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ABSTRACT

Given the importance of developing accurate models of any complex system, the model-

ing process often seeks to be comprehensive by including experts and community mem-

bers. While many qualitative modeling processes can produce models in the form of

maps (e.g., cognitive/concept mapping, causal loop diagrams), they are generally con-

ducted with a facilitator. The limited capacity of the facilitators limits the number

of participants. The need to be either physically present (for face-to-face sessions) or

at least in a compatible time zone (for phone interviews) also limits the geographical

diversity of participants. In addition, participants may not openly express their beliefs

(e.g., weight discrimination, political views) when perceiving that they may not be well

received by a facilitator or others in the room. In contrast, the naturally occurring ex-

change of perspectives on social media provides an unobtrusive approach to collecting

beliefs on causes and consequences of such complex systems. Mining social media also

supports a scalable approach and a geographically diverse sample. While obtaining a

conceptual model via social media can inform policymakers about popular support for

possible policies, the model may stand in stark contrast with an expert-based model.

Identifying and reconciling these differences is an important step to integrate social com-

puting with policy making.

The pipeline to automatically validate large conceptual models, here of obesity and

politics using large text data-set (academic reports or social media like Twitter) com-

prise technical innovation of applying machine learning approaches. This is achieved

by generating relevant keywords using wordnet interface from NLTK, articulating topic

modelling using gensim LDA model, entity recognition using Google Cloud Natural lan-

guage processing API and categorizing themes by count vectorizer and tf-idf transformer

using scikit-learn library. Once the pipeline validates the model, it is further suggested

for extension by mining literature or Twitter conversations and using Granger causality

tests on the time series gained from respective sources of data. Later we realize the

impact of the shift in public opinion on Twitter, which can alter the results of validation

and extension of conceptual models while using our computational methods. So we fi-

nally compare the sentiment analysis and sarcasm detection results on these conceptual

models. Analyzing these results we discuss whether the confirmed and extended associ-

ations in our conceptual model are an artifact of our method or an accurate reflection

of events related to that complex conceptual model. The combination of these machine
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learning approaches will help us automatically confirm and extend complex conceptual

models with less hassle of money, time and resources. It can be used for automatically

formulating public policies which are created in response to issues brought before de-

cision makers, instead we create them using issues discussed everyday on social media

platform.
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Thesis Structure

This section provides an overview of the thesis research to show the reader where and

how it validates the claims made in the abstract.

Chapter 1 introduces and explains the background, motivation and contribution of our

research.

Chapter 2 discusses the impact of source selection on automatically validating complex

conceptual models by comparing conceptual models derived from each source. Here

the sources discussed are social media (Twitter in our case) and expert reports.

The conceptual model used as a proof of concept is the one of Obesity.

Chapter 3 provides a comprehensive explanation of the methods used and their im-

plementation by mining Twitter data to validate generic conceptual models.

Chapter 4 explains the approaches used to extend these conceptual models using

Granger Causality by mining literature or Twitter.

Chapter 5 uses the conceptual model of Politics regarding the Supreme Court and Bret

Kavanaugh event as a case study to discuss the shift of opinions on Twitter. In

this chapter, first we use the proposed pipeline to validate the political conceptual

model. Second we compare the sentiment analysis and sarcasm detection results

to analyze if sarcasm can alter results of computational methods used to validate

such models.

Chapter 6 discusses the overall conclusion of this research as well as the scope for

improvement and current exceptions.



Chapter 1

Introduction

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Background

Researchers along with members of the public are actively involved in projects designed

to learn from public participation[1] and have successfully addressed complex issues in

science and society. Some have accumulated data with the help of thousands of bird

watchers across North America to reveal trends in bird distributions and behaviors[2],

whereas others have collected and prepared monitoring information to respond to pol-

lution in order to address environmental degradation[3]. The public participation in

scientific research (PPSR)[4] movement is much more than just the gathering of data

for science or resource management by explicitly engaging the public in the research

process. PPSR provides integrated outcomes from science, the individual participants,

and social ecological systems, which makes such research more powerful in producing

science-based knowledge with diverse understanding. Research on PPSR is also being

conducted in fields like public health[5] (e.g., Cashman et al. 2008), where community-

academic collaboration added value to the analytic and interpretive phases of research.

This participatory environmental modelling[6] practice, in which scientists and mem-
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bers of the public work together to develop conceptual models, is helping us reshape

our definitions and understanding of broader socio-ecological systems as well as address

environmental issues and provide solutions.

Participatory modelling results in structured models, often in the form of maps ranging

from mind maps to concept maps and then causal maps. These maps are created using

different software mapping tools[7] which are available under different names: concept

mapping, mind mapping and argument mapping. These tools map and display com-

plex information visually to aid and enhance research and learning. The names may

be used interchangeably, but the choice of mapping tool largely depends on the pur-

pose for which the tool is used. For instance, mind mapping allows us to imagine and

explore associations between concepts. A causal map[8] is a particular type of concept

or cognitive map. While a concept map indicates only that ideas or concepts are re-

lated in some way, a causal map illustrates the cause and effect relationships among

concepts. On the map, these concepts are represented as nodes containing future issues,

factors, events or outcomes, whereas the causal relationships between them are demon-

strated in the graph by arrows [See Figure 1.1]. Existing models[9] have come up with

the use of expert skeleton concept maps which are being used as a facilitative tool by

schools and corporations[10] to emphasize meaningful learning and to efficiently assess

ill-structured, problem-solving areas. These tools prove useful since concept maps are

the basis of causal maps, and starting a concept map for a new knowledge domain [See

Figure 1.2] can be a bit misleading without expert knowledge.

Figure 1.1: Example of Obesity causal Map
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Figure 1.2: Example of Politics causal Map

There are limitations in participatory modelling: the power imbalance in eliciting per-

spectives, the logistics of bringing participants together, the problems of selection and

representativeness, etc. It may not be too unrealistic to argue that the quality and the

form of participation will be a driving factor in the success of future models, and that

participation would be well served by the inclusion of cognitive, material and technolog-

ical information[4]. In this research, we seek to address these limitations by developing

causal maps that take into account the perspective of a very large number of partici-

pants. This will enable a move toward a citizen science approach[11] to causal mapping.

The popularity of both citizen science and participatory modelling[12] has given way to a

growing number of case studies, all of which outline the benefits of more inclusive forms

of conservation planning. This public-science collaboration of participatory modelling

and citizen science is often said to lead to the development of community-supported re-

search and possibly improved environmental decision-making as well. Furthermore, the

development of online modelling tools holds strong promise for the field of conservation

biology.

Our approach proposes to take small causal maps (from participatory modelling pro-

cesses) as a starting point and either confirm them with or extend them to the perspective

of online participants. Specifically, we will draw on Twitter data, which has become an

increasingly common approach to understanding perspectives on a large scale. Due to

this remarkable increase in the use of social media, particularly from Twitter, researchers

are able to obtain information about specific demographic communities[13] which are
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difficult to reach through conventional means. Similarly, evidence suggests that Twitter

can be used to raise public health concerns[14] and to anticipate complex contagions

before they reach critical mass[15], thus pushing the platform towards being a reliable

source for citizen science research.

Our overarching objective is to validate conceptual models with a citizen science ap-

proach, starting with ‘nucleus’ maps and using very large amounts of Twitter data to

automatically confirm or extend these maps. This objective will be achieved by identi-

fying a set of tweets relevant to a nucleus map and mining its themes. To demonstrate

the feasibility of our approach, we will have published our work with different data-sets

as a proof of concept in the next chapters because they represent the most frequently

discussed public health and political issues on social media. By achieving this objective,

we would be able to confirm the existing connections between two nodes. However, this

approach is limited to establishing the associativity of concepts, and thus, it only pro-

duces undirected maps. Identifying causal connections, thus enabling directed maps, is

an extension of the proposed work which we have implemented using Granger causality.

1.2 Objectives

Given the importance of developing accurate models of complex systems, the mod-

elling process often seeks to be comprehensive by including experts and community

members [16, 17, 18, 19, 20, 21, 22]. While many qualitative modelling processes can

produce models in the form of maps [23] (e.g., cognitive/concept mapping, causal loop

diagrams), they are generally conducted with a facilitator. Some of the limitations (e.g.,

costs, trained facilitator) may be addressed through emerging technologies [24]. How-

ever, one limitation remains: participants may not openly express their beliefs (e.g.,

weight discrimination or political opinions) when perceiving that they may not be well

received by a facilitator or the research team. In contrast, the naturally occurring ex-

change of perspectives in social media provides an unobtrusive approach to collecting

beliefs on causes and consequences of such complex systems. Mining social media may

thus provide the views of community members [25, 26, 27, 28].

While obtaining a model via social media can inform policymakers about popular support

for possible policies [29], the model may stand in stark contrast with an expert-based

model [22]. Identifying and reconciling these differences is an important step to integrate
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social computing (and specifically social web mining) with policy making. In this thesis,

we contrast how mining social media instead of expert reports affects the validation of

a large conceptual model of obesity. This overarching goal is achieved through three

consecutive steps. First, we assemble a social media data-set (consisting of several

million tweets) and several expert reports (totaling hundred of pages). Second, we

employ an innovative multi-step process to examine a conceptual model using both the

social media data-set and the expert reports. Third, we contrast the structure of these

models using a Python package called NetworkX. This package creates, manipulates,

and studies the structure, dynamics, and functions of complex networks. Subsequently,

using sentiment analysis and sarcasm detection, we further confirm the connection based

on computationally identified and categorized opinions expressed in tweets to determine

whether the writer’s attitude toward a particular topic, product, etc. is positive, negative

or neutral. Finally using Granger causality on expert reports, we extend the concept

map in terms of reverse causality.

1.3 Main Contributions

In the case of obesity, we found that three expert reports discussed 77% of all possibilities

while millions of tweets on obesity and its cognates covered fewer interrelationships about

56.5%. Our methodology is generic as we provided proof of concept on four different

data-sets and three different concept maps. The concepts analysed were Obesity and

Politics since they are the most talked about on Twitter. The Twitter data used was

different for each concept map. This proved that creating models using social media

only may thus result in an oversimplification of complex problems. We explained our

pipeline in detail with its optimized implementation and parameters used. Our proposed

pipeline using GPU gave us two times faster results than our computations on CPU.

Later we extended these conceptual models using Granger causality by mining literature.

Our main focus was to mine Twitter conversations as an alternative which could be a

leap forward. Furthermore, we used our pipeline to confirm conceptual models along

with sentiment analysis and sarcasm detection to further see the nature of validation,

that is whether people are talking positive, negative or neutral about a concept that

we validated using our Twitter data. By automatically analyzing millions of tweets,

we demonstrated that sarcasm in political tweets can significantly alter the outcome of

tweet mining even when using large data-sets.
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Chapter 2
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the impact of source selection on
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2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Social web mining for health . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Conceptual models in obesity research . . . . . . . . . . . . . . . 13

2.4 Validating a conceptual model from text . . . . . . . . . . . . . . . . . . 14

2.5 Comparing conceptual models from Twitter and expert reports . . . . . . 17

2.5.1 Data-sets and pre-processing . . . . . . . . . . . . . . . . . . . . . 17

2.5.2 Validating the model for each data-set . . . . . . . . . . . . . . . 19

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



7

2.1 Abstract

Models are predominantly developed using either quantitative data (e.g., for structured

equation models) or qualitative data obtained through questionnaires designed by re-

searchers (e.g., for fuzzy cognitive maps). The wide availability of social media data

and advances in natural language processing raise the possibility of developing models

from qualitative data naturally produced by users. This is of particular interest for

public health surveillance and policymaking, as social media provide the opinions of

constituents. In this chapter, we contrast a model produced by social media with one

produced via expert reports. We use the same process to derive a model in each case,

thus focusing our analysis on the impact of source selection. We found that three ex-

pert reports were sufficient to touch on more aspects of a complex problem (measured

by the number of relationships) than several million tweets. Consequently, developing

a model exclusively from social media may lead to oversimplifying a problem. This

may be avoided by complementing social media with expert reports. Alternatively, fu-

ture research should explore whether a much larger volume of tweets would be needed,

which also calls for improvements in scalable methods to transform qualitative data into

models.

2.2 Introduction

Overweight and obesity are now a global phenomenon, found in economically devel-

oped or developing countries (e.g., United States [30], European countries [31], South

Africa [32], China [33]) as well as in regions that experience a double burden with the

concomitant problem of malnutrition [34]. While there are ongoing debates on a possi-

ble plateau or even decrease of overweight and obesity in the next generation, updated

prevalence data for children suggests that severe obesity is on the rise [35]. There is

a plethora of interventions to prevent overweight and obesity in both children [36] and

adults [37], and an equally impressive number of interventions for treatment [38, 39].

