of lignin and cell wall model compounds. 

US Forest Prod Lab, Madison, WI (http://ars usda gov/Services/docs htm. 2004. 

45. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and 

AutoDockTools4: Automated docking with selective receptor flexibility. Journal of computational 

chemistry. 2009; 30: 2785-91. 

46. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring 

function, efficient optimization, and multithreading. Journal of computational chemistry. 2010; 31: 

455-61. 

47. Guex N, Peitsch MC. SWISS‐MODEL and the Swiss‐Pdb Viewer: an environment for comparative 

protein modeling. electrophoresis. 1997; 18: 2714-23. 

48. Nakai K. Protein sorting signals and prediction of subcellular localization. Advances in protein 

chemistry. 2000; 54: 277-344. 

49. Sirim D, Wagner F, Wang L, Schmid RD, Pleiss J. The Laccase Engineering Database: a classification 

and analysis system for laccases and related multicopper oxidases. Database. 2011; 2011: bar006. 

50. Ouzounis C, Sander C. A structure-derived sequence pattern for the detection of type I copper 

binding domains in distantly related proteins. FEBS letters. 1991; 279: 73-8. 

51. Kumar S, Phale PS, Durani S, Wangikar PP. Combined sequence and structure analysis of the fungal 

laccase family. Biotechnology and Bioengineering. 2003; 83: 386-94. 

52. Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degrade proteins: the 

PEST hypothesis. Science. 1986; 234: 364-9. 

53. Buxbaum E. Fundamentals of protein structure and function: Springer;  2007. 

54. Cohen P. The regulation of protein function by multisite phosphorylation–a 25 year update. Trends 

in biochemical sciences. 2000; 25: 596-601. 

55. Podell S, Gribskov M. Predicting N-terminal myristoylation sites in plant proteins. Bmc Genomics. 

2004; 5: 37. 

56. Zheng J, Knighton DR, Taylor SS, Xuong NH, Sowadski JM, Eyck LFT. Crystal structures of the 

myristylated catalytic subunit of cAMP‐dependent protein kinase reveal open and closed 

conformations. Protein Science. 1993; 2: 1559-73. 

57. Olsen HB, Kaarsholm NC. Structural effects of protein lipidation as revealed by LysB29-myristoyl, 

des (B30) insulin. Biochemistry. 2000; 39: 11893-900. 

58. Walsh G. Post-translational modifications in the context of therapeutic proteins: An introductory 

overview. Post-translational Modification of Protein Biopharmaceuticals. 2009: 1-14. 

59. Heinzkill M, Bech L, Halkier T, Schneider P, Anke T. Characterization of laccases and peroxidases 

from wood-rotting fungi (family Coprinaceae). Applied and Environmental Microbiology. 1998; 64: 

1601-6. 

60. Bradshaw RA. Protein translocation and turnover in eukaryotic cells. Trends in biochemical 

sciences. 1989; 14: 276-9. 

61. Nakashima H, Nishikawa K. Discrimination of intracellular and extracellular proteins using amino 

acid composition and residue-pair frequencies. Journal of molecular biology. 1994; 238: 54-61. 

62. Xiang Z. Advances in homology protein structure modeling. Current Protein and Peptide Science. 

2006; 7: 217-27. 

63. Benkert P, Künzli M, Schwede T. QMEAN server for protein model quality estimation. Nucleic acids 

research. 2009: gkp322. 

64. Kallio J, Auer S, Jänis J, Andberg M, Kruus K, Rouvinen J, et al. Structure–function studies of a 

Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds. Journal 

of molecular biology. 2009; 392: 895-909. 

http://ars/


249 | P a g e  

 

65. Morozova O, Shumakovich G, Gorbacheva M, Shleev S, Yaropolov A. “Blue” laccases. Biochemistry 

(Moscow). 2007; 72: 1136-50. 

66. Xu F. Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between 

activity and redox potentials as well as halide inhibition. Biochemistry. 1996; 35: 7608-14. 

 

 

 

 

 

 

 

 

 



250 | P a g e  
 

Chapter-9 

Overall Discussion and Future Recommendations 

The work presented in this dissertation focussed on understanding the fungal molecular 

mechanisms underlying the lignocellulose breakdown and conversion patterns. We have 

developed an efficient metadata analysis pipeline for understanding the genomic and 

transcriptomic datasets of model wood-decaying fungi. Rapidly increasing whole-genome 

sequencing and genome-wide transcriptomic studies of various wood-decaying 

Basidiomycetous fungi are revealing about the extrinsic decaying abilities of fungi. 

