
Semantic similarity between words and sentences using lexical
database and word embeddings

by

Atish Shivaji Pawar

Lakehead University

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in the Department of Computer Science

Lakehead University

All rights reserved. This dissertation may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Semantic similarity between words and sentences using lexical
database and word embeddings

by

Atish Shivaji Pawar

Lakehead University

Supervisory Committee

Dr. Vijay Mago, Supervisor

(Department of Computer Science)

Dr. Salimur Choudhury, Departmental Member

(Department of Computer Science)

Dr. Rachid Benlamri, Outside Member

(Department of Software Engineering)

iii

ABSTRACT

Calculating the semantic similarity between sentences is a long-standing problem

in the area of natural language processing. The semantic analysis field has a crucial

role to play in the research related to the text analytics. The meaning of the word

in general English language differs as the context changes. Hence, the semantic

similarity varies significantly as the domain of operation differs. For this reason, it is

crucial to consider the appropriate definition of the words when they are compared

semantically.

We present an unsupervised method that can be applied across multiple domains

by incorporating corpora based statistics into a standardized semantic similarity al-

gorithm. To calculate the semantic similarity between words and sentences, the pro-

posed method follows an edge-based approach using a lexical database. When tested

on both benchmark standards and mean human similarity dataset, the methodology

achieves a high correlation value for both word (Pearsons Correlation Coefficient =

0.8753) and sentence similarity (PCC = 0.8793) while comparing Rubenstein and

Goodenough standard; and the SICK dataset (PCC = 0.8324) outperforming other

unsupervised models.

We use the semantic similarity algorithm and extend it to compare the Learning

Objectives from course outlines. The course description provided by instructors is

an essential piece of information as it defines what is expected from the instructor

and what he/she is going to deliver during a particular course. One of the key com-

ponents of a course description is the Learning Objectives section. The contents of

this section are used by program managers who are tasked to compare and match

two different courses during the development of Transfer Agreements between var-

ious institutions. This research introduces the development of semantic similarity

algorithms to calculate the similarity between two learning objectives of the same do-

main. We present a methodology which deals with the semantic similarity by using a

previously established algorithm and integrating it with the domain corpus to utilize

domain statistics. The disambiguated domain serves as a supervised learning data for

the algorithm. We also introduce Bloom Index to calculate the similarity between

action verbs in the Learning Objectives referring to the Bloom’s taxonomy.

We also study and present the approach to calculate the semantic similarity be-

tween words under the word2vec model for a specific domain. We present a method-

ology to compile a corpus for a specific domain using Wikipedia. We then present

iv

a case to show the variance in the semantic similarity between words using different

corpora. The core contributions of this thesis are a semantic similarity algorithm for

words and sentences, and the corpus compilation of a specific domain to train the

word2vec model. We also provide the practical uses of algorithms and the implemen-

tation.

v

Contents

Supervisory Committee ii

Abstract iii

Table of Contents v

List of Tables viii

List of Figures ix

Acknowledgements xi

Dedication xii

1 Challenging the boundaries of unsupervised learning for semantic

similarity 3

1.1 Introduction . 4

1.2 Related Work . 5

1.3 Methodology . 7

1.3.1 Pass 1: Maximize the similarity 7

1.3.2 Pass 2: Bound the similarity 19

1.4 Implementation using Semantic nets 24

1.4.1 The Database - WordNet . 24

1.4.2 Illustrative example . 25

1.5 Experimental Results . 30

1.5.1 Word similarity . 34

1.5.2 Sentence similarity: R&G . 34

1.5.3 Sentence similarity: SICK . 34

1.6 Computational Comparison . 36

vi

1.6.1 Comparison of hardware requirements(space complexity) for

the proposed method vs. recent methods 36

1.6.2 Comparison of the complexity of the proposed method vs. re-

cent methods . 36

1.7 Discussion & Future Work . 37

1.8 Conclusions . 37

2 Similarity between Learning Objectives from Course Outlines us-

ing Semantic Analysis, Blooms taxonomy and Corpus statistics 39

2.1 Introduction . 40

2.2 Methodology . 41

2.2.1 Semantic similarity algorithm 42

2.2.2 Bloom’s taxonomy . 43

2.2.3 Corpus statistics . 44

2.2.4 Information content of the word 45

2.3 Implementation . 46

2.3.1 The Databse - WordNet . 46

2.3.2 Corpus statistics . 47

2.3.3 Bloom’s Taxonomy . 47

2.3.4 Illustrative Example . 48

2.4 Experimental Results . 50

2.5 Conclusion & Future Work . 52

3 Word embeddings for semantic similarity using Wikipedia as a

corpus 53

3.1 Introduction . 53

3.2 Methodology . 55

3.2.1 Building a domain specific corpus 56

3.2.2 Word Similarity . 57

3.3 Experimental Results . 57

3.3.1 Some of the notable differences in similarities for word pairs

using general purpose corpus vs. the computing corpus 60

3.4 Computational Requirements . 61

3.5 Conclusion & Future Work . 61

A 62

vii

Bibliography 82

viii

List of Tables

Table 1.1 Parts of speeches . 10

Table 1.2 Synsets and corresponding definitions from WordNet for words

bank and river . 11

Table 1.3 Synsets and corresponding shortest path distances from WordNet 11

Table 1.4 Synset and corresponding hyponyms from WordNet 13

Table 1.5 L1 compared with L2 . 27

Table 1.6 L2 compared with L1 . 28

Table 1.7 Linear regression parameter values for proposed methodology . . 31

Table 1.8 Results on the SICK semantic relatedness subtask. For our exper-

iments, we report correlations and MSEs for 3 different models.

Results are grouped as (1)Previously reported supervised models

(2)Proposed unsupervised models 35

Table 2.1 Disambiguated data for LO1 . 48

Table 2.2 Disambiguated data for LO2 . 49

Table 2.3 Disambiguated data for LO3 . 50

Table 2.4 Similarity between LOs . 50

Table 3.1 Comparison of semantic similairy between words 58

Table A.1 Rubenstein and Goodenough Vs Lee2014 Vs Proposed Algorithm

Similarity . 62

Table A.2 Proposed Algorithm Similarity Vs Islam2008 Vs Li2006 64

Table A.3 Sentence Similarity from proposed methodology compared with

human mean similarity from Li2006 65

Table A.4 Sentence Similarity from proposed methodology compared with

SICK similarity . 72

ix

List of Figures

Figure 1 Structure of thesis . 2

Figure 1.1 Pass 1 of the proposed sentence similarity methodology 8

Figure 1.2 Hierarchical structure from WordNet 12

Figure 1.3 Method to calculate the frequency of a synset in a corpus Cor-

pus : An external corpus Disambiguate: Function to identify ap-

propriate synset for every word in the corpus Corpus Statistics :

An external file with corpus features Maximum frequnecy sense

calculation: A function to determine the sysnet with maximum

frequency for every word Final corpus statistics : An external file

containing records from previous function 14

Figure 1.4 Decision making for negation: 1 signifies the negation and 0

signifies no negation . 22

Figure 1.5 Normal distribution of θ over correlation 23

Figure 1.6 Perfomance of word similarity method vs Standard by Ruben-

stein and Goodenough . 31

Figure 1.7 Linear Regression model word similarity method against Stan-

dard by Rubenstein and Goodenough 32

Figure 1.8 Pearson’s coefficients various algorithms against Standard by

Rubenstein and Goodenough 32

Figure 1.9 Linear regression model- Mean Human Similarity Vs Algorithm

Sentence Similarity . 33

Figure 2.1 Hierarchical Structure of Bloom’s Taxonomy 41

Figure 2.2 The proposed methodology . 42

Figure 3.1 Subcategories for computing domain 55

Figure 3.2 Level 1 Subcategories for computing domain 56

Figure 3.3 Structure of corpus . 57

x

Figure 3.4 Word distribution in a trained word2vec model [26] 59

Figure 3.5 Top 10 words similar to java: English GoogleNews Negative300 60

xi

ACKNOWLEDGEMENTS

Foremost, I offer my sincere gratitude to my advisor Dr. Vijay Mago who gave

me this excellent opportunity and supported me throughout my thesis with his

patience and knowledge whilst allowing me the room to work in my own way.

My sincere thanks to Dr. Salimur Choudhary for the all the encouragement and

suggestions during the study. I also thank Dr. Rachid Benlamri for reviewing

the thesis and for the valuable suggestions. I would also like to thank Andrew

Heppner for the crucial edits and my fellow labmates for all the stimulating

conversations, suggestions and all the fun. I would like to acknowledge the

financial support from the Ontario Council on Articulation and Transfer. Last

but not the least, I would like to thank my family and every other person who

has helped me directly or indirectly throughout the journey.

Because we don’t know when we will die, we get to think of life as an inexhaustible

well. Yet everything happens only a certain number of times, and a very small

number really. How many more times will you remember a certain afternoon of your

childhood, an afternoon that is so deeply a part of your being that you can’t even

conceive of your life without it? Perhaps four, five times more, perhaps not even

that. How many more times will you watch the full moon rise? Perhaps 20. And yet

it all seems limitless.

Paul Bowles

xii

DEDICATION

To my Father, Mother, and Brother, for their unconditional support

1

Morning Glory

Walking across a moor, looking at the bright sky

With a glimpse of birds flying by

I remembered the old times with a sigh

It was the morning glory of goodbye

Everything was at its place

With a glazing grace

Sun was rising with snails pace

Morning rays made my memories erase

The tap of my cat brought me back

Well, it gave me a little heart attack

I told her to go sit on a tack

But she is one tough nut to crack

The cold wind whispered in my ear

With such breeze, there’s no fear

The gaiety was just sheer

There was no place for a tear

Some days feel like nothing is meant to be

But morning glory is the real glee

And there was me

Dear me

- Atish

2

Structure of thesis

Figure 1: Structure of thesis

The thesis is essentially divided into three segments and each segment constitutes an

article. Each article is further divided into various sections.

3

Chapter 1

Challenging the boundaries of

unsupervised learning for semantic

similarity

1.1 Introduction . 4

1.2 Related Work . 5

1.3 Methodology . 7

1.3.1 Pass 1: Maximize the similarity 7

1.3.2 Pass 2: Bound the similarity 19

1.4 Implementation using Semantic nets 24

1.4.1 The Database - WordNet . 24

1.4.2 Illustrative example . 25

1.5 Experimental Results . 30

1.5.1 Word similarity . 34

1.5.2 Sentence similarity: R&G . 34

1.5.3 Sentence similarity: SICK . 34

1.6 Computational Comparison . 36

1.6.1 Comparison of hardware requirements(space complexity) for

the proposed method vs. recent methods 36

1.6.2 Comparison of the complexity of the proposed method vs. re-

cent methods . 36

1.7 Discussion & Future Work . 37

4

1.8 Conclusions . 37

1.1 Introduction

In general, semantic similarity is a measure of conceptual distance between two ob-

jects, based on the correspondence of their meanings [37]. Semantic similarity between

sentences in natural language processing(NLP) is considered a complex task as the

meaning of words changes significantly when the context is changed. As Jiang quotes,

“In many cases, humans have little difficulty in determining the intended meaning of

an ambiguous word, while it is extremely difficult to replicate this process compu-

tationally” [28]. Determination of semantic similarity in NLP has a wide range of

applications. In internet-related applications, the uses of semantic similarity include

estimating relatedness between search engine queries [17] and generating keywords

for advertising on the web [3]. In biomedical applications, semantic similarity has

become a valuable tool for analyzing the results in gene clustering, gene expression

and disease gene prioritization [56] [38] [55]. In addition to this, semantic similar-

ity is also beneficial in information retrieval on web [63], text summarization [12]

and text categorization [31]. Hence, such applications need to have a robust algo-

rithm to estimate the semantic similarity which can be used across variety of domains.

Methodologies used to calculate semantic similarity are highly varied across mul-

tiple domains and the databases and algorithms used in one specific domain do not

translate well onto other domains. Since the concept of calculating semantic similari-

ties has a common underlying conceptual foundation regardless of domain, a method-

ology with a robust algorithm that can accurately estimate semantic similarity while

incorporating a variety of domain specific predefined standard language measures is

desirable. To improve the existing algorithms that determine the closeness of impli-

cations of the objects under comparison, it is clear that a domain specific predefined

standard measure which readily describes the relatedness of the meanings in context

is necessary. If we use natural language to compare the natural language sentences,

then it would be a recursive problem with no stopping condition. Hence, it is essential

to have some predefined measures.

This research aims to improve on existing algorithms and increase robustness through

the integration of interchangeable domain specific corpora and through the use of

5

lexical databases. Lexical databases have fixed vocabulary structures and edge-based

word structure that supports the determination of semantic similarity [13]. Many

approaches utilizing lexical databases have been developed and proven to be very

useful in the area of semantic analysis [6][58][50][36][38][28].

The main contribution of this research is a robust unsupervised semantic similarity

algorithm which requires low computational resources and outperforms existing algo-

rithms relative to the Rubenstein and Goodenough(R&G) benchmark standard [59]

and achieves a good correlation with respect to the SICK dataset [45].

The following section of this chapter contains a review of related works. Section

1.3 provides a systematic review of our methodology. Section 1.4 explains the idea

of traversal in a lexical database along with detailed visual diagrams and the compu-

tation with an illustrative example. Section 1.5 contains the result of our algorithm

for the 65 noun word pairs from R&G [59] and sentence similarity for the sentence

pairs in pilot data set [53] and and sentence similarity for the sentence pairs in SICK

dataset [45]. Section 1.6 discusses the results and performance of the algorithm in

relation to previous methodologies. Finally, Section 1.7 briefly outlines the outcomes

of this research with conclusions.

1.2 Related Work

Recent work in the area of natural language processing has contributed valuable

solutions to calculate the semantic similarity between words and sentences. This

section reviews some related work to investigate the strengths and limitations of

previous methods and to identify the particular difficulties in computing semantic

similarity. Related works can roughly be classified into following major categories:

• Word co-occurrence methods

• Similarity based on a lexical database

• Methods based on web search engine results

• Methods based on word vectors using recursive neural networks and deep neural

networks

Word co-occurrence methods are commonly used in Information Retrieval (IR) sys-

tems [47]. This method has a word list of meaningful words and every query is

6

considered as a document. A vector is formed for the query and for documents. The

relevant documents are retrieved based on the similarity between query vector and

document vector [9]. This method has obvious drawbacks such as:

• It ignores the word order of the sentence.

• It does not take into account the meaning of the word in the context of the

sentence.

But it has following advantages:

• It matches documents regardless the size of documents

• It successfully extracts keywords from documents [46]

Using the lexical database methodology, similarity is computed using a predefined

word hierarchy which has words, meanings, and relationships with other words and

are stored in a tree-like structure [36]. While comparing two words, it takes into

account the path distance between the words as well as the depth of the subsumer in

the hierarchy. The subsumer refers to the relative root node concerning the two words

being compared. It also uses a word corpus to calculate the ‘information content’of

the word which influences the final similarity. This methodology has the following

limitations:

• The appropriate meaning of the word is not considered while calculating the

similarity, rather it takes the best matching pair even if the meaning of the word

is totally different in two distinct sentences.

• The information content of a word from a corpus, differs from corpus to corpus.

Hence, final result differs for every corpus.

The third methodology computes relatedness based on web search engine results

utilizing the number of search results [10]. This technique does not necessarily give the

similarity between words as words with opposite meanings frequently occur together

on the web pages which influences the final similarity index. After implementing the

method to calculate the Google Similarity Distance 1, we found that the results are

not encouraging. The search engines used to calculate the Google Similarity Distance

1Interested readers can contact me (apawar1@lakeheadu.ca) for code and results

7

are Google and Bing.

Recently, the models based on neural networks have produced significant improve-

ments in the results related to semantic similarity [23][51][61][34][9]. One revolution-

ary model proposed by Tai, Socher, and Manning (2015) [61] uses Glove vectors and

subsequently Tree-LSTM. Tree-LSTMs generalize the order-sensitive chain-structure

of standard LSTMs to tree-structured network topologies. A siamese adaptation of

LSTM proposed by Mueller(2016) [51] outperforms the state of the art models. The

authors explain the dependency of their model on a simple Manhattan matric. Their

method forms a highly structured space whose geometry reflects complex semantic

relationships. Performance evaluations for all aforementioned neural network models

are trained on SICK dataset and tested on the same dataset. Despite improvements,

these models perform poorly when tested on sentences which do not follow the gram-

mar and structure of SICK sentences.

