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ABSTRACT 

 The boreal forest is home to a thriving forest industry which requires stable, long term 

timber to remain viable. Anthropogenic climate change, caused by the release of greenhouse 

gasses, is occurring rapidly in northern locations. Climate change impacts the boreal forest in 

many different ways and has the potential impact forestry operations considerably. While there 

has been significant research on both climate change and the boreal forest, few studies combine 

both topics to include long-term timber supply. Knowledge gaps exist in terms of how ecological 

impacts from climate change will affect forestry, particularly in terms of net biomass, species 

compositions, forest disturbances and species migrations. There is also a lack of timber 

forecasting studies that utilize forest disturbances and implement drought mortality. Throughout 

this thesis, these key areas are addressed.  

 We first conducted a literature review and synthesis of the impacts of climate change on 

boreal forest timber supply. We found that the disparity between migration rates of tree species 

with ongoing climate change may reduce the overall forest area of the boreal long term. Regional 

forest disturbances are increasing in frequency and intensity, affecting harvestable volumes and 

timber quality. Species compositions are changing; favoring early successional conifers and 

deciduous broadleaf species because of new local climates and more frequent disturbances. Most 

importantly, net biomass is likely in decline since regional increases in growth are outweighed 

by general increases in overall tree mortality. Our synthesis concluded that considerable 

reductions in the quality and quantity of boreal timber supply are likely to occur in the near 

future without forestry adaptation strategies or climate mitigation measures being implemented.  

 We then simulated four climate change scenarios in three boreal forest regions to test the 

effect on long term timber supply and the success of two harvesting intensities. By adding 
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annual, species specific, drought-induced tree mortality to a previously published landscape 

model, we sought to more completely study this important topic. Our results show long term 

declines in aboveground biomass, regional increases in tree mortality (from fires, insects and 

drought), and species composition shifts favoring broadleaf and temperate forest species. Our 

area-based harvesting prescriptions show that with lower harvesting intensity, consistent harvest 

levels area more likely to be maintained. However, our most severe climate forcing shows 

considerable reductions in aboveground biomass and harvested biomass. These findings 

necessitate action for mitigation of climate change and forestry adaptation strategies to cope with 

negative climate impacts.  

 In summary, climate change considerably impacts the future success of boreal forestry. 

Our review of recent literature suggests that the consequences of climate change far outweigh the 

benefits. Our simulation results show annual biomass levels generally declines, especially in 

extreme future climates. Continued study and urgent management actions are needed to 

successfully adapt forest industry to the pressures of climate change. 

Key words: climate change, boreal forest, aboveground biomass, forest disturbances, forestry, 

harvest operations   
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CHAPTER ONE: GENERAL INTRODUCTION 

 Climate worldwide is experiencing changes from historical averages, trending towards 

warmer temperatures, greater atmospheric CO2 concentration and shifting precipitation regimes 

(IPCC 2014). Changes in climate are experienced globally, however, the impact on forest health 

varies locally (Kellomäki 2016). Northern areas, notably the boreal forest, are expected to 

experience more drastic changes in climate compared to southern regions (Diffenbaugh and Field 

2013) for which they may not have the adaptive capacity to handle (Bonan 2008). For example, 

climate in Canada is projected to continue warming over the next 40-50 years though 

precipitation regimes are more difficult to predict. This is a result of the complexities associated 

with moisture trends and methods used to forecast precipitation (Dai 2012). This will have 

impacts on many ecological processes and forest dynamics since climate is influential to boreal 

forest health (Gauthier et al. 2015a). Noteworthy changes include: site suitability for tree species 

(D’Orangeville et al. 2016), species composition (Searle and Chen 2017a) and boreal biome 

shifts (Beck et al. 2011), forest productivity (Chen and Luo 2015a, Girardin et al. 2016a), and 

forest disturbance regimes (Flannigan et al. 2009, Weed et al. 2013). Continued study of climate 

effects on boreal forest dynamics is necessary for a complete understanding of its implications.  

Changes in forest dynamics and ecological processes pose problems for environmental 

management and forest operations across the global boreal forest. For hundreds of years, forestry 

has been practiced in boreal forests and currently is one of the most important industries in terms 

of providing jobs and exporting wood products to global markets (NRTEE 2011). Successful 

industry is driven by stable and predictable timber supply; this is inevitably impacted by climate 

change. Though the productivity of forestry may be expected to increase regionally from climate 

change, the overall economic viability of boreal forestry will likely be stressed. Lower market 
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prices from a flood of wood products (Sohngen and Tian 2016) and the increased cost of forest 

operations from shifting weather patterns could pose future problems (Gauthier et al. 2014, 

Rittenhouse and Rissman 2015). Reduced fiber and wood quality from increased growth, disease 

and insects can cause problems in the wood product manufacturing facilities (Lempriere et al. 

2008). As well, altered species compositions (Hanewinkel et al. 2010) and the shift of forest 

biomes following climate change have been shown to greatly reduce the value of forest land over 

time (Hanewinkel et al. 2013). Understanding the full impacts of climate change is vital to 

maintaining a stable forest industry and resource-based economy.   

There has been considerable research done on the impacts of climate change on boreal 

forest timber; however, there are notable gaps in our current knowledge. Complete syntheses of 

this issue are either older (Kirilenko and Sedjo 2007), or lacking the connection to forestry 

implications (Price et al. 2013). Modelling studies simulating long term timber supply in the 

boreal forest often are done without forest disturbances (Alam et al. 2008, Kellomäki et al. 2008) 

or important drought considerations (McKenney et al. 2016). These shortcomings need to be 

rectified to properly inform forest industry and clearly study this issue.     

We begin with a detailed and comprehensive literature review of the challenge climate 

change poses to forestry operations and management practices. We examine the different ways 

that climate is affecting the boreal forest, the impact that subsequent changes will have on forest 

industry, potential steps to mitigate negative impacts, and future areas for continued and 

necessary research. From there, we conducted an analytical study simulating three boreal forest 

regions under different climate forcings. We focused on how ecological changes from new 

climate (especially drought) impacted the overall harvested biomass throughout our landscape 

model. This developed projections for wood supply in three boreal regions and implications to 
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harvesting operations. Our findings are applicable to the entire boreal forest since there are 

ecological similarities throughout this biome and provide timely information on the impacts of 

climate change on boreal forestry.  
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CHAPTER TWO: CLIMATE CHANGE IMPACTS ON BOREAL FOREST 

TIMBER SUPPLY 

Abstract 

Recent studies have assessed the ecological effects of climate change on boreal forests; however, 

our understanding of the economic impacts of climate change on timber supply remains limited. 

Forestry is an important boreal industry; hence, it is necessary to better understand the ecological 

impacts that directly and indirectly affect this sector. We reviewed published literature 

concerning ecological impacts of climate change on biome shifts, regional forest disturbances, 

and tree growth, mortality and species compositional shifts in established forest stands. 

Subsequently, we examined how each factor influences timber supply and forestry. Tree species 

ranges have been and will continue migrating north to find more suitable growing conditions, but 

at a slower rate than climate change. Biome shifts from forests to shrub or grasslands may occur 

under persistent drought conditions. Warmer temperatures and lower climate moisture 

availability increase forest disturbances; notably fire and insect outbreaks, creating younger 

forests dominated by pioneer species and limiting harvestable material. While tree growth and 

mortality rates are spatially variable across established forest regions, tree mortality has 

temporally increased with climate change; accompanied by reduced growth or increased growth 

at a rate lower than mortality loss, resulting in a reduced rate of volume accumulation and timber 

available for harvest.  Moreover, climate change favors pioneer species (Pinus spp. and Populus 

spp.) over late successional species (Picea spp. and Abies spp.). Our findings suggest that climate 

change has strong negative effects on boreal timber supply but may prompt operational 

adaptations, opening opportunities for forest industry to incorporate species such as Populus. 
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Introduction  

The boreal forest is one of Earth’s largest forest biomes, with an area of 1.2 billion 

hectares; stretching from Russia, across Scandinavia and throughout North America (van Lierop 

et al. 2015). The boreal forest constitutes approximately 30% of the world’s most densely 

forested area (Crowther et al. 2015), while storing nearly half of the global forest carbon, 

primarily within soils (Soja et al. 2007, Gauthier et al. 2015a). This forest region is immensely 

critical to the global timber products market. Roughly 33% of lumber and 25% of paper exports 

in the global market originate from the boreal forest (Gauthier et al. 2015a). However, most 

ecological functions and processes, such as tree growth, proceed slowly in the boreal forest due 

to short growing seasons with severe, cold winters (Kellomaki 2000, Fettig et al. 2013). Despite 

similar presences of tree genus (Picea, Pinus, Populus, Larix, and Betula), disturbance regimes 

and management histories and strategies differ between Eurasian and North American boreal 

forest regions (Gauthier et al. 2015a, Rogers et al. 2015, Schaphoff et al. 2016).   