Phanerochaete chrysosporium and Postia placenta were the first complete annotated genome 

sequences to represent Basidiomycota division. Availability of complete annotated genomes, 

well-designed genome-wide transcriptomic studies and extensive literature talking about 

their growth patterns and decaying abilities have convinced us to choose these two-model 

wood-decaying fungi for our metadata analysis workflow.  

The metadata analysis of P. chrysosporium and P. placenta gene expression datasets 

has provided us with a highly significant list of lignocellulolytic enzymes and several other 

carbohydrate and aromatic metabolizing enzymes commonly expressed among different 

datasets developed under different growth conditions (customized medium and complex 

plant biomass containing medium) respectively. Our study for the first time has reported a list 

of highly resistant list of lignocellulolytic enzymes significantly expressed commonly among 

all the P. chrysosporium and P. placenta gene expression datasets. Based on the obtained 

results we have reported tentative molecular network of genes, proteins and enzymes 

involved during the breakdown and conversion of plant cell-wall components. Our present 

study has also proved that gene expression of P. chrysosporium is strongly influenced by the 

growth substrates and the incubation periods. The gene expression profiles observed in 

GSE69008 and GSE69461 datasets showed that, when P. chrysosporium is cultured on plant 

biomass it initially secretes various lignin and hemicellulolytic enzymes followed by secretion 

of cellulolytic enzymes in the later growth stages. Previous studies have reported that lignin 

degradation by fungi is majorly dependent on lignin oxidizing enzymes especially laccases, 

ligninolytic peroxidases and other oxidoreductases. However, in our analysis we have 

observed that apart from these lignin oxidizing enzymes several other aromatic compound 

degrading enzymes were differentially expressed among all the P. chrysosporium and P. 
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placenta gene expression datasets. Thus, based on their degree of involvement during the 

process of lignin degradation we have tentatively classified the differentially expressed 

enzymes into primary-lignin degrading enzymes, secondary - aromatic compound degrading 

and tertiary other necessary enzymes respectively.  

During the process of wood-degradation fungi encounters several antioxidant plant 

secondary metabolites such as flavonoids, quinones, stilbenes, tannins and other phenolic 

compounds. In order to escape this strong attack fungi have developed an efficient 

detoxification and stress responsive mechanisms to survive and continue the process of wood 

decay. In our analysis we have consistently observed a set of genes involved in fungal 

detoxification and stress responsive mechanisms were differentially expressed among all the 

gene expression datasets. Based on their involvement we have also classified the 

differentially expressed detoxification and stress genes into phase-I and phase-II metabolic 

enzymes respectively. We have also reported a tentative network of all the genes and 

enzymes involved during lignin degradation and detoxification -stress responsive 

mechanisms of P. chrysosporium. Results obtained in our analysis also reveals a coordinated 

action of enzymes involved in lignin depolymerization and detoxification-stress responses 

under ligninolytic conditions respectively. Our analysis has also reported the cellular 

regulation mechanisms controlling the expression and protein turnover of various 

lignocellulolytic enzymes respectively. This study has also emphasized that P. chrysosporium 

cultured on natural plant biomass highly expressed several genes involved in gene regulation 

processes such as information storage and processing especially DNA damage, repair and 

recombination mechanisms, mRNA splicing, histone acetyltransferases respectively.  

Though P. placenta genome lacks several lignocellulolytic CAZymes, it has developed 

its own signature wood-decay mechanism by employing highly reactive Fenton’s reaction for 

the breakdown and conversion of lignocellulosic components. Major findings of our analysis 

include a) the strong dependency of P. placenta on the Fenton’s reaction system for the 

modification and degradation of lignocellulosic components, b) Higher expression of genes 

encoding for hemicellulolytic glycoside hydrolases even under cellulolytic conditions proves 

the synchronized action of both cellulolytic and hemicellulolytic hydrolytic enzymes. Based 

on the reports from previous plant biomass degradation studies and the results obtained in 

our present study clearly show that, P. placenta exhibits stronger ability to degrade cellulose 
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and hemicellulose by selectively modifying lignin. We have also reported a similar tentative 

network of genes and enzymes employed by P. placenta during wood-decaying mechanisms. 