Overall, above-mentioned methods compute the semantic similarity without con-

sidering the context of the word according to the sentence. The algorithm proposed in

this thesis addresses aforementioned issues by disambiguating the words in sentences

and forming semantic vectors dynamically for comparing sentences and words.

1.3 Methodology

The method to calculate the semantic similarity between two sentences is divided into

two modules:

Pass 1: Maximize the similarity

Pass 2: Bound the similarity

1.3.1 Pass 1: Maximize the similarity

The proposed methodology considers the text as a sequence of words and deals with all

the words in sentences separately according to their semantic and syntactic structure.

The information content of the word is related to the frequency of the meaning of

the word in a lexical database or a corpus. Figure 1.1 depicts the procedure to

calculate the similarity between two sentences. Unlike other existing methods that

8

Sentence 1 Sentence 2

tokenize

Disambiguate

Lexical
Databsae Corpus

Word Similarity

Semantic Vector 1 Semantic Vector 2

Sentence Similarity
(Pass 1)

Word Order Vector 1 Word Order Vector 2

Word order similarity

Initial
Sentence
Similarity

Figure 1.1: Pass 1 of the proposed sentence similarity methodology

9

use the fixed structure of vocabulary, the proposed method uses a lexical database to

compare the appropriate meaning of the word. A semantic vector is formed for each

sentence which contains the weight assigned to each word for every other word from

the second sentence in comparison. This step also takes into account the information

content of the word, for instance, word frequency from a standard corpus. Semantic

similarity is calculated based on two semantic vectors. An order vector is formed for

each sentence which considers the syntactic similarity between the sentences. Finally,

semantic similarity is calculated based on semantic vectors and order vectors. Pass

1 is divided into three parts:

• Word similarity

• Sentence similarity

• Word order similarity

The following section further describes each of the steps in more details.

1.3.1.1 Word Similarity

To compute the word similarity, the proposed method uses the sizeable lexical database

for the English language, WordNet [49], from the Princeton University.

Identifying words for comparison Before calculating the semantic similarity

between words, it is essential to determine the words for comparison. We use word

tokenizer and ‘parts of speech tagging technique’ as implemented in natural language

processing toolkit, NLTK [8]. This step filters the input sentence and tags the words

into their ‘part of speech’(POS) and labels them accordingly. WordNet has path

relationships between noun-noun and verb-verb only. Such relationships are absent

in WordNet for the other parts of speeches. Hence, it is not possible to get a numerical

value that represents the link between other parts of speech except nouns and verbs.

We deal with other parts of speeches in pass 2 of the algorithm.

Example: ‘A voyage is a long journey on a ship or in a spacecraft’

Table 1.1 represents the words and the corresponding parts of speeches. The parts of

speeches are as per the Penn Treebank [44].

10

Table 1.1: Parts of speeches

Word Part of Speech

A DT - Determiner

voyage NN - Noun

is VBZ - Verb

a DT - Determiner

long JJ - Adjective

journey NN - Noun

on IN - Preposition

a DT - Determiner

ship NN - Noun

or CC - Coordinating
conjunction

in IN - Prepostion

a DT - Determiner

spacecraft NN - Noun

Associating word with a sense The primary structure of the WordNet is based

on synonymy. Every word has synsets according to the meaning of the word in the

context of a statement. The distance between synsets in comparison varies as we

change the meaning of the word.

Consider an example where we calculate the shortest path distance between words

‘river’ and ‘bank.’ WordNet has only one synset for the word ‘river’. We will calculate

the path distance between synset of ‘river’ and three synsets of word ‘bank’. Table 1.2

represents the synsets and corresponding definitions for the words ‘bank’ and ‘river’.

Shortest distances for the Synset pairs are represented in Table 1.3. When com-

paring two sentences, we have many such word pairs which have multiple synsets.

Therefore, not considering the proper synset in context of the sentence, could intro-

duce errors at the early stage of similarity calculation. Hence, sense of the word has a

significant effect on the overall similarity measure. Identifying the sense of the word

is an area of research called ‘word sense disambiguation’. We use ‘max similarity’

algorithm, Eq. (1.1), to perform word sense disambiguation [54] as implemented in

Pywsd, an NLTK based Python library [62]. In Eq.(1.1), a is a query word and i

11

Table 1.2: Synsets and corresponding definitions from WordNet for words bank and
river

Synset Definition

Synset(‘river.n.01’) a large natural stream of water
(larger than a creek)

Synset(‘bank.n.01’) sloping land (especially the
slope beside a body of water)

Synset(‘bank.n.09’) a building in which the busi-
ness of banking transacted

Synset(‘bank.n.06’) the funds held by a gambling
house or the dealer in some
gambling games

Table 1.3: Synsets and corresponding shortest path distances from WordNet

Synset Pair Shortest Path Distance

Synset(‘river.n.01’) - Synset(‘bank.n.01’) 8

Synset(‘river.n.01’) - Synset(‘bank.n.09’) 10

Synset(‘river.n.01’) - Synset(‘bank.n.06’) 11

represents all the words in context.

argmaxsynset(a) = (
n∑
i

maxsynset(i)(sim(i, a)) (1.1)

Shortest path distance between synsets Shortest path distance between synsets

is the number of connecting edges between them in the lexical database, WordNet.

The following example explains, in detail, the method used to calculate the shortest

path distance. Referring to Figure 1.2, consider two words, viz.:

w1 = motorcycle and w2 = car

We are referring to Synset(‘motorcycle.n.01’) for ‘motorcycle’ and (‘car.n.01’) for

‘car’.

The traversal path is : motorcycle → motor vehicle → car. Hence, the shortest

path distance between motorcycle and car is 2. Listing A.1 represents the code to

calculate the shortest path distance.

In WordNet, the gap between words increases as similarity decreases. Utilizing

12

Entity

Conveyence

Vehicle

Unit

Instrumentality

Container Wheeled Vehicle

bicycleself propelled vehicle

motor vehicle

carmotorcycle

Figure 1.2: Hierarchical structure from WordNet

this property, we use the previously established monotonically decreasing function

[36]:

f(l) = e−αl (1.2)

where l is the shortest path distance and α is a constant. The selection of exponential

function is to ensure that the value of f(l) lies between 0 to 1.

Hierarchical distribution of words In WordNet, the primary relationship be-

tween the synsets is the super-subordinate relation, also called hyperonymy, hyponymy

or ISA relation [49]. This relationship connects the general concept synsets to the

synsets that have specific characteristics. For example, Table 1.4 represents the word

‘vehicle’ and its hyponyms.

The hyponyms of ‘vehicle’ have more specific properties and represent the particular

set, whereas ‘vehicle’ has more general properties. Hence, words at the upper layer of

13

Table 1.4: Synset and corresponding hyponyms from WordNet

Synset Hyponyms

Synset(‘vehicle.n.01’)

Synset(‘bumper car.n.01’)
Synset(‘craft.n.02’)

Synset(‘military vehicle.n.01’)
Synset(‘rocket.n.01’)
Synset(‘skibob.n.01’)

Synset(‘sled.n.01’)
Synset(‘steamroller.n.02’)

Synset(‘wheeled vehicle.n.01’)

the hierarchy have more general features and less semantic information, as compared

to words at the lower layer of the hierarchy [36].

Hierarchical distance plays an important role when the path distances between word

pairs are same. For instance, referring to Figure 1.2, consider following word pairs:

car - motorcycle and bicycle - self propelled vehicle.

The shortest path distance between both the pairs is 2, but the pair car - motorcycle

has more semantic information and specific properties than bicycle - self propelled vehicle.

Hence, we need to scale up the similarity measure if the word pair subsume words at

the lower level of the hierarchy and scale down if they subsume words at the upper

level of the hierarchy. To include this behavior, we use a previously established func-

tion [36]:

g(h) =
eβh − e−βh

eβh + e−βh
(1.3)

Listing A.2 represents the code to calculate the hierarchical distance. For WordNet,

the optimal values of α and β are 0.2 and 0.45 respectively as reported previously [8].

Information content of the word The meaning of the word differs as we change

the domain of operation. We can use this behavior of natural language to make the

similarity measure domain-specific. It is used to influence the similarity measure if

the domain operation is predetermined. Listing A.3 represents the code snippet to

fetch the synset having maximum frequency for a word in WordNet.

To illustrate the Information Content of the word in action, consider the word:

bank. The most frequent meaning of the word bank in the context of Potamology (the

study of rivers) is sloping land (especially the slope beside a body of water). The most

14

Figure 1.3: Method to calculate the frequency of a synset in a corpus
Corpus : An external corpus
Disambiguate: Function to identify appropriate synset for every word in the corpus
Corpus Statistics : An external file with corpus features
Maximum frequnecy sense calculation: A function to determine the sysnet with max-
imum frequency for every word
Final corpus statistics : An external file containing records from previous function

15

frequent meaning of the word bank in the context of Economics would be a financial

institution that accepts deposits and channels the money into lending activities.

When applying the Word Disambiguation Approach described in subsection 1.3.1, the

final similarity of the word would be different for every corpus. The corpus, belonging

to particular domain, works as supervised learning data for the algorithm. We first

disambiguate the whole corpus to get the sense of the word and further calculate the

frequency of the particular sense. These statistics for the corpus work as the knowl-

edge base for the algorithm. Figure 1.3 represents the steps involved in the analysis

of corpus statistics.

1.3.1.2 Sentences’ similarity

As Li [36] states, the meaning of the sentence is reflected by the words in the sentence.

Hence, we can use the semantic information from subsection 1.3.1 to calculate the

final similarity measure. Previously established methods to estimate the semantic

similarity between sentences use the static approaches like using a precompiled list of

words and phrases. The problem with this technique is the precompiled list of words

and phrases which may not necessarily reflect the correct semantic information in the

current context while comparing sentences.

The dynamic approach includes the formation of a joint word vector which compiles

words from sentences and uses it as a baseline to form individual vectors. This method

introduces inaccuracies in similarity calculations, particularly for the long sentences

and the paragraphs containing multiple sentences.

Unlike these methods, our method forms the semantic value vectors for the sentences

and aims to keep the size of the semantic value vector to the minimum. Formation of

semantic vector begins after the subsection 1.3.1. This approach avoids the overhead

involved to form semantic vectors separately unlike in previously discussed methods.

Also, in this stage, we eliminate prepositions, conjunctions and interjections. Hence,

these connectives are automatically eliminated from the semantic vector. We deter-

mine the size of the vector, based on the number of tokens from subsection 1.3.1.

Every unit of the semantic vector is initialized to null to void the foundational effect.

Initializing the semantic vector to a unit positive value discards the negative/null

effects, and overall semantic similarity will be a reflection of the most similar words

in the sentences. Listing A.4 represents the code to form the semantic vectors. Let’s

16

see an example.

S1 = “A jewel is a precious stone used to decorate valuable things that you wear,

such as rings or necklaces.”

S2 = “A gem is a jewel or stone that is used in jewellery.”

List of tagged words for S1 :

[(‘jewel’, Synset(‘jewel.n.01’)), Synset(‘jewel.n.02’)],

[(‘stone’, Synset(‘stone.n.02’)), Synset(‘stone.n.13’)],

[(‘used’, Synset(‘use.v.03’)), Synset(‘use.v.06’)],

[(‘decorate’, Synset(‘decorate.v.01’)), Synset(‘dress.v.09’)],

[(‘valuable’, Synset(‘valuable.a.01’)), Synset(‘valuable.s.02’)],

[(‘things’, Synset(‘thing.n.04’)), Synset(‘thing.n.12’)],

[(‘wear’, Synset(‘wear.v.01’)), Synset(‘wear.v.09’)],

[(‘rings’, Synset(‘ring.n.08’)), Synset(‘band.n.12’)],

[(‘necklaces’, Synset(‘necklace.n.01’)), Synset(‘necklace.n.01’)]

Length of the list of tagged words for S1 is 9

List of tagged words for S2 :

[(‘gem’, Synset(‘jewel.n.01’)), Synset(‘jewel.n.01’)],

[(‘jewel’, Synset(‘jewel.n.01’)), Synset(‘jewel.n.02’)],

[(‘stone’, Synset(‘gem.n.02’)), Synset(‘stone.n.13’)],

[(‘used’, Synset(‘use.v.03’)), Synset(‘use.v.06’)]

[(‘jewellery’, Synset(‘jewelry.n.01’)), Synset(‘jewelry.n.01’)]

Length of the list of tagged words for S2 is 5

We eliminate words like a, is, to, that, you, such, as, or ; hence further reducing

the computing overhead. The resultant semantic vectors contain semantic informa-

tion concerning all the words from both the sentences. For example, the semantic

vector for S1 is:

V1 = [0.99742103, 0.90118787, 0.42189901, 0.0, 0.0, 0.40630945, 0.0, 0.59202,

17

0.81750916]

Vector V1 has semantic information from S1 as well as from S2 ; because every

word from S1 is compared with every word from S2 which implies that the resultant

similarity is relative. Similarly, vector V2 also has semantic information from S1 and

S2. To establish a similarity value using two vectors, we use the magnitude of the

normalized vectors.

S = ||V 1||.||V 2|| (1.4)

We make this method adaptable to longer sentences by introducing a variable(ζ)

which is calculated dynamically at runtime. With the utilization of ζ, this method

can also be used to compare paragraphs with multiple sentences.

Algorithm 1 Semantic similarity between sentences

Input: Two tokenized sentences S1 and S2
Output: Maximized semantic similarity between sentences

1: procedure Sentence similarity
2: S1 list of tagged tokens(L1)← disambiguate
3: S2 list of tagged tokens(L2)← disambiguate
4: vector length← max(length(S1),length(S2))
5: V1,V2← vector length(null)
6: V1,V2← vector length(word similarity(S1,S2))
7: ζ=0 , C1=0, C2=0
8: while L1 do
9: if word similarity value > benchmark similarity value then
10: C1← C1+1

11: while L2 do
12: if word similarity value > benchmark similarity value then
13: C2← C2+1

14: ζ ← sum(C1, C2)/γ
15: S ← ||V 1||.||V 2||
16: if sum(C1, C2) = 0 then
17: ζ ← vector length/2

18: δ ← S/ζ

Determination of ζ The words with maximum similarity have more impact on

the magnitude of the vector. Using this property, we establish ζ for the sentences

in comparison. According to R&G, the benchmark synonymy value of two words is

0.8025 [59]. Using this value as a determination standard, we calculate all the cells

18

from V1 and V2 with the value greater than 0.8025. ζ is given by:

ζ = sum(C1, C2)/γ (1.5)

where C1 is count of valid elements in V1 and C2 is count of valid elements in V2.

γ is set to 1.8, determined by grid search over the correlation with R&G. Now, using

Eq. 1.4 and Eq. 1.5, we establish similarity as:

δ = S/ζ (1.6)

Algorithm 1 explains procedure.

1.3.1.3 Word Order Similarity

Along with semantic nature of the sentences, we need to consider the word order in

the sentences. The word order similarity, simply put, is the aggregation of compar-

isons of word indices in two sentences. The semantic similarity approach based on

words and the lexical database doesn’t take into account the grammar of the sentence.

Li [36] assigns a number to each word in the sentence and forms a word order vector

according to their occurrence and similarity. They also consider the semantic simi-

larity value of words to decide the word order vector. If a word from sentence 1 is not

present in sentence 2, the number assigned to the index of this word in word order

vector corresponds to the word with maximum similarity. This case is not always

valid and introduces errors in the final semantic similarity index. For the methods

which calculate the similarity by chunking the sentence into words, it is not always

necessary to decide the word order similarity. For such techniques, the word order

similarity actually matters when two sentences contain same words in different order.

Otherwise, if the sentences contain different words, the word order similarity should

be an optional construct. For such sentences, the impact of word order similarity

is negligible as compared to the semantic similarity. Hence, in our approach, we

implement word order similarity as an optional feature. Consider following classical

example:

• S1 : A quick brown dog jumps over the lazy fox.

• S2 : A quick brown fox jumps over the lazy dog.

19

The edge-based approach using lexical database will produce a result showing that

both S1 and S2 are same, but since the words appear in a different order we should

scale down the overall similarity as they represent different meaning. We start with

the formation of vectors V1 and V2 dynamically for sentences S1 and S2 respectively.