Climate change has a profound impact on global forestry, and continues to accelerate 

with increasing anthropogenic greenhouse gas emissions (IPCC 2014). Higher latitudinal areas 

are expected to undergo the largest increases in temperature (Diffenbaugh and Field 2013) and 

experience variable shifts in precipitation regimes (Gauthier et al. 2015a, Reyer et al. 2015). 

Changes in site conditions and frequency of disturbance regimes have also affected the boreal 

forest as a result of climate change (Price et al. 2013). Understanding climate change impacts on 

boreal forest dynamics and timber supply is crucial to the continued viability of boreal forest 

industry.  

Timber supply, defined in this review as the quality and quantity of standing timber 

available for harvesting, directly impacts the forest industry; in both the short run and long run. 
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The difference between the two timelines is the amount of time required to transition between 

capital investments in equipment and product development (Zhang and Pearse 2011). Short run 

supply occurs within a timeframe that is too short for industry to adjust their capital stock and 

standing timber inventory; slower growth rates and higher rotation ages (particularly in the 

boreal forest) slow this process. This lack of flexibility means that industry can only adjust their 

variable inputs (fuel and labour) or utilize their facilities more intensively. In the long run, 

industry is able to reinvest in profitable areas and change supply to better suit the market (Zhang 

and Pearse 2011). The duration of the long run depends on products (lumber or engineered wood 

products), industry (logging or pulp and paper) and geographic location (boreal forest or 

tropical). However, long run timber supply is difficult to anticipate because of a number of 

factors that affect trees: growth and mortality rates, disturbances, harvesting rotation schedules 

and demand of forest products (Zhang and Pearse 2011). Climate change further complicates this 

process of product evaluation and timber supply (Sohngen 2014). Analyses of the impacts of 

climate change on boreal timber supply should involve both short term and long-term research to 

properly forecast the implications of ecological change on the economy. 

Recent advances have been made toward understanding climate change impacts on forest 

productivity, species range shifts and forest disturbances (Boisvenue and Running 2006, Kurz et 

al. 2008, Hofgaard et al. 2013), though there have been few publications synthesizing these 

impacts. Several published reviews on the boreal forest and climate change include: global 

boreal forest health (Gauthier et al. 2015a), impacts to North American forests and ecosystems 

(Fettig et al. 2013, Price et al. 2013), implications to forest carbon balance (Kurz et al. 2013, 

Schaphoff et al. 2016), forestry adaptation practices (Gauthier et al. 2014), and a recently 

proposed concept of using biodiversity to mitigate climate change impacts on ecosystem 
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functioning (Hisano et al. 2018).  However, the impact of climate change on industrial timber 

supply and its economic implications is an area that demands continued investigation. The 

existing forestry related reviews suggested that there would likely be increases in global timber 

supply (though high regional variation) from greater forest productivity (Kirilenko and Sedjo 

2007) leading to probable decreases in wood product prices and demand (Sohngen and Tian 

2016).  

Modeling studies have addressed the economic impacts of climate change in specific 

countries or regions (Mendelsohn et al. 2000, Solberg et al. 2003, Ochuodho et al. 2012), 

whereas others have considered the forest industry in a global context (Sohngen et al. 2001, 

Lindner et al. 2002, Perez-Garcia et al. 2002, Tian et al. 2016). Older global timber models 

suggest higher timber productivity from tropical regions, compared to temperate regions with on-

going climate change (Sohngen et al. 2001, Perez-Garcia et al. 2002), whereas, the latest global 

timber model predicts a similar overall increase in forest productivity in both regions (Tian et al. 

2016). Generally, timber resources are expected to increase across the globe and result in lower 

product prices (Sohngen and Tian 2016, Tian et al. 2016). However, empirical evidence from 

tropical forests revealed that climate change has led to greater biomass loss through tree 

mortality than growth gain, resulting in less standing biomass (Brienen et al. 2015). Further, 

these studies typically simulated consistent future disturbance regimes possibly leading to yield 

inaccuracies (McKenney et al. 2016). Nevertheless, these modelling studies do not specifically 

analyze the productivity of the boreal forest under climate change; rather they have focused on 

temperate and tropical forests. Therefore, modeling climate change impacts on boreal forest 

timber supply remains needed.  
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The purpose of this review is to synthesize the impacts of climate change on boreal forest 

dynamics directly relating to available timber supply (Figure 2-1). Specifically, this review will: 

i) examine how climate change has affected boreal ecological processes at a variety of spatial 

scales (biome, regional, stand and individual levels), since the impacts to ecological processes 

differ across scales (McGill 2010), ii) analyze how these ecological changes will impact timber 

supply, iii) detail management adaptations, and iv) identify gaps in current knowledge for future 

research. 

Literature selection criteria 

Papers were systematically selected for this review via the online search engine ISI Web 

of Science. The reference sections of selected papers were also reviewed for relevant literature. 

This was done in order to capture all applicable and available literature. Key words including 

climate change impacts, boreal forest timber supply, and forest sector implications were used in 

various combinations for the search. Because of the rapid development of the study topic, we 

focused on reviewing recent literature; largely post 2000. Literature was subsequently analyzed, 

initially by title and abstract, and then through more in-depth reading. Titles were selected by 

having some mention of climate change and timber supply associated ecological processes 

including biome shift, range shift, species composition, disturbance, growth, and mortality. 

Papers that did not explicitly address climate change were excluded. Both reviews and original 

articles were considered to gather evidence from a range of perspectives. Topics were divided 

into themes and research was synthesized to explain the various ways climate change impacts 

boreal timber supply (Figure 2-1). 
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Figure 2-1. A simple representation of the focus for this review and the related factors and 

variables associated with each. Climate change (changes in temperature, precipitation and CO2 

levels) will influence forest dynamics (growth, mortality, species range and disturbance 

interactions) which then impact the volume, quality, and species of timber supply available for 

industrial harvest and use in the boreal forest.  

Biome shifts 

 Biome shifts represent a landscape’s transition over time from one biome to another, such 

as forest biome to shrub land and/ or grassland biome (Beck et al. 2011). Biome shifts are 

adaptations that take place between vegetation types and contrasting climates (Donoghue and 

Edwards 2014); the process of transition is dependent on the state of an ecosystem and the speed 

of climate change. In high latitude systems, biome shifts have been observed over temporal 

scales of multiple years or decades (Beck et al. 2011). Climate is a key factor toward determining 

the geographic distribution of plant species (Fettig et al. 2013, Fei et al. 2017). As the climate 

changes, sites can become less suitable for certain plant species over time causing them to 

regress or die, whereupon other more suitable species take their place (Gonzalez et al. 2010). 

Biome shifts tend to occur along the edge of biomes (Davis and Shaw 2001), as evidenced by the 
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transition from forests to shrub lands under extended droughts (Anderegg et al. 2013, Donoghue 

and Edwards 2014). Most of the world’s forests are regarded as being extremely vulnerable to 

biome shifts as a result of climate change (Gonzalez et al. 2010), which stresses the importance 

of understanding the risks of shifting biomes. 