The metadata analysis of gene expression datasets has further encouraged us to perform a 

genome-wide comparative analysis of several wood-decaying fungi to understand the total 

plant biomass degrading abilities. We have primarily analyzed complete genome-wide 

annotations of 42 wood-decaying separated into white, brown and soft rot fungi. We have 

extensively analyzed CAZymes, KOG, KEGG, InterPro annotations, based on their genome-

wide annotations we have tentatively calculated cellulolytic, hemicellulolytic, ligninolytic and 

pectinolytic abilities of the fungi. Results obtained in this study has suggested that white rot 

fungal strains are highly suitable for the degradation of lignin, other aromatic compounds and 

environmental pollutants, soft rot fungal strains are highly suitable in cellulose, hemicellulose 

and pectin degradation studies thus highly suitable in biofuel and biorefining industries. 

Further we have also extended our analysis to understand the lignocellulolytic abilities of 

Neocallimastigomycota division fungi by comparing CAZymes, KOG, KEGG, InterPro, SM-

Clusters and MEROPS annotations. This study has revealed that genomes of anaerobic fungi 

completely lack genes encoding for lignin degrading auxiliary activity enzymes. 

Contrastingly, these fungi outnumbered other fungi by having highest number of CAZyme 

encoding genes. Also, we have explicitly reported the genes, enzymes and the mechanisms 

involved in structure and functioning of the cellulosomes and hydrogenosomes. Thus, 

understanding the genetic material coding for the lignocellulolytic enzymes will significantly 

benefit researchers to choose genetically better strain for their studies. However, further 

relevant studies must be conducted to optimize the appropriate growth and environmental 

conditions to enhance the expression and protein turnover of these lignocellulolytic enzymes. 

 Finally, we have performed an extensive homology modeling and molecular docking 

of laccases (multi copper oxidase) protein sequences of white, brown and soft rot fungi, using 

six lignin model compounds ranging from monomer, dimer, trimer and tetramer units to 

understand the catalytic process. This study has highlighted and compared the structural and 

functional properties of selected white, brown and soft rot fungal laccases. Results obtained 

in this study revealed that white and brown rot fungi exhibited clear and strong binding 

efficiencies towards lignin model compounds when compared to soft rot fungal laccases. Also, 

we have observed that physico-chemical and structural properties of soft rot fungi exhibited 

little but significant differences upon comparison with white and brown rot fungi. However, 
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further molecular dynamic simulation and corresponding wet lab experiments must be 

performed to understand the catalytic efficiencies of fungal laccases. 

Metadata analysis work frame reported in this thesis can be used for studying the decaying 

patterns and molecular mechanisms of several other fungi and bacteria. The gene expression 

metadata analysis of P. chrysosporium and P. placenta has specifically reported the protein 

ID’s of significant and highly reactive lignocellulolytic, carbohydrate and aromatic 

metabolizing enzymes. The information about these significant and highly active protein-ID’s 

of P. chrysosporium and P. placenta can potentially be used at different scales to improve the 

protein turnover and expression to achieve higher degradation and conversion rates of plant 

biomass. Further high throughput genomic and proteomic studies must be conducted to 

understand and reveal the structural and functional properties of these highly reactive 

lignocellulolytic enzymes. The studies should also be conducted further to prove and confirm 

the involvement of tentative molecular networks reported in this dissertation. The 

comparative genomic data analysis pipeline should be applied further to several other wood-

decaying microorganisms to retrieve a best lignocellulolytic fungal or bacterial strain based 

on their genome-wide cellulolytic, hemicellulolytic, ligninolytic and pectinolytic abilities 

respectively. The metadata analysis pipeline reported in this thesis can also be efficiently 

applied for analyzing the metagenomic datasets of gut and rumen for understanding the 

structural and functional involvement of microbial communities in metabolism of plant 

biomass components. Developing an automated data retrieval and data analysis for obtaining 

significant list of differentially expressed genes involved in breakdown and conversion of 

biomass and other organic compounds will potentially benefit the researchers in related 

fields in experimental design and execution.  
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