Yet, individual struggles to achieve a health weight over a sustained period of time. For

example, a review of weight management interventions found a weight loss over two years

of 1.54 kg [40], which is far from the 5% weight loss recommended to produce health ben-

efits [41]. These challenges have led to the realization that a simple solution would not

suffice [42]: the health system needs to cope with the complexity of obesity [43, 44, 45].
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The notion of complexity covers multiple characteristics, such as the vast individual dif-

ferences (or heterogeneity) between weight-related factors [46, 47], or the nonlinear ways

in which factors interact to form a system. The obesity system has been the subject

of numerous studies [16, 48, 49, 50]. This system involves factors from a broad array

of sectors (e.g., built environment, eating disorders, weight stigma [17, 51]), with in-

teractions within as well as across sectors. Accurately modelling this system facilitates

the development of integrated policies building on cross-sectoral efforts [52, 53]. If poli-

cies are developed separately along traditional themes (e.g., public planning works on

the environment, doctors work on diseases and physiology, mental health experts work

on psychology), then we have a heavily fragmented approach to obesity (Figure 2.1a).

Efforts such as the Foresight Obesity Map [48, 54], or the Public Health Services Au-

thority’s series of maps [17, 55, 56] thus support the development of synergistic policies

working on integrated thematic clusters (Figure 2.1b).

Given the importance of developing accurate models of the obesity system, the mod-

elling process often seeks to be comprehensive by including experts and community

members [16, 17, 18, 19, 20, 21, 22]. While many qualitative modelling processes can

produce models in the form of maps [23] (e.g., cognitive/concept mapping, causal loop

diagrams), they are generally conducted with a facilitator. Some of the limitations (e.g.,

costs, trained facilitator) may be addressed through emerging technologies [24]. How-

ever, one limitation remains: participants may not openly express their beliefs (e.g.,

weight discrimination) when perceiving that they may not be well received by a facilita-

tor or the research team. In contrast, the naturally occurring exchange of perspectives

in social media provides an unobtrusive approach to collecting beliefs on causes and

consequences of obesity. Mining social media may thus provide the views of community

members [25, 26, 27, 28].

While obtaining a model via social media can inform policymakers about popular sup-

port for possible policies [29], the model may stand in stark contrast with an expert-based

model [22]. Identifying and reconciling these differences is an important step to inte-

grate social computing (and specifically social web mining) with policy making. In this

chapter, we contrast how mining social media instead of expert reports affects the vali-

dation of a large conceptual model of obesity. This overarching goal is achieved through

three consecutive steps. First, we assemble a social media data-set (consisting of sev-

eral million tweets) and several expert reports (totaling hundred of pages). Second, we
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employ an innovative multi-step process to examine a conceptual model using both the

social media data-set and the expert reports. Finally, we contrast the structure of these

models using network methods.

The remainder of this chapter is organized as follows. In section 2.3, we provide back-

ground information on the application of social web mining to health, and on the use of

conceptual models in obesity research. In section 2.4, we briefly explain our approach to

validate a conceptual model from text. In section 2.5, we perform this inference on both

expert reports and tweets, and we examine how the conceptual models differ. Finally,

these differences are discussed and contextualized in section 2.6.
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Figure 2.1: The Public Health Services Authority’s series of maps [17, 55, 56] suggests
that typical categories lead to fragmented approaches (a) whereas themes specific to
overweight and obesity can support more integrated options (b). These maps are con-
ceptual maps as they articulate how concepts (labeled circles) are related (curves).



11

2.3 Background

2.3.1 Social web mining for health

The social media of interest in this chapter is Twitter, in which users post and inter-

act through short messages known as ‘tweets’. Twitter has been used for many studies

on obesity and weight-related behaviors. For instance, Harris and colleagues collected

1,110 tweets and read them to understand how childhood obesity was discussed [57],

while Lydecker et al. [58] read 529 tweets to identify the main themes related to fatness.

Similarly, So et al. [25] analyzed the common features of 120 tweets that were most

frequently shared (i.e., retweets) to understand what information individuals preferred

to relay when it came to obesity. Reading the tweets to identify themes (i.e., content

analysis) is a typical task to understand the arguments that a specific population uses

on a subject of interest. Broader examples in health include the content analysis of

700 tweets [59] and 625 tweets [60] to examine the type of claims that health profes-

sionals make online, or an examination of 8,934 tweets documenting cyber incivility

among nurses and nursing students [61]. While such content analyses make a valuable

contribution to the body of knowledge on arguments in public health1, they do not em-

ploy computational methods to automate (parts of) the analysis and thus scale it to a

larger data-set. Automation can be as simple as counting how many times keywords

of interest appear across tweets. Turner-McGrievy and Beets used Hashtagify.me to

automatically count keywords in tens of thousands of tweets on weight loss, health, diet,

and fitness. By dividing the analysis across time periods, they were able to examine if

there are times of the year when individuals would be likely to consider weight loss, thus

contributing to the timing of interventions [63]. Similarly, Sui et al. used the intensity of

topics on Twitter as part of an effort to identify the public interest in intensive obesity

treatment [64]. Such studies illustrate the important shift from having humans read and

code all tweets to relying on a machine to handle most of a (much larger) data-set. The

latter is the focus of data mining applied to the ‘social web’ (i.e. social web mining)

which includes social networking sites such as Twitter but also encompasses blogs and

micro-blogging. As Twitter has been the social platform of interest for many studies,

the term of ‘Twitter mining’ has also emerged to refer specifically to the application of

social web mining to Twitter [65].

1While our focus is on analyzing the text provided by tweets, studies on Twitter that are primarily human- rather
than computer-based are not exclusively content analyses. In the study of May et al. [62], the researchers created Twitter
accounts for fictional obese and non-obese characters. They evaluated whether the weight status mediated how other
users would interact with them.

Hashtagify.me
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Social web mining started to garner attention in the late 2000’s to early 2010’s. The

application of social web mining to health was discussed in 2010 by Kamel Boulos et

al. [66] and in 2011 by Paul and Dredze [67], showing how a broad range of public

health applications could benefit from mining Twitter. Studies have been able to mine

a staggering volume of data, going well over what a team of humans could handle. For

example, Eichstaedt et al. mapped 148 million tweets to counties in an effort to relate

language patterns to county-level heart disease mortality [68]. At an even larger scale,

Ediger and colleagues used a Cray computer to approximate centrality within two hours

on a data-set of interactions between Twitter users comprising 1.47 billion edges [69].

While these cases are noteworthy by their volume of data, studies employing social

web mining for obesity research typically involve millions of tweets2. Using 2.2 million

tweets, Chou and colleagues found that tweets (as well as Facebook posts) often stig-

matized individuals living with overweight and obesity [26]. In two studies on obesity

and weight-related factors, Karami analyzed 6 million [27] and 4.5 million tweets [28].

In a study of health-related statistics, Culotta mined 4.3 million tweets and found that

the data was correlated with obesity [71]. Given that obesity is driven by many factors

(e.g., eating behaviors, physical activity behaviors), there is also a wealth of large-scale

studies on such factors, such as the work of Abbar et al. on 503 million tweets regarding

food [72]. Finally, the value proposition of several new platforms is not the analysis

of one particular data-set, but rather the ongoing ability to monitor diet or physical

activity. This is particularly the case for the Lexicocalorimeter, which measures calories

in each US state via Twitter [73], and to a lesser extent for the National Neighborhood

data-set of Zhang et al. which tracks diet and physical activity through Twitter [74].

Several commentaries [75] and reviews [76, 77, 78] have explored whether this abundance

of studies has contributed to public health. Findings depend on what specific aspect of

health is concerned. Social media has yet to impact practices in public health surveil-

lance [77], but a review centered on chronic disease found a benefit on clinical outcomes

in almost half of the studies [76], and a review specific to obesity highlighted a modest

impact on weight [78].

2There are several exceptions of studies employing smaller data-set. However, their objectives may not be to identify
themes (which necessitates a large volume of tweets), thus they can accomplish their goals with a smaller data-set. A
case in point is the work of Tiggemann and colleagues, who used 3,289 tweets to examine interactions between Twitter
communities that promoted either a ‘thin ideal’ or health and fitness [70].
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2.3.2 Conceptual models in obesity research

Although our work will involve the identification of themes, we have a very different

endeavor from studies reviewed in the previous section, which focused on identifying

themes and their variations across time, places, or communities of users. Our objective

is to contrast conceptual models that have been automatically extracted from tweets

and expert reports. As evoked in the introduction, models of complex systems such as

obesity support several important policy-making and analytical tasks. In this section, we

briefly review the features that models often seek to capture when it comes to complex

health systems, and how models are used in obesity research specifically. Penn detailed

key characteristics of complex health systems that justify the development of models

(emphases added):

“Many problems that society wishes to address in population health are

clearly problems of managing complex adaptive systems. They involve mak-

ing interventions in systems with multiple interacting causal connections,

which span domains from physiological to economic. Additionally, of course,

the individuals whose health we ultimately wish to improve adapt and change

their behavior in response to medical or policy interventions.” [79]

Several of these points were echoed by Silverman in justifying the use of systems-based

simulation for population health research [80]. modelling changes in the heterogeneous

health behaviors of individuals often uses the simulation technique of Agent-Based mod-

elling, and has been done in obesity research on multiple occasions [81, 82, 83, 84, 85].

Such models can be very detailed and use widely different architectures to capture

the cognitive processes of the agents. Validating them using text is thus an arduous

task. modelling interacting causes across domains has been achieved in obesity research

through a variety of techniques. System Dynamics (SD) allows to represent nonlin-

ear interactions between weigh-related factors over different time scales and at different

strengths [86, 87]. However, much like agent-based modelling, the great level of details

supported by SD makes it difficult to derive or validate such models from text. Fuzzy

Cognitive Maps (FCM) are a simpler alternative that eliminates the notion of time to

focus on the different strengths of causal relations [22, 88, 89, 90]. Such models can be

compared [22], but validating them from text still requires a trained analyst [91]. An

even greater simplification is to use conceptual rather than simulation models. Concep-

tual models cannot run scenarios or what-if questions, and cannot ‘generate’ numbers.

Instead, their focus is to capture relevant factors and whether they are connected [92].
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Conceptual models can be compared [93] and validated using text as shown in our pre-

vious work [92].

There are several types of conceptual models [23]. We recently detailed the differences

between causal maps, mind maps, and concept maps [24]. In short, this chapter focuses

on concept maps (Fig. 2.1), which are undirected networks representing concepts as

nodes and relationships as edges. Similarly to the other forms of conceptual models

aforementioned, a concept map supports policy-oriented tasks such as identifying clus-

ters [54] (e.g., to coordinate actors across domains on one problem such as food) or

finding feedback loops [17, 55, 56] (e.g., to use as leverage points in an intervention).

2.4 Validating a conceptual model from text

The process starts with a conceptual model that we seek to validate, and the text corpus

is used to validate. Intuitively, our process uses the concepts’ names to find relevant

parts of the corpus and find which concepts tend to co-occur. Technical aspects include

handling variations in language (as we cannot rigidly assume that a concept’s name

will appear as such), identifying themes, and mapping themes from the corpus back

to concepts in the conceptual model. Our process uses seven steps, illustrated on a

theoretical example in Figure 2.2. The first two steps are performed for each concept

node:

(1.a) We replace all concepts’ names and words from the corpus with their base form (i.e.,

lemma). This is accomplished through lemmatization, which uses a morphological

analysis to remove inflectional endings. This step ensures that minor variations of

a term are all mapped to the same one (e.g., ‘flooding’ and ‘floods’ are all mapped

to ‘flood’).

(1.b) Each lemmatized concept names is expanded with derivationally related forms.

For instance, instead of only searching for ‘flood’ in the corpus, we will also accept

words such as ‘deluge’.

(2) For each concept (i.e., the expanded lemma), we retrieve all parts of the corpus

that contain it. For instance, the concept ‘flooding’ will lead to retrieving all tweets

include the lemmas ‘flood’ or ‘deluge’.
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Figure 2.2: Our process in seven steps to validate a conceptual model using textual data.
The high-definition figure can be zoomed in for details.

Upon completion of step 2, we have related a portion of the corpus to each concept node.

We then find the themes in each portion of the corpus using three parameters:

(3) We apply the Latent Dirichlet Accuracy (LDA) model to find prevalent themes.

The two parameters for this step are the number of themes and number of words

per theme.

(4) We gather words across themes into a single set of words. This set is cleaned by
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removing words that are already present in the set of derivationally related form

of the node. In other words, we only look for concepts that the node could be

associated with but not equivalent to.

(5) Since concepts’ names are entities, a concept can only be associated with an entity.

Consequently, we remove all non-entities from the words.

(6) At this step, we have a set of entities that a concept node could be associated with.

However, some of the entities may be noise rather than meaningful associations.

We thus sort the entities by tf-idf (term-frequency inverse-document-frequency)

computed over the set of tweets in which each word appears. We use a threshold

parameter to identify which entities have a sufficient tf-idf to be selected.