Boreal forests have been seen steadily migrating northward in response to global 

warming. Researchers have observed shifts in plant and animal species ranges for decades, 

signifying the effect of changing climate (Parmesan and Yohe 2003, Chen et al. 2011). Tree 

migration has been observed most clearly in areas with temperature extremes, such as the boreal 

forest and tundra regions. Boreal forests have been documented as steadily growing northward 

into areas that were previously tundra. In Alaska, spruce populations have been declining in 

areas that they previously thrived in, most likely as a result of water deficiencies from high vapor 

pressure deficits on photosynthesis (Beck et al. 2011). Similar forest migration and 

compositional changes are expected in Siberia; boreal species are predicted and recorded to be 

migrating into more northern locations (Tchebakova et al. 2011, Berner et al. 2013). In Norway, 

northern regions that were once previously tree line edge are now found to be forested areas; 

indicating the migration of tree species (Hofgaard et al. 2013). These tree species are now 

moving into cooler regions so as to escape areas with high vapor pressure deficits, as well as to 

access more water (Fei et al. 2017). It is expected that the tundra could lose up to 50% of its area 

from northward expansion of the boreal (Kirilenko and Sedjo 2007). In parallel with moving 

northward, southern boreal forests could retreat and shift to shrub lands or grasslands due to 

warming-induced climate moisture deficits (Allen and Breshears 1998). It remains, however, 

unclear whether the northward expansion of boreal forests matches its southward retreat.  
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Under rapid climate change, species ranges continue to shift (Pecl et al. 2017), which 

imparts profound environmental and economic implications. It was reported that the historic 

migration rate of tree species (~20-40 km per century) was far slower than the rate required to 

avoid changing climate envelopes (~300-500 km per century) (Davis and Shaw 2001). Recent 

findings estimate that tree migration rate is actually less than 100 m per year (Aitken et al. 2008) 

compared to the 160 km migration requirement for every degree of temperature increase 

(Thuiller 2007), highlighting the disparity in migration rate requirements. More recently, there 

was an estimated migration rate of 16.9 km per decade, away from the equator, and 11 m per 

decade in elevation; still significantly lower than the required migration speed (Chen et al. 

2011).This may cause unknown environmental consequences in the functioning of our 

ecosystems. However, assisted migration may help mitigate the mismatch between slow natural 

migration rates and rapid climate change (Aitken et al. 2008).  

Regional forest disturbance patterns  

Boreal forests are characterized by natural disturbances, such as fires, fungi and insect 

outbreaks (Gauthier et al. 2015a), where forest disturbances have severe implications to timber 

supply. Insects are suggested to have the greatest effect on forest harvest volumes and quality; 

even more so than forest fires (Malmstrom and Raffa 2000, Logan et al. 2003), though recent 

findings have suggested that fires are more impactful (Hansen et al. 2013). For example, 

Dendroctonus ponderosae (mountain pine beetle) in Canada have impacted nearly 20 million ha 

of pine forest during their recent epidemic outbreak, which began in the 1990’s, and are 

projected to continue infesting boreal forests as they move eastward (Dhar et al. 2016). Insect 

and diseases have also affected a much greater area than fires in North American temperate 

forests during 2003-2012 (van Lierop et al. 2015). Climate change is expected to increase the 
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frequency of forest disturbances for a number of reasons, acting on both biological agents and 

abiotic disturbances (Ayres and Lombardero 2000, Weed et al. 2013, Ramsfield et al. 2016). One 

of the most powerful ecological interactions in the boreal forest, similar to temperate regions, are 

disturbances coupled with on-going drought. By further stressing a system with a disturbance 

during an ongoing drought, the severity of the interactions can be intensified and the future 

health of the forest compromised if threshold levels are exceeded (Millar and Stephenson 2015). 

Though a natural feature of boreal forest dynamics, increased forest disturbances under climate 

change could have strong negative impacts on timber supply. 

Biotic disturbances 

Insects in the boreal forest are likely to benefit from climate change due to i) lower winter 

mortality rates (milder temperatures) and ii) lower resistance in trees from temperature and 

moisture stress (Weed et al. 2013). A tree’s resistance to defend itself against insect and/ or 

pathogen attack is lowered from drought and higher temperature (Kurz et al. 2008, Millar and 

Stephenson 2015). As a result of these interactions, we are likely to see more widespread and 

devastating insect infestations in northern forests (Pureswaran et al. 2015). Though a slight 

decrease frequency in spruce bud worm has been forecasted due to the reduction in suitable hosts 

(Candau and Fleming 2011). An increased insect (Ips spp. beetles) susceptibility has been 

forecasted in Austria and has already occurred in Lithuania and Canada (mountain pine beetle) 

(Seidl et al. 2008, Alfaro et al. 2009, Ozolincius 2012). Insect outbreaks in Russia appear less 

studied than elsewhere, though reports indicate that silk moth (a major disturbance agent) has 

increased substantially over the last 20 years (Schaphoff et al. 2016). The effects of fungal tree 

diseases under climate change are less predictable, as there have been mixed results in studies; 

there could be increases in particular pathogens and reduced impacts from others (Pautasso et al. 
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2015). For the boreal forest, it is anticipated that diseases and insects will spread due to 

increasing temperatures and possibly have new species introduced through global trade (Sturrock 

2012, Pautasso et al. 2015, Pecl et al. 2017). Though pest and pathogen disturbances may 

increase in frequency through improved climate conditions, drought events assist in determining 

which pest could inflict the most damage by influencing the section of the tree that insects and 

fungi target (e.g., foliar versus woody) depending on drought severity and method of pest 

damage (Jactel et al. 2012). Generally, as the severity of droughts increase, infestation by certain 

pests will be favoured in alignment with their mode of damage (e.g. wood borers performed best 

on drought stressed trees).  

Abiotic disturbances  

Fires are projected to increase in frequency and intensity under climate change, due to 

higher temperatures and decreased precipitation over many areas (Flannigan et al. 2005, Moritz 

et al. 2012). The potential area burned annually could increase dramatically in Canada (Girardin 

et al. 2009, Boulanger et al. 2014) and eastern Russia with continued dry conditions (Groisman 

et al. 2007). Greater quantities of dead wood from fungal mortality and insect infestations 

provide greater fuel availability for fires, increasing the likelihood of severe burns (Gillett et al. 

2004, Flannigan et al. 2009). Drought and warmer conditions potentially cause greater tree 

mortality, which further increase the fuel available for fire ignition (Ruthrof et al. 2016). More 

frequent storms are expected with new weather patterns under changing climate, increasing the 

probability of lightning strikes igniting a fire (Flannigan et al. 2009, Shvidenko and 

Schepaschenko 2014). However, it has been suggested that fire frequency and intensity could be 

lowered, in certain areas, as a result of greater deciduous tree species composition since they are 

less flammable (Terrier et al. 2013). It is necessary to consider tree species when evaluating the 
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vulnerability of forests to fire; North America and Eurasia have different dominant tree species, 

which results in a contrasting level of high intensity crown fires versus lower intensity fires 

(Rogers et al. 2015). Though there exist areas less prone to fire (e.g., larch and spruce swamps) 

that have much longer fire return intervals (Johnson 1992). The risk of increased fire to timber 

supply in the boreal forest across Canada is generally low in many regions; however, 

vulnerability increases with higher temperatures and lower precipitation in the future (Gauthier et 

al. 2015b). Other disturbances include storm related events such as wind throw, which may 

increase in severity and frequency due to stressed and weakened trees (Blennow et al. 2010, 

Peltola et al. 2010, Girard et al. 2014), coupled with more frequent climate extremes (IPCC 

2014).  

Growth, mortality, and composition in established forest stands  

Identifying trends in growth, mortality and species compositional shifts within local stands is 

necessary for gaining a clear understanding of the impacts of climate change on timber 

availability. Timber volume, or biomass, that is available for harvest represents the accumulation 

of net growth (growth minus mortality), while species composition reflects the types of timber, 

an aspect of timber quality, that are available for harvest. 

Growth and mortality 

Tree growth can be quantified at both the individual tree and stand levels, and described 

in a variety of ways, through increasing: size, biomass, gross primary production (GPP, the total 

amount of carbon accumulated from photosynthesis), or net primary productivity (the difference 

between GPP and plant respiration) (Luyssaert et al. 2007). We will focus on tree growth in 

terms of increasing size or biomass accumulation because both relate to volume (Chojnacky et 

al. 2013). Growth in northern regions typically improve as they warm, in contrast to dryer 
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southern areas (Boisvenue and Running 2006, D’Orangeville et al. 2016). However, there are 

instances of the opposite occurring (Table 2-1) (Boisvenue and Running 2006, Luyssaert et al. 

