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Abstract
Canada has a wide range of landslide types reflecting the diverse geomor-

phic and geologic environments in the nation’s landscape. Many civil en-

gineering projects are located on or near sloping ground, and thus are po-

tentially subject to various kinds of slope instability, which often produces

extensive property damage and occasionally loss of life. A typical example

is the massive landslide occurred on the Nipigon River, north of the town of

Nipigon, Ontario in the 1990, which involved an estimated 300,000 cubic

meters of soil and extended almost 350m inshore with a maximum width

of approximately 290m.

The traditional methods for slope stability investigation are reliant on

deterministic approaches which involve an overall factor of safety to ac-

count for various uncertainties. It is found that critical geotechnical param-

eters such as shear strength parameters may be regarded as random vari-

ables respectively with a probability distribution rather than deterministic

values or constants. In this research, an alternative approach of probabilis-

tic reliability method is adopted in slope engineering, which allows for sys-

tematic analysis of uncertainties and for their inclusion in evaluating slope

performance. The research focuses on entropy-based reliability analysis

and design in slope engineering. The four sub topics are:

1. Introducing soil variables field testing by the vane shear test.
2. Proposing an entropy-based distribution free modelling for soil vari-

ables.
3. Developing a new reliability analysis method using entropy distri-

butions.
4. Application of approach in the Nipigon slope’s analysis & design.

Firstly, the research involves the application of the vane shear test on the
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Nipigon slope to obtain values of undrained shear strength (Su). More-

over, the research proposes an entropy-based distribution-free method for

modeling of soil variables, using the combination of the maximum entropy

formalism (MEF) and Akaike information criterion (AIC). The method is

applied to generate the unbiased model for soil variables based on optimal-

order moments from soil samples. The method can adjust the level of so-

phistication of the resulting probability as per the nature and quantity of

data. Its application on soil data of the slope of the Nipigon River land-

slide area yields efficient results with the 3rd order being the optimal order

representing the quantified information very precisely.

Further, the research introduces a new reliability method to conduct a

reliability analysis of the Nipigon slope. The approach involves the mod-

ification of the first-order reliability method to consider the non-normal

variables of the entropy distributions adequately, supported by GEO-Slope

software model analysis and response surface method to develop an ex-

plicit performance function. The approach developed can incorporate the

uncertainties effectively and proficiently. The results imply that the Nipigon

slope is hazardous with a probability of failure value touching 40%. The

comparison of the proposed modified FORM with the GEO-Slope based

Monte Carlo simulation indicated similarities in the results, consequently

certifying the efficiency of the proposed algorithm.

Ultimately, a reliability-based slope is designed for the Nipigon slope

by implementing the proposed methodology. In the first case, pile rein-

forcement is applied to the failure slope to enhance the stability of the fail-

ure slope. However, the results display a spike in the reliability index, but

the slope is found unstable. Therefore, the slope is redesigned by creating a

homogeneous layer aided with pile reinforcement. The design reduces the

probability of failure up to 10−6, thereby making it stable.
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Chapter 1

Introduction

1.1 Background and Recent Research

Slope failure is a downslope movement of soil or rock debris under the

influence of natural or artificial disturbances which results in landslides,

avalanches, flow of debris, rockfall, etc. (Nemcok, Pasek, & Rybar, 1972;

Cruden, 1996; Hong, 2012). It is the most devastating and unpredictable

naturally occurring hazard, second only to an earthquake (Survey, 2000).

Slope failures are catastrophic due mostly to sufficient energy generated

by the effect of debris movement (Hong, 2012). A typical example is the

Haiyuan earthquake that triggered the Loess landslide, which resulted in

nearly 100,000 fatalities (Close & McCormick, 1992). According to United

Nations report in 2014, natural disasters have resulted in 2 trillion USD

economic losses, and have affected more than 4 billion people all over the

world (Kellet, 2014). Therefore, assessment and development of defensive

techniques for these hazards is the priority of engineers and researchers in

the present era.

The unshirkable responsibility of a civil engineer is to develop efficient

systems that are reliable for society by analyzing risk and reducing failure.

Engineers must forecast and prevent catastrophes in the system that can re-

sult from natural or accidental hazards. The methods needed to evaluate,

prevent and alleviate risks associated with failure of a system due to geo-
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1.2 Problem Formulation

hazards should be rationalized, innovative, and made efficient in order to

secure the safety of the system and of society as whole.

Traditionally, the deterministic geotechnical design is adopted which

emphasizes on taking partial or system factor of safety based on sound

verdict and experience of an engineer. System safety relies upon a single

safety factor in a deterministic approach. Hence, conventional methods lack

in considering uncertainties explicitly associated with geotechnical struc-

tures, as the lower value of a safety factor can result in unsafe design, and a

high level of a safety factor can be extremely expensive. Achieving precise

safety system standards is a paramount goal. Therefore, a more rational-

ized approach is needed to incorporate variabilities and uncertainties of the

system to explicitly design a safe and reliable structure.

Consequently, an alternative approach of probabilistic analysis is con-

sidered more reliable to analyze structure stability. With respect to slope

stability analysis, probabilistic slope stability analysis allows a comprehen-

sive technique to evaluate the probability of slope failure by incorporating

slope-specific variabilities and uncertainties. The design enhanced by prob-

abilistic analysis is also more economical, and less likely to collapse in case

of geohazard event.

1.2 Problem Formulation

Present geotechnical engineering designs are based on the concept of de-

terministic methods, considering a single factor of safety design based on

the experience and judgment of the engineer. The deterministic approach

framework lacks in incorporating uncertainties associated with the struc-

ture in an explicit form, and lacks in evaluating the probability of structure

failure rather than relying on a single factor of safety. In the case of geotech-

nical slopes failures, foremost, it is necessary to quantify the available data
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1.3 Research Objective

of geotechnical variables explicitly, and secondly, precisely predict the fail-

ure probability of the slope in a particular time frame. Accordingly, this

research study focuses on proposing a distribution free probabilistic mod-

eling of soil variables, and new modified First Order Reliability Method

approach of reliability to analyze slope stability in a more effective frame-

work.

This thesis includes considerations for different aspects associated with

slope stability, which include more rationalized ways to quantify informa-

tion about random variables obtained through field soil tests by using a

distribution-free approach. Adopting probabilistic methods that can incor-

porate uncertainties and variabilities associated with variables of soil, ob-

tained explicitly through field tests to determine the probability of slope

failure. This study will derive a correlation between different layers of

slope in view of a specific case study on the Nipigon River landslide.

1.3 Research Objective

The principal objective of the thesis is to carry out slope stability analysis on

the soil variables obtained from the Nipigon River landslide site using field

soil tests. Firstly, the variables obtained by field tests considered as random

variables are to be quantified using distribution-free maximum entropy for-

malism (MEF), as well as Akaiki’s information criterion (AIC) advanced

probabilistic analysis. Secondly, the reliability analysis will be carried out

by entropy-based modified first-order reliability method (FORM). Thirdly,

a reliability analysis of the Nipigon River landslide slope reinforced with

piles will be performed using GEO-Slope-based direct Monte Carlo simu-

lation software. To accomplish these goals, various topics on geostatistics,

probability, reliability, and uncertainties have been studied extensively.
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1.4 Thesis Outline

1.4 Thesis Outline

The structure of the thesis has been shown in Figure 1.1.

Chapter 1 familiarizes with some introductory topics and problems in-

volved in slope stability.

Chapter 2 presents a review of previous research and studies on different

methods of slope stability analysis.

Chapter 3 familiarizes the developed entropy-based probabilistic method

for soil variables quantification using maximum entropy principle and Akaike’s

information criterion, based on illustrative examples.

Chapter 4 gives a brief insight into field soil testing that was carried out at

the Nipigon River landslide slope site.

Chapter 5 exhibits the reliability analysis of the Nipigon River landslide

slope, which incorporates the developed modified first-order reliability method

and its comparison with the GEO-Slope-based Monte Carlo simulation

method in order to compute the reliability index and the probability of fail-

ure of the Nipigon River landslide slope.

Chapter 6 displays the reliability-based design methodology of different

combinations of the pile-reinforced slope design of the failed Nipigon River

landslide slope.

Chapter 7 manifests the conclusions and future recommendations for adopted

research methods.

4



1.4 Thesis Outline

Uncertainties

Literature review

Entropy-based distribution

Soil investigation

Reliability analysis of the Nipigon
slope

Modified FORM

Reliability-based design of the
Nipigon slope

GEO-Slope based Monte
Carlo simulation method

Conclusions and recommendations

Figure 1.1: Flowchart depicting the structure of thesis
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Chapter 2

Literature Review

2.1 Introduction

Slope stability has a significant role in the field of civil engineering. Sta-

bility analysis is carried out on a regular basis to compute the safety and

functionality of various types of slopes. These slopes may be present in

transportation facilities such as railroads, highways, airports, canals and

many other human-made slopes (Huang, 2014). The slope stability analy-

sis method is chosen based on the conditions of the site as well as the failure

modes of the slope. Moreover, precise importance is given to the pros and

cons of the adopted methodology (Shien, 2005).

It is well known that soil variables in slope engineering, similar to other

geotechnical parameters, are bound to uncertainties, rendering it difficult to

assess stope stability. These uncertainties include spatial variability in soil

properties, geological incongruities, climatic and environmental conditions,

drainage changes, analytical and computational errors, etc. Slope stability

analysis is generally performed using conventional deterministic methods,

which involve an overall factor of safety.

The deterministic approach is unable to explicitly account for various

uncertainties associated with the slope. On the contrary, reliability analy-

sis offers a systematic analysis of uncertainties and for their inclusion in

evaluating slope performance. The proficient probabilistic framework al-
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2.2 Deterministic Slope Stability Analysis

lows engineers and researchers to make a sound judgment in design and

economical features of the slope.

2.2 Deterministic Slope Stability Analysis

The most frequently-adopted method for slope stability analysis is the limit

equilibrium method. Based on the concept of Coulomb’s failure criterion,

a failure surface is assumed (Huang, 2014). The limit equilibrium state

occurs when the shear stress along the failure surface is:

τ =
s

F
, (2.1)

where τ is shear stress, s is a shear strength, and F is a factor of safety. The

shear strength for Mohr-Coulomb theory is:

s = c+ σn tanφ, (2.2)

where c is the cohesion, σn is the normal stress and φ is the friction angle

(Huang, 2014). The shear stress can be determined by Eq. (2.2) after the

factor of safety is calculated.

2.2.1 Method of Slices

This is the first approach to compute slope stability based on the limit equi-

librium method, keeping in mind the mechanical equilibrium of forces and

moments of the stresses acting on the sliding body mass (Priceputu, 2013).

The methods of slices are convenient for hand calculations, therefore, they

were first used for computing slope stability.

The fellenius method of slices is the most common and simplest ap-

proach to determining the linear equation of the factor of safety. In this
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2.2 Deterministic Slope Stability Analysis

approach, the vertical and horizontal forces (i.e., the interslice forces) are

assumed to be equal, and are neglected. The factor of safety evaluated by

the fellenius method is conservative, and is almost 50% below the actual

equilibrium value (Whitlow, 2000).

Janbu’s simplified method is adequate for the arbitrary shape slip sur-

faces and is used very frequently, everywhere. Rigorous methods that sat-

isfy both force and moment equilibrium equations are considered to be the

best method, where Janbu’s method falls behind. It relies upon the correc-

tion factor f0 (Janbu, 1973) to account for the interslice shear forces like an

angle of friction, cohesion and failure shape.

Compared to Janbu’s simplified method, the rigorous method includes

the interslice forces to compute the normal force on the base of the ver-

tical slice. An iterative procedure is required to compute factor safety of

equation, and therefore, problems of convergence of the numerical solution

arise for some slip surfaces. This method often leads to an approximate

solution due to the lack of the parameters introduced during analysis to

balance some equations and unknowns (Fredlund & Krahn, 2011; Kenneth

et al., 1983). S. Zhang (1990) developed a method in which the tension

cracks are considered based on Janbu’s method whereby the slip surface,

having a large curvature, is neglected. This approach helped to eliminate

the problem of convergence.

The Morgenstern method and Price method defines the interslice forces

by assuming an arbitrary mathematical function:

λf (x) =
T

E
, (2.3)

where, λ is represented as the parameter to be computed, f(x) is the hori-

zontal coordinate, assumed function of x. To compute the factor of safety

Morgenstern and Price combined the force equilibrium equations and then
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2.2 Deterministic Slope Stability Analysis

used the Newton-Raphson method to calculate the moment and force equi-

librium equations of the factor of safety and λ. This method is like Spencer’s

when the f(x) is constant. Fredlund & Krahn (2011) developed an ad-

vanced modified Morgenstern and Price method because of the complica-

tions associated with the solutions.

In addition to the methods mentioned above, many other approaches

have been developed by researchers. The contrast between the various

methods based on the satisfaction of equilibrium conditions and assump-

tions for the problems are shown in Table 2.1.

Table 2.1: Element of the static equilibrium satisfied by various limit equilibrium
methods (Shien, 2005)

Method Horizontal
Force

Equilibrium
Vertical

Moment
Equilib-
rium

Assumption

Ordinary or
Fellenius

Yes No Yes Inter-slice forces are
neglected

Bishop’s sim-
plified

Yes No Yes Resultant inter slice
forces are horizontal

Janbu’s method Yes Yes No Resultant inter-slice
forces are horizontal,
an empirical inter-
slice factor is used
to account for shear
force

Spencer’s Yes Yes Yes Resultant inter-slice
forces are constant
slope throughout the
sliding mass

Morgenstern
and Price
method

Yes Yes Yes Direction of the re-
sultant inter-slice
is defined using an
arbitrary function.
The percentage of the
function is computed
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2.2 Deterministic Slope Stability Analysis

2.2.2 Numerical Methods

Statistical simulations can deal with the uncertainties incorporated within

the soil parameters. These can be used to quantify uncertainty and estimate

the different outcomes of the likelihood of occurrence. Engineers can de-

sign more robust and economic structures, as well as solutions to problems.

Numerical methods such as finite element, and discrete element methods,

are frequently used in slope stability analysis (Griffiths & Lane, 1999).

Finite Element Method

The Lagrangian formulations of the finite element method have been adopted

ever since the geometric non-linearity concept was developed in the calcu-

lation. Finite element method is a potent computer programming tool for

computations in engineering. The finite element method is a potent com-

puter programming tool for computations in engineering. It can simulate

the actual physical behavior of the structure using computer programming

tools, therefore avoiding any simplification in the process.

In the slope stability analysis using the finite element method, the same

failure criteria as in limit equilibrium are used without making any assump-

tions. Many methods have been proposed during the past decades that rely

upon finite element methods for slope stability analysis. The gravity in-

crease method by Swan & Kyo (1999) and strength reduction method by

Matsui & San (1992) are the most popular methods used until now. The

gravity increase method functions by gradually increasing the gravitational

forces until the slope fails, and then the factor of safety is calculated by

the ratio of gravitational forces at failure to the actual gravitational accel-

eration. In the strength reduction method, the soil parameters are reduced

so that the slope becomes unstable and eventually fails. In fact, Griffiths

& Lane (1999) claimed that the strength reduction method is similar to the
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2.2 Deterministic Slope Stability Analysis

limit equilibrium method.

Discrete Element Method

This method, also known as the Euler-Lagrange finite element method, has

substantial computational complexity. Hence, it is still considered doubt-

ful from an engineering point of view. The discrete element method has

been adopted by many researchers in various fields of engineering. Cun-

dall (1971) used the finite element method in a computer model to simu-

late the large-scale movement of blocky rock systems. Chang (1992) used

the discrete element method to conduct slope stability analysis. His model

was a slight extension of the traditional deterministic right plastic assump-

tion, without the requirement of any assumptions regarding interslice forces

(Chang, 1992). Chang concluded that the discrete element method used in

the research was more rigorous than the deterministic approach, and the

consideration of the elastoplastic.

