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Abstract 

Canada is known for its abundant forests and thriving forest products industry. For every ton of 

paper produced in mills across the country, approximately 30 kg of dry primary sludge is produced. 

The dry sludge is then either shipped to landfills or incinerated along with dried secondary sludge. 

However, this waste stream has the potential to be used more efficiently for the production of 

higher value products. Primary sludge is cellulosic in nature and contain fractions of hemicellulose, 

lignin and ash. Cellulose in the primary sludge is more accessible to enzymatic hydrolysis as 

compared to natural lignocellulosic biomass due to the physico-chemical treatment, that wood 

undergoes during pulping process. This stream was used to produce fermentable reducing sugars 

using enzymatic hydrolysis. Supplementation of β-glucosidase enzyme (1:0.5) reduced the time 

required for 35% conversion to 24 hours instead of 96 hours. The hydrolysate obtained for four 

days contained 41 g/l of glucose based on 81 % conversion of the cellulosic fraction in the primary 

sludge with β-glucosidase supplementation to a level of 1:2. The obtained hydrolysate was 

fermented to produce microbial lipids using oleaginous yeasts strains (Cryptococcus curvatus). 

The fatty acid compositions of microbial lipids produced were found to similar to vegetable oil. It 

thus can be used as a feedstock for the production biodiesel and other value-added products which 

in turn can add to the revenue of the industry.  
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Abbreviation 
PMS- Paper mill sludge 

PPMS- Primary paper mill sludge  

PMI- Paper mill industry 

HPLC- High pressure liquid chromatography  
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NREL- National renewable energy laboratory 

FPU- Filter paper unit 

BG- β-glucosidase  

PT- Pretreatment 

CC- Cryptococcus curvatus 

CBH- Cellobiohydrolase  

TG- Triglyceride 
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OD- Oven dry 
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Greenhouse gases such as carbon dioxide and methane have a severe effect on the environment. 

The resulting effects of global warming and climate change has led to major negotiations between 

various countries in the world (Balat, 2011).  Climate mitigation efforts include substituting fossil 

resources by renewable bio-based products for the production of fuels and chemicals. At the 

moment, the energy contribution by the bio-sector is only 10-15 % of the total energy use. The 

possibility of producing chemicals and plastics from renewable resources is an important option 

(Chandra et al., 2012). 

Biorefineries are being studied to produce bio-fuels and high demand platform chemicals (Succinic 

acid, levulinic acid, maleic acid, etc) from renewable resource (Dalli et al., 2017). The cost of the 

raw material to produce bio-based products is one of the important criteria for the feasibility of the 

project. It is very important to find  substrate which are cheap, renewable and not a threat to food 

security.  Hence, biorefineries research is focused on the use of lignocellulosic such as forest 

residues, agricultural and industrial waste. Using a waste material as a substrate not only improves 

the economics of the industry but also solves environmental issues related to its disposal.  

 The pulp and paper industry use wood as its raw material to produce newspapers, specialty paper, 

market pulp and wood products. For a very long-time paper mill industry has had considerable 

influence on the Canadian economy and its citizens (Pokhrel et al., 2004). Annually, around 31 

million tons of cellulose pulp is produced. This accounted to revenues of $6 billion in 2012 

(Pervaiz & Sain, 2015). Subsequently, huge quantity of wastewater and solid waste are generated 

and can potentially pollute lakes, air and soil (Pervaiz & Sain, 2015). 

 The second most important resource that is used in the in the paper Mill Industry (PMI) is water. 

Somewhere between 20,000 and 60,000 gallons of water per ton of product produced is used in 

the industry (Pokhrel et al., 2004).  Kamali et al., (2016) has reported that around 88 % of the water 
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used in the industry is returned to its source after proper wastewater treatment, adhering to the 

guidelines set by local authorities. Currently, the activated sludge process is the most common 

system used by paper mill sludge for effluent treatment (Kamali et al., 2016). While processing 

the wastewater two different kinds of sludge, primary and secondary are produced (Faubert et al., 

2016). Primary sludge is solid in nature and basically consists of short fibers, clay and filler 

materials (Alkasrawi et al., 2016). Since these solid residues are from pulping industry the fibrous 

material that is collected in the primary clarifier of the effluent treatment plant is highly cellulosic 

in nature. The cellulosic material has also undergone mechanical and chemical pretreatment and 

is relatively free of lignin (Chen et al., 2014a). The cellulose fraction in the sludge, which is as 

high as 50-80 % (dry basis), can be hydrolyzed using acid or enzymes to produce glucose. The 

monosaccharides obtained can be fermented using various microbes to produce different value-

added product.  

Microbial lipids have become a focus of considerable research in the bio-fuel industry. The lipids 

produced from sugars and wastes using oleaginous microorganism have similar properties to 

vegetable oil, which is mostly commonly used for the production of bio-diesel (Yu et al., 2011). 

Using a waste stream to produce sugars, and subsequently microbial oil, will not only end the food 

versus fuel debate but also make the bio-fuel production economical (Fei et al., 2016).  

The overall objective of this work is to utilize the primary sludge from a pulp and paper mill and 

hydrolyze enzymatically to produce fermentable sugars and subsequently produce microbial lipids 

that can be converted to biodiesel easily.  
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The specific objectives of the study were: 

i. To optimize conditions using commercial cellulase enzymes for the 

production of fermentable sugars from primary paper mill sludge. 

ii. Determination of the correct ratio of cellulase and β- glucosidase 

enzyme for high yields and productivity of glucose syrups. 

iii. Optimization of conditions for the fermentative production of 

microbial lipids from the cellulosic glucose syrups. 
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2.1. Composition of Lignocellulosic Biomass 
Lignocellulosic biomass is an amalgam of cellulose, hemicellulose and lignin, which are bound 

together, intricately, resulting in a complex structure. Other than these three-major components 

(Fig 2.1), these resources contain pectin, proteins, ash, salts and minerals (Van Dyk & pletschke, 

2012). The complexity of the chemical structure makes the lignocellulosic biomass recalcitrant to 

depolymerization. 

 

Figure 2.1:Composition of lignocellulosic Biomass (Amin et al., 2017) 

Lignocellulose is the primary building block of plant cell walls. Kumar et al,(2009) reported that 

approximately 90 % of the total plant material(dry weight) consists of cellulose, hemicellulose, 

lignin and pectin. The composition of individual compounds varies from plant to plant as can be 

observed in Table 2.1. For example, the cellulose component can be as low as 6 % in swine waste 

or as high as 99 % in paper waste. However, in naturally occurring substances these distributions 

fall in a small range but have different chemical properties. Even the same lignocellulosic biomass 
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harvested in different batches have different compositions (Van Dyk & pletschke, 2012).  The 

covalent and non-covalent linkages formed between the cellulose, hemicellulose and lignin in the 

plant cell wall, provides plants, strength and rigidity and protects it from microbial degradation 

(Kumar et al., 2009; Sun et al., 2016). 

Table 2.1: Cellulose, hemicellulose and lignin content in common agricultural residue and 
wastes (Kumar et al.,2009)  

Lignocellulosic material  Cellulose (%) Hemicellulose (%) Lignin (%) 

Hardwood stems 40-55 24-40 18-25 
Softwood stems 45-50 25-35 25-35 

Nut shells 25-30 25-30 30-40 
Corn cobs 45 35 15 
grasses 25-40 35-50 10-30 
paper 85-99 0 0-15 
Wheat straw 30 50 15 
Sorted refuse 60 20 20 
Leaves 15-20 80-85 0 
Cotton seed hairs 80-95 5-20 0 
Newspaper 40-55 25-40 18-30 
Solid cattle manure 1.6-4.7 1.4-3.3 2.7-5.7 
Coastal bermudagrass 25 35.7 6.4 
Switchgrass 45 31.4 12 
Swine waste 6.0 28 na 

 

For producing biofuels, the polymeric carbohydrates (cellulose and hemicellulose) in the 

lignocellulose must be broken down to monomeric sugars, which can be converted to useful 

products by the microbial cultures by fermentation (Amin et al., 2017). The recalcitrant nature of 

the lignocellulose makes it difficult to break down and therefore must undergo various 

pretreatment.  The objective of pretreatment is to expose the cellulose, so that it can hydrolyzed 

into monosaccharides (Kumar et al., 2009). This is one of the major bottlenecks to the use of such 

resources for biorefinery.  
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2.1.1 Cellulose 
Cellulose is the most abundant organic polymer with a well-organized linear series structure of D-

glucose units linked to each other by β-1-4 glycosidic bonds. These cellulose chains are further 

attached together by hydrogen and van der waals bonds. There are two types of cellulose polymers, 

crystalline and amorphous (Kumar et al., 2009). In the crystalline region of cellulose, the cellulose 

chains are bound together in parallel orientation in a compact manner, which makes it difficult to 

break down chemically or biologically. The amorphous part of cellulose has loosely bound 

cellulose series which are irregular in shape and are very easily hydrolysable (Sun et al., 2016; 

Van Dyk & Pletschke, 2012).  Irrespective of its bonding with hemicellulose and lignin, the 

digestibility of cellulose is highly dependent on its crystallinity (Sun et al., 2016), which is not 

easy to digest.   

2.1.2 Hemicellulose  
Hemicellulose has a complex structure, consisting of both pentose (xylose and arabinose) and 

hexoses (mannose, glucose and galactose) sugars (Hendricks & Zeeman, 2009). Hemicellulose are 

sensitive to thermo-chemical reactions, making it easily hydrolysable at milder conditions(dilute-

acid). The components of hemicellulose may vary from plants to plants. For example, xylan is 

more prominently found in hardwood and agricultural plants, as compared to glucomannan that 

are found in softwood (Hendricks & Zeeman, 2009). It also plays a role as a binding agent in the 

plant cell wall, binding the cellulose and lignin, resulting in a rigid structure capable of 

withstanding extreme weather conditions. Removal of hemicellulose is very important for 

increasing the porosity of lignocellulose, eventually improving the yield of enzyme hydrolysis of 

cellulose to sugars (Sun et al., 2016).  
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2.1.3 Lignin  
Lignin is high molecular weight compound and a heterogenous polymer. The basic structure of 

lignin is made up of three phenyl propionic alcohols: coniferyl alcohol, coumaryl alcohol and 

sinapyl alcohol (figure 2.2). These phenolic monomers are linked to one another using alkyl-aryl, 

alkyl-alkyl and aryl-aryl ether bonds (Kumar et al., 2009). In the plant cell wall, it usually fills in 

the space between the carbohydrates and forms a protective layer, providing toughness and 

impermeability.  Characteristics such as insolubility in water and optical inactivity, makes it 

difficult to degrade (Hendriks & Zeeman, 2009).  Removal of lignin from the lignocellulosic 

biomass reduces the unwanted adsorption of enzymes on the lignin surface, as well as improves 

the pore size of the biomass (Sun et al., 2016). While providing the structure and resistance to 

plants in nature, this compound prevents the easy conversion of cellulose like polymers to useful 

chemicals.   