Initialization of vectors is performed as explained in subsection 1.3.1.2. Instead of

forming joint word set, we treat sentences relatively to keep the size of vector mini-

mum.

The process starts with the sentence having maximum length. Vector V1 is formed

with respect to sentence 1 and cells in V1 are initialized to index values of words in

S1 beginning with 1. Hence V1 for S1 is:

V1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]

Now, we form V2 concerning S1 and S2. To form V2, every word from S2 is com-

pared with S1. If the word from S2 is absent in S1, then the cell in V2 is filled with

the index value of the word in sentence S2. If the word from S2 matches with a word

from S1, then the index of the word from S1 is filled in V2.

In the above example, consider words ‘fox’ and ‘dog’ from sentence 2. The word ‘fox’

from S2 is present in S1 at the index 9. Hence, entry for ‘fox’ in V2 would be 9.

Similarly, the word ‘dog’ form S2 is present in the S1 at the index 4. Hence, entry

for ‘dog’ in V2 would be 9. Following the same procedure for all the words, we get

V2 as:

V2 = [1, 2, 3, 9, 5, 6, 7, 8, 4]

Finally, word order similarity is given by:

Ws = ||V1− V2||/||V1 ∗ V2|| (1.7)

In this case, Ws is 0.067091.

1.3.2 Pass 2: Bound the similarity

The first pass of the algorithm returns the maximized similarity(δ) between two sen-

tences. The second pass of the algorithm aims at computing a more robust similarity

by reducing the ancillary similarity which causes skeweness in results by considering

syntactical structure, adjectives and adverbs, and negations in the sentences. Skew-

ness in this context implies the deviation of the similarity(δ) from the similarity in

the SICK dataset.

20

We propose three approaches for the Pass 2 of the algorithm.

• Model 1: Recurrence of words

• Model 2: Negation and stanford POS tagger model

• Model 3: Spacy’s dependency parser model

Model 1: Recurrence of words

We consider the number of occurrences of a word with same meaning in the sentence.

If a word occurs multiple times in the sentence, then we should reduce the impact of

the word on the overall similarity. To illustrate this property of occurrences, consider

following example:

S1: Explain the term Database and Database Management System DBMS, as well as

the use of Primary and Foreign Key.

S2: Understand the fundamental concepts of relational database and implement a re-

lational database.

The word Database occurs twice in both sentences. The impact it has on the fi-

nal similarity is more than the actual information it adds to the sentence. Hence,

while assigning the similarity value for such word pairs, we divide the subsequent

occurrences by the number of occurrences.

V [word] = similarity/number of occurrences (1.8)

where V represents the semantic vector. In this example, the value of similarity for

database would be reduced to half as it occurs twice.

Model 2: Negation and stanford POS tagger model

The intuitive idea behind this model is to build a concise list containing syntactical

information for both sentences and subsequently processing the lists to arrive at a de-

cision value [42]. We focus on verbs, adverbs, and adjectives primarily. In this model,

we use Stanford POS tagger, thesaurus.com Python API [1] and a list of English lan-

guage contractions from Wikipedia [2]. We start by resolving the contractions to get

the necessary form of the sentences. Both the sentences are tagged in their respective

parts of speeches using Stanford’s bidirectional distsim tagger [43]. A list is formed

21

for both the sentences in following order:

1. The length of lists is determined by the length of the list containing POS of the

sentences.

l = max(s1 tagged, s2 tagged)

2. All the elements in the list are initialized to zero.

3. If the word is verb, adverb, adjective or negation, then the corresponding bit is

set to represent the POS of the word.

Both the lists are compared as depicted in Figure 1.4. A decision is made explicitly

for each verb, adverb, and adjective. If opposite sense is encountered in the sentences,

then similarity δ is amended using following formula:

ω = δ/θ (1.9)

θ is set to 1.5. Through grid search we found that θ at 1.5 gives the highest correlation

with the SICK values. Figure 1.5 represents the normal distribution using Gaussian

curve of correlation with respect to θ. The correlation is determined concerning 4927

sentences from the SICK dataset [45].

Model 3: Spacy’s dependency parser model

The model based on dependency parsing outperforms Model 1(subsection 1.3.2) and

Model 2(subsection 1.3.2). We use Spacy’s [24] dependency parser to get the depen-

decy grammar of the sentence. We follow a similar approach as in Model 2(subsection

1.3.2) by forming a list representing the dependency information of the sentence. We

assemble the following information from dependency parsing:

cell = {token, token.pos, token.dep}
The above cell format represents a cell in the list. A token is a word from a sentence,

token.pos is part of speech of the token in a sentence, token.dep depicts the depen-

dency in the sentence. We maintain information about root, nouns, and verbs from

both the sentences separately.

The goal of this approach is to keep track of the syntactical differences by increment-

ing a global dependency variable. We start the comparison with the roots of both

the sentences. If roots are not similar or if the synsets of roots do not intersect each

22

Figure 1.4: Decision making for negation: 1 signifies the negation and 0 signifies no
negation

23

Figure 1.5: Normal distribution of θ over correlation

other, then we increment the dependency variable by 1. Next, we compare the lists

containing nouns and accordingly increment the dependency variable. We consider

the length of the lists containing nouns and the dependency of the nouns in the sen-

tence. Similarly, we compare the lists containing verbs.

We check the negation explicitly. We maintain a list of words conveying negation.

We use the SICK dataset to compile this list. If we encounter a word from the list

of negation words, then we increase the dependency variable(dep var) by 1. Length

of sentences is also an important factor affecting the semantics of the sentences. We

use following formula to calculate the shift between two sentences.

shift = ε ∗ log(abs(s1 length− s2 length) + 1) (1.10)

where S1 length and S2 length are lengths of sentences 1 and 2 respectively. We

establish a dependency index(dep index) using following formula:

dep index = (ε ∗ tan−1(dep var)) + shift (1.11)

where ε is a constant, dep var is dependency variable and shift represents the length

difference from Eq. (1.10). ε is set to 0.10 through grid search over correlation on

SICK dataset. Finally, we use this dep index as a measure indicating the syntactical

24

difference between two sentences. We establish final similarity as:

ω = δ − dep index (1.12)

where ω is the final semantic similarity.

1.4 Implementation using Semantic nets

The database used to implement the proposed methodology is WordNet and statistical

information from WordNet is used calculate the information content of the word. This

section describes the prerequisites to implement the methods described in sections 1.3

and 1.4.

1.4.1 The Database - WordNet

WordNet is a lexical semantic dictionary available for online and offline use, developed

and hosted at Princeton. The version used in this study is WordNet 3.0 which has

117,000 synonymous sets, Synsets. Synsets for a word represent the possible meanings

of the word when used in a sentence. WordNet currently has synset structure for

nouns, verbs, adjectives and adverbs. These lexicons are grouped separately and do

not have interconnections; for instance, nouns and verbs are not interlinked.

The main relationship connecting the synsets is the super-subordinate(ISA-HASA)

relationship. The relation becomes more general as we move up the hierarchy. The

root node of all the noun hierarchies is ‘Entity’ like nouns, verbs are arranged into

hierarchies as well.

Shortest path distance and hierarchical distances from WordNet

The WordNet relations connect the same parts of speech. Thus, it consists of four

subnets of nouns, verbs, adjectives and adverbs respectively. Hence, determining the

similarity between cross-domains is not possible.

The shortest path distance is calculated by using the tree-like hierarchical structure.

To find the shortest path, we climb up the hierarchy from both the synsets and

determine the meeting point which is also a synset. This synset is called subsumer of

the respective synsets. The shortest path distance equals the hops from one synset

to another.

25

We consider the position of subsumer of two synsets to determine the hierarchical

distance. Subsumer is found by using the hyperonymy (ISA) relation for both the

synsets. The algorithm moves up the hierarchy until a common synset is found. This

common synset is the subsumer for the synsets in comparison. A set of hypernyms

is formed individually for each synset and the intersubsection of sets contains the

subsumer. If the intersubsection of these sets contain more than one synset, then the

synset with the shortest path distance is considered as a subsumer.

The Information content of the word

For general purposes, we use the statistical information from WordNet for the in-

formation content of the word. WordNet provides the frequency of each synset in

the WordNet corpus. This frequency distribution is used in the implementation of

subsection 1.3.1.

1.4.2 Illustrative example

This subsection explains in detail the steps involved in the calculation of semantic

similarity between two sentences. Consider following two sentences:

• S1 : A gem is a jewel or stone that is used in jewellery.

• S2 : A jewel is a precious stone used to decorate valuable things that you wear,

such as rings or necklaces.

Following segment contains the parts of speeches and corresponding synsets used

to determine the similarity.

For S1 the tagged words are:

Synset(‘jewel.n.01’) : a precious or semiprecious stone incorporated into a piece of

jewelry

Synset(‘jewel.n.01’) : a precious or semiprecious stone incorporated into a piece of

jewelry

Synset(‘gem.n.02’) : a crystalline rock that can be cut and polished for jewelry

Synset(‘use.v.03’) : use up, consume fully

Synset(‘jewelry.n.01’) : an adornment (as a bracelet or ring or necklace) made of

26

precious metals and set with gems (or imitation gems)

For S2 the tagged words are:

Synset(‘jewel.n.01’) : a precious or semiprecious stone incorporated into a piece of

jewelry

Synset(‘stone.n.02’) : building material consisting of a piece of rock hewn in a definite

shape for a special purpose

Synset(‘use.v.03’) : use up, consume fully

Synset(‘decorate.v.01’) : make more attractive by adding ornament, colour, etc.

Synset(‘valuable.a.01’) : having great material or monetary value especially for use

or exchange

Synset(‘thing.n.04’) : an artifact

Synset(‘wear.v.01’) : be dressed in

Synset(‘ring.n.08’) : jewelry consisting of a circlet of precious metal (often set with

jewels) worn on the finger

Synset(‘necklace.n.01’) : jewelry consisting of a cord or chain (often bearing gems)

worn about the neck as an ornament (especially by women)

After identifying the synsets for comparison, we find the shortest path distances

between all the synsets and take the best matching result to form the semantic vector.

The intermediate list is formed which contains the words and the identified synsets.

L1 and L2 below represent the intermediate lists.

L1: [(‘gem’, Synset(‘jewel.n.01’))],

[(‘jewel’, Synset(‘jewel.n.01’))], [(‘stone’, Synset(‘gem.n.02’))], [(‘used’, Synset(‘use.v.03’))],

[(‘jewellery’, Synset(‘jewelry.n.01’))]

L2: [(‘jewel’, Synset(‘jewel.n.01’))],

[(‘stone’, Synset(‘stone.n.02’))], [(‘used’, Synset(‘use.v.03’))], [(‘decorate’, Synset(‘decorate.v.01’))],

[(‘valuable’, Synset(‘valuable.a.01’))],

[(‘things’, Synset(‘thing.n.04’))], [(‘wear’, Synset(‘wear.v.01’))], [(‘rings’, Synset(‘ring.n.08’))],

[(‘necklaces’, Synset(‘necklace.n.01’))]

Now we begin to form the semantic vectors for S1 and S2 by comparing every synset

from L1 with every synset from L2. The intermediate step here is to determine the

27

size of semantic vector and initialize it to null. In this example, the size of the seman-

tic vector is 9 by referring to the method explained in subsection 1.3.1. The following

part contains the cross comparison of L1 and L2.

Cross-comparison with all the words from S1 and S2 is essential because if a word

from statement S1 best matches with a word from S2, it does not necessarily mean

that it would be true if the case is reversed. This scenario can be observed with the

words jewel from Table 1.5 and things from Table 1.5. things best matches with jewel

with index of 0.4063 whereas jewel from Table 1.5 best matches with jewel from Table

1.6.

After getting the similarity values for all the word pairs, we need to determine an

index entry for the semantic vector. The entry in the semantic vector for a word is

the highest similarity value from the comparison with the words from other sentence.

Table 1.5: L1 compared with L2

Words Similarity

gem - jewel 0.908008550956

gem - stone 0.180732071642

gem - used 0.0

gem - decorate 0.0

gem - valuable 0.0

gem - things 0.284462910289

gem - wear 0.0

gem - rings 0.485032351325

gem - necklaces 0.669319889871

jewel - jewel 0.997421032224

jewel - stone 0.217431543606

jewel - used 0.0

jewel - decorate 0.0

jewel - valuable 0.0

jewel - things 0.406309448212

jewel - wear 0.0

jewel - rings 0.456849659596

jewel - necklaces 0.41718607131

stone - jewel 0.475813717007

stone - stone 0.901187866267

28

stone - used 0.0

stone - decorate 0.0

stone - valuable 0.0

stone - things 0.198770510639

stone - wear 0.0

stone - rings 0.100270000776

stone - necklaces 0.0856785820827

used - jewel 0.0

used - stone 0.0

used - used 0.42189900525

used - decorate 0.0

used - valuable 0.0

used - things 0.0

used - wear 0.0

used - rings 0.0

used - necklaces 0.0

jewellery - jewel 0.509332774797

jewellery - stone 0.220266070205

jewellery - used 0.0

jewellery - decorate 0.0

jewellery - valuable 0.0

jewellery - things 0.346687374295

jewellery - wear 0.0

jewellery - rings 0.592019999822

jewellery - necklaces 0.81750915958

Table 1.6: L2 compared with L1

Words Similarity

jewel - gem 0.908008550956

jewel - jewel 0.997421032224

jewel - stone 0.475813717007

jewel - used 0.0

jewel - jewellery 0.509332774797

29

stone - gem 0.180732071642

stone - jewel 0.217431543606

stone - stone 0.901187866267

stone - used 0.0

stone - jewellery 0.220266070205

used - gem 0.0

used - jewel 0.0

used - stone 0.0

used - used 0.42189900525

used - jewellery 0.0

decorate - gem 0.0

decorate - jewel 0.0

decorate - stone 0.0

decorate - used 0.0

decorate - jewellery 0.0

valuable - gem 0.0

valuable - jewel 0.0

valuable - stone 0.0

valuable - used 0.0

valuable - jewellery 0.0

things - gem 0.284462910289

things - jewel 0.406309448212

things - stone 0.198770510639

things - used 0.0

things - jewellery 0.346687374295

wear - gem 0.0

wear - jewel 0.0

wear - stone 0.0

wear - used 0.0

wear - jewellery 0.0

rings - gem 0.485032351325

rings - jewel 0.456849659596

rings - stone 0.100270000776

rings - used 0.0

rings - jewellery 0.592019999822

30

necklaces - gem 0.669319889871

necklaces - jewel 0.41718607131

necklaces - stone 0.0856785820827

necklaces - used 0.0

necklaces - jewellery 0.81750915958

For instance, for the word gem, from Table 1.6, the corresponding semantic vector

entry is 0.90800855 as it is the maximum of all the compared similarity values.

Hence, we get V1 and V2 as following:

• V1 = [0.90800855, 0.99742103, 0.90118787, 0.42189901, 0.81750916, 0.0, 0.0,

0.0, 0.0]

• V2 = [0.99742103, 0.90118787, 0.42189901, 0.0, 0.0, 0.40630945, 0.0, 0.59202,

0.81750916]

The intermediate step here is to calculate the dot product of the magnitude of nor-

malized vectors: V1 and V2 as explained in subsection 1.3.1.

S = 3.472426

The following segment explains the determination of ζ with reference to subsection

1.3.1.

From Algorithm 1, C1 for V1 is 4. C2 for V2 is 3. Hence, ζ is (4+3)/1.8 = 3.89.

Now, the final similarity is

δ = S/ζ = 3.472426/3.89 = 0.8929.

We execute Pass 2 of the algorithm using dependency parser model. Here length difference

for S1 and S2 is 7. Hence we obtain a shift of 0.2079. Next the dependency variable

computed is 5 considering roots, negation if any, count and index of nouns and verbs

in both the sentences. We obtain dependency index of 0.1373.