2.2.3 Limitations of Deterministic Methods

The traditional method adopts the deterministic methodology. The factor of

safety determines whether or not the slope is safe. If the value of the factor

of safety is greater than 1, the slope is safe; if it is less than 1, the slope

is unsafe. The factor of safety value also depends on the sound judgment

of the engineer about the input parameters, failure mode, assumptions, and

analysis methodology (Shien, 2005). Because the uncertainties associated

with the system are neglected, the traditional approach is very unreliable

and subjective (Liang et al., 2014; Dian Qing et al., 2017).
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2.3 Uncertainties in Slope Stability Analysis

In the analysis and design of geotechnical structures, various sources of un-

certainties are encountered, that are very well known (Abbaszadeh, Shahriar,

Sharifzadeh, & Heydari, 2011). Morgenstern (1995) grouped the uncertain-

ties into three categories. The flowchart 2.1 below displays the uncertainties

associated with soil properties.

Parametric Uncertainties Model UncertaintiesHuman Uncertainties

Uncertainties

Figure 2.1: Uncertainties associated with soil parameters

2.4 Conventional Methods of Modelling Uncer-
tainty

The most significant problem encountered in the probabilistic design ap-

proach is the ability to quantify the available information regarding the ran-

dom variables. The information can be available in the form of sample

values that may be computed from laboratory tests, field measurements,

etc. Nevertheless, the information can have some uncertainties, and may

be less explicit. Hence, there should be a way to incorporate this available

information into the design.
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2.4 Conventional Methods of Modelling Uncertainty

2.4.1 Histogram and Frequency Diagram

The initial step in modeling the uncertainties is to consider the parameters

of the soil to be random variables. Usually, the strength parameters such as

cohesion (c), density (γ), angle of friction (ψ), etc. are considered to be the

most significant random variables.

Descriptors of Randomness

Engineers have discovered that during the analysis and designing of engi-

neering systems, there is an existence of uncertainty and variability. How-

ever, the traditional or the conventional approach considers these uncer-

tainties to be deterministic while relying on a single factor of safety value

(Haldar & Mahadevan, 2000). On the contrary, an innovative probabilistic

approach is a better option to account for variabilities and uncertainties in

slope stability analysis. The focus of this thesis is to develop an advanced

methodology to carry out reliability analysis of slope stability. Hence, it is

important to study some basic concepts associated with probabilistic anal-

ysis based on the combined effects of basic and advanced statistics.

Random Variable

Every quantity in the civil engineering aspect is considered as a random

variable, which can be any variable that is subject to randomness. The In-

ternational Society for Soil Mechanics and Geotechnical Engineering (ISS-

MGE) Technical Committee defines a random variable as “a quantity, the

magnitude of which is not exactly fixed but rather the quantity may assume

any of the number of values described by a probability distribution” (ISS-

MGE, 2004; Shen, 1984). A random variable can be considered as discrete

random variable or continuous random variable depending upon pattern it

follows.
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2.4 Conventional Methods of Modelling Uncertainty

Measure of Central Tendency and Uncertainty

The information regarding properties of the random variable that are essen-

tial in practical application, can be evaluated by measuring central tendency

(mean) and variability (standard deviation) of the random variable (Griffiths

& Lane, 1999).

2.4.2 Analytical Models to Quantify Randomness

The analytical representation of randomness can be computed in the form of

probability density function (PDF) and cumulative density function (CDF)

(Haldar & Mahadevan, 2000). A continuous random variables histogram is

fitted with the probability density function. The mean of the PDF represents

the best estimate of the random variable whereas, the standard deviation or

coefficient of variation of PDF represents uncertainty in a random variable.

Alternatively, the information regarding the variable can be presented by

the cumulative distribution function (CDF), which represents that a variable

will have the probability of value less than or equal to the given range of

the value. The CDF is the integral of the PDF.

The distribution can be determined in several ways, including drawing

a frequency diagram, plotting data on probability paper and conducting sta-

tistical tests known as goodness-of-fit tests (Haldar & Mahadevan, 2000).

There are multiple distributions used for the computation of probability and

reliability of structures or events. Distribution analysis could be carried out

with the help of various computer programs available on the market today.

MATLAB, Microsoft Excel, and QUATRO PRO are the most used software

(Haldar & Mahadevan, 2000). In the present research both, MATLAB and

ExceL are utilized to conduct the analysis.

Some of the distributions that are used for representing information in

the form of PDF are the Normal distribution, Student’s t-distribution, Chi-
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2.4 Conventional Methods of Modelling Uncertainty

square distribution, Poisson distribution, Exponential distribution, Bino-

mial distribution, Rayleigh distribution, Beta distribution, Geometric distri-

bution, Weibull distribution and Extreme value Type II and Type III (Hal-

dar & Mahadevan, 2000). The limitation of this widely-used distribution

method is that these methods result in a biased estimate of the mean, and

are unable to provide insight regarding the population of distributions from

which the computed data are a sample (Zhao & Frey, 2004).

2.4.3 Method of Probability Papers

The practical choice for the probability distribution may be made through

mathematical formulations and knowledge about the distribution. In some

cases, the distribution can be assumed to be uniform, triangular, trapezoidal,

etc., whereas in other cases, more than one distribution can be fitted to a

histogram with data information. Hence, sometimes the physical process

of plotting data on probability paper may provide a specific form of the

distribution (Haldar & Mahadevan, 2000). The distribution can be obtained

by plotting the available information for random probabilities in the form

of cumulative probabilities on suitable graph paper or probability paper.

2.4.4 Method of Moments

After the distribution for the particular random variable is obtained, the next

step is to obtain the values of the parameters of the distribution. The pa-

rameters of different distributions are different in numbers depending upon

the type of distribution. Distributions such as Binomial and Poisson have

only one parameter, while others like log-normal and normal distribution

have two parameters; many other distributions could have more than two

parameters (Haldar & Mahadevan, 2000). The success of modeling uncer-

tainty relies upon the accuracy of the parameter estimates based on the test
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2.5 Distribution-free Method for Modelling Uncertainty

results. After the randomness is uniquely defined regarding the parameter

of a distribution, the probabilistic analysis is carried out using these param-

eters.

The mean, or expected value, is considered as the first moment; variance

represents the second moment, skewness represents the third moment, and

so on. Hence, the method of moments concept can be adapted to estimate

the parameters of distribution using information on its moments (Haldar &

Mahadevan, 2000)

2.4.5 Statistical Tests

Even after plotting distributions on histogram or probability paper, the dis-

tribution does not provide a completely linear relationship, and distribution

sometimes appears to be cumbersome. Therefore, more precise and defini-

tive statistical goodness-fit tests can be applied to determine the distribu-

tion. Two of the most commonly-used statistical tests are Chi-square (χ2)

and Kolmogorov-Smirnov (K-S) tests. Chi-square tests based on the error

between observed and assumed probability density function of distribution,

whereas K-S test is based on the error between observed and assumed con-

tinuous density function of the distribution (Haldar & Mahadevan, 2000).

2.5 Distribution-free Method for Modelling Un-
certainty

Distribution-free statistical methods are one that does not rely on presump-

tions of a known set of probability distribution function for their validity. If

the validity of the method depends on the assumption that states the popula-

tion distribution stems from an order of population probability distribution

functions that are defined except for a finite number of parameters, then the
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2.5 Distribution-free Method for Modelling Uncertainty

method is considered no longer as distribution-free (Conover, 2009).

In probabilistic approach , modelling and characterization of uncertain-

ties in random variables are the first and the most significant step. This

is because the subsequent reliability analysis of the structure is dependent

upon the characterization of random variables. Uncertainties associated

with the random variables are usually quantified by probability curves,

mostly by probability distribution curves and its parameters. The conven-

tional classical methods to compute the distributions and parameters from

the available sample data, lack behind due to the restriction on the family

of assumed standard theoretical distributions and susceptibility to sample

sizes (Deng et al., 2004).

A more rationalized and convenient way to quantify the sample infor-

mation is by evaluation of the sample moments. Maximum entropy prin-

ciple has been adopted an a vital method for distribution fitting. The max-

imum entropy is based on Shannon’s entropy, which is a measure of un-

certainty that has been adopted in several disciplines of engineering for

estimating distribution functions (Sobczyk & Trcebicki, 1999; J. Zhang &

Gu, 2015; J. Li & Xu, 2011). The method will be explained in next chapter

more precisely.

Maximum entropy generates the unbiased estimate of the probability

density function, which signifies most probable or likely (PDF) from all

the sets of density functions subject to moment constraints. In one of the

studies, the maximum entropy method (MEM) was adapted to estimate the

probability density function and evaluate the slope stability by C. Li et al.

(2012), who adopted a fourth-moment procedure and maximum entropy

principle utilization to conduct a reliability analysis for earth slopes. The

aim of this research is to present a distribution -free approach , by combin-

ing maximum entropy formalism with Akaike’s information criterion for

17



2.5 Distribution-free Method for Modelling Uncertainty

estimating the probability curves directly from field sample data and then

carry out slope stability analysis.

Lindley (1956) was the first to apply information theory to quantify

information produced by analysis based on the Bayesian approach. Com-

menges (2015) demonstrated the application of information theory in statis-

tics, especially in bio-statistics.

Besides, Baker (1990) presented a procedure of estimation of proba-

bility density function based on information theory concepts. It combined

Jayne’s maximum entropy formalism with Akaike’s information criterion

for the selection of the optimal member of a group of model order. Baker

validated his proposed method by its application on structural live loads,

soil parameters, and the stochastic foundation design. Later, a concept of

cross entropy was introduced by a refined approach to combine a prior

distribution with available data (Deng & Pandey, 2009b, 2000; Sobczyk,

2003). In addition, Deng & Pandey (2009a) developed a rigorous quantile

function being exceptionally fit for a small sample size using maximum en-

tropy. Deng & Pandey (2008b) developed the estimation method, in which

he combined the Monte Carlo simulations and optimization algorithms to

compute fractionals of probability-weighted moments to generate the best-

fit quantile function.

Hence, maximum entropy has been employed in various fields of engi-

neering simultaneously with geotechnical engineering. In this research, an

approach is proposed to conduct slope stability analysis based on combined

distribution-free method of maximum entropy formalism, and Akaike’s in-

formation criterion concept. Also, the first-order reliability method is mod-

ified to incorporate the non-normal parameters of MEF and AIC, and com-

pute the reliability analysis of the Nipigon River landslide slope.
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2.6 Probabilistic Slope Stability

Probabilistic methods are based on the risk-based design concept. Risk-

based designs are non-uniform when applied to different engineering dis-

ciplines (Haldar & Mahadevan, 2000). Rather than using a single safety

factor for resistance alone, it is more appropriate to apply the safety factor

to a load as well as to resistance, i.e., load and resistance factored design

(LRFD) (Haldar & Mahadevan, 2000). The risk can be measured on a prob-

ability of failure event or P (R < S), where R is resistance and S is Load.

Slope engineering is linked to several uncertainties, such as the inherent

spatial variability of the soil properties, subsurface uncertainties, and uncer-

tainties due to modeling. Slope stability analysis by utilizing probabilistic

and statistics theories provides a comprehensive approach to account for

these uncertainties. Reliability of slope stability is recognized as the mea-

sure of the reliability index (β) or probability of failure of slope (pf ). Table

2.2 represents the (β) and (pf ) satisfactory performance level. The proba-

bility of failure of slope (pf ) and reliability index (β) can be assessed using

several methods. These methods are addressed further in this section

Table 2.2: Probability of failure indices (Corps, 1999)

Expected Performance Level Beta pf of Unsatisfactory Per-
formance

High 5 0.0000003
Good 4 0.00003
Above average 3 0.001
Below average 2.5 0.006
Poor 2 0.023
Unsatisfactory 1.5 0.07
Hazardous 1 0.16

The first step to evaluating reliability or the probability of failure of a

system is to set up a performance function; the parameters relationship as
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per the performance function are known as variables Xi (Haldar & Ma-

hadevan, 2000). The performance function is as:

Z = g(X1, X2...., Xn). (2.4)

The failure surface or limit function can be defined as (Z = 0) (Haldar

& Mahadevan, 2000). The limit state represents the boundary between the

safe and unsafe region.

2.6.1 First Order Second Moment Reliability Method

The uncertainty in this approach is taken as a function of the uncertainty in

the model. The method follows the procedure of Taylor’s series expansion

of g(X1, X2. . .Xn) around its mean value. The expected values or mean, as

well as the standard deviation of the random variables, are used to evaluate

mean and standard deviation of the performance function in the form of the

factor of safety against slope stability (Haldar & Mahadevan, 2000). The

result that we get from the FOSM is reliability index, β. The reliability

index is the number of standard deviations of the performance function by

which the mean value of the performance function goes more than the limit

state (Shien, 2005). The FOSM method is described in the following steps

by (Shien, 2005; Baecher & Christian, 2003).

1. Establish what variables result in uncertainty.

2. Compute the mean, variance, correlation coefficients, and auto-correlation

distance of the random variables.

3. The determine the various distributions, spatially and systematically

under uncertainty and then eliminate errors.

4. Calculate the mean of the performance function.
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5. Determine the partial derivatives of the performance functions with

respect to the random variables.

6. Get the contribution of random variables of the systematic and spatial

variance of performance function.

7. Calculate the variance.

8. Compute the reliability index β, and probability of failure.

The advantage of the FOSM is that it helps in determining the degree of

influence of the variables in uncertainty in a precise manner.

β =
µz
σz
, (2.5)

pf = φ (−β) = 1− φ (β) . (2.6)

µz is the mean and σz is the standard deviation. β denotes the reliability

index and Eq. (2.6) gives the probability of failure. FOSM is instead a

simplistic approach of slope stability analysis. In summary, FOSM is a

simplistic approach of slope stability analysis, which requires a pre-defined

critical slip surface of slope failure without accounting for the uncertainties

correlated with the critical slip surface.

2.6.2 Point Estimate Method

An alternative method to FOSM was developed in 1981 (Rosenblueth, 1981).

In the point estimate method, the probability distributions for continuous

random variables are modeled by similar discrete distributions having more

than or equal to two values (Shien, 2005). The discrete distributions ele-

ments have specific distributions with some values, the first few moments of

these discrete distributions match the continuous random variables. Due to

having fewer values for the integration, the performance function moments
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are not difficult to compute.

In this procedure, the mean and variance are calculated using the weighted

average of the discrete set of points in the uncertain parameter space. The

moments of the performance function are determined by calculating the set

of combined low and high values of the parameter (Shien, 2005). The com-

plexity for computation increases with the number of uncertainty quantity

of interests (Baecher & Christian, 2003). However, the approach is robust

and accurate for a range of a practical problem. This method is straightfor-

ward, simple, direct and efficient for low order moment evaluation.

2.6.3 Monte Carlo Simulation

Monte Carlo simulation has been widely used to analyze slope stability

(Tobutt, 1982), where randomly-generated points are used to cover the cal-

culation values. This method is adopted when there is difficulty in solving

the probabilities using analytical methods. Monte Carlo simulation is a ro-

bust method that can can compute system reliability (Haldar & Mahadevan,

2000). The procedure of this method is as follows (Shien, 2005).

1. The PDF of the random input variables is defined.

2. Based on the corresponding probabilities of the random variables, the

pseudo-random numbers are generated.

3. The values generated are used to compute the performance function,

and then the factor of safety is evaluated.

4. Large number of simulations are carried out to build up factor of

safety.

The simulation numbers vary for each simulation model. The research

conducted by Hutchinson & Bandalos (1997) revealed that for an appropri-

ate result, 10,000 to 100,000 iterations are required. Its scope has recently
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been enhanced due to advancement in the software. The explicit functions

can be easily evaluated with its built-in software simulation technique, such

as Excel’s @Risk add-in. The software allows systematic reliability analy-

sis of the entire system. The drawback of this software is that the distribu-

tions of the random variables should be known or assumed, which results in

reduced accuracy of the distribution obtained for the performance function.

2.6.4 Reliability Judgment

The reliability index obtained from the analysis is more appropriate than

the slope stability determined by a probability density function of factor of

safety. It provides sound knowledge of the present condition of the struc-

ture or slope, as well as its future performance. Slopes with a higher value

of reliability index are considered more reliable, and vice-versa. The slope

with the low-reliability index is considered to be a hazard (Shien, 2005).

Santamarina et al. (1992) developed criteria for assessing slope failure con-

sequences, as shown in Table 2.3.

Table 2.3: Probability of failure criteria of slope (Santamarina, Altschaeffl, &
Chameau, 1992)

Conditions Criteria for Probability of
failure

Temporary structures with low
repair cost

0.1

Existing large cuts on interstate
highway

0.01

Acceptable in most cases Ex-
cept if life may be lost

0.001

Acceptable for all slopes 0.0001
Unnecessarily low 0.00001
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2.6.5 Correlation of Variables

The probabilistic approach also computes correlation coefficients between

different variables. They are mostly between the parameters such as fric-

tion angle, cohesion and unit weight. Table 2.4 represents co-variance val-

ues suggested by various researchers. The laboratory tests performed on

different soils have provided results that cross correlation between angle of

friction, and cohesion ranges negatively correlated between -0.72 and 0.35

(Shien, 2005).

Table 2.4: Coefficient of variance suggested by researchers (Shien, 2005)

Parameter Coefficient of Vari-
ance %

Reference

Unit weight 3, 4 to 8 Wolff (1996)
Drained strength of sand
φ
′

3.7 to 9.3, 12 Wolff (1994)

Drained strength of clay
φ
′

7.5 to 10.1 CD tests on compacted
clay at Cannon dam,
Wolff (1985)

Undrained strength of
clay Su

40, 30 to 40, 11 to
45

Fredlund and Dahlman,
Wolff (1994), UU tests
on compacted clay
at Canon Dam, Wolff
(1985)

Strength to effective
stress ratio, Suσv

31 Wolff (1994)

Permeability of top blan-
ket of clay, kb

20 to 30 Wolff (1994)

Permeability of founda-
tion sands, kf

20 to 30 Wolff (1994)

Permeability ratio, kfkb 40 Derived using 30% for kf
and kb

Permeability of embank-
ment sand, kf

30 Wolff (1994)
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2.7 Software for Slope Stability Analysis

There are various types of commercial software available on the market

that are used for conducting slope stability analysis. Meanwhile, each pro-

cedure adopted in these commercial software packages is different. Some

software carries out only deterministic slope stability analysis, while others

are capable of both deterministic as well as probabilistic analysis of slope

stability. Some software specifications are explained in the following sub-

sections:

GEO5 geotechnical software suit software can be used for shallow foun-

dation design, underground construction and tunneling, soil dynamics and

earthquake engineering, rock mechanics, deep foundations, retaining walls,

finite elements, soil mechanics, flow seepage and slope stability. GEO5 of-

fers analytical and numerical approaches for solving problems related to

the geotechnical field. It is developed by Fine spol.s r.o. AEC slope is

used for analyzing the stability of slopes for roads, railways, river training

works, canal embankments, dams, etc. AEC software works in tandem with

AutoCAD application, and uses the method of slices such as the Swedish

method of analysis for slope stability. It does not consider the pore water

condition.

Galena software helps in determining the slope stability of soil and rock

based on the deterministic methods such as Bishop (circular), Spencer-

Wright (circular and non-circular) and Sarma. The model can include exter-

nal forces acting on the slope, loads distributed on the slope and earthquake

effects. Piezometric surface lines can be defined separately for each layer

separately.

GEO-Slope SLOPE/W is the very efficient and very dynamic software

used for the slope stability analysis. It is the most reliable and used by en-

gineers and researchers all over the world (Melentijevic, Serrano, Olalla,
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& Gao, 2017; Kang, Zerkal, Liu, Huang, & Tao, 2018). It can be used

to analyze both simple and complex problems for a variety of slip surface

shapes, pore water pressure conditions, soil properties, and loading effects.

It includes pore water pressure defined lines using piezometric lines, rapid

draw-down analysis and deterministic, and has a probabilistic slope stabil-

ity analysis feature. The GEO-SLOPE 2007 software is used in the pro-

posed slope stability analysis.

2.8 Reliability Based Design

The presence of uncertainties in either engineering computations or geotech-

nical variables demands a reliability-based design (RBD) approach for a

robust and cost-efficient design. The random variables of the parameters

are utilized as system-designed variables, where cost optimization is car-

ried out using mathematical models subject to constraints (Wang, Hwang,

Juang, & Atamturktur, 2013). The RBD design provides higher confidence

level in design (Wang, Hwang, Juang, & Atamturktur, 2013). Many re-

searchers have utilized the reliability index computed by the traditional re-

liability analysis method for design purpose(Enevoldsen, 1994; Enevoldsen

& Sørensen., 1994; Allen & Maute, 2004). RBD approach was adopted by

Wang et al. (2013), who included a robust geotechnical design approach to

make the probability of failure insensitive to change in rock shear properties

by adjusting the design variable parameters. In this thesis, the reliability in-

dex computed from the proposed probabilistic reliability analysis is used

as initial design variables. Later, when the given constraint is not satis-

fied, design optimization is carried out by changing the design parameters

accordingly in order to achieve the desired probability of failure
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2.9 Summary

This chapter reviews the previous research on the geotechnical parameters

quantification, uncertainties in the soil properties, deterministic slope sta-

bility analysis, and probabilistic slope stability analysis. Also, the chapter

summarizes various software used for slope stability analysis. The under-

standing of the objectives mentioned above will be kept in view and mod-

ified while moving further into the proposed methodology of the present

thesis.
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Chapter 3

Entropy-Based Probabilistic Dis-
tribution of Soil Variables

3.1 Introduction

This chapter presents a new approach for estimating probability density

function of soil variables in geotechnical engineering. The methodology

is based on two-stage analysis, using Jayne’s maximum entropy formalism

and Akaike’s information criterion. The approach provides a systematic

analysis of the selection of an optimal member of the hierarchy of models

(Baker, 1990). The analysis is based on the continuous random variable

with continuous probability functions and unknown finite moments. The

method is universal in nature, which results in distribution-free modelling

of soil variables. Lastly, methodology is illustrated by its application on

data in examples.

The structure of the chapter is as follows. In Section 3.2, the theory

of maximum entropy formalism is described. Section 3.3 derives Akaike’s

information criterion application to the maximum entropy formalism. Sec-

tion 3.4 presents examples, and a summary is presented in Section 3.5.
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3.2 Maximum Entropy Principle

3.2 Maximum Entropy Principle

The probability distributions of the random variable can be possible, under

certain circumstances by using Jayne’s principle (Rosenkrantz & Baierlein,

1984). But the classical formulation of this formalism assume the avail-

ablity of a set of population moments, and hence can not be applied to

most engineering problems. To overcome this issue Baker (1990) com-

bined Jayne’s MEF with Akaiki’s information criterion. The method is

able to deal with the type of problems encountered in civil engineering.

Both MEF and AIC are here as two different aspects of minimization

of Kullback-Leibler relative entropy (Baker, 1990). This approach is a

Bayesian approach, and therefore requires a precise definition of the prior

information. In the present research it is assumed that random variable X

is bounded interval xmin ≤ x≤xmax where xmax and xmin represents prior

information.

In the information theory entropy represents a quantitative measure of

the information content of a probability distribution function (Baker, 1990).

While in the present analysis this approach is applied to measure the infor-

mation regarding uncertainties associated with random variables in civil

engineering.

The maximum entropy approach is based on the concept of entropy,

which is defined as a quantitative information content of a probability dis-

tribution function. Under this mechanism, the distributions with a flat shape

are considered less informative than the narrow peaked one.

Kullback’s Entropy Functional

The information theory in statistics was introduced by Kullback & Leibler

(1951) and presented in his book on statistics (Lindley, 1959). In the field

29



3.2 Maximum Entropy Principle

of statistics, entropy is the measure of uncertainty. Kullback’s entropy

functional helps to determine the measure of entropy measure between two

probabilities. The true measure of information content for a discrete ran-

dom variable can be computed using Shannon entropy (Baker, 1990).

H[P (x)] = −
n∑
i=1

P (xi) ln[P (xi)], (3.1)

where P (x) is the probability of the random variable X will have the value

x, and with total n number of possible values ofX . Shannon’s entropy can-

not be defined for continuous random variables because the value obtained

from this measure approaches infinity in the process of transformation from

discrete to continuous case (Baker, 1990). However, the entropy difference

between two distribution is finite, and can be computed by using Kullback-

Leibler information functionH[p1(x), p2(x)] (Lindley, 1956). The function

enables to measure the entropy difference between two probability assign-

ments p1(x) and p2(x). The function is given as:

H[p1(x), p2(x)] =

∫
D

p1(x) ln
[p1(x)

p2(x)

]
dx, (3.2)

where D is the range of the random variable X . The important aspects of

Kullback’s entropy function are:

• H[p1(x), p2(x)] is invariant to all monotonic transformations of the

random variable X

• H[p1(x), p2(x)] ≥ 0 for all possible distribution functions p1(x) and

p2(x).

• H[p1(x), p2(x)]= 0, defines that p1(x) = p2(x).

These relations are depicted in (Baker, 1990).
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3.2 Maximum Entropy Principle

Jayne’s Maximum Entropy Formalism

Jayne states that "the minimally prejudiced assignment of probabilities is

one which minimizes the entropy subject to the satisfaction of the con-

straints imposed by the available information" (Rosenkrantz & Baierlein,

1984). Therefore, considering H[P (x), P0(x)] as the information measure,

Jaynes’ principle signifies that the best probability assignment p(x) is the

solution of Eq. (3.3). Minimize

H[p(x), p0(x)] =

∫
D

p(x) ln[
p(x)

p0(x)
]dx, (3.3)

subject to satisfaction of constraints:

p(x) ≥= 0 ∀x ∈ D, (3.4)

∫
D

p(x)dx = 1, (3.5)

Ik[p(x)] = 0 k = 1, 2, ..., K, (3.6)

where p0(x) is the prior distribution of X and Ik[p(x)] = 0, k = 1, 2, .., K

is a set of K constraints defining the available information. Jayne’s princi-

ple is based on the mechanism to take the best probability assignments as

close as possible to the prior distribution without contradicting the available

physical information in Eq. (3.6) and other basic requirements of density

function in Eqs. (3.4),(3.5). The importance of Jayne’s contribution is

that Shannon’s and Kullback’s entropies are the measures of the distance

between probability distributions in discrete and continuous cases, respec-

tively. Jayne’s defined the entropy as−H[p1(x), p2(x)] and maximized this

equation, therefore it is know as ’maximum entropy formalism’. The set
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3.2 Maximum Entropy Principle

of constraints represented in Eq. (3.6) is to assume K population moments

µk, k = 1,...,K

Ik[p(x)] = µk −
∫
D

xkp(x)dx = 0 k = 1, ...., K. (3.7)

The solution of the minimization problem in Eq.’s (3.3), (3.5) and (3.7) is

follows:

pk(x|µ) = p0(x) exp
[
Z0 +

k∑
k=1

λkx
k
]
, (3.8)

where, λk, k = 1,...,K is a set of Lagrangian multipliers associated with the

physical constraints Eq. (3.8), Z0 is the multiplier associated with normal-

ization constraint in Eq. (3.5), and µ = (µ1, ..., µK) is the vector of given

population moments. The notation pk(x|µ) represents the importance that

Eq. (3.8) corresponds to a given vector of population moments. By substi-

tuting Eq. (3.8) in the Eq. (3.5) we get:

Zo = − ln
{∫

D

p0(x) exp
[ k∑
j=1

λjx
j
]
dx
}
. (3.9)

This equation shows that the Z0 is fixed by the Lagrangian multipliers λ =

(λ1, λ2, λ3, λk).

Substituting Eq. (3.8) and (3.9) into Eq. (3.7) we can compute the

values of λ from the following equation:∫
D
xkp0(x) exp

[∑K
j=1 λjx

j
]

∫
D
p0(x) exp

[∑K
j=1 λjx

j
] = µk k = 1, ...., K. (3.10)

Considering the maximum entropy distribution pk(x|µ) as a model, the

L.H.S of Eq. (3.10) signifies the theoretical model moments (µM ). In the

end, Eq. (3.8) is substituted in Eq. (3.3) using the constraints in Eqs. (3.5)
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3.3 Akaike’s Information Criterion

and (3.7), to get the solution of entropy of optimal order pk(x|µ) (Baker,

1990):

H[pk(x|µ), p0(x)] =
[
Z0 +

k∑
k=1

λkµk

]
. (3.11)

IfX is a random variable of any parameter and x1...xN are theN measured

values for data set rather than set of population moments. It is possible to

calculate N independent sample moments µ̂k, k = 1,..., N as:

µ̂k =
1

N

N∑
j=1

[xj]
kk = 1, ..., N (3.12)

The density pk(x|µ) defined in Eq. (3.8) for the unknown values of pop-

ulation moments, signifies a family of distributions parametrized by the K

unknown constants µ = µk, k = 1, ..., K. As Eqs. (3.9) and (3.9) show that

µ = f(λ), and Z0 = f(λ), it is possible to take Lagrangian multipliers as

the unknown parameters of distribution in place of µ and write pk(x|λ) for

the Kth order Maximum Entropy Family of Distributions (MEFD). Baker

(1990) stated that the search of probabilistic models using the MEFD does

not result in any loss with respect to the shape of the probability distribu-

tions.

3.3 Akaike’s Information Criterion

With Jayne’s maximum entropy formalism a family of distributions with

parameters was established in Eq. (3.8). The further step after establishing

Eq. (3.8) of the family of distribution is to compute both the number of

parameters and their values, which depicts the information present in the

sample. Akaike (1973) and others provided a solution to such a problem

(Baker, 1990). Let g(x) be the unknown distribution and pk(x|λ) be Kth

33



3.3 Akaike’s Information Criterion

order model. The measure of distance between pk(x|λ) and g(x) is repre-

sented in the Kullback-Leibler entropy in Eq. (3.13).

H[g(x), pk(x|λ)] =

∫
D

g(x) ln
[ g(x)

pk(x|λ)

]
d(x), (3.13)

The best choice for λ is minimizing the distance between pk(x|λ) and g(x).

Since, g(x) is not known, we are unable to evaluate the L.H.S of Eq. (3.13).

Eq. (3.13) can be re-written as:

H[g(x), pk(x|λ)] = C − L(λ,K), (3.14)

where:

C =

∫
D

g(x) ln[g(x)]d(x), (3.15)

and,

L(λ,K) =

∫
D

g(x) ln[pK(x|λ)]dx. (3.16)

The term C does not depend on λ, hence while minimizing H with respect

to λ thisC term is constant. It is evident from Eq. (3.16) that L(λ,K) is the

expected value of ln[pK(x|λ)], therefore from N measurements of sample,

we can obtain natural estimate L̂(λ,K) of L(λ,K).

L̂(λ,K) =
1

N

N∑
j=1

ln
[
pK(xj|λ)

]
, (3.17)

where xj; j =1,...,N signifies N measured sample values. The estimate of

Ĥ of H is:

Ĥ(λ,K) = C − L̂(λ,K) = C − 1

N

N∑
j=1

ln
[
pK(xj|λ)

]
, (3.18)
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3.3 Akaike’s Information Criterion

and the best choice of λ is computed by minimizing Ĥ with respect to

vector of unknown parameters λ.

min
λ

{
Ĥ(λ,K)

}
= C − 1

N
max
λ

{ N∑
j=1

ln
[
pK(xj|λ)

]}
. (3.19)

The term
∑N

j=1 ln
[
pK(xj|λ)

]
is log likelihood function. Therefore, from

equation Eq. (3.24) are maximum likelihood estimates (Baker, 1990). Akaike

(1973) suggested that a best estimate of λ can be obtained if we maximize

not the natural estimate L̂ of the biased likelihood function, rather an unbi-

ased estimate of this function. The unbiased estimate is given as:

L̂(λ,K) = L̂(λ,K)− K

N
, (3.20)

hence, an unbiased estimate Ĥ of H as in Eq. (3.21):

Ĥ(λ,K) = C − L̂(λ,K) +
K

N
. (3.21)

The bias term K/N is directly proportional to model order K, which is the

number of parameters that we try to estimate, and is inversely proportional

to the number of sample data N . Akaike’s information criterion can now

be used for minimizing the Eq. (3.22).