 

 

Figure 2.2: Basic three components of lignin (Meng & Ragauskas, 2014) 
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2.2 Paper mill sludge (PMS) 
Paper mill sludge is a solid waste that is produced during the effluent treatment of pulp and paper 

mill industry. The Activated sludge process is the most common technique followed in the paper 

mill industry (PMI) for wastewater effluent treatment. As shown in figure 2.3, the wastewater first 

goes through the primary clarifier, where the larger size particles are retained, and the clear effluent 

goes to secondary clarifier for further biological treatment. The material that is retained in the 

primary clarifier is known as primary sludge and the sludge that is obtained after the biological 

degradation in the secondary clarifier is known as secondary sludge or biological sludge (Likon & 

trebse, 2012). The other two kinds of sludge that are found in the industry is mixed sludge, which 

is a mixture of different proportions of primary and secondary sludge, and de-inked sludge, which 

is produced in paper mill using recycled pull. 

 

Figure 2.3: Schematic diagram of paper mill sludge 
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 The Pulp and Paper Mill Sludge (PPMS) mainly consist of short fibers, clays and filler material, 

which adds on to the effluent stream throughout the paper making process (Chen et al.,2014b).  

The characteristics of the sludge is highly dependent on the raw materials and the technology used 

for processing of wood into pulp in the paper mill industry (Pervaiz & Sain, 2015; Kamali et al., 

2016). The difference in their properties can be seen in Table 2.2. Paper mills which uses recycled 

pulp, tend to produce two to four times of sludge as compared to Virgin pulp mills. The ash content 

of sludge from recycled pulp is also high, due to the deinking step involved in the pulping process 

(Likon & Trebse, 2012). 

Table 2.2 :Physical and chemical properties of a typical sludge (Faubert et al., 2016) 

 

The important factors that make PMS pivotal for the production of bio-fuels and other value-added 

product is its zero cost and absence of the need for pretreatment before further processing. Since 

the sludge is a waste stream of the paper mill industry, there is no cost associated with it. While 

dealing with hydrolysis of lignocellulosic biomass, pretreatment is a very crucial step, which 

separates the hemicellulose and cellulose from the lignin fraction, thereby making the 

carbohydrates more susceptible to enzymatic digestion (Mendes et. al., 2016). In case of PMS, 

during the paper making process the sludge undergoes various physical & chemical process, like 

cooking, bleaching and refining, resulting in fine fibrous material with high surface area. Hence, 
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pretreatment of this material is not necessary, reducing the overall cost of sludge hydrolysis 

process (Chen et al., 2014a). 

 The presence of high ash content and other filler material can be disadvantageous as it leads to 

inefficient enzymatic hydrolysis. Chen et al, (2014a) also reported that acid soluble ash like 

CaCO3, not only act as a buffering agent but also adsorbs the cellulase enzyme with higher affinity 

as compared to cellulose fibers and helps in reducing enzyme loading capacity. 

2.2.1 Primary Sludge 
The sludge which is produced by sedimentation or dissolved air floatation in a primary clarifier of 

paper mill effluent treatment plant is known as primary sludge. They are highly fibrous in nature 

and contain 1.5 to 6.5 % solids depending on the methodologies followed in the paper mill. The 

carbon to nitrogen ratio is very high in primary sludge, as most of the nitrogen material is passed 

on to the secondary tank for biological treatment (Pervaiz et al., 2015). The average ratio of 

primary sludge to secondary sludge in a Canadian paper mill is 70:30 and could differ in different 

paper mills (Faubert et al., 2016). The high fibrous nature of primary sludge is attributed to the 

inefficient separation of cellulose pulp from water during the pulping process (Chen et al., 2014b). 

PPMS is a potential feedstock for the biorefining industry because of two reasons: (1) Huge 

quantity of sludge produced (2) Low lignin content, no pretreatment of lignocellulose required.  
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Table 2.3 :Comparison of composition analysis of primary paper mill sludge. 

 Components (%)  

Sr. no Cellulose Hemicellulose Lignin Ash Reference  

1 52.17 7.02 20.92 6.53 Li et al., 2015 

2 60.8 14.2 8.4 10.7 Peng & chen., 2011 

3 32.8 13.9 14.6 NM Deeba et al., 2016 

4 44 11 NM NM Prasetyo et al., 2011 

5 23.6 4.9 5.36 38.3 Zhu et al., 2011 

6 58.6 2.2 39.2 Carvalho et al., 2011 

7 60.4 4.8 34.8 Mendes et al., 2016 

 

2.2.2 Secondary Sludge  
After the primary treatment, clear effluent with dissolved solids enters the secondary tank for 

biological degradation. In the secondary tank, the microorganisms digest the suspended and 

dissolved solids present, thereby reducing the biological oxygen demand (BOD), chemical oxygen 

demand (COD) and total suspended solids (TSS) of the wastewater effluent. Microbial biomass 

and cell debris produced during this process settles in the secondary clarifier and is known as 

secondary sludge (Kamali et al., 2016). Dewatering of secondary sludge is a important issue that 

is faced by paper mill industry. Using the primary sludge as a thickening agent for secondary 

sludge is the most common practice that is followed in the industry before combustion to produce 

energy. The quantity of secondary sludge produced is lower compared to primary sludge as all the 

fibrous cellulosic material is separated in the primary clarifier (Faubert et al., 2016).  
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2.2.3 De-inked sludge 
Paper mills that use recycled paper produces de-inked sludge. It is a complex mixture of organic 

and inorganic solids, as well as the chemical additives which gets included during the de-inking 

process (Abdullah et al.,2015). As compared to primary and secondary sludge, the de-inked sludge 

is less fibrous and contains high quantities of heavy metal, making it less desirable in  fields of 

land application (Likon & Trebse, 2012).  A further treatment of de-inked sludge is required due 

to its high ash and heavy metal content before disposal, which adds as an economical burden on 

the PMI (Pervaiz et al., 2015). Generally, pretreatment is not required for PPMS for enzymatic 

hydrolysis, but, de-inked sludge requires an additional step of deashing for efficient hydrolysis 

(Kang et al., 2011).  

2.3 Hydrolysis of lignocellulosic material 
The main purpose of introducing a pretreatment in a biorefinery industry, is to distort the complex 

and recalcitrant structure of lignocellulose. A good pretreatment technique will not only change 

the physical and chemical structure, but also efficiently separate all three fractions (Cellulose, 

hemicellulose & lignin) of lignocellulose, as shown in the Figure 2.4. This separation helps, 

enzyme or acids, get more access to the long-chain oligosaccharide for further fractionation into 

monosaccharides, during the hydrolysis (Kumar et al., 2009).  A pretreatment step enhances the 

conversion of cellulose to glucose and some studies have also reported conversions to 90% of 

theoretical yield (Mosier et al., 2005). There are four different categories of pretreatment that is 

followed in research, each has its own effect and is applied on the basis of structural and 

compositional analysis of the lignocellulosic biomass (Sun & Cheng, 2002). The four categories 

of pretreatment are: (1) Physical, (2) Physio-chemical, (3) chemical and (4) Biological (Fig. 2.5). 

Each of these methods have their own advantages and dis-advantages (Table 2.4). 
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Figure 2.4: Effect of pretreatment on lignocellulosic biomass (Kumar et al., 2009) 

 

 

 

Figure 2.5 : Types of pretreatment techniques used for lignocellulosic material 
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Table 2.4: Advantages and disadvantages of various pretreatment process (Kumar et 
al.,2009; Alvira et al., 2010; Sun et al., 2016) 

 

2.3.1 Pretreatment techniques for lignocellulosic biomass 
2.3.1.1 Physical pretreatment  
2.3.1.1.1 Mechanical comminution 
The objective behind using mechanical comminution is to fractionate the lignocellulose and reduce 

its size. The shredding of lignocellulosic biomass not only reduces the crystallinity of cellulose but 

also increases the specific surface area. The degree of polymerization is also reduced significantly 

by fractionation. The reduction in size improves the enzyme digestibility as the rate of enzyme 

substrate binding increases. There are combination of steps, such as chipping, grinding or milling, 

which are incorporated as pretreatment for downsizing of long chain polymers. The selection of 

above steps are based on the final particle size required.  The particle size usually observed after 

chipping is around 10-30 mm and 0.2-2 mm after milling or grinding (Alvira et al., 2010).  

Taherzadeh & Karimi, (2008) also reported that, using different milling techniques, such as ball, 

hammer, colloid and vibro energy milling, improved the sugars produced after the enzymatic 

hydrolysis. Even though the production of inhibitory compounds is less as compared to other 

Pretreatment methods  Advantage  Disadvantage  
Mechanical comminution Reduces cellulose crystallinity  High energy input 
Extrusion High continuous throughput Expensive equipment’s  
Steam explosion Causes hemicellulose degradation and 

lignin transformation 
Generation of toxic compounds  

CO2 explosion Increases accessible surface area  High pressure requirement  
Alkali treatment  Simple procedure  Irrecoverable salts formed and 

incorporated into biomass 
Organosolv Separation and recovery of high quality 

lignin 
High price of organic solvent  

Biological treatment Degrades lignin and hemicellulose  
Low energy requirement  

Rate of hydrolysis is very low 
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pretreatment methods, the energy input is really high making it economically not feasible (Alvira 

et al., 2010).   

2.3.1.1.2 Extrusion  
In the extrusion process the raw materials are injected into the extruder with a screw driven setup, 

compression in the middle and expansion at the end (Alvira et al., 2010). The compression, 

expansion and the heat generated due to friction, all these lead to depolymerization of 

lignocellulosic material.  The parameters that are considered using extrusion are reaction time, 

pressure and biomass dry matter. Excessive heat generated during the extrusion process can also 

have a negative effect such as degradation of sugars and amino acid (Zheng et al., 2014). Chang 

& El-Dash (2003) reported 6.8 % higher ethanol production, while using extrusion as pretreatment 

for cassava starch.   