Finally,δ = 0.8929-(0.2079+0.1373) = 0.5477

1.5 Experimental Results

To evaluate the algorithm, we used three standard datasets:

31

Figure 1.6: Perfomance of word similarity method vs Standard by Rubenstein and
Goodenough

• Rubenstein and Goodenough word pairs [59]

• Sentence similarity for Rubenstein and Goodenough word pairs [53]

• SICK test dataset [45]

Table 1.7: Linear regression parameter values for proposed methodology

Slope 0.84312603549362108
Intercept 0.017742354112473213
r-value 0.87536955005374539
p-value 1.4816200698817255e-21
stderr 0.058665976202757132

These three datasets have been used in many investigations over the years and

have been established as a stable source of semantic similarity measure. The word

similarity obtained in this experiment is assisted by the standard sentences in Pilot

Short Text Semantic Similarity Benchmark Data Set by James O’Shea [53]. The

aim of this methodology is to achieve results as close as possible to the benchmark

32

Figure 1.7: Linear Regression model word similarity method against Standard by
Rubenstein and Goodenough

Figure 1.8: Pearson’s coefficients various algorithms against Standard by Rubenstein
and Goodenough

33

Figure 1.9: Linear regression model- Mean Human Similarity Vs Algorithm Sentence
Similarity

34

standards [45] [59]. The definitions of the words are obtained from the Collins Cobuild

dictionary.

1.5.1 Word similarity

Our algorithm achieved a good Pearson correlation coefficient of 0.8753695501 for

word similarity which is higher than the existing algorithms. From Table 1.9 and

Table 1.10 (see Appendix), we conclude that proposed method outperforms other

methods for word similarity. The Pearson’s coefficients for proposed method and

other similar methods are showed in Figure 1.8 where proposed method achieved

highest correlation.

Figure 1.6 represents the correlation results for 65 pairs from various algorithms

against the R&G benchmark standard. Figure 1.7 represents the linear regression

against the R&G standard. Table 1.7 shows the values of parameters for linear

regression for word similarity.

1.5.2 Sentence similarity: R&G

Table 1.11 contains the mean human sentence similarity values from Pilot Short Text

Semantic Similarity Benchmark Data Set by James O’Shea [53]. As Li [36] explains,

when a survey was conducted by 32 participants to establish a measure for semantic

similarity, they were asked to mark the sentences, not the words. Hence, word simi-

larity is compared with the R&G [59] whereas sentence similarity is compared with

mean human similarity. Our algorithm’s sentence similarity achieved good Pearson

correlation coefficient of 0.8794 with mean human similarity outperforming previous

methods. Li [36] obtained correlation coefficient of 0.816 and Islam [27] obtained cor-

relation coefficient of 0.853. The results for R&G sentences are displayed in Appendix

Table 1.11. Out of 65 sentence pairs, 5 pairs were eliminated because of their defini-

tions from Collins Cobuild dictionary [60]. The reasons and results are discussed in

the discussion subsection.

1.5.3 Sentence similarity: SICK

To evaluate the sentence similarity algorithm, we used the SICK dataset which is

considered as a stable measure of semantic correlation and has been used as a task

in SemEval 2014: semantic relatedness. Our aim is to achieve semantic similarity as

35

Table 1.8: Results on the SICK semantic relatedness subtask. For our experiments,
we report correlations and MSEs for 3 different models. Results are grouped as
(1)Previously reported supervised models (2)Proposed unsupervised models

Method Pearson’s r Spearman’s
ρ

MSE

Supervised methods
Illinois-LH (Lai and Hockenmaier, 2014)
[34]

0.7993 0.7538 0.3692

UNAL-NLP (Jimenez et al., 2014) [29] 0.8070 0.7489 0.3550
Meaning Factory (Bjerva et al., 2014) [9] 0.8268 0.7721 0.3224
ECNU (Zhao et al., 2014) [66] 0.8414 - -
Constituency Tree-LSTM(Kai et al.,
2015) [61]

0.8582 0.7966 0.2734

Dependency Tree-LSTM(Kai et al., 2015)
[61]

0.8676 0.8083 0.2532

ConvNet(he2015multi) [22] 0.8686 0.8047 0.2606
MaLSTM(Mueller et al., 2016) [51] 0.8822 0.8345 0.2286

Proposed unsupervised models
Recurrence of words 0.5878 0.5147 0.5585
Negatives and stanford POS tagger model 0.6645 0.5964 4389
Spacy’s dependency parser model 0.7958(0.8324) 0.6854 0.3784

close as to the semantic similarity established in the SICK dataset. Sample results

for SICK dataset are displayed in Table 1.12. We present the results obtained from

the three proposed models. Table 1.8 represents the correlations obtained for each

model.

Model 1: Recurrence of words

Model 1 utilizes the property that the reoccurring words in the sentences contain less

semantic information than the words occurring once. This property is useful when

dealing with longer sentences. There are very few incidences in the SICK dataset

which possess this property. We obtained a correlation of 0.58 concerning SICK

dataset.

Model 2: Negation and stanford POS tagger model

We obtained a fairly good correlation of 0.66 for model 2 which uses the Stanford POS

tagger. This model performs well when all the words in both sentences are tagged

36

correctly. It incurred few inaccuracies when negation is encountered in either or both

sentences. The reason behind this behavior is the word following negation is tagged

with a different POS than the corresponding word from the other sentence. Hence

the negation calculation fails.

Model 3: Spacy’s dependency parser model

The dependency parser model performed best and obtained a correlation of 0.79 which

is the best performing unsupervised model until now, as the knowledge of authors. We

also encountered a few outliers. Outliers are the cases where either the disambiguation

function fails to identify the correct synset for the word or the dependency parser

fails to form the fitting dependency model. Our algorithm’s measure obtained the

correlation of 0.83.

1.6 Computational Comparison

1.6.1 Comparison of hardware requirements(space complex-

ity) for the proposed method vs. recent methods

The computational requirements for the proposed method are fundamental and do

not require high-end hardware unlike the recent methods based on deep neural net-

works. The proposed method can be deployed on a very low capability CPU and does

not require significant main memory except to load the dependent python modules;

whereas methods based on deep neural networks first require high-end hardware such

as GPUs to train the word embeddings model and then require a significant amount

of main memory to load the trained model.

1.6.2 Comparison of the complexity of the proposed method

vs. recent methods

The time complexity of the proposed algorithm is directly proportional to the num-

ber of words in the compared sentences. Since every word from both the sentences

is compared with every word from other the sentence, the overall complexity of the

algorithm can be estimated as O(n2). Consider an example, comparing the sentences

containing ten words each, required 0.8 seconds to compute the similarity. This pe-

riod also includes the time required to load the python modules. The subsequent

37

comparisons when modules are already loaded took 0.5 seconds to compute the sim-

ilarity.

1.7 Discussion & Future Work

Our algorithm’s similarity measure achieved a good Pearson correlation coefficient

of 0.8753 with R&G word pairs [59]. This performance outperforms all the previous

methods. Table 1.9 represents the comparison of similarity from proposed method,

Lee [35] and GoogleNews English Negatives300-word2vec with the R&G. Table 1.10

depicts the comparison of algorithm similarity against Islam [27] and Li [36] for the

30 noun pairs and performs better.

For sentence similarity, the pairs 17: coast-forest, 24: lad-wizard, 30: coast-hill, 33:

hill-woodland and 39: brother-lad are not considered. The reason for this is, the

definition of these word pairs have more than one common or synonymous words.

Hence, the overall sentence similarity does not reflect the true sense of these word

pairs as they are rated with low similarity in mean human ratings. For example, the

definition of ‘lad’ is given as: ‘A lad is a young man or boy.’ and the definition of

‘wizard’ is: ‘In legends and fairy stories, a wizard is a man who has magic powers.’

Both sentences have similar or closely related words such as: ‘man-man’, ‘boy-man’

and ‘lad-man’. Hence, these pairs affect overall similarity measure more than the

actual words compared ‘lad-wizard’.

There’s a scope of improvement in the disambiguation function. We observed that the

disambiguation function fails to identify the correct synset for the word occasionally.

One of the examples is the word ‘can’ which is always identified as the helping verb

despite of the context.

1.8 Conclusions

This chapter presented an unsupervised approach to calculate the semantic similar-

ity between two words, sentences or paragraphs which is applicable across multiple

domains. The ability to accurately predict semantic similarity using a robust algo-

rithm, a standardized lexical database and interchangable corpora with low comput-

ing overhead is beneficial to professionals in all domains requiring semantic similarity

calculations. The algorithm initially disambiguates both the sentences and tags them

in their parts of speeches. The disambiguation approach ensures the right meaning

38

of the word for comparison. The similarity between words is calculated based on

a previously established edge-based approach. The information content from a cor-

pus can be used to influence the similarity in particular domain. Semantic vectors

containing similarities between words are formed for sentences and further used for

sentence similarity calculation. Word order vectors are also formed to calculate the

impact of the syntactic structure of the sentences. Since word order affects less on the

overall similarity than that of semantic similarity, word order similarity is weighted

to a smaller extent. The methodology has been tested on previously established data

sets which contain standard results as well as mean human results. Our algorithm

achieved a good Pearson correlation coefficient of 0.8753 for word similarity concern-

ing the benchmark standard and 0.8794 for sentence similarity with respect to mean

human similarity and 0.7958 concerning the SICK dataset.

39

Chapter 2

Similarity between Learning

Objectives from Course Outlines

using Semantic Analysis, Blooms

taxonomy and Corpus statistics

2.1 Introduction . 40

2.2 Methodology . 41

2.2.1 Semantic similarity algorithm 42

2.2.2 Bloom’s taxonomy . 43

2.2.3 Corpus statistics . 44

2.2.4 Information content of the word 45

2.3 Implementation . 46

2.3.1 The Databse - WordNet . 46

2.3.2 Corpus statistics . 47

2.3.3 Bloom’s Taxonomy . 47

2.3.4 Illustrative Example . 48

2.4 Experimental Results . 50

2.5 Conclusion & Future Work . 52

40

2.1 Introduction

The Learning Outcomes or Learning Objectives(LO) of a course define what the stu-

dent is expected to learn by taking the course. LOs form a crucial part of any course

description; hence these objectives of a course are considered as a base criterion to

compare the two courses [19]. If a student is transferring from institution A to insti-

tution B and is also attempting to transfer credits from institution A, then accurate

comparison of courses is essential in deciding if the student is eligible to receive credit

at institution B. This task of examining the LOs from two courses is currently com-

pleted by a variety of personnel including Enrollment and Admissions Staff, Program

Chairs, Faculty and Transfer Officers, Program Managers. For the sake of simplifi-

cation, we are assuming that Program Managers are the personnel responsible for

creating Transfer Program Agreements between institutions.

In addition to assessing transfer credit on a course by course basis, post-secondary

institutes also develop transfer credit agreements called ‘articulation agreements’ by

which they agree to give graduates of a specific program a set amount of transfer

credit. The development of articulation agreements requires human intelligence and

expertise from numerous stakeholders and content experts which is resource intensive

and time consuming [33]. This process requires human intelligence and expertise to

evaluate the course objectives. Similarly, Program Managers depend on domain ex-

perts to finalize the decision. Domain experts are persons who have knowledge of a

particular field. This process depends on the human interference throughout; hence

is resource and time consuming.

Our intelligent system aims to automate the process of assessing similarities be-

tween learning outcomes to assist institutional stakeholders in deciding whether a

given student is eligible to recieve credits or not, by extracting the learning outcomes

from the course objectives and comparing them semantically. Bloom’s taxonomy is

often used to help guide the development of learning outcomes [5] when structur-

ing the learning outcomes. Bloom’s taxonomy provides general keyword guidelines,

and a hierarchical structure to be used when defining the learning outcomes [32], see

Figure 2.1 [15]. But within our testing and course outline data set, we found that

many instructors have not applied the language associated with Bloom’s Taxonomy

in their learning outcomes. So, in our methodology, we limit the influence of Bloom’s

41

Creating

Evaluating

Analysing

Applying

Understanding

Remembering

Figure 2.1: Hierarchical Structure of Bloom’s Taxonomy

taxonomy by analyzing only the verbs. We use the hierarchical distribution of verbs

in Bloom’s taxonomy to compare learning objectives. Each layer in Bloom’s taxon-

omy, as depicted in Figure 2.1, has a list of verbs associated with it [25]. The main

contributions of this research are:

• Development of LO similarity measures using semantic analysis

• Utilizing Bloom’s Taxonomy to determine the level of learning associated with

the LOs

• Demonstrating the effect and the usage of corpus statistics

Section 2.2 of this chapter elaborates the methodology step by step. Section 2.3

describes the implementation in detail. Section 2.4 analyses the experimental results.

Finally, section 2.5 explains the results in brief and draws the conclusion.

2.2 Methodology

The proposed methodology uses a semantic similarity algorithm discussed in chapter

1 and extends it to work with Bloom’s taxonomy and a corpus related to the specific

domain. Figure 2.2 shows the modules for computing the similarity between two

learning objectives. The components of Figure 2.2 are explained below:

LO1 and LO2 are the two learning objectives for comparison.

Similarity Algorithm is the algorithm explained in chapter 1.

Corpus is a compiled corpus for a particular domain.

42

Figure 2.2: The proposed methodology

Corpus Disambiguation and Statistics Formation is the algorithm to extract

the domain-specific properties from the corpus.

Corpus Statistics is a file containing records of words and corresponding synsets.

Bloom Similarity Algorithm is the algorithm explained in section 2.2.2.

The semantic similarity algorithm uses Synsets from Wordnet to calculate the seman-

tic similarity between the sentences. This methodology aims to identify the correct

Synsets according to the meaning of the word in sentence using corpus statistics. The

methodology is divided into the following subsections:

• Semantic similarity algorithm

• Bloom’s taxonomy

• Corpus statistics

2.2.1 Semantic similarity algorithm

The semantic similarity algorithm used in this method is an edge-based approach

which uses WordNet, a lexical database. The method to calculate the semantic simi-

43

larity between two sentences is divided into three parts:

• Word similarity

• Sentence similarity

• Word order similarity

This method first calculates the semantic similarity between words considering the

meaning of the word in the context of the statement. The best result is then used to

form a semantic vector for both the sentences separately. The semantic vectors formed

are used to calculate the semantic similarity. The word order vector is constructed

by considering the syntactic structure of the sentences, i.e., the occurrences of words

concerning each other. This suite of algorithms is explained in chapter 1.

2.2.2 Bloom’s taxonomy

As discussed in section 2.1, a well-structured course objective describes what students

will be able to learn and to do as a result of the course [4]. Bloom’s taxonomy is well-

known, established, the hierarchically structured model which contains action verbs in

a level of the hierarchy. As we move up the hierarchy, the difficulty level of action verb

increases. The upper three layers, Analysis, Synthesis and Evaluation demonstrate

the verbs associated with higher levels of critical thinking. We implement Bloom’s

taxonomy as separate part of methodology and restrain its influence on the main

sentence similarity methodology. We explain the reason in the following subsection.

Problem with integrating Bloom’s taxonomy with the principal method

Though Bloom’s taxonomy is the suggested standard for designing the course outline,

we have found that a considerable number of course drafts differ significantly from

the norm. Hence, treating such LOs as well structured and integrating it with the

primary methodology violates the purpose. Therefore to use the Bloom’s taxonomy,

we establish the Bloom’s Index. The Bloom’s Index represents the learning gap be-

tween two learning outcomes according to the verbs in LOs.

44

Bloom’s Index

We start with identifying the action verbs in learning outcomes. Two lists are formed

containing the action verbs from each LO respectively. We use Stanford POS Tagger

[43] to tag the words and identify action verbs. Each layer in the hierarchy is given a

numerical value starting from 1 and going up to 6 as we move up the hierarchy. The

absolute distance between the numerical values of layers of verbs yields the distance

between two verbs. We use this relative distance to calculate the index for each pair

of the verb. The absolute Bloom’s index for each pair is given by:

absolue bloom index = α× distance+ β (2.1)

where α = -0.20 and β = 1. The absolue bloom index represents the absolute sim-

ilarity between two verbs according to the Bloom hierarchy. If both verbs fall into

the same category, then they represent the same learning level; hence for such verb

pairs it is logical to assign a similarity index which represents maximum similarity.

Since, most of the similarity algorithms follow the range from 0 to 1 for the similarity

index, we follow the same standard and establish the maximum Bloom similarity as

1. Since the hierarchy is divided into 6 levels uniformaly, and the range for bloom

index is 0 to 1, we set incremental or decremental distance as 0.2.

We add the absolute bloom indices of all the verb pairs and get the Total Bloom

Index.