Ĥ(λ,K) = C − (
1

N
)

N∑
j=1

ln[pK(xj|λ)] +
K

N
. (3.22)

Eq. (3.22) can be summarize the Akaike’s estimation procedure, that for a

given value of K, minimize the unbiased estimate of the entropy given in

Eq. (3.22), and get the optimal values of the parameters λ. Compute the

entropy related to the best K th order model utilizing Eq. (3.22). Now λk

is known so Ĥ(λ,K) = Ĥ(K) is a function of K only. Find the optimal
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3.3 Akaike’s Information Criterion

order approximation which minimizes the value of Ĥ(K) as function ofK:

minKĤ(K) = Kopt (3.23)

Akaike (1973) presented this program to determine the optimal model order

of probability assignments (Baker, 1990).

3.3.1 Application of AIC to Family of Maximum Entropy

Akaike’s information criterion and Jayne’s maximum entropy formalism

supplement each other. Both AIC and MEF are a Bayesian approach, and

are based on the Kullback-Liebler minimization of information function.

Hence, it is natural to apply the AIC procedure to the family of maximum

entropy. In order to get combined explicit equation of AIC and maximum

entropy, Eq. (3.8) and (3.22) are combined to get Eq. (3.22):

Ĥ(λ,K) = C−(
1

N
)

N∑
j=1

ln[p0(xj)]−Z0(λ,K)−
K∑
k=1

λk

[ 1

N

N∑
j=1

(xj)
k
]
+
K

N
,

(3.24)

The term
∑N

j=1 ln[p0(xj)]/N is independent of λ and K, hence it can be

added in the constant C. The term [ 1
N

∑N
j=1(xj)

k] represents the sample

moments µ̂k, Eq. (3.24) becomes:

Ĥ(λ,K) = C − Z0(λ,K)−
K∑
k=1

λkµ̂k +
K

N
, (3.25)

to eliminate the constant C from Eq.(3.25), notice that for K = 0, also

Z0 = 0, gives:

Ĥ(K = 0) = C, (3.26)
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now,

∆H(λ,K) = Ĥ(λ,K)−Ĥ(K = 0) =
K

N
−Z0(λ,K)−

K∑
k=1

λkµ̂k. (3.27)

Eq. (3.27) is the differential entropy equation. This equation result can

be either positive or negative, and it is not invariant to monotonic transfor-

mations (Baker, 1990). The optimal order parameters λK could be identi-

fied either by solving the nonlinear Eqs. (3.2) or by direct minimizing of

∆H(λ,K) using Eqs. (3.27), (3.9).

Advantage of the New Entropy Distribution

This approach is a distribution-free method, as no classical theoretical dis-

tributions were considered in advance (Deng, Pandey, & Xie, 2012; Deng &

Pandey, 2010). The results provide a universal form of probability curves

as per the implemented constraints. The method produces different dis-

tributions according to the given constraints, as shown in Table 3.1. The

distribution obtained by maximum entropy is said to be the most unbiased,

as it is derived from a systematic maximization of uncertainty about the un-

known information (Deng & Pandey, 2009c). Therefore, this justifies the

adopted approach, where the uncertainty is maximized by minimizing the

distance between two probability assignments, i.e., prior probability and

current information. This approach is a distribution-free method for esti-

mating the models of random variables (Deng & Pandey, 2008a, 2009c;

Deng, Pandey, & Gu, 2009).
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3.3 Akaike’s Information Criterion

Table 3.1: Maximum entropy probability distributions (Harr, 1987).

Given Constraints Assigned Probabil-
ity∫ b

a f(x)dx = 1 Uniform∫ b
a f(x)dx = 1

Expected value Exponential∫ b
a f(x)dx = 1

Expected value, standard devia-
tion

Normal∫ b
a f(x)dx = 1

Expected value, standard de-
viation, range (minimum and
maximum values)

Beta

∫ b
a f(x)dx = 1

Mean occurrence rate between
arrivals of independent events

Poisson

3.3.2 K-S Goodness-of-Fit Test

A goodness-of-fit test is generally used to measure the accuracy of the

model fitted over the observed data. K-S goodness-of-fit method is be-

ing used to check the accuracy of models developed by maximum entropy

method in further analysis.

Hypothesis Testing:

Let x1,....,xn be an ordered sample with x1 6 ... 6 xn. Sn(x) is given by

Eq. (3.28):

Sn(x) =


0, x < x1

k/n, xk 6 x 6 xk+1

1, x > xn,

(3.28)
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Now the F (x) be the cumulative distribution function of the sample andDn

is a random variable, which is given by Eq. (3.29):

Dn = max
x
|F (x)− Sn(x)|, (3.29)

where F (x) is the theoretical CDF of the assumed distribution of the sam-

ple order x, and Sn(x) is the corresponding stepwise CDF of the observed

samples.

The objective is to use Dn as a way to estimate F (x). The critical values

of the distribution can be found from the Kolmogorov-Smirnov Table from

Haldar & Mahadevan (2000). Dn,α is the critical value obtained from Table

Haldar & Mahadevan (2000).

Now, Dn can be utilized to test the hypothesis of a sample of a specific

distribution function F (x) by Eq. (3.30) (Haldar & Mahadevan, 2000):

Dn = max
x
|F (x)− Sn(x)| 6 Dn,α. (3.30)

3.4 Illustrative Examples

Some examples are used in this section to illustrate the maximum entropy

formalism and AIC procedure and its accuracy of distribution-free model

fitted on basalt rock data and warehouse live load data. Firstly, OP-basalt

and AM-basalt samples of uniaxial compressive strength parameters distri-

bution free model is set up utilizing the proposed MEF and AIC. Secondly,

sample data of warehouse live load is modelled using the adopted approach.
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3.4.1 Basalt Rock Uniaxial Compressive Strength Param-
eter Modeling

The analysis is carried out on the rock mechanical parameters obtained

from the tests results. The values of basalt rock uniaxial compressive strength

parameter values are taken from a paper written by Cui et al. (2017). The

proposed approach of the principle of maximum entropy formalism, along

with Akaike’s information criterion, is applied over a decent sample of 48

oblique porphyritic basalt (OP-basalt) uniaxial compressive strength pa-

rameter values. This approach provides the most unbiased and distribution

free optimal model order of the parameter values.

Basalt is a basic rock, which consists of amygdaloidal structure and

porphyritic texture and contains a wide variety of mechanical properties.

Therefore, the inhomogeneous variability of natural rocks encounters un-

certainties in the parameters obtained from laboratory testing (Cui et al.,

2017). The present approach applies the uncertainties associated with these

parameters to model the samples of uniaxial compressive strength param-

eters. Parameter modelling of 48 OP-basalt uniaxial compressive strength

parameters is carried using the proposed methodology.
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Figure 3.1: Differential entropy DH(K) of 48 OP-basalt uniaxial compressive
strength parameter
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Figure 3.1 displays the differential entropy graph with values for differ-

ent model orders in transformed domain with xmin = 0 and xmax = 50.

Inspection of the Figure 3.1 represents that 2nd model order has the mini-

mum value of differential entropy out of all the other model orders. Conse-

quently, having the minimum differential entropy value, 2nd order model is

considered as an optimal order for the data of 48 OP-basalt uniaxial com-

pressive strength parameter.

OP-basalt uniaxial compressive strength parameter values (MPa)
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Figure 3.2: Data and density functions of 48 OP-basalt uniaxial compressive
strength parameter

The values of 48 OP-basalt uniaxial compressive strength parameter

sample data are given in Table 7.3. Comparing different models fitting the

sample data of 48 OP-basalt in Figure 3.2, it is evident that almost all the

model orders nicely fit the histogram of data. Looking at the 2nd model or-

der (bold red line) and 3rd model order (dashed-blue line), both fit perfectly

on the data except between range 40 to 70, where the 2nd model order has

a slightly better fit than the 3rd order. Analyzing 7th order (broken-green

line) and 5th order (dotted-pink line), these models fit fairly good on data
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range between 80 and 180, but at the same time looks not very good fitting

between the 40 to 70 range. Therefore, it can be deducted that 2nd order

model is best for the overall data fitting.
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Figure 3.3: 2nd model order (Optimal) PDF for 48 OP-basalt uniaxial compres-
sive strength parameter
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Figure 3.4: 3rd model order PDF for 48 OP-basalt uniaxial compressive strength
parameter
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Figure 3.5: 5th model order PDF for 48 OP-basalt uniaxial compressive strength
parameter
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Figure 3.6: 7th model order PDF for 48 OP-basalt uniaxial compressive strength
parameter
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Table 3.2: Model parameters values of OP-basalt uniaxial compressive strength
parameter

Model Order Parameter (λ) Values

2nd(OPTIMAL) λ1 = -9.771160992862491, λ2 =0.078094908026394, λ3 =-
0.000292475959781

3rd λ1 =-7.290924022675076,λ2 = -0.014624183627745, λ3 =
0.000662875259812, λ4 =-0.000002925950626

5th λ1 =-5.186513805978763, λ2 =-0.290221936748044,
λ3 = 0.007564130230584, λ4 =-0.000070108541323,
λ5 =0.000000280675304, λ6 =- 0.000000000416535

7th λ1 =-3.764815697547499, λ2 =-1.172876317134412,
λ3 =0.047575602061369, λ4 =-0.000772595215666,
λ5 =0.000006112759494, λ6 =-0.000000022757465,
λ7 =0.000000000026889, λ8 =0.000000000000023

Figures 3.3, 3.4, 3.5 and 3.6 present a view of the various model or-

ders of entropy PDF fit on the data of 48 OP-basalt uniaxial compressive

strength parameter values. It is seen that the curves of all model orders

almost curve fit the histogram, other than between the range of 40 to 70,

where the 2nd order is a better fit than the other model orders. Therefore,

it is wise to consider the 2nd order as an optimal order with its perfect

structure, as well as a differential entropy being best among all other model

orders. Table 3.2 shows parameter λ values of optimal model order, as well

as other model orders. Determination of the 2nd order model as a good fit

over data is achieved by Kolmogorov-Smirnov goodness-of-fit test using an

Excel spreadsheet and MATLAB.

In Table 3.3, columns 1 and 2 contain the data and their frequency.

Column 3 depicts the identical cumulative frequency values, and column 4

divides these values by the size of the sample 48. Column 5 outlines the

values of CDF acquired using the MATLAB program. Column 6 shows
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eventually the variation between the values in column 5 and column 6.

Dn implies the greatest value in column 6. The critical value of Dn,0.05 is

obtained from Haldar & Mahadevan (2000). Considering that the value of

Dn is less than Dn,0.05, we can resolve that the distribution data is a good

fit with the 2nd model order of entropy distribution.

The density function f(y) for a random variable y of the 2nd order is com-

puted by applying the algorithm of maximum entropy formalism,

f(y) = exp(−9.771160992 + 0.078094902y − 0.000292475y2). (3.31)

Kolmogorov-Smirnov Test

Table 3.3: K-S goodness-of-fit test of 2nd entropy order on 48 OP-basalt

Data Freq. Cum
freq.

Sn(x) F (X) Difference

0-20 0 0 0 0 0
21-40 0 0 0 0 0
41-60 0 0 0 0 0
61-80 3 3 0.062 0.073 0.011
81-100 5 8 0.166 0.208 0.042
101-120 11 19 0.395 0.401 0.006
121-140 11 30 0.625 0.611 0.014
141-160 10 40 0.833 0.787 0.046
161-180 6 46 0.958 0.900 0.058
181-200 2 48 1 0.921 0.079

Dn = 0.07
Dn,48,0.05=
0.1924

3.4.2 Warehouse Loads

This example is analyzed by Baker (1990) for an extensive data set. The

measured values of load on the warehouse floor from Table 7.4 are used

to explain the two-stage procedure of the maximum entropy formalism and
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Akaike’s information criterion. The results of maximum entropy with vari-

ous model orders and their parameter values are shown in Figures below.
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Figure 3.7: Differential entropy DH(K) of 220 sample of loads on the warehouse
floor based on different model orders

Inspection of the Figure 3.7 shows the differential entropy graph with

values for different model orders in transformed domain with xmin = 0 and

xmax = 250. Figure 3.7 depicts that the 3rd model order has the minimum

value of differential entropy. Hence, the 3rd order model is the optimal

order.

Figure 3.8 shows the histogram of the data of load on warehouse. Figure

3.8 consist of four superimposed density functions; the 2nd order shown as

a yellow dotted line, the 9th order in broken blue line, the 5th order as

a green dashed line and the 3rd model, which is optimal order, is shown

in solid red. The box in Figure 3.8 represents the values of λ, which are

parameters of the optimal 3rd order.
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Figure 3.8: Data and density functions of 220 sample of loads on the warehouse
floor

Figure 3.8 depicts that 3rd order model fits better than the 9th order

model. When an optimal 3rd order is compared to the 2nd order, figure

shows that 3rd order fits far more precisely than 2nd order model. There-

fore, it is reasonable to choose the 3rd order rather than any other model

order as an optimal model order. The 5th model fits the histogram very

similar to optimal third order. One may conclude that the 3rd order as the

optimal one as it has the lowest differential entropy.
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Figure 3.9: 2nd model order PDF for live load data
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Figure 3.10: 3rd model order (optimal) PDF for live load data
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Figure 3.11: 5th model order PDF for live load data
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Figure 3.12: 9th model order PDF for live load data

Figures 3.9, 3.10, 3.11 and 3.12 show various model orders entropy

PDF fit on the data of 220 live loads samples. It is evident that after review-

ing different model orders curve, that the 3rd and 5th order models fit the

histogram much better than the other two. However, when the 3rd order is

compared with the 5th order in Figure 3.8, the 3rd order fits slightly bet-

ter between range 0 to 20. Hence, the 3rd order is considered the optimal

order.
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Table 3.4: Model parameters values of warehouse live loads

Model Order Parameter (λ) Values
2nd λ1 = -5.870793542437816, λ2 = 0.024482080349970,

λ3 = - 0.000151473047107
3rd (OPTIMAL) λ1 = -6.737850943703387, λ2 = 0.065287683515044,

λ3 = -0.000617917010756, λ4 = 0.000001456554343
5th λ1 =-6.938032453466859, λ2 =0.081466859694262,

λ3 =-0.000996520756702, λ4 =0.000005066513981,
λ5 =-0.000000014872479, λ6 =0.000000000021965

9th λ1 =-6.431565471459113, λ2 =0.148780017319791,
λ3 =-0.016643428806383, λ4 =0.000806707783746,
λ5 =-0.000018780382464, λ6 =0.000000240246961,
λ7 =-0.000000001791821, λ8 =0.000000000007781,
λ9 =-0.000000000000018, λ10 =0.000000000000000

Table 3.4 shows the parameter(λ) values of various models.

Kolmogorov-Smirnov Test
Determination of the 3rd order model as a good fit over data is achieved by

Kolmogorov-Smirnov goodness-test-using an Excel spreadsheet and MAT-

LAB.

In Table 3.5, columns 1 and 2 are comprised of the data and their fre-

quency. Column 3 represents the corresponding cumulative frequency val-

ues, and column 4 divides these values by the size of the sample 219, ne-

glecting the 0 value from the sample size 220. Column 5 contains the values

of the CDF acquired using MATLAB program. Lastly, column 6 is the vari-

ation between the values in column 5 and column 6. Dn holds the greatest

value in column 6. The critical value of Dn,0.05 is obtained from Haldar &

Mahadevan (2000). Considering that the value of Dn is less than Dn,0.05,

we can conclude that the distribution data is a good fit with the 3rd model

order of entropy distribution. The density function f(y) for a random vari-
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able y of the 3rd order is computed by applying the algorithm of maximum

entropy formalism,

f(y) = exp(−6.73785094370 + 0.06528768351y − 0.00061791701y2

+ 0.00000145655y3). (3.32)

Table 3.5: K-S goodness-of-fit test of 3rd model order on 220 warehouse live
load data

Data Freq. Cum
freq.