2007, Zhao and Running 2010). Rising atmospheric CO2 concentrations may have contributed to 

improved tree growth more than temperature at the stand level (Brienen et al. 2015, Chen et al. 

2016a), though it is unclear which factor is most influential in the boreal as it is difficult to 

partition their effects (Price et al. 2013, Girardin et al. 2016a). Further, growth may fluctuate 

quickly in forests due to annual variations in temperature and precipitation (Toledo et al. 2011, 

Pretzsch et al. 2014). Throughout Europe, Picea abies (Norway spruce) has experienced greater 

growth rates, stand volumes and stock accumulation over the last 100 years because of changing 

climate (Schlyter et al. 2006, Pretzsch et al. 2014). Individual tree growth rates in Canadian 

boreal tree species are expected to increase with climate change (Huang et al. 2013), though 

significant spatial variations in historical growth rates show no collective growth gain across the 

landscape (Girardin et al. 2016a). Evidence of increased growth rates have been shown both in 

simulation scenarios (Nabuurs et al. 2002, Bergh et al. 2003), and in historical/ observational 

studies in certain areas (Kauppi et al. 2014, Pretzsch et al. 2014). In western Canada, however, 

increased tree growth tends to be restricted to young stands (Chen et al. 2016a) and/ or broadleaf 

dominated stands (Chen and Luo 2015a). Coupled with rising CO2, global warming with longer 

growing seasons (Boisvenue and Running 2006, Linderholm 2006) could be attributable to the 

observed increase in tree growth (Table 2-1).
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Table 2-1. Global and boreal evidence of variation in growth productivity as a result of climate change (positive influence of climate 

change, negative influence, and reports of mixed findings). 

Positive  Study area Methods Findings Causes 

Bergh et al. 

(2003) 
Scandinavia Growth model simulations 

Increased growth, provided water not 

limited  
Longer growing seasons  

Berner et al. 

(2013) 
NE Siberia Satellite and tree ring data 

Productivity influenced by seasonal 

temp. and moisture 

Response varies seasonally, warmer 

temp. and enough precip. needed 

Boonstra et al. 

(2008) 

NW 

Canada 
Tree ring data 

Higher temperatures increased growth 

as did the fertilizer 
Cold and nutrient deprived region 

Luyssaert et al. 

(2007) 
Global Global carbon flux database 

Biomass accumulation in boreal is 

slower than global average 
Saturation point of 10oC and 1500mm 

Kauppi et al. 

(2014) 
Finland 

National Forest Inventory 

permanent sample plots 
Growth rates increased  Longer growing seasons  

Nabuurs et al. 

(2002) 
Europe 

Process based forest growth 

simulation  

Net annual increments increased in 

response to climate changes 

Large uncertainty surrounding future 

ecological changes  

Pretzsch et al. 

(2014) 

Central 

Europe 
Long term plot sampling 

Climate change increases growth rates 

and stand volume 
Favorable climate conditions 

Sato et al. (2016) E Siberia Simulation model Increase in larch forest growth More growing days, constant moisture 

Ciais et al. (2008) Europe 
NFI and timber harvest 

statistics 
Biomass accumulation increased  Increase in net primary production 

Negative Study area Methods Findings Causes 

Aakala and 

Kuuluvainen 

(2011) 

NW Russia Tree ring sampling  Reduced tree growth  Drought conditions  

Beck et al. (2011) Alaska Satellite and tree ring data Decline in southern productivity  
Hydraulic limitations from high vapor 

pressure deficits 

Chen and Luo 

(2015a) 
W Canada 

Forest inventory permanent 

sample plots 
Net biomass declines  Tree mortality outpaces growth 

Chen et al. 

(2016a) 
W Canada 

Forest inventory permanent 

sample plots 
Net biomass declines in older stands Less productivity in older stands 

Luo and Chen 

(2015) 
W Canada Permanent sample plots 

Biomass losses even when water is not 

limited  
Competition 
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Barber et al. 

(2000) 
Alaska Tree sampling and ring data Decreased growth of white spruce  Heat and drought 

Girardin et al. 

(2016b) 
Canada 

Tree ring data in (climate) 

carbon model  
Loss of black spruce productivity Higher temperatures  

Ge et al. (2010) Finland 
Integrated process-based 

model 
Lower stem volume production  Drought and less nutrients 

Ciais et al. (2005) Europe Eddy covariance 
Decrease in productivity in European 

forest 
High temperature 

Zhao and Running 

(2010) 
Global 

Satellite imaging and 

drought index 

Reduced global NPP-may have 

increased short term NPP in northern 

regions 

Drought stress and continued drying 

from high temp.  

Montwe et al. 

(2016) 
W. Canada Provenance trials  Northern seed sources' growth depressed Not adapted to drought conditions 

Mixed  Study area Methods Findings Causes 

Boisvenue and 

Running (2006) 
Global Literature review 

Increases and decreases in productivity, 

greater changes in northern areas 

Longer growing season, need adequate 

water 

Lloyd et al. 

(2011) 
Siberia Tree ring analysis Better growth in north than south Different responses to temp. and precip. 

Sitch et al. (2008) Global 

Climate carbon model and 

Dynamic Global Vegetation 

Model 

Forests either sources or sinks in future: 

boreal projected to lose forest area 

Various climate inputs based on 

scenarios 

Ge et al. (2011) Finland 
Process based ecosystem 

model 
Better growth in north than south 

Different responses to temp. and precip 

based on species and latitude 

Girardin et al. 

(2012) 
Canada 

Plot level tree growth 

analysis 

Heterogeneous growth responses 

between species and demographics 

Areas with more growth may not exceed 

the added mortality and site stresses 

Huang et al. 

(2013) 
Canada 

Tree ring data and 

modeling 
Better growth in north than south boreal 

Temperature increase less severe in 

northern areas promoting growth 

D’Orangeville et 

al. (2016) 
Canada Tree ring analysis  Latitude and climate constrain growth  Different responses to temp. and precip. 

Peñuelas et al. 

(2011) 
Global 

Tree ring isotopic and 

growth data  

Enhanced water use from higher air 

CO2 didn't always lead to better growth 

in boreal regions 

Other factors restrained growth  
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Decreases in available climate moisture lead to droughts that lower the growth rate and 

raise mortality in forests (Table 2-2) (Bennett et al. 2015). Drought can be observed as an event, 

such as particular years of severely decreased precipitation, or as a general reduction of moisture 

in the area over time from changes in precipitation regimes (Dai 2011). Drought is possibly the 

single most influential factor in the growth of trees (Figure 2-2) (Allen et al. 2010b, Anderegg et 

al. 2013). Studies reporting increased tree mortality and/ or declines in growth often cite drought 

as the primary factor (Barber et al. 2000, Ciais et al. 2005, Zhao and Running 2010).  

 

 

Figure 2-2. Some of the many impacts of drought in a boreal forest stand. Drought can both 

affect the site by making it dryer and the trees by stressing them. There are four possible 

end results during a drought occurence that are described. 

Trees require more water under higher temperatures in order to meet evapotranspiration demands 

but are unable to meet these requirements under drought conditions (van Mantgem et al. 2009, 

Peng et al. 2011). What is even more concerning, in relation to the forest industry, is that drought 

has been shown to cause greater rates of mortality in larger diameter trees (Bennett et al. 2015).  

Drought

Tree impact

Lower growth 
rate and possible 

mortality

More susceptible 
to disease and 

insects

Site impact

Area more 
flammable and 
greater fire risk

Site suitability 
altered for 

certain species
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Table 2-2. Global and boreal evidence of tree mortality as a direct result of drought from climate change. 

Mortality Evidence 

Study 

Area Type Methods Results 

Allen et al. (2010a) Global Review Literature synthesis 
Increased tree mortality both globally and in 

boreal regions 

Allen et al. (2015) Global Review Literature synthesis 
Droughts have profound impact with high 

temp. though uncertain future in boreal 

Anderegg et al. (2013) 
Primarily 

NA 
Review Literature synthesis 

Increase tree mortality impacts ecosystem 

functions and services, post mortality 

recovery takes decades in boreal settings 

Barber et al. (2000) NW USA Article Tree ring sampling Depressed growth from drought 

(Ciais et al. 2005) Europe Article Eddy covariance 
Increase tree mortality and more profound 

drought effect with high temp. 