Total Bloom Similarity =
∑

Absolute Bloom indices (2.2)

Now, to limit the value of Bloom Index to 0 to 1, we use the total number of com-

parisons for verb pairs. Finally, Bloom index is given by:

Bloom Index = Total Bloom Similarity/number of comparisons (2.3)

Listing A.5 represents the code to the Bloom’s Index.

2.2.3 Corpus statistics

The selection of corpus affects the similarity index by a considerable amount. Learn-

ing objectives have some peculiar words which are associated with a specific domain of

education (i.e. Economics, Physics, English Literature, Software Engineering), there-

fore using a general-purpose corpus is insufficient to assess semantic similarity within

45

the context. In general, the meaning of the words differs when the context is changed.

Hence, use of the general-purpose corpus does not assure proper meaning and context

for words. No single corpus serves the purpose as the terminologies used in LOs are

different for every domain. For example, the terminologies used in Computer Science

are different from that of Economics and Chemistry. Our similarity algorithm uses

Synsets from the WordNet to calculate the semantic similarity between the words.

A word can have multiple synsets with different meanings. Hence, it is essential to

identify the appropriate Synset.

This methodology simulates the use of corpus as a supervised learning model. The

corpus is then disambiguated, i.e., we find the appropriate sense for each word in the

corpus. Identifying sense of the word is part of “word sense disambiguation” research

area. We use ‘max similarity’ algorithm, Eq. 1.1, to identify the sense of the words

[54], as implemented in Pywsd, an NLTK based python library [8]. In this stage,

we identify the meaning of the word and the synset corresponding to this definition

from the WordNet. This information is stored in conjunction with each other to use

efficiently for further calculations. The format used is: Word → Synset → Meaning

of the word

This information also serves as a replica of ‘Educational Ontologies’ synchronous with

WordNet. A replica of Educational Ontologies means we get the synsets correspond-

ing to a particular domain and we can traverse and get the distance between these

synsets using WordNet. Then we run a separate thread to establish the frequencies

of the synsets and group them according to the meaning. The process is repeated

everytime the corpus is changed or updated, and new storage is created for every run.

In case of rare events, if the disambiguation function fails to tag a word, then we use

the statistics from the WordNet. WordNet has the predefined frequency distribution

of definition of the words. We use this frequency for the failed words.

2.2.4 Information content of the word

We also consider the number of occurrences of a word in the sentence. If the word

occurs multiple times in the sentence, then we should reduce the impact of the word

on the overall similarity. To illustrate this property of occurrences, consider following

example:

LO1: Explain the term Database and Database Management System DBMS, as well

46

Algorithm 2 Corpus statistics compilation

Input: Corpus of a specific domain
Output: Word-Synset-Frequency record file

1: procedure Synset frequency determination
2: Remove ASCII characters
3: Remove stop words
4: Remove words with frequenct < n
5: sent list← Sentence tokenize corpus
6: while sent list do
7: if len(disambiguate sentence) > 0 then
8: update synset frequency file← disambiguated synsets

9: determine words with max frequency synset
10: rearrange synset frequency file according to frequency

as the use of Primary and Foreign Key.

LO2: Understand the fundamental concepts of relational database and implement a

relational database.

The word Database occurs twice in both LOs. The impact it has on the final similarity

is more than the actual information it adds to the sentence. Hence, while assigning

the similarity value for such word pairs, we divide the subsequent occurrences by the

number of occurrences.

sim value = similarity index/number of occurrences (2.4)

2.3 Implementation

We use previously established Sentence Similarity algorithm and modify it as ex-

plained in section 2.2. The database used to implement the proposed methodology is

WordNet and the statistical information from WordNet. A corpus of the ‘Chemistry’

domain is compiled using the corpus compilation method explained in Chapter 3,

section 3.2.1.

2.3.1 The Databse - WordNet

WordNet is a lexical semantic dictionary available for online and offline use, developed

and hosted at Princeton. The WordNet version used for this study is WordNet 3.0

47

which has 117,000 synonymous sets, Synsets. Synsets of a word represent possible

meanings of the word in the context of a sentence. The central relationship connecting

the synsets is the super-subordinate(ISA-HASA) relationship. We use this connection

to find the shortest path distance and use this distance to establish similarity between

word pairs.

2.3.2 Corpus statistics

We present a simulation of formation of corpus statistics using a small corpus. Con-

sider following LOs from the corpus.

LO1: Describe the subatomic composition of atoms, ions and isotopes.

LO2: An electrical force linking atoms and molecular bonds in chemicals.

LO3: Write electronic configurations of atoms and ions and relate to the structure of

the Periodic Table.

Table 2.1 and Table 2.2 represent the Synsets for LO1 and textitLO2 according to

information retrieved from the corpus. Similarly, all the LOs from the corpus are dis-

ambiguated to get the data. We then calculate the frequency distribution of synsets

corresponding to words. For instance, the frequency of synset Synset(’atom.n.01’) is

6 in the corpus statistics file. Hence, whenever the word atom occurs in the LO, the

synset considered for semantic similarity calculation is Synset(’atom.n.01’). Identi-

cally, the statistics are formed for all the synsets and words. Having a well-performing

word disambiguation function is crucial to get the precise information from the corpus.

2.3.3 Bloom’s Taxonomy

To implement Bloom’s Taxonomy, we consider the traditional hierarchical structure.

We use the verbs listed in Blooms Taxonomy of Measurable Verbs [25] arranged in

the hierarchy. Each level in the hierarchy is assigned a number starting at 1 with the

base ‘Remembering’ and going up to 6 with ‘Creating’. To tag the verbs in the LOs,

we use the Stanford POS tagger [43].

48

Table 2.1: Disambiguated data for LO1

Term Synset Meaning
subatomic Synset(‘subatomic.a.01’) of or relating to constituents of the

atom or forces within the atom
composition Synset(‘composition.n.03’) a mixture of ingredients

atoms Synset(‘atom.n.01’) (physics and chemistry) the smallest
component of an element having the
chemical properties of the element

ions Synset(‘ion.n.01’) a particle that is electrically charged
(positive or negative); an atom or
molecule or group that has lost or
gained one or more electrons

isotopes Synset(‘isotope.n.01’) one of two or more atoms with the same
atomic number but with different num-
bers of neutrons

2.3.4 Illustrative Example

This subsection explains the working of methodology to calculate the Bloom’s Index

and the usage of corpus statistics.

Calculating Bloom’s Index

Consider following sentences:

S1: Discuss the application of the scientific method to the study of human thinking,

development, disorders, therapy, and social processes

S2: Identify major health informatics applications and develop basic familiarity with

healthcare IT products

From S1, we tag one verb, discuss.

From S2, we tag two verbs,viz., identify and develop.

Here we have 2 comparisons: disucss↔identify and develop↔discuss. Hierarchi-

cal distance between disucss↔identify is 1, similarly Hierarchical distance between

develop↔discuss is 3. Using Eq.(2.1), we get absolute blooms index as 0.8 and 0.4

respectively. Now using Eq.(2.3), we get the Bloom’s Index as (0.8+0.4)/2=0.6.

Corpus Statistics

Consider two LOs listed below:

LO1: Describe the subatomic composition of atoms, ions and isotopes.

49

Table 2.2: Disambiguated data for LO2

Term Synset Meaning
electrical Synset(‘electrical.a.01’) relating to or concerned with electricity

force Synset(‘power.n.05’) one possessing or exercising power or in-
fluence or authority

linking Synset(‘connect.v.01’) connect, fasten, or put together two or
more pieces

atoms Synset(‘atom.n.01’) (physics and chemistry) the smallest
component of an element having the
chemical properties of the element

bond Synset(‘bond.n.01’) an electrical force linking atoms
chemistry Synset(‘chemistry.n.02’) the chemical composition and properties

of a substance or object
chemical Synset(‘chemical.n.01’) material produced by or used in a re-

action involving changes in atoms or
molecules

LO3: Write electronic configurations of atoms and ions and relate to the structure of

the Periodic Table.

Table 2.1 and Table 2.3 depicts the words, synsets, and meanings for LO1 and LO3

respectively.

From Table 2.1, considering the meanings of the words, we can conclude that the dis-

ambiguation worked fine and we have appropriate synsets for the further calculations;

whereas, from Table 2.3, we conclude that there are some inaccuracies with the words

such as structure and table. The meaning of these words we get after disambiguation

is different from their contextual sense in the sentence. The expected meaning of table

here is a tabular array (a set of data arranged in rows and columns), and structure

is a structure (the manner of construction of something and the arrangement of its

parts).

Using right set of LOs corresponding to the appropriate domain, we get the synset

with the correct meaning. Even while disambiguating the corpus, the disambiguation

function can identify inaccurate meaning for a word. Using frequency of the occur-

rence of meaning in corpus deprecates this inaccuracy since we always get the synset

which has appropriate meaning for the word in the context of domain.

50

Table 2.3: Disambiguated data for LO3

electronic Synset(’electronic.a.02’) of or concerned with electrons
configurations Synset(’shape.n.01’) any spatial attributes (especially as de-

fined by outline)
atoms Synset(’atom.n.01’) (physics and chemistry) the smallest

component of an element having the
chemical properties of the element

ions Synset(’ion.n.01’) a particle that is electrically charged
(positive or negative); an atom or
molecule or group that has lost or
gained one or more electrons

structure Synset(’structure.n.03’) the complex composition of knowledge
as elements and their combinations

Table Synset(’table.n.05’) a company of people assembled at a ta-
ble for a meal or game

2.4 Experimental Results

To evaluate the algorithm, we used real Learning Objectives from various course

outlines. A survey was conducted and users were asked if they can make a decision

based on the resultant semantic similarity and the Bloom Similarity. All the users

at least possessed a Bachelors degree and had taken at least introductory courses in

Chemistry. Users were asked to verify the results of the compared learning objectives.

Out of 15 users, 10 users agreed that 75% or more of the results were useful; 1 user

agreed that 65% or more of the results were useful and 4 users agreed that 50% or

more of the results were useful.

Table 2.4 shows the semantic similarity between real-time LOs.

Table 2.4: Similarity between LOs

LO1 LO2 Proposed

Algorithm

Similarity

Acquire knowledge: memorize

factual information and laws;

assimilate scientific concepts;

learn chemical calculations

To predict the physical and

chemical properties of organic

molecules from structures.

0.243231930716

51

Students will develop both

problem solving and critical

thinking skills, and they will

use these skills to solve prob-

lems utilizing chemical princi-

ples.

use knowledge of intermolec-

ular forces to predict the

physical properties of molecu-

lar and extended-network ele-

ments and compounds;

0.295240282004

apply chemical knowledge to

integrate knowledge gained in

other courses and to better un-

derstand the connections be-

tween the various branches of

science;

To become familiar with

the structures of organic

molecules, especially those

found in nature or those with

important biological effects.

0.260902736198

understand and utilize the

terminology and concepts of

chemistry to acquire and com-

municate scientific information

and to solve basic chemical

problems;

To predict the physical and

chemical properties of organic

molecules from structures

0.240184283928

solve problems involving the

physical properties of matter

in the solid, liquid and gaseous

states;

Students will gain an appreci-

ation of the scientific discipline

of chemistry and the principles

used by chemists to solve com-

plex problems.

0.223101105502

understand the basis of the

unique properties of mixtures

and perform related calcula-

tions;

memorize factual information

and laws; assimilate scientific

concepts; learn chemical calcu-

lations

0.289648142927

apply knowledge of thermo-

chemistry to calculate en-

thalpy changes associated with

chemical and physical pro-

cesses;

solve problems involving the

physical properties of matter

in the solid, liquid and gaseous

states;

0.113466429084

52

Write electronic configurations

of atoms and ions and relate

to the structure of the Periodic

Table.

Describe the subatomic com-

position of atoms, ions and iso-

topes.

0.852869346717

Students will learn and apply

the method of inquiry used

by chemists to solve chemical

problems.

Describe the role of chemists

and chemistry in drug design.

0.214912072273

Examine, integrate, and as-

sess any provided or collected

chemical data.

Draw scientific conclusions

from experimental results or

data.

0.900301710749

2.5 Conclusion & Future Work

This chapter presented an approach to calculate the semantic similarity between

learning objectives using Corpus Statistics and Blooms taxonomy. The crucial part

of the algorithm is the disambiguation of words in the context of their use. Having

fewer datapoints may lead to detecting the wrong meaning of the word. Hence, using

a corpus, we make sure that the algorithm always selects the appropriate sense of the

word. We use corpus statistics from the disambiguated corpus. The meaning with

the highest frequency is considered by the algorithm to find the proper synset from

the WordNet. The methodology has been tested on real-time learning objectives, and

we have achieved positive results.

While our initial experiment shows promise in terms of the accuracy of assessing

semantic similarity between Learning Outcomes, we are currently extending this ex-

perimentation phase to include assessing semantic similarity between multiple courses

from high affinity post-secondary credentials to test this research on a broader scale.

Future work includes expanding the domains, increasing efficiency of algorithms by

using different file structures and forming WordNet-like ontologies for specifically the

education domain. Use of fuzzy cognitive maps to form ontologies is also a possibility

[18][40][39][41]. For the purpose of this research we selected Bloom’s Taxonomy based

on it’s visibility in documents published by the Higher Education Quality Council of

Ontario, however we recognize that future applications of this work could include

Bigg’s SOLO taxonomy [7] as well.

53

Chapter 3

Word embeddings for semantic

similarity using Wikipedia as a

corpus

3.1 Introduction . 53

3.2 Methodology . 55

3.2.1 Building a domain specific corpus 56

3.2.2 Word Similarity . 57

3.3 Experimental Results . 57

3.3.1 Some of the notable differences in similarities for word pairs

using general purpose corpus vs. the computing corpus 60

3.4 Computational Requirements . 61

3.5 Conclusion & Future Work . 61

3.1 Introduction

The recent advancements in using neural networks for natural language processing

has lead to significant improvements [23][51][61][34][9] in the area of semantic analysis.

The models based on neural networks are able to achieve state-of-the-art performace;

for instance, the Siamese Recurrent Architectures for Learning Sentence Similarity

achieved the correlation of 0.8822 with the SICK dataset [51]. We use the similar

54

architecture to determine the semantic similarity between learning objectives which is

the application domain for this research. Learning objectives contain peculiar words

which are rarely used in general English and might have a different meaning. For

instance, the computer science domain has hundreds of programming languages such

as python, java, lua, etc. Such terms used in learning objectives make it impossible to

use lexical databases such as WordNet because of the limitation of words. Also, it has

become increasingly difficult to maintain and update the WordNet as it is resource

consuming and requires human intervention to redefine or add new relations between

words.

Word embeddings are shallow, two-layered neural network models which capture the

linguistic context of words. Word embeddings represent the words converted into

numerical format. The basic idea that shapes the word embedding representation is

“a word is characterized by the company it keeps” [14]. The intuitive idea is to use

a text corpus and form vectors for each word in the corpus, such as one-hot vectors.

The distributional representation of the vectors is based on the usage of the word

in the corpus. One of the algorithms used to create word embeddings is Word2vec

developed by Thomas Mikolov, et al. at Google in 2013. The results of word2vec are

sensitive to parameterization. The parameters of word2vec represent the way the text

from the corpus is utilized to form the word vectors. The parameters of the word2vec

are set according to the purpose. Some of the important training parameters are:

• Sub-sampling : Sub-sampling is related to the concept of the word frequency and

its effect on the linguistic importance of that word. Words with high frequency

often provide little information. A threshold can be set to remove such words

and improve the computational efficiency.

• Dimensionality : Dimensionality represents the size of one-dimensional vectors

used to represent the words. It is independent of the size of vocabulary. Gen-

erally, the dimensionality is set between 100 to 1000. Higher dimensionality

results in higher accuracy, but at a point of saturation, there is no marginal

gain in the accuracy.

• Context window : The concept of context window is used to capture the semantic

information of the word. Context window represents the number of words before

and after the given word to be included as the context of the word. According

to Mikolov, the recommended value of the context window for word2vec is 10

for the skip-gram model [48].

55

The application domain of this research is to calcuate the semantic similarities be-

tween learning objectives from course outlines. In this research, we present the usage

of Wikipedia as corpus and the effect of corpus on the word similarities.

3.2 Methodology

The proposed methodology uses word vectors formed using word2vec model’s skip-

gram approach using hierarchical softmax. In linguistic modeling, the skip-gram

approach is a generalization of n-grams where words need not be consecutive. The

methodology can be divided into following subparts:

• Building a domain specific corpus

• Word Similarity

For implementation, we use previously reported training algorithms and architectures

[30].

Figure 3.1: Subcategories for computing domain

56

Figure 3.2: Level 1 Subcategories for computing domain

3.2.1 Building a domain specific corpus

Learning objectives from course outline contain peculiar words corresponding to the

field. For instance, word ‘Python’, in the domain of computer science, means ‘A

programming language’ whereas it could mean ‘A species of reptiles’ in a more gen-

eral sense. Hence, using a general-purpose corpus does not serve the purpose. So,

building a domain-specific corpus and training the model with the corpus is a crucial

part of the methodology. We chose Wikipedia as a source for compiling a corpus

[65]. For this research, we decided to focus on a particular domain and work on the

corpus compiled from Wikipedia. We chose ‘Computing’ as the main sub-category.

Wikipedia is divided into multiple sub-categories, and each sub-category can have

multiple categories and pages. Figure 3.1 represents the sub-categories for computing

domain.

We use the petscan API to get the Wikipedia structure of a particular category

[64]. The sample output for petscan API is displayed in Figure 3.2. We treat this

hierarchy as a tree-traversal problem and use DFS to traverse the tree. The total

number of Wikipedia articles collected is 160,624. We use Wikipedia python API [20]

to retrieve and parse the articles to get the textual content from the article webpage.

57

We store the corpus as a python file which enables us to compile the corpus to find

if there are any non-ascii characters. Filtering such characters is a necessary step

before training the model. Every article is stored as a list element in the file for

simpler iterations. A code to clean-up the Wikipedia textual data and compiling a

corpus is given in Listing A.6.

The structure of the corpus file is displayed in Figure 3.3.

doc = [""" document1 """,
 """document 2 """,

.

.

.

.

.

.
 """document n"""

]

Figure 3.3: Structure of corpus

3.2.2 Word Similarity

After creating a corpus of computing domain, we train the Word2Vec model with the

compiled corpus. We use the gensim’s implementation of Word2Vec [57]. Listing A.7

depicts the code snippet to train the word2vec.

We follow the same sentence similarity methodology explained in chapter 1.

3.3 Experimental Results

We tested the performance of the model regarding semantic similarity between words

on various corpora. We present the results of semantic similarity between keywords

in the computer science domain. During our research, we found that there is no

gold standard for the words in academics to compare the results. Hence we rely

on the general human knowledge to make sense of the results. We use a corpus with

‘computing’ as a root category from Wikipedia and collect textual data from the pages

till level 4. Table 3.1 represents the results from the compiled corpus and GoogleNews

Negatives 300 corpus. The results for the GoogleNews Negatives 300 corpus are

58

Table 3.1: Comparison of semantic similairy between words

Word 1 Word 2 Computing
corpus sim-
ilarity

GoogleNews
Negatives 300
similarity

java python 0.9218 0.5626

language python 0.8074 0.5372

software people 0.0406 0.5325

computing semantics 0.7222 0.5986

computing processing 0.7118 0.6369

software application 0.8095 0.6955

software platform 0.7674 0.6777

software tea 0.4869 0.5476

java coffee 0.4698 0.8252

database network 0.7180 0.6710

ethernet network 0.82355 0.7097

ethernet protocol 0.8464 0.6478

network protocol 0.8353 0.6323

drivers firmware 0.8586 0.5794

compiler debugger 0.8659 0.8052

windows linux 0.6868 0.8089

windows door 0.5977 0.7273

windows .exe 0.6475 Word .exe not in
vocabulary

augmented simulated 0.7742 0.5840

google baidu 0.8655 Word baidu not in
vocabulary

parallelism model 0.6577 0.5384

data mining 0.6335 0.5623

minerals mining 0.6943 0.7877

ibm mainframe 0.8681 0.6312

servers cloud 0.7686 0.6652

servers river 0.4744 0.5161

cook servers 0.3717 0.5619

learner classifier 0.8595 0.6031

abstract namespace 0.7671 0.6200

59

Figure 3.4: Word distribution in a trained word2vec model [26]

taken from the online demo by Turku BioNLP Group [21]. Figure 3.4 shows the word

distribution in a word2vec model trained using GoogleNews Negatives 300.

From the Table 3.1, we can see that the corpus affects the similarity significantly.

Figure 3.5 shows the top 10 words similar to ‘java’ regarding the English GoogleNews

Negative300 corpus. These results would be inaccurate for the computing domain, as

‘java’ is not related to coffee, joe, espresso, etc. in the context of computing. Hence,

to get the precise similarity between words under a particular field, we need a domain

specific corpus.

60

Figure 3.5: Top 10 words similar to java: English GoogleNews Negative300

3.3.1 Some of the notable differences in similarities for word

pairs using general purpose corpus vs. the computing

corpus

Concerning the computing domain, java and python both are programming languages

and should have a higher similarity value. From Table 3.1, we can see that, for the

first two word-pair comparisons, the semantic similarity from the general purpose

corpus is less than the corpus for the computing domain. Similarly, for the word pair

“computing - processing,” the general purpose corpus similarity is 0.6369 whereas

similarity is 0.7118 for the computing domain which makes more sense as computing

and processing are closely related to each other in the context of computing. For

the words “java - coffee,” the general purpose corpus similarity is 0.8252, and the

computing corpus similarity is 0.4698. Hence using general purpose corpus for the

computing domain would be inaccurate as java and coffee are not closely related to

each other in the context of computing. We can observe the similar pattern for all the

other listed word pairs. Also, some of the essential words in the computing domain

are not found in the general purpose corpus, e.g. ’.exe’ and ’Baidu’. Hence, from these

observations, we can conclude that using a general purpose for the domain-specific

61

NLP tasks, does serve the intended purpose.

3.4 Computational Requirements

The memory requirement for word2vec depends on the size of the corpus used to

train the model. Generally, for a large corpora, it is essential to use a GPU and

libraries like Keras [11] or CUDA [52] which utilize GPU capabilities. The other

option is to have a large amount of main memory(RAM) so that the trained model

can be loaded into main memory. The memory required to train the model depends

directly on dimensions of word vectors and vocabulary of the corpus. The gensim

implementation of word2vec has requirement of O(#dimensions * #vocabulary)

of memory. The GoogleNews word2vec model is 300 dimensions * 3M vocab and

can be used on a 16GB machine.

3.5 Conclusion & Future Work

In this research, we present a method to compile a domain-specific corpus using

Wikipedia. We also present a case that the semantic similarity between words varies

significantly regarding the corpus used to train the word2vec model. We also show

the difference between similarities of domain-specific words using a general purpose

corpus and a domain-specific corpus.

One of the crucial areas for the future work is to determine the ideal properties of

the corpus. With the current philosophy, a corpus is considered as well-compiled if

it follows the Zipf’s law [67][68]. This case is not true as similarities for words are

poor regarding the Brown corpus [16] which follows the Zipf’s law1. Another area of

improvement is determining the optimal parameters for the word2vec model.

1Interested readers can contact the author for results of the word similarity under the model
trained using Brown corpus.

62

Appendix A

Table A.1: Rubenstein and Goodenough Vs Lee2014 Vs Proposed Algorithm Simi-
larity

R&G

No

R&Gpair R&G

Similar-

ity

Lee2014 GoogleNews

English

Negative300-

Word2Vec

Proposed Algo-

rithm Similarity

1 cord smile 0.005 0.01 0.509055 0.0899021679

2 noon string 0.01 0.005 0.510825 0.0440401486

3 rooster voyage 0.01 0.0125 0.53135 0.010051669

4 fruit furnace 0.0125 0.0475 0.536605 0.0720444643

5 autograph shore 0.015 0.005 0.517325 0.0742552483

6 automobile wiz-

ard

0.0275 0.02 0.48596 0.0906955651

7 mound stove 0.035 0.005 0.6226 0.0656419906

8 grin implement 0.045 0.005 0.4999 0.0899021679

9 asylum fruit 0.0475 0.005 0.5289 0.0720444643

10 asylum monk 0.0975 0.0375 0.5693 0.0757289762

11 graveyard mad-

house

0.105 0.0225 0.64695 0.0607950554

12 boy rooster 0.11 0.0075 0.6424 0.0907164485

13 glass magician 0.11 0.1075 0.51861 0.1782144411

14 cushion jewel 0.1125 0.0525 0.56235 0.2443794293

15 monk slave 0.1425 0.045 0.5957 0.3750880747

16 asylum cemetery 0.1975 0.0375 0.5462 0.1106378337

63

17 coast forest 0.2125 0.0475 0.6180485 0.1106378337

18 grin lad 0.22 0.0125 0.624005 0.0899021679

19 shore woodland 0.225 0.0825 0.55845 0.3011198804

20 monk oracle 0.2275 0.1125 0.65177 0.2464473057

21 boy sage 0.24 0.0425 0.582975 0.2017739882

22 automobile

cushion

0.2425 0.02 0.56675 0.2018466921

23 mound shore 0.2425 0.035 0.56582 0.2018466921

24 lad wizard 0.2475 0.0325 0.665 0.3673305438

25 forest graveyard 0.25 0.065 0.614505 0.2015952767

26 food rooster 0.2725 0.055 0.55915 0.2732326922

27 cemetery wood-

land

0.295 0.0375 0.69096 0.2015952767

28 shore voyage 0.305 0.02 0.60215 0.4075214431

29 bird woodland 0.31 0.0125 0.670121 0.1651985693

30 coast hill 0.315 0.1 0.58055 0.4103617321

31 furnace imple-

ment

0.3425 0.05 0.5117 0.2464473057

32 crane rooster 0.3525 0.02 0.618035 0.2465928735

33 hill woodland 0.37 0.145 0.63675 0.2918421392

34 car journey 0.3875 0.0725 0.549245 0.2730713984

35 cemetery mound 0.4225 0.0575 0.60302 0.0656419906

36 glass jewel 0.445 0.1075 0.5872465 0.3176716099

37 magician oracle 0.455 0.13 0.6261 0.3057403627

38 crane implement 0.5925 0.185 0.51159 0.4486585394

39 brother lad 0.6025 0.1275 0.67975 0.5462290271

40 sage wizard 0.615 0.1525 0.669055 0.3675115617

41 oracle sage 0.6525 0.2825 0.72125 0.5279307332

42 bird cock 0.6575 0.035 0.681 0.5750838807

43 bird crane 0.67 0.1625 0.6514 0.4978503715

44 food fruit 0.6725 0.2425 0.687046 0.6196075053

45 brother monk 0.685 0.045 0.6116 0.2664571358

64

46 asylum mad-

house

0.76 0.215 0.6262695 0.8185286992

47 furnace stove 0.7775 0.3475 0.80415 0.1651985693

48 magician wizard 0.8025 0.355 0.74315 0.9985079423

49 hill mound 0.8225 0.2925 0.7311 0.8148010746

50 cord string 0.8525 0.47 0.59475 0.8148010746

51 glass tumbler 0.8625 0.1375 0.733755 0.8561402541

52 grin smile 0.865 0.485 0.9302 0.9910074537

53 serf slave 0.865 0.4825 0.7249 0.8673305438

54 journey voyage 0.895 0.36 0.8415 0.8185286992

55 autograph signa-

ture

0.8975 0.405 0.6566 0.8499457067

56 coast shore 0.9 0.5875 0.75415 0.8179120223

57 forest woodland 0.9125 0.6275 0.82085 0.9780261147

58 implement tool 0.915 0.59 0.60617 0.0822919486

59 cock rooster 0.92 0.8625 0.7393 0.9093502924

60 boy lad 0.955 0.58 0.7943 0.9093502924

61 cushion pillow 0.96 0.5225 0.6258 0.8157293861

62 cemetery grave-

yard

0.97 0.7725 0.8212403 0.9985079423

63 automobile car 0.98 0.5575 0.791915 0.8185286992

64 gem jewel 0.985 0.955 0.8105 0.8175091596

65 midday noon 0.985 0.6525 0.77637 0.9993931059

Table A.2: Proposed Algorithm Similarity Vs Islam2008 Vs Li2006

R&G

No

R&G pair Proposed Algo-

rithm Similarity

A.Islam2008 Lietal.2006

1 cord smile 0.0899021679 0.06 0.33

5 autograph shore 0.0742552483 0.11 0.29

9 asylum fruit 0.0720444643 0.07 0.21

12 boy rooster 0.0907164485 0.16 0.53

17 coast forest 0.1106378337 0.26 0.36

21 boy sage 0.2017739882 0.16 0.51

65

25 forest graveyard 0.2015952767 0.33 0.55

29 bird woodland 0.1651985693 0.12 0.33

33 hill woodland 0.2918421392 0.29 0.59

37 magician oracle 0.3057403627 0.2 0.44

41 oracle sage 0.5279307332 0.09 0.43

47 furnace stove 0.1651985693 0.3 0.72

48 magician wizard 0.9985079423 0.34 0.65

49 hill mound 0.8148010746 0.15 0.74

50 cord string 0.8148010746 0.49 0.68

51 glass tumbler 0.8561402541 0.28 0.65

52 grin smile 0.9910074537 0.32 0.49

53 serf slave 0.8673305438 0.44 0.39

54 journey voyage 0.8185286992 0.41 0.52

55 autograph signa-

ture

0.8499457067 0.19 0.55

56 coast shore 0.8179120223 0.47 0.76

57 forest woodland 0.9780261147 0.26 0.7

58 implement tool 0.0822919486 0.51 0.75

59 cock rooster 0.9093502924 0.94 1

60 boy lad 0.9093502924 0.6 0.66

61 cushion pillow 0.8157293861 0.29 0.66

62 cemetery graveyard 0.9985079423 0.51 0.73

63 automobile car 0.8185286992 0.52 0.64

64 gem jewel 0.8175091596 0.65 0.83

65 midday noon 0.9993931059 0.93 1

Table A.3: Sentence Similarity from proposed methodology compared with human
mean similarity from Li2006

R&G

num-

ber

Sentence 1 Sentence 2 Mean

Hu-

man

Simi-

larity

Algorithm

Sen-

tence

Simi-

larity

66

1 Cord is strong, thick string. A smile is the expression that you

have on your face when you are

pleased or amused, or when you

are being friendly.

0.01 0.0125

2 A rooster is an adult male

chicken.

A voyage is a long journey on a

ship or in a spacecraft.

0.005 0.1593

3 Noon is 12 o’clock in the middle

of the day.

String is thin rope made of

twisted threads, used for ty-

ing things together or tying up

parcels.

0.0125 0.03455

4 Fruit or a fruit is something which

grows on a tree or bush and which

contains seeds or a stone covered

by a substance that you can eat.

A furnace is a container or en-

closed space in which a very hot

fire is made, for example to melt

metal, burn rubbish or produce

steam.

0.0475 0.1388

5 An autograph is the signature

of someone famous which is spe-

cially written for a fan to keep.

The shores or shore of a sea, lake,

or wide river is the land along the

edge of it.

0.0050 0.0701

6 An automobile is a car. In legends and fairy stories, a wiz-

ard is a man who has magic pow-

ers.

0.0200 0.0088

7 A mound of something is a large

rounded pile of it.

A stove is a piece of equipment

which provides heat, either for

cooking or for heating a room.

0.0050 0.3968

8 A grin is a broad smile. An implement is a tool or other

pieces of equipment.

0.0050 0.0099

9 An asylum is a psychiatric hospi-

tal.

Fruit or a fruit is something which

grows on a tree or bush and which

contains seeds or a stone covered

by a substance that you can eat.

0.0050 0.01456

10 An asylum is a psychiatric hospi-

tal.

A monk is a member of a male re-

ligious community that is usually

separated from the outside world.

0.0375 0.0175

67

11 A graveyard is an area of land,

sometimes near a church, where

dead people are buried.

If you describe a place or situ-

ation as a madhouse,you mean

that it is full of confusion and

noise.

0.0225 0.1339

12 Glass is a hard transparent sub-

stance that is used to make things

such as windows and bottles.

A magician is a person who en-

tertains people by doing magic

tricks.

0.0075 0.0911

13 A boy is a child who will grow up

to be a man.

A rooster is an adult male

chicken.

0.1075 0.2921

14 A cushion is a fabric case filled

with soft material, which you put

on a seat to make it more com-

fortable.

A jewel is a precious stone used to

decorate valuable things that you

wear, such as rings or necklaces.

0.0525 0.1745

15 A monk is a member of a male re-

ligious community that is usually

separated from the outside world.

A slave is someone who is the

property of another person and

has to work for that person.

0.0450 0.1394

16 An asylum is a psychiatric hospi-

tal.

A cemetery is a place where dead

peoples bodies or their ashes are

buried.

0.375 0.03398

17 The coast is an area of land that

is next to the sea.

A forest is a large area where trees

grow close together.

0.0475 0.3658

18 A grin is a broad smile. A lad is a young man or boy. 0.0125 0.0281

19 The shores or shore of a sea, lake,

or wide river is the land along the

edge of it.

Woodland is land with a lot of

trees.

0.0825 0.2192

20 A monk is a member of a male re-

ligious community that is usually

separated from the outside world.

In ancient times, an oracle was

a priest or priestess who made

statements about future events or

about the truth.

0.1125 0.1011

21 A boy is a child who will grow up

to be a man.

A sage is a person who is regarded

as being very wise.

0.0425 0.2305

68

22 An automobile is a car. A cushion is a fabric case filled

with soft material, which you put

on a seat to make it more com-

fortable.

0.0200 0.0330

23 A mound of something is a large

rounded pile of it.

The shores or shore of a sea, lake,

or wide river is the land along the

edge of it.

0.0350 0.0386

24 A lad is a young man or boy. In legends and fairy stories, a wiz-

ard is a man who has magic pow-

ers.

0.0325 0.2939

25 A forest is a large area where trees

grow close together.

A graveyard is an area of land,

sometimes near a church, where

dead people are buried.

0.0650 0.2787

26 Food is what people and animals

eat.

A rooster is an adult male

chicken.

0.0550 0.2972

27 A cemetery is a place where dead

peoples bodies or their ashes are

buried.

Woodland is land with a lot of

trees.

0.0375 0.1240

28 The shores or shore of a sea, lake,

or wide river is the land along the

edge of it.

A voyage is a long journey on a

ship or in a spacecraft.

0.0200 0.0304

29 A bird is a creature with feathers

and wings, females lay eggs, and

most birds can fly.

Woodland is land with a lot of

trees.

0.0125 0.1334

30 The coast is an area of land that

is next to the sea.

A hill is an area of land that is

higher than the land that sur-

rounds it.

0.1000 0.8032

31 A furnace is a container or en-

closed space in which a very hot

fire is made, for example to melt

metal, burn rubbish or produce

steam.

An implement is a tool or other

piece of equipment.

0.0500 0.1408

69

32 A crane is a large machine that

moves heavy things by lifting

them in the air.

A rooster is an adult male

chicken.

0.0200 0.0564

33 A hill is an area of land that is

higher than the land that sur-

rounds it.

Woodland is land with a lot of

trees.

0.1450 0.6619

34 A car is a motor vehicle with

room for a small number of pas-

sengers.

When you make a journey, you

travel from one place to another.

0.0725 0.02610

35 A cemetery is a place where dead

peoples bodies or their ashes are

buried.

A mound of something is a large

rounded pile of it.

0.0575 0.0842

36 Glass is a hard transparent sub-

stance that is used to make things

such as windows and bottles.

A jewel is a precious stone used to

decorate valuable things that you

wear, such as rings or necklaces.

0.1075 0.2692

37 A magician is a person who en-

tertains people by doing magic

tricks.

In ancient times, an oracle was

a priest or priestess who made

statements about future events or

about the truth.

0.1300 0.1000

38 A crane is a large machine that

moves heavy things by lifting

them in the air.

An implement is a tool or other

piece of equipment.

0.1850 0.1060

39 Your brother is a boy or a man

who has the same parents as you.

A lad is a young man or boy. 0.1275 0.8615

40 A sage is a person who is regarded

as being very wise.

In legends and fairy stories, a wiz-

ard is a man who has magic pow-

ers.

0.1525 0.1920

41 In ancient times, an oracle was

a priest or priestess who made

statements about future events or

about the truth.

A sage is a person who is regarded

as being very wise.

0.2825 0.0452

42 A bird is a creature with feathers

and wings, females lay eggs, and

most birds can fly.

A crane is a large machine that

moves heavy things by lifting

them in the air.

0.0350 0.1660

70

43 A bird is a creature with feathers

and wings, females lay eggs, and

most birds can fly.

A cock is an adult male chicken. 0.1625 0.1704

44 Food is what people and animals

eat.

Fruit or a fruit is something which

grows on a tree or bush and which

contains seeds or a stone covered

by a substance that you can eat.

0.2425 0.1379

45 Your brother is a boy or a man

who has the same parents as you.

A monk is a member of a male re-

ligious community that is usually

separated from the outside world.

0.0450 0.2780

46 An asylum is a psychiatric hospi-

tal.

If you describe a place or situ-

ation as a madhouse, you mean

that it is full of confusion and

noise.

0.2150 0.1860

47 A furnace is a container or en-

closed space in which a very hot

fire is made, for example, to melt

metal, burn rubbish, or produce

steam.

A stove is a piece of equipment

which provides heat, either for

cooking or for heating a room.

0.3475 0.1613

48 A magician is a person who en-

tertains people by doing magic

tricks.

In legends and fairy stories, a wiz-

ard is a man who has magic pow-

ers.

0.3550 0.5399

49 A hill is an area of land that is

higher than the land that sur-

rounds it.

A mound of something is a large

rounded pile of it.

0.2925 0.2986

50 Cord is strong, thick string. String is thin rope made of

twisted threads, used for ty-

ing things together or tying up

parcels.

0.4700 0.2530

51 Glass is a hard transparent sub-

stance that is used to make things

such as windows and bottles.

A tumbler is a drinking glass with

straight sides.

0.1375 0.2643

71

52 A grin is a broad smile. A smile is the expression that you

have on your face when you are

pleased or amused, or when you

are being friendly.

0.4850 0.7204

53 In former times, serfs were a class

of people who had to work on a

particular persons land and could

not leave without that persons

permission.

A slave is someone who is the

property of another person and

has to work for that person.

0.4825 0.7695

54 When you make a journey, you

travel from one place to another.

A voyage is a long journey on a

ship or in a spacecraft.

0.3600 0.7201

55 An autograph is the signature

of someone famous which is spe-

cially written for a fan to keep.

Your signature is your name,

written in your own characteristic

way, often at the end of a docu-

ment to indicate that you wrote

the document or that you agree

with what it says.

0.4050 0.3146

56 The coast is an area of land that

is next to the sea.

The shores or shore of a sea, lake,

or wide river is the land along the

edge of it.

0.5875 0.7945

57 A forest is a large area where trees

grow close together.

Woodland is land with a lot of

trees.

0.6275 0.4770

58 An implement is a tool or other

pieces of equipment.

A tool is any instrument or sim-

ple piece of equipment that you

hold in your hands and use to do

a particular kind of work.

0.5900 0.7590

59 A cock is an adult male chicken. A rooster is an adult male

chicken.

0.8625 0.8560

60 A boy is a child who will grow up

to be a man.

A lad is a young man or boy. 0.5800 0.8296

61 A cushion is a fabric case filled

with soft material, which you put

on a seat to make it more com-

fortable.

A pillow is a rectangular cushion

which you rest your head on when

you are in bed.

0.5225 0.7626

72

62 A cemetery is a place where dead

peoples bodies or their ashes are

buried.

A graveyard is an area of land,

sometimes near a church, where

dead people are buried.

0.7725 0.8750

63 An automobile is a car. A car is a motor vehicle with

room for a small number of pas-

sengers.

0.5575 0.7001

64 Midday is 12 oclock in the middle

of the day.

Noon is 12 oclock in the middle

of the day.

0.9550 0.8726

65 A gem is a jewel or stone that is

used in jewellery.

A jewel is a precious stone used to

decorate valuable things that you

wear, such as rings or necklaces.

0.6525 0.5477

Table A.4: Sentence Similarity from proposed methodology compared with SICK
similarity

SICK

in-

dex

Sentence 1 Sentence 2 SICK

simi-

larity

Algorit

hm sim-

ilarity

6 There is no boy playing outdoors

and there is no man smiling

A group of kids is playing in a

yard and an old man is standing

in the background

0.575 0.5054

7 A group of boys in a yard is play-

ing and a man is standing in the

background

The young boys are playing out-

doors and the man is smiling

nearby

0.675 0.6689

8 A group of children is playing in

the house and there is no man

standing in the background

The young boys are playing out-

doors and the man is smiling

nearby

0.5 0.5054

10 A brown dog is attacking another

animal in front of the tall man in

pants

A brown dog is attacking another

animal in front of the man in

pants

0.975 0.8892

11 A brown dog is attacking another

animal in front of the man in

pants

A brown dog is helping another

animal in front of the man in

pants

0.66625 0.5966

73

13 Two dogs are wrestling and hug-

ging

There is no dog wrestling and

hugging

0.575 0.6306

15 A brown dog is attacking another

animal in front of the man in

pants

There is no dog wrestling and

hugging

0.425 0.4920

16 Two dogs are wrestling and hug-

ging

A brown dog is attacking another

animal in front of the tall man in

pants

0.475 0.4950

17 Two dogs are wrestling and hug-

ging

A brown dog is helping another

animal in front of the man in

pants

0.325 0.5034

19 A person in a black jacket is doing

tricks on a motorbike

A man in a black jacket is doing

tricks on a motorbike

0.975 0.95

Listing A.1: Code snippet for shortest path distance

def length_between_synsets(synset_1, synset_2):

set_1 = set()

set_2 = set()

length = sys.maxint

if synset_1 is None or synset_2 is None:

return length

if synset_1 == synset_2:

length = 0.0

else:

"check for common elements in set"

for x in synset_1.lemmas():

set_1.add(str(x.name()))

for y in synset_2.lemmas():

set_2.add(str(y.name()))

if len(set_1.intersubsection(set_2)) > 0:

length = 1

else:

length = synset_1.shortest_path_distance(synset_2)

if length is None:

length = 0.0

74

return math.exp(-ALPHA * length)

Listing A.2: Code snippet for hierarchical distance

def hierarchical_distance(synset_1, synset_2):

distance = sys.maxint

hypernyms_dict_1 = {}

hypernyms_dict_2 = {}

if synset_1 is None or synset_2 is None:

return distance

if synset_1 == synset_2:

distance = max(x[1] for x in synset_1.hypernym_distances())

else:

for x in synset_1.hypernym_distances():

hypernyms_dict_1[x[0]] = x[1]

for y in synset_2.hypernym_distances():

hypernyms_dict_2[y[0]] = y[1]

least_common_subsumers =

set(hypernyms_dict_1.keys()).intersubsection(set(hypernyms_dict_2.keys()))

if len(least_common_subsumers) > 0:

lcs_distances = []

for least_common_subsumer in least_common_subsumers:

d1 = 0

if hypernyms_dict_1.has_key(least_common_subsumer):

d1 = hypernyms_dict_1[least_common_subsumer]

d2 = 0

if hypernyms_dict_2.has_key(least_common_subsumer):

d2 = hypernyms_dict_2[least_common_subsumer]

lcs_distances.append(max([d1, d2]))

distance = max(lcs_distances)

else:

75

distance = 0

return (math.exp(BETA * distance) - math.exp(-BETA * distance)) / (

math.exp(BETA * distance) + math.exp(-BETA * distance))

Listing A.3: Synset with maximum frequency of occurence

def return_max_frequency_synset(word,ps):

i = 0

old_frequency = 0

dict = {}

return_syn=None

syns = wordnet.synsets(word,pos=ps)

for s in syns:

for l in s.lemmas():

new_frequency=str(l.count())

if int(new_frequency)>=int(old_frequency):

return_syn=syns[i]

i+=1

return return_syn

Listing A.4: Formation of sematic vectors for sentences

def form_value_vector(d1, d2):

form a semantic vector for sentences

#d1 and d2 are the list of tagged words for s1 and s2 respectively

global similarity_values

global data

global div_index

a = len(d1)

b = len(d2)

length = max(a, b)

div_index = min(a, b)

avg = 0

i = 0

j = 0

76

semantic_vector = np.zeros(length)

semantic_vector.fill(0)

disambiguate_similarity=0.0

max_frequency_similarity=0.0

for w1 in d1:

previous_avg=0

for w2 in d2:

#tuple[0][1] is disambiguated tuple and tuple[1] is maximum frequency

tuple

if ".n." in str(w1[0][1]) and ".n." in str(w2[0][1]):

disambiguate_similarity = word_similarity(w1[0][1], w2[0][1])

max_frequency_similarity = word_similarity(w1[1], w2[1])

if ".v." in str(w1[0][1]) and ".v." in str(w2[0][1]):

disambiguate_similarity = word_similarity(w1[0][1], w2[0][1])

max_frequency_similarity = word_similarity(w1[1], w2[1])

key = w1[0][0], w2[0][0]

previous_key = ’ ’.join(key)

if disambiguate_similarity == 0.0:

previous_avg = max_frequency_similarity

elif max_frequency_similarity == 0.0:

previous_avg = disambiguate_similarity

else:

previous_avg = (disambiguate_similarity +

max_frequency_similarity) / 2.0

data[previous_key] = previous_avg

similarity_values = json.dumps(data)

if avg < previous_avg:

avg = previous_avg

semantic_vector[i] = avg

77

i = i + 1

avg = 0

key = ""

return semantic_vector

Listing A.5: Bloom’s Index

def stanford_pos_tagger(statement):

home = ’/home/atish’

from nltk.tag.stanford import StanfordPOSTagger as POS_Tag

_path_to_model = home +

’/stanford-postagger/models/english-bidirectional-distsim.tagger’

_path_to_jar = home + ’/stanford-postagger/stanford-postagger.jar’

st = POS_Tag(model_filename=_path_to_model, path_to_jar=_path_to_jar)

return st.tag(statement.split())

def bloom_lookup(v): #returns the numerical value of the domain to which

the verb belongs

#Action words for bloom taxonomy

knowledge = ["select", "list", "name", "define", "describe",

"memorize", "label", "identify", "locate", "recite","state",

"recognize"]

comprehension = ["discuss","match", "restate", "paraphrase",

"rewrite", "give examples", "express", "illustrate",

"explain","defend", "distinguish", "summarize", "interrelate",

"interpret", "extend"]

application = ["use","write","organize", "generalize", "dramatize",

"prepare", "produce", "choose", "sketch", "apply", "solve", "draw",

"show", "paint"]

analysis = ["compare", "analyze","analyse", "classify", "point out",

"distinguish", "categorize", "differentiate","subdivide", "infer",

"survey", "select", "prioritize"]

synthesis = ["compose", "originate", "hypothesize", "develop",

"design", "combine", "construct", "plan", "create","invent",

"organize"]

evaluation = ["judge", "relate", "weight", "criticize", "support",

"evaluate", "consider", "critique", "recommend","summarize",

78

"appraise", "compare","predict"]

if v in knowledge:

return 1

if v in comprehension:

return 2

if v in application:

return 3

if v in analysis:

return 4

if v in synthesis:

return 5

if v in evaluation:

return 6

def bloom_verbs(list_of_tagged_tokens): #returns verbs

list_of_verbs={}

for token in list_of_tagged_tokens:

#print token

pos= str(token).split(’,’)[1]

pos= pos.split("’")[1]

#print pos

if pos=="VB": #if it is a verb, then look it up in bloom taxonomy

#print token[0]

action_verb=str(token[0]).lower()

list_of_verbs[action_verb]=bloom_lookup(action_verb)

#bt=bloom_lookup(token[0].lower())

#print list_of_verbs

return list_of_verbs

def bloom_index(action_verbs_list_1,action_verbs_list_2):

comparisons=0

total_bloom_similarity=0

for verb1,value1 in action_verbs_list_1.iteritems():

for verb2,value2 in action_verbs_list_2.iteritems():

#print verb1, value1

#print verb2,value2

79

distance=abs(value1-value2)

print "Distance:",distance

absolue_bloom_index= -0.20*distance+1.0

print "AB",absolue_bloom_index

total_bloom_similarity=total_bloom_similarity+absolue_bloom_index

print total_bloom_similarity

comparisons=comparisons+1

print "\n"

print "comparisons=",comparisons

print "Bloom index=", (total_bloom_similarity / comparisons)

d1=stanford_pos_tagger("apply chemical knowledge to integrate knowledge

gained in other courses and to better understand the connections

between the various branche")

action_verbs_list_1=bloom_verbs(d1)

#print "\n"

d2=stanford_pos_tagger("To become familiar with the structures of organic

molecules, especially those found in nature or those with important

biological effects.")

action_verbs_list_2=bloom_verbs(d2)

bloom_index(action_verbs_list_1,action_verbs_list_2)

Listing A.6: Corpus compilation

import wikipedia

count=0

count2=0

#read names of Wikipedia pages from collected from petscan API

petscan = open("wiki_data_petscan_level4.py", "a")

petscan.write("doc=[")

with open(’level4tsv’) as f:

for line in f:

count2=count2+1

#page = line.split(",")[1].strip("’").strip(’"’)

title = line.split(" ")[0].split("\t")[1]

if petscan.closed:

80

petscan = open("wiki_data_petscan_level4.py", "a")

#remove ascii characters from the text so that corpus can be compied

using python

try:

cs = wikipedia.page(title)

petscan.write(’"""’)

all_ascii = ’’.join(char for char in cs.content if ord(char) <

128)

if all_ascii.endswith(’"’):

all_ascii = ’’.join(char for char in cs.content if ord(char)

< 128)[:-1]

if all_ascii.startswith(’"’):

all_ascii = ’’.join(char for char in cs.content if ord(char)

< 128)[1:]

doc.append(all_ascii)

petscan.write(all_ascii)

petscan.write(’""",’)

count = count + 1

except:

pass

#flush the IO streams after dumping textual data from 5 pages

if count % 5 == 0:

petscan.flush()

petscan.close()

print "Dumped:",count2

if petscan.closed:

petscan = open("wiki_data_petscan_level4.py", "a")

petscan.write("]")

Listing A.7: Training word2vec using compiled corpus

from gensim.models import Word2Vec

from wikiCorpus import doc

81

stoplist = set(’for a of the and to in’.split())

texts = [[word for word in document.lower().split() if word not in

stoplist]for document in doc]

remove words that appear only once

from collections import defaultdict

frequency = defaultdict(int)

for text in texts:

for token in text:

frequency[token] += 1

texts = [[token for token in text if frequency[token] > 1]

for text in texts]

model = Word2Vec(texts,size=300,window=10,min_count=2, workers=4)

model.save("CompModel")

#print model.similarity(’language’,’python’)

#model.wv.save_word2vec_format(’CompModel_format_level4’)

82

Bibliography

[1] thesaurus.com api. https://github.com/Manwholikespie/thesaurus-api.

[2] Wikipedia english language contractions. https://en.wikipedia.org/wiki/

Wikipedia:ListofEnglishcontractions.

[3] Vibhanshu Abhishek and Kartik Hosanagar. Keyword generation for search

engine advertising using semantic similarity between terms. In Proceedings of

the ninth international conference on Electronic commerce, pages 89–94. ACM,

2007.

[4] Gina M Almerico and Russell K Baker. Blooms taxonomy illustrative verbs:

Developing a comprehensive list for educator use. Florida Association of Teacher

Educators Journal, 1(4):1–10, 2004.

[5] Lorin W Anderson, David R Krathwohl, P Airasian, K Cruikshank, R Mayer,

P Pintrich, James Raths, and M Wittrock. A taxonomy for learning, teach-

ing and assessing: A revision of blooms taxonomy. New York. Longman Pub-

lishing. Artz, AF, & Armour-Thomas, E.(1992). Development of a cognitive-

metacognitive framework for protocol analysis of mathematical problem solving

in small groups. Cognition and Instruction, 9(2):137–175, 2001.

[6] Alan D Baddeley. Short-term memory for word sequences as a function of acous-

tic, semantic and formal similarity. The Quarterly Journal of Experimental Psy-

chology, 18(4):362–365, 1966.

[7] John B Biggs and Kevin F Collis. Evaluating the quality of learning: The SOLO

taxonomy (Structure of the Observed Learning Outcome). Academic Press, 2014.

[8] Steven Bird. Nltk: the natural language toolkit. In Proceedings of the COL-

ING/ACL on Interactive presentation sessions, pages 69–72. Association for

Computational Linguistics, 2006.

https://github.com/Manwholikespie/thesaurus-api
https://en.wikipedia.org/wiki/Wikipedia:List of English contractions
https://en.wikipedia.org/wiki/Wikipedia:List of English contractions

83

[9] Johannes Bjerva, Johan Bos, Rob Van der Goot, and Malvina Nissim. The

meaning factory: Formal semantics for recognizing textual entailment and de-

termining semantic similarity. In Proceedings of the 8th International Workshop

on Semantic Evaluation (SemEval 2014), pages 642–646, 2014.

[10] Danushka Bollegala, Yutaka Matsuo, and Mitsuru Ishizuka. Measuring semantic

similarity between words using web search engines. 16th international conference

on World Wide Web, 7:757–766, 2007.

[11] François Chollet. Keras, 2015.

[12] Günes Erkan and Dragomir R Radev. Lexrank: Graph-based lexical centrality

as salience in text summarization. Journal of Artificial Intelligence Research,

22:457–479, 2004.

[13] Christiane Fellbaum. WordNet. Wiley Online Library, 1998.

[14] John R Firth. A synopsis of linguistic theory, 1930-1955. Studies in linguistic

analysis, 1957.

[15] Mary Forehand. Blooms taxonomy. Emerging perspectives on learning, teaching,

and technology, 41(4):47–56, 2010.

[16] W Nelson Francis and Henry Kucera. Brown corpus. Department of Linguistics,

Brown University, Providence, Rhode Island, 1, 1964.

[17] André Freitas, João Oliveira, Seán ORiain, Edward Curry, and João Pereira da

Silva. Querying linked data using semantic relatedness: a vocabulary indepen-

dent approach. Natural Language Processing and Information Systems, 8:40–51,

2011.

[18] Philippe J Giabbanelli, Thomas Torsney-Weir, and Vijay Kumar Mago. A fuzzy

cognitive map of the psychosocial determinants of obesity. Applied soft comput-

ing, 12(12):3711–3724, 2012.

[19] Lori Goff, Michael K Potter, Eleanor Pierre, Thomas Carey, Amy Gullage, Erika

Kustra, Rebecca Lee, Valerie Lopes, Leslie Marshall, Lynn Martin, et al. Learn-

ing outcomes assessment a practitioner’s handbook. 2015.

[20] Jonathan Goldsmith. Wikipedia api. https://pypi.org/project/wikipedia/.

84

[21] Turku NLP Group. Word embeddings induced using the word2vec method.

http://bionlp-www.utu.fi/wv demo/.

[22] Hua He, Kevin Gimpel, and Jimmy Lin. Multi-perspective sentence similarity

modeling with convolutional neural networks. In Proceedings of the 2015 Con-

ference on Empirical Methods in Natural Language Processing, pages 1576–1586,

2015.

[23] Zhen He, Shaobing Gao, Liang Xiao, Daxue Liu, Hangen He, and David Barber.

Wider and deeper, cheaper and faster: Tensorized lstms for sequence learning.

In Advances in Neural Information Processing Systems, pages 1–11, 2017.

[24] M Honnibal. Spacy (version 1.3. 0), 2016.

[25] Verbs Cognitive Level Illustrative. Blooms taxonomy of measurable verbs. Center

for Teaching & Learning— The University of Georgia— ctl. uga. edu, 706:1355.

[26] Google Inc. Word distribution. https://projector.tensorflow.org/.

[27] Aminul Islam and Diana Inkpen. Semantic text similarity using corpus-based

word similarity and string similarity. ACM Transactions on Knowledge Discovery

from Data (TKDD), 2(2):10–36, 2008.

[28] Jay J Jiang and David W Conrath. Semantic similarity based on corpus statistics

and lexical taxonomy. arXiv preprint cmp-lg/9709008, 1997.

[29] Sergio Jimenez, George Duenas, Julia Baquero, and Alexander Gelbukh. Unal-

nlp: Combining soft cardinality features for semantic textual similarity, relat-

edness and entailment. In Proceedings of the 8th International Workshop on

Semantic Evaluation (SemEval 2014), pages 732–742, 2014.

[30] Yoon Kim. Convolutional neural networks for sentence classification. arXiv

preprint arXiv:1408.5882, 2014.

[31] Youngjoong Ko, Jinwoo Park, and Jungyun Seo. Improving text categoriza-

tion using the importance of sentences. Information processing & management,

40(1):65–79, 2004.

[32] David R Krathwohl. A revision of bloom’s taxonomy: An overview. Theory into

practice, 41(4):212–218, 2002.

85

[33] Frankie Santos Laanan. Transfer student adjustment. New directions for com-

munity colleges, 2001(114):5–13, 2001.

[34] Alice Lai and Julia Hockenmaier. Illinois-lh: A denotational and distributional

approach to semantics. In Proceedings of the 8th International Workshop on

Semantic Evaluation (SemEval 2014), pages 329–334, 2014.

[35] Ming Che Lee, Jia Wei Chang, and Tung Cheng Hsieh. A grammar-based se-

mantic similarity algorithm for natural language sentences. The Scientific World

Journal, 2014, 2014.

[36] Yuhua Li, David McLean, Zuhair A Bandar, James D O’shea, and Keeley Crock-

ett. Sentence similarity based on semantic nets and corpus statistics. IEEE

transactions on knowledge and data engineering, 18(8):1138–1150, 2006.

[37] Dekang Lin et al. An information-theoretic definition of similarity. In Icml,

volume 98, pages 296–304, 1998.

[38] Phillip W. Lord, Robert D. Stevens, Andy Brass, and Carole A. Goble. Inves-

tigating semantic similarity measures across the gene ontology: the relationship

between sequence and annotation. Bioinformatics, 19(10):1275–1283, 2003.

[39] Vijay K Mago, Laurens Bakker, Elpiniki I Papageorgiou, Azadeh Alimadad,

Peter Borwein, and Vahid Dabbaghian. Fuzzy cognitive maps and cellular au-

tomata: An evolutionary approach for social systems modelling. Applied Soft

Computing, 12(12):3771–3784, 2012.

[40] Vijay K Mago, Hilary K Morden, Charles Fritz, Tiankuang Wu, Sara Namazi,

Parastoo Geranmayeh, Rakhi Chattopadhyay, and Vahid Dabbaghian. Analyzing

the impact of social factors on homelessness: a fuzzy cognitive map approach.

BMC medical informatics and decision making, 13(1):94, 2013.

[41] Vijay Kumar Mago, Anjali Mago, Poonam Sharma, and Jagmohan Mago. Fuzzy

logic based expert system for the treatment of mobile tooth. In Software Tools

and Algorithms for Biological Systems, pages 607–614. Springer, 2011.

[42] Vijay Kumar Mago, Bhanu Prasad, Ajay Bhatia, and Anjali Mago. A decision

making system for the treatment of dental caries. In Soft computing applications

in business, pages 231–242. Springer, 2008.

86

[43] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven

Bethard, and David McClosky. The stanford corenlp natural language processing

toolkit. In Proceedings of 52nd annual meeting of the association for computa-

tional linguistics: system demonstrations, pages 55–60, 2014.

[44] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a

large annotated corpus of english: The penn treebank. Computational linguistics,

19(2):313–330, 1993.

[45] Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella

Bernardi, Roberto Zamparelli, et al. A sick cure for the evaluation of com-

positional distributional semantic models. In LREC, pages 216–223, 2014.

[46] Yutaka Matsuo and Mitsuru Ishizuka. Keyword extraction from a single docu-

ment using word co-occurrence statistical information. International Journal on

Artificial Intelligence Tools, 13(01):157–169, 2004.

[47] Charles T Meadow. Text information retrieval systems. Academic Press, Inc.,

1992.

[48] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation

of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[49] George A Miller. Wordnet: a lexical database for english. Communications of

the ACM, 38(11):39–41, 1995.

[50] George A Miller and Walter G Charles. Contextual correlates of semantic simi-

larity. Language and cognitive processes, 6(1):1–28, 1991.

[51] Jonas Mueller and Aditya Thyagarajan. Siamese recurrent architectures for

learning sentence similarity. In AAAI, pages 2786–2792, 2016.

[52] CUDA Nvidia. Programming guide, 2010.

[53] James O’Shea, Zuhair Bandar, Keeley Crockett, and David McLean. Pilot short

text semantic similarity benchmark data set: Full listing and description. Com-

puting, 2008.

[54] Ted Pedersen, Satanjeev Banerjee, and Siddharth Patwardhan. Maximizing se-

mantic relatedness to perform word sense disambiguation. University of Min-

nesota supercomputing institute research report UMSI, 25:2005, 2005.

87

[55] Ted Pedersen, Serguei VS Pakhomov, Siddharth Patwardhan, and Christopher G

Chute. Measures of semantic similarity and relatedness in the biomedical domain.

Journal of biomedical informatics, 40(3):288–299, 2007.

[56] Catia Pesquita, Daniel Faria, Andre O Falcao, Phillip Lord, and Francisco M

Couto. Semantic similarity in biomedical ontologies. PLoS computational biology,

5(7):e1000443, 2009.

[57] Radim Řeh̊uřek and Petr Sojka. Software Framework for Topic Modelling with

Large Corpora. pages 45–50, May 2010.

[58] Philip Resnik et al. Semantic similarity in a taxonomy: An information-based

measure and its application to problems of ambiguity in natural language. J.

Artif. Intell. Res.(JAIR), 11:95–130, 1999.

[59] Herbert Rubenstein and John B Goodenough. Contextual correlates of syn-

onymy. Communications of the ACM, 8(10):627–633, 1965.

[60] John M Sinclair. Looking up: An account of the COBUILD project in lexical

computing and the development of the Collins COBUILD English language dic-

tionary. Collins Elt, 1987.

[61] Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic

representations from tree-structured long short-term memory networks. arXiv

preprint arXiv:1503.00075, 2015.

[62] Liling Tan. Pywsd: Python implementations of word sense disambiguation (wsd)

technologies [software]. https://github.com/alvations/pywsd.

[63] Giannis Varelas, Epimenidis Voutsakis, Paraskevi Raftopoulou, Euripides GM

Petrakis, and Evangelos E Milios. Semantic similarity methods in wordnet and

their application to information retrieval on the web. In Proceedings of the 7th

annual ACM international workshop on Web information and data management,

pages 10–16. ACM, 2005.

[64] wikimedia. Petscan api. https://petscan.wmflabs.org/.

[65] Torsten Zesch, Iryna Gurevych, and Max Mühlhäuser. Analyzing and accessing

wikipedia as a lexical semantic resource. Data Structures for Linguistic Resources

and Applications, pages 197–205, 2007.

88

[66] Jiang Zhao, Tiantian Zhu, and Man Lan. Ecnu: One stone two birds: Ensemble

of heterogenous measures for semantic relatedness and textual entailment. In

Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval

2014), pages 271–277, 2014.

[67] George Kingsley Zipf. Selected studies of the principle of relative frequency in

language. 1932.

[68] George Kingsley Zipf. The meaning-frequency relationship of words. The Journal

of General Psychology, 33(2):251–256, 1945.

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Challenging the boundaries of unsupervised learning for semantic similarity
	Introduction
	Related Work
	Methodology
	Pass 1: Maximize the similarity
	Pass 2: Bound the similarity

	Implementation using Semantic nets
	The Database - WordNet
	Illustrative example

	Experimental Results
	Word similarity
	Sentence similarity: R&G
	Sentence similarity: SICK

	Computational Comparison
	Comparison of hardware requirements(space complexity) for the proposed method vs. recent methods
	Comparison of the complexity of the proposed method vs. recent methods

	Discussion & Future Work
	Conclusions

	Similarity between Learning Objectives from Course Outlines using Semantic Analysis, Bloomâ•Žs taxonomy and Corpus statistics
	Introduction
	Methodology
	Semantic similarity algorithm
	Bloom's taxonomy
	Corpus statistics
	Information content of the word

	Implementation
	The Databse - WordNet
	Corpus statistics
	Bloom's Taxonomy
	Illustrative Example

	Experimental Results
	Conclusion & Future Work

	Word embeddings for semantic similarity using Wikipedia as a corpus
	Introduction
	Methodology
	Building a domain specific corpus
	Word Similarity

	Experimental Results
	Some of the notable differences in similarities for word pairs using general purpose corpus vs. the computing corpus

	Computational Requirements
	Conclusion & Future Work

	
	Bibliography