Sn(x) F (X) Difference

0-20 5 5 0.0406504 0.053092 0.0124420
21-40 43 48 0.3902439 0.3227967 0.0674471
41-60 33 81 0.6585365 0.6896093 0.0310727
61-80 29 110 0.8943089 0.8956459 0.0013370
81-100 10 120 0.9756097 0.9737297 0.0018800
101-120 3 123 1 1.0090472 0.0090472

Dn =
0.0029685
Dn,219=
1.35810
Dn,0.05 =
0.0062013

3.5 Summary

In this chapter, a new approach is developed to set up a distribution-free

model of soil variables. The proposal includes a two-stage analysis based

on maximum entropy formalism, and followed by Akaike’s information cri-

terion. The method produces an unbiased distribution-free model with an

optimal order, which is then validated by Kolmogorov-Smirnov goodness-

of-fit test. The uncertainties related to geotechnical variables are quantified

systematically in the proposed approach. In addition, the process as men-
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tioned above is validated by implementing it on three examples of data. The

results generated by the analysis have certified that the procedure is reliable

and efficient for large data values as well as a limited set of values.
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Chapter 4

Soil Investigation
4.1 Introduction

The structure of the chapter is as follows: in Section 4.2, an insight to

the Nipigon River landslide site history, geology and subsurface conditions

is provided. In Section 4.3, the description of soil tests is provided, and

the mechanism of the vane shear test is described. Also, the application

of the vane shear test is performed to obtain the values of shear strength

parameters of the slope in the Nipigon River area. Section 4.4 shows the

results of the performed vane shear test. A summary is exhibited in the last

Section 4.5.

4.2 History of the Nipigon Slope

The landslide in question occurred on the morning of April 23rd 1990, at

the north area of the town of Nipigon, Ontario, Canada as in Figure 4.1.

It involved almost 300,000 cu/m of soil extended almost 350 m inshore of

the river with the maximum width of approximately 290 m (Dodds, Burak,

& Eigenbrod, 1993). This landslide had an adverse impact on the environ-

mental and economic condition of the region. River fluctuations of up to

1.2 meters were seen commonly, as stated by the locals.

The Trans Canada pipeline which operates under 7 MPa pressure, was

displaced from its original position to about 8.3 meters in towards the river
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4.2 History of the Nipigon Slope

and was left suspended without any support from the ground for up to 75

meters of its length. The fiber optic connections in the pipeline got shat-

tered. Three major associations carried out their respective investigation in

the following years after the landslide had taken place. Trow consulting

engineers Ltd. was hired by the Trans Canada pipeline and the Ministry of

Natural Resources to assess the cause, further risks, and recommendations

for the operation of the Alexander hydroelectric power station, which is sit-

uated 8 km above the landslide area on the Nipigon River. Furthermore,

investigations were carried out by Ontario Hydro as well as the department

of civil engineering of Lakehead University.

Figure 4.1: Nipigon River landslide area (2018)

4.2.1 General Geology and Subsurface Conditions of Re-
gion

The land in this area mostly comprises of glaciolacustrine plain and pockets

of sand silt in the delta. Figure 4.2 shows the location of the landslide site.

The drainage conditions are relatively poor in the local relief. The human-

made and natural slopes are susceptible to failure. The Arial photography

report after the landslide revealed that the area had many bank failures even

before the construction of the hydro dam in 1931 (Dodds, Burak, & Eigen-

brod, 1993). The land is mostly wet with poor drainage conditions adding
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4.2 History of the Nipigon Slope

instability to the banks of the region. The recent investigation in 2018 of the

Nipigon slope by Lakehead university graduate civil engineering students,

clearly depicts that the area is prone to small-scale slope failures as seen in

Figure 4.7.

Figure 4.2: Location of landslide (source:Google maps)
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Figure 4.3: Subsurface conditions of the slope in the Nipigon River slope

The general soil stratum of different layers of the Nipigon slope consists

of a silty sand layer on the top, beneath this layer is the clayey silt layer,
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4.3 Soil Tests

and the layer underneath the clayey silt layer is the silty sand and sandy silt

layer. The soft silty layer and plastic clay /silt layers exist under the lower

silt/sand layer. Figure 4.3 represents the subsurface conditions.

4.3 Soil Tests

The fine-grained soils commonly have drained and undrained shear strengths,

which is related to the fact that pore water pressure is drained or not. The

in-situ shear strength is obtained in undrained conditions because short term

slope stability requires the undrained shear strength of soil. The laboratory

technique’s to compute undrained shear strength includes an unconfined

compression test (UCT), direct shear test (DST), unconsolidated undrained

test (UUT), and laboratory vane shear test (VSTL) . In the case of field in-

vestigation, the field vane shear test (VST) is the most frequently adopted

method to get the undrained shear strength of soil (Jay, Nagaratnam, &

Braja, 2016). The test produces a fast and robust computation approach for

shear strength of undisturbed and remolded soil. Consequently, we use the

vane shear field test in the present study

4.3.1 Vane Shear Field Test

The vane shear test is one of the most commonly adopted tests to ana-

lyze the undrained shear strength of the in-situ saturated cohesive soil (Jay,

Nagaratnam, & Braja, 2016). The soils considered are weak and compress-

ible, having the properties of soft to firm clayey soils. The soils that are

cohesionless, such as sandy and gravel soil, are not able to maintain the

undrained conditions, and cannot be tested with vane shear. The vane shear

test is also not compatible with fibrous compost (Jay, Nagaratnam, & Braja,

2016). The vane shear test was invented in the twentieth century in Sweden.
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4.3 Soil Tests

A complete outline of the vane shear test is provided by Walker (1983). The

vane shear test is a robust and time saving test, as compared to other tests,

as it is easy and creates less disturbance of the soil while implementing the

test on the soil. It is an in-situ test, carried out by advancing the test from

the required depth to the base of the borehole. The over consolidation ratio

of the soil can be computed by this test using the empirical rule. The vane

shear test is more accurate than any other in-situ test to obtain the undrained

shear strength of the clayey soil (Lunne & Robertson, 1997).

Procedure and Equipment of Vane Shear Test

The equipment of vane shear includes a solid pushing rod with two vertical

vanes connected to the rod. A vane shear reading meter, which measures

the value of the torque, is connected to the top of the rod. The test includes

inserting the rod to the required depth and rotating the vane on its axis until

the soil reaches a shear failure. The meter on the top of the vane records

the reading. The depth of the test may vary from .5 to 1 meter or may be

selected as required by the investigating engineer. Figure 4.4 shows parts

of the vane shear equipment.

Figure 4.4: Vane shear equipment

The test procedure can be explained in following steps according to the

ASTM D2573-08:
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4.3 Soil Tests

1. Place the vane shear equipment at the borehole. According to the

required depth, the test can be carried out in the pre-drilled borehole

or the rod can be inserted without drilling any hole before the test.

2. Push the vane slowly into the borehole or vane housing with a single

thrust to the required depth.

3. After a few minutes apply torque at a rate of 0.1 deg/sec and record

the maximum torque at the failure. Record the readings every 15

seconds.

4. Rotate the vane continuously 7 to 10 times and record the residual

torque at the end.

Mechanism of the Vane Shear Test

As the test is carried out very rapidly at the site, an assumption is made, that

the conditions are undrained and the shear stress at the failure is equal to the

undrained shear strength, cu (Jay, Nagaratnam, & Braja, 2016). Therefore,

the maximum torque required to rotate the vane shear blades is as in Eq.

(4.1).

T = Mtop +Mbase +Mside, (4.1)

where T is the maximum torque, Mtop is resisting moment at the top of

the blades/cylinder, Mbase represents resisting moment at the base of the

blades/cylinder andMside signifies the resisting moment at the sides of the

blades/cylinder. Now taking moments about the shaft axis:

Mside = (πDH)× cu ×
D

2
, (4.2)

and,

Mtop = Mbase =

∫ D
2
(2πrdr)×cu×r

0

, (4.3)
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4.3 Soil Tests

where H is height of the vane, D represents width of the vane, cu denotes

the undrained shear strength, and r is radius of circular element of thickness

(dr). Combining Eq.’s 4.1, 4.2 and 4.3, we get:

T =

[
(πDH)× cu ×

D

2

]
+ 2×

∫ D
2
(2πrdr)×cu×r

0

, (4.4)

cu =
T

7
6
πD3

, (4.5)

cu or Su = T/(3.67D3). (4.6)

Eq. (4.6) gives the undrained shear strength with the help of maximum

torque recorded. Consequently, the vane shear test device employed for

field tests in the present study computes undrained shear strength (Su) and

works on the principle based on Eq. (4.6) as it is calibrated automatically

to produce the actual value accordingly.

Test Corrections

Including the vane shear test, all other in-situ tests comprise some imper-

fections (Jay, Nagaratnam, & Braja, 2016). Bjerrum (1972) concluded that

plasticity of soil has a huge influence on soil undrained shear strength ob-

tained by the vane shear field test, and should be corrected before using the

values for the design of embankment loading and slope stability. Bjerrum

(1972) suggested that the undrained shear strength (cu-field) from field the

vane shear test needs to be multiplied by the correction factor µ to obtain

the mobilized shear strength. The correction factor µ is related to the plas-

ticity index (PI), and the relationship is shown in Figure 4.5. Figure 4.5 also

represent the relationship based on the research done by Morris & Williams
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(1996) and Chandler (1988).
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Figure 4.5: Field vane correction factor vs plasticity index (Jay, Nagaratnam, &
Braja, 2016)

4.3.2 Nipigon Slope Field Investigation

The field work included drilling, soil sampling, and in-situ soil testing. The

field investigation and testing was carried out by graduate masters of engi-

neering students (Navjot Singh Kanwar, Sukhdeep Singh and Dhavan Joshi

under supervisor Dr. Jian Deng) from Lakehead university civil engineering

department. Various boreholes were drilled using vane shear. Site works in-

cluded the vane shear test, and the collection of samples as shown in Figure

4.6. The vane shear tests were performed at various bore holes on the top

1 meter to 3 meter of the soil layer, generally in the firm clayey silt layer.

The test was carried out at the Nipigon slope where the failure occurred in

1992, and the coordinates of the testing site are 4904
′
33”N 88018

′
34”W .

American Society for Testing and Materials (ASTM D2573-08) standards

were followed to complete the vane shear test. The test was conducted at
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4.3 Soil Tests

various boreholes to get 123 values of undrained shear strength. Tools and

the methodology for the test have been mentioned and explained in Section

4.3.1 and Section 4.3.2. The values of shear strength obtained from vane

shear test are provided in Table 4.2.

Figure 4.6: Vane shear test on the Nipigon slope

Figure 4.7: Most recent small scale soil erosion at the Nipigon River banks
(2018)

61



4.4 Results

4.4 Results

Correction Factor
As undrained shear strength determined by the VST is influenced by effects

of anisotropy and strain rate, hence, there is a need to correct the values

obtained from the VST field test with a factor µ (Bjerrum, 1972). The

laboratory test results by Lakehead university graduate students are given in

Table 4.1. The average plasticity index value is taken as 20.5, from present

investigation results. Therefore the resulting correction factor obtained is

0.95. The results of the vane shear test are provided in Table 4.2.

Table 4.1: Summary of laboratory testing

Sample Liquid
Limit

Plastic
Limit

Plasticity
Index

Liquidity
Index

Moisture
Con-
tent

Sand
%

Silt
%

Clay
%

BH-l 1.5 - 2.1 m 45.5 24.7 20.8 0.33 31.5 11 71 18

Table 4.2: Corrected undrained shear strength (Su, kPa) values from VST at the
Nipigon river slope (123 values)

60.8 56.05 52.25 41.8 80.75 38.95 18.05 23.75 32.3 35.15
61.75 56.05 52.25 42.75 81.7 39.9 18.05 25.65 33.25 36.1
61.75 57 52.25 44.65 84.55 39.9 19 26.6 33.25 37.05
62.7 57 52.25 44.65 85.5 39.9 19 26.6 33.25 37.05
63.65 57 53.2 45.6 87.4 39.9 19 27.55 33.25 38
64.6 57 53.2 46.55 95 39.9 20.9 28.5 33.25 38
64.6 57.95 54.15 47.5 95 39.9 20.9 29.45 33.25 38
64.6 57.95 54.15 49.4 95 40.85 22.8 29.45 33.25 38
64.6 57.95 55.1 49.4 96.9 40.85 22.8 30.4 34.2 38
65.55 58.9 55.1 51.3 104.5 41.8 23.75 32.3 35.15 38
68.4 68.4 68.4 71.25 71.25 74.1 77.9 77.9 80.75 104.5
65.55 66.5 66.5 66.5 66.5 67.45 67.45 68.4 68.4 114
68.4
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4.5 Summary

The chapter above presents a concise summary of the soil tests, site specifi-

cation of the Nipigon slope, application of the vane shear test, the procedure

involved in the trial, and description of the data. Additionally, the compar-

ison is made between the vane shear test, and other in-situ and laboratory

test methods. The data collected from the procedure is further practiced in

the next chapter to conduct reliability analysis on the soil variables of the

Nipigon slope.

63



Chapter 5

Reliability Analysis of the Nipigon
Slope
5.1 Introduction

This chapter presents an application of the proposed approach on the re-

liability analysis of the Nipigon slope. Firstly, in Section 5.2, the pro-

posed maximum entropy formalism (MEF) and Akaike’s information cri-

teria (AIC) method will be applied to the soil data of the Nipigon slope

obtained by the vane shear test to set up a distribution free model of soil

variables.

Further, in Section 5.3 a first order reliability method is modified to

be accompanied with the parallel response surface method and GEO-Slope

procedure to carry out the reliability analysis. In Section 5.4, the probabilis-

tic analysis is justified by implementing the proposed approach and com-

paring it with GEO-Slope based Monte Carlo simulation method. Section

5.5 provides the results of the reliability analysis, and sensitivity analysis.

A summary is exhibited in the Section 5.6. The plan adopted in this chapter

is presented in detail in Figure 5.1.
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Data collection  
(Vane shear test)

Quantification of data (Maximum entropy
formalism and Akaike information Criterion)

Unbiased optimal order and its parameters

Reliability analysis

Modified FORM GEO-Slope based Monte Carlo
simulation method

Reliability index & probability of failure

Design decision & recommendations

Figure 5.1: Flowchart for proposed reliability analysis method

5.2 Entropy-Based Probabilistic Distribution of
the Nipigon Slope Soil Parameters

This Analysis is carried out on the sample of 123 data values of the Nipigon

slope soil strata, given in Table 4.2. The vane shear test is performed at var-

ious boreholes on the Nipigon slope site to obtain the values of undrained
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Parameters

shear strength. Further, these measured values of undrained shear strength

of the Nipigon slope are used to conduct analysis by the two-stage proce-

dure of the maximum entropy formalism (MEF) and Akaike’s information

criterion (AIC). The results of maximum entropy with various models and

their parameter values are presented below:
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Figure 5.2: Differential entropy DH(K) of 123 sample of Su of the Nipigon

slope soil vane shear test data based on different model orders

Inspection of the Figure 5.2 shows the differential entropy for different

model orders in transformed domain with xmin = 0 and xmax = 150. Fig-

ure 5.2 depicts that 3rd model order has the minimum value of differential

entropy. Hence, the 3rd order model is an optimal order. The values of

differential entropy for the 2nd and the 3rd order are very close, but the

overall having lowest differential entropy value the 3rd order is considered

an optimal.
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Figure 5.3: Data and density functions of sample of 123 Su values from the vane
shear test of the Nipigon slope soil

Figure 5.3 shows the histogram of the data of undrained shear strength

for the Nipigon slope soil. Figure 5.3 consists of three superimposed den-

sity functions; the 2nd order model with the green dotted line, the 8th order

model in the blue broken line and the 3rd order in bold red, which is optimal

order.

Figure 5.3 depicts the fact that the 2nd order model fit nicely at some

points than the optimal the 3rd order model, particularly between the range

0 to 25, and 60 to 100, but overall the 3rd model order fit the data better

than the other orders. When an optimal 3rd order is compared with the 8th

order, Figure 5.3 clearly shows that the 3rd order fit far more precisely than

the 8th order. Also, entropy models are compared with classical normal

and log-normal distributions in the Figure 5.3, it is inspected that both the

distributions are not as good fit as 3rd model order. Therefore, it is reason-
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able to choose the 3rd order rather than any other model order as an optimal

order. Furthermore, a goodness-of-fit test can be utilized to validate that the

selected 3rd optimal order is a good fit.
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Figure 5.4: 2nd model order
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Figure 5.5: 3rd model order
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Figure 5.6: 5th model order
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Figure 5.7: 8th model order

Figures 5.4, 5.5, 5.6 and 5.7 represents the 2nd, 3rd, 5th and 8th model

order fitting over data respectively. Comparing the 2nd order and the 3rd

order, it is evident that both orders are very much similar and fit the data

very well. In between 0 to 15, the 2nd order is a better fit but in range 45

to 75 and 50 to 105, 3rd order fit more data. Furthermore, the 5th order

is a good fit then the 8th order. Also, in Figure 5.8 4th and 3rd order are
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compared, which shows that 3rd order is a better fit than 4th order. While

looking at all the model orders fit, 3rd order is more accurate than other fits.
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Figure 5.8: 4th model order

Table 5.1: Model parameters values of the Nipigon slope soil data

Model Order Parameter (λ) Values
2nd λ1 =-6.554642216048960,λ2 =0.099965883623882,

λ3 =-0.000985242747573
3rd(OPTIMAL)λ1 = -7.829086777427186, λ2 =0.197665008964854,

λ3 =-0.003013909739996, λ4 =0.000012150252884
4th λ1 =-7.950402872712516,λ2 =0.211122965291184 ,

λ3 =-0.003467708079757, λ4 =0.000018018697990,
λ5 =-0.000000025433338

5th λ1 =-8.733759903153345, λ2 =0.333151516620218,
λ3 =-0.009529318452856 , λ4 =0.000146947108962,
λ5 =-0.000001246050034 , λ6 =0.000000004218254

8th λ1 =-4.137304821442461, λ2 =-2.085725113719108,
λ3 =0.268460678340851, λ4 =-0.014002881239270,
λ5 =0.000385515541552, λ6 =-0.000006078500094,
λ7 =0.000000055151349, λ8 =-0.000000000267975,
λ8 =0.000000000000540

Table 5.1 shows the parameters (λ) of different model orders and opti-
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mal 3rd model order. The 2nd model order has 3 (λ) parameters and 3rd

optimal order has 4 (λ) values. Likewise, 5th order has 6 (λ) parameter

values and 8th order has 9 (λ) parameter values. The optimal order 3 (λ)

can be further used for designing purposes. These parameters can be used

to estimate the distribution and density function. Kolmogorov-Smirnov
Test

Table 5.2: K-S goodness-of-fit test of 3rd order on 123 Su values of the Nipigon
slope

Data Freq. Cum
freq.

Sn(x) F (X) Difference

0-20 5 5 0.04065 0.05309 0.01244
21-40 43 48 0.39024 0.32279 0.067447
41-60 33 81 0.65853 0.68960 0.03107
61-80 29 110 0.89430 0.89564 0.00133
81-100 10 120 0.97560 0.97372 0.00188
101-120 3 123 1 1.0000 0.0000

Dn =
0.01244
Dn,46=1.3581
Dn,0.05 =
0.12245

To determine that the 3rd model is ia a good fit over the data, Kolmogorov-

Smirnov goodness-of-fit test is conducted using an Excel spreadsheet and

MATLAB.

In Table 5.2 columns 1 and 2 consist of the data and its frequency.

Column 3 represents the corresponding cumulative frequency values, and

column 4 divides these values by the size of the sample 123. Column 5

represents the values of CDF obtained using MATLAB program. Finally,

column 6 is the difference between the values in column 5 and column 6.

Dn signifies the largest value in column 6. The critical value of Dn,0.05 is

taken from Haldar & Mahadevan (2000). Since the value of Dn is less than
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Dn,0.05, the 3rd model of entropy distribution is a good fit on data. The

density function f(y) for a random variable y of the 3rd order is computed

by applying the algorithm of maximum entropy formalism,

f(y) = exp(−7.82908677742 + 0.19766500896y − 0.00301390973y2

+ 0.00001215025y3). (5.1)

5.3 Modified FORM for Entropy

The FORM method is modified to incorporate the non-normal parameters

of entropy distribution obtained from maximum entropy formalism and

Akaike’s information criterion. The modification approach is carried out

using a parameter equivalent normal transformation developed by Rack-

witz and Fiessler in 1976 (Haldar & Mahadevan, 2000).

Rackwitz and Fiessler evaluated the parameters of equivalent normal

distribution µNXi
and σNXi

, by following conditions and an algorithm. The

cumulative density function and the probability density function of the orig-

inal variables and equivalent normal variables should be identical at the

checking point (x∗1, x
∗
2, ..., x

∗
n) on the failure surface.

φ(
x∗i − µNXi

σNXi

) = FXi
(x∗i ), (5.2)

where φ() is CDF of standard normal variate and, µNXi
and σNXi

are mean and

standard deviation of an equivalent normal variable at the checking points.

The FXi
(x∗i ) is the original CDF of nonnormal variable. Eq. (5.2) gives

µNXi
= x∗i − φ−1[FXi

(x∗i )]σ
N
Xi
, (5.3)

furthermore, equating the PDF’s of original the variable and equivalent non-
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normal variable at the checking points yields

1

σNXi

φ(
x∗i − µNXi

σNXi

) = fXi
(x∗i ), (5.4)

where φ() and fXi
(x∗i ) are the PDF’s of the equivalent standard normal and

the original nonnormal variables. Eq. (5.4) yields

σNXi
=
φ(φ−1[FXi

(x∗i )])

fXi
(x∗i )

. (5.5)

Hence, equivalent standard normal variables are determined by these equa-

tions and can further be used in FORM to compute reliability index βHL.

The steps for the FORM method to evaluate the reliability or safety index

are described as below. (Haldar & Mahadevan, 2000).

1. Define the appropriate limit state equation (obtained from response

surface method).

2. Then, assume an initial value of the safety index β. Any value can be

assumed, that allows β to converge quickly.

3. Next step is to assume the initial values of the design point x∗, i= 1,2,

..., n. The initial design point can be considered to be at the mean and

standard deviation values of the random variables.

4. Estimate the mean and standard deviation at the design point of the

equivalent normal distribution for nonnormal variables.

5. Calculate partial derivatives (∂g /∂Xi)
∗ computed at the design point

x∗.

6. Measure the direction cosines α at the design point as:

αXi
=

( ∂g
∂Xi

)∗σNXi√∑n
i=1(

∂g
∂Xi

σNXi
)2∗
. (5.6)
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7. Calculate the new values of checking points x∗i as

x∗i = µNXi
− αiβσNXi

. (5.7)

If required repeat steps 4 to 7 again until the direction cosines αi
converges to the tolerance level of 0.005. When the direction cosines

converge new checking point can be computed keeping β unknown.

8. Keeping the condition that limit state equation must be satisfied at

new checking points the updated value of β can be estimated.

9. Repeat steps 2 to 8 until β converges to the tolerance level of 0.001

The algorithm converges quickly in a few cycles, depending upon how lin-

ear the limit state equation is. A computer program in MATLAB is con-

structed for the analysis to carry out the computations.

The FORM method is require to define the performance function to

carry out reliability analysis using above algorithm described above. The

critical problem that arises while solving derivatives of the performance

function is its non-linearity. Hence, an approach is developed in Section

5.3.1 to compute linear performance function using the response surface

method.

5.3.1 GEO-Slope and Response Surface Method for Per-
formance Function

The random variables are chosen after careful considerations of the pa-

rameters in the problem under study. The uncertainties involved with the

parameters were examined using MEF and AIC. Furthermore, an experi-

mental slope model is set up in GEO-Slope 2007 version. For each set of

input variables required, the factor of safety is generated using the Morgen-

stern Price method in the GEO-Slope. The corresponding outcome of the
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factor of safety for various input variables is used to develop the linear re-

sponse surface models, and then eventually, these models develops the limit

state function. The first order reliability method is enhanced and modified

to compute the reliability index using the MATLAB function with the per-

formance function as a constraint. The probability of failure is computed

after calculating the value of the reliability index.
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Figure 5.9: GEO-Slope defined model of the Nipigon slope

The GEO-Slope software is considered under different conditions to

carry out slope stability of the Nipigon slope. Initially, the geometry of the

slope as shown in Figure 5.9 is created using SLOPE/W analysis. As per

the slope conditions, the entry and exit location are assigned as left to right.

Then the shear strength parameters: material properties for the different

layer of the slope, and piezometric line, are defined and rectified accord-

ing to the five different layers or zones of slope used in the analysis. The

analysis is carried out using various limit equilibrium methods, i.e., Bishop,

Janbu, ordinary method of slice and Morgenstern Price method accordingly.

Finally, a minimum safety factor is calculated for the different mean values

of the shear strength parameters assigned to materials, in combination with
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response surface method.

Response Surface Method Optimized Using GEO-Slope

The response surface method was developed by Box and Wilson in 1951

(Draper, 1992). It is the collection of statistical techniques that optimize

the process through an empirical model building. It works on the method-

ology of practicing the adjustment of the predictor variable to take the re-

sponse in the desired optimum direction using iterations. The method is

more straightforward than non-linear techniques as it uses quadratic re-

sponse surface models. The response surface method includes the response

surface analysis as well as the design of the experiments. Response surface

models are multivariate polynomial models that develop during the design

of experiments. These are then used to predict a set of design variables that

optimize a response.

The available data is eliminated, and quality is enhanced by manipulat-

ing the data generation method. Series of runs of changes are made in the

input to get the causes of failure in the output response. The main aim of

the design experiments is to collect data without any complications and to

provide ample information to determine the parameters correctly. Response

surface analysis is based on the process of data interpolation to predict all

type of correlations between the variables and objectives. First order model

is enough for the flat data surface. Eq. (5.8) below represents a simple

model of a response y in an experiment with two controlled factors (Subra-

maniam, 2011):

y = β1 + β1x1 + β2x2 + β12x1x2 + ε, (5.8)

where xn are random variables and β represents their correlation coeffi-

cients.
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Factorial Design

In factorial experiment, the design variables are varied together at one time.

The joint effect of the variables on the response variable is investigated us-

ing factorial designs (Subramaniam, 2011). One of the important case of

the factorial design is two level factors, in which each k factors of interest

have only two levels. The design has 2k experimental trials and are known

as factorial designs. This is helpful in developing the response surface de-

signs.

The performance function is based on soil variables of slope is an ex-

plicit function, its converted into implicit function to incorporate it into

modified first order reliability method for reliability analysis. Hence, re-

sponse surface factorial design method regression analysis is used to gen-

erate linear implicit performance function. Uncertainty associated with soil

variability are taken into account, and the shear strength parameters are

considered as random variables. Table 5.3 shows the variables of different

layers of soil used in the analysis.

Table 5.3: Mean(µ) and Coefficient of variation of soil variables

Layer Unit
Wt. (γ)
(kN/m3)

Undrained
Shear
Strength
Su (kPa)

Angle
Of Fric-
tion (φ◦)

Upper silty sand layer(Layer 1) 17.6 30
Firm clayey silt(Layer 2) 19 51.277
Soft clay silt(Layer 3) 18.2 25
Sandy silt(Layer 4) 17.6 30
Inter-bedded silt and clayey
silt(Layer 5)

19.5 30

COV 0.3 0.3 0.3

The regression analysis is performed on the least square approach. Each

point in the design set is quantified using a lower limit (µ + 1.65σ) and an
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upper limit (µ−1.65σ) of each variable of parameter using Geo-Slope limit

equilibrium deterministic method analysis.

Full Factorial Design Matlab code for the design of experiments (Sub-

ramaniam, 2011):

»dFF2 =ff2n(n)

dFF2 is R-by-C, where R represents the number of treatment in the full

factorial design. As the variables used in this analysis are 5. Hence, the

Matlab code used is:

»dFF2 =ff2n(5)

which gives the output in Table 7.1.

Table 7.2 reveals the results of the FOS of the Nipigon slopes corre-

sponding to thirty-two sample points RSM analysis using GEO-Slope 2007.

Next, the regression analysis is carried out using an Excel solver using the

data in Table 7.2. Figure 7.1 & 7.2 shows the Excel sheet for RSM regres-

sion analysis. The preliminary analysis results confirm that the slip surface

passes through layer 2 due to variability in layer 1 and layer 3.

Regression analysis gives out a linear response surface performance

model as:

F = −0.31756666+9.55063E−05∗φ(layer1) +0.008294003∗Su(layer2)
+0.012097125∗Su(layer3)+0.006454125∗Su(layer4)+0.018008944∗φ(layer5),

(5.9)

where φ, Su are random variables respectively. F signifies the factor of

safety. The limit state function in probabilistic slope stability is well defined
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by Chowdhury et al. (2009) as:

F (x1, x2, ....., xn)− 1 = g(x), (5.10)

where g(x) id the limit state function.

5.4 Entropy Based Reliability Analysis of Nip-
igon Slope

Modified FORM
The response surface performance function obtained from response surface

regression analysis is incorporated into the first order reliability method

to conduct a reliability analysis. A MATLAB program is developed for

FORM to compute the reliability index and probability of failure of the

slope. Covariance values of 0.1, 0.2, 0.3 are respectively used as three

different cases for analysis. The probability of failure of the slope is given

by:

pf = ϕ(−β), (5.11)

where pf signifies probability of failure, and β denotes reliability index.

Monte Carlo Simulation of Slope Stability
Monte Carlo simulations with 300,000 iterations were performed using the

software GEO-Slope 2007 on the Nipigon slope to compare it with the

FORM method. The soil variables mean and standard deviations values are

given in Table 5.4.

The initial step in the Monte Carlo simulation method is to identify the

deterministic model to be adopted, and the next step is to determine the

number of random variables used in the analysis. Further, the distribution
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of all the random variables is chosen to initiate the trial process to compute

the probability density function based on the deterministic model. Every

trial includes a new random value from the distribution function to carry out

the calculation. In the present analysis, precisely 300,000 tests are carried

out by creating multiple passes using GEO-Slope 2007 software to obtain

the results for each trial. Finally, the Monte Carlo simulation results in the

probability density function of the factor of safety. The analysis done by

the Monte Carlo simulation is conducted using four different deterministic

methods which are Ordinary, Janbu, Bishops and Morgenstern-Price.

Table 5.4: Mean and standard deviation (SD) of soil variables for Monte Carlo
simulation

Layer Unit
Weight
(γ)
(kN/m3)

Undrained
Shear
Strength
Su (kPa)
(Mean)

Undrained
Shear
Strength
Su (kPa)
(SD)

Angle
Of Fric-
tion
(φ◦)
(Mean)

Angle
Of Fric-
tion
(φ◦)
(SD)

Upper silty sand
layer(Layer 1)

17.6 30 9

Firm clayey silt(Layer 2) 19 51.277 15.3831
Soft clayey silt(Layer 3) 18.2 25 7.5
Sandy silt silt(Layer 4) 17.6 30 9
Inter-bedded silt and
clayey silt(Layer 5)

19.5 30 9

Sensitivity Analysis
In order to examine the influences of cross-correlation between the shear

strength parameters of soil in the system reliability of slope stability anal-

ysis, a sensitivity examination is conducted by alternating the values of

undrained shear strength (Su) and angle of friction (φ) described in Table

5.5. the values of frictional angle and other layers undrained shear strength

are assumed from Dodds et al. (1993), as stated in earlier chapters. Sensi-

tivity analysis is carried out using in GEO-Slope software.
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Table 5.5: Variation in values assumed for sensitivity analysis

Layer Unit
Weight
(γ)
(kN/m3)

Undrained
Shear
Strength
Su (kPa)

Angle Of
Friction
(φ◦)

Upper silty sand layer(Layer
1)

17.6 20-40

Firm clayey silt(Layer 2) 19 41.277-
61.277

Soft clayey silt(Layer 3) 18.2 15-35
Sandy silt silt(Layer 4) 17.6 20-40
Inter-bedded silt and clayey
silt(Layer 5)

19.5 12-32

5.5 Results

Table 5.6 exhibits changes in the values of the reliability index and the

probability of failure with covariance values of 0.1, 0.2, and 0.3. The results

represent that the reliability index decreases with increase in covariance.

Whereas, the probability of failure increases with covariance increase.

Table 5.6: Probability of failure and reliability index with different covariance
values

FORM Reliability
Index(β)

Probability Of
Failure (pf )

Cov = 0.1 0.8148 0.2076
Cov = 0.2 0.4070 0.3420
Cov = 0.3 0.2725 0.3926

According to the chart in Figure 5.10, it is evident that the analysis of

the Nipigon slope results in extremely hazardous in all three cases. The

factor of safety in all cases is going to be more than 1, but eventually the

slope will fail. Therefore, the examination is a valid reason to demonstrate

the significance of reliability analysis.
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Figure 5.10: Relationship between reliability index (β) and probability of failure
(pf ) USACE (1997) (Babu & Srivastava, 2010)

Table 5.7 summarizes factor of safety values computed by the Monte

Carlo simulation for various deterministic methods. In the analysis results,

the factor of safety differs for all four approaches which is mainly due to

uncertainties in the variables. Morgenstern-Price method is more efficient

as it considers both force and moment equilibrium, resulting in fewer uncer-

tainties. Accordingly, the factor of safety obtained from Morgenstern-Price

is considered for further analysis. Overall, the values of FOS for all four

methods are nearly the same and indicates that the slope is in the hazardous

stage of failure.
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Table 5.7: Factor of safety for various deterministic methods using Monte Carlo
simulation

Method (MCS) Factot Of Safety
Ordinary 0.891
Bishop 0.967
Janbu 0.949
Morgentern-Price 1.005

Table 5.8: Results of probabilistic analysis using Monte Carlo simulation

Mean
FOS

Min
FOS

Max
FOS

Reliability
Index

Probability
of Failure

Standard
Deviation

1.0939 0.13235 1.9777 0.452 0.330781 0.208

Table 5.8 exhibits the results of the probabilistic analysis using the

Monte Carlo simulation. The results infer that the value of the reliability

index symbolizes that the slope is critically unstable. The equivalent factor

of safety (FOS) behavior is described in Figure 5.11. Accordingly, allow-

able risk criterion can be taken into account to attain an objective target for

the designing purpose.

Figure 5.11: Histogram plot and distribution fit of factor of safety (FOS) for
300,000 realizations
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Comparing the results of modified FORM and MCS, it is evident that

the failure probabilities obtained have very little difference for covariance

0.3. The results of pf by FORM is approximately 39% and by MCS is

approximately 33%, the difference is due to the fact that modified FORM

is able to consider the correlations between the soil variables explicitly,

thereby producing more accurate results than Monte Carlo simulation. As

the difference between the results by modified FORM and MCS are not

large, it proves that the adopted method is very precise and incorporates the

uncertainties comprehensively, along with the maximum entropy formal-

ism approach.

0 0 .2 0 .4 0 .6 0 .8
S en sitiv ity D a ta

0 .8 5

0 .9 0

0 .9 5

1 .0 0

1 .0 5

1 .1 0

1 .1 5

1 .2 0

1 .2 5

1 .3 0

1 .3 5

F
ac

to
r

of
S

af
et

y

Upper silty sand (phi)

1

Sandy silt (phi)

Firm clayey silt (Su)
Interbedded silt and clayey silt (Su)

Soft clayey silt (Su)

 

Figure 5.12: Variation in factor of safety with respect to given range of parame-
ters

The results of sensitivity analysis are depicted in Figure 5.12. The

solid-red line in Figure 5.12 reveals how the factor of safety changes with
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the variation of (20◦ − 40◦) in unit friction angle (φ) of the upper silty

sand layer. The uneven-purple line illustrates the contrast in the factor of

safety over the range of 41.277-61.277 (kPa) that is specified for change

in undrained shear strength for the firm clayey silt layer. The dotted-pink

line reveals the difference in the factor of safety for the range (20◦−40◦) of

friction angle defined for the sandy silt layer. The broken-blue line shows

the variation in the factor of safety for undrained shear strength values be-

tween 12-32 (kPa) for the inter-bedded silt and clayey silt layer. Also,

the dashed-green line describes the distinction in factor safety with the dif-

ference of 15-35 (kPa) in undrained shear strength (degree) for the soft

clayey silt layer. In this graph, the sensitivity range is normalized between

0 to 1. The curves cross over 0.5 which denotes the static scale. This scale

introduces how the factor of safety switches within the range defined in the

dispersion of data.

Furthermore, the upper silty sand layer difference in friction angle does

not influence the factor of safety. The firm clayey silt layer, the sandy silt

layer, and the soft clayey silt layer yields about a decent decrease of 0.5

for a value lower than the actual value of 51.277 (kPa) and 25 (kPa) for

Su and 30◦ for (φ), used for probabilistic analysis and an adequate gain of

0.5 for real analysis value. The change in undrained shear strength values

between 12-32 (kPa) as compared to the standard value of 30 in the proba-

bilistic analysis for the inter-bedded silt seems to impact the factor of safety

largely, and hence is the most significant factor for the slope failure. The

decrease in the range of undrained shear strength for inter-bedded silt re-

sults in lowering the factor of safety required, by 0.10. Moreover, increase

in the undrained shear strength, tends to enhance the factor of safety by

almost 0.35.
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5.6 Summary

In this chapter, an improved probabilistic procedure applying the modi-

fied first order reliability method (FORM) based on entropy generated non-

normal parameters is proposed to implement a conceptually more rational-

ized method to consider the uncertainties to conduct slope stability analysis

on the Nipigon slope.

Initially, site investigation to get undrained shear strength parameters

of the Nipigon slope site using the vane shear test is illustrated. The soil

variables obtained from the vane shear test and assumed from previous lab-

oratory reports by Trow and Lakehead University are characterized using

the maximum entropy formalism and Akaike’s information criterion. The

proposed method efficiently quantified the uncertainties associated with the

soil parameters and generates the most unbiased and optimal order of the

Nipigon slope soil data.

Further, an entropy-based modified (FORM) first order reliability method

probabilistic approach was developed to account for non-normal parame-

ters generated by maximum entropy probability density function. The per-

formance function is produced utilizing the response surface method and

GEO-Slope software. Above procedure is carried out by performing regres-

sion analysis on the factor safety obtained by correlating the soil parameters

of the different layer in GEO-Slope software Slope/W analysis.

Later, the explicit performance function is incorporated in a modified

MATLAB first order reliability method to compute the reliability index (β)

and probability of failure (pf ). The proposed probabilistic approach seems

to incorporate the uncertainties efficiently and dynamically. The results

appear to signify that the Nipigon slope is hazardous and critically failure.

Additionally, the analysis is accompanied by a comparative study of

Monte Carlo simulation method using the GEO-Slope software to perform
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reliability analysis. The results produced by Monte Carlo simulations re-

sembled the modified first order reliability method which validates that the

introduced approach is more efficient and robust.
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Chapter 6

Reliability Based Design of Slopes
6.1 Introduction

The study in previous chapters has revealed that stabilization of unstable

slopes is a significant geotechnical concern that must be addressed to en-

sure the safety of structures. In slope engineering design, a traditional de-

terministic design approach has been adopted to lessen the cost and enhance

quality rationally. The traditional deterministic design is inadequate to dis-

tinguish among the inherent variability and the internal scattering of the

geotechnical variables, as these measures of central tendency are selected

based on field tests and engineering systems (Phoon & Kulhawy, 1999).

Nevertheless, the presence of uncertainties in soil properties such as spa-

tial variability or modelling variability demands more rational and robust

approach of a reliability-based design optimization (RBDO) model for re-

liable and cost-efficient designs.

Inside the RBDO model, the mean values generated from the system-

atic reliability analysis are adopted as design variables, and the cost is opti-

mized based on probabilistic constraints employing nonlinear mathematical

model programming (Tu, Choi, & Park, 1999). Therefore, the outcome of

RBDO is a propitious design as well as extremely reliable and cost-effective

design.

The composition of the chapter is as follows. In Section 6.2, an insight

is provided to a reliability based design approach of pile slope systems.
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Section 6.3 exhibits the entropy-based reliability analysis of a pile rein-

forced slope, with a description on pile design and the procedure of design

is discussed as well. Section 6.4 presents the results of a reliability based

design of the slope in the Nipigon River area, ans also confers the conclu-

sion drawn from the design procedure application. In the end, Section 6.6

summarizes the whole chapter.

6.2 Reliability-Based Design for Piles Slope Sys-
tem

The reliability-based designs require a series of levels associated to deter-

mine geotechnical variables properties and field components that are ac-

countable for influencing the probability of failure of geotechnical struc-

tures. Aforementioned field has attained a vast area of interest within the

prior few years, which may be due to advancements in enhanced computa-

tional modeling for sophisticated statistical analysis procedures. The pro-

posed study works on the same principles that were demonstrated in previ-

ous chapters.

Piles are long, slender components that may be manufactured of steel,

concrete, timber, or polymer used for structural foundations. Piles lately

have been applied to receive tensile and lateral loads, to diminish shaft load,

and to lessen settlement of mat foundation. Additionally, piles are adopted

for improving the stability of slopes possessing loose and expansive soils.

The slope stabilization using piles has been successfully used by various

researchers (Shin et al., 2006; Kao, 1985; Hassiotis et al., 1997; Poulos,

1995)

The soil properties, such as undrained shear strength (Su), unit weight

(γ), the angle of friction (φ) and pile variables, such as shaft resistance, the
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spacing between piles (S) and depth of the pile (H) influence the uncertain-

ties of slope system. The existing chapter deals with the treatment of pile re-

inforced slope uncertainties. Pile associated variables are treated as certain,

while the soil variables are regarded as uncertain in the reliability-based

analysis method. The characterization of soil variables is aided by the pro-

posed maximum entropy and Akaike’s information criterion methodology,

followed by direct GEO-Slope-based Monte Carlo simulation for assessing

reliability analysis.

6.3 Entropy Based Stability Analysis of Piles Slope
System

As analyzed in the preceding chapters, MEF and AIC can be employed to

quantify and characterize the soil shear strength parameters. Once the den-

sity function is acquired from the aforementioned probabilistic approach,

the output is incorporated into GEO-Slope-based Monte Carlo simulation

for evaluating reliability analysis.

MEF and AIC generates the an unbiased, and optimal order of probabil-

ity assignments accounting for maximum uncertainties associated with the

soil properties. The probability of failure for pile slope system is estimated

using GEO-Slope-based Monte Carlo simulation. In this investigation, the

probabilistic version of GEO-Slope 2007 computer software Slope/W is

adopted for the reliability analysis of pile reinforced slope. The probability

of failure of pile slope is calculated based on the Eq’s. 6.1, and 6.2.

Pf = E(I[x]) =
1

N

N∑
i=1

I[FS < 1], (6.1)

where Pf is computed probability of failure for a pile drilled slope system,
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6.3 Entropy Based Stability Analysis of Piles Slope System

I[FS < 1] is the indicator function and N is the sample number.

β = 1− φ(Pf ). (6.2)

where β represents a reliability index and φ signifies the CDF . When the

probability of failure is greater than 0.5, β can be negative.

Maximum Entropy and Akaike’s Information Criterion for Soil Vari-
ables Modelling

The shear strength parameters are collected from field tests using the vane

shear test. The values obtained are quantified using the proposed MEF

and AIC method. The uncertainties are incorporated automatically in the

approach systematically.

GEO-Slope-Based Monte Carlo Method

The computational algorithms of the GEO-Slope-based Monte Carlo method

after incorporating entropy variables are illustrated below and represented

in Figure 6.1.

• Specify the slope and pile geometry.

• Specify the materials and soil variables values in the key in section.

• Specify the pile location and combination.

• Perform Monte Carlo simulations using Morgenstern price limit state

equilibrium method.

• Solve the analysis to obtain the factor of safety and the compute reli-

ability index β using optimization approach.
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Data acquisition  

Specify slope geometry & parameters
properties in Slope/W analysis

Decide the pile position simultaneously with the combination of
S and N

Analyze to estimate the factor of safety

Iteration
Convergence

Reliability index

Design decision

Yes

No

Direct
MCS

Design
decision

Figure 6.1: Flowchart representing the probabilistic pile slope design procedure
using Reliability Based Design Optimization

6.3.1 Reliability Based Design of the Nipigon Slope

RBD application on the slope in the Nipigon River area illustrates the ef-

ficiency and working of the RBD method. The general design procedure

adopted follows closely which is illustrated by L. Li & Liang (2013). As

the findings from the probabilistic slope stability analysis by the proposed

method in chapter 5 state, the slope in the Nipigon River area is a failure
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6.3 Entropy Based Stability Analysis of Piles Slope System

slope, hence, pile reinforcement is designed to the slope to enhance its sta-

bility. Therefore, the slope is reinforced with piles. Continuous-flight auger

piles are adopted. The specifications of the pile are given below in Table

6.3 (Salgado, 2006).

The GEO-Slope 2007 software is adapted to carry out the analysis. The

slope model displayed in Figure 6.2 consists of five soil layers with soil

properties for every layer reviewed in Table 5.4, in which the soil variables

for the five soil layers follow a similar independent distribution. The crit-

ical slip surface is defined in the slope geometry. The piezometric line is

established at about 186 meters as in the previous probabilistic analysis of

the slope in the Nipigon River area. Effective stress approach is being used

in the analysis.

6.3.2 Pile Design

The ratio of ultimate unit base resistance to limit unit shaft resistance in

clay is less than that of the sand. Which in turn makes shaft resistance in

clay more critical than in sand. Shaft capacity of piles can be computed

either using total stress analysis or by useful stress analysis. In the present

study, the total stress analysis method or α method is adapted to calculate

the shaft resistance (shear force) of pile. The Eq. (6.3) calculates the limit

unit shaft resistance.

qsL = αSu, (6.3)

where qsL is limit unit shaft resistance, α represents the coefficient of re-

sistance, and Su signifies the undrained shear strength of clay (Salgado,

2006). In this case, non-displacement piles known as Continuous Flight

Auger piles (CFA) are exercised because of their simplicity and feasibility.

Unit base and shaft resistance of CFA pile in clay design is adopted

from Salgado (2006), and calculations are presented in Table 6.1.
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Table 6.1: Calculations of CFA pile in clay design by O’Neill (1999)

Limit unit shaft resis-
tance qsL

Net ultimate unit base
resistance qb10%

qsL = αSu, α = 0.55 8Su, if 50 Su ≤ 100 kPa

The ultimate shaft resistance can now be computed by Eq. (6.4).

Qult = qsL + qb10%. (6.4)

where Qult is the ultimate shaft resistance. qsL represents limit unit shaft

resistance and qb10% signifies net ultimate unit base resistance. Therefore,

using Table 6.1 the values obtained for CFA pile design are summarized in

Table 6.2.

Table 6.2: Properties of CFA piles used in GEO-Slope analysis

Undrained shear
strength Su

Limit unit
shaft resis-
tance qsL

Net ultimate
unit base resis-
tance qb10%

Ultimate shaft
resistance or
shear force
qb10%

51.277 kPa 28.20 410.216 438.416 kN

Table 6.3: Soil properties of the Nipigon slope

Layer Unit
Weight
(γ)(kN/m3)

Undrained
Shear
Strength
Su (kPa)
Mean

Undrained
Shear
Strength
Su (kPa)
SD

Angle
Of Fric-
tion
(φ0)
Mean

Angle
Of Fric-
tion
(φ0) SD

Upper silty sand layer(Layer 1) 17.6 30 9
Firm clayey silt(Layer 2) 19 51.277 15.3831
Soft clayey silt(Layer 3) 18.2 25 7.5
Sandy silt silt(Layer 4) 17.6 30 9
Inter-bedded silt and clayey
silt(Layer 5)

19.5 30 9
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Figure 6.2: Slope geometry for pile slope system design of the slope in the Nip-
igon River area

6.3.3 Design Procedure

• Step 1. Obtain and specify the data required for the slope model,

soil variables of the slope, and piezometric level. Figure 6.2 repre-

sents the model of the slope. The variables of the slope and pile are

depicted in Table 6.3

• Step 2. Select different locations of the pile to be applied. Reason-

able positions for a pile are between 191m to 183m.

• Step 3. Case 1. Initially, different pairs of clear spacing (S) and

the different number (quantity) of pile (N) combination within the

allowable range is selected. Combination mentioned above depends

upon the site access and availability of construction resources. In this

study, the limit of spacing is chosen between 1m to 3m, and range

of the number of piles is 1 to 6. The combinations of ( S, N) is as

follows: (1m, 2), (1m, 3), (1m, 4), (1m, 6), (2m, 2), (2m, 3), (2m, 4),

(2m, 6), (3m, 2), (3m, 3), (3m, 4), (3m, 6).
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• Step 3. Further, for each combination of ( S, N) the analysis is con-

ducted and the relationship between the resulting reliability index and

the location of a pile is plotted.

• Step 4. From the results depicted in Figure 6.3 and Table 6.4 it is

evident that the reliability index tends to decrease with an increase in

spacing (S) up to 2 m and a depth of 8 m, irrespective of the number

of piles (N), and then increases slightly when the spacing (S) is in-

creased to 3 m, with change in depth of up to 10 m. The location of 5

m provides the highest reliability index for the given spacing (S) and

number (N). From these studies any alliance between (1m, 2), (1m,

3), (1m, 4) and (1m, 6) at depth 5 m are selected.

Figure 6.3: Reliability index(β) computed for (S,N) combination of piles with
depth
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Table 6.4: Comparison between reliability index and factor of safety of pile
slope design analysis.

(Spacing S, Number N) Reliability
Index (β)

Depth
(m)

Factor of
Safety
(mean)

(1m,2) 2.05 5 1.6225
(1m,3) 2.05 5 1.6225
(1m,4) 2.05 5 1.6225
(1m,6) 2.05 5 1.6225
(2m,2) 1.79 8 1.5661
(2m,3) 1.79 8 1.5661
(2m,4) 1.79 8 1.5661
(2m,6) 1.79 8 1.5661
(3m,2) 1.819 10 1.5427
(3m,3) 1.819 10 1.5427
(3m,4) 1.819 10 1.5427
(3m,6) 1.819 10 1.5427

• Step 5. Case 2. Even though the pile reinforcement enhanced the

slope stability and increased the value of the reliability index (β)

up to 2.05, the slope is still in the phase of failure. Therefore, an

additional design procedure is adopted to make the slope stable. The

top upper silty sand layer is excavated up to 3 meters, and firm clayey

silt layer and soft clayey silt layer is made homogeneous to obtain a

single clayey silt layer. The properties of this homogeneous layer are

assumed to be the same as the firm clayey layer, i.e., undrained shear

strength as 51.277 kPa and unit weight as 19 KN/m3.

• Step 6. Again pile reinforcement is provided to the excavated and

modified slope with a homogeneous top layer. Continuous flight

auger piles are used again with similar pile dimensions and shear

force, as in the case 1 analysis. Combination of 2 piles with spacing

of 1 meter are implemented. Further, the analysis is conducted us-
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ing the GEO-Slope software direct Monte Carlo simulation method.

Figure 6.4 presents the model of redesigned slope.
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Figure 6.4: Slope model for redesigned pile slope system design

• Step 7. This design produces the reliability index (β) value sub-

stantially up to 3. The probability of failure value is decreased im-

mensely, thereby resulting in the slope to be sufficiently safe. The

results of the stability analysis are presented in Table 6.5. Figure 6.5

represents the probability density function of the factor of safety.

Table 6.5: Results of redesigned homogeneous layer pile slope system (Spacing-
1m, Number-2 piles, and depth-5 meter)

Mean Factor
of Safety

Reliability
Index (β)

Probability
of failure %

Factor of
Safety
(Max)

Factor of
Safety (Min)

2.1975 2.808 0.000000 4.0724 1.1537
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Figure 6.5: Factor of safety PDF for homogeneous layer

• Step 8. For reliability design optimization, the best combination of

spacing (S), number (N), and depth of piles can be considered. Also

analysis should include the cost comparison and construction feasi-

bility of different types of piles. The availability of resources should

also be considered and analyzed to select an optimized and economic

reliability-based design of slope.

6.4 Results

The results illustrate the comparison of two cases of slope design with pile

reinforcements. In the first case in (step 3), reinforcement of piles with

different spacing and numbers (quantity) are provided to the exact failure

slope of the on river landslide area slope analyzed in chapter 5. The results

for case 1 are presented in Figure 6.3, which shows the change in reliability

index(β) computed for (S,N) combination of piles at different depth. Table
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6.4 depicting the comparison between reliability index and a factor of safety

of pile slope. The results display that the reinforcement of piles definitely

increases the reliability index of the slope from 0.452 to 2.05, but the slope

is however still in the failure phase.

Further, in the second case (step 5), the slope is redesigned by exca-

vating the first layer and making the next two layers homogeneous. Also,

the different combination of pile reinforcement is employed to the slope.

The results are depicted in Table 6.5. It is evident from the results that the

slope is in the stable phase now with the reliability index value of 2.808 and

probability of failure of almost 10−6.The study in first case shows that piles

reinforcement in the failure slope tends to increase the reliability index, but

fails to achieve the desired probability of failure. Whereas, reinforcement

of pile to the homogeneous layer slope in case 2, stabilizes the slope by de-

creasing the probability of failure to almost 10−6. The procedure supports

the importance of using a reliability-based design optimization procedure

for the slope stability problem.

Precise outcomes based on the pile slope design analysis are enumer-

ated as follows.

1. The design of a pile reinforced slope for stabilizing an unstable slope

in the Nipigon River area includes the study of geotechnical vari-

ables, as well as their organization with pile reinforcement to carry

out reliability analysis. The results denoted that the reliability index

of an unstable slope raised handsomely after implementing the pile

reinforcement.

2. The spacing, number, and length of the pile are key design variables,

that can be altered in various sequences to accomplish the desired

reliability index.

3. Table 6.4 gives an insight on the significance of practicing the reliability-
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based design method for slope stability analysis, that a single value

for factor of safety cannot be accurately determined to describe the

uncertainties correlated with soil variables and the modelling uncer-

tainties

6.5 Summary

In this chapter, a reliability-based design optimization procedure for the

design of pile reinforced slope system to stabilize an unstable slope in the

Nipigon River area was presented. The approach was based on a probabilis-

tic method using maximum entropy formalism and Akaike’s information

criterion. Later, reliability analysis of the pile slope system was carried out

by incorporating entropy generated soils variables into GEO-Slope based

Monte Carlo simulation approach.

The uncertainties associated with the soil variables and the pile struc-

tural variables were characterized and systematically taken into account.

The methodology illustrates the design procedure for achieving the required

safe reliability index of the slope reinforced with the combination of piles

depending on the spacing of piles, the number of piles and depth of the piles

practiced. Finally, an additional redesigned homogeneous slope is provided

with pile reinforcement to achieve reasonable probability of failure.
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Chapter 7

Conclusions and Future Research
Initially, the research included soil testing on the Nipigon slope, and then

it combined a comprehensive maximum entropy formalism, and Akaike’s

information criterion (AIC) framework for the quantification of Nipigon

slope soil variables to obtain an optimal order of distribution. Furthermore,

a modified entropy-based first order reliability method (FORM) slope sta-

bility analysis approach is developed in this thesis. Also, a probabilistic

failure approach using the direct Monte Carlo simulation method to design

the Nipigon slope.

7.1 Contributions

1. Vane shear test application on the Nipigon Slope

Foremost, the vane shear test is performed on the slope of Nipigon river area

to attain the undrained shear strength values. The test outcome resulted in

123 values of undrained shear strength, which are further used in the slope

stability analysis.

2. A maximum entropy formalism (MEF) and Akaike’s information
criterion (AIC) framework for the quantification of soil variables

The proposed approach is a distribution free method, that incorporates the

inherent spatial variability of the soil properties and models explicitly the

most unbiased probability density function assignment of the uncertainties
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associated with soil variables. Furthermore, the method automatically im-

proves the level of sophistication of the resulting probability distribution as

per the characteristics and volume of data. This prevents us from using too

many complicated models if the database is not extensive enough.

The above-described method is implemented on vane shear field test

(VST) data gathered from the Nipigon slope for probabilistic distribution

free quantification of shear strength parameter explicitly. The proposed ap-

proach effectively generates the third model as the most unbiased and opti-

mal model of distribution, which is implemented in the reliability analysis

and design of the Nipigon slope.

3. A new modified FORM method for entropy non-normal variables

An enhanced probabilistic approach using the modified first order reliabil-

ity method (FORM) to account for entropy-generated, non-normal soil vari-

ables is adapted to provide a conceptually more rationalized way to account

for uncertainties in order to carry out slope stability analysis. This approach

is applicable with the aid of an explicit linear performance function created

by the combined approach of GEO-Slope software and the response surface

method.

The MATLAB program is developed for the modified FORM to judge

the reliability of the Nipigon slope. Combined tools of GEO-Slope software

and an Excel spreadsheet package for response surface method (RSM) were

used to conduct a dynamic deterministic analysis. Additionally, the analysis

is followed by a comparative study of the direct Monte Carlo simulation

method using the GEO-Slope software to perform reliability analysis.

A combination of the MEF and modified FORM method, allowed us to

estimate system failure probability of the Nipigon slope stability analysis

efficiently, with probability of failure value of 40%. Also, results indicated
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that modified FORM and MCS methods coincided with each other compre-

hensively, thereby validating the accuracy of proposed approach. Sensitiv-

ity analysis revealed that both the spatial variability and cross-correlation

of the soil variables significantly affected the reliability of slope stability in

spatially variable soils. Subsequently, the probability of failure rose, and

the reliability index decreased with the inflation in covariance value.

4. Reliability-based design of Nipigon slope

Subsequently, a reliability-based design of failed Nipigon slope of is achieved

by reinforcing slope with CFA piles. Initially, the pile reinforcement is pro-

vided to the same failure slope, ending in enhancing the reliability index,

however, failed to attain stability. Conclusively, a homogeneous soil layer

modification is implemented to failure slope with the pile reinforcement,

that increased the stability of the slope with a probability of failure almost

10−6.

7.2 Future Research

In the proposed analysis, various modified approaches are developed for

geotechnical data quantification and probabilistic slope stability analysis,

and the outcome of these aimed methods have depicted that they exhibit

intellect in quantifying random variables and uncertainties associated with

same. Additionally, the probabilistic approach appeared to be efficient in

discovering the slope stability analysis. Further recommendations could

include the following issues, which could be investigated to enhance the

slope stability analysis procedure.

• The shear strength parameters are treated as random variables in the

present study. For future research, unit weight of soil could also be
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interpreted as a random variable.

• Cross-correlation between the shear strength parameters, such as co-

hesion and angle of friction and undrained shear strength, could be

examined for stability analysis in the future.

• The water table, loading circumstances, and fluctuations in water

level could also be reviewed as random variables.

• As in the present investigation, the vane shear test was conducted

only up to a certain level. Additional field tests and laboratory tests

could be carried out to achieve more precise soil variables values

throughout the geometry of slope.

• For reliability-based design analysis, more aspects such as cost com-

parison, availability of resources, site access, and reinforcement ma-

terial comparison based on actual engineering projects could be ana-

lyzed, while carrying out the design optimization.
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Appendix
Appendix A

Table 7.1: The design of experiments values

dFF2
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1
1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1
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Table 7.2: FOS obtained from RSM analysis on Nipigon slope parameters using
Geo-Slope 2007

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 FOS
(0) = µ +
1.65σ

44.85 76.66 37.38 44.85 44.85

(1) = µ −
1.65σ

15.15 25.89 12.63 15.15 15.5

1 44.85 76.66 37.38 44.85 44.85 1.896
2 44.85 76.66 37.38 44.85 15.5 1.232
3 44.85 76.66 37.38 15.15 44.85 1.793
4 44.85 76.66 37.38 15.15 15.5 1.106
5 44.85 76.66 37.38 44.85 44.85 1.896
6 44.85 76.66 37.38 44.85 15.5 1.232
7 44.85 76.66 37.38 15.15 44.85 1.793
8 44.85 76.66 37.38 15.15 15.5 1.106
9 44.85 25.89 37.38 44.85 44.85 1.751
10 44.85 25.89 37.38 44.85 15.5 0.811
11 44.85 25.89 37.38 15.15 44.85 1.119
12 44.85 25.89 37.38 15.15 15.5 0.748
13 44.85 25.89 12.63 44.85 44.85 1.033
14 44.85 25.89 12.63 44.85 15.5 0.701
15 44.85 25.89 12.63 15.15 44.85 0.759
16 44.85 25.89 12.63 15.15 15.5 0.646
17 15.15 76.66 37.38 44.85 44.85 1.886
18 15.15 76.66 37.38 44.85 15.5 1.214
19 15.15 76.66 37.38 15.15 44.85 1.784
20 15.15 76.66 37.38 15.15 15.5 1.091
21 15.15 76.66 12.63 44.85 44.85 1.614
22 15.15 76.66 12.63 44.85 15.5 1.053
23 15.15 76.66 12.63 15.15 44.85 1.333
24 15.15 76.66 12.63 15.15 15.5 0.939
25 15.15 25.89 37.38 44.85 44.85 1.727
26 15.15 25.89 37.38 44.85 15.5 0.807
27 15.15 25.89 37.38 15.15 44.85 1.107
28 15.15 25.89 37.38 15.15 15.5 0.745
29 15.15 25.89 12.63 44.85 44.85 0.983
30 15.15 25.89 12.63 44.85 15.5 0.698
31 15.15 25.89 12.63 15.15 44.85 0.755
32 15.15 25.89 12.63 15.15 15.5 0.643

Response Surface Method to develop implicit function using Excel-

sheet solver in Figure rsmsol and Figure 7.2:
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Figure 7.1: Excel solver for regression analysis

Figure 7.2: Coefficients of variables to develop a response surface model perfor-
mance function
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Appendix B

Table 7.3: Data of 48-OP basalt rock uniaxial compressive strength

No. Uniaxial com-
pressive strength
(Mpa)

No. Uniaxial com-
pressive strength
(Mpa)

1 61.2 25 129.6
2 63.2 26 131.8
3 66.6 27 136.4
4 86.5 28 137.4
5 90.8 29 139
6 97.7 30 140
7 98 31 140.7
8 99.7 32 142.2
9 102.4 33 142.6
10 104.3 34 144.4
11 106.4 35 147.5
12 109.7 36 148.9
13 112 37 150.9
14 112 38 152.5
15 114.6 39 152.9
16 114.9 40 159.1
17 115 41 162.6
18 118.7 42 165.3
19 119.7 43 165.5
20 123.2 44 167.9
21 125.8 45 174.7
22 128.9 46 177.2
23 129.2 47 191.7
24 129.6 48 191.9
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Table 7.4: Data of 220 sample values of warehouse live load lb/ft2

0.0 7.8 36.2 60.6 64.0 64.2 79.2 88.4 38.0 72.7
72.2 72.6 74.4 21.8 17.1 48.5 16.8 105.9 57.2 75.7
225.7 42.5 59.8 41.7 39.9 55.5 67.2 122.8 45.2 62.9
55.1 55.9 87.7 59.2 63.1 58.8 67.7 90.4 43.3 55.2
36.6 26.0 90.5 23.0 43.5 52.1 102.1 71.7 4.1 37.3
129.4 66.4 138.7 127.9 90.9 46.9 197.5 151.1 157.3 197.0
134.6 73.4 80.9 53.3 80.1 62.9 150.8 102.2 6.4 45.4
121.0 106.2 94.4 139.6 152.5 70.2 111.8 174.1 85.4 83.0
178.8 30.2 44.1 157.0 105.3 87.0 50.1 198.0 86.7 64.6
78.6 37.0 70.7 83.0 179.7 180.2 60.6 212.4 72.2 86.0
94.5 24.1 87.3 80.6 74.8 72.4 131.1 116.1 53.6 99.1
40.2 23.4 8.4 42.6 43.4 27.4 63.8 18.4 16.2 58.7
92.2 49.8 50.9 116.4 122.9 132.3 105.2 160.3 28.7 46.8
99.5 106.9 55.9 136.8 110.4 123.5 92.4 160.9 45.4 96.3
88.5 48.4 62.3 71.3 133.2 92.1 111.7 67.9 53.1 39.7
93.2 55.0 80.8 143.5 122.3 184.2 150.0 57.6 6.8 53.3
96.1 54.8 63.0 228.3 139.3 59.1 112.1 50.9 158.6 139.1
213.7 65.7 90.3 198.4 97.5 155.1 163.4 155.3 229.5 75.0
137.6 62.5 156.5 154.1 134.3 81.6 194.4 155.1 89.3 73.4
79.8 68.7 85.6 141.6 100.7 106.0 131.1 157.4 80.2 65.0
78.5 118.2 126.4 33.8 124.6 78.9 146.0 100.3 97.8 75.3
24.8 55.6 135.6 56.3 66.9 72.2 105.4 98.9 101.7 58.2
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