Upon completion of step 2, we found entities that a concept node could be associated

with. The final step goes back to the conceptual model to see if the association exists:

(7) For each node, we compare its associated entities with its connected nodes and

derivationally related forms. If there is a match, then the text corpus has confirmed

an association between the two concepts. If no match is found, the association is

not confirmed. Note that associated entities that do not match any connected

nodes suggest additional connections, which is a different from validation as we

seek to confirm existing connections.
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Figure 2.3: Alternative view of our process, including libraries and APIs.

This process is also depicted in Figure 2.3, listing the libraries that can be used for

each step. The specific versions of the libraries used in our experiments are included in

section 4.

2.5 Comparing conceptual models from Twitter and

expert reports

2.5.1 Data-sets and pre-processing

The conceptual model that we seek to validate was developed with the Provincial Health

Services Authority (PHSA) of British Columbia to explore the interrelationships involved

in obesity and well-being. The model was presented in 2015 at the Canadian Obesity

Summit [17] and tested with policy makers in 2016 [56]. The model is now part of the

ActionableSystems tool [55] can be downloaded at https://osf.io/7ztwu/ within

‘Sample maps’ (file Drasic et al (edges).csv). The model consists of 98 nodes and 177

edges. From here on, we will refer to it as ‘the PHSA map’.

https://osf.io/7ztwu/
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To validate the PHSA map, we used two data-sets. Our first data-set (‘the Twitter data-

set’) consists of 6,633,625 tweets in the English language on obesity collected from Oct.

2, 2018 to Oct. 4, 2018. The number of tweets was chosen to be in line with comparable

studies at the interface of natural language processing and obesity research [26, 27, 28].

The keywords to collect the tweets included each of the 98 concept names in the PHSA

map as well as their synonyms automatically retrieved through WordNet. For instance,

we used not only ‘obesity’ but also words such as ‘fatness’, ‘corpulent’, ‘embonpoint’

and ‘fleshiness’. Similarly, physical activity was expanded to include many forms such

as calisthenics, isometrics, jogging, jump rope, and so on. The rationale is that the

map contains abstract concepts, but individuals may speak of specific instances or use

a variety of words to describe the same abstraction.

After collecting a large number of tweets, natural language applications require extensive

pre-processing. The impact of each options (and their interactions) on results obtained

from Twitter has been extensively described when performing sentiment analysis [94,

95, 96] and in more generic tasks such as classification [97]. Some of these options

are summarized in Figure 2.4 and include the removal of parts deemed unnecessary

for analysis (e.g., hashtags, URLs, numbers, non English words) or the mapping of

data into forms that can be more conveniently processed (e.g., expanding acronyms and

abbreviations, replacing emojis, spell checking). The pre-processing options used for our

data-set are depicted in Figure 2.5. These options are chosen specifically for our research

question: for instance, we remove stop words because they cannot be meaningful concept

names in a model, but other analyses (e.g., attributing tweets to specific writers) may

have kept such words. The order of the steps also matters: for instance, we cannot

perform part-of-speech tagging and lemmatization (step 5) before ensuring that all the

words have been corrected (step 3). After pre-processing, our data-set included 1,791,333

tweets.
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Figure 2.4: Typical pre-processing techniques applied to tweets.

Figure 2.5: Pre-processing techniques applied to our Twitter data-set in a specific order.
We used a Spell Checker library in step 3, the Natural Language Toolkit (NLTK) for
steps 1-4, and the Stanford coreNLP library for step 5.

The second data-set is formed of three reports on obesity: the 2010 report from the

white house task force on childhood obesity [98], the 2013 report to the Provincial Health

Services Authority [99] and its 2015 update (whose findings are published in [17]). We

combined the three reports with the PyPDF2 library, leading to 310 pages, and we kept

247 pages after removing those that were either blank or only contained images. Pages

were then transformed into raw text using the pdftotext library and divded into 4,302

sentences using the full point (‘.’). Pre-processing was finally applied, using the same

script as for tweets while noting that several options such as removing emojis would not

be triggered. The resulting data-set had 3447 sentences.

2.5.2 Validating the model for each data-set

The methods introduced in section 3 are implemented in Python, relying on libraries as

listed in Table 2.1. While our implementation was able to cope with millions of tweets,
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we note that a larger volume of data may also require a distributed database architecture

and an efficient search engine such as Elasticsearch [100].

Step Library Used for

NetworkX Conceptual model (accessing node

labels and edges)

1a Stanford coreNLP Lemmatization

1b WordNet Derivationally related forms

3 [101] Parallel, multi-core Latent Dirich-

let Allocation (LDA) model for big

data

5 Google Cloud Natural language

API

Entity identification

6
scikit-learn

(CountVectorizer, TfidfTransformer)
Sorting words by tf-idf

Table 2.1: Libraries used in each step (Section 2.4) of our experiments.

Our approach has three parameters: number of themes, number of words per theme,

and tf-idf threshold to eliminate noise. Hyperparameter optimization was thus necessary

to use each data-set most efficiently, and fairly compare their potential in validating a

model. To optimize performances with expert reports, we performed a grid search by

varying the number of topics and words per topic from 5 to 50 in increments of 5, and

we varied the tf-idf from 2 to 9 by increments of 1. This resulted in 800 combinations

of parameter values. As there is randomness in the LDA model, we performed ten

experiments per combination of parameter values, leading to a total of 8,000 experiments.

At most, our process validated an average of 136.5 edges (77.11% of the map) using 50

topics, 50 words per topic, and a td-idf threshold of 8 (Figure 2.6).
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Figure 2.6: Average number of edges confirmed (out of 177 in the PHSA map) for each
combination of parameter values over ten experiments using expert reports
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A grid search was also performed on the Twitter data-set. However, our current im-

plementation takes approximately five days to compute the results for one combination

of parameter values (single experiment), using a server-grade workstation (Dual Xeon

Gold 6140). Given this limitation, we used single experiments and a coarser grid. To

optimize performances with Twitter data, we performed a grid search by varying the

number of topics and words per topic from 5 to 50 in increments of 15, and we varied

the tf-idf from 2 to 9 by increments of 2. This resulted in 64 combinations of parameter

values. As there is randomness in the LDA model, we performed three experiments per

combination of parameter values, leading to a total of 192 experiments. At most, our

process validated 100 edges (56.5%) using 50 topics, 50 words per topic, and a tf-idf

threshold of 9 (figure 2.7).

Figure 2.7: Average number of edges confirmed (out of 177 in the PHSA map) for each
combination of parameter values over ten experiments using Twitter data

2.6 Discussion

A focus group with a few participants may only discuss some of the interrelationships

at work in overweight and obesity, and may avoid sharing opinions that are potentially

disapproved by others. In contrast, social media such as Twitter provide access to a

massive number of participants who can use conditions of anonymity to share opinions

more freely. Social web mining applied to Twitter thus comes with the potential to

explore many interrelationships in an unobtrusive fashion. In particular, crowdsourcing

over Twitter holds the promise of easily building large conceptual models, under the

assumption that at least some groups of users will touch on each part of the model. Our
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study questions this potential and promises by analyzing whether millions of tweets are

more useful to develop a conceptual model of obesity than a handful of reports.

Although conceptual models can be automatically compared [93], developing a model

from each data-set (tweets vs. reports) and comparing them would not be able to tell

us which one is ‘better’. Our study question thus requires a referential. We use a previ-

ously developed conceptual model of obesity and well-being to serve as referential, and

we establish how much of this model would have been obtained if we used either tweets

or reports. In other words, we measured the percentage of the model’s structure that is

confirmed with each data-set.

While both data-sets were able to cover over half of the model, we note that it only

took three expert reports compared to using millions of tweets. In addition, despite the

abundance of tweets, the three expert reports touched on more relationships. Within

our application context, these results suggest that an exclusive reliance on social media

may result in oversimplifying a complex system, thus limiting the potential to automati-

cally develop models using such a source. We note that a comprehensive analysis across

subjects and using a variety of maps would be needed to assess whether our results pro-

duced on one model (the Provincial Health Services Authority map) and one application

subject (obesity) can be generalized to other models and subjects.

There are several limitations to this study, which we intend to address in our future

research. First, one of the premises of big data research is that a large volume may com-

pensate for many imperfections in the individual data points. Although we used a similar

number of tweets to other studies at the interface of natural language processing and

obesity research [26, 27, 28], it is possible that some of the interrelationships of the model

we seek to validate are rare and thus only detectable in even larger data-sets. Repeating

this study with significantly larger data-sets could elucidate this question. However, we

then run into the second issue: our process to validate a causal map against textual data

is very computational intensive. The search space to optimize the result is defined by

three parameters which involve randomness, thus requiring several experiments for each

combination of parameter values. On a server-grade workstation, a single combination

with a CPU-based implementation requires in the order of days. Optimizing results and

using larger data-sets will thus require implementations that scale, with a particularly

promising option consisting of a GPU-based implementation. Alternatively, we may re-
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duce the search space if we can better characterize the impact that parameters generally

have on the results and then devise more computational efficient processes. For instance,

the tf-idf threshold plays an essential role in driving performances (Figure 2.6) but may

be replaced by additional pre-processing steps preventing the inclusion of noise, such as

classifiers removing unwanted documents [102].

2.7 Conclusion

Both social media data and expert reports may be used to take into account popular

perspectives and expert opinions when creating large conceptual models. In the case

of obesity, we found that three expert reports discussed 77% of all possibilities while

millions of tweets on obesity and its cognates covered fewer interrelationships about

56.5%. Creating models using social media only may thus result in an oversimplification

of complex problems. In our next chapter we discuss our pipeline in detail with its

optimized implementation and parameters used. 1

Notes

1This chapter is published in the proceedings of the 11th International Conference on Social Com-

puting and Social Media [103]
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3.1 Abstract

A model can represent anything in its scope either by using physical objects which are

sometimes difficult to verbalize or by using concepts or ideas which are based on inter-

preters verbal and cognitive ability. Furthermore, a model made of ideas or concepts

instead of physical objects is called a conceptual model. Conceptual models are used

by practitioners and researchers to facilitate meaningful frameworks in decision-making

activities. These models identify the key components and structure them into a sys-

tematic and consistent workflow. These models are created using in-depth qualitative

interviews or questionnaires. Twitter is already emerging as a good source of data for

content analysis, surveillance, engagement and network analysis in public health-related

fields. Consequently, developing a conceptual model by complementing social media

with expert reports may lead to oversimplifying a problem. Our previous work contrasts

a model produced by social media with one produced via expert reports. It also provides

a proof-of-concept that conceptual models could be validated using Twitter. The results

are confirmed through day to day exchange of information or ideas on that particular

subject matter on Twitter as well as through expert reports or research papers related

to that particular subject model. While this paper proposes a pipeline used to automat-

ically validate these conceptual models by mining Twitter data using machine learning

approaches.

3.2 Introduction

A concept map shows relationships among concepts, while concept mapping is a method

of visualizing these defined relationships between concepts. In the early 1970s, Novak

[104] developed knowledge representation using concept mapping for science education

and has since been implemented for research, education or evaluation. Concept maps in

science are used to categorize and organize concepts, show hierarchy and present inter-

relationships between the concepts. They have been used as assessment tools to capture

the mental models [105] that learners use when building them. The use of conceptual

models is expanding with systems becoming more complex [106]. With this expansion,

the model’s effectiveness to cover the system’s fundamentals is being realized, leading to

the development of numerous conceptual modelling techniques. Complementing concept

mapping with conceptual modelling helps to understand complex phenomena [107].
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Conceptual models are used in cognitive psychology and philosophy in the form of men-

tal models which could be a representation of ideas or concepts in one’s mind [108] or a

model of the mind itself [109]. These models also exist as mathematical models which

can take forms of statistical model, differential equations or game theoretic models.

Correspondingly, conceptual models in economic sector [110] are represented by a set

of variables and a set of logical and quantitative relationships between them to forecast

economic activity, propose economic policy or present reasoned argument to justify these

policies. Then comes the models in information system design [111] where conceptual

models of human activity systems are used as a system analysis method [112] concerned

with problem structuring in management. They are used in software engineering for re-

quirement analysis [113] as well as for representation of data in entity-relationship model

[114] form. In health education research and practices, the conceptual model developed

guides health education research or practice as a diagram of proposed causal linkages

among a set of concepts believed to be related to a specific public health problem [115].

Conceptual models help in narrowing both research questions and the targets of inter-

vention. Highly complex domains like humanities and social sciences use appropriate

conceptual modelling tools [116] to explore, understand, document and communicate

such domains. Even tools like tablets are being used to support entity-oriented ex-

ploratory search in knowledge graphs [117]. Research on theories of concepts underlying

conceptual modelling, methods, and tools for developing and communicating conceptual

models, techniques for transforming conceptual models into effective implementations,

and the impact of conceptual modelling techniques on databases, business strategies

and information systems development, etc. [118] is effective. The research topics in-

clude conducting entity search over knowledge bases, exploiting conceptual modelling

in data crowd-sourcing, enterprise data management, and data quality control, to name

a few [119] [120]. Our approach focuses on the validation of a complex system using

conceptual modelling by mining social media as a knowledge base for validation to over-

simplify a system and its problem.

The validation of conceptual models are usually done by stakeholders [121], pre-defined

criteria [122] or expert approach [123] which depends completely on human experience,

knowledge, and clarity of visual representation of the map. Validation of a concep-

tual model is important as it validates that the theories and assumptions underlying

the conceptual model are correct to aid in decision-making [124]. A conceptual model

could be validated using a subjective approach by exploring model behaviour or objec-
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tive approach by doing a comparison using statistical tests [124]. On the other hand

validation of conceptual model via social media gives incite of the popular public sup-

ported opinions [29]. Considering that we selected Twitter as a social media platform

where people exchange everyday views and information for validation of generic concept

maps. This platform has been used for various studies related to health practices [58]

[57]. Our previous work [103] contrasts a model produced by social media with one

produced via expert reports. It also provides a proof-of-concept that conceptual models

could be validated using Twitter. Validation here means that our proposed approach

confirms the association between the concepts of a specific topic-related model based

on the day-to-day communication for that specific topic under discussion on Twitter as

well as expert reports or research articles. It concludes that both social media data and

expert reports may be used to take into account popular perspectives and expert opin-

ions when creating large conceptual models. For proof-of-concept we validated accurate

model of obesity system which was presented in 2015 at the Canadian Obesity Summit

[17] and tested with policymakers in 2016 [56], where we found that three expert reports

discussed 77% of all possibilities while millions of tweets on obesity and its cognates cov-

ered fewer interrelationships. Creating models using social media only may thus result

in an oversimplification of complex problems.

In this paper we propose a pipeline used to automatically validate these conceptual

models by mining Twitter data using machine learning approaches. This paper gives

a better understanding of what methods were used, what parameter values to set, how

were they implemented and how did we improve our implementation.
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3.3 Methods

3.3.1 Overview

Algorithm 1: Validating conceptual map

Input : user concept map in CSV format as mapFile.csv

Twitter data as D

Output: Validated concept map as G′

1 G← initialize(mapFile.csv) ; // G = (V,E) using NetworkX

2 for Vi ∈ G do

3 der rel form[Vi]← getDerivationallyRelatedform(Vi); // using WordNet

(NLTK)

4 relevantTweets[Vi]← retrieveTweets(der rel form[Vi], D); // mapping

vertices to the tweets that contain them using their

derivationally related form

5 relevantThemes[Vi]← extractThemes(relevantTweets[Vi]); // using

gensim LDA multicore model, google cloud natural language API,

scikit-learn count vectorizer and tf-idf transformer

6 for k in relevantThemes[Vi] do

7 for j in der rel form[Vi] do

8 if der rel form[Vij]=relevantThemes[Vi
′
k] then

9 E ′ ← [(Vi, V
′
i )]; // mapping together vertices with similar

derivationally related form and extracted themes

keyword to generate an associated edge E ′

10 if E ′ = E then

11 G′ ← E ′

12 end

13 end

14 end

15 end

16 end

17 return G′; // Finally the pipeline returns the validated concept map

The pipeline for automatically validating large conceptual models of complex systems

using a large text data-set (social media such as Twitter) includes technical innovation

in applying machine learning using NLTK’s WordNet interface, Gensim’s LDA multicore
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model, Google Cloud Natural language API and, scikit-learn’s count vectorizer and tf-idf

transformer. In other words, the combination of all these machine learning approaches

will help us confirm complex conceptual models with less hassle of money, time and

resources for policy making.

Given two inputs (pre-processed Twitter data-set explained in section Experiment using

process shown in Figure 3.1 and conceptual model shown in Figure 3.5), our pipeline gen-

erates the output (validation of the conceptual model). Here the pre-processed Twitter

data-set as well as the conceptual model used are explained in subsection Experimental

set-up. See Algorithm 1 for the overall algorithm we used to create our pipeline to

validate conceptual models.

Figure 3.1: Pre-processing techniques applied to our Twitter data-set in a specific order.
We used a Spell Checker library in step 3, the Natural Language Toolkit (NLTK) for
steps 1-4, and the Stanford coreNLP library for step 5.

In the next subsections, we explain our methodology step by step according to the

proposed approach (see Figure 3.2) using the experimental setup explained later.
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Figure 3.2: Methodology explained step by step, including corresponding libraries and
APIs used

3.3.2 Representing nodes and edges of user concept map

The first step is to feed the pipeline with a conceptual model that we want to validate

using the Algorithm 2.
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Algorithm 2: Representing vertices and edges of user concept map

1 function initialize(mapFile.csv);

Input : user concept map in CSV as mapFile.csv; // edge is a nX2 matrix

Output: Initialization of user concept map into the pipeline

2 file← csv.reader(mapFile); // CSV file reading using Python version

3.7.1 csv.py module

3 for row ∈ file do

4 G.add edge(row[0],row[1]); // using NetworkX

5 end

6 return G

Here the conceptual model we are using is in the form of concept map as shown in Figure

3.5. Using NetworkX library in Python language, the map is initialized with its edges

shared in the form of CSV file. The format of our CSV is shown in Figure 3.3.

Figure 3.3: CSV format for concept map to be fed to the pipeline
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3.3.3 Mapping derivationally related form onto concept nodes

in lemma form

For each node of the user concept map (represented using NetworkX), map derivationally

related form onto concept nodes in lemma form. This implies an expansion of all nodes

name with their lemmatized derivationally related forms (using WordNet NLTK) because

a wordform may not match the tweets (which were lemmatized using Stanford CoreNLP

library [125]) content otherwise. Since retrieving tweets that include exactly a nodes

name is too restrictive, derivationally related forms would be used. In WordNet, each

synset contains one or more lemmas, which represent a specific sense of a specific word.

Note that some relations are defined by WordNet only over Lemmas. The relations that

are currently defined in this way are antonyms, derivationally related forms (see

code below) and pertainyms. Antonyms are the words opposite in meaning to another.

derivationally related forms are the words in different syntactic categories that have

the same root form and are semantically related. Whereas pertainyms are relational

adjectives, it can point to a noun or another pertainym.

from nltk.corpus import WordNet as wn

sysnset = wn.synsets (‘study’,‘n’)[1]

lemma = sysnset.lemmas ()[0]

print (lemma.derivationally_related_forms ())

Algorithm 3 explains how to map derivationally related form onto concept vertices in

lemma form.
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Algorithm 3: Mapping derivationally related form onto concept vertices in lemma

form

1 function getDerivationallyRelatedform(Vi);

Input : User concept map as G; // G = (V,E) using function

initialize(mapFile.csv)

Output: der rel form[Vi]

2 for Vi ∈ G do

tokens← word tokenize(Vi); // using nltk.tokenize package

3 for t ∈ tokens do

der rel form[t]← getDerivationallyRelatedform[t]; // using

derivationally related forms relations from WordNet(NLTK))

4 end

5 end

6 return der rel form[Vi]

3.3.4 Mapping relevant tweets onto concept nodes

Algorithm 4: Mapping relevant tweets onto concept vertices

1 function retrieveTweets(Vi);

Input : der rel form(Vi)

Twitter data as D

Output: relevantTweets[Vi]

2 for k,v in der rel form(Vi) do

3 for keywords in v do

4 for tweet in tweets do

5 if keywords in tweet then

6 relevantTweets[k]← tweet; // mapping corresponding

vertices to the tweets that contain them using their

derivationally related form

7 end

8 end

9 end

10 end

11 return relevantTweets[Vi]
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At this step of our proposed methodology (see Figure 3.2) using set of keywords fetched

using der rel form (node) function, the pipeline finds the corresponding relevant tweets

from the cleaned Twitter data and stores them in relevantTweets dictionary corre-

sponding to user concept maps’ nodes. The algorithm to map relevant tweets onto

concept nodes is explained in Algorithm 4.

3.3.5 Extracting themes from mapped relevant tweets

Algorithm 5: To retrieve relevant themes using relevant tweets for each vertices

of user concept map

1 function extractThemes(Vi);

Input : retrieveTweets(Vi)

Output: relevantThemes(Vi)

2 for k,v in retrieveTweets(Vi) do

3 themes[k]← LdaMulticore(relevantTweets[k]) ; // using gensim LDA

multicore model

4 cleanthemes[k]← themes[k]) ; // using Google Cloud natural language

API to remove non-entities

5 relevantThemes[k]← cleanthemes[k] ; // using scikit-learn count

vectorizer and tf-idf transformer

6 end

7 return relevantThemes(Vi)

In algorithm 5 for each set of relevant tweets we retrieve the relevant themes. This im-

plies: Finding the prevalent themes with the help of gensim [126] Latent Dirichlet Accu-

racy (LDA) multicore model [127] which utilizes all CPU and GPU cores (explained in

section Optimization) to parallelize and speed up model training, cleaning those themes

that are already present in the set of derivationally related form of the node, Using

Google Cloud Natural language API [128] to get rid of non-entities from the cleaned

themes and Classifying the themes from most important to least important depending

on their tf-idf weight which was calculated using scikit learn [129] [130] CountVectorizer

and TfidfTransformer over the set of relevant tweets for each theme keyword.
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3.3.6 Validating edges of user concept map

At this stage, the pipeline compares the theme corresponding to a node with derivation-

ally related forms of all other nodes. If they are same, then create an edge consisting

of a node having that theme keyword and the node having that theme keyword in its

derivationally related form set of words. Finally, we confirm the edges if the edge created

already exists in the user concept map. For later use, also suggest the remaining created

edges for expansion. The algorithm for the last step of our methodology is explained in

Algorithm 1 starting from step 6.

3.4 Experiment

3.4.1 Experimental set-up

The conceptual model in the form of concept map we are going to use to validate is

shown in Figure 3.5 which was derived using the causal map shown in Figure 3.4.

Figure 3.4: Causal Map - Obesity

This derivation was done by replacing following nodes: ‘Fatness perceived as negative’

with ‘obesity stigma’, ‘Physical health’ with ‘physical fitness’, ‘Excess weight’ with ‘obe-

sity’ and ‘Food intake’ with ‘eating’, and removing the node ‘Belief in personal responsi-

bility’. Concept names represented using phrases instead of words get more complicated

to understand as well as people generally do not tweet these phrases, therefore for the

sense of a clear concept map we used meaningful and single word representation of those

phrases. The causal map in Figure 3.4 is a part of the conceptual model that was de-

veloped with the Provincial Health Services Authority (PHSA) of British Columbia to
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explore the interrelationships involved in obesity and well-being. The model was pre-

sented in 2015 at the Canadian Obesity Summit [17] and tested with policymakers in

2016 [56].

Figure 3.5: Concept Map - Obesity

The social media data, Twitter data in our case, was collected at the DataLab1. The data

for the concept ‘obesity was collected using the keywords shown in Table 3.1 consisting

of 12 nodes and 17 edges. Note that the above-shared concept map is unweighted as the

strength of evidence is used in later modelling stages going beyond the present scope.

These keywords were further collected using the nodes of the map that we are going

to use (see Figure 3.5) along with their respective derivationally related forms using

WordNet [131] from Natural Language Toolkit (NLTK [132]).

1DataLab url http://www.datalab.science/.

http://www.datalab.science/


38

Table 3.1: Keywords used for topic ‘Obesity’ for Figure 3.5 (fetched using Word-
Net(NLTK) lemmatized derivationally related form)

Nodes of Map List of related keywords using derviationaly

related form (Wordnet)

age geezer, maturation, senescent, age

exercise employ, exercise, utilise, workout, utilize,

work out, drill, exercising, exerciser, prac-

tice, use

intervention interpose, intervention, treat, interfere, inter-

vene, intercede, intervention

income income

obesity stigma obese, stigmatize, brand, stigma, mark, stig-

matic, stain, fleshy, obesity stigma, obesity

physical fitness physical, fitting, physicalness, fitness, fit,

seaworthy, physical fitness, physicality, force,

physics

obesity obese, fleshy, obesity

depression depression, slump, depress

weight discrimination discriminate, weight discrimination, slant,

weighty, discrimination, burden, weight, bur-

then

stress accentual, emphatic, stressor, tense, accentu-

ation, strain, emphasis, accent, emphasizing,

stress, accentuate

eating eating, feeding, feed, eater, feeder, consump-

tive, exhaustion, consumable, corroding, de-

pletion, eat, corrosion, rust, corrosive

antidepressant antidepressant

Before selecting derivationally related form for retrieving tweets, we tested the valida-

tion results using synonyms as well. From the WordNet glossary [133]: Synonyms =

synset+lemma, where synset is defined as a synonym set; a set of words that are inter-

changeable in some context without changing the truth value of the preposition in which

they are embedded and lemma is defined as lower case ASCII text of word as found in

the WordNet database index files. Lemma is usually the base form for a word or col-
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location. Furthermore, derivationally related forms are the terms in different syntactic

categories that have the same root form and are semantically related. In conclusion, not

only did derivationally related form of the nodes of the map gave us meaningful single

search keywords unlike synonyms (see Figure 3.6) but also 2% better validation rate than

the keywords fetched using synonyms. The percentage of validation for synonyms using

our previous works[103] Twitter data and conceptual model setup gave us 26 percent

validation, whereas we received 56.5 percent validation from the derivationally-related

form keywords.

Figure 3.6: Comparison between synonyms and derivationally related form keywords
fetched using WordNet NLTK for concept nodes defined in Figure 2.2

In total, 5,000,001 raw tweets were collected in this process from Feb. 26, 2019 to Mar. 2,
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2019 for concept ‘obesity. For this research, we have used English language tweets. This

data was used to develop and validate concept maps by mining Twitter data. In order to

work with human language data, Natural Language ToolKit (NLTK) provides us with

an interface like WordNet that we are using to get the derivationally related forms

relations which are defined only over lemmas. For retrieving lemmatized tweets from

Twitter data, we have used Stanford’s coreNLP library which provides us with fast

and robust annotators to manipulate and analyze text. We have used the following

annotators in our script from this library: tokenization, sentence splitting, POS

tagging, and lemmatization.

3.5 Implementation

Table 3.2: Versions of libraries used

Libraries Versions Used for

stanford-corenlp 3.9.2 Lemmatization

networkx 2.2 Conceptual model (access-

ing node labels and edges)

nltk 3.4 Wordnet (derivationally re-

lated forms)

gensim 3.6.0 Parallel, multi-core Latent

Dirichlet Allocation (LDA)

model for big data

google-cloud-

language API

1.1.1 Entity identification

scikit-learn 0.20.1 Sorting words by tf-idf

For the development of the complete framework, we relied on the technologies listed

in Table 3.2. NetworkX was used to create, manipulate and analyse the structure of

complex networks like our conceptual maps. It has the ability to use and work with

large data-sets and create maps. We used it for visual representation and initialization

of our maps. We replaced Latent Dirichlet Allocation (LDA) model with LDA Multicore

model is also known as Online LDA model (from Gensim library) which uses all the CPU

or GPU cores (see section Optimization) assigned to it. This model does parallelization

that uses multiprocessing to speed up the topic modelling process. Since we were using
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millions of Twitter data-set, this model gave us faster results on a High Performance

Computational (HPC) system with 3 cores assigned to each script that was used to fetch

the validated map. Furthermore, on a GPU system, this model ran 2 times faster than

the older model running on CPUs(see section Optimization). In our LDA model, the

following parameters (see table B.1) were used to determine relevant topics:

LDA = gensim.models.LdaMulticore (corpus=corpus, id2word=dictionary,

num_topics=n_topics, chunksize=10000, passes=20, eval_every = None,

workers=3, dtype=np.float64, iterations = 400)

• corpus(iterable of list of (int, float), scipy.sparse.csc, optional) = Stream of doc-

ument vectors or sparse matrix of shape (num terms, num documents). If not

given, the model is left untrained.

• id2word(dict of (int, str), gensim.corpora.dictionary.Dictionary) = Mapping from

word IDs to words. It is used to determine the vocabulary size, as well as for

debugging and topic printing.

• num topics(int, optional) = The number of requested latent topics to be ex-

tracted from the training corpus.

• chunksize(int, optional) = Number of documents to be used in each training

chunk.

• passes(int, optional) = Number of passes through the corpus during training.

• eval every(int, optional) = Log perplexity is estimated every that many updates.

Setting this to one slows down training by 2 times.

• workers(int, optional) = Number of workers processes to be used for paralleliza-

tion.

• dtype(numpy.float16, numpy.float32, numpy.float64, optional) = Data-type to use

during calculations inside model. All inputs are also converted.

• iterations(int, optional) = Maximum number of iterations through the corpus

when inferring the topic distribution of a corpus.
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The documents, in our case set of tweets are represented as strings. We used a doc-

ument representation called bag-of-words to convert documents into vectors. In this

each document is represented by one vector in which each vector element represents

a question-answer pair, in the style of: ”How many times does the word obesity ap-

pear in the document? Twelve times.” Representing the questions by their (integer)

ids alone is beneficial. A dictionary is called the mapping between the questions and

ids. We assigned a unique integer id to all words that appear in the corpus with the

gensim.corpora.dictionary.Dictionary class. This sweeps through the texts, gath-

ering relevant word numbers and statistics. We used the function doc2bow() to convert

tokenized documents into vectors that simply counts the number of occurrences of each

distinct word, converts the word to its integer word id and returns the result as a sparse

vector. Now, we have arrived at the corpus of vectors. We have millions of documents

in the corpus, storing all of them in RAM wont do. Gensim only requires a corpus to

return one vector of a document at a time. So we parse our input to get a clean list

of tokens in each document, then convert the tokens to their ids through a dictionary

and deliver the resulting sparse vector. Now the corpus is much more memory-friendly

because at most one vector resides at a time in RAM. Corpus is now an object which

is provided as inout for parameter corpus. The parameter id2word uses the dictionary

we created above as input. num topics parameter takes in input our global parameter

n topics. The parameter chunksize is set to 10000 number of documents to consider at

once since it affects the memory consumption. Passes set to 20 which defines how many

times the algorithm is supposed to pass over the whole corpus for training the model.

To make sure that by the final passes, most of the documents have converged Parameter

iterations was set to 400. Since parameter eval every slows down the process if set

to 1, so we chose to input ‘none’ for faster computations. Paramter workers was set to 3

considering that it was measured on i7 server with 4 physical cores[127], so the optimal

workers=3, one less than the number of cores. For precision we used dtype used for

calculations as numpy.float64(Double precision float). Also, parameter α which is the

per-document topic distributions and β which is the per-topic word distribution were

tested before finalizing these model constraints for topic detection. Previously we used

them to improve results, but it failed for our Twitter corpus which is random documents

(tweets). In our case document is equivalent to one tweet unlike other models [134] which

is one whole article. α, β parameters specify prior beliefs about topic sparsity/unifor-

mity in the documents which in our data couldn’t be predicted due to the limitation of

random opinions shared on Twitter. Later, for entity analysis to get rid of non-entities
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from our fetched themes we have integrated Googles Cloud Natural Language API in

our script as well. Furthermore to fetch important themes Scikit-learn’s countvectorizer

and tf-idf transformer were used as a weighing factor. At this step our third global

paramter max df which is the tf-idf weight threshold is set between range 2 to 9 since

the tf-idf weights of a word in our Twitter data for any value of other global parameters

n topics and n words was between 0 to 10.

3.6 Discussion

The experimental setup explained in section Experiment was used to run the follow-

ing computations. Seven main steps of our pipeline were tested for the time taken to

execute them. Time taken for execution was calculated for module data upload, using

derivationally related form from WordNet (NLTK), retrieving relevant tweets, extracting

relevant themes, cleaning repetitive themes, removing non entities using Google Cloud

Natural Language API, filtering the most important themes using count vectorizer and

tf-idf transformer weights and at last validating the connection in our user concept map

(see Figure 3.5). This time was calculated using the below python library which gives

us CPU and wall clock times for a particular function running in a Jupyter notebook

cell:

%time functionname()

Now these steps were run on the Twitter data mentioned in the experiment section 3.3

with the increments of 100,000 tweets from 100,000 to 1,000,000 (out of 5,000,001 initial

tweets). These chunks of tweets were collected one after the other not randomly. Not

only did we calculate the time taken at each step relative to the number of tweets, but

also the number of confirmed edges out of 17 nodes from our concept map (explained

previously in section Experimental set-up). This optimization was tested on Intel CORE

i7 8th Gen CPU as well as Nvidia 410.78 GPU. In Figure 3.7a, the table shows us the time

taken by steps 0 to 7 in seconds when executed on a CPU machine with an increment

of 100,000 tweets for validating connections from user concept map (see Figure 3.5).

In Figure 3.7b the graphical representation for the time taken by each step (0-7) for

incremental Twitter data (100,000-1,000,000) on CPU shows us that with the increase

in the number of tweets, the time taken to execute: step 2 = fetch relevant tweets and

step 3 = LDA increases.
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(a) Time taken

(b) Graphical representation

Figure 3.7: Computation results on CPU (Intel CORE i7 8th Gen) - (a) Time taken by
7 steps and number of confirmed edges for data from (100,000 - 5,000,000)tweets with
increment of 100,000 tweets on CPU and (b) Graphical representation for time taken by
each step (0-7) for incremental Twitter data (100,000-1,000,000) on CPU

In Figure 3.8a, the table shows us the time taken by steps 0 to 7 in seconds when

executed on a GPU machine with increment of 100,000 tweets for validating connections

from user concept map (see Figure 3.5). In Figure 3.8b the graphical representation for

time taken by each step (0-7) for incremental Twitter data (100,000-1,000,000) on GPU

shows us that with increase in number of tweets, the time taken to execute: step 2 =

fetch relevant tweets and step 3 = LDA increases.
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(a) Time taken

(b) Graphical representation

Figure 3.8: Computation results on GPU (nvidia 410.78) - (a) Time taken by 7 steps
and number of confirmed edges for data from (100,000 - 5,000,000)tweets with increment
of 100,000 tweets on GPU and (b) Graphical representation for time taken by each step
(0-7) for incremental Twitter data (100,000-1,000,000) on GPU

3.7 Conclusion

The pipeline to validate complex conceptual models by mining Twitter data can be

used as a generic methodology for validating conceptual models using citizen science

approach. Our dependency is on the type of Twitter data-set that we use to validate

these conceptual models, which is accomplished by using WordNet derivationally related

form to fetch the related keywords of the user concept map and is used to fetch tweets
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from the Twitter API on which we validate these models. Also, our proposed optimized

pipeline using GPU gave us two times faster results than our computations on CPU.

Also our user-defined global parameters n topics, n words and max df were tested for

combination of values. These values ranged from 10 to 100 with increment of 10 for

n topics and n words whereas 1 to 10 with increment of 1 for max df.

Figure 3.9: Number of edges confirmed (out of 17 in Figure 3.5) for each combination
of parameter values using Twitter data

The results (see Figure 3.11) shows us that with increase in n topics, n words and
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max df values, the validation percentage also increases. Here, we used the experimental

set up explained previously in section Experiment. The maximum number of validated

edges of user concept map was 16 out of 17 which 94.12%. This concludes that with a

large number of topics and words Twitter data provides a good validation percentage

with the most important words using maximum tf-idf weighing.
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Chapter 4
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4.1 Abstract

This chapter explores the possibility of Granger causality between the edges of a con-

ceptual map, measure in logarithms of real absolute frequency of the edges of a concept

map in 20 academic papers/journals/articles since January 01, 2019. By using the re-

sults from this test, we can confirm and extend the edges of a concept map and generate
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a causal map out of it. A causal map has directed and labeled edges. So far approaches

can only confirm or suggest undirected, unlabeled edges. That is, we can confirm that

two constructs are associated (one comes up as key theme when the other is evoked),

but we cannot identify which one causes the other, and what type of causation. By

using Granger causality tests, if the hypothesis that V1 does not Granger-causes V2 is

Rejected, we can confirm the causality between two concept vertices (Vi) and extend to

the reverse causality if the vice-versa is Rejected.

To find causality, we need to follow a time series. This time series is generated using the

absolute frequency of the vertices that create an edge over a period of one month since

January 01, 2019 using literature. Granger causality is being used once we have the

time series. Later we discuss the use of Twitter conversations instead to evoke temporal

precedence which determines the strength of a cause and effect relationship. This section

will reflect the relevance of Twitter conversations as compared to literature to extend

the conceptual model and generate strength of evidence associated with the model. We

highlight the basic ideas they are based on, provide a comparative analysis, and point

to some fundamental issues.

4.2 Introduction

After validating a conceptual model, one questions the extent and direction of valida-

tion. Previously there was no evidence of strength provided for associations between

concepts like ‘Obesity’ and ‘Stress’ for health-related conceptual models [See Chapter

3]. Establishing an association does not necessarily mean that the effect ‘Obesity’ is the

cause of the outcome ‘Stress’ or vice-versa. Most definitions of ”cause” include the idea

that it is something that has an effect or a consequence. Establishing a valid association

between ‘Obesity’ and ‘Stress’ is a necessary first step that was accomplished before

using our proposed pipeline [See Figure 3.2] . Whether this relationship is causal, is

the more complicated and often debatable question. There are no universal rules to

determine the causality of a relationship.

In 1890 Robert Koch [135] proposed specific criteria that should be met before con-

cluding that a disease was caused by a particular bacterium. These became known as

Koch’s Postulates which established standard criteria for concluding the cause of infec-

tious disease, but the criteria had some limitations concerning non-infectious diseases.
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Simultaneously in the past, efforts were made to account for the occurrence of disease

outcomes by applying Hill’s criteria for a judgment of causality [136] which was later

argued by Charlton [137] to be not used to assess causation. This was because of Hill’s

pre-defined criteria just like Robert Koch’s postulates which diminishes the validity of

causal inferences. On the contrary, Wynder [138] argued that criteria should be used

more often than they are to assess causation. According to him, these criteria reduce

the tendency for investigators to make causal conclusions merely on the basis of their

own published results of the association in question and thereby increase the valid-

ity of causation. A recent study [139] of these practices reveals errors in two claims

made by Charlton and Wynder. Research on causal inference methodology [140, 141] is

encouraged, including research on the underlying theory, methodology, and additional

systematic descriptions of how causal inference is practiced [142, 143].

In recent years, Granger causality [144, 145] has emerged as a leading technique for

inferring directions directly from data of neural interactions and information flow [146].

Our research focuses on using this technique to recognize the importance of temporal

order for causal relationship inference which was recognized by Wiener in 1956 [147] and

then formulated by Granger in terms of autoregressive (AR) models of time series in 1969

[144]. Unlike stimulation using predefined criteria, the Wiener Granger method does

not require direct intervention in complex systems. Rather, it relies on the evaluation of

causal statistical influence between simultaneously recorded time series data for concepts

of our complex system [See Figure 4.1]. Causality in the WienerGranger[144, 147] sense

is based on the statistical predictability of one time series that derives from knowledge of

one or more others. Our research proposes a new method to get the strength of evidence

i.e. causality for each concept defined by our conceptual model by mining Literature

and then compares it with Twitter conversations mining.

4.3 Methodology

4.3.1 Data Collection

To discuss the causality of concept maps generated by mining literature and Twitter

as knowledge base, our data collection was divided into two parts - one using literature

related PDFs and the other using Twitter conversations. The concept map used for this

research analysis is shown in Figure 4.2.
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Figure 4.1: Conceptual map

For the literature mining, the data in PDF format was collected using Google Scholar[148],

The Journal of Medical Internet Research[149], BioMed Central[150], PLOS[151] and

IEEE[152] websites. For each concept edge, we collected 20 PDFs. Each PDF had in its

title one of the vertices of that edge [See Figure 4.2a]. The time-frame used to collect

these PDFs was from January 01, 2019 till January 31, 2019.

On the other hand for Twitter conversation mining, we manually collected conversations

around the concept edges (‘obesity’, ‘stress’) and (‘obesity’, ‘education’) only as a proof

of concept [See Figure 4.2b]. To assess the temporality of tweets we need to follow conver-

sations (i.e. when users answer each other and the conversation brings new constructs).

The process for collecting Twitter conversations was a challenge in this research due

to the Twitters policy which discusses the affordability of the Twitter API for ‘replies’

since they create conversations. Tweets retrieved from the Twitter API are in JSON,

a simple structured text format. Twitter provides documentation on the complete set

of fields in a tweet [153]. But there is nothing to indicate that a tweet has a reply.

Instead to find tweet to which the reply tweet is a reply, Twitter provides the follow-

ing relevant fields in reply tweet in reply to status id, in reply to status id str,

in reply to screen name, in reply to user id, in reply to user id str. From the

names of these fields, one can easily conclude what they imply. The metadata of a tweet

provides the field in reply to status id which can be used to follow a chain of replies

backward from the reply tweet to the replied to tweet, but not vice versa, i.e., from

the replied to tweet to the reply tweet. This is where the challenge arises due to its

comprehensive selection of replied to tweets id i.e. on what relevance basis do we select
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these conversations which are beyond the present scope.

(a) Literature

(b) Twitter conversation

Figure 4.2: Data collection for Granger causality - (a) Literature - for concept edge
(‘obesity’, ‘stress’) PDF ‘Relationship between stress, eating behavior, and obesity’[154]
with ‘obesity’ and ‘stress’ in PDF title and (b) Twitter conversation - for concept edge
(‘obesity’, ‘stress’)
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4.3.2 Data preprocessing

Initially, all PDFs were converted to raw text using XpdfReader’s[155] command line

tool pdftotext. While collecting the data in PDF format, we have extracted the ref-

erences, images, tables as well. Each text file is divided into sentences using NLTK

sentence tokenizer (nltk.tokenize package). Finally, this text file is passed through

our proposed pre-processing techniques [See Figure 2.5] as explained previously in Chap-

ter 2 section 2.5.1. Simultaneously, the same steps were reproduced for pre-processing

Twitter conversations in the form of tweets.

4.3.3 Test for Causality

To investigate causality between two concepts in a time series we are going to use

Granger causality tests from statsmodels Python module[156]. This module provides

classes and functions for the estimation of many different statistical models, as well as

for conducting statistical tests, and statistical data exploration. We used the following

function from the module which computes four tests for Granger non-causality of two

time series.

statsmodels.tsa.stattools.grangercausalitytests(x, maxlag, addconst=True,

verbose=True)

It returns all test results in the form of a dictionary where keys are the number of lags.

For each lag the values are a tuple, with the first element a dictionary with teststatistic,

pvalues, degrees of freedom, and the second element are the OLS estimation results for

the restricted model, the unrestricted model, and the restriction (contrast) matrix for

the parameter f test [156]. This method is a probabilistic account of causality; it uses

empirical data sets to find patterns of correlation.

The Null hypothesis for grangercausalitytests is that the time series for vertex V2

does not Granger cause the time series for vertex V1. The time series for each ver-

tex is derived by calculating the absolute frequency of each concept name Vi in their

respective data source over time. Using literature, the absolute frequency was cal-

culated by the summation of the number of times the concept name along with its

derivationally related form occurs in corresponding 20 PDFs collected over a time

period of one month for all vertices. On the other hand, using Twitter conversations,

the absolute frequency was calculated by the summation of the number of times the
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concept name along with its derivationally related form occurs in the replied to

tweets for one vertex and replied by tweets for another vertex over a period of one week.

We then reject the null hypothesis that V2 does not Granger cause V1 if the pvalues are

below a desired size of the test. We chose 5% level of significance i.e. pvalue equivalent

to 0.05. The level of significance meaning the probability of rejecting the null hypothesis

when it is true which can be either 5%, 1% or 0.1% depending on the critical region.

Considering we have a time series of 20 PDFs and subsequently tweets, pvalue of 0.05

gave us statistically significant results which considers less than 1 in 20 chance of being

wrong. Unlike pvalue of 0.001 which provides statistically high significant results but

by considering less than 1 in 1000 chance of being wrong. The null hypothesis for all

four tests is that the coefficients corresponding to past values of the second time series

are zero. Parameters params ftest, ssr ftest are based on F distribution whereas,

ssr chi2test, lrtest are based on chi-square distribution. F distributions are used in

the analysis of variance i.e. the quality of being different. On the other hand, chi-square

distributions provides goodness of fit i.e. how likely is an observed distribution is due

to chance.

4.4 Results

The maximum lag achieved using grangercausalitytests was 7 for the literature data-

set due to 20 PDFs over a period of one month. While testing when we increased the

number of PDFs to 25 or 30, the maximum lag value also increased. The parameters

params ftest, ssr ftest, ssr chi2test and lrtest were generated [See Figure 4.3]

for each hypothesis that V2 does not Granger cause V1 to confirm causality as well as

V1 does not Granger cause V2 to extend reverse causality. This process was done for

all Lag values ranging from 1 to 7 for the purpose of selecting the Lag value to finally

generate a causal map [See Figure 4.5]. Figure 4.4 gives the overall computational results

of Lags ranging from 1 to 7. We analyzed that Lag equivalent to 7 and test results from

parameter ssr chi2test reported 76.47% edge confirmation i.e. 13 out of 17 edges

rejected the null hypothesis that V2 does not Granger cause V1. 88.24% edges were

extended in terms of reverse causality i.e. 15 out of 17 edges rejected the reverse null

hypothesis that V1 does not Granger cause V2.
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Figure 4.3: Parameter tests for each hypothesis

Figure 4.4: Optimal Lag length selection
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Figure 4.5: Causal Map using Granger causality

In comparison to Figure 4.5 we can observe that the time series for edge (weight dis-

crimination, depression) shown in Figure 4.6 rejects the null hypothesis that weight

discrimination does not Granger-causes depression and vice-versa. This proves that

mining literature could help gain the strength of evidence for the associations confirmed

using our proposed pipeline.
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Figure 4.6: Causality plot of edge (weight discrimination, depression) absolute frequency
in academic papers for January 2019 month

For Twitter conversations we provide a proof of concept on two edges (‘Obesity’,‘Stress’)

and (‘Obesity’,‘Education’). Since the time frame for this analysis was one week, the

maximum lag achieved was 1. Our main focus was on conversations creating constructs,

which in the case of edge (‘Obesity’,‘Stress’) [See Figure 4.6] was possible because people

were tweeting in regards with stress as the cause of obesity. On the other hand edge,

(‘Obesity’,‘Education’) [See Figure 4.7] did not show any constructs because people were

not tweeting about education as a cause of obesity. Using constructs from real-time

conversations between people is a leap forward to ascertain causality.
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Figure 4.7: Causality plot of edge (obesity, stress) absolute frequency in Twitter con-
versations for January 01-07 2019 week

Figure 4.8: Causality plot of edge (obesity, education) absolute frequency in Twitter
conversations for January 01-07 2019 week
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4.5 Conclusion

4.5.1 Limitations

Using PDF to confirm temporality does not justify the causation results. In comparison

to Figure 4.5 where edge (exercise, depression) rejects the null hypothesis that exercise

does not Granger-causes depression, and vice-versa, Figure 4.8 time series for that edge

(exercise, depression) does not validate the same.

Figure 4.9: Causality plot of edge (exercise, depression) absolute frequency in academic
papers for January 2019 month

Also for Figure 4.9 where time series for edge (intervention, exercise) depicts the null

hypothesis intervention does not Granger-causes exercise and vice-versa, the Figure 4.5

does not validate the same when we ran grangercausalitytestson the given time

series.
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Figure 4.10: Causality plot of edge (intervention, exercise) absolute frequency in aca-
demic papers for January 2019 month

4.5.2 Future work

Following temporality of tweets by mining Twitter conversations to create constructs out

of it could be a leap forward in ascertaining Granger causality. In this chapter, we have

provided a proof of concept that generating time series over the edges of concept map

by mining their relevant Twitter conversations can further strengthen the evidence of

confirmation and extension of these concept maps. Once we have the causality evidence

for our concept map, we further detect the shift in public opinion as well to analyze if

these computational results generated using Twitter data are an artifact of our proposed

methodologies or accurate reflection of events related to that concept map. The next

chapter is a case study on political events which uses our methodology to address the

shift in public opinion.
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5.1 Abstract

Twitter is a valuable source for learning about public opinion and political communi-

cation, and Twitter mining offers a way to analyze large numbers of tweets to help us

understand political associations the public makes. However, the use of incivility and
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particularly sarcasm in political discourse may pose a challenge for Twitter mining in

the context of politics. In this study, we apply Twitter mining to the 2018 confirmation

of Judge Brett Kavanaugh to the Supreme Court to look for possible changes in public

opinion of the Court in the wake of the confirmation hearing and to determine whether

sarcasm in political messages on Twitter can alter the results of computational methods

when using large data-sets. Examining two waves of tweets, one in the days immediately

following the confirmation and one a month later, we find evidence of a shift in public

opinion as associations between the Supreme Court and partisanship emerge only in

the latter period. Using sentiment analysis, we also demonstrate that sarcasm led to

over-categorization of positive tweets that altered the results by suggesting the public

viewed partisanship on the Supreme Court favorably.

5.2 Introduction

Existing research on Twitter and politics focuses on both elite and public use of Twitter.

Elite-centered studies consider which political officials use Twitter, how, and for what

purposes. Who uses Twitter has been of particular interest in studies of congressional

members [157, 158, 159], and campaign-focused research has looked at gender differences

in congressional candidates’ Twitter use [160]. The content of elected officials’ tweets

can be a key to understanding what activities officials prioritize in office (e.g. [161, 162]).

Scholars have also relied on tweets to gain insight into the relationship between elected

officials and their constituents or followers on Twitter (e.g. [163, 164]). Recognizing

journalists’ reliance on Twitter, some studies focus on elite Twitter users’ influence on

media coverage in the context of political campaigns [165] and in governing [166].

Many scholars have turned to Twitter to learn more about the political behavior, opinion,

and communication of the public. Three areas of study have gained considerable atten-

tion: Twitter in the context of campaigns and in the development of social movements,

the effects of Twitter on political interest, and the rhetoric and tone in political tweets.

Campaign studies have examined the effectiveness of candidate messages delivered via

Twitter compared to messages voters receive from traditional news media [167]. Tweets

in campaigns have been analyzed in several ways [168] including to provide evidence of

ideological echo chambers [169], compare the spread of fake news and corrections of such

stories [170], and study citizens’ perceptions of candidates [171] and responses to candi-

date speeches [172]. Numerous studies exist on the role of Twitter in social movements,
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particularly the use of social media to react to events and encourage the formation of

collective identities that result in activism (e.g. [173, 174, 175, 176]). And there have

been efforts to demonstrate the political effects of Twitter on the public; for example,

Bode and Dalrymple [177] found in a survey that Twitter users were more interested

in politics and less trusting of mainstream media, suggesting important implications for

political communication. Twitter is an excellent source for rhetorical studies with schol-

ars using tweets to examine the incivility, sarcasm, and the use of humor in political

discourse [178, 179, 180].

The messages produced on Twitter (i.e., tweets) may be analyzed qualitatively as re-

searchers read them, or they may be automatically examined through a computational

lens. Automatically finding patterns in the data produced on social websites is known as

social web mining, and specifically Twitter mining when the social platform of interest

is only Twitter [65]. A very large number of tweets is one of the key reasons to perform

Twitter mining instead of, or in complement to, a qualitative approach. For instance,

the phenomenon of interest may only be observed through a massive amount of data,

such as tracking the monthly opinions of various communities in each US state over

months. Although Twitter mining may lack the depth or nuance of qualitative methods

on individual tweets, coping with data-sets consisting of millions of tweets requires a

computational method and special infrastructure [100]. Such large data-sets are either

impossible to process for a team of researchers, or would limit us to simple forms of qual-

itative analyses that can be accurately performed via crowdsourcing. Twitter mining is

a well-established approach in health behaviors [26, 27, 71], for instance by analyzing

foods consumed using 503 million tweets [72]. Our approach applies Twitter mining to

the 2018 confirmation of Judge Brett Kavanaugh. This topic was previously analyzed by

Darwish, who used 23 million tweets to analyze the polarization of 687,194 users [181].

While the work of Darwish focuses on polarization around Kavanaugh, we analyze a less

direct effect: whether the Kavanaugh case changes public opinion about the Supreme

Court itself. Our first research question thus contributes to the literature on politics

and media:

(Q1) Is there a shift in the public opinion of the Supreme Court before and after the

confirmation of Judge Brett Kavanaugh?

The analysis of political discourse on Twitter has its own challenges, in part due to

the use of incivility, sarcasm, and humor. Sarcasm has been the topic of numerous
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papers on Twitter mining [182], whose methodologies range from a reliance on self-

disclosure of sarcasm (e.g., via the hashtags #sarcasm or #sarcastic [183, 184]) to the

use of advanced artificial tools such as neural networks [185]. In this chapter, our second

research question is whether sarcasm does matter for Twitter mining in the context of

political discourse. Formally, our question is:

(Q2) Can sarcasm in political messages posted on Twitter significantly alter the results

of computational methods even when using large data-sets?

The remainder of this chapter is organized as follows. In section 5.3, we provide a

succinct background to the context of our case study, that is, the confirmation of Judge

Brett Kavanaugh. Given this context, we introduce our methods in section 5.4, in line

with the framework that we recently used in Sandhu et al. [103]. In section 5.5, we

provide our results on the case study. The final section contextualizes our results with

respect to our two research questions, and concludes with suggestions for future work.

5.3 Background

When United States Supreme Court Justice Anthony Kennedy decided to retire in the

summer of 2018, the process to confirm Federal Appellate Court Judge Brett Kavanaugh

to replace him was inevitably going to be partisan. Democrats were still angry that the

Republican majority in the Senate had denied former President Barack Obama the op-

portunity to appoint a replacement for conservative Justice Antonin Scalia, who had

died unexpectedly during Obama’s last year in office. Refusing to hold confirmation

hearings or a vote on Obama’s nomination, Republicans delayed until Republican Presi-

dent Trump came to office and nominated a conservative to fill Scalia’s seat, keeping the

court closely divided ideologically. Kennedy was the swing vote who often broke the tie

between the Court’s four liberals and four conservatives in close cases. Kavanaugh was

much more reliably conservative than Kennedy and was expected to move the Court fur-

ther to the right ideologically, potentially changing the balance on the Court for decades

and endangering liberal precedents on abortion and race decided by earlier courts.

The confirmation hearing by the Senate Judiciary Committee took place over four days

from September 4 through 7, and the coverage of the hearings focused on the “parti-

san rancor” among senators on the committee [186]. Democrats complained that the

Republican majority had refused to get all of the documents Democrats wanted to see
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from Kavanaugh’s days of working in the George W. Bush Administration. They raised

concerns that Kavanaugh’s “expansive view of executive power” would make him an ad-

vocate for Trump on the Supreme Court. Republicans accused the Democrats of making

the hearings about Trump instead of judicial qualifications [186]. Further dramatizing

the partisan stakes were protestors in the audience who periodically disrupted the hear-

ings and were escorted out of the room and arrested. At the end of the contentious

hearings, Kavanaugh appeared to be heading to confirmation.

However, on September 12, reports surfaced that a woman had accused Kavanaugh of

sexual assault in an incident that allegedly occurred when both were in high school.

Christine Blasey Ford had made Democratic Senator Dianne Feinstein aware of her al-

legation during the summer but had wanted to remain anonymous. As news of the

letter appeared in mainstream news media and Ford went public with her account, Re-

publicans accused Democrats of going to any extreme to block Trump’s agenda [187].

Following a tense Senate Judiciary Committee hearing on September 27 in which Ford

and Kavanaugh were questioned and a short investigation by the FBI that found no

conclusive proof of the assault, the Senate voted on October 6 to confirm Kavanaugh on

a 50-48 vote with only one Democrat crossing party lines to support the nomination.

The coverage of Kavanaugh’s confirmation focused on the partisan process that left

members of both parties lamenting the bitterness and division and on the protests and

anger among citizens. Those on the left worried about the direction of the Court, and

those on the right decried the tactics of the left. That is the context in which the tweets

collected for this study were posted. The high profile partisan fighting and the focus on

the ideological balance of the Court led us to look at the association between Kavanaugh

and Supreme Court and partisan.

5.4 Methods

5.4.1 Overview

To date, research on Twitter and politics has incorporated a variety of methodologies.

There have been qualitative analyses of relatively small samples of tweets [159, 165],

often combined with other qualitative methods including elite interviews. The majority

of quantitative studies rely on content analysis of tweets from varying sample sizes. The
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studies often select tweets that include a particular hashtag [174, 176], occur within a

specified time period [180], or come from specific political elites. The sample sizes vary

from a few hundred to hundreds of thousands. The sample sizes may be limited in part by

researchers’ continued reliance on human coding, particularly for more nuanced analyses

like the tone, political sentiment, or partisanship of tweets. In contrast, Twitter mining

often involves millions of tweets, with examples including the analysis of 23 million

tweets by Darwish [181] or several examinations of the 2016 U.S. presidential election

either during the campaign announcement stage (4 million tweets [188]) or throughout

the election (50 million tweets [189]). In this chapter, we also take a Twitter mining

approach to cope with large data-sets. The remainder of this section explains how we

collected, cleaned, and analyzed the data.

5.4.2 Data collection

The conceptual model of this study is shown in Figure 5.1, depicting concepts as nodes

and association as undirected edges. This model is not merely a diagram or framework:

rather, it serves as input to both our data collection and analysis (section 5.5.4). For

data collection, the nodes of the model specify which tweets to collect. The justification

for each node is as follows. ‘Kavanaugh’ and ‘Supreme Court’ were included as his con-

firmation to the court is the event of interest. The inclusion of ‘Partisan’ allows us to

specifically examine whether the public opinion sees the Supreme Court as a partisan

body (Q2). ‘Trump’ nominated Kavanaugh and was often mentioned in connection with

the hearings [186], thus he was also included as a key actor. Kavanaugh was a frequent

target of the ‘#MeToo’ movement [190, 191, 192], which Trump attacked as a means to

support his nominee [193, 194]. Consequently, #MeToo was part of the search terms.

Finally, ‘Democrats’ and ‘Republicans’ were included as the two main parties involved

in this political event.

Our process consisted of collecting tweets including at least one of (i) the seven nodes’

names (Supreme Court, Partisan, Kavanaugh, Trump, Republicans, #MeToo, Democrats),

or (ii) a variation of the seven nodes’ names. If variations were not included, then we

would have an overly restrictive data collection approach, for instance accepting tweets

with ‘democrats’ or ‘#MeToo’ but rejecting those containing ‘democrat’ or ‘MeToo’.

Manually listing all variations can be prone to omissions, thus introducing a human bias

in the data collection process. Consequently, we automatically generate all variations for



67

each node’s name using the derivationally-related forms from the WordNet library. As

a result, we would not only collect tweets if they mentioned ‘partisan’, but also accept

‘partisanship’ or ‘partizan’.

Figure 5.1: Conceptual model for our study. Nodes are used as keywords to retrieve
tweets (section 5.5.2) whereas links provide a list of possible associations to examine in
the analysis phase (section 5.5.4).

We collected data in two waves. Kavanaugh’s confirmation hearings took place in

September, and he was confirmed by the Senate on October 6th, 2018. Our first wave

thus covered the period during which there was an intense media coverage of the event,

which allows us to observe how the event is influencing the public’s opinion about the

Supreme Court. Data collection started on October 9th and finished on October 15th,

yielding 14,558,962 raw tweets (i.e. before cleaning). To investigate the longer-term

effect of the hearing onto the public’s perceptions of the Supreme Court, the second

wave was configured to acquire approximately as many tweets as the first one. It took

place from November 11th to 17th and resulted in 14,558,963 raw tweets.

5.4.3 Data cleaning

A large data-set can include content that is not only unnecessary for analysis but may

also prove to be detrimental, as noise can detract from accuracy and processing irrelevant

data creates a computational burden. Consequently, a large data-set of tweets typically

goes through extensive pre-processing before analysis. As the various pre-processing
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options and their effects have been described elsewhere [94, 95, 96, 97, 102], we only

succinctly describe the ones that we use here. We start with removing content that

would not be processed in the analysis: URLs, mentions (starting with @), hasthags,

numbers, emojis, punctuation, line returns, and extra spaces. We then converted all

characters to lowercase to prepare for the third step which transforms the content. The

transformation consisted of expanding acronyms (e.g., ‘?up’ becomes ‘what’s up?’) and

contracting words as they are mispelled either involuntarily or for the sake of empha-

sis (e.g., ‘aaaaand’ turns to ‘and’, ‘fooooood’ becomes ‘food’). Having performed this

transformation, we were then able to do a final wave of content removal for words that

are not considered informative per the English language, such as ‘and’, ‘an’, or ‘the’.

The last step performs lemmatization, which consists of simplifying each word to its root

form (e.g., ‘eat’ instead of ‘eating’) by doing a morphological analysis of words. This

step is an essential component of Natural Language Processing (NLP), as it allows us

to map inflected forms of a word into a single base which can be consistently counted

(e.g., to establish the frequency of a term in a corpus).

After pre-processing, the data-set from the first wave (October 9-15th) was reduced to

1,696,268 tweets (11.65% of the initial data-set) and the data-set from the second wave

(November 11-17th) was reduced to 1,884,486 tweets (12.94% of the initial data-set).

Thus reductions in the size of the data-set are a typical outcome of pre-processing. In

our recent study on the topic of obesity, we went from 6,633,625 tweets to 1,791,333 [103]

(27.00% of the initial data-set). The use of derivationally-related forms (section 5.5.2) is

one of the reasons for which many of the tweets were discarded, because it included ‘#’

as a valid alternative for ‘#MeToo’. While we could have manually removed ‘#’ from

the data collection, it would have been an ad-hoc alteration of an automatic process. We

thus preferred keeping the process fully automatic, knowing that many irrelevant tweets

would be discarded in a controlled manner during the pre-processing stage. We observed

that some irrelevant tweets still appear, but in proportions that cannot have a statisti-

cally significant impact on results. For instance, ‘Supreme Court’ was included 43,740

times but only 25 tweets were included for containing the irrelevant word ‘courting’, a

single tweet included ‘courtly’, and 479 tweets had ‘court’ without ‘Supreme’.
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5.4.4 Analyses

We analyzed the pre-processed data in two ways. First, we examined the presence of

the associations listed in Figure 5.1: for instance, is partisanship a theme commonly as-

sociated with the Supreme Court? Second, we investigated the sentiments that Twitter

users express with regard to these associations. Note that both analyses are applied on

our two data-sets (October 9-15th and November 11-17th) such that we can see whether

there is a shift in the public opinion (Q1). The presence of sarcasm will also be assessed,

in relation with our second research question (Q2).

Our process to examine the presence of associations has been detailed elsewhere [103].

In short, there are two inputs to the process: the conceptual model (Figure 5.1), and

the pre-processed set of tweets (section 5.5.3). The process loads the tweets onto the

conceptual model. That is, it tells us whether each relation included in the conceptual

model is confirmed by the data, and if so, to which extent. The conceptual model thus

guides the analysis, for example by specifying that ‘Partisan’ should be explored in re-

lation with the Supreme Court.
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Figure 5.2: High-level view of our analysis process to establish whether, and to which
extent, the data-set supports each of the associations in the conceptual model.

A high-level view of the process is provided in Figure 5.2. We start by associating each

node with all tweets that contain the node’s name or one of its derivationally related

forms. A tweet may be associated with several nodes: for example, the pre-processed

tweet “entire democrat propaganda media machine egregious unethical understatement
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come describe main stream media response national disgrace vile kavanaugh smear stay

angry n t complacent punish november” will be associated with both Kavanaugh and

Democrats. We continue by extracting the main themes within the set of tweets associ-

ated to each node. As every step of our process, this extraction is automatic and relies

on Latent Dirichlet Allocation (LDA) [195], which has been used in numerous stud-

ies applying Natural Language Processing to Twitter [196, 197]. Since our conceptual

model articulates relations of interest between entities, we filter the themes with Google

Cloud Natural Language APIs to focus on the entities with which each node may be

associated. If the associated themes for a given node correspond to connected nodes

in the conceptual model, then the corpus supports to this connection. For instance, if

‘partisanship’ is a theme for the corpus relevant to ‘Supreme Court’, then it contributes

to the evidence-base for a connection between ‘Supreme Court’ and ‘Partisan’.

Results from the process aforementioned do not only depend on the two inputs (concep-

tual model and pre-processed tweets) but also on three parameters, whose values must

collectively be set such that results are optimal. This is a process known as hyperparam-

eter optimization. We optimize using the common grid search approach consisting of (i)

defining a set of possible values for each parameter, and (ii) computing the results for

all combinations of parameter values. The three parameters are related to extraction

of themes using Latent Dirichlet Allocation: they are the number of themes (nthemes),

the number of words per theme (nwords), and the frequency to retain significant results

(freq). The value of freq is limited by the data, as it goes up to the most frequent

item. In both data-sets, we varied freq from 2 to 9 by increments of 1. The values

of nthemes and nwords are set similarly to previous work [103], ranging from 5 to 50 by

increments of 5. The output from the grid search is shown on Figure 5.3, and we selected

the parameter values that maximized the number of associations confirmed.
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Figure 5.3: We optimized the values of our three parameters by maximizing the number
of associations confirmed on the October data-set (4 out of 7).

Our analysis of sentiments was performed at two levels: we analyzed the sentiments

regarding key entities (i.e. the nodes of our conceptual model in Figure 5.1), and we

analyzed the sentiments when such entities were associated (i.e. the edges of our concep-

tual model). Analyzing entities is the most straightforward part: for each entity, we find

all relevant tweets through the same first step as in Figure 5.2, and we use the sentiment

analysis tool VADER (Valence Aware Dictionary and sEntiment Reasoner) to count the

percentage of tweets that are positive, neutral, or negative. As an association involves

two entities, we get the union of tweets relevant to the two entities (which eliminates

duplicates) and then we use VADER to categorize them. For the sake of efficiency, we

do not retrieve tweets for one entity, tweets for the other, and spend unnecessary com-

putations to identify and remove replicated tweets. Rather than eliminating duplicates

from two independent searches, we perform a single search for which the keywords are

gathered from both entities using derivationally related forms.
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5.5 Results

Our two analyses examined the presence of associations and then the types of sentiments

(section 5.5.4). The results for both analyses are presented in turn. We confirmed 4 out

of 7 potential associations (57%) on the October data-set, and 5 out of 7 (71%) on the

November data-set (Figure 5.4). Most importantly, the association between the Supreme

Court and Partisan was confirmed in November but not in October. That is, after the

confirmation of Judge Brett Kavanaugh, the Supreme Court was associated with the

idea of partisanship. This addresses our first research question, thus presenting evidence

for a shift in the public opinion of the Supreme Court. We also note that the association

of Judge Brett Kavanaugh with the Democrats in October has stopped in November.

Figure 5.4: Associations that were confirmed (green) or not (red) for both of the data-
sets. Note that the association between the Supreme Court and Partisan is confirmed
in November but not in October.

The other research question examines whether sarcasm in the tweets can alter the results.

We note that associations cannot be altered by sarcasm, because they are only about

the joint presence of entities rather than the emotions expressed regarding these entities.

The primary impact of sarcasm is thus measured through our analysis of sentiments.

From Figure 5.5, we observe that the Supreme Court and partisanship evoke a clearly

positive feeling. As it would seem unlikely for a population to endorse prejudice in the

highest federal judiciary court, we explored the roots of this result. A manual inspection

from several pre-processed tweets categorized as positive reveals the likely use of sarcasm.
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For instance, several tweets may not truly be thankful (e.g., “thanks strictly partisan

supreme court vote”, “Thanks republican [for a] partisan supreme court [!]”) or happy

(e.g, “Yeah happy put partisan rapist supreme court opinion worth nothing”). The use

of words such as ‘thanks’, ‘happy’, ‘great’ (“great non partisan supreme court huh”) or

‘highly’ (e.g., “gop rammed highly partisan misogynistic fratboy supreme court sh”) may

thus derail the sentiment analysis. Since our observations were made on a small sample,

it is necessary to assess more comprehensively whether sarcasm is prevalent throughout

our data-set consisting of approximately 3 million tweets in total. Several solutions

have been presented at the Workshop on Computational Approaches to Subjectivity,

Sentiment and Social Media Analysis. In our work, we use the neural network approach

of Ghosh and Veale presented at the 7th edition of the workshop in 2016. Their solution

allows us to automatically and accurately detect the presence of sarcasm, as it has shown

an accuracy of almost 92% on tweets [198]. Results on Figure 5.6 confirm both (i) the

presence of sarcasm and (i) the role it plays in the over-categorization of positive tweets.

With regard to the first point, we observe that associations between entities have 36%

to 41% of sarcastic posts. The latter is demonstrated as sarcastic posts are always more

prevalent with positive than negative tweets. We observed the largest difference on

tweets involved in the association between Supreme Court and Partisan, where 19% of

‘positive’ tweets were sarcastic versus only 4% for ‘negative’ tweets.
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Figure 5.5: Sentiment analysis at both the node- and edge-level. Only the positive and
negative categories are shown; all other posts are categorized as neutral.

Figure 5.6: Prevalence of sarcasm at the association-level and at the sentiment-level for
the Oct 9-15th data-set. Sarcasm for tweets with neutral sentiments is not displayed.
Sarcasm is only computed on tweets with at least four words using the solution of Ghosh
and Veale [198].
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5.6 Discussion

Twitter has been analyzed in numerous studies to further our understanding of the

political behavior, opinion, and communication of the public. While qualitative anal-

yses have demonstrated their usefulness in capturing the nuance of tweets, automatic

approaches (i.e., ‘Twitter mining’) can provide a useful complement to analyze large

data-sets formed of millions of tweets. A challenge in this situation is the use of incivil-

ity, sarcasm, and humor. Our work provides a technical contribution to document the

impact of sarcasm on large scale analyses. We confirm that sarcasm did alter the results

of computational methods, as it led to the misleading suggestion that the public likes

bias in the Supreme Court. Our study also makes a contribution to the literature on

politics and media through our specific case study of tweets regarding the confirmation

of Judge Brett Kavanaugh to the Supreme Court. An association between the Supreme

Court and Partisanship only after, and not during, the confirmation. This suggests that

the confirmation has modified the views that the public holds regarding the Supreme

Court, and hence more broadly with the partiality of justice in the United States.

Our study has several strengths. First, we rely on methods and implementations that

have been previously published. VADER has been used for sentiment analysis of a Twitter

corpus in several studies published within the last three years [199, 200, 201]. Similarly,

our approach to finding associations uses the Latent Dirichlet Allocation (LDA), a well-

established method to mine themes from text [195], whose accuracy makes it a common

choice for applications to Twitter data [196, 197]. As we recently designed the process to

find associations, it has only been used in our other 2019 study [103]. However, we took

a very conservative approach by selecting parameter values that maximize the number

of associations.

Although maximizing the number of associations provides a very conservative estimate,

it is worth asking whether the lack of an association (e.g., between Supreme Court and

Partisan in October 9-15th) is an artifact of our method or an accurate reflection of

events. For instance, our results did not find associations between Democrats and the

#MeToo movement although other studies have presented tweets that simultaneously

refer to both of these entities (c.f., [202], p. 14). As any analysis of a sample, our

findings cannot demonstrate the absolute absence of evidence for an association. Rather,

our analysis concludes that, in two samples of over 1.5 million tweets, such associations
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did not have enough statistical significance to either (i) be included in a theme by

Latent Dirichlet Allocation (LDA), or (ii) achieve a sufficient frequency to be retained

among significant results. As aforementioned, LDA is a strength of this study and

would not be a reason that a theme was missing. Our criteria for ‘sufficient frequency’

are unlikely to provide such a reason either. Indeed, evaluating a ‘sufficient frequency’

used the term-frequency inverse document-frequency (tf-idf), which is one of the most

popular information retrieval metrics of the importance of a word within a corpus. A

word does not need to appear frequently in general (e.g., ‘thus’, ‘then’) because the

inverse document-frequency increases the weight of terms that are frequent within some

documents rather than throughout a collection. In an extreme case, the tf-idf measure

may be a reason to have associations that do not exist (false positive) rather than missing

existing ones (false negative), as the measure has been noted for being occasionally

lenient by accepting irrelevant terms if a collection was noisy [203]. In sum, the design

of our study gives credit to the idea that the Supreme Court was only associated with

partisanship on November 11-17th but not on October 9-15th.

5.7 Conclusion

By automatically analyzing millions of tweets, we find evidence of a shift in the public

opinion. Such as in this case study of the Supreme Court before and after the confirma-

tion of Judge Brett Kavanaugh. The Supreme Court was associated with partisanship

one month after the confirmation but not in the days that immediately followed. We

also demonstrate that sarcasm in political tweets can significantly alter the outcome of

tweet mining even when using large data-sets.
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Chapter 6

Discussion, Future Work &

Conclusion

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Scope For Improvement & Current Exceptions . . . . . . . . . . . . . . . 78

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4 Availability of data and material . . . . . . . . . . . . . . . . . . . . . . 80

6.1 Overview

Both social media data and expert reports may be used to take into account popular

perspectives and expert opinions when creating large conceptual models. The pipeline

to validate complex conceptual models by mining Twitter data can be used as a generic

methodology for validating conceptual models using citizen science approach. Once

a model is validated , it can be further extended using Granger causality tests. By

automatically analyzing millions of tweets, we find evidence of a shift in the public

opinion.

6.2 Scope For Improvement & Current Exceptions

For improvement, we changed from old LDA model to LDA multicore model and then

to LDA multicore GPU model(using tensorflow). It took 10 days using old LDA model,
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5 days using LDA multicore model, 4 hours using LDA multicore GPU model (using

tensorflow) for one round of our paramaters number of topics, number of words per

topic and maximum tf-idf weight using Twitter data on our concept map (see Figure

3.2). Also while using LDA multicore GPU model (using tensorflow) for one round on

millions of tweets but small maps like the political map (7 nodes(refer Chapter 4)) it

took 2 hours of computation only. LDA is as fast as it can be, but we are using it to

run multiple times (depending on number of nodes of usermap) which is what takes

time. And then each node contains millions of tweets which adds on to more processing

time. There is scope for improvement in future by considering parallel LDA processing

for each node to fetch these themes much more faster in future. Our LDA model is

very much efficient with the constraints(refer table B.1) and systems(GPU) we used on.

Getting results in 4 hours after running LDA for 177(nodes(refer Chapter 2)) times on

one round of n topics, n words, max df is a milestone we overcame. It will take much

less time if we find themes for single node.

6.3 Conclusion

In this thesis, an approach to validate conceptual models is presented. This approach

is applied to extract relevant themes for each concept by mining Twitter data which is

being used for further analysis to support the validation of connection between concepts

of our concept map using our algorithms. To start with the analysis, we input Twitter

data-set fetched using the concept names of the map and its derivationally related form

and user concept map in JSON and CSV format which are converted to dictionaries

when used in our algorithms..

The whole process is broken down into multiple steps, the two main being detecting

themes and mapping it with related concept by comparing with derivationally related

form of that concept. The purpose of extracting themes is to discover the abstract

topics that occur in a collection of documents here set of relevant tweets corresponding

to concept name. The mapping it back to relevant concept name is finally done to

validate the conceptual model.
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6.4 Availability of data and material

The data-sets and conceptual model generated during and/or analysed during the cur-

rent study are available from the thesis author.



81

Appendix A

List of Abbreviations

• API Application Program Interface

• NLTK Natural Language ToolKit

• CPU Central Processing Unit

• GPU Graphic Processing Unit

• PHSA Provonvincial Health Services Authority

• PDF Portable Document Format

• LDA Latent Dirichlet allocation

• CSV Comma-separated values

• NLP Natural language processing

• ASCII American Standard Code for Information Interchange

• SD System Dynamics

• FCM Fuzzy Cognitive Maps
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Appendix B

Values For LDA Multicore model

Parameters

Table B.1: LDA model parameters

Parameters Value

corpus corpora.Dictionary.doc2bow(word)

id2word corpora.Dictionary(word)

num topics n topics(user-defined global parameter)

n words user-defined global parameter for number of words per topic

chunksize 10000

passes 20

eval every None

workers 3

dtype np.float64

iterations 400
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