2.3.1.2 Physico-chemical treatment  
2.3.1.2.1 Steam explosion  
Steam explosion is a proven technique that has been widely used for the ethanol production from 

various agricultural residues (poplar, corn stover, etc) (Alvira et al., 2010). Basic procedure for 

steam explosion is to steam the biomass in a huge vessel at high temperature (upto 240 oC) and 

pressure (Hendriks & Zeeman, 2009). High temperature enables the removal of hemicellulose and 

degrade the polymeric lignin. There are some acids which are formed during the steam explosion 

process, Acetic acid, from the acetyl groups that are attached to the hemicellulose. Levulinic and 

formic acid, derivatives of HMF and furfural, are also formed in the hydrolysate due to the excess 

heat in the reactor (Alvira et al., 2010). Hendriks & Zeeman, (2009), reported few steps to avoid 

formation of inhibitory products: (1) removal of condensate during pretreatment, (2) adjusting the 

pH between 5 and 7, (3) using a two-step pretreatment.  There are two types of steam explosion, 

catalyzed and catalyzed (Zheng et al., 2014; Mosier et al., 2005).  In catalyzed steam explosion, 
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acids or base are used to enhance the carbohydrate separation and to reduce the severity of reaction 

conditions (temperature and time).  The most common catalyst that are used for these kind of 

reactions are H2SO4 , SO2, H3PO4 and NaOH (Zheng et al., 2014). In uncatalyzed steam explosion, 

the hydrolysis takes place in absence of any chemical (Mosier et al., 2005).  

2.3.1.2.2 CO2 explosion 
The idea behind CO2 explosion is same as the steam explosion, only CO2 is used instead of water. 

The idea behind using a supercritical fluid (CO2) was to reduce the temperature, so that there is no 

degradation of monomeric sugars (Kumar et al., 2009). It is also reported in few studies that CO2 

when dissolved in water form carbonic acid, which acts as a catalyst and enhances the hydrolysis 

rate (Sun & cheng, 2002).  Though Sugar yields are less as compared to other explosion techniques, 

it requires less operation cost and the sugar yields obtained are better than the sample without 

pretreatment (Alvira et al., 2010).  

2.3.1.3 Chemical pretreatment 
2.3.1.3.1 Alkali treatment  
The objective behind Alkali treatment is to remove the lignin and the hemicellulose from the 

lignocellulosic biomass. The ester linkages between the hemicellulose and lignin gets saponified, 

which increases the porosity and digestibility of the lignocellulosic biomass (Sun et al., 2016). 

There is minimal solubilization of sugar and production of inhibitory compounds, which is 

advantageous as compared to other pretreatment methodologies (Alvira et al., 2010). Sodium 

hydroxide (NaOH), potassium hydroxide (KOH) and calcium hydroxide (Ca(OH)2) are most 

commonly used agents for alkaline treatment (Singh et al., 2014). It is cost effective and also uses 

less severe conditions as compared to other pretreatment methods. NaOH and KOH are frequently 

used alkaline agents, despite of their limitations associated with its reusability and effect on the 

environmental (Amin et al., 2017).  Using lime instead, have found to be an efficient approach, as 
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calcium carbonate, solid state, can be recovered and reused by neutralizing the hydrolysate using 

cheap CO2 (Badiei st al., 2013).  

2.3.1.3.2 Organosolv 
Organosolv pretreatment works on the principle of using a organic solvent with inorganic acid 

catalyst (H2SO4 or HCL), for delinking of hemicellulose and lignin bonds (Kumar et al., 2009). 

Addition of acid catalyst is optional, depending on the yield of xylose required. For delignification 

addition of catalyst is unnecessary, beyond high temperatures (> 185 oC) (Sun & cheng, 2002). 

The most frequently used solvent for organosolvation is ethanol, methanol, acetone, ethylene 

glycol and tetrahydrofurfuryl (Alvira et al., 2010), ethanol being the most favored one because of 

its low toxicity and easy recovery (Sun et al., 2016). The recovery of organic solvents are necessary 

for two reasons; the presence of organic solvent can inhibit microbial fermentation and recovery 

and reuse of solvents would make the process cost effective (Badiei et al., 2013). A generally 

preferred organosolvation conditions are as follows: temperature of 180-190 oC, Cooking time of 

30-90 min, ethanol concentration of 35-70 %(w/w), a liquid to solid ratio of 4:1 to 10:1 (w/w) and 

pH between 2.0 to 3.8 (Kumar et al., 2009). 

2.3.1.4 Biological treatment 
Biological pretreatment is safe as compared to other pretreatment techniques. It is ecofriendly and 

also uses less energy, thereby making it highly suggested ‘cost effective’ method for 

delignification (Kumar et al., 2009). However, the long reaction time and huge space requirement 

has limited its use in the industry. It uses various microorganisms, mostly fungi (white-, brown- 

and soft-rot), for the degradation of lignin and hemicellulose from the lignocellulosic biomass, 

thereby making more accessible space for enzymes to depolymerize cellulose.  White-rot fungi are 

predominantly used because of its ability to produce lignin- degrading enzymes such as peroxidase 

and laccase (Kumar et al., 2009). Phanerochaete crysosporium, Ceriporia lacerata, Cyathus 
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stercoletus, Ceriporiopsis subvermispora,  pycnoporus cinnabarinus and pleurotus ostreatus are 

the various white-rot fungi that are used for the lignocellulosic biomass (Sun et al., 2016).  

2.3.2 Acid Hydrolysis 
Acid hydrolysis can be used as a pretreatment or the only hydrolysis technique to produce 

fermentable sugars from complex lignocellulosic biomass. Acid hydrolysis is considered to be 

advantageous because of its ability to penetrate through lignin and attack the holocellulose 

(Cellulose and hemicellulose) to produce monosaccharides (Verardi et al., 2012). There are few 

studies that have reported using Sulfuric acid, hydrochloric acid, phosphoric acid and nitric acid 

for the hydrolysis of lignocellulosic biomass (Singh et al., 2014). Organic acid such as acetic, 

formic, fumaric, propionic, maleic and oxalic acids have also been used by itself or in combination 

with inorganic acid for acid hydrolysis (Sun et al., 2016). 

 

Figure 2.6: Advantages and disadvantages of acid hydrolysis 

 There are two types of acid hydrolysis; (1) Dilute acid, (2) Concentrated acid. Selection of these 

hydrolysis techniques depends on the composition of lignocellulosic biomass and the yield of sugar 

required. For example, dilute acid hydrolysis is used for the extraction of xylose, as xylans are 
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more prone to depolymerize to xylose at milder conditions as compared to cellulose or lignin 

(Kumar et al., 2009). For cellulose to glucose conversion, a two-step acid hydrolysis process is 

followed. In the first step, milder conditions are used to hydrolyze hemicellulose and in the 

following step, more severe conditions are used to convert rigid cellulose to glucose (Verardi et 

al., 2012). By following two step hydrolysis technique, the degradation of sugar to toxic inhibitory 

compounds are avoided, thereby improving the overall sugar yield. Dilute acid hydrolysis uses 

high temperatures, 160-230 oC, as compared to concentrated acid hydrolysis (< 50 oC). The acid 

concentration also varies from 2-5 % for dilute acid hydrolysis to 30 % for concentrated acid 

hydrolysis (Kumar et al., 2009).  Even though it has many advantages, there are few disadvantages 

which also needs to dealt with. Even though concentrated acid is highly efficient in converting 

cellulose to glucose, it dangerous, corrosive and produce toxic inhibitory compounds during 

hydrolysis. To avoid corrosion issues, expensive non-metallic materials or alloys needs to be used, 

which makes the pretreatment process high-cost (Zheng et al., 2014).  

An additional step of detoxifications needs to be added, to eliminate the inhibitory compounds to 

make the hydrolysate amenable for fermentation. Overliming and adsorption using activated 

carbon are the most common types of detoxification that is followed by various researchers. Using 

calcium hydroxide (Ca(OH)2) for overliming (pH 9-10), have been reported to improve the 

fermentability of the hydrolysate by reducing the amount of toxins present (Martinez et al., 2001). 

Low cost of lime makes overliming preferred choice, as it reduces the over-all cost of the process.  

Activated carbon is well known for its uses as an adsorbent because of its large surface area. When 

it is mixed in a hydrolysate containing undesired phenolics, it binds together and later separated 

using various filtration techniques (Seo et al., 2009). The selection of detoxification technique 
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depends on the type of inhibitory compound present in the hydrolysate, as each pretreatment has 

different effect on the inhibitory compound (Mussatto & Roberto, 2004).    

2.3.3 Enzymatic Hydrolysis  
Cellulose is a complex polymer containing 1000 to 1 million D- glucose units, linked by β-1,4 

glycosidic bonds. Using enzymes to break cellulose is reported to be more effective than inorganic 

acids because of its specific nature and less milder conditions (pH & temperature) required for 

hydrolysis (Verardi et al., 2012). There are few parameters, such as pH, temperature, solid loading 

and enzyme loading, that needs to consider before running an enzymatic hydrolysis reaction. The 

activity of enzyme depends on its purity and could vary by huge margin. The difference in enzyme 

activity of cellulase enzyme could be observed from table 2.5. Cellulase is the enzyme which is 

used for enzymatic breakdown of cellulose(insoluble) into soluble glucose molecules which can 

be further used for fermentation. Cellulase enzyme is itself a multi-enzyme, containing different 

enzymes carrying out different activities. Economic feasibility of a biofuel producing plant 

depends on high sugar yield from enzymatic hydrolysis of biomass (Zhang et al.,2013).  Despite 

all its advantage, high cost of enzyme and low reaction rate are few challenges which are faced by 

the scientists.  

2.3.3.1 Cellulase enzyme 
Cellulase is a complex enzyme consisting of two or more enzymes, working together 

synergistically. It mainly consists of three types of enzymes, endogluconase, exogluconase also 

known as cellobiohydrolase and β-glucosidase. Each enzyme has different role to play in the 

enzyme reaction. 
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substrate related, and enzyme related (Leu & Zhu, 2013).  The parameters that are associated with 

the substrate (Cellulose) are degree of polymerization, crystallinity, porosity, particle size or 

available surface area. The presence of lignin and hemicellulose could also reduce the efficiency 

of enzyme reaction by producing unwanted binding sites (Alvira et al., 2010). 

The inhibitors, as shown in figure 2.8 produced during pretreatment process also has a severe effect 

on the hydrolysis and the subsequent fermentation process (Palmqvist et al., 1996).  The enzyme 

could also undergo product inhibition, i.e. the production of cellobiose and glucose during the 

enzyme hydrolysis inhibits the activity of cellulase enzyme, thereby reducing the rate of reaction. 