(Clark et al. 2016) USA Review Literature 
Drought intolerant boreal/ temperate species 

replaced by tolerant temperate  

 (Dai 2011) Global Review Drought indices 

Severe drought occurrences generally 

expected globally most boreal regions may 

have adequate precip.  

(Hember et al. 2017) NA Article 
PSP data, climate data and 

mortality modeling 

Water-stressed tree mortality not likely 

increasing with tree size 

(Houle et al. 2016) E. Canada Article 
Nutrient and precipitation 

sampling 

Decreased site quality from nutrient loss 

through drought 

(Michaelian et al. 2011) 
SW. 

Canada 
Article Monitoring plots Increase tree mortality from drought 

(Peng et al. 2011) 
Canadian 

Boreal 
Article Permanent sample plots Increase tree mortality from drought 

(Trenberth et al. 2013) Global Review 
Literature synthesis and 

comparison 

Disparity in conclusions drawn on the 

future of drought, data bias in northern 

areas  
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This is a contested point, however, with different methodologies yielding contrasting evidence 

concerning the susceptibility of trees to drought based on their height (Greenwood et al. 2017, 

Hember et al. 2017). In boreal forests, after properly accounting for the increased tree mortality 

probability with stand ageing (Luo and Chen 2011), Luo and Chen (2013) demonstrated that 

climate change-induced tree mortality is greater in young stands than in older stands. More 

importantly, even without reduced climate moisture availability, tree mortality increases with 

climate change in boreal and other biomes (Brienen et al. 2015, Luo and Chen 2015), which 

were attributable to: reduced tree longevity, increased competition and/ or direct heat stress 

associated with global warming (Allen et al. 2015). Other mechanisms, including hydraulic 

failure, carbon starvation, greater susceptibility to biotic disturbances, and increased losses of 

nutrients, could also contribute to widespread increases in tree mortality worldwide (Allen et al. 

2010b, Brienen et al. 2015, Rowland et al. 2015, Houle et al. 2016). Global warming coupled 

with continued drought occurrence could remove significant harvestable volumes from the 

boreal forest.  

While intergovernmental reports demonstrate the increasing severity of droughts in the 

world (IPCC 2014), the future of drought in the boreal forest is largely uncertain due to varying 

reports that differ in data sets and drought indices used, as well as the unpredictability of future 

events (Trenberth et al. 2013). For example, historically similar total amounts of precipitation 

may fall in two areas but with different frequencies and individual amounts (Dai 2012, Trenberth 

et al. 2013). Annual precipitation levels may be identical, but droughts may occur between rain 

events, or a higher proportion of precipitation may fall as snow. Though there are conflicting 

reports of future droughts, they are likely to become more frequent in certain areas due to 

increased temperatures and varying precipitation regimes, making forests more vulnerable (Dai 
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2012, Allen et al. 2015). It is important to note that although climate change may increase tree 

growth in some cases, studies that simultaneously examined growth and mortality in response to 

climate change have shown that aboveground biomass loss is far greater than biomass gain from 

increased growth, reducing net growth in both boreal and tropical forests (Brienen et al. 2015, 

Chen and Luo 2015a, Chen et al. 2016a). This indicates that, overall, climate change has reduced 

biomass or timber volume available for harvest. Ongoing climate change with more warming and 

drought might further reduce timber volumes available due to high mortality losses.  

Composition shifts 

In general, tree species respond to climate change differently (Drobyshev et al. 2013). As 

temperature regimes shift, northern latitudes may have unsuitable environments for certain 

species (Perie and de Blois 2016). In the event that regional average temperatures exceed 2 °C, 

deciduous broadleaf trees are expected to become more dominant in Russia, whereas conifers 

may regress (Schaphoff et al. 2016). In Canada, Picea mariana (black spruce) populations have 

declined due to increased temperatures, making northeastern locations more suitable for their 

growth because of greater precipitation (D’Orangeville et al. 2016, Girardin et al. 2016b). More 

frequent drought occurrences favour, or have lesser impacts, on drought tolerant species such as 

Pinus spp. (Anderegg et al. 2013, Chen and Luo 2015a, Luo and Chen 2015).  

The increased frequency of disturbance regimes may also impact species available for 

harvest. Those species that are less adapted to disturbance, such as later successional species, 

would likely be pushed out of heavily disturbed areas in favor of more tolerant or faster growing 

pioneer species (Chen et al. 2009, Johnstone et al. 2010). Among pioneer species, vegetatively 

reproducing Populus and Betula, are likely better at colonizing heavily disturbed sites (Chen et 

al. 2009, Ilisson and Chen 2009, Price et al. 2013), though deciduous trees do not thrive in areas 
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of severe drought (Michaelian et al. 2011). Moreover, in established forest stands without stand 

replacing disturbances, climate change has also shifted species composition towards a greater 

proportion of early successional species such as Pinus, Populus and Betula at the expense of 

Picea and Abies in western boreal forests of Canada (Searle and Chen 2017a).  

Implications to boreal forestry  

Climate change influences the quantity and quality of boreal forest timber supply in 

different ecological ways, particularly in the three ways discussed above. Biome shifts highlight 

a disparity between southern forest mortality and northern forest migration rates. Northern 

forests are not migrating fast enough to keep up with favorable climate zones (Aitken et al. 

2008), nor are they adapted to new southern boreal climate conditions (Allen and Breshears 

1998). This may lead to reductions in overall productive boreal forest growing area due to the 

mismatch between the two (Anderegg et al. 2013, Hanewinkel et al. 2013, Tchebakova et al. 

2016). Rapid climate change over the next century will likely intensify this problem (Donoghue 

and Edwards 2014). Reduced productive forest area has major implications to future timber 

supply and the forest industry. Since temperatures are higher along the southern edges of the 

boreal, where negative effects of climate change are most pronounced (D’Orangeville et al. 

2016), forestry operations may see significant alterations in harvestable volumes and species 

compositions (Hanewinkel et al. 2013). 

Ongoing climate change contributes to the increasing frequency and intensity of biotic 

and abiotic disturbances in the boreal forest, and are factors in decreasing harvestable timber 

volumes (van Lierop et al. 2015). This will occur as a combination of insect, pathogen (Weed et 

al. 2013) and fire disturbances (Flannigan et al. 2005), which are compounded by regional 

drought events (Allen et al. 2015, Millar and Stephenson 2015). Risk averse managers should 
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account for disturbances, particularly fire, when forecasting timber supply impacts especially in 

vulnerable areas (Savage et al. 2010). Additionally, by changing the age class structure of the 

forest through shortened disturbance intervals, forest managers will have a more difficult time 

supplying mills with mature, harvestable wood (NRTEE 2011, Gauthier et al. 2015b, McKenney 

et al. 2016).  

Growth rates at the stand level are expected to increase in areas not limited by decreased 

moisture availability because of rising CO2 levels, warmer temperatures with longer growing 

seasons (Boisvenue and Running 2006) , and being situated in northern locations (Kellomäki et 

al. 2008, Ge et al. 2011). Increased growth, however, does not necessarily result in improved 

timber volumes (Tian et al. 2016) if mortality losses are greater than growth gains (Chen and 

Luo 2015a, Chen et al. 2016a). Growth trends associated with climate change seem region and 

site specific, but generally with the historical limiting growth factor shifting from low 

temperature to low moisture levels in warmer northern areas (Berner et al. 2013, Charney et al. 

2016). Across the boreal biome, some areas have become more productive while others less so, 

collectively canceling each other out (Girardin et al. 2016a). Because increased tree mortality is 

projected to outpace increased growth, accompany no growth gain or even reduced growth (Chen 

and Luo 2015a, Chen et al. 2016a), the net effect of climate change on biomass and timber 

production is negative in established forests (Reyer et al. 2017). These results differ considerably 

from most published articles on the topic of climate change and timber supply (Table 2-3) (Tian 

et al. 2016) and reviews examining climate change impacts on boreal forest productivity 

(Kirilenko and Sedjo 2007, Price et al. 2013).  

The quality of timber supply is determined not only by age structure available for harvest 

(NRTEE 2011, Gauthier et al. 2015b), but also the availability of certain tree species. Coupled 
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with more frequent disturbances, an increased abundance of deciduous broadleaf species are 

reproducing at the expense of late-successional conifers (Ilisson and Chen 2009, Johnstone et al. 

2010, Chen and Taylor 2012). In addition, species compositions in established forests are 

shifting to lower abundances of late successional spruce and fir, and may continue to decrease 

further over time (Searle and Chen 2017a), and may continue to decrease further over time 

(Kellomäki et al. 2008). A greater proportion of deciduous species may benefit a portion of 

forest industry that utilizes aspen, and especially pine, however later-successional conifers are 

generally preferred in pulp/ paper and lumber. This shift in composition may allow for the 

development of new wood industry products if a company’s financial constraints are flexible 

enough to adapt to changing forest supply. Simultaneously, increased growth rates in softwood 

species actually decreases their mechanical properties, such as density and strength (Zhang 

1994), because the growth rings are spread farther apart with a lower proportion of latewood to 

early wood (Zhu et al. 2007). By reducing mechanical properties and skewing species 

composition towards less favorable options, wood quality and the value of the forest may be 

lessened through climate change.  

As the references in Table 2-3 show, conflicting understandings of climate change 

impacts to forestry exist. Many of the older studies show benefits to forest industry stemming 

from increased growth and forest expansion (Mendelsohn et al. 2000, Sohngen et al. 2001). In 

some cases, economic benefits are not realized because of the flood of timber into the market 

lowering prices (Perez-Garcia et al. 2002, Solberg et al. 2003) or because additional temperature 

increases caused productivity declines (Lutz et al. 2013). In the cases of negative forestry 

impacts, studies showing reductions in boreal forest area (Hanewinkel et al. 2013) or increases in 

forest disturbances (Tian et al. 2016, Reyer et al. 2017) result in lowered available timber. The 
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total economic implications of reduced timber are complex but a major factor is how dependent a 

region’s economy is on forestry (Ochuodho et al. 2012). 

The forest industry requires a consistent and predictable supply of timber in order to have 

viable operations. However, climate change will affect forestry operations in managed forest 

areas. This can include earlier ground thaw with a shorter winter harvest, and more frequent 

extreme weather (heat, rain and snowmelt duration) making fieldwork more dangerous 

(Rittenhouse and Rissman 2015). Changes in weather patterns impact forest companies through: 

inaccessibility to forestland from flooding, more frequent and higher costs on road repair, and 

damage to timber from snow, ice, or storms (DeWalle et al. 2003). These factors have important 

implications since winter harvesting of wetlands (spruce forests) may be shortened, while more 

frequent storms may impact the quality of the timber and structure of forest roads (Lempriere et 

al. 2008). This is an important scenario since one of the greatest costs in boreal forestry is the 

construction and maintenance of roads. Higher moisture conditions from warmer winters and 

continued snow melt can lead to increased export of mercury and organic matter from the site if 

driven on by vehicles, causing environmental damage (Keskitalo et al. 2016). As climate 

continues to change, management may also be hard pressed to meet sustainability and 

conservation objectives (Gauthier et al. 2014). To continue having a profitable and successful 

forest industry, adapting management to the impacts of climate change is essential.
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Table 2-3. Summary of timber modeling studies with reference to forestry implications and the effect on economic areas.  

Area Year Methods  Results 
Impact to 

Forestry 

Economic 

Implications 

Global1 2016 

Climate data from the MIT Integrated Global 

Systems Model in a DGVM. NPP and die 

back are then used in an updated Global 

Timber Model (GTM).  

Increases in global NPP in both temperate and 

tropical forests, though increases in dieback 

occur as well. Timber increases resulting in 

decreased global timber prices.   

Advantage Timber Prices 

Global2 2001 

Climate data from two climate intensity 

models used in BIOME3 for tree species 

distribution and productivity. GTM then 

maximizes NPV of forests from outputs 

Increases in NPP globally but with high 

variance in timber losses. Timber supply 

increases leads to lower timber prices. Most 

change occurs in inaccessible boreal regions.  

Advantage Timber Prices 

Global3 2002 

Used Terrestrial Ecosystem Model to derive 

CO2 data to modify timber supply in a GTM. 

This will then show market implications for 

fluctuations in timber resources. 

Timber increases lead to economic benefits with 

lower global timber prices. Market analysis 

found greater consumption of wood products 

despite some product surplus.  

Advantage 

Gross 

Domestic 

Product 

Europe4 2013 

Developed a biome shift model through 

regionalized GCMs and NFI. Cash flows are 

generated through timber growth simulator for 

use in LEV calculations identifying the change 

in European forest value. 

All climate scenarios resulted in less Norway 

spruce dominated land (migrated north) 

indicating a loss in land and timber value. New 

climate benefitted oak and pine. 

Disadvantage 

Land 

Expectation 

Value 

Canada5 2012 

Used a CGE model to assess the economic 

impact of climate change on Canadian forests. 

Computed results based on varying scenarios. 

Results generally show negative impacts to 

economy, though with high variances. Shows 

the importance of forestry adaptations to benefit 

the economy. 

Both 
Canadian 

Economy 
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Global6 2000 

Utilize a Global Impact Model (GIM) that 

combines future world scenarios, climate 

simulations, sectoral data, market sector 

response to climate change. Based on three 

scenarios from the IPCC 

Small increases in global GDP in year 2100 

under climate scenarios. Forestry market is 

expected to increase in wealth from increased 

forest productivity- primarily boreal. 

Advantage Global GDP 

Europe7 2003 

Used a regionalised, partial equilibrium model 

(EFI-GTM) to model profit maximizing in the 

European forest market. Analysed accelerated 

forest growth in a variety of scenarios for a 

variety of products. 

Increased wood production within Europe leads 

to lower prices and less importing in most 

scenarios. Lower wood prices compromise 

producer incomes. Logs and sawn wood are 

products most affected. 

Both Timber Prices 

Russia8 2013 

Studied the combined use of an ecological gap 

model and economic model in Russian forests 

as temperatures increase over the next 90 

years 

Found general increases in timber yields at 2oC 

warming but general decreases in timber yield 

and carbon sequestration at 4 oC depending on 

site location and species 

Both 
Carbon 

pricing  

1- Tian et al. 2-Sohngen et al. 3- Perez-Garcia et al. 4- Hanewinkel et al. 5 Ochuodo et al. 6-Mendelsohn et al. 7- Solberg et al. 8- Lutz et al. 
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Adaptations to the uncertainties of 21st century climate change  

 Management is vital to maintaining efficient biomass production in the boreal forest 

(Campioli et al. 2015) and this will only continue under climate change through adaptation. 

Adaptation is needed to continue receiving benefits from the environment, and the value of 

adaptations need to be expressed to society (Guo and Costello 2013). Adaptations can either be 

reactive or proactive; proactive modifications are most favorable as they reduce exposure to risk, 

though more often reactive adaptations are used in forestry practices (Gauthier et al. 2014). 

Intensive treatments through behavioral changes, or extensive treatments that apply discrete 

adaptations, are further strategies (Guo and Costello 2013). It is important to recognize that 

adaptive measures should be implemented based on context, not applying the same action to all 

situations (Gauthier et al. 2014). Several papers have proposed comprehensive recommendations 

for climate change adaptations (Park et al. 2014, Hisano et al. 2018). Here we focus on how 

adaptations may proceed in response to biome shifts, increased disturbances, reduced net growth 

and compositional shifts.  

Shifting biomes and climate envelopes present new challenges to forest industry; 

provenance trials have demonstrated that southern populations are declining while northern ones 

are benefiting from warmer climate (Thomson and Parker 2008, Pedlar and McKenney 2017). 

As climate is altered, plant species may form isolated populations (Pearson 2006), adapt to local 

conditions or hybridize to survive under new climate conditions (Aitken et al. 2008). Assisted 

migration, therefore, may be utilized as a way ensure species are growing under optimal climate 

conditions (Aitken et al. 2008, Gauthier et al. 2014). This means not only migrating current 

(local) seed sources north, but also bringing southern species/ seed sources northward to cope 

with dryer and warmer conditions (Thomson and Parker 2008, Keskitalo et al. 2016). To ensure 
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that currently harvested and planted forests will be sustainably productive again in the future, 

they must be managed to succeed in a changing climate (Lempriere et al. 2008, Park et al. 2014). 

However, we do not yet fully know the implications of moving seed sources or southern species 

into northern locations.  

Every year, large areas of forest land are impacted by forest disturbances (van Lierop et 

al. 2015), which affects the harvestable volumes from the region. In order to protect valuable 

mature stands, certain measures can be taken in susceptible regions; namely the management of 

fires and pests (NRTEE 2011). This may be accomplished through fire suppression and pesticide 

applications; though in the case of fire, future costs may increase drastically and impede fire 

management (Hope et al. 2016). When affected by a disturbance, salvage harvesting is a method 

sometimes employed but can lead to complications in the milling process (Lempriere et al. 

2008), as well as nutrient removal with implications for long-term site productivity (Hume et al. 

2018). Although, salvage harvesting can recover some of the lost timber (Seidl et al. 2008, Leduc 

et al. 2015), it is always better to protect areas proactively (before salvaging is necessary), to 

avoid negative economic impacts (NRTEE 2011, Ochuodho et al. 2012). 

In monoculture conifer stands, hardwoods could be added to the composition to increase 

functional diversity, possibly helping to mitigate the impacts of climate change (Hisano et al. 

2018) and improve productivity (Liang et al. 2016). Though not necessarily increasing 

harvestable volumes, mixed-woods do provide lower risk both financially and industrially, since 

they are more resistant to abiotic and biotic disturbances and are better able to recuperate 

afterwards (Knoke et al. 2007, Zhang et al. 2012, Hisano et al. 2018). Also, designing forests 

with greater adaptive capacity will delay the negative aspects of climate change (Park et al. 

2014). As a result of altered species compositions, manufacturers may subsequently have to 
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adapt new wood products to changing supply demographics, though at a greater expense 

(Lempriere et al. 2008). 

Summary and future directions 

Climate change affects ecological processes at different spatial scales and impacts timber 

supply in boreal forests. First, the area of productive boreal forest may decrease as northern 

migration rates are slower than the speed at which southern limits retreat from unfavorable 

climate conditions. Second, forest disturbances have increased in recent decades and are 

anticipated to increase in severity and/ or frequency, leading to younger forest age structures and 

increased dominance of early successional tree species over late-successional species. Third, tree 

growth in established forests has increased in areas where water availability is not limiting as the 

result of warmer temperatures, longer growing seasons and CO2 fertilization. However, 

widespread increases in tree mortality have occurred over the last several decades due to direct 

heat stress, drought and increased disturbances. Increased mortality has occurred at a greater rate 

than growth increases, or has accompanied reduced growth rates, leading to decreased net 

growth and net volumes. Moreover, late successional tree species are more vulnerable to climate 

than early successional species in established forests, leading to the increased dominance of early 

successional conifers and broadleaves. These trends are expected to continue as warming and 

extreme weather conditions are anticipated to be amplified in the 21st century. 

Changes in timber quantity and quality have profound impacts on the forest industry. 

First, lower net harvestable volumes will likely be available since climate change induced 

mortality losses are greater than growth gains. Second, product manufacturing will need to 

accommodate new supply demographics, though it is costly to alter processing facilities; despite 

this, new unforeseen opportunities may arise. Third, locating sufficient mature timber may 
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become more difficult as increased disturbances skew the forest age structure to younger levels.  

Lastly, the overall quality of extracted wood is likely to decline since there will be greater impact 

from disturbances and greater proportion of less desirable species. However, once again, this 

may offer a new range of opportunities for specific niches in product manufacturing. 

Additionally, even if there are fewer disturbance events at a given site, accelerated growth rates 

can lead to lower quality softwood timber because of decreased mechanical wood properties.  

Therefore, adaptations in the forestry sector are needed to keep the industry viable and 

sustainable during this time of change. Certain adaptations are more applicable in areas over 

others; thus, careful planning, and in some cases new policy, is necessary. Management 

adaptations include: assisted migration into favorable growing areas, fire and pest management 

to protect mature stands, and improving resilience and adaptive capacity to disturbances by 

enhancing forest diversity. Innovation and research will be necessary to better understand the full 

scope of their consequences and to improve our understanding of future timber supply. 

Continued research is required to properly assess the future impacts of climate change; 

there is still much uncertainty. To conclude, we propose four areas of future research. 

1) It is known that boreal forests are shifting northward, yet this may differ regionally 

depending on climate moisture availability (Fei et al. 2017). More knowledge of species specific 

responses is required; the continued study of provenance trials could provide a wealth of 

information (Pukkala 2017). Further, more definitive rates of decline in southern boreal limits 

and rates of expansion in northern limits are needed since there exist many conflicting estimates 

(Chen et al. 2011). Better understanding this will provide information on the productive forest 

area available to industry in the future, which has been suggested to be decreasing (Hanewinkel 
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et al. 2013). Repeatedly measured satellite imagery may likely assist in accurately determining 

forest migration rates (Hofgaard et al. 2013).  

2) Boreal forest wildfires are expected to increase in the future (Flannigan et al. 2009) but 

can differ considerably among boreal forest regions (Girardin et al. 2013). We need to better 

understand how younger, fire-origin forests feedback into wildfire regimes (Boulanger et al. 

2017a). It is also necessary to improve our understanding of the changing relative importance of 

different disturbance types under on-going climate change, and its spatial variations (Logan et al. 

2003, Hansen et al. 2013). Our knowledge is also limited concerning the development of future 

forest diseases; it is unclear what role they will play in conjunction with forest dynamics and 

other disturbances. 

3) Efforts have been made to study the impacts of climate change on net forest biomass 

accumulation in western Canadian boreal forests (Chen and Luo 2015a, Chen et al. 2016a). 

However, there has been little research done on this topic in other regions. As well, there is no 

clear understanding of how large scale mortality will affect the succession of tree species 

compositions (Anderegg et al. 2013). Compositional shifts of tree species are important to forest 

industry. While observational (Searle and Chen 2017a) and simulation (Shuman et al. 2015) 

studies have shown that climate change induces compositional shifts to early successional tree 

species in western Canada and Russia, it remains unclear whether this trend is pan-boreal.  

4) It is important to determine the economic and societal consequences of changes in the 

boreal forest. Intensively managed areas, providing economic benefits, may respond differently 

to climate change than unmanaged forests, prompting continued study. This is especially 

necessary for southern areas of the boreal forest as this is where most of the population and 

industry resides. As well, previous results based on economic and timber simulation studies 
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(Sohngen et al. 2001, Perez-Garcia et al. 2002) generally differ from the empirical evidence that 

we have synthesized. There is a need to reconcile this disparity in order to clearly inform policy 

makers and forest managers.   
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CHAPTER THREE: SUSTAINABLE BIOMASS HARVESTS ARE 

COMPROMISED BY CLIMATE CHANGE IN THREE BOREAL REGIONS  

 

Abstract 

 Climate change poses serious risk to sustainable, long term wood supply. Accurately 

projecting future wood supply is a vital task when planning forestry operations. However, few 

studies include the cumulative and interacting impacts of climate change on forest productivity 

and disturbances; fewer still include drought impacts when forecasting timber. We modeled how 

disturbance- and drought-induced tree mortality affects wood supply in three boreal forest 

regions over 200 years. Using two harvesting intensities, we show that sustainable long-term 

harvesting is more likely achieved with lower intensities. Harvests are complicated by declines in 

overall aboveground biomass from increases in drought and fire-induced tree mortality without 

being compensated by increased tree growth rates. Furthermore, harvests are incredibly reduced 

under severe climate forcings despite a lower harvesting intensity. To continue having 

sustainable forest management, our results imply a need to adapt operations and implement 

climate mitigation strategies.  

Keywords: LANDIS-ii, drought-induced mortality, forest disturbances, species compositions, 

sustainable operations, harvesting intensity, forest management 
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Introduction 

 Global change, caused by the continued release of anthropogenic greenhouse gasses 

(IPCC 2014), has been impacting the growth and mortality of tree species (Allen et al. 2015). 

The effects of global change on forests are expected to impact forestry operations in many ways; 

notably through changes in wood supply (Kirilenko and Sedjo 2007, Gauthier et al. 2015b). 

Wood supply is strongly influenced by changes in forest growth, tree species composition, and 

forest disturbances (Kirilenko and Sedjo 2007). There has been an important discussion for 

communities within the boreal forest whose economies rely largely on the forestry sector 

(Gauthier et al. 2015a). Whether the boreal forest industry continues to have a stable supply of 

merchantable timber in the near and long- term remains an important question (Brecka et al. 

2018). 

Perhaps the most important aspect of changing climate is the influence that future 

moisture conditions will have on forest dynamics (Berner et al. 2013, Girardin et al. 2016a). In 

addition to forest productivity losses (Ciais et al. 2005), moisture deficits lower site suitability 

(D’Orangeville et al. 2016), increase susceptibility to insects and disease (Jactel et al. 2012), and 

shorten fire frequency (Gauthier et al. 2015b). Drying has already led to regional increases in 

tree mortality around the world (Allen et al. 2015) and within the boreal forest specifically (Peng 

et al. 2011). However, boreal forests are affected differently based on species composition 

(Drobyshev et al. 2013, Chen and Luo 2015b) and stand age (Chen et al. 2016b). Importantly, 

early successional species are increasing under global change in relation to later successional 

conifers (Johnstone et al. 2010, Searle and Chen 2017b), while temperate species have been 

found to thrive compared to boreal species (Reich et al. 2015). Alternatively, under favorable 

conditions, growth and biomass gains may occur, though benefits are highly dependent on 
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moisture availability (Girardin et al. 2016a). Even in areas where growth has increased, biomass 

loss from increased tree mortality has led to a net decrease of boreal biomass (Girardin et al. 

2012, Chen and Luo 2015b). A trend in declining overall boreal standing biomass poses 

considerable ramifications to forestry.  

Despite these adverse ecological consequences of climate change, wood supply modeling 

studies suggest general increases in future boreal timber due to warmer temperatures and longer 

growing seasons (Kellomäki et al. 2008, Lutz et al. 2013). However, many of these studies (both 

global and boreal) do not explicitly incorporate forest disturbances or dynamic processes that are 

affected by climate change within their models (Perez‐Garcia et al. 1997, Sohngen et al. 2001, 

McKenney et al. 2016, Tian et al. 2016). Though sometimes difficult to quantify their full 

impacts, it is necessary to simulate disturbances (Reyer et al. 2017) as they are strongly linked to 

forest landscapes and wood supply, particularly in the boreal biome (Gauthier et al. 2015a). 

Contrary to previous studies, including dynamic disturbances may predict loss of available 

timber as a result of drought induced mortality (Peng et al. 2011), reduction in productivity from 

heat and moisture stress (Hogg et al. 2017), and disturbance related mortality (Gauthier et al. 

2015b, Boucher et al. 2018). Currently, no studies have assessed the interactive and cumulative 

impacts of climate-induced changes on these processes on boreal Canadian wood supply. 

The impact of climate change on boreal wood supply, with specific concern for drought 

and disturbance related tree mortality, is an area that demands continued study (NRTEE 2011, 

McKenney et al. 2016). To do this, we simulated dynamic stand- and landscape-scale processes 

from 2000-2200 in three Canadian boreal forest regions. The three regions selected represent an 

east-west declining moisture gradient allowing us to directly model how increasing drought, 

along with fire and insects, will impact harvestable biomass (Mg/ha) across the boreal forest of 
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Canada. Our landscape simulation combined dynamic drought mortality with a previously 

published LANDIS-ii (Landscape Disturbance and Succession) model (Boulanger et al. 2018). 

We expect that as anthropogenic climate forcing increases, harvestable biomass in the boreal 

forest will decrease because of cumulated disturbances, resulting in lowered harvests and 

reduced economic viability. Specifically, we expect that: (i) important industrial boreal species 

(Picea spp., Pinus banksiana, and Populus tremuloides) would decline across all regions; and, 

(ii) biomass loss from tree mortality would increase over time, from east to west, and with 

greater climate pressures (e.g., declining water availability), reducing future harvestable biomass.   

Methodology 

Study areas 

 All three study areas are located within the boreal forest of Canada. We selected one 

location of approximately 25,000 km2 from each of the following ecozones (Ecological 

Stratification Working Group 1996): Boreal Plains (BP), Boreal Shield West (BSW), and Boreal 

Shield East (BSE) (Boulanger et al. 2016) (Figure 3-1). These represent an east-west moisture 

gradient that is likely to become even more obvious as climate change alters future precipitation 

regimes (IPCC 2014). These boreal forest settings are comprised of softwood (Pinus banksiana, 

Pinus resinosa, Pinus strobus, Picea mariana, Picea glauca, and Abies balsamea) and hardwood 

(Populus tremuloides, Populus balsamifera and Betula papyrifera) tree species. Some temperate 

species are found within BSE but are not the focus of this study, though they were included in 

simulations. We initialized simulations with current forest composition and age structure 

estimated from National Forest Inventory forest cover maps (Beaudoin et al. 2014). We used 

simulations to project the expected future forest conditions and estimated their above ground 

biomass fluctuations for analysis. Permanent sample plots provide data for species-specific 
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growth, yield and mortality curves within the study areas. Forest-level data and stand 

characteristics for describing forest growth and species composition were utilized from previous 

studies (Boulanger et al. 2016, Boulanger et al. 2017b).  Initial biomass estimations were updated 

from methods used in Tremblay et al. (2018). 

 
Fig. 3-1. Study locations were chosen using a Climate Moisture Index (Hogg 1997) map of 

Canada. We selected three sites, Saskatchewan (BP), Ontario (BSW), and Quebec (BSE) because 

of differing levels of projected future moisture conditions (source: NRCAN). 

Climate conditions 

 Monthly time series of climate station observations for the period (2000 – 2010) were 

spatially interpolated from data of McKenney et al. (2013). Future climate scenarios were 
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constructed by merging projections of future monthly changes derived from the Canadian Earth 

System Model version 2 (CanESM2, e.g., (Arora and Boer 2010)), with 30-year monthly climate 

normals for 1961–1990, interpolated from the McKenney et al. (2013) station records. CanESM2 

results were downloaded from the World Climate Research Program (WCRP) Climate Model 

Intercomparison Project Phase 5 (CMIP5) archive for each of three different radiative forcing 

scenarios, known as Representative Concentration Pathways (RCP, (Van Vuuren et al. 2011)), 

namely RCP 2.6, RCP 4.5 and RCP 8.5. These three scenarios (Fig S3-3) were included for 

analysis along with a historic (baseline) scenario showing current climate that was used for 

comparison.  

Simulating the ecological impacts of climate change   

 Simulation of forecasted aboveground biomass and species compositions was done using 

LANDIS-ii (Scheller et al. 2007), derived from the original LANDIS model (Mladenoff 2004). 

LANDIS- ii has a core model with optional extensions that analyze specific forest attributes 

(Scheller et al. 2007). It is a rasterized landscape simulation model that applies various 

ecological processes to ecoregions that are made of individual cells (Scheller and Domingo 

2012). Cells are filled by tree species of certain age cohorts. The primary processes involved are 

succession, and forest disturbances (fire, wind, insects, drought), which are built on ecological 

knowledge (Scheller et al. 2007). There are spatial interactions at the landscape level (dispersal, 

harvesting, natural disturbances, etc.) that scale up from cell level, aspatial processes (species 

establishment, cohort growth etc.) (Scheller and Mladenoff 2004). This is a flexible modeling 

platform, offering the user a variety of options when defining and transitioning the forest over 

time.  It is used for landscape simulation projects to aid ecologists and foresters in understanding 

the impacts of forest disturbances (Sturtevant et al. 2009), harvesting operