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Abstract

The study and analysis of slopes are essential for understanding their performance and,

in particular, their stability, reliability, and deformations. Traditional slope stability analysis

involves predicting the location of the critical slip surface for a given slope and computing

a safety factor at that location, which belongs to the deterministic frame. It is found that

multiple sources of uncertainties often exist in the evaluation of slope stability. When assessing

the stability of slopes in the face of risks, it is desirable, and sometimes necessary, to adopt

reliability-based approaches that consider these uncertainties explicitly.

The thesis develops an efficient methodology of soil modeling using maximum entropy

based quantile distribution constrained by probability weighted moments, conducts field vane

shear soil testing in the Nipigon river area and establishes the soil strength models. The re-

search proposes a new reliability-based method to study the stability of the Nipigon river slope

and carries out a reliability-based design of slopes by combining quantile-based reliability and

multi-objective optimization.

In general, the probability distribution describes the randomness of soil parameters col-

lected empirically or tested by the few numbers of collected soil samples. However, the sub-

stantial effect of sample size on the estimation of random properties of the soil strength requires

an extensive data to explore uncertainties, which is uneconomical and sometimes impossible

to obtain. This study aims to consolidate recent advancement in probabilistic characterization

and develops an inverse cumulative distribution function (ICDF) or quantile distribution, for

direct quantification of the actual variability of various soil samples. Based on the analysis,

a framework is developed that streamlines the formulation of probability weighted moments

(PWM), and maximum entropy (MaxEnt) based distribution function for various soil prop-

erties when estimated using different field or laboratory tests, leading to a reliable procedure

for applications of the proposed framework to different site characterization problems. Exam-

ples are provided to illustrate the implementation and step-by-step procedures of the proposed

framework.



This research further extends the reliability approach for slope stability problems and uti-

lizes the first-order reliability method (FORM) with quantiles for improving the efficiency of

the FORM with relatively small samples. Reliability analysis is combined with deterministic

slope stability analysis and implemented using an efficient algorithm. The analysis is validated

through comparison with other reliability methods and used to explore the effect of variability

of the soil properties on slope system. It is found that, when variability of soil properties is de-

fined by assuming a conventional distribution, the variance of factor of safety is overestimated

or underestimated. The approach not only provides sufficiently accurate reliability estimates of

slope stability but also significantly improves the computational efficiency of soil slope design

in comparison with conventional design methods.

Keywords: slope stability, landslide, quantile function, first-order reliability method, re-

sponse surface method, reliability-based design.
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Chapter 1

Introduction

A slope failure is the movement of a mass of rock or earth falling down from a slope, under the

influence of gravity in different forms (Nemčok et al., 1972). There are various factors affecting

slope failure phenomena like earthquakes, heavy rainfall, rapid snow melting and construction

activities. Slope failures contribute to a significant loss of lives and money. The collapsed soil or

rocks affect a large amount of area. A lot of studies have been performed on large landslides,

and most of them considered as catastrophic landslides. A giant landslide occurred in Las

Colinas,Central America due to the earthquake in 2001 affected 100,000 people (Baum et al.,

2002). The occurrence of landslides is not just a natural process, but also a result of the increased

vulnerability of communities and infrastructure resulting from excessive urban development,

poor quality control and incomplete understanding of hazards.

Figure 1.1: Landslide at Saint-Jude in Canada, May 2010 (Locat et al., 2017)

1



CHAPTER 1. INTRODUCTION

In Canada, there are numerous cases of landslide due to rapid snow melting and earth-

quake. These are affecting the resources and lives of Canada. The landslide occurred at Saint-

Jude in Canada is a recent example as shown in Figure 1.1. The climate change and global

warming are affecting the hilly regions, and coastal areas as well as infrastructure and other

structures related to slopes (Locat et al., 2017). The studies claim that variability in soil pa-

rameters and fluctuations in rainfall will increase the chances of landslides in future. It is a

challenging task to understand, and to respond the effects of climate change and preparing

strategies to deal with it. Therefore, it is a rising concern for engineers to mitigate and prevent

the slope failure.

1.1 Motivations
The reliability assessment of structures is considered as a formidable task in civil engineer-

ing. A civil engineer is responsible for developing reliable and effective systems for the society

by mitigating risk and reducing failure. The geotechnical parameters and geological condi-

tions are random variables due to the nature of origins. In general, engineers choose a single

value or average in traditional geotechnical analysis rather than accounting the variability and

quantifying the risk associated with projects. The conventional methods generally calculate th

e factor of safety (FOS), and it is assumed that the same value can be used to varying degree

of uncertainties (Duncan, 2000). The FOS itself can be overly conservative in some cases.

The traditional procedure may affect the risk assessment and contribute to failure. The relia-

bility and probability-based concepts quantify the randomness of soil properties and help in

designing safe and economic structure.

Reliability concepts provide a brief description of uncertainties and evaluate the com-

bined effect of variability in different parameters on a structure. However, reliability theory

has not been widely adopted for geotechnical problems, because this approach requires more

laboratory/field investigations, effort and time than deterministic approaches. Although it is

a challenging problem in slope engineering to obtain statistical data from a project site, the

advantages of reliability theory are obvious. It can increase the efficiency in the design process

and enhance the safety of structure which is valuable. Therefore, an advanced probabilistic

2



CHAPTER 1. INTRODUCTION

approach with the traditional approach is necessary for evaluating the safety of geotechnical

structures.

1.2 Research objectives
The research is focusing on the evaluation of the effects of soil variability and uncertainty

on slope stability analysis within the framework of probabilistic and reliability methods. The

main intention is to apply a new probabilistic approach on the variability of soil parameters

and to discover the failure probability in soil slope with soil shear strength parameters. To

achieve this aim, soil slope stability, probability and reliability methods in civil engineering are

studied. In addition to this, some case studies are elaborated to demonstrate the application of

the proposed method.

1.3 Thesis outline
The present thesis focuses on non-deterministic methodology for evaluation of slope sta-

bility analysis. The main contents are:

Chapter 2 reviews the existing methodology in the slope stability analysis. The deterministic

methods are discussed with advantages, disadvantages, and applicability to structure accord-

ing to different assumptions. The reliability theory and its applications in slope stability are

reviewed, and the impact of probabilistic methods on slope stability is also presented.

Chapter 3 starts by considering uncertainties as the main challenge in slope engineering and

underlying the importance of using probabilistic methods as advancement to the determin-

istic analysis. The description of statistical and probabilistic terms related to quantile-based

distribution is introduced with a detailed explanation. The chapter introduces the verification

of proposed analysis which shows the difference between ordinary and probability weighted

moments for modeling soil variability, and how the quantile function generates an efficient

distribution with maximum entropy constrained by PWMs. The advantages of dealing with

various sample sizes by the applied method are presented.

Chapter 4 represents the application of probabilistic and reliability analysis on three examples

including homogeneous and non-homogeneous soil layer with correlated variables. With the

3



CHAPTER 1. INTRODUCTION

development of computer, quantile-based reliability approach is applied to analyze the slope

stability and compared with most widely popular probabilistic methods.

Chapter 5 represents the reliability-based design in geotechnical engineering. The importance

of calculating the probability of failure seeks an optimal design, which is insensitive to the

variation in the uncertain input parameters.

Chapter 6 summarizes the essential findings of the research along with the conclusions and

recommendations for further research.

4



Chapter 2

Literature review

The chapter reviews the concepts of slope failure and evaluation of safety factor or performance

indicator with several approaches. Section 2.1 describes the deterministic approaches in slope

stability analysis. The advancement in slope analysis is discussed in Section 2.2 with proba-

bilistic and non-probabilistic approaches. The discussions on previous researches and need for

an efficient methodology for modeling of soil variability is presented in Section 2.3.

2.1 Deterministic analysis in slope engineering
The quantitative deterministic solution can be generated by assuming some assumptions

with uniquely defined parameters. However, it is an iterative process which includes calcula-

tions for a number of the trails or assumed slip surfaces to find the most critical slip surface.

A solution or factor of safety equal to unity is defined as a limit state; a value less or more than

unity is defined as a failure or stable, respectively.

The natural properties of soil are mostly recognized as complex and some assumptions

are necessary for analysis of a particular slope mechanism. There are different kinds of soils

and rocks with a different texture, nature, and properties. For example, sand and clay are

entirely different in shape , structure, and permeability. Sand is generally considered as cohesion

less soil, and clay is cohesive soil. Both cohesive and cohesion less soils require a different

mechanism for calculation of shear strength and principle effective stress.

5



CHAPTER 2. LITERATURE REVIEW

The performance of slope stability can be defined by its performance indicator. In a deter-

ministic framework, there are two concepts, Limit Equilibrium Method (LEM) and Finite

Element methods (FEM), resulting in different performance indicators. For example, a fac-

tor of safety is the indicator of limit equilibrium, and the critical seismic coefficient is used for

evaluation of stress deformation approaches in seismic conditions. The decision for choosing

performance indicator is dependent on the area and type of structure.

2.1.1 Determining slope stability with limit equilibrium concept

The central concept of limit equilibrium is to analyze the stability of any soil mass or rock

assuming incipient failure along a potential slip surface. In general, a critical slip surface is

assumed, and the resisting, distributing forces are estimated enabling the formulation of limit

equilibrium method. The safety indicator can be expressed by using Coulomb’s equation for

shear strength in terms of effective stress (Chowdhury et al., 2009):

F =
s

m
=

c+ σ
′ tanϕ

cm + σ′ tanϕm

, (2.1)

where s is shear strength, m is mobilized shear strength, σ′ is the normal stress at failure

surfaces which can be calculated from unit weight (γ) and height (hi); c and ϕ are cohesion

and friction angle respectively in the original state, known as soil shear strength parameters

and cm, φm are the required mobilized shear strength (m) parameters.

Figure 2.1: Theoretical model for the safety factor of slope.

6



CHAPTER 2. LITERATURE REVIEW

A theoretical model of slope failure is presented in Figure 2.1. The circle shows the slip

failure area in a slope with different layers composing different properties. The slip surface is

defined with a radius (H) and an angle θ.

The first technique based on the method of slices was introduced by Fellenius (1936), and

then researchers develop this approach with the different assumptions (Bishop, 1952; Janbu,

1975; Morgenstern & Price, 1965). Numerous slice based methods were introduced in the

1980s and 1990s (Vanmarcke, 1980). These methods are widely used and available in com-

mercial software.

In the limit equilibrium method, many slip surfaces can be considered for analysis. The

results will be different depending on the slices and assumed slip surface. The slip surface with

minimum value is considered as a critical slip surface. The factor of safety from the critical slip

surface has to be optimized to obtain location and shape of failure. The stability analysis is

based on determining the factor of safety in one slice and then repeating the procedure with

another slice.

The shape of slip surface is assumed as circular or non-circular (arbitrary shape). The

two-dimensional and three-dimensional analysis of slope stability problems are generally con-

sidered. In the two-dimensional analysis, the factor of safety is obtained as a ratio of resisting

and disturbing moments taken about the center of slip circle as:

F =
sR2θ

Wx
, (2.2)

where s is an average shear strength along the slip surface,R is the radius, θ is the central angle

of the circular arc, and the weight W of the potential sliding mass acting on horizontal at x

distance.

In clay, frictional angle ϕ and shearing strength c can be estimated from the triaxial re-

sults. It is more desirable to conduct in-situ tests like vane shear test and cone penetration

test to estimate the undrained shear strength because it is challenging to obtain undisturbed

samples from the field for triaxial test. The value of cohesion increases with the depth, and it

is proportional to the effective overburden pressure and water table. It is very common getting

7



CHAPTER 2. LITERATURE REVIEW

different cohesion values from the same clay layer.

Bishop (1952) demonstrated the analysis solution in an iterative procedure by assuming

values of the inter-slice or slide wall forces. The forces acting on the base of the slice are the

mobilized shear strength s/F , the total normal force P = pl, total pore pressure ul. Resolving

these forces in the direction of the weightW it is easy to get an expression for p. By substituting

the p in the Equation (2.1),(2.2) and taking moments of all forces (resisting and disturbing)

about the centre of the critical slip surface:

F =

∑
cb + (W − ub) tanϕ/mα∑

W sinα . (2.3)

Bishop’s approach is applicable for circular slip surfaces, but it may not be circular in cross-

section. Morgenstern & Price (1965) introduced a new approach by satisfying both force and

moment equilibrium with Newton Raphson iteration technique. The factor of safety depends

on the assumed side force function, and line of thrust in this method can be obtained in terms

of effective stresses. The method is considered as best approach by some researchers.

Janbu (1975) proposed an approach based on the force and moment equilibrium of a typi-

cal vertical slice and force equilibrium of the sliding mass as a whole. The stability analysis using

Janbu’s approach with overall horizontal equilibrium as a stability criterion can be expressed

as:

F =

∑
bs sec2 α∑

(W + dT ) tanα, (2.4)

where dT is the difference of tangential or shear forces on two successive slices; b is the width

of the slice. The initial calculations can be made by assuming dT = 0.

Sometimes the convergence problems are encountered when applying the Janbu general-

ized method to individual slope stability studies mostly when the pore pressures are high. This

problem was modified with a new innovative method, extended Janbu method involving itera-

tive computations. The modeling considers the potential sliding mass into two parts, an upper

part and a lower part, separated by an internal vertical surface. The computer-based solution

with optimization procedure allows the critical slip surface of any shape and a minimum factor

8
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of safety to be estimated. It can be used as a powerful and versatile tool for slope stability

analysis based on limit equilibrium approach.

There is a little change in old methods by assuming non-vertical slices, interslice functions,

changing of a factor of safety with different locations. Sarma (1987) proposed a different

approach by determining the critical horizontal acceleration that is required to bring the state

of critical equilibrium in the soil mass. He used the pseudostatatic approach in which an

appropriate horizontal force is applied to the center of gravity of sliding mass.

Many optimization methods are also applied in searching the failure zone including the

numerical analysis and non-numerical analysis methods.(e.g., Genetic algorithm, Neural net-

work method,Bionic Algorithm) (Baker, 1980; Greco,1996; Chen et al., 2008; Li et al., 2015).

The development of slope stability analysis software like Plaxix and Geo Studio is a significant

achievement in this field. This software is more convenient and can generate results with dif-

ferent situations like earthquake, heavy rainfall and seepage analysis in slopes.

The accuracy and feasibility of different approaches are discussed by Duncan (2000):

• The Morgenstern Price method is more rigorous but more accurate for stability analysis.

• The safety factor calculated for Simplified Bishop Method is greater than Fellinius Method

by 6%-7%, and it produces almost same results with a comparison of Morgenstern &

Price Method.

• Simplified Bishop Method is simple and produces more accurate results for circular slide

face. It is most widely used in slope analysis problem.

• The Extended Janbu approach can be used for arbitrary shapes, and it is a powerful tool

with a combination of computers.

Sometimes, it is difficult to choose an appropriate method for a site. It depends on the

project and type of soil. There are two types of stress analysis. The total stress analysis, also

known as short-term analysis, is acceptable for saturated clays and sand. The accuracy of analy-

sis is generally focused on the undrained shear strength of soil. The effective stress or long-term

analysis is useful for large projects. The failures corresponding to drained conditions may affect
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the structure and literature proved that sometimes landslides occur frequently on the same site

with high pore water pressures. The drained conditions provide the history and future of soil. It

requires more tests and undisturbed samples which is more time and cost affecting procedure.

Various soil strength models: The strength of a soil is a unique value but depends on many

factors such as the stress situation at breaking point, stress history, pore water and drainage

conditions, loading or shearing rate. It is a crucial task in any slope stability analysis is to

asses all of these parameters and evaluate as a real problem.This is done through geotechnical

investigations and a study of the geological history. The modeling of the slope can begin on

the basis of the established parameters.

1. Drained analysis: For a drained, effective stress, slope stability analysis, one has to assign

the different regions Mohr-Coulomb models that simply define the strength according

to the classic Mohr-Coulomb equation:

s = c′ + σ′ tanϕ′. (2.5)

The factor of safety in a drained analysis is denoted Fϕ′

2. Undrainedanalysis For an undrained analysis one can simply apply the Mohr-Coulomb

model or use a predefined material called Undrained strength where the material strength

is described by the value and the pore pressure have no effect on the materials shear

strength.

su = cu = τfu. (2.6)

The factor of safety in an undrained analysis is denoted Fc

3. Combined analysis This analysis includes both drained and undrained. It is method

to calculate the safety factor which analyze each slice for both drained and undrained

analyses. It is used for clay or silt deposits. The value of c′ and φ′ differ from case to case,

but empirical relations can be used in this case:

c′ = 0.1× τfu, ϕ′ = 30. (2.7)
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The combined factor of safety is denoted Fk.

The limit equilibrium approach is convenient for complex soils and provides a reliable solution.

Different methods can be used for different site conditions and project requirements. To asses

the improvement in slope reliability within a probabilistic framework, it is necessary to use

these concepts and methods of analysis.

2.1.2 Stability analysis with finite element method

The Finite Element Method (FEM) is the most widely accessible approach in conduct-

ing strain analysis or failure due to the complex mechanism (e.g., creeps, liquefaction of soils

or internal deformation). It may be difficult to assume that slope failure can occur in only

a particular area. The progressive failure may occur in over-consolidated or fissured clay and

finite element method can determine this type of failure. The numerical simulation methods

are adopted in several well-known geotechnical finite element (Griffiths & Fenton, 2004; Mat-

sui & San, 1992). The other advanced numerical methods include the Boundary Element

Method (BEM), the Explicit Finite Difference Method, Discrete Element Methods such

as the Distinct Element Method (DEM) and Discontinuous Deformation Analysis (DDA)

(Jiang, 2013).

The numerical simulation method mainly considers the relationship between stress and

strain of slope material and the approach is not only dependent on geometry, shape and material

in homogeneity. The two main finite element techniques are slip Surface Stress Analysis (SSA)

and the other one is the Strength Reduction Method (SRM), developed by Matsui & San

(1992). In SSA method, the potential slip surface is defined in advance and then analyzes the

stress distribution on this surface after numerical simulation converged, ultimately calculates

the safety factor based on the principle of weighted average. Giam & Donald (1988) invented

the pattern search method to get the critical slide face and minimum safety factor based on

stress level. Zou investigated the initial and potential range of slide face through the stress

distribution, and then searched the most critical surface and its corresponding factor of safety.

The strength reduction method (Hamdy et al., 2003) is more popular method than slip

surface stress analysis due to its simplicity and can be conducted in available software such
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as FLAC, Ansys, etc. In this approach, the original shear strength parameters are reduced

to bring the slope to fail. The surface under consideration is discretized, and the equivalent

body forces are applied to the system. The Mohr-Coulomb criterion is adopted, and the finite

element analysis can be performed under different conditions.

In numerical simulation methods, there are mainly three kinds of slope failure criterion:

• there is always a change in the rate of displacement in the system (Er-Xiang, 1997).

• a failure mechanism has developed (Matsui & San, 1992).

• the most commonly used criterion is a non-linear equation solver with a pre-set maxi-

mum number of iterations (Dawson et al., 1999; Griffiths & Fenton, 2004).

The study illustrated that factor of safety analyses using limit equilibrium and finite dif-

ference methods can be expected to produce very similar results for both simple and complex

slope cases. An important limitation of the conventional methods is that it requires an ar-

bitrary selection of the search areas and shape of the potential failure surfaces prior. This is

an inconsistent measure of performance of soil slopes, which need to develop with more reli-

able tools to incorporate soil heterogeneity in a quantitative scheme amenable to engineering

design.

2.2 Advancement in slope engineering
The deterministic approaches never assume uncertainties in design,but it should be consid-

ered. The failure occurs even when the factor of safety is higher than required. The probabilistic

method is a technique to analyze the uncertainty and failure probability in a structure. It re-

quires the assessment of failure probability, can be calculated from the treatment of performance

function based on the geotechnical model. The probabilities calculated from observational data

and historical data is enough to determine the performance indicator. The reliability index is

the performance indicator of a probabilistic approach. The calculation of relative probabilities

is also important, but it may difficult due to the complexity of geotechnical problems. The

approach has been receiving more acceptance in geotechnical engineering due to its efficiency.
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2.2.1 Uncertainties in geotechnical engineering

Soil is a geological material formed by weathering, erosion, and sedimentation processes

and, save for residual soils, transported by physical means to their present locations. They have

been subjected to various stress and physical and chemical changes. There may be randomness

in data due to spatial variability and errors in testing. Uncertainty in geotechnical engineering

can be classified into three types (Phoon & Kulhawy, 1999a; Van Gelder, 2000):

• Aleatoric uncertainty: Physical or aleatoric uncertainty is the natural randomness of a

quantity such as the variability of shear strength from point to point within soil volume,

the randomness of boundary conditions. Measurements and statistical estimations can

quantify these kinds of uncertainties. It requires more experimental data and certain

laboratory results.

• Epistemic or statistical uncertainty: Statistical uncertainty can be defined as lack of

data or information about slope failure conditions. In slope probabilistic, data is avail-

able in very limited, insufficient and it is challenging to fit small data in probability

distributions. It results from the data exploration uncertainties, data handling, and tran-

scription error. It is evident that soil properties will be different when the samples and

sample sizes are different. Statistical uncertainty is further explained in chapter 3.

• Decision model uncertainty: This type of uncertainty is related to time management

that includes objectives, time preferences, and budget. Slope stability design and analysis

is a process which includes different random variables in a relationship through some

mathematical models, and these models are based on mechanical abstracts about the

real methods. The model uncertainty leads to simplification postulates and unknown

boundary conditions, also by other variables which are not contained in the models for

the unknown effects.

Since the performance of geotechnical structure depends on soil properties of a profile,

it is important to characterize the soil profile probabilistically. The probabilistic characteriza-

tion of soil profiles provides more geotechnical information regarding the soil conditions at a
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particular site, a basis for predicting the stability of slopes and for quantifying the probabil-

ity of failure, and enables a geotechnical engineer to assess critically and compare various site

investigation and testing programs (Jaksa et al., 1999).

2.2.2 Probabilistic modeling for soil variability

In a probabilistic analysis, the parameter which affect the performance with variability are

considered as random variables or noise parameters. In slope stability, soil parameters are random

variables and present variability in the system. Random variables are a range of values obtained

from various experiments like in-situ and lab results.

Descriptors of randomness

The variability in parameters is represented by statistical and probabilistic approaches

(Duncan et al., 2014). Statistical moments and Probability distributions are the basic descriptors

of a random variable. These descriptors can be used to estimate the variability of geotechnical

problems.

Statistical moments

Basically, first two moments (Mean, Variance) of a random variable are considered as sta-

tistical parameters representing variation of data. The procedure generally involves defining the

material properties by their first and second moments: Mean, x̄, and Variance, s, which define

the probability density function and the coefficient of variation,COV . The mean of a data set

is the sum of the data points in the data set divided by the total number of data points in the

data set. The variance of a random variable is the mean value of the square of the deviation of

that variable from its expected value or mean. The mean is the most common measure for the

center of a data set. The variance is a measure of dispersion about the mean value of a data set.

High and low values of dispersion indicates higher and lower uncertainty respectively.

Statistical analysis of geotechnical engineering parameters have been published by re-

searchers (Phoon & Kulhawy, 1999a; Youssef et al., 2016). These second moment statistics are

useful for reference purposes but they are largely generic with a wide range of dispersion and

hence may not represent the most economical or cost effective case. They should not be used

for design for the following reasons:
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• The statistics of most geotechnical engineering parameters are dependent on in-situ

state.

• The testing methods and/or procedures used in measuring parameters are not stated in

most of publications. The same soil parameter can be estimated using different methods

and/or procedures which results in huge difference.

• It is difficult to evaluate homogeneity of soil from the calculated statistics.

Proper knowledge of uncertainties is required for these statistics to be applied correctly

in different cases, as it is difficult to apply same procedure for all situations. When the sam-

ple is small, the parametric estimation of a distributions are mostly inaccurate. Values of the

parameters of the probability distribution functions estimated using the available sample se-

ries should be unbiased and close to their population values. Generally, Method of Moments

(MOM), Maximum Likelihood(ML) and Probability Weighted Moments (PWM) are used

for parameter estimations of probability distribution functions.

The MOM and MI are popular approaches and most widely used in geotechnical engi-

neering (Christian & Baecher, 2002; Phoon et al., 2003). The Probability weighted moments,

which has been investigated by many researchers, was originally proposed by Greenwood et al.

(1979) and widely used by researchers. Hosking & Wallis (2005) investigated the properties of

parameters estimated by the PWM method for the Generalized Extreme Value (GEV) distri-

bution using fairly long observed series, and they gave a good summary of the PWM method.

He showed that the PWM method is superior to the Maximum-Likelihood (ML) method in

parameter estimations. However, its use in engineering analysis shows its efficiency (Deng &

Pandey, 2008, 2009; Yu, 2008) and it can be used for geotechnical problems.

Probability distribution

Probability distribution (f(x)) refer to continuous random variables and represent the

characteristics of a random variable. The reliability analysis is mainly focused on first two mo-

ments of random variable but sometimes it is recommended to evaluate the skewness of distri-

bution using n moments. A probability density function of variable X defines the probability
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of occurrence of the particular value x.

P [X = x] = f(x) (2.8)

probability that the value lies between two values x1 and x2 is

p[a ≤ x ≤ b] =

∫ b

a

f(x)dx. (2.9)

The cumulative distribution function CDF orF (x)measures the integral of the probability

density function from minus infinity to plus infinity

F (x) =

∫ ∞

−∞
f(x)dx = 1, (2.10)

it must be a continuous non-decreasing function with the values in the interval [0, 1].

Quantile function or inverse cumulative distribution

The quantile function [or inverse cumulative distribution function (ICDF)] is a probabilis-

tic measure that is widely employed in both statistical and engineering applications, mathe-

matically expressed as (Kendall & Stuart, 1977):

F(r) (x) =
n∑

k=r

(
n

k

)
F k (x) [1− F (x)](n−k), (2.11)

F(r)(x) is the rth order statistics, the F (x) can be written as u or x = F−1 (u) , 0 ≤ u ≤ 1 and

by substituting in Equation (2.11) the expected value of rth order statistics can be obtained as:

E (Xr:n) = r

(
n

r

) ∫ 1

0

x (u)ur−1 (1− u)n−r du, (2.12)

note that x (u) denotes the quantile function of a random variable. The expected minimum

and maximum of a sample of size n can be obtained as:

E (Xn:n) = n

∫ 1

0

x (u)un−1du and E (X1:n) = n

∫ 1

0

x (u) (1− u)n−1du. (2.13)
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In probabilistic analysis, the density functions of all random variables must be determined

accurately to minimize the errors. There are a numerous distribution types used in mathematics

and statistics. However, only a few distributions are commonly used in geotechnical engineer-

ing like normal, lognormal, gamma etc explained in Appendix A.The process of selecting and

fitting a probability distribution that approximates a dataset best can be accomplished using

many approaches and techniques.

Two techniques commonly used are plotting a histogram of the data and choosing a dis-

tribution that appears to best-fit the data (histogram) or the Pearson’s moment-based system.

Laboratory test results indicate that most soils can be considered as random variables hav-

ing a normal or lognormal distribution (Harr, 1989; Christian et al., 1994; Duncan, 2000).

However, best-fit probability distributions for geotechnical parameters are dependent on data

set, largely dependent on soil type and in-situ state. Hence, it is impossible to select best-fit

distributions for soil parameters.

Numerically defined maximum entropy distribution

The numerically defined distributions are also a substitute for parametric analysis. The nu-

merical defined distributions are obtained by classical algorithms and mostly fit for a different

range of data but it requires at least 40 to 50 samples for generation of smooth distribution

curves (Siddall & Diab, 1975). Maximum entropy distribution defined by Jaynes is highly un-

biased distribution with moments as constraints and optimization algorithm. The entropy of

a random variable can be written as:

H [f(x)] = −
∫
R

[f (x) ln f (x)] dx, (2.14)

which is further maximized as:

H̄ = −
∫

[f (x) ln f (x)] dx = maximum, (2.15)

subjected to some known moment constraints or equations of moments:

∫
xnf (x) dx = µn, (n = 0, 12, . . . , N) (2.16)
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where x is a sample estimate of population,µx are sample moments considered in the analysis

and entropy function can be represented as H . Using Lagrange’s method to solve the entropy

density function, solution takes the form:

f(x) = exp(λ0 +
N∑

n=1

λnx
n), (2.17)

where λk denotes unknown Lagrangian multiplier. λ0 − 1 is used as the first multiplier as a

matter of convenience.

The maximum entropy method has achieved good performances in structural reliability

analysis (Deng et al.,2012),geotechnical engineering analysis (Zhang et al.,2013;Most,2009),

and rock mechanics parameters (Deng et al., 2004). The main problem in choosing maximum

entropy is selecting the constraints as ordinary moments are highly biased for variety of data.

Consequently, there is a need to develop probabilistic approach to analyze the soil properties.

Correlation in slope stability parameters

In slope engineering practice, the use of correlations or relationships in soil parameters

provide a fast, cost-effective means of predicting the value of some parameters based on the

value of some other parameters. In probabilistic approach, the quantification of the correlation

between two or more soil properties provides a more realistic assessment of uncertainty in

design parameters (Uzielli et al., 2005).

The random variables may be correlated or independent. If correlated, the likelihood of a

certain value of random variable may dependents on the other random variable. For example,

the depth may be correlated with the properties of soil. The correlation between two or more

soil properties has been found to be dependent in varying degrees on soil type, testing method

used to obtain the numerical value of the parameter itself, and the homogeneity of the soil

(Phoon et al., 2003).

Modeling and quantifying uncertainties in random variables are the initial and essential

steps in reliability-based analysis and design. The primary task of planning and design is to en-

sure satisfactory performance. The insurance of safety can be given in the form of probability

of success in satisfying the performance criterion. This probabilistic assurance of performance
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is referred as reliability. Traditional approaches simplify the problem by considering the un-

certain parameters to be deterministic and accounting for the uncertainties through the use of

empirical safety factors. Deterministic safety factors do not provide adequate information and

compromise with the goal of safety levels and minimizing cost. The use of probabilistic analy-

sis in design is expected to provide more information about system behavior, the influence of

different uncertain variables on system performance.

2.2.3 Reliability evaluation in geotechnical engineering

The reliability-based or probabilistic analysis was introduced to recognize the importance

of uncertainties in structural engineering. Variability is present in different forms, but re-

searchers justify it as a mathematical problem and generate a reliability index. The reliability

index is the maximum distance between the original point and limit space in Gauss space

(Hasofer & Lind, 1974). The reliability theory for slope engineering was proposed by Mat-

suo & Kuroda (1974) with the design of embankments based on probabilistic approach. Then

numerous researchers contribute to reliability-based design and analysis (Ang et al., 2007;

Chowdhury et al., 2009). The structure is considered safe or unsafe depending on the distance

between the limit state surface and design point.

Cornell (1969) introduced a simple two-variable approach to produce a linearization of

performance function. The method is also known as Mean Value First Order Second Moment

Method (MVFOSM). The result is dependent on mean value and partial derivatives of the

safety margin. These methods are accurate for linear performance function but produce an

error with non-linear or implicit performance function (Duncan, 2000; Griffiths & Fenton,

2004). Then researchers updated this method with First Order Reliability Method (FORM)

and Second Order Reliability Method (SORM) to optimize and linearize the implicit function

about critical points (Breitung, 1984; Nowak et al., 1994). The transformation of non-normal

variables to normal variables was another problem in reliability methods. Rackwitz & Flessler

(1978) proposed a method to transform the non-normal variables to equivalent normal random

variables and this method is known as JC method. . It has drawbacks such as the degradation of

accuracy resulted from the multiple most probable points, the non-linearity of the performance

function or the non-normality of random variables. The first order approximation assumed in
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FORM could lead to an underestimate of the probability of failure if the actual limit state

function curves towards the mean values. Bin & Songhong (2004) introduced reliability ap-

proach with quantile method. The direct iteration calculation of a nonlinear function under the

condition of correlated variables was discussed by using coordinate transformation and matrix

operation. The calculation formulas based on the quantile value method was derived and this

algorithm is simple in calculation and high in precision.

In most of the geotechnical problems, the performance function is defined as an implicit

function, and the reliability methods need the gradients of performance function. Response

surface method (RSM) was developed to overcome and simplify the calculation problems. The

main function of response surface method is to transform the implicit form into an explicit

performance function by evaluating the impact of the input parameters on the system response.

It generates a relationship between the significant variables and system response to reduce the

complexity of analysis procedure. Wong (1985) used response surface in slope analysis and

researchers used this approach with various developments (Cho, 2009; Li et al., 2015). The

probability assessment of multiple layered slopes is more convenient with RSM.The reliability

methods with RSM can be used for uncertainty analysis after approximating the performance

function.

Another popular method to evaluate the statistical moments of performance function is

the Point Estimate Method(PEM).Rosenblueth (1975) introduced the point estimate method

and then further developed by other researchers (Harr,1989;Hong,1996;Christian & Baecher,

2002). This approach is based on replacing the probability distribution with discrete points

having the same mean value, standard deviation and skewness of performance function. The

shape of any PDF used for any random variable is presented by mean and two hypothetical

point masses located at plus and minus one standard deviation from the mean.

Simulation methods like Monte Carlo method is also a well-adopted approach in proba-

bilistic analysis. It requires a little knowledge, and an efficient result can be obtained. The main

deficiency of this method is that it is a time-consuming process. Researchers adopted this ap-

proach and identified the uniqueness of this method with comparison of other approaches

(Malkawi et al., 2000; Low & Tang, 2007).
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There are numerous methods to calculate the reliability index and probability of failure

with deterministic methods. The main idea is to identify the risk and uncertainty in structures

and designing the safe and reliable design for society. The approaches are quite popular and

efficient but there is still a need for improvement for risk analysis.

Slope design based on reliability analysis

In the past few decades, reliability-based design (RBD) has been gaining increasing atten-

tions in geotechnical engineering. For practical purpose, RBD methods are usually adopted

in current geotechnical designs, such as load and resistance factor design (Phoon et al., 2003).

Theoretically, all existing reliability analysis methods can be directly used in full probabilistic

design with trial-and-error procedure. There are some simulation-based methods, subset sim-

ulations and monte carlo simulations, have been applied to developing more specialized full

probabilistic design approaches, such as robust design approach (Low et al., 2011). To ensure

a desired accuracy of reliability estimates, a considerable number of samples are usually needed

in simulation-based methods. Moreover, the required number of samples increases with the

number of possible designs, leading to a significant increase in computational efforts. The im-

provement in reliability design is required to simplify and overcome the the shortcoming of

available methods.

2.2.4 Non-probabilistic approach

There are some non-probabilistic analysis approaches used in slope stability analysis. These

are used when it is challenging to fit distributions to same input data obtained from laboratory

tests. There are other approaches to solve this problem such as Interval analysis (Moore &

Lodwick, 2003), Evidence Theory (Dempster, 1967), Fuzzy Set Theory (Klir & Folger, 1988),

Random Set Theory (Kendall & Stuart, 1977), Grey number Theory (Julong, 1989).

Interval analysis is used to describe the parameter uncertainties in the system. An in-

terval number can be used as a random variable whose distribution function is unknown but

assuming non-zero in the range of interval (Dietzel et al., 2011). This concept is a basic ap-

proach for defining uncertainties without probabilistic distributions. The worst and best set
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of random variables can be obtained by using interval method. Random set theory also ap-

plied in geotechnical engineering mainly with designing of tunnels. Many researchers used

and developed this theory with finite element method (Peschl & Schweiger, 2003).

The Fuzzy set approach (Zadeh, 1996) is another popular approach for the analysis of

uncertainty data. Shrestha & Duckstein (1997) introduced fuzzy reliability index to measure

the reliability and probability of failure in civil engineering problem. The theory is convenient

for landslide susceptibility and slope design (Kavzoglu et al., 2014).

The non-deterministic approach is a good research topic, but there is less efficiency in

using these approaches. Sometimes, it may difficult to use with practical application and col-

laborating with available reliability theories.

2.3 Summary
The topic of slope analysis with deterministic approaches was introduced with knowledge

of uncertainties present in process. The main uncertainties are related to properties of soil

and modeling of soil data. The main limitation of conventional approach is neglecting the

uncertainties and preferring a single value, which increase the chances of slope failures.

Non-deterministic
Approach

Probabilistic
Approach

Standard Reliability
Methods

FORM
FOSM
SORM

Monte Carlo Simulation
Iterative random
Point Sampling

Prefixed Point Sampling
Methods

Point Estimate
Methods

Taylor Series
Finite Methods

Response Surface
Methods

Regression Methods
Interpolation Methods

Artificial Neural Networks

Non-probabilistic
Algorithms

Interval
Analysis

Fuzzy
Approach

Random Set
Approach

Figure 2.2: Non-deterministic analysis in slope stability

The probabilistic approach is an advantageous process by considering the soil parameters

as random variable and defining in terms of distributions and statistical moments. The relia-

bility index helps in enhancing the performance evaluation of slopes. The use of deterministic
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analysis by incorporating uncertainties associated with the performance of the geotechnical

structure is the simplest and most obvious advantage of a probabilistic approach or reliability

analysis.

Figure 2.2 presents a summary of all methods discussed above. The non-probabilistic ap-

proach shows less efficiency as sometimes, it may difficult to use with practical application

and collaborating with available reliability theories. In conclusion, the estimation of the ade-

quacy of a slope found by using a probabilistic analysis compared to the calculated traditional

methods remains questionable. It shows a need of more progress in the field of geotechnical

engineering and reliability-based design.

23



Chapter 3

Characterizing soil variability using

quantile functions

This chapter proposes a numerical method for determining inverse cumulative distribution

function (ICDF) of soil properties containing various uncertainties. Section 3.1 gives the

reasons why a new distribution method for soil slope systems is needed and proposes maximum

entropy based ICDF.Section 3.2 includes the verification of the proposed method and section

3.3 describe the implementation of a quantile-based approach in quantifying the uncertainties

present in vane shear test data from the Nipigon river landslide. The discussion is made in

Section 3.4.

3.1 Quantile-based modeling of geotechnical parameters
As pointed out above, soils are geological materials formed by weathering processes and

transported by physical means to their present locations. They have been subjected to various

stresses, pore fluids, physical or chemical changes and treated as random variables. The ran-

domness present in the soil makes it difficult to design a reliable structure. The randomness

can be observed mathematically using statistical moments and distributions. Moments can be

estimated directly from a sample of observed values. In the ensuing, two categories of moments

are employed.
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Conventional moments are referred as moments about the origin or central moments.

Suppose a sample contains n observations : x1, x2, . . . xn. The conventional moments µn of a

distribution are defined by

µn =
1

m

m∑
i=1

xn
i , (3.1)

or

cn =
1

m

m∑
i=1

(xi − µ1)
n, (3.2)

where m is the sample size, n is the highest order of moments. µn is the nth moment about

zero, cn is the nth moment about central. xi is ith value of m random variables. µn and cn of

the same variable can be transformed from each other using the binomial theorem.

First two moments are considered as parameters of the normal distribution. Non-zero

values of c3 is an indication of asymmetry or positive or negative skewness (depending on the

sign of c3), while non zero values of c4 are an indication of non normal kurtosis (Siddall &

Diab, 1975). However, the estimates of higher order ordinary moments (order>2) from a small

sample (size<30) tend to be highly biased. In geotechnical engineering, the soil sample size is

sometimes less than 30. At this time, direct use of ordinary moments would lead to inaccuracy.

3.1.1 Probability weighted moments

The problem of estimating a distribution for specifying a finite number p from a random

variable can be solved by probability weighted moments. The probability weighted moments

are the representation of corresponding population quantities. PWMs can be estimated by

linear combinations of an ordered data set.

The probability-weighted moment of a random variable was formally defined by Green-

wood et al. (1979) as:

Mi,j,k = E[X iuj (1− u)k] =

∫ 1

0

x (u)i (u)j (1− u)k du, (3.3)

where i, j, k are real numbers. The two forms of PWMs are useful:

αk = M1,0,k =

∫ 1

0

x (u) (1− u)k du, (k = 0, 1, . . . .,m), (3.4)
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and

βk = M1,k,0 =

∫ 1

0

x (u) (u)k du, (k = 0, 1, 2 . . . m), (3.5)

PWMs are the normalized expectations of minimum or maximum of k random observations.

Special cases of these estimators include the sample mean:

x̄ = n−1
∑

xi = a0 = b0, (3.6)

and the extreme data values:

x1 = nan−1

xn = nbn−1.
(3.7)

From an order random sample of size n, unbiased estimates bk and ak of αk, βk can be

calculated as:

ak =
1

n

n∑
i=1

n− i

k

xi

/ n− 1

k

, (k = 0, 1, . . . ., n− 1) , (3.8)

and

bk =
1

n

n∑
i=1

i− 1

k

xi

/ n− 1

k

, (k = 0, 1, . . . ., n− 1), (3.9)

where

 i

k

= i!
(i−k)!k!

, k = 0, 1 . . . n− 1.

The ak and bk are related in same way as αk and βk respectively, and general equation is:

ak =
n∑

k=1

(−1)k

 i

k

 bk, (3.10)

bk =
n∑

k=1

(−1)k

 i

k

 ak, (3.11)
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a0 = b0 b0 = a0

a1 = b0 − b1 b1 = a0 − a1

a2 = b0 − 2b1 + b2 b2 = a0 − 2a1 + a2

a3 = b0 − 3b1 + 3b3 − b3 b3 = a0 − 3a1 + 3a3.

The above representation of ar and br as order-statistics show the clear relationship between

statistics and population quantiles which they estimate, and ar, br are refer as sample PWMs.

Sample PWM moments may be used similarly to ordinary moments for generating ICDF,but

sometimes, it is difficult to generate a conventional distribution even with PWMs due to their

properties. Hence, numerically defined distributions offer a better result with the combination

of PWMs.

Comparison of PWMs with conventional moments

The method of PWMs is computationally more tractable than the method of maximum-

likelihood or method of moments. The asymptotic standard errors of the PWM estimators,

compared to maximum likelihood estimators, usually show PWMs to be more reasonably ef-

ficient. The method of moments involves the higher power of the data and sample PWMs are

the linear function of the data. The PWMs are more robust than the conventional moments

and less affected by the sample variability or the presence of outliers.

The biasness of probability weighted moments are calculated from small sample data in-

volving the conventional moments. The conventional moments are computed from the Ap-

pendix A to assess the normalized bias of sample estimates. Let Dk denote the difference

between the 4th sample estimate of a moment (or quantile) and the exact value obtained from

the parent distribution. Then the bias is defined as the average of Dk, i.e.
∑

Dk/M , M being

the number of simulation samples.

The normalized bias error in Figure 3.1 shows that the PWMs are least biased as compared

to conventional moments (order = 4). Conventional moments can be used for large data, but it

shows an inaccurate estimation of a sample with small size. Comparing the practicality of two

methods, it concluded that some distributions for which explicit expression for the parameters
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Figure 3.1: Normalized bias error for PWM and conventional moments

in terms of the PWMs cannot found, either simple approximation exist which are adequate

for all the practical purposes.

PWMs as moment of inverse cumulative distribution function

The PWMs can be used to generate quantile function. The main advantage of quantile

function is that it can be used for continuous or discrete random variables as other distributions

are mainly focused on one of the random variable. Quantiles show excellent performance for

estimating the extreme tails with finite sample sizes. The quantile function of a non-negative

random variable X in terms of the PWMs can be described as

x(F ) =
∞∑
r=1

(2r − 1)bkPr−1(F ), 0 < F < 1, (3.12)

is convergent in mean square, i.e.

Rs(F ) = x(F )−
∞∑
r=1

(2r − 1)bkPr−1(F ), 0 < F < 1, (3.13)

the remainder Rs after stopping the infinite sum after s terms, satisfies

∫ 1

0

(Rs(F ))2dF = 0 as s = ∞, (3.14)

28



CHAPTER 3. CHARACTERIZING SOIL VARIABILITY USING QUANTILE FUNCTIONS

where dF (x) is a probability measure, which is a monotonic, continuous and non-negative

function with the variance of X exists as

V ar(X) =
∞∑
r=2

(2r − 1)b2k. (3.15)

As the quantile functions are convenient to understand the trend of data and can be used for

any sample size, these are appropriate for geotechnical problems.

3.1.2 Entropy-based quantile distribution with PWMs as constraints

The maximum entropy approach offers a definite procedure for the construction of proba-

bility distribution. The entropy is maximized under the constraints of moments and by intro-

ducing appropriate Lagrange multipliers, one seeks maximization of the functional entropy.

The numerically defined maximum entropy can achieve more robustness in geotechnical pa-

rameter estimations. The maximum entropy distribution is a non-parametric approach, which

means that no assumptions are needed about the shape of a random variable; there is only need

to define the statistical moments as constraints. The PWM as moment estimator is consistent

and asymptotically unbiased. Therefore, it is a desirable method for geotechnical problems.

The entropy of a quantile function can be written as:

H = −
∫ 1

0

[x (u) lnx (u)] du, (3.16)

and the available information is presented in terms of PWMs (Pandey, 2000),

∫ 1

0

ukx (u) du = bk (k = 0, 1, . . . N), (3.17)

where bk is a sample estimate of population PWM, entropy function can be augmented as H̄

max H̄ = −
∫ 1

0

x(u) lnx(u)du− (λ0 − 1)

[ ∫ 1

0

x(u)du− b0

]
+

N∑
i=1

λkx(u), (3.18)
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these equations can be represented in a simple way using Lagrangian multipliers and Newton

Raphson algorithm: ∫ 1

0

exp(λ0 +
N∑
i=1

λkx(u))du = b0, (3.19)

Then we can find

λ0 = − ln
[ ∫ 1

0

exp(
N∑
i=1

λkx(u))du
]
+ ln b0. (3.20)

to derive the quantile function, entropy is maximized using the usual condition:

∂H̄

∂x (u)
= 0, (3.21)

by using partial derivatives , we obtain:

∂λ0

∂λk

= − 1

b0

∫ 1

0

uk exp
λ0 +

N∑
i=1

λix(u)

dx, (3.22)

since the last integral is equal to moments:

∂λ0

∂λk

= −bk
b0
, (3.23)

This is equivalent to:

∂λ0

∂λk

= −

∫ 1

0
uk exp

 N∑
i=1

λix(u)

du

∫ 1

0
exp

 N∑
i=1

λix(u)

du
, (3.24)

Substitution from equation (3.24) into (3.21) and subsequent simplification leads to the fol-

lowing solution (Pandey, 2000);

x(u) = exp
[
−

N∑
k=0

λku
k

]
. (3.25)

Equation (3.25) has no analytic solution. The steps are programmed in commonly available

commercial software packages with non-linear programming techniques.

30



CHAPTER 3. CHARACTERIZING SOIL VARIABILITY USING QUANTILE FUNCTIONS

The steps involved in the simulation experiment, shown in Figure 3.2, are briefy described as

follows:

1. Obtain n values from test results and arrange them in increasing order.

2. Estimate Probability-weighted moments of the data sample. Mostly four sample mo-

ments are considered for estimating the quantile function.

3. Generate probability of each quantile using Maximum Entropy method with probability

weighted moment.

Data collection from �eld or laboratoy test

Estimate sample PWMs

Fit the MaxEnt quantile function
 using sample PWMs

Estimate MaxEnt quantile and error
in comparison to exact quantile

Generate Inverse Cumulative
     Distribution Function

Figure 3.2: Algorithm for MaxEnt (QF) estimates

3.1.3 Efficiency of PWM-based quantile function

A simulation experiment was designed to estimate the bias and RMSE of quantile esti-

mates obtained from MaxEnt quantile function against some benchmark estimates. A random

sample of size nwas simulated from a known distribution, e.g.,Generalized Pareto and lognor-

mal, with pre-selected parameters. From the sample, PWMs of order N were estimated and

MaxEnt QF was fitted from the procedure described in previous section. The required quantile

value was computed from the MaxEnt QF and benchmark distribution. The simulation was

repeated M times to estimate the quantile bias and RMSE.
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Consider the estimation of a Pareto quantile (POE = 10−2) from sample size n = 10. In

the simulation, the generalized Pareto distribution (GPD) is taken as the parent distribution

with a fixed scale parameter (d = 1.0) and varying values of the shape parameter c, ranging

from -0.4 to +0.4. The simulation consisted of M = 10, 000 cycles. Four sample PWMs

of order 0 to 3 (N = 3) were considered in generating the MaxEnt QF. Using the first two

PWMs, the GPD parameters were estimated to calculate the benchmark quantile value. The

variation of normalized bias with the shape parameter is compared in Figure 3.3. In general,

MaxEnt QF results in slight underestimation, less than 5%, except when c = −0.4. For

c > 0.2, the normalized bias of MaxEnt estimates is very close to that of the benchmark

results. As expected, the MaxEnt estimates approach benchmark values as the tail heaviness

of GPD decreases. The tail heaviness, in the present notation, is inversely proportional to the

shape parameter, for example, a GPD with c = −0.4 has much heavier tail than c = 0.1.
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Figure 3.3: Normalized bias Pareto quantile with shape parameter (POE = 10−2, n = 10).

In the second example, lognormal distribution is considered as parent distribution in the

simulation. The objective is to estimate the lognormal quantile with probability of exceedence

of (POE = 10−2) from a sample of size 10 using four sample PWMs in the MaxEnt approach.

To compute the benchmark quantile estimate, a lognormal distribution was generated using

the sample mean and variance. The simulation involved 10000 cycles, and it was repeated for

several COV (coefficient of variation) values of the lognormal distribution, ranging from 0.1

to 1.0. It is interesting to note from Figure 3.4 that the MaxEnt quantile RSME is within

3% for range of COV values from 0 to 0.4. However, the RMSE tends to be higher than the
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benchmark estimates, especially for COV > 0.6. The nominal values of design loads (COV <

0.6) and soil properties (COV < 0.3) correspond to the POE of order (10−2). Therefore, the

proposed MaxEnt approach can provide reliable estimates of such nominal values from a very

small sample that may belong to a fairly general distribution.
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Figure 3.4: Lognormal quantile with different COVs (POE = 10−2, n = 10).

3.2 VerificationofPWM-baseddistribution for geotechnical

parameters
The section provides the efficiency of PWM-based distribution in geotechnical engineer-

ing with comparison to other popular moments by applying them to benchmark examples.

The approach is used to analyze data fulfilling the basic assumptions of stationary. The possi-

ble outcomes and limitations are discussed while applying them to a set of data. The results of

these examples are compared to different approaches and literature database.

3.2.1 Example 1

The uniaxial compressive strength of rock from an open-pit slope of China (Deng et al.,

2004) is used to characterize and generate probability curves. The data presented in Appendix

A is analyzed with conventional and probability-weighted moments and data sample size is

considered as 10 to 50.
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The result of PWMs calculated from various samples is shown in Table 3.1. The sample

estimation method can also be compared in terms of the efficiency, asymptotic or finite-sample,

of the estimators.

Table 3.1: Summary of estimated probability weighted moments for different sample size

Sample b0 b1 b2 b3 b4 b5 b6

(N=10) 28.580 14.8178 10.0656 7.6433 6.1713 5.1804 4.9327
(N=20) 28.3950 14.6642 9.9294 7.5219 6.0616 5.0804 5.0103
(N=40) 28.960 14.975 10.145 7.6857 6.1913 5.1862 5.1566
(N=50) 28.942 14.9533 10.1267 7.6699 6.1781 5.1749 5.1521

When sample size is 50, the ICDF using MaxEnt and first five PWMs was derived as:

x(u) = exp (−3.2022u− 0.6898u2 + 1.260u3 − 1.0096u4 + 0.1749u5). (3.26)
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Figure 3.5: MaxEnt approximation compressive strength using different PWMs

Figure 3.5 represents various curves with different PWMs of 20 sample data. The esti-

mation of ICDF from four weighted moments is showing a reliable curve. The estimation of

higher order PWMs (order >8) from small samples (size<20) is problematic and shows some

errors. Hence, the four moments are appropriate with maximum entropy in estimation of

geotechnical data.
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Figure 3.6: Comparative ICDF of rock compressive strength using different sample sizes

The measure efficiency is the area under these curves and its percentage relative error (RE)

is defined as as percentage ratio of an absolute error to the specified true value of the area:

RE(%) =
|Asize − AK50|

AK50

× 100, (3.27)

whereAsize is the calculated area using MaxEnt method of a sample size,AK50 is the calculated

area using Kolmogorov test of sample size 50. For convenience, AK50 is specified as the true

area. The test is also conducted for various sample sizes for measurement of accuracy.

Table 3.2: Area and relative error(RE) of various sizes using ICDF and PDF

Sample size ICDF using PDF using
PWMs moments conventional moments
Area RE (%) Area RE (%)

50 28.9391 9.87E-03 0.9305 0.43
40 28.9421 4.32E-04 0.9324 0.64
20 28.4772 1.61 0.9445 1.93
10 28.5771 1.26 2.1416 131.14

The variation of different sample sizes are compared in Figure 3.6. Table 3.2 shows the

area and RE under various sample sizes. It can be concluded that moments and sample size

have significant influence on the estimation accuracy of probability curves of variability of rock

properties. Probability curves derived by PWMs share more common area with Kolmogorov

test than those by conventional moments. The RE by PWMs is much smaller than RE by

conventional moments. The MaxEnt quantile function is very close showing the accuracy of
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estimation. This shows that approach is useful in estimation of extreme quantiles like loads

and material properties. The MaxEnt approach can provide a reliable result of such nominal

values from a very small sample that is impossible for general distributions.

3.2.2 Example 2

The approach developed in this study is applied to characterize the site data of c′ and φ′

of fine-grained alluvial soils at the Paglia River alluvial plain in Central Italy (Di Matteo et

al., 2013). The database is presented in Appendix A. In this example, three data sets with a

limited number of c′ and φ′ data pairs are randomly selected from the 200 data pairs to perform

probabilistic characterization based on quantile function method.

Table 3.3: Summary of estimated PWMs and entropy’s parameter λs.

Sample b0 b1 b2 b3 λ1 λ2 λ2 λ4

cohesion (N=10) 19.5 11.14944 7.76122 5.944045 -1.8742 -5.3678 7.7657 -3.8037

cohesion (N=20) 19.2764 11.0187 7.77195 6.01853 -2.2323 -2.8363 3.5234 -1.7893

cohesion (N=30) 19.7839 11.1031 7.77910 6.00140 -2.4169 -2.0566 2.3161 -1.146

Quantile function of 10 data values with 4 PWMs :

x(u) = exp (−1.8742u− 5.3678u2 + 7.7657u3 − 3.8037u4). (3.28)
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Figure 3.7: MaxEnt approximation of c′ with ICDF and PDF
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As from Figure 3.7, it can be determined that even 10 sample values can generate a smooth

distribution curve as compared to probabilibility distribution using maximum entropy con-

strained as conventional moments. Different samples are fitted to the maximum entropy QF

using the values of probability weighted moments of data. The values of moments (bk) and

entropy distribution (λ) parameter of maximum entropy quantile functions are demonstrated

in Table 3.3. The descriptive statistics of each data pair subgroup are very similar demon-

strating that even small values can generate accurate and reliable results. The benefit of this

non-parametric approach is obvious: one can evaluate the consequences of the outliers in a

parametric way; moreover, it is also possible to estimate the variability of the data using the

Maximum Entropy approach.

3.3 Quantile-based soil characterization of Nipigon river

landslide
The process of site characterization allows the uncertainties in the determination of a

geotechnical parameter or behavior of that parameter on the slope stability. After charac-

terizing the sub-soil, actual behavior of parameter on the structure can be controlled during

the construction phase. The methodology of performing measurements before construction

is linked with probabilistic design to increase the knowledge and hence reduce the uncertain-

ties. The site investigations include two parts, in-situ testing and laboratory investigation. The

evaluation of shear strength in soft soils using in-situ methods (field vane shear test) is based

on empirical relationships. The in-situ vane shear test is considered more convenient and eco-

nomical.

3.3.1 Soil investigation of Nipigon river site

Nipigon is a municipality in Ontario, Canada. It is mostly covered with forests. In April

1990, a massive landslide occurred on the Nipigon River, north of Nipigon and encompassed

an area of 101,500 square meters, estimated flow of 300,000 cubic meters of soil.

The test site is located about 9 km north of the municipality of Nipigon. The site situated

near the Alexander Dam, and it is property of TransCanada Pipeline and Ontario Hydro.
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(a) (b)

Figure 3.8: Evidences of slope instabilities on the Nipigon river banks

The landslide affected the development of city and due to progressive failure in this area, the

rehabilitation plans are becoming a challenge. A description of the Quaternary deposits along

the landslide is found from the report of Trow Consulting Engineers and Lakehead University

investigations. The land in this area is a glaciolacustrine plain and delta consisting of sands and

silts. The sides of river are formed of fine-grained deposits with silt and sand may be found

embedded in clay. The higher and steeper slopes formed at the river bank is main cause of

small failures. The river banks are strongly marked by scars from erosion and landslides.

At the site, Dodds et al. (1993) carried out geotechnical investigations in one section at

three different locations: Borehole H-1 was positioned 8 m east of the bank edge and close

to Trow’s Borehole H-1. Borehole H-2 was located about 165 m east of Borehole H-1 and

Borehole H-3 was positioned just east of the landslide limit and TransCanada Pipelines right-

of-way. At all points the following tests were carried out: field vane tests, undisturbed sam-

pling with piston sampler, pore pressure measurements with open system piezometers and

piezocone. The investigation locations are shown in Figure 3.9.

In the present study, investigations were carried out at previous locations, one point close

to the river (BH-1) and at one point above the crest (BH-3). From the top of slope and river

bottom, the height is about 15m. The inclination of slope is about 40◦. The actual landslide

site is shown in Figure 3.10.
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Figure 3.9: Geotechnical investigations in study by Dodds et al. (1993)

The geotechnical ground investigation methods and the laboratory tests are used to obtain

the soil parameters. In this study, vane shear test and auger boring are used for field inves-

tigations with the help of civil engineering graduate students (Dhawan Joshi, Sankalp Yerra,

Navjot Kanwar) under supervision of Dr. Jian Deng. The aim was to determine the shear

strength and classify the soil for analysis the stability. Site investigations were carried out at

three locations on the slope, borehole B1 close to the crest, borehole B2 near the crest and

borehole B3 near the river. At all locations vane shear test was performed at depth of 0.22m,

0.55m and 0.85m. The soil samples were collected and used for calculation of Atterberg’s limits

(Table 3.4).

Figure 3.10: Location map of landslide and a photo from actual landslide
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Table 3.4: Summary of laboratory testing

Sample WL WP PI LI W sand % silt (%) clay (%)

BH-1 0.5-1.0m 45.5 24.7 20.8 0.33 31.5 11 71 18
BH-1 1.0-1.6 m 39 18.9 20.1 0.97 38.4

Note:WL is liquid limit ;WP is plastic limit ;PI is plasticity index ; LI is liquidity index ;W is water
content.

3.3.2 Modeling of soil variability from vane shear test samples

The measurements from the field vane tests have been corrected with the plasticity index.

An evaluation of the undrained shear strength from the field vane test has been made using

the relationship described in Appendix B. The measurement data shows the need of statis-

Table 3.5: Vane shear strength data results (kPa)

No. cu (kPa) No. cu (kPa) No. cu (kPa)

1 55 18 70 35 42
2 35 19 72 36 71
3 47 20 35 37 102
4 39 21 44 38 100
5 38 22 59 39 55
6 56 23 72 40 42
7 57 24 85 41 32
8 52 25 70
9 69 26 47
10 68 27 75
11 52 28 82
12 35 29 69
13 42 30 72
14 40 31 68
15 40 32 40
16 62 33 42
17 60 34 35

tical analysis. In the presence of a significant trend of the data, proposed approach is used

to demonstrate the variation in data. The distributions are generated with 10, 20, 30 and 40

values.

Soils samples are collected for the analysis of soil properties such as grain size distribution

and water content are measured (shown in Table 3.4) .
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Figure 3.11: Input variable: shear strength

Using four probability weighted moments, the results of maximum entropy distribution

for field vane shear data:

x(u) = exp (−3.4160u− 1.9333u2 + 2.0188u3 − 1.2270u4). (3.29)

The effeciency of PWMs with various sample sizes can be seen in Figure 3.11. It can be

concluded that moments and sample size have significant influence on the estimation accuracy

of probability curves of soil parameters. Apart from this case the MaxEnt quantile distribution

allows a very flexible representation of shear strength parameters as random variable.

The ICDF generated with PWMs is showing high accuracy, which is influencing the re-

liability of this approach.

3.4 Summary
A numerical method for determining distribution free curve from both the probability

weighted moments and maximum entropy approach, which governs the almost unbiased esti-

mation, has been developed.

It is distribution-free because no classical theoretical distributions were assumed in ad-

vance. The inference result provides a universal form of probability curve. Probability curves

derived by MaxEnt and PWMs are inverse cumulative density functions [ICDF] and can be

accurately derived by MaxEnt and sample moments. It is concluded that proposed method
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enable more secure inferences to be made from small samples about an underlying probability

curve, especially when sample size is 40 or smaller.

The PWMs are compared with conventional moments and it is proved that PWM mo-

ments are more unbiased and efficient. The maximum entropy constrained with PWM makes

the approach more convenient and appropriate for geotechnical data. The soil modeling of real

values collected from Nipigon river bank with maximum entropy QF shows the effectiveness of

the proposed algorithm. The slope stability analysis is performed on shear strength parameters

evaluated from Nipigon river landslide in Chapter 4.
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Chapter 4

Quantile-based reliability analysis of

Nipigon river landslide

Section 4.1 describes the evaluation of performance function of soil slopes using response sur-

face method. Quantile-based reliability method for complex soil slope system is developed in

Section 4.2. The ordinary first-order reliability method is extended to quantile-based reliabil-

ity method and applied to the slope stability analysis of the Nipigon river landslide in Section

4.3. In Section 4.4, conclusions and results are discussed.

4.1 Reliability in geotechnical engineering
The risk and safety analysis is dependent on Supply and Demand of structure. The structure

can be considered as safe if Supply is more than Demand. The concept may be clear from the

relationship:

Z = R− S (4.1)

where Z is performance function,R is Resistance and S is Load applying on the structure.

R and S are considered as random variables in engineering design. The relationship be-

tween Load and Resistance and the probability of failure can be defined as a distribution func-

tion. The mean value is defined as the distance of the means of random variables, and the

probability of failure is indicated by the overlap of the distribution function of resistance and

43



CHAPTER 4. QUANTILE-BASED RELIABILITY ANALYSIS OF NIPIGON RIVER LANDSLIDE

load. Distributions of the variables R and S further depend on appropriate parameters, for ex-

ample on moment parameters µR,µS and σR, σS are mean and variance of random variables,

respectively. The essential objective of reliability theory is to assess the probability of failure pf

and to find the necessary conditions for its limited magnitude.

Figure 4.1 shows an example of probability density functions of both the variables E and

R and their respective location. In particular, the moment parameters (the means and standard

deviations) may be considered as relative values related to the resistance mean µR.

Pf = f

(
µr

µs

, σr, σs

)
(4.2)
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Figure 4.1: Relationship of reliability and probability

4.1.1 Measures of reliability for slope failure system

“Reliability is the probability of an object (variable or system) performing its required

function adequately for the specified period of time under stated conditions” (Harr, 1977).

The probability that slope will remain stable under specified design conditions is the reliability

of slope. The design conditions include the load, water level conditions, soil properties, etc. If

all the variables are assumed as normal and limit state equation is Z = R− S, then (Cornell,
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1969):

µZ = µR − µS, (4.3)

σ2
Z = σ2

R + σ2
S. (4.4)

The probability of Z<0 can be determined as:

Pf = P (Z = R− S < 0) , (4.5)

Pf = 1− φ

(
µR

µS

)
, (4.6)

and reliability index β can be represented as:

β =

(
µR

µS

)
, (4.7)

and using reliability index (β) with a probability of failure can be represented as:

Pf = 1− φ(β), (4.8)

If the random variables are not normal, they should be transformed into independent normal

distributed variables. If the probability density function of safety factor is normally distributed,

the corresponding reliability index β is defined as:

β = (µFS − 1)/σFS (4.9)

where µFS is the mean of safety factor and σFS is the standard deviation of safety factor. If

the probability density function is log-normally distributed, the reliability index of slope can

be given as.

β = ln

 µFS√
1 +

(
σFS

µFS

)2

 /
√

ln (1 + (σFS/µFS)2) − 1 (4.10)

The system is considered as safe if probability of failure is less than 10−2. This is the foundation

of risk-based concept. With this approach, the information of density function of each data is
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usually difficult to obtain, but this methodology is more efficient than deterministic analysis.

4.1.2 Performance function for slope analysis

The safety of slopes is dependent on specific performance criteria, the relevant random

variables like load and resistance parameters and the functional relationships among them

corresponding to each performance criterion (Haldar & Mahadevan, 2000). The performance

function can be described as

Z = g(X1, X2, X3 . . . .Xn). (4.11)

The limit state function can be defined Z = 0. The area above the limit state is considered

as safe and below the limit state is unsafe. The limit state equation plays an important role

in structural reliability. The performance function may be explicit or implicit, complicated

or straightforward. The reliability analysis methods have been developed corresponding to

different types of complexities in performance function. The probability of failure, pf in the

terms of the performance function can be described as:

pf =

∫
g(X)<0

. . . . . . .

∫
fX (X1X2X3 . . . .Xn) , dx1dx2 . . . dxn (4.12)

in which fX (X1, X2X3 . . . .Xn) is a joint probability density function for the basic random

variables X1, X2, X3 . . . . . . Xn and the integration is performed over the failure region, that

is g() < 0.

In slope probabilistic analysis, Chowdhury et al. (2009) defined the limit state of perfor-

mance function as following:

F (x1, x2, . . . . . . , xn)− 1 = 0 (4.13)

or

lnF (x1, x2, . . . . . . , xn) = 0 (4.14)
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where,F (x1, x2, . . . . . . xn) is the safety factor function about xi(i = 1, 2, 3 . . . .n). The perfor-

mance function of slope stability may be in different form,depending on method or parameters

and it is mostly implicit function. Figure 4.2 shows the graphical representation of reliability

Figure 4.2: Limit state function and design point (Holick, 2009)

analysis with effects of variations and partial derivatives. It depends on the first two statistical

moments of distribution of parameters. The safe and unsafe region boundaries are defined as

the distance of design points from the limit sate function. A linear limit state function with a

few random variables can be solved with Mean Value First Order Second Moment (MVFOSM)

or First Order Reliability Method (FORM), but a nonlinear limit state function requires more

complex reliability analysis. A nonlinear implicit function can be analyzed by response surface.

As slope stability analysis is a complex problem and contain various random variables, it shows

a need of additional framework to understand the system behaviour.

Response surface for evaluation of performance function

Response surface method (RSM) is used in the study to improve the results by converting

implicit performance function into explicit. The response surface method consists of experi-

mental results and response surface analysis. The multivariate polynomial models arise in the

calculations of experimental results.
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The process includes the generation of an explicit function from series of experiments,

usually called runs, by changing input variables and considering the effect of output response.

It improves the quality of information and eliminates the information of unused data. The

primary goal of this method is to analyze the performance function with sufficient information

to precisely estimate model parameter. The first order model is sufficient in our study to evaluate

the reliability.

A simple model of a performance indicator with two controlled factors cohesion and fric-

tion angle can be represented as (Li et al., 2015):

FOSj (X) = aj +
Nc∑
i=1

(bi,j ∗ c′i) +
Nc∑
i=1

(ci,j∗ϕ′
i), (4.15)

where FOSj (X) , j = 1, 2, . . . , Nc, is the safety factor for the jth potential slip surface; X =

(x1, x2, . . . xn)
T is the vector of input random variables in the physical space, in which n is the

number of input random variables; aj = (a1,j, b1,j, . . . , bn,j, c1,j, . . . , cn,j)
T is the vector of

unknown coefficients with a size of Nc = 2n+1. Response surface analysis aims to interpolate

the available data in order to predict the correlation locally or globally between variables and

objectives. The term c′i andϕ′
i are considered as input random variables. If there is a curvature in

the data, a first-order model would show a significant error. Polynomial models are generalized

to any number of predictor variables xi(i = 1, 2, 3, . . . , Nc). This design is used to fit first order

response surface method.

The factor of safety for the ith potential slip surface is evaluated fromNc as (µx1 , µx2 , . . . , µxn),

(µx1 ± kσxn , µx2 , . . . , µxn), (µx1 , µx2 , . . . , µxn ± kσxn) where k is a coefficient for generating

the sampling points, and k = 1.65 is used. µxn and σxn are the mean and standard deviation

of the ith random variable as shown in Appendix C. The response surfaces are constructed

as procedure explained in Figure 4.3 and used to generate explicit functions with regression

analysis.
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Determine probabilistic properties
of  input variables (i.e., mean,COVs)

Construct slope stability model in Geo-Studio

Construct Ns quadratic RSFs between FS of Ns of
potential slip surfaces and original random variables.

Substitute each realization in GeoStudio Slope
model and estimate probability o�ailure

Generate RSF explicit function from regression analysis
on the statistics of Calculated FS and random variables

Figure 4.3: The process of response surface method

4.2 Computation of failure probabilities with quantile-based

method
The FORM method is great approach to reliability analysis. It is based on theTaylor Series

expansion of the safety factor or the performance function at the critical points on the failure

surface. This method provides analytical approximations for the mean and standard deviations

of the probability of failure based on the variables.

The iteration procedure of the FORM method can be described in following steps (Holick,

2009):

1. Consider a multivariate case of slope stability system when basic variables are described

by a vector X[X1, X2, . . . , Xn],

G(X) = g(X1, X2, . . . , Xn) = 0 (4.16)
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2. the basic variables X are transformed into a space of standardized normal variables U ,

and the performance function G(X) = 0 transformed into G′(U) = 0 ;

U =
(X − µe

x)

σe
X

(4.17)

in which µ and σ are respectively mean and standard deviation of random variable X .

According to Rosenblatt’s transformation, equivalent mean and standard deviation for

non-normal variables are calculable as follows:

σe
x =

1

fx(x)
φ[Φ−1FX(x)] (4.18)

µe
x = x− σe

xΦ
−1[FX(x)] (4.19)

Limit state 
function

(a) Original basic variables R and E

Limit state 
function

(b) Transformed variables R and E

Figure 4.4: Transformation of non-normal random variable (Holick, 2009).

In plan view, the probability density function can be visualized as a contour plot involving

a series of ellipses, and the limit state function can be seen as a line separating the failure

and safe regions, see Figure 4.4.

3. the failure surface G’(U) = 0 is approximated at a chosen given point by a tangent hy-

perplane (using Taylor expansion);
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4. the reliability index β is determined as the distance of the design point from the origin

and then the failure probability,Pf , is given as Pf = φ(−β);

First order reliability method with quantile function

A quantile-based reliability method for the direct iterative calculation of nonlinear func-

tion under the condition of correlated variables is more convenient and time-saving method.

Let n basic random variables affecting structural reliability be x1, x2, . . . .xn obey the gen-

eral distribution and distribution function is denoted as Fxi (xi),the correlation coefficient

between xi and xj is ρij . The limit state equation for slope system is still Equation 4.16. The

basic variable reduced by maximum entropy quantile estimation:

φ (βxi
) = Fxi

(xi)

xi = F−1
x (φ (βxi

))

 , (4.20)

where φ(.) is the standard normal distribution function and F−1
x is the inverse cumulative

distribution function. In this way, limit state equation becomes

G = g
(
Fx

−1
1 (φ (βx1)) , Fx

−1
2 (φ (βx2)) , . . . .Fx

−1
n (φ (βxn))

)
= 0, (4.21)

iterative formula for reliability index β obtained as:

β∗ =
−
∑n

i=1
∂g

∂βxi

∣∣∣
P ∗

β∗
x + g

(
Fx

−1
1 (φ (βx1)) , Fx

−1
2 (φ (βx2)) , . . . .Fx

−1
n (φ (βxn))

)√∑n
i=1

∑n
j=1 ρij

(
∂g
∂βi

∂g
∂βj

)∣∣∣∗
P

, (4.22)

β∗
xi
=

−
∑n

j=1 ρij

(
∂g
∂βi

)∣∣∣
P ∗√∑n

i=1

∑n
j=1 ρij

(
∂g
∂βi

∂g
∂βj

)∣∣∣∗
P

β∗ (4.23)

available from limit state equation (4.21)

∂g

∂βi

∣∣∣∣
P ∗

=

(
∂g

∂xi

∂g

∂βi

)∣∣∣∣
P ∗

=

(
∂g

∂xi

)∣∣∣∣
P ∗

x′∗
i , (4.24)
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where x′∗
i is the basic random variable in the calculation of quantile derivative.

The quantile method for reliability index β is iteratively calculated using equation (4.25)

and (4.26):

β∗ =
−
∑n

i=1
∂g1
∂βi

∣∣∣
P ∗

x′∗
i β

∗
xi
+ g (x∗

1, x
∗
2x

∗
3, . . . ., x

∗
n)√∑n

i=1

∑n
j=1 ρijx

′∗
i x′∗

j

(
∂g
∂xi

∂g
∂xj

)∣∣∣∗
P

, (4.25)

β∗
xi =

−
∑n

i=1
∂g1
∂βi

∣∣∣
P ∗

ρijx
′∗
j√∑n

i=1

∑n
j=1 ρijx

′∗
i x

′∗
j

(
∂g
∂xi

∂g
∂xj

)∣∣∣∗
P

β∗, (4.26)

x∗
i = F−1

xi
(Φ(β∗

xi)), (4.27)

The partial reliability index of the fundamental variables in the ultimate state equation of the

structure can be obtained by inverse transformation of the reduced gaussian variable of each

basic variable, and the corresponding design value is obtained.

x′∗
i =

dF−1
xi
((β∗

xi
))

dβ∗
xi

, (4.28)

The equations are used to calculate the basic operational formulae of the basic variables partial

reliability index and design value in the design of the limit state of the structure, and the iterative

method is often applied in calculating the above formulas. The steps are described in Figure 4.5.

4.2.1 Calculations example
The limit state equation is g(x1, x2) = 1 + x1x2 − x2 = 0 , the random variable x1 =

LN(2, 0.4), x2 = LN(4, 0.8), correlation coefficient ρ12 = −0.1 (Bin & Songhong, 2004).

The solution results and comparison with the FORM method are shown in Table 4.1

Table 4.1: Calculated results of reliability index for case 1

Method x∗1 x∗2 βx1 βx2 Reliability index β

FORM 0.809 5.245 - - 4.585
Quantile-FORM 0.810 5.264 -4.471 1.641 4.585

The calculation can be performed directly in the original space, avoiding the complicated

process of finding the feature vector and the matrix operation (especially in the case of many
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Figure 4.5: Algorithm of first order reliability method with quantiles

variables). It is very difficult to find the eigenvalues in simple FORM, which makes this cal-

culation process simple.

4.3 Case studies using quantile-based method
The research provided an efficient reliability-based method to derive the reliability of struc-

tures, quantile-FORM, which may be applicable in engineering practice to evaluate the re-

liability of geotechnical structures. Although quantile-FORM is a proven reliability-based

method, applicability of this method with deterministic slope analysis must be verified. The

application of quantile FORM, which represent the variability of soil properties in slope sys-

tem, is shown in various problems of geotechnical engineering. In order to be confident it
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delivers correct results, it is checked against Monte Carlo simulations (MCS) and Point Esti-

mate Method (PEM).

4.3.1 Homogeneous soil slope

The first case with the study of stability analysis of a homogeneous soil slope is analyzed

in GeoSlope 2007 with limit equilibrium method. The basic geometry of this benchmark is

shown in Figure 4.6. A slope with a height ofH = 10m and a slope angle of 2 : 1 is considered.

The soil strength parameters cohesion c, friction angle ϕ and unit weight γ are considered as

independent random variables and it is assumed that mean values (µx) of input parameters are

known as shown in Table 4.2. The soil type is assumed as uniform in the whole region and

water table is considered as negligible. To verify the model performs as expected, initially a

Figure 4.6: Geometry slope stability problem case 1

deterministic calculation with mean values is performed. Then, input parameters are assumed

to be normally distributed in the first case for reliability analysis. Subsequently, the parame-

ter variation feature is utilized to perform the proposed approach with the random variables.

Typical coefficients of variation (COV ) can be obtained from literature, soil investigation or

design standards. The standard deviation can be calculated with the use of the coefficient of

variation provided in Appendix (A).

The response surface method is used to make the implicit performance function to explicit

based on the assumed variables. The regression analysis was performed based on least square

error approach. The parameters are considered as uncorrelated. The lower limit (µ+ 1.65σ)
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Table 4.2: Soil properties for homogeneous soil slope

Property Symbol Unit Mean(µX) COV (X)

Unit Weight γ [kN/m3] 19 0.2
Friction Angle ϕ [◦] 12 0.25

cohesion c [kPa] 9 0.2

and upper limit (µ+ 1.65σ) of the variables are considered to quantify each point in design

sets (see Appendix C).

The performance function can be defined as

G (x) = FOS − 1, (4.29)

and the approximations of performace function evaluated from response surface is

G (x) = 0.617615− 0.03285 ∗ γ + 0.062458 ∗ c+ 0.059697 ∗ ϕ− 1. (4.30)

The reliability index (β) of the slope is evaluated for a constant COV value with proposed

approach. The procedure will be elaborated in detail for constant values. The structures are

considered as safe if the factor of safety is more than unity. The factor of safety is evaluated by

quantile-based FORM method and compared with other methods. It is possible to generate

the distribution function of probability of failure from statistical values, presented in Table 4.3.

Table 4.3: Calculated results of reliability index for case 1

Method γ c ϕ βγ βc βφ β

Quantile-FORM 21.139 8.087 9.576 0.563 -0.807 -0.507 1.107

The results of quantile-based reliability analysis were obtained in three iterations and the

design points of random variables are too near as compared to other methods. The partial

factors of limit state function helps in calculation of design points of FORM.

Considering the results of quantile-FORM method, one can see that accuracy and fea-

sibility of quantile-FORM is more than other methods. It also overcomes the convergence

problem by decreasing the number of iteration. The reliability index from PEM, FORM and
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Table 4.4: Reliability comparison between the three probabilistic methods for case 1

Method µFS σFS β Pf (%)

Quantile-FORM 1.258 0.308 1.1077 13.4036
FORM 1.147 0.334 1.107512 10.79

MCS (20000) 1.3658 0.261 1.437 5.4
PEM 1.211 0.286 1.2375 10.79
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Figure 4.7: Probability density function for homogeneous soil layer problem

Monte Carlo simulation are compared in Table 4.4 and Figure 4.7. Significant difference

in reliability values from the different methods could be explained by the different underly-

ing approach of each method. In all methods, reliability index is calculated as the distance

between mean and the threshold of standard deviations. Monte Carlo performs simulations

with different combination of mean random variables; FORM works in a physical space of

input stochastic variables, where it iteratively searches the design point. The efficiency and

accuracy of FORM is dependent on optimization algorithm. The quantile-based FORM is

efficient and easy algorithm for geotechnical problems.

4.3.2 Reliability analysis of Nipigon river landslide

The study of slope stability is based on a combination of limit equilibrium method and

quantile-based reliability approach. The first situation, Initial state, is the original slope failure.

It considers the variation in soil parameters like shear strength and slope geometry. The second

situation, Influence of water table, is the computation of factor of safety with the fluctuation of
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the water table. When it freeze or rain, the water is absorbed by the upper layer leading to the

loss of soil strength and affecting the failure criteria. The increase of water content decreases

the shear strength of cohesive soils. The third situation, Influence of river currents, is effective

with the increase in pore water pressure due to the rising of water or downstream water flow.

Initial conditions

The purpose of analyzing the original slope is to determine the shear strength and fail-

ure of slope considering the data available from site investigations. The deterministic model

is prepared in Geo-studio 2007 with the shear strength values explained in Chapter 3. The

slope is considered in its natural and undisturbed state. The stability analysis is based on the

influence of soil variability on various layers. The variation of shear strength parameters in

layer II to IV is assumed from the literature. The calculations are compared with different ap-

proaches including different correlation functions describing the variability of slope reliability.

The sensitivity analysis is also conducted for this problem to understand the contributions of

the various sources of variability to the failure probability of slope system.
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Figure 4.8: Geometry slope stability problem: Nipigon river landslide

Parametric studies

The aim of this section is to investigate the effects of the coefficient of variation and spatial

variability of soil properties on the estimated probability of failure pf of a slope. The informa-

tion was obtained from three boreholes, 40 vane shear test results and Trow’s investigation to
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model their layer compositions in a geotechnical model. The model has been used as the base

for statistical simulations. Four main soil types were derived from this data set summarized in

Table 4.5.

Table 4.5: Soil parameters

Layer c’ in kPa ϕ′ in degree γ
(µ) (µ) (µ)

I Firm clayey silt 54 - 19
II soft clayey silt 36 - 19
III sandy silt - 32 19
IV interbedded silt 28 - 19

and clayey silt

Soil type I consists of firm clayey silt, Soil type II consists of soft clayey silt, soil type III

consists of sandy silt, soil type IV consists of interbedded silt and clayey silt. The measurement

data is combined with literature review to describe variability of subsoil by combination of

measurements and expert judgment.

Sensitivity analysis of initial situation

Since many input parameters are involved in this problem, influential parameters must be

identified. To ensure no unnecessary parameters are included in reliability analysis, a sensitivity

analysis is performed to identity which parameters have a major influence on the results. The

global sensitivity analysis is investigated by using response surface approach. By using the re-

sponse surface approach, it is possible to derive the global sensitivity measures analytically. The

results of sensitivity are obtained with properties of different layers and water table. Further-

more it is mentioned that the unit weight of all layers is kept constant. All other soil properties

are included in the sensitivity analysis. The lower and upper bound of analysis is defined as

values below and above standard deviation. In order to determine the standard deviation, co-

efficients of variation (COV = σ/µ) is assumed from the Appendix A. One can see the effect

of increasing and decreasing parameters. Combining these results with parametric studies, it

is possible to analyze the system behaviour of slope stability by considering main parameters.
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Figure 4.9: Sensitivity analysis with various variables

In order to determine the sensitivity scores all possible combinations are calculated, while

changing only one variable at a time. One soil property may have a major influence when a cer-

tain criterion is considered, and a negligible influence at the other.The results shows the effect

of weighting parameters on slope stability and factor of safety. The sensitivity of soil properties

on the factor of safety computed by changing five properties. The results of this analysis are

shown in Figure 4.9. It can be seen that most sensitive variables are the soil cohesion (c), soil

friction angle(ϕ) and water table or piezometric line. From this analysis, it is concluded that

these variables should be assumed stochastic when the factor of safety is evaluated. Here, the

response surface is a problem-specific model that replaces the numerical model (i.e., software

package) for computing the sensitivities. The response surface method is further used to create

an explicit performance function for reliability analysis.

Reliability analysis using various random variables

First of all, shear strength parameters are considered as main uncertainty. In addition to

this, the un-drained shear strength of top and bottom layer with friction angle of sandy layer

is considered as ICDF.The reliability index (β) of this slope stability problem is evaluated for
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a range of COV values. The procedure will be elaborated in detail for a constant COV = 0.30

here. The COV is defined as 0.1 to 0.3 for reliability analysis.

Assuming the factor of safety follows a normal distribution, the reliability index (βnormal)

is calculated and compared with different COVs and probabilistic approaches. Figure 4.10
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Figure 4.10: Probability of failure for various COV s with comparison of MC simulations

shows the result of a range of COV values. As the COV increases the probability of failure

increases and reliability index decreases. It can be seen that the reliability indices obtained with

the quantile-FORM are in good agreement with Monte Carlo simulations with a small and

acceptable error. The main advantage of quantile-based FORM on MCS is that, it is applicable

for 40-50 samples but MCS requires minimum 200 samples for accurate results. In order to

prevent the overestimation of the overall safety, it is important to choose the distribution of

probability of failure appropriately.

For quantile based FORM method, considering now the safety factor of slope as a function

of correlated soil parameters with different layers. This illustrates that there is a significant

difference. The results are shown in Table 4.6, the correlation coefficient is assumed from 0.95−

Table 4.6: Reliability comparison between the three probabilistic methods

ρ µFS σFS β Pf

0.95 1.0552 0.0806 0.6813 0.2478
0.90 1.0487 0.0789 0.6961 0.2432
0.85 1.0449 0.0772 0.711 0.2385
0.80 1.0408 0.0756 0.711 0.2338
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0.8. The standard deviation of safety factor decreases up to around 0.19 and the probability of

failure decreases from 24% to 22%.

Comparison and discussion

The influence of the soil properties on the calculated reliability index using three prob-

abilistic methods is shown in Table 4.7. One can see that generally the results of quantile-

FORM is closer to MCS and FORM. It means that accuracy of FORM increases with quan-

tile function and it is suitable for complex geotechnical problems with more input variables

and correlations.

Table 4.7: Comparison between the three probabilistic methods for Nipigon river landslide

Quantile function Normal distributed Correlated quantile functions
Methods µFS σFS β Pf µFS σFS β Pf µFS σFS β Pf

Quantile 1.02 0.25 0.39 0.34 1.10 0.21 0.40 0.34 1.04 0.07 0.71 0.23
FORM 1.10 0.14 0.68 0.24 1.09 0.11 0.62 0.26 1.10 0.10 0.92 0.17
MCS 1.05 0.14 0.34 0.36 1.05 0.15 0.33 0.36 1.08 0.11 0.69 0.24

4.3.3 Influence of water table and river currents

The influence of water content and pore water pressure is a problem concerning the undrained

shear strength of soils. Thus, the change in pore water pressure changes the principal stresses

and results in variation in consolidation and compressibility of soils. The pore water pres-

sure from the running water between layers can affect the slope stability analysis. This section

includes the effect of variation in water content and pore water pressure

As the water content increases in soil due to rain or snow, it profoundly affects the slope

stability. Initially, the slope’s water content is 30%, but it may increase to 40 − 45%. The

undrained shear strength decreases with an increase of water content. Shear parameters are

assumed for analysis based on variation of water content and pore pressure parameters. The

water level of the river is also assumed as a random variable to estimate the effect of river

currents. Table 4.8 shows the variation of safety factor as a function of water content and river

currents.
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Table 4.8: Results of slope stability analysis

Ground water conditions Factor of safety Probability of failure

water draw down by 2m 1.227 0.34
water draw down by 4 m 1.15 0.21

water at the level of river currents 1.029 0.13

When the water table was at 2m depth, the safety factor obtained 1.227 with a failure

probability of 34% and 13.4% when the water table was at the same level of river currents. The

objective of this scenario was to identify the influence of water table which results in probability

of failure more than 5% given the uncertainties in soil thicknesses and properties.

4.4 Summary
In this chapter, a quantile-based method is introduced to apply in the slope reliability

analysis problem. Its stability and efficiency are compared with the MCS and FORM method

to evaluate the performance function of the Nipigon river slope.

The first case study is showing the example of a single layer slope stability. An analytical

solution is adapted to quantify the effects of soil variability with global and sensitivity analyses

of input parameters. It is concluded that Monte Carlo and quantile-based method show similar

results, which proves that the proposed method performs well for slope stability analysis. The

disadvantage of Monte Carlo is that the output distribution must be known with 200 samples,

in contrast to quantile-based can be used with 30 or 40 samples.

The second case study presents reliability analysis for Nipigon river landslides. The un-

certainty of the complex geotechnical conditions is quantified. By using Geo-studio with

stochastic approaches, these results are calculated, which offers another insight into the ef-

fect of soil heterogeneity and the resulting risk. This study quantifies the influence of water as

the probability of failure increases about 10% when water currents and water table effects are

included. As from the results, it indicates that the area of Nipigon is prone to landslides and

requires more attention.
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Chapter 5

Remedial measures and slope design for

Nipigon river landslide

By taking the failure probability of soil slopes as main concern, remedial methods for slope

stability are discussed in Section 5.1. Slope design effected by soil parameters and system

reliability index are investigated in Section 5.2. Failure probability and slope design parameters

are considered, a new height and slope angle of Nipigon river landslide is calculated from

combination of quantile-based method and optimization.

5.1 Remedial measures for soil failure
There are several considerations in case of landslides. First of all, the variation in soil

properties and geological data make each design a different scenario. Second, the slope stability

mechanism is same for different type of slopes. Third, the most reliable stability analysis is main

factor affecting the slope design. Judgment, experience, and intuition, combined with the best

data-gathering and analytical techniques, all contribute to optimal solution.

The landslides are most difficult to detect and costly in construction. It is clearly shown that

erosion will be a cause for concern in the coming century,when it comes to slope stability along

river banks. Practically this means that preventive measures will likely have to be undertaken

to prevent this type of failure from undermining the slope stability. These measures consisted

of placing geo-synthetics, rocks and other reinforcements along the bottom of river stretching
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hundreds of meters in both north and south direction. The possibility and approach to bottom

erosion protection might be to sort of the effects of main landslide. There are some remedies

for Nipigon river banks.

1. Vegetation slope stability through hydro logical and mechanical effects of vegetation is

the most economical in this case. Hydrological effects involve the removal of soil water

by evapotranspiration through vegetation thus reducing the soil weight, which can lead

to an increase in soil suction or reduction in pore water pressure, hence an increase in

the shear strength (Ali et al., 2012). The plant root matrix also effect the shear strength

of root as deep roots compact the the soil layers contributing the ability of soil to resist

the shear stress.

Table 5.1: The increase of factor of safety with vegetation

Depth of roots (m) cohesion cR(kPa) Factor of Safety

0.5 60 1.301
70 1.454
80 1.532

1 60 1.308
70 1.487
80 1.521

1.5 60 1.43
70 1.59
80 1.616

2 60 1.589
70 1.650
80 1.692

The effects of vegetation can be computed with conventional slope stability analysis. In

the limit equilibrium method, the shear strength of soil by incorporating the impact of

the root matrix, the Mohr-Columb equation becomes:

τ = (c′ + cR) + (σ − µ)tanφ′, (5.1)

where cR is apparent cohesion. The apparent soil cohesion caused by the plant root

matrix system is added to initial cohesion. The method can be applied by increasing the

cohesion of the first layer as with a variation of 0− 20kPa. The effect of the vegetation
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layer to Nipigon bank is applied by increasing the cohesion and calculating the safety

factor as shown in Table 5.1. The maximum depth of root zone is assumed as 2m. The

results show relatively increment of safety factor.

2. Surface drainage is one of the possible remedies for correction of existing landslides.

Drainage helps in both reducing the weight of mass and increasing the strength of soil

material. The design of slopes also considers the movement of water on the surface.

Surface water rises the soil erosion and creates the chances for failure of slopes as surface

water flow across the face of the cut slope and will seep into the soil at the head of the

cut (Abramson et al., 2002).

There are numerous slope treatments to promote rapid runoff and improve slope stability.

Some of the measures are (i) using concrete slope paving or rock fills, (ii) providing

trenches or drainage ditches. The asphalt paving is also useful in highway embankments.

Surface drainage measures require minimal design and offer more protection to slopes.

3. Subsurface drainage is considered as an expensive treatment but sometimes beneficial.

Since seepage forces act to increase the driving force on a landslide, the control of subsur-

face water is of vital importance. Sometimes, groundwater constitutes the most essential

single contributory cause for the majority of landslides. The design of slopes is also de-

pendent on pore water pressure, and it varies according to the climatic and geological

conditions.

4. Buttress or counterweight fills is an external load applied to slopes to resist the pressure

of soils. The ability of any restraining structure to perform as a designed stabilizing mass

is a function of the resistance of the structure to (a) overturning, (b) sliding at or below

its base, and (c) shearing internally. An overturning analysis is performed by treating the

buttress as a gravity structure and resolving the force system to ensure the proper location

of the resultant. Potential sliding at or below the base requires a similar analysis, and care

must be taken in both the design and the construction phases to ensure adequate depth

for founding the buttress and prescribed quality for the layer on which the buttress is

placed. These designs are also suitable for high river currents.
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5. Chemical treatment is used sometimes for treating the soil with different methodolo-

gies. The use of chemicals for treating the clay minerals along the plane of potential

movements is a useful technique. Chemicals help in ion-exchange and increase the

shear strength of soil. The treatment depends on the soil type, mineralogy and prevail-

ing groundwater conditions in the slide mass. Most of the chemical treatments include

lime, chemical grout, and potassium injections. A large volume of lime and cement grout

are mostly expensive (Indraratna et al., 2015).

6. Electrokinetic applications involves electrolysis reactions, electroosmotic flow, elec-

trophoresis can be used to change the properties of soil. The process is mainly dependent

on the electric energy, and this energy helps in the treatment of soil by exchanging ions.

This technique causes migration of pore water between previously placed electrodes; the

loss of pore water, in turn, causes consolidation of the soil and a subsequent increase in

shear strength.

7. Combinationof treatments is also a practical approach in the stabilization of soil slopes,

mainly for landslide prone area. The long-term stability of this treatment requires that

the horizontal drains function correctly for the life of the structure. A slow-moving land-

slide can be treated chemically. The geotechnical design may not consider entirely safe

if all the problems, (soil strength, groundwater level, slope geometrics) are not handled

properly. Thus, a combination of several methods will generally be required.
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Table 5.2: Summary of slope remedies

Procedure Best Application Limitation Remarks

Drain Surface
In any design scheme;
also be part of any re-
medial design

Will only correct
surface infiltration or
seepage due to surface
infiltration

Slope vegetation
should be considered
in all cases

Drain subsurface

On any slope where
lowering of groundwa-
ter table will effect or
aid slope stability

Cannot be used ef-
fectively when sliding
mass is impervious

Stability analysis
should include con-
sideration of seepage
forces

Reduce weight At any existing or po-
tential slide

Requires lightweight
materials that are
costly

Stability analysis
must be performed
to ensure proper use
and placement area of
lightweight materials

Use buttress and
counterweight fills

At an existing slide,
in combination with
other methods

May not be effective
on deep-seated slide

Stability analysis is
required to determine
soil-pile force system
for safe design

Install anchors A good option for
highway design

Involves depth control
based on ability of
foundation soils to
resist shear forces from
anchor tension

Study must be made
of in-situ soil shear
strength

Treat chemically

Where sliding surface
is well defined and
soil reacts positively to
treatment

has not had long-term
effectiveness evaluated

Laboratory study of
soil chemical treat-
ment must precede
field installation

Use electroosmosis
To relieve excess pore
pressures at desirable
construction rate

Requires constant
direct current power
supply and mainte-
nance

Methods are experi-
mental and costly
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5.2 Probabilistic design for Nipigon river landslide
The uncertainties in soil parameters and adopted models can lead to uncertainties in de-

cision making for design. In geotechnical engineering, the least cost and reliable design are

acceptable and known as optimal design. In this approach, safety requirements are usually ac-

cepted concerning the target factor of safety or reliability index. In this situation, a theory of

fully probabilistic design applies to cope with the uncertainties. The simplified reliability-based

design is dependent on the accuracy of statistical data. However, it is not possible in case of

soil parameters due to its randomness.

The RBD approach in geotechnical engineering has been gaining attention due to its sim-

plicity and high accuracy. This simplified method is usually adopted for piles, foundations and

retaining walls (Phoon et al., 2003; Salgado & Kim, 2013). The simplified approach can be

directly used with various reliability methods. The reliability-based robust design approach

is originated from the structural engineering as an alternative to conventional designs. This

design seeks an optimal design that is robust against the parameter uncertainties and satisfies

the safety and economic requirements.

5.2.1 Probabilistic design framework of soil slopes

In the existing design approach, the robustness is increased by decreasing the standard

deviation of a probability of failure. After the computation of system failure probability using

the quantile-based FORM, the optimization algorithm is used to minimize the failure and

locate the optimal design considering the safety requirements and cost-effectiveness. The focus

of this research is to introduce the concept of robustness and an application to the existing

example of the Nipigon River landslide.

Optimization theory

The optimization is introduced to find values of the design variables corresponding to

a minimum in the costs. Such optimization is done if the shape and properties of a slope

have been defined, but the dimensions still have to be designed. Here, optimization is used

with reliability approaches to find the cost-effectiveness and input variables. This simplified
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approach seeks an optimal design, represented by a set of design parameters (d), such that

the design robustness R(d, θ) and cost C(d) are optimized simultaneously, while the design

(safety) constraint based on the system response g(d, θ) is satisfied. The performance function

of a slope system is used in this theory.

Find d to optimize: [C(d), R(d, θ)]

Subject to: Safety constraint as a function

where d – design parameters; θ – uncertain parameter; C – cost;R – robustness measure; g –

system response.

In general, uncertainties in a design process can be classified in epistemic uncertainties. A

probability distribution describes this uncertainty and can be reduced by more information.

Examples of epistemic uncertainties, model error, and errors due to numerical approaches to

find a solution. When a probabilistic approach is used to find a solution to a design problem,

the values of all uncertain parameters are described by a probability distribution. The overall

assumption in this method is that it is accurate to describe every uncertain parameter by a

probability distribution if the uncertainty in this distribution is taken into account.

Optimization theory with reliability constraint

The optimization with a constraint as probability of failure of slope system can be defined

as:

Find x
Minizing f(x)
such that P [gi(x, θ) ≤ 0] ≤ Pi i = 1, 2, . . . , p
in which:
x is the vector of design parameters
θ is the vector of uncertain parameters
f(x) is the objective function
gi is the set of inequality constraints
Pi is the allowed probability of failure of constraint gi

In this optimization task, the constraint can also be expressed by a target reliability βtarget

or Ptarget so that the constraint becomes:

βi(x) ≥ itarget i = 1, 2, . . . , p (5.2)
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in which the reliability index can be determined as described below for every limit state func-

tion gi(x, θ)

1. Perform a single-objective optimization with respect to each objective function of con-

cern, f(d), using the quantile-based FORM. This optimization will provide an op-

timal design with respect to safety requirements. By repeating this single-objective

optimization for each design with different values of parameter, a number of designs

[f1(d), f2(d), f3(d)] can be identified in the design pool.

Classify design parameter and
noise factors, and identify all

possible designs in design space

Calculate probability of
failure for each design using
    Quantile-based FORM

Multi-objective Opti-
mization for robustness
and cost e�ectiveness

Update model

is best
design?

Design Decision

No

Yes

Figure 5.1: Reliability-based design for slope

2. Determine the corresponding maximum value of each objective function among all de-

signs

3. Normalize the objective functions into values ranging from 0 to 1 using transformation.

4. Compute the distance from the normalized point to the normalized objective functions

for each design in the design pool. The design that meets the safety requirements and

cost effectiveness is an acceptable design.

The algorithm is represented in Figure 5.1 and further implemented in slope design problem.
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5.2.2 Problem description, design parameters, design space

The design for the massive landslide of Nipigon river is a challenging task. The possibility

to design a slope with a robust height will be determined using RBD approach. This approach is

based on the optimization of cost and reliability analysis. The focus is on finding the advantages

of robust design with the quantile-based approach. The total cost is the function of investment

costs and risk, can be represented as:

C = Io + I ′(h− h0) +
Pf

r′ − g
,

I = I0 + I ′(h− h0),

(5.3)

where Io is fixed cost; I ′ is cost per meter heightening; h is the height; h0 is the initial height;

Pf is the probability of failure; D is the damage given failure; r′ is the annual growth; This

expression for C can be used to find an optimum in the cost. The cost is mainly the soil

excavated or filled.

The proposed approach is applied to evaluate the system failure probability Pf,sys of the

design scenario. The results are calculated by converting Pf into β. In this study, the target

reliability index are taken as 4 to 5 with failure probabilities of,Pf = 10−3 and 10−4. The slope

height H and angle θ is taken as design points. The soil is considered as homogeneous in

design and parameters are ranging from 23-28 for θ and 9− 11m for height.

The number of potential slip surfaces varies from 6000- 8000, due to variation of design

parameters for different height and angle. The soil is assumed as single layer with undrained

shear strength of 40 kPa and COV is 0.2. Based on the mean values the deterministic FOS

calculated as 1.104, the possible θ values vary from 26◦ to 28◦ and the possible height H is

ranging from 10m to 11m.

The approach provides 45 designs from which 12 designs are accepted as most safe and

economic. As in the Figure 5.2, the design with blue dots are providing Pf = 10−5 with high

construction cost but the green and red dots are optimal points for design and cost effectiveness.

The height of slope is showing more effect on reliability index than slope angle. The optimal

design is demonstrated with β = 4 or Pf = 10−3 as H = 10m. The reduction in statistical
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Figure 5.2: Probability failure of each design

uncertainty using the developed approach is important from an engineering point of view

since more economical geotechnical designs can be achieved by reducing uncertainties in soil

parameters

5.3 Summary
The chapter introduced a probabilistic design with remedial measures. A careful attention

must be given to the protection of earth slopes. Protection may be in the form of retaining wall

or gravity wall with designed hydraulic features to ensure dissipation of the destructive forces

of the anticipated flow. One should never assume that the soil slope adjacent to river currents

is adequate until slope is protected for the long term effects of water.

The probabilistic design based on combination of quantile-based FORM and multi-objective

optimization is more convenient and does not require more sophisticated models. The design

allows deterministic model and uncertainty analysis in a parallel fashion. The Nipigon river

slope is designed with analysis of large number of varying parameters. The high computa-

tional efficiency provided by the reliability analysis method satisfies engineering requirements

in practice and can significantly enhance the application of probabilistic design in soil slopes.
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Chapter 6

Conclusion and further recommendation

In this thesis the quantile-based distribution is generated for soil variables and used for reliability-

based design of Nipigon river landslide using field vane shear results. Conclusions and recom-

mendations based on the research done in this thesis are listed below.

6.1 Contributions

Quantile-based distribution in geotechnical engineering

This section summarizes the conclusions of chapter 3.

• The proposed framework of uncertainty quantification offers an unbiased mathematical

approach for quantifying the variation in shear strength parameters of soil from a lim-

ited number of site-specific data. It provides a logical route to determine characteristic

values when extensive testing cannot be performed, which is a difficulty for majority of

geotechnical projects. Since these moments can be estimated correctly for small-sample

observations and a perfect distribution can be generated. The proposed approach effec-

tively tackles the difficulty in obtaining meaningful information from a variety of soil

samples collected from in-situ or laboratory tests.

• In the study of probabilistic soil modeling, different samples are well presented with

the proposed approach. Its unique distribution appears appropriate for various sam-

ple sizes and variance. Examining the probability weighted moments with normalized
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bias, we can see that PWMs are most unbiased and error is nearly about 5% which is

negotiable. One would anticipate that the accuracy of maximum entropy distribution

would increase with the PWMs as constraints. It is confirmed in most examples, which

presumably represents the feasible region for the maximum entropy based quantile dis-

tribution constrained by the probability weighted moments.

• Probabilistic assessments are made to study the relative influence of variability on soil

parameters. Soil properties are evaluated using the proposed probabilistic approach with

vane shear data results. ICDF is generated to characterize soil variability of soil param-

eters. Lastly, the potential of the framework of uncertainty quantification, a case study

on the Nipigon river landslide shows the effect of soil variability at different scales for

the random input parameters.

Quantile-based FORM reliability analysis for slope stability

The quantification of the effects of soil variability is probably one of the most important

issues in geotechnical design. By using proposed probabilistic method in geotechnical problem,

the recommendation for the most reliable way to calculate the probability of failure is an easy

task.

• From the results presented in chapter 4, it can be concluded that the methodology pro-

vides a rational and robust way of assessing the reliability of slopes from small sample

data. Sensitivity analyses quantify the contribution of each uncertain variable and help

the engineer simulate effects of random variables, which allows simplifying the calcula-

tion. The performance function is available in an implicit form, and it is replaced with

response surface approach.

• Quantile-FORM uses gradients to estimate the variance of the factor of safety at a se-

lected expansion point, and closed form solution of the partial derivatives is used to

calculate the performance indicator of the slope. The method performed well in com-

parison to FORM and Monte Carlo simulations when estimating the reliability of slope

failures.
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• The first example is the homogeneous slope and the second is the Nipigon river slope

with multiple layers. The finding of this research warrant the following conclusions: (a)

the sample size does not affect the model and the analysis can be performed efficiently

with small samples where MCM approach need minimum 200 samples for accurate

results. (b) For the homogeneous slope, a good agreement is observed in the calculated

reliability index (β) for FORM and quantile-FORM but little bit variation with MCM.

(c) For the non-homogeneous slope, the calculated reliability index (β) based on the

two used methods is in good agreement for non-correlated analysis, but it shows some

difference in the correlated analysis.

Reliability-based design for slope stability

Probabilistic-design based on combination of quantile-based FORM and multi-objective

optimization is more convenient and does not require more sophisticated models. The design

allows deterministic model and uncertainty analysis in a parallel fashion. The Nipigon river

slope is designed with analysis of large number of varying parameters. The high computa-

tional efficiency provided by the reliability analysis method satisfies engineering requirements

in practice and can significantly enhance the application of probabilistic design in soil slopes.

The following conclusions are drawn from the results of the study on the efficient geotech-

nical design:

• The developed design is demonstrated to be effective and intuitive. Higher variation of

the performance function signals lower design effeciency, which implies a higher degree

of uncertainty.

• The evaluation of design and system performance requirement, share common compu-

tational steps, as both can be analyzed using quantile-based method. Thus, the com-

putational efficiency is greatly improved over other existing reliability-based design ap-

proaches.

• the design using proposed approach has been shown effective, which allows for consid-

eration of some reduction in the variation of random variables within the framework of

75



CHAPTER 6. CONCLUSION AND FURTHER RECOMMENDATION

the reliability-based design, can yield more cost-efficient designs while improving the

design robustness. It must be mentioned that further research is required for a general-

ized conclusion.

6.2 Further research
Many issues could be recommended, based on the outcomes of this research, and consid-

ering the stage of development of slope stability analysis research. The main recommendations

are presented in this section.

As an extension, the slope stability analysis should be extended with the probabilistic ap-

proach proposed in this research to increase the feasibility and efficiency. This approach can

be used for any type of slope may be man-made or natural. Additional studies should be con-

ducted to gain more knowledge and experience in the field of stochastic quantification of soil

properties. Moreover, the quality of the probability weighted moments within the framework

of uncertainty quantification and reliability based design is an important task and it can be

extended by fractional probability weighted moments in modeling of soil data.

Nipigon river banks are most critical for a prone landslide and require more research. In

this research only shear strength parameters are considered due to time limitation. There are

some other factors affecting the area such as snow, permeability, temperature and time effect.

In future studies, the uncertainties of these factors can be considered in slope probabilistic

analysis based on quantile function.

An interesting part in the context of economic design is the optimization of a geotechnical

structure including uncertainties. Reliability-based design optimization should include differ-

ent failure modes of complex structures incorporating the variability of loads and resistance

forces properly.

This probabilistic approach can be used to carried out the whole landslide risk manage-

ment, while vulnerability can be conveniently expressed as a conditional probability. The re-

search require all input parameters as random variable to achieve a better result.

The quantile-based approach may be applied to calibration of load and resistance factors

in the Load and Resistance Factor Design (LRFD) method. In this problem, the objective
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would be to reduce the effect of the variability of geotechnical parameters on the calibrated

resistance factors. However, more efforts on calibrating the model uncertainty in such cases

and incorporating it into reliability-based design of soil slopes are still need of hour.
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Appendix A

A.1 Probabilityweightedmoments: abasicdefinitionandsta-

tistical background
The comparison of probability weighted moments with other methods is presented in

Table (A.1).

Table A.1: Moment Expression

Distributions Conventional Moment Probability Weighted Moments
(Ml,o,o(integerl > 0)) (Ml,0,n(realj, k>0))

Normal E[(Y − E(Y ))n] bk = 1
m

∑(
i− 1
k

)
xi/

(
m− 1
k

)
,

(k = 0, 1, . . . .,m)

Weibull
∑∞

n=0
tnλn

n! Γ(1 + n/k) bk = m
1+k + aΓ(1+1/b)

(1+k)1+1/b

Gumbel dx[eθmΛ(1− aθ)]/dθI bk = m
1+j +

a ln (1+1/j)+ε

(1+k)1+1/b
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Table A.3: Approximate guidelines for coefficients of variation of soil parameter from Phoon
& Kulhawy (1999b)

Design Property Test Soil Type Point COV[%] spatial avg. COV[%]
su(UC) Direct(lab) Clay 20-55 10-40
su(UU) Direct(lab) Clay 10-35 7-25
su(field) VST Clay 15-50 15-50
su(field) VST Clay 15-50 15-50

ψ Direct (Lab) Clay, Sand 7-20 6-20
ψ(CV ) PI Clay 15-20 15-20
KO Direct(SBPMT) Clay 20-45 15-45
KO Direct(SBPMT) Sand 20-45 35-50
KO KD clay 35-45 35-50
KO N clay 40-75 -
ED N Silt 40-60 35-55
ED Direct(DMT) Sand 15-70 10-70

Note: su = undrained shear strength
UU = unconsolidated -undrained triaxial compression test
CIUC = consolidated isotropic undrained triaxial compression test
su(field) = corrected shear strength from vane shear test
Ko = in-situ horizontal stress coefficient
N = blow counts in a standard penetration test
KD = dilatometer horizontal stress index
PI = plasticity index
ED = dilatometer modulus
VST = Vane shear test
qT = correlated cone trip resistance
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Table A.4: Sample observations of uniaxial compressive strength(MPa) example 1(data from
Deng et al. (2004))

No. Data No. Data No. Data
1 29 18 28 35 29.6
2 30.4 19 29.8 36 27.3
3 31.7 20 28 37 28.2
4 26 21 30.1 38 29.5
5 28.2 22 27.1 39 31.3
6 27.9 23 28.3 40 30.6
7 26.5 24 32.4 41 29.4
8 27.4 25 29.6 42 31
9 29.9 26 30.9 43 27.6
10 28.8 27 30.6 44 28.2
11 29.1 28 29.2 45 25.7
12 30.2 29 30.7 46 28.5
13 25.2 30 28.3 47 28.7
14 28.4 31 31.5 48 31.3
15 26.8 32 26.4 49 29.4
16 29.3 33 31.1 50 28.9
17 27.3 34 27.8
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Table A.5: Data pairs of c′ and ′φ′ used in case study chapter 3 (data from Di Matteo et al.
(2013))

No. Case I (10 data) Case II (20 data) Case III (30 data)
c′(kPa) φ′ c′(kPa) φ′ c′(kPa) φ′

1 23.56 25.99 15.02 28.53 16.3 27.2
2 22.82 26.41 24.51 25.6 17.5 26.59
3 18.9 27.3 27.03 25.4 15.73 28.09
4 21.75 26.81 19.44 28.2 23.56 26.41
5 12.05 29.6 16.67 26.79 21.17 26.41
6 25.05 25.08 10.53 28.9 24.97 25.39
7 22.29 25.48 17.75 27.51 15.27 28.61
8 16.51 27.61 21.63 25.79 22.45 26.81
9 21.38 26.51 20.97 26.6 24.31 25.39
10 10.69 28.79 15.07 28.1 14.28 29.11
11 14.2 29 21.63 25.9
12 20.8 26.89 14.94 28.29
13 22.82 26.41 15.52 28
14 25.96 25.8 23.98 26.09
15 22.33 25.6 13.29 28.5
16 19.27 26.78 27.03 25.2
17 11.23 29.61 19.52 26.4
18 14.61 28.8 23.56 25.99
19 22.29 25.48 20.18 27.5
20 23.4 26.2 19.11 26.5
21 24.43 25.29
22 19.03 26.91
23 20.76 26.69
24 17.91 27.3
25 10.12 29.3
26 25.05 25.08
27 24.64 25.6
28 19.56 26.4
29 17 28.21
30 20.72 27.1
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Appendix B

B.1 Measurement data of vane shear test
For in-situ applications, the shear vane is the most reliable and readily-available device

for measuring the undrained shear strength of cohesive soils (Knappett, 2012). It has been

used extensively for the analysis of shear strength in soils. Vane shear equipment consists of

two twin vanes perpendicular to each connected to a solid pushing rod. The test comprises

inserting the vane to the required depth and rotating about the vertical axis which allows the

soil to shear. Hand-held shear vanes are compact, portable devices that can be easily carried

into the field and used in-situ as shown in Figure B.1.

Figure B.1: A shear vane tester equipped with a 33mm diameter vane.

The test is conducted at the base of borehole. Since the test is carried out relatively fast,

undrained conditions can be assumed and hence the shear stress at failure is the same as the

undrained shear strength, cu. The maximum torque T required to rotate the vane shear blades
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and cause failure could be expressed as (Ameratunga et al., 2016):

T = Mtop +Mbase +Mside, (B.1)

where Mtop is resisting moment at the top of the blades/cylinder; Mbase is resisting moment at

the base of the blades/cylinder and Mside is resisting moment at the sides of the cylinder.

The empirical equation for calculating the undrained shear strength cu can be calculated

by taking moments about the shaft axis:

T =

[
D2H

2
+

D3

6

]
× πcu, (B.2)

when H/D ratio is 2 and then the Equation B.2 can become as

cu = T/((7/6)πD3), (B.3)

where height (H) and depth (D) of the vane is different for different types of soil. Commercial

shear vane testers are typically come calibrated for their standard size vanes so that cu can be

recorded directly in the field. The 33mm and 19mm diameter vanes are used in this research.

The shear vane is only recommended for use in cohesive soils, but that does not mean that

the sample must be composed entirely of clay and silt, though, as fine sediments with relatively

low clay contents can classified as cohesive. The presence of other types of material in the

sediment, such as fine plant roots, is not as problematic as their tensile strength contributes to

the shear strength of the sample.

The site investigations always include some errors. Bjerrum (1972) suggested some correc-

tion factors (λ) for shear strength cuFV
derived from field vane shear test from the relationship

of plasticity index and mobilized shear strength as:

λ = 1.18− 0.0107(PI) + 0.0000513(PI)2 ≤ 1. (B.4)

The correction factor is taken as 0.985 to reduce the errors in test results.
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C.1 Response surface method and sensitivity analysis

Table C.1: Different random variables design points adopted for developing the response
surface

Design Point Scenario c φ γ

1 µ µ µ
2 µ+ 1.65σ µ µ
3 µ− 1.65σ µ µ
4 µ µ+ 1.65σ µ
5 µ µ− 1.65σ µ
6 µ µ µ+ 1.65σ
7 µ µ µ− σ

Note: µ = mean of a noise factor
µ+ σ = mean plus one standard deviation of a noise factor
µ− σ = mean minus one standard deviation of a noise factor

A method for quantifying sensitivity is the sensitivity ratio (ηSR). The ratio is defined as

the percentage change in input for a specific input variable, as shown in equation (Peschl &

Schweiger, 2003):

η SR =
[(FSchange − FS)/FS]

[(xchange − x)/x]
(C.1)

where FS is the reference value of the output variable using reference values of the input

variables and FSchange is the value of the output variable after changing the value of one in-

put variable. The denominator x and xchange are respective input variables. For the sensitivity

ratio, an input variable xchange is varied individually across the entire range requiring 2n + 1
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calculations, n being the number of varied parameters considered. An extension to the sen-

sitivity ratio is the more robust method of evaluating important sources of uncertainty is the

sensitivity score ηSS.This is the sensitivity ratio ηSR weighted by a normalized measure of the

variability in an input variable, as given by equation:

ηSS = ηSR.
(max xR −min xR)

x
(C.2)

By normalizing the measure of variability, this method effectively weights the ratios in a

manner that is independent of the units of the input variable. Performing a sensitivity analysis

as described above allows to quantify the sensitivity score of each variable, ηSS, on respective

results A,B, . . . , Z, (e.g. displacements, forces, P factor of safety, etc.). The total sensitivity

score of each variable, ηSS, is the result of the summation of all sensitivity scores for each

respective result at each construction step. It is mentioned that the results of the sensitivity

analysis appear to be strongly dependent on the respective results used. Therefore, results of this

analysis have to be chosen on sound engineering judgment. Finally, the total relative sensitivity

α(xi) for each input variable is then given by Peschl as:

α(xi) =

∑
ηSS, i∑N

i=1 ηSS, i
(C.3)
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