Furthermore, enzymes are sensitive to pH and temperature of the reaction, which influences its 

ability to bind carbohydrates. 

 

 

Figure 2.8 : Formation of inhibitors (Jonsson et al., 2013) 
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2.4 Hydrolysis of paper mill sludge 
For the utilization of the carbohydrates present in the primary paper mill sludge, it has to undergo 

a hydrolysis step. For any bio-based product formation, enzymatic hydrolysis is considered better 

compared to acidic corrosive hydrolysis, as it can be used simultaneously with fermentations 

process. The other advantages of using enzymes is its specific action for sugar production and its 

ability to produce toxin free hydrolysate. Acid hydrolysis is only used for the composition analysis 

of the biomass as proposed by the National renewable energy laboratory (NREL).     

Most of the research work that has been done on enzymatic hydrolysis of PMS is for the production 

of second generation ethanol (Yamashita et al., 2010; Fan et al., 2003; Chen et al., 2014b; Gurram 

et al., 2015). Few studies have also been done on the enzymatic production of lactic acid and 

butanol (Guan et al., 2016; Shi et al., 2015; Marques et al., 2008).  

The cellulosic nature of paper mill sludge makes cellulase enzymes the most commonly used 

biocatalyst for enzymatic breakdown. The cellulolytic enzymes that are used in the industry 

include    Cellic cTec2, Cellic HTec2, Accelerase 1500, Celluclast and Meicelase.  These enzymes 

also have a small fraction of β-glucosidase and hemicellulase, which works synergistically to 

produce sugars. High sensitivity to parameters such as temperature and pH makes it very important 

to optimize the enzymatic hydrolysis conditions. As can be observed from the table 2.5, the 

optimum pH and temperature range for cellulase enzymes lie between 4-5 and 40-50 oC 

respectively. Other important parameters that are involved are solid loading and enzyme loading. 

The enzyme loading of an experiment is highly dependent on the activity of the enzyme and 

substrate concentration used in the reaction.   

The lignocellulosic composition of the paper mill sludge is highly dependent on the processes 

followed in the paper mill. As can be observed from table 2.5, the cellulose fraction of the paper 
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mill sludge can vary from 25 to 75 % on a dry weight basis (Zhu et al., 2011). In general, the PMS 

does not require any pretreatment for its enzymatic hydrolysis, as it undergoes a rigorous treatment 

in the pulping processes. However, ash content present in the paper mill sludge is highly variable 

and comes from the filler material used in the pulping process. It also has a huge impact on the 

enzymatic hydrolysis and so a pretreatment to reduce the ash content is required for an efficient 

enzymatic hydrolysis (Kang et al., 2011). 
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Table 2.5: Comparison of enzymatic hydrolysis conditions for paper mill sludge 

 

The adsorption of enzyme onto the ash can be averted by introducing a de-ashing method. The 

most common procedure to reduce the ash is by floating and screening, in which the sludge is first 

suspended in distilled water and then passed through a 100-screen mesh (Kang et al., 2011; 

Alkasrawi et al., 2016). Kang et al., (2011) also reported a 30 % reduction in enzyme dosage after 

Sr 
no 

Enzyme name Solid 
loading 

Enzyme 
loading 

Temp 
(o C) 

pH Time 
(hrs) 

Glucose  Reference 

1 Cellic cTec2 
(113.8 FPU) 

20 % 3.4% 50 5 72 51-77 g/l Gurram et al., 
2015 

2 Cellic cTec2 
(136 FPU) 
Cellic HTec2 
(Mxied 9:1) 

5 % 2,4,8 FPU/OD 
g sludge 

50 4.8 48 40-50 % 
Conversion 

Chen et al., 
2014b 

3 Celluclast 
Cellobiose 
enzyme 

5 % 18 FPU/ g 
cellulose 

50 4.8 96 82.57 % 
Conversion 

Li et al., 2015 

4 Accelerase 
1500 
(77 FPU/ml) 
GC220 
(166FPU) 

5 % 5-90 µL/ g 50 5.5 48 Control- 
40% 
PT – 80 % 

Alkasrawi et 
al., 2016 

5 Ctec2 
200.7 FPU/ml 

8.3% 
consiste
ncy 

35 FPU/ CH 50 5 NM 50 g/l CH Mendes et al., 
2016 

6 Ctec(84FPU) 
& optimase 
CX 
(46 FPU) 

5 % Ctec 
(0.1%) 
OCX (0.18%) 

50 4.8 50 12000 ppm Banerjee., 
2011 

7 Spezyme Cp 
(59 FPU) 
Novozyme 
188 
(750CBU/ml) 

3&6 % 
Glucan 

Scp (15FPu) 
Novo 
30 CBU/ g 
glucan 
 

37 4.8 72  2.5 g/l Kang et al., 
2010 

8 Celluclast 1.5L  
12.54 FPU/ml 
NovozymeTM 

188 
26.42 CBU/ml  

2 % CH Celluclast  
(15FPU/g 
cellulose) 
Novozyme 

(30 CBU/ g 
cellulose) 

40 5 72 15% sugars Zhu et al., 
2011 

 
9 

meicelase 5 % Meicelase 
20FPU/g 

45 5 48 146 mg 
sugars /g 
sludge  
WO PT 
445 mg/g  

Yamashita et 
al., 2009 
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the de-ashing of the sludge. Treating sludge with 1 M HCL overnight for removal of calcium 

carbonate, a major contributor to ash content, is another technique that has been used for deashing, 

(Gurram et al.,2015). Fractionation of sludge before enzymatic hydrolysis has also found positive 

results as it improves the enzyme accessibility to cellulose fibers (Chen et al.,2014a; Chen et al., 

2014b; Kang et al., 2010). Pretreating PMS with hydrogen peroxide has also been found effective, 

improving the hydrolysis yield by 25 % (g glucose/ g cellulose) (Gurram et al., 2015).   

For the enzymatic hydrolysis of cellulose to be economically feasible, it is necessary to conduct 

the hydrolysis with high solid concentration. However, higher solid concentration leads to high 

concentration of products such as glucose and cellobiose. Product inhibitions is an important 

challenge that is faced by researcher dealing with cellulase enzyme. Adding β-glucosidase to the 

cellulase enzyme mixture is also being actively studied to overcome the feedback inhibition caused 

by accumulation of cellobiose, and also to improve the efficiency of cellulase enzyme hydrolysis 

(Teugias & Valjamae, 2013).   

The optimum ratio of the cellulase enzyme complex components endoglucanase and β-glucosidase 

has been found to be sub-optimal. Kang et al, (2010) used β-glucosidase as a supplement in their 

study conducted on paper mill sludge to ethanol using simultaneous saccharification and 

fermentation cellulase enzyme. Even though the effect of β-glucosidase was not studied separately, 

addition of enzymes enhanced the yields and mitigated the inhibitions caused by cellobiose.  

Immobilized β-glucosidase has also been used as a supplement for hydrolysis of lignocellulosic 

biomass. Immobilization of the enzyme not only improved its thermal properties but also enhanced 

the yields 2-fold (Borges et al.,2014; Tu et al., 2006). 
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2.5 Microbial oil fermentation  
Extensive research is being carried out on the production of microbial lipids due to its functional 

value and use as a substitute lipid feedstock for biodiesel production (Huang et al., 2013). Various 

microorganisms belonging to genera of algae, bacteria, yeast and fungi have to ability to produce 

lipids in appropriate conditions. The ability to grow at faster rate and to accumulate high lipid 

content makes it advantageous to use oleaginous yeast for lipid production. Few yeast species such 

as Cryptococcus sp., Lipomyces sp., Rhodosporidium sp. and Rhodotorula sp., has ability to 

produce lipids more than 60 %, when glucose is used as its main carbon source. However, only 5 

% of yeast sp.  have been reported to produce lipids over 25 % (Leiva-Candia et al., 2014). The 

other advantages of using a yeast are, independent on climate conditions, unlike microalgae, their 

ability to use diverse sugars as carbon source, ability to withstand high concentration of metals 

ions and low oxygen demand. Moreover, yeast cells could be easily harvested as compared to 

bacteria due to their large cell size (Qin et al., 2017). Santos & Reis (2014) also reported about the 

potential of yeast to be easily modified genetically as compared to another microorganism. 

The presence of nitrogen in the fermentation media, plays an important role in production of 

microbial lipids. Oleaginous microorganism has the tendency to produce lipids under nitrogen 

limited conditions. Usually the nitrogen sources are used for producing the proteins and nucleic 

acid, while the sugars are used to provide energy and anabolic activities, producing carbohydrates, 

proteins, nucleic acid and lipids. In absence of nitrogen, the growth rate of microorganism slows 

down, and the protein and nucleic acid are no longer produced. The carbohydrates are then directed 

towards lipid synthesis, thereby accumulating triglycerides within the cells (Amaretti et al., 2010). 
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The economic analysis study conducted by Koutinas et al, (2014) found production of microbial 

oil from pure glucose as an expensive process. It was also reported in the same study that, for 

microbial oil to be used in the biodiesel production, the cost of the microbial oil had to be reduced 

by 50 % in the next decade. Thus, making it very important to find cheap or ‘no cost’ substrates 

for the production for microbial oil. Reducing the cost of substrate will significantly reduce the 

cost of biodiesel. 

The search for a cheap substrate has led to ardent research for utilizing waste lignocellulosic 

material. The zero-cost associated with agricultural or industrial lignocellulosic waste makes it 

advantageous for using these kinds of material. The lignocellulosic biomass undergoes acid or 

enzymatic hydrolysis for breaking into simple monomeric sugars, so that it could be easily utilized 

by the oleaginous microorganism. The hydrolysate mainly contains hexose and pentose sugars, 

which are utilized by the oleaginous microorganism to produce lipids. Most microorganism prefer 

glucose over any other kind of sugar present in the hydrolysate. Concurrent utilization of pentose 

sugars during fermentation is rarely reported (Patel et al., 2016).  The carbon catabolite repressions 

mechanism present in microorganisms, makes them utilize the sugars in a sequential manner 

(glucose being the first and other sugars later).  However, few studies conducted on oleaginous 

yeast strains, Rhodosporidium toruloides and R. glutinis have reported on simultaneous utilization 

of pentose and hexose sugar from the lignocellulosic hydrolysate (Yen et al., 2015).  

Cryptococcus curvatus, deposited under the name Candida curvata D at the American type culture 

collection (ATCC 20509) is also published by names such as Apriotrichum curvatum, 

Trichosporon cutaneum and Trichosporon oleaginosus (Bracharz et al., 2017).   
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Table 2.6: Lipid production by oleaginous microorganism using ‘low cost’ waste substrate 

Microbial 
strain 

Substrate Biomass 
(g/l) 

Hydrolysate 
Sugar 
concentration 
(g/l) 

Lipid 
content 
(%) 

Lipid 
concentration 
(g/l) 

Lipid 
Yield 
(g/g) 

Reference 

C. 
curvatus 

Wheat 
straw 
hydrolysate 

15.6 29.2 27.1 4.2 0.14 Yu et al., 
2011 

R. 
toruloides 

Wheat 
straw 
hydrolysate 

9.9 29.2 24.6 2.4 0.08 Yu et al., 
2011 

C. 
curvatus 

Office 
paper 
hydrolysate 

17.3 49.2 52.5 9.1 0.18 Zhou et al., 
2017 

T. 
dermatis 

Corncorb 24.4 60.1 40.1 9.8 0.16 Huang et al., 
2012 

Y. 
lipolytica 

Industrial 
fats 

8.7 10 44.0 3.8 0.38 Papanikolaou 
et al.,2001 

L. 
starkeyi 

Sewage 
sludge 

9.4 NM 68 6.4 NM Angerbauer 
et al., 2008 

C. 
curvatus 

Corncorb 9.4 40 63.5 6.0 0.15 Chang et al., 
2013 

T. 
cutaneum 

Elephant 
grass 

22.7 34.6 24.0 5.46 0.15 Chen et al., 
2016 

 

It has been known to grow on variety of complex substrate consisting of both pentose and hexose 

sugars. Moreover, it also possesses the ability to accumulate lipids (> 60 %) in presence of 

fermentation inhibitors. Lipid production and resistance towards inhibitors such 

hydroxymethylfurfural (HMF) and furfural present in the non-detoxified hydrolysate have been 

reported by Yu et al,(2011). At concentration of 1 g/l of HMF and furfural is has shown to impair 

its growth (Yu et al., 2014a). This study was conducted using Cryptococcus curvatus on primary 

paper mill sludge hydrolysate produced by enzymatic hydrolysis. 
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Various waste sources containing organic and inorganic material from industrial and agricultural 

sources have been investigated for production of lipids (Fig 2.9).  The solid resides from the 

industrial or agricultural procedures have been reported to have a good amount of cellulose and 

hemicellulose content, with a simple introduction of acid or enzymatic hydrolysis, monomeric 

sugars can be produced which can be further utilized for lipid production. 

. Generally, waste treatment and disposal are costly. This can be reduced by utilizing these streams 

as a substrate for microbial oil production. The common types of agricultural resides that have 

been studied for lipid production include corn stover, sugarcane bagasse, wheat and rice straws 

(Demirbas, 2008).  Other woody biomass such as switch and elephant grass has also been reported 

(Patel et al., 2016; Chen et al., 2016).  Crude glycerol (containing 80 % glycerol, 10 % water, 7 % 

ash and 1 % methanol) produced as a byproduct in the biodiesel industry is also being extensively 

researched (Bauer & Hulteberg, 2013; Uprety et al., 2017). Wastewater from dairy, breweries and 

municipality waste have also been investigated as an alternative source for lipid production 

Figure 2.9: Types of Lignocellulosic biomass used for the cultivation of microbial lipids 
(Patel et al., 2016). 
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(Schneider et al., 2013).  The presence of acids such as acetic acid, isobutyric acid, propionic acid, 

isovaleric, n-butyric acid and n-valeric acid in volatile fatty acid obtained from industrial waste 

makes it important contender for single cell oil production.   
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3.1 Primary paper mill sludge (PPMS) 
The PPMS was provided by the local paper mill Resolute forest products, in Thundery bay, 

Canada. The mill follows Kraft pulping process and the sludge was collected from the primary 

clarifier of wastewater effluent treatment plant and stored in sealed buckets. The original sludge 

had high moisture content and was dried overnight at 50 oC. The composition analysis of the dried 

sample consisting (ash, carbohydrates and lignin content) was done using the standard National 

Renewable Energy Laboratory (NREL) protocol recommended by the Department of Energy (US) 

(Gurram et al., 2015). 

3.2 Enzymes 
Commercial enzymes Accellerase 1500(cellulase) and Accellerase BG(β-glucosidase) were used 

in this research. Both enzymes were provided by DuPont Industrial Biosciences, San Jose, CA, 

USA for research purposes. Both the enzyme was received in sealed containers and were stored at 

4oC until experimental work. The filter paper activity of the cellulase enzyme was measured using  

the method recommended by NREL (Ghose, 1987). The β- glucosidase activity of the enzyme was 

measured following a method listed in a book chapter by Zhang et al, (2009).  

3.3 Microorganism  
The oleaginous microorganism Cryptococcus curvatus ATCC 20509 were obtained from 

American Type Culture Collection (ATCC). The culture was grown on YPG media (10 g/l yeast 

extract, 20 g/l peptone and 20 g/l glucose) for 24 hours in an incubator shaker at 30 oC and 200 

rpm. The seed culture was stored in -80 oC in presence of pure glycerol (50 % v/v). 

3.4 Analytical methods 
3.4.1. Quantification of sugar using DNS methods  
Dinitrosalicylic acid (DNSA) is used for the quantification of reducing sugar present in the sample. 

In this method, the reducing sugars reduces the DNSA to produce a reddish orange colored 

complex which is measured using spectrophotometer at 540 nm. In this study 3 ml of DNSA was 
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added to the 1.5 ml enzyme-substrate mixture and incubated in boiling water for 5 mins and then 

transferred to ice-water bath for cool down. The color formation was determined by measuring the 

absorbance at 540 nm. The sugars were estimated by comparing the absorbance with glucose 

standard prepared using same method (Miller, 1959). 

3.4.2. Quantification of sugars using HPLC 
The hydrolysate was analyzed for soluble sugars using an HPLC (Agilent Technologies 1260 

Infinity) with Bio-Rad Aminex HPX-87H ion exchange column (300 mm x 7.8 mm) and a 

Refractive Index Detector (RID). The mobile phase used was 5 mM H2SO4 with a flow rate of 0.5 

ml/min at 50 oC. The instruments were calibrated with the standards of varying sugar concentration 

and the response factor (RF) obtained for the standards was used to calculate the concentration of 

the sugars formed. 

3.4.3. Determination of biomass, lipid and characterization of lipid 
Estimation of biomass content in the fermentation broth was done by centrifuging 5 ml broth 

sample at 4400 rpm for 10 mins. After discarding the supernatant, the wet cells were washed with 

distilled water and dried over at 80 oC in a pre-weighed aluminum weighing boat. The 

quantification of lipid accumulated was done using modified version of Bligh-Dyer method, 

published by Uprety et al., (2017). 25 mg of dried biomass was weighed in 2 ml Eppendorf tube 

and 0.33 ml of 4 M HCL was added to it. The suspension was kept in a water bath at 80 oC for 1 

hour and later centrifuged at 6000 rpm for 10 mins. The supernatant was disposed of and cells 

were resuspended in 0.2 ml of methanol and 0.1 ml of chloroform. After vortexing it for 2 mins, 

0.1 ml of chloroform was added and rigorously shaken for another 2 mins. To make the final ratio 

of 2:2:1.8 (methanol:chlroform:water), 0.18 ml of distilled water was added to the mixture. The 

suspension was then centrifuged at 6000 rpm for 10 mins and chloroform layer was transferred to 

another pre-weighed Eppendorf tube. The extraction was again repeated by adding 0.2 ml of 10 % 
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(v/v) methanol in chloroform solution to remaining methanol-water mixture. The chloroform layer 

collected from both steps were combined and dried at 105 oC for 4 hours and the final weight of 

the tube was taken. The biomass and lipid extracted was calculated using the equation given below: 

 

 
Biomass concentration(

g
l⁄ )  =

Weight of dried biomass(g)

Volume of fermentation broth(l)
 

 

 

(1) 

 

 
𝐿𝑖𝑝𝑖𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(

𝑔
𝑙⁄ ) =  

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑙𝑖𝑝𝑖𝑑 (𝑔)

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑒𝑟𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑏𝑟𝑜𝑡ℎ(𝑙) 
 

 

(2) 

 

 
𝐿𝑖𝑝𝑖𝑑 𝑐𝑜𝑛𝑡𝑒𝑛𝑡(%𝑤𝑡) =

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑙𝑖𝑝𝑖𝑑(𝑔)

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑖𝑒𝑑 𝑐𝑒𝑙𝑙 𝑏𝑖𝑜𝑚𝑎𝑠𝑠(𝑔)
× 100 % 

 

(3) 

 

The extracted lipids were further analyzed for fatty acid profile using a method reported by Uprety 

et al., (2017). 1mg of extracted lipid was dissolved in 0.2 ml of toluene and 0.2 ml of methyl 

nonadecanoate (5 mg/ml) was added to the solution as an internal standard. Subsequently, 1.5 ml 

of methanol and 0.3 ml of 8 %(w/v) HCL solution in methanol was added to the mixture and was 

kept in a water bath at 100 oC for an hour. After cooling down the samples the extraction was 

completed by adding 1 ml of each, hexane and water. The hexane layer was later used for the fatty 

acid characterization using Gas Chromatography-Flame ionization detector.   

3.5 Preparation of standard solution for calibration curve of glucose and xylose 
Glucose and xylose standards were prepared for the quantification of sugars in the enzymatic 

hydrolysate and for enzyme activity measurements. Two different glucose standards were required 

for the HPLC and DNS method. The concentration range of standard for glucose and xylose were 

1-8 g/l and 0.5-2 g/l respectively. The samples were filtered using 0.2 µm nylon syringe filter and 
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the peak area on the HPLC obtained was plotted against the known sugar concentrations. The 

glucose standard prepared by DNS method was only used for determination of cellulase enzyme 

activity. 

3.6 Experimental methods 
3.6.1. Determination of enzyme activity  
3.6.1.1 Filter paper activity  
A standard procedure recommended by International Union of Pure and Applied Chemistry 

(IUPAC) for measuring the activity of all kinds of cellulase enzymes was used. (Adney & Baker, 

1996).  It is designed in such a way that an enzyme dilution releasing 2 mg of glucose, designated 

as an intercept for 4 % conversion from 50 mg of filter paper in 60 mins, is measured from the 

experiment. In this work, enzyme dilution of 0.01,0.025,0.05,0.075 and 0.1 were made by diluting 

the original enzyme in distilled water. 0.5 ml of each enzyme dilution was added to a centrifuge 

tube containing 50 mg of filter paper immersed in 1ml Citrate buffer(50mM) and was incubated 

in a water bath at 50 oC for 60 minutes. Along with these sample tubes, enzyme and substrate 

blanks were also incubated. After an hour of incubation 3 ml of DNS reagent was added to all the 

tubes and the tubes were transferred to boiling water bath for 5 mins to stop the enzymatic reaction. 

The tubes were subsequently transferred to ice cold water bath and samples were further diluted 

and analyzed for optical density using spectrophotometry at 540 nm. Using the absorbance value 

of diluted samples, the glucose concentration is calculated from the glucose standard graph.  Using 

a semi log graph of enzyme dilution vs glucose concentration, the enzyme dilution releasing 2 mg 

of glucose is intercepted and used for the calculation of filter paper activity as follows: 

 

 
𝐹𝑖𝑙𝑡𝑒𝑟 𝑝𝑎𝑝𝑒𝑟 𝑎𝑐𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

0.37

[𝑒𝑛𝑧𝑦𝑚𝑒]𝑟𝑒𝑙𝑒𝑎𝑠𝑖𝑛𝑔 2.0 𝑚𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒
𝑢𝑛𝑖𝑡𝑠/𝑚𝑙 (4) 
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3.6.1.2 β-glucosidase activity  
The measurement of β-glucosidase activity was done following a method documented by Zhang 

et al, (2009). The method is similar to filter paper activity.  However, instead of Whatman filter 

paper 15 mM cellobiose in citrate buffer (50 mM, pH 4.8) was used as a substrate. Enzyme dilution 

in the range 200 to 1000 were made by diluting the original enzyme in citrate buffer. Along with 

substrate and enzyme blank, centrifuge tubes containing 1ml of diluted enzymes and 1 ml of 

cellobiose solution was incubated at 50 oC for 30 mins. For termination of the enzymatic reaction, 

all tubes were transferred to boiling water bath for 5 mins and subsequently into ice bath for cool 

down. DNS method could not be used for the quantification of sugars, as it fails to distinguish 

between reducing sugars, glucose and cellobiose, and therefore HPLC was used for the same. From 

the semi log graph of enzyme dilution vs glucose concentration, enzyme dilution releasing 1mg of 

glucose was interpreted and the activity of enzyme was calculated using equation given below: 

 
𝛽 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =

0.0926

[𝑒𝑛𝑧𝑦𝑚𝑒]𝑟𝑒𝑙𝑒𝑎𝑠𝑖𝑛𝑔 1 𝑚𝑔 𝑜𝑓 𝑔𝑙𝑢𝑐𝑜𝑠𝑒
𝐼𝑈/𝑚𝑙 

 

     (5) 

3.6.2. Composition analysis of paper mill sludge 
The paper mill sludge used in this study was analyzed for moisture, carbohydrate, lignin and ash 

content. The procedure used for the analysis is well defined by NREL and most commonly used 

in research work related to lignocellulosic biomass (Sluiter et al., 2008). For moisture content 

analysis, 1 gram of sludge was weighed in a pre-dried aluminum dish and was further dried at 105 

oC for 4 hours (Sluiter et al., 2008a). The sample was transferred into a desiccator for cooling down 

and the weight of the dried sample was measured. The samples were again placed in an oven at 

105 oC and dried to constant weight. The moisture content of the sample was then calculated using 

equation given below: 
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%𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 = 100 − {
Weight(dry pan plus dry sample) − Weight(dry pan)

Weight(sample as recieved)
× 100} 

 

(6) 

 

As a pre-requirement, the sample used for the carbohydrate and lignin analysis were prepared 

following Hames et al., 2008 method. The carbohydrate and lignin content of the sample is 

analyzed following double acid (concentrated and dilute) hydrolysis technique.  300 mg of sludge 

was weighed and transferred into a beaker. 3 ml of 72 % sulphuric acid was added to the beaker 

and mixed well using a glass stir rod. The beaker was kept at 30 oC water bath for 60 minutes. 

Stirring the sample is essential for uniform hydrolysis and it was done every 15 minutes without 

removing the samples from the water bath. 84 ml of distilled water was added in order to reduce 

the acid concentration to 4 %. The sample taken in an Erlenmeyer flask was autoclaved at 121 oC 

for 1 hour. The sample was later filtered using vacuum filtration and the residues filtered were 

transferred into a pre-dried and weighed crucible for drying in oven. The weight of the sample was 

noted after it attained constant weight. The crucible was then transferred to muffle furnace at 575 

oC for 24 hours for analysis the ash content of the sludge.  

For carbohydrate analysis, 20 ml aliquot was taken from the filtrate and was first neutralized using 

3 M NaOH. The sample was quantified for sugars using a HPLC. The filtrate was also analyzed 

for acid soluble lignin (ASL) using UV-spectrophotometer. The equations used for the calculations 

of each component are as follows: 

𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒(%) =
𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑(𝑚𝑔)

𝑂𝑣𝑒𝑛 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡(𝑠𝑙𝑢𝑑𝑔𝑒)(𝑚𝑔)
× 0.9 (7) 

𝐻𝑒𝑚𝑖𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒(%) =
𝑋𝑦𝑙𝑜𝑠𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑(𝑚𝑔)

𝑂𝑣𝑒𝑛 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡(𝑠𝑙𝑢𝑑𝑔𝑒)(𝑚𝑔)
× 0.88 (8) 
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𝐴𝑐𝑖𝑑 𝑖𝑛𝑠𝑜𝑙𝑢𝑏𝑙𝑒 𝑙𝑖𝑔𝑛𝑖𝑛(%)

=
[𝑊𝑒𝑖𝑔ℎ𝑡(𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 𝑝𝑙𝑢𝑠 𝑠𝑜𝑙𝑖𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑒) − 𝑊𝑒𝑖𝑔ℎ𝑡(𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒)] − [𝑊𝑒𝑖𝑔ℎ𝑡(𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 𝑝𝑙𝑢𝑠 𝑎𝑠ℎ) − 𝑊𝑒𝑖𝑔ℎ𝑡(𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒)]

𝑂𝑣𝑒𝑛 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑠𝑙𝑢𝑑𝑔𝑒)
 

(9) 

𝐴𝑐𝑖𝑑 𝑠𝑜𝑙𝑢𝑏𝑙𝑒 𝑙𝑖𝑔𝑛𝑖𝑛(%) =
𝑈𝑉(𝑎𝑏𝑠) × 𝑉𝑜𝑙𝑢𝑚𝑒(𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑒) × 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛

𝜀 × 𝑂𝑣𝑒𝑛 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡(𝑠𝑙𝑢𝑑𝑔𝑒) × 𝑃𝑎𝑡ℎ𝑙𝑒𝑛𝑔𝑡ℎ
 (10) 

Where: 
UV(abs)= Absorbance measured at λmax 

ε = Absorptivity of biomass 
Pathlength= Pathlength of UV-Vis cell in cm  

3.6.3. Optimization of enzymatic hydrolysis  
The optimization of enzymatic hydrolysis was done based on four parameters namely pH, 

temperature, solid loading and enzyme loading. The total working volume of the enzymatic 

reaction was 50 ml citrate buffer and all experiments were done in duplicate in 250 ml Erlenmeyer 

flasks. For pH optimization, four levels in the range of 4.0 to 6.0 pH in 5 mM citrate buffer was 

made. The temperature, solid loading and enzyme loading were 50 oC, 5 % and 20 FPU/g oven 

dry (OD) sludge respectively, was chosen based on the literature. For optimizing temperature, the 

enzymatic reaction was carried out in 4 levels of temperature 30,40,50 and 60 oC. Optimized pH 

(4.5) conditions were used with 5 % solid loading and 20 FPU/g OD sludge. Using the optimized 

pH (4.5) and temperature (40 oC), the effect of solid loading was studied for 2.5,5.0,7.5 & 10 % 

solid concentration(w/v). Finally, enzyme loading was optimized with varying enzyme input of 

10,20,30&40 FPU/g OD sludge. All enzymatic reaction was done for 96 hours and samples were 

withdrawn every 24 hours for sugar analysis using HPLC. The conversion of cellulose to glucose 

was calculated using the equation 11. 
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Table 3.1: Optimization parameters for enzymatic hydrolysis. 

 Effect of pH Effect of 
Temperature 

Effect of Solid 
Loading 

Effect of 
Enzyme 
loading 

PH 4, 4.5, 5 & 6 4.5 4.5 4.5 

Temperature 
(oC) 
 

50 30,40,50,60 40 40 

Solid loading 
(%w/v) 

5 5 2.5, 5,7.5&10 10 

Enzyme loading 
(FPU/g OD 
sludge) 

20 20 20 10, 20, 30 &40 

 

 

 
𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 % =

𝐺𝑙𝑐𝑜𝑠𝑒 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑(𝑔)𝑥 0.9

𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑙𝑢𝑑𝑔𝑒(𝑔)
𝑥100 

(11) 

 

3.6.4 Effect of β-Glucosidase on enzymatic hydrolysis  
The effect of β-glucosidase on enzymatic hydrolysis was studied by changing the ratio of β-

glucosidase enzyme to cellulase enzyme in the enzymatic reaction. Optimized reaction conditions 

(pH, temperature, cellulase enzyme loading & Solid loading) were used for this experiment. The 

ratio of β-glucosidase to cellulase enzyme studied were 1:0.5,1:1,1:1.5 & 1:2. All enzymatic 

reactions were done for 96 hours and samples were withdrawn every 24 hours for sugar analysis 

using HPLC. 

3.7 Fermentation of hydrolysate to microbial oil 
The inoculum for the fermentation was prepared in the YPG media (10 g/l yeast extract, 20 g/l 

peptone and 20 g/l glucose). The Cryptococcus curvatus culture was incubated for 24 hours in 

rotary shaker at 30 oC and 200 rpm until cell count reached 1x108 cells/ml. All experiments were 
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carried out in 125 ml Erlenmeyer flasks with 50 ml of media for 168 hours. The sugar concentration 

and C:N ratio for the fermentation was optimized using pure glucose and ammonium chloride. The 

optimized conditions were used to ferment the sludge hydrolysate by preparing a minimal media. 

The minimal media was prepared following Uprety et al., (2017) method, containing (g/l): Glucose 

30.0, KH2PO4 2.7, Na2HPO4
.12H2O 0.95, MgCl2

.6H2O 0.2, yeast extract 0.1 and pH 5.5. The 

media was supplemented with 10 ml/L of trace element. The trace element consisted of 

CaCl2.2H20 4.0 g, FeSO4.7H2O 0.55 g, citric acid monohydrate 0.52 g, ZnSO4.7H2O 0.10 g, 

MnSO4.H2O 0.076 g, 18M H2SO4 100µL. Samples were taken every 24 hours for lipid and 

biomass analysis. 
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4.1 Composition of paper mill sludge 
The composition analysis of PMS was done using the double acid hydrolysis method proposed by 

NREL (Sluiter et al., 2008). The carbohydrate, lignin, ash and moisture content were quantified 

and reported in table 4.1. Glucose and xylose were the major monomeric sugars that were detected 

in HPLC as shown in the figure 4.1. The cellulose and hemicellulose together accounted for 50.6 

% (dry weight basis). The cellulose content is usually high in the primary paper mill sludge. The 

cellulose content in the sample of PMS used in this study is around the average content found in 

other published reports (Alkasrawi et al., 2016; Kang et al., 2010).  

Table 4.1: Composition of primary paper mill sludge. 

Components Cellulose Hemicellulose Lignin Ash Moisture 
Acid 
soluble 

Acid 
insoluble 

Percentage (%) 38.5 12.1 3.3 35.1 8.0 62.4 

 

The moisture content of the sludge was quantified using oven drying technique and was observed 

to be 62.4 %. Generally, the ash content is detected in the primary paper mill sludge is high due to 

the filler material used in the pulping process. However, the 8 % ash content measured in this study 

is substantially low as compared to report published by Carvalho et al, (2011). The presence of ash 

has a significant influence on the cellulose enzyme hydrolysis. The low ash content was an 

advantage as no pretreatment was required for enzymatic hydrolysis.  The lignin content observed 

in this study was relatively high, similar to numbers reported by Li et al, (2015) and Alkasrawi et 

al, (2016).  Both publications did not report any hindrance caused by lignin during the enzymatic 

hydrolysis and similar observations were made in this study as well. The high lignin content could 

be attributed to more mechanical pulp fibre (Li et al., 2015).  The composition of paper mill sludge 

varies and is highly dependent on the pulping process followed at different paper mill. The large 
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amounts of highly accessible carbohydrates present in the primary paper mill sludge in this study 

makes it an ideal contender for further hydrolysis and microbial lipid production.  

 

Figure 4.1: Chromatogram of sugar analysis after double acid hydrolysis 

4.2. Determination of enzyme activity  
The cellulase enzyme activity of the commercial enzyme used in this study was quantified using 

well described and recommended publication by Adney & Baker, (1996). The reducing sugar 

concentration for different enzyme dilutions were measured using DNS method and was plotted 

as shown in figure 4.2. The enzyme dilution releasing 2 mg of glucose was interpreted from the 

semi- logarithmic graph and used in the equation 4. The filter paper units (FPU) for the Accelerase 

1500 used in this study was found to be 28 units/ml. The activity of enzyme is highly dependent 

on the purity of enzyme. Hence, the activity obtained for Accelerase 1500 is way low as compared 

to 77 FPU/ml reported by Alkasrawi et al, (2016). This confirm the need to measure enzyme 

activity before use, even if they are from the same source. 

Glucose Xylose 
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Figure 4.2: Relationship between enzyme dilution and glucose concentration detected using 
DNS method 

The β-glucosidase activity of Accelerasse BG enzyme was determined using the method published 

by Zhang et al, (2009). The glucose concentration quantified using HPLC was plotted against 

enzyme concentration as shown in the figure 4.3. Similar to filter paper assay, the enzyme 

concentration releasing 0.5 mg/ml was interpreted and the β-glucosidase activity was calculated 

using equation 5. The activity of Accelerase BG enzyme was found to be 79 IU/ml. 

 

Figure 4.3: Relationship between enzyme dilution and glucose concentration detected using 

HPLC 
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4.3. Optimization of enzymatic hydrolysis  
Experiments were carried out to study the effects of pH, temperature, solid loading and enzyme 

loading on the Accelerase 1500 enzyme. The experiments conditions listed in the table 3.1 were 

applied to learn its effects. These conditions were selected based on a thorough literature review 

conducted on enzymatic hydrolysis of paper mill sludge (Table 2.5).  

 4.3.1. Effect of pH on Accelerase 1500 enzyme  
The effect of pH in the range 4 to 6 on the Accelerase 1500 enzyme was studied. Monohydrate 

citric acid was used as a buffer to control the pH. The reaction was carried out at 5 % solid loading, 

20 FPU/g substrate at 50 oC. These conditions were selected based on the thorough literature 

review conducted (Table 2.5). Maximum glucose concentration of 7.43 g/l was observed at pH 4.5 

after 9 hours of enzymatic hydrolysis (Fig 4.4). Slightly less, 7.1 g/l of glucose was produced at 

pH 5 suggesting the range 4.5 to 5 best suited for the enzyme, Accelerase 1500, used in this study. 

There was no significant increase observed in glucose level after 96 hours, suggesting the 

saturation of enzyme. Most of the studies conducted using cellulase enzyme have reported the 

similar range (4.5to 5). However, Alkasrawi et al, (2016) reported pH 5.5 as optimum condition 

for the enzymatic hydrolysis. Using water instead of buffer for the hydrolysis medium did not yield 

good results. The mixture of primary paper mill sludge with water had a pH of 3.7 and produced 

4.16 g/l of glucose.  
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Figure 4.4: The concentration of glucose produced as function of pH at 50 oC, 5 % solid 
load and 20 FPU/ g substrate of cellulase enzyme loading. 

4.3.2. Effect of temperature on Accelerase 1500 enzyme  
Most reactions involving cellulase enzyme have known to be conducted at temperature higher than 

room temperature. Higher temperatures not only improve the catalytic reaction but also alleviates 

the product inhibitions caused during the enzymatic reaction (Teugias & Valjamae,2013). 

Maintaining higher temperature requires lot of energy, making it necessary to optimize the 

temperature of the reaction. Hence determination of the optimum temperature is very important. 

To determine the effect of temperature on Accelerase 1500, the trials were conducted at 30,40,50 

& 60 oC. Other experiment conditions used were optimized pH 4.5, 5 % solid loading and 20 FPU/ 

g substrate. As shown in the figure 4.5, increase in temperature improved the glucose concentration 

with 7.9 g/l of glucose producing at 40 oC. However, further increase in temperature to 60 oC 

produced 3.82 g/l of the glucose, that is almost 50 % reduction in glucose concentration. 

Deactivation of enzyme at high temperature could be the reason for this reduction. Similar 

observation was made by Zhu et al, (2011) in their optimization experiments.  
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Figure 4.5: The concentration glucose produced as function of temperature at 4.5 pH, 5 % 
solid load and 20 FPU/ g substrate of cellulase enzyme loading. 

4.3.3. Effect of solid loading on enzymatic hydrolysis  
Percentage solid content present in the reaction for the enzymatic hydrolysis has a great influence 

on the amount of sugars produced. For the biochemical reactions to be economically feasible, 

reactions with higher solid content are desirable (Teugjas & Valjamae, 2013). Experimental trails 

were carried out for the solid loading of 2.5,5,7.5 and 10 % (w/v).  Increasing the solid content 

amplified the glucose concentration to approximately 6 times with the enzyme producing 3.2 g/l 

of glucose at 2.5 %(w/v) solids to 17.6 g/l at 10 % (w/v) solids (Fig 4.6). The increase in glucose 

concentration can be attributed to higher cellulose availability in reaction.  Gurram et al, (2015) in 

their work tried 20 % (w/v) solid loading and observed a dip in cellulose to glucose conversion. 

The reduction in conversion was associated with rheological challenges and product inhibition. 

Similarly, 12.5 % (w/v) solid loading was initiated in this study and subsequently stopped due to 

irregular mixing as shown in figure 4.7. 
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Figure 4.6: The concentrations of glucose as a function of solid loading at 4.5 pH, 40 oC 
temperature and 20 FPU/g substrate of cellulase enzyme loading. 

Sheading the sludge before the enzymatic hydrolysis have been found to ameliorate the 

accessibility of cellulose fibers for enzyme digestion. However, grinding the sludge in a blender, 

expands in volume thereby restricting the solid loading capacity.  Enzymatic hydrolysis with 5 % 

shredded sludge was also investigated in this study. Contrary to Chen et al, (2014a) no significant 

improvement in glucose production was observed as compared to the non-grinded sludge.  By not 

fractionating the sludge we were able to use 10 % solids, thereby producing twice the glucose 

concentration. Gurram et al, (2015) recommended specially designed reactors for reactions 

containing more than 20 % (w/v) solid content.   
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4.3.4. Effect of enzyme loading on enzymatic hydrolysis  
One of the major factors that influences the economic feasibility of the enzymatic hydrolysis is the 

amount of enzyme used. Optimization plays an important role in finding appropriate quantity 

enzyme for saccharification thereby avoiding the over dosage. Enzyme loading of 10,20,30 and 40 

FPU/g substrate were examined under optimized conditions of pH, temperature and solid loading. 

The results are shown in fig. 4.8. 

20 FPU/ g substrate was found to be the optimum enzyme loading condition, producing 16.2 g/l 

of glucose. Even though an adequate increase in glucose was observed with increasing enzyme 

loading from 10 to 20 FPU/g substrate, minuscule increase was observed with further addition of 

enzyme. Saturation of all substrate binding sites could be the major reason. Inhibition from glucose 

and cellobiose could also another reason for the stagnation. However, cellobiose content was not 

observed in chromatogram obtained from HPLC. Similar observations were made by Elliston et 

al., (2014) about Accelerase 1500 enzyme not producing enough cellobiose. Moreover, it is also 

report that cellobiose with low concentration of 0.6 g/l have been found to have inhibitory effect 

Figure 4.7: Irregular mixing pattern caused due to high solid loading. 
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on cellulase, especially cellobiohydrolase (Zhang et al., 2010). The optimum condition for 

cellulase enzyme loading found in this study was well within the range, 5-35 FPU/g substrate 

(Kumar et al., (2017).  

 

Figure 4.8: The concentrations of glucose as a function of enzyme loading at 4.5 pH, 40oC 
temperature and 10% solid loading. 

4.4 Effect of adding β-glucosidase enzyme on cellulase enzymatic hydrolysis  
In order to maximize the cellulose to glucose conversion and to enhance the glucose concentration 

in the sugar syrup, addition of β- glucosidase is necessary. Even though cellulase enzyme consist 

a portion of β- glucosidase enzyme, it’s not enough for an efficient enzymatic reaction. Trials were 

conducted to study five different ratio of cellulase to β- glucosidase. The optimized pH, 

temperature, solid loading and enzyme loading used for this reaction were 4.5, 40 oC, 10 % and 20 

FPU/ g substrate, respectively.  

Supplementation with β-glucosidase yielded a substantial increase in the glucose concentration 

and conversion. A linear increase in glucose concentration and cellulose to glucose conversion 

was observed with additional supply of β-glucosidase. As compared to experiments with no 

addition of β-glucosidase, twofold increase in glucose concentration was observed for flask 
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containing cellulase and β-glucosidase enzyme in the ratio 1:2 (v/v). Moreover, 81 % of cellulose 

to glucose was also observed for the same. The low conversion rate (35.1 %) during only cellulase 

enzyme hydrolysis could be because of low β- glucosidase activity and product inhibition of 

cellulase enzyme. Another critical observation made from Fig 4.9 was that by mere addition of 0.5 

% β-glucosidase enzyme the reaction time dropped from 96 hours to 24 hours for attaining glucose 

concentration equal to the experiment without any β-glucosidase supplementation.  

There was no change observed in the xylose concentration by addition of β-glucosidase.  The 

results obtained in this study were not as high as Elliston et al, (2014) or Zhu et al, (2011). Both 

those groups achieved almost 99 % glucose conversion in their study. However, initial surge in 

glucose concentration was observed in both studies. The results obtained in this study are in 

accordance with Zhang et al, (2010), who also observed a rise up to 80 % glucose yield by addition 

of Novozyme 188(β-glucosidase) in their enzymatic hydrolysis of corncob. Immobilization of β- 

glucosidase enzyme not only improved the glucose production but also for provides thermal 

stability to the enzyme (Borges et al., 2014). However, immobilization was not tried in this study 

because using immobilized enzyme against a solid substrate would have reduced the efficacy of 

the enzyme.  
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Figure 4.9: The concentration of glucose and conversion factor as a function of cellulase to 
β- glucosidase enzyme ration at 4.5 pH, 40oC temperature, 10% solid loading and 20FPU/g 

substrate cellulase loading. 

4.5. Production of microbial lipids from paper mill sludge hydrolysate  
Most of the research work that has carried out on the PMS has been for the production ethanol. 

The abundant availability of low cost ethanol makes it necessary to look for an alternate 

application.  Thus, microbial production of lipids using Cryptococcus curvatus was thus carried 

out on PPMS hydrolysate. The amount of sugar present and carbon to nitrogen ratio has a great 

influence on the growth of an oleaginous strain. Both these parameters were optimized employing 

a minimal media and the optimized conditions were then used for the fermentation of primary 

paper mill sludge hydrolysate.    

4.5.1 Optimizing glucose concentration for fermentation  
The glucose concentration range studied in this experiment was 10-40 g/l. The minimal 

media composition was adapted from Uprety et al., (2017) and the C:N was adjusted to 100 

using ammonium chloride for the fermentation reaction that was carried out for 168 hours. 

The C:N selected for these trials were based on the literature review conducted (Table 2.6). 
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The maximum biomass and lipid concentration obtained in these experiments were 10.14 g/l and 

4.6 g/l at a glucose concentration of 30 g/l. Increase the glucose concentration to 40g/l led to 

substrate inhibition of the microorganism, thereby producing 6.32 g/l of biomass and 1.58 g/l of 

lipids.  Chang et al, (2013) reported 40 g/l as their optimum glucose concentration, further 

increase up to 100 g/l saw a similar decrease in biomass and lipids. Chang et al, (2013) also 

proposed fed batch as a preventive technique for substrate inhibition.  

Table 4.2: The quantity of biomass(g/l), lipid content (%) and lipid concentration(g/l) 
produced by Cryptococcus curvatus after 6 days of fermentation for varying glucose 

concentration 

Glucose 

conc. 

(g/l) 

C:N Biomass 

(g/l) 

Lipid 

Content 

(%) 

Lipid Conc. 

(g/l) 

10 100 5.56 42 2.3 

20 100 7.64 44 3.3 

30 100 10.14 46 4.66 

40 100 6.32 25 1.58 

 

4.5.2 Optimizing C: N for fermentation 
The presence of nitrogen has considerable effect on the ability of the microorganism to produce 

lipids. The carbon to nitrogen in the ratio 50-300 were studied in this experiment. Minimal media 

without any addition of nitrogen was also included in this study.  

There was no major impact observed on the microbial biomass with increasing the C:N 

ratio. C:N ratio of 50 produced maximum biomass of 11.43 g/l following by 10.3, 10.4 and 

10.2 g/l  for the C:N of 100, 200 and 300 respectively.  However, a notable impact on the 
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cellular lipid content was observed in this study. High lipid content (above 60 %) was 

observed for reaction with C: N ratio above 200. A maximum of 64 % lipid content was 

obtained for fermentation flask with C:N ratio of 200. Further increase in this ratio or no 

addition of nitrogen, made it difficult for the separation of biomass from the fermentation 

broth. Hence C:N ratio of 200 was considered as the optimum condition.  Another 

observation made from table 4.3, is the requirement of miniscule quantity of nitrogen by 

Cryptococcus curvatus for producing lipids as high as 64 percent.  Less requirement of nitrogen is 

a positive sign from an economic point of view.  

Table 4.3: The quantity of biomass(g/l), lipid content (%) and lipid concentration(g/l) 
produced by Cryptococcus curvatus after 6 days of fermentation with varying C:N ratio 

Glucose 

conc. 

(g/l) 

C: N Biomass 

(g/l) 

Lipid content 

(%) 

Lipid 
conc. 

(g/l) 

Lipid 
yield 

30 50 11.43 45 5.1 0.17 

30 100 10.3 57 5.8 0.19 

30 200 10.4 64 6.6 0.22 

30 300 10.2 63 6.4 0.21 

4.5.3 Time profile of lipid production by Cryptococcus curvatus on PPMS 
hydrolysate  
The PPMS hydrolysate obtained after the enzyme hydrolysis was first diluted to optimum glucose 

concentration and then filtered using 0.2 µm micro filter before it was investigated as substrate for 

microbial lipid production.  Ammonium chloride was added to adjust the C:N ratio to 200 along 

with minimal media salts and trace element. After seven days of fermentation the biomass, lipid 

content, lipid concentration was 15.8 g/l, 38.7 % and 6.1 g/l, respectively. However, maximum 



  

58 
 

lipid content and lipid concentration of 45.2 % and 6.4 g/l respectively (Fig 4.10), was noticed on 

the sixth day of fermentation. The lipid yield calculated for the sixth day in this study was 213 

mg/g indicated that the Cryptococcus curvatus favored lipid synthesis rather than cell growth. 

Similar finding were reported by Zhou et al, (2017). The quantity of biomass obtained, and the 

cellular lipids produced in this study were high as compared to research conducted on low cost 

substrate such as wheat straw hydrolysate (Yu et al., 2011), industrial fats (Papanikolaou et al., 

2001) and elephant grass (Chen et al., 2016). Huang et al, (2012) in their study using corncob 

hydrolysate yielded higher biomass concentration, but lipid content reported in this work are 

higher. The factors that contributed to positive results could be the low levels of nitrogen and the 

inhibitor free substrate. Slow consumption of glucose for five days was observed. However, no 

consumption of xylose took place until all glucose was consumed as reported by Yu et al, (2014b) 

was also noticed in this work.  PPMS hydrolysate without any addition of salts or nitrogen was 

also experimented in this work.  Surprisingly, this robust strain is capable of accumulating lipid 

upto 35.7 % without adding nitrogen or minimal salts which are required for almost all strains. 

Therefore, we can conclude that PPMS hydrolysate contains enough nutrient element for 

proliferation of Cryptococcus curvatus cells. This makes the general process economically 

feasible.  
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Figure 4.10: Time profile of  lipid content (%), biomass(g/l), lipid concentration(g/l) by 
Cryptococcus curvatus on PPMS hydrolysate. 

4.5.4 Fatty acid profile analysis 
Using gas chromatography, the harvested samples were analyzed for fatty acid profile. As shown 

in table 4.4, the lipids synthesized by Cryptococcus curvatus in this study mainly consisted of oleic 

acid and palmitic acid. Although, noticeable reduction in myristic acid and linoleic acid can also 

be observed. The fatty acid profile for lipids produced from PPMS hydrolysate had similar 

composition as compared to vegetable oils (Sitepu et al., 2014). This similarity makes this 

microbial lipid a promising feedstock for biodiesel and oleochemical industries. 
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Table 4.4: Fatty acid profile comparison of lipids produced from pure glucose and PPMS 
hydrolysate 

 

 

 

 

 

 

 

 

 

 

 

  

Sample Fatty acid content (%, w/w) 

Myristic acid 

(C14) 

Palmitic acid 

(C16) 

Stearic acid 

(C18) 

Oleic acid 

(C18:1) 

Linoleic acid 

(C18:2) 

Pure 
glucose 

8.9 15.3 10.0 38.9 12.6 

Sludge 
hydrolysate 

1.1 24.6 13.7 35.2 4.4 
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Conclusion 
 

A lab-scale method for enzymatic hydrolysis of primary paper mill sludge and the fermentation 

was established in this study. A thorough composition analysis of PPMS indicated the presence of 

over 50 % carbohydrates, 38 % of lignin and low quantity of ash present in the sludge. The 

optimized conditions of pH, temperature, solid loading and enzyme loading were 4.5, 40 oC, 10 % 

and 20 FPU/ g substrate respectively. Supplementation of β- glucosidase to cellulase enzyme 

reaction yielded a positive outcome.  A range of cellulase to β- glucosidase enzyme ratio was tested 

and 1:2 (v/v) was determined as optimum. The sugar syrup obtained after enzymatic hydrolysis 

contained both hexose(glucose) and pentose(xylose) sugar. The addition of β- glucosidase in the 

optimum ratio resulted in 2-fold rise in the glucose concentration to 40.8 g/l. Preliminary to 

fermentation of the sludge hydrolysate the glucose concentration and the C:N ratio of the 

fermentation reaction of optimized. The optimized glucose concentration and C:N ratio of 30 g/l 

and 200 respectively were utilized to produce microbial lipids. The Cryptococcus curvatus was 

able to produce as high as 64 % while grown on pure glucose. However, while grown on sludge 

hydrolysate the biomass, lipid content, lipid concentration was 15.8 g/l, 38.7 % and 6.1 g/l, 

respectively. The fatty acid profile of microbial oil studied using GC was found to be rich in oleic 

acid and palmitic acid. The microbial oil produced showed resemblance to vegetable oil based on 

the fatty acid profile. Further application of the microbial oil needs to be investigated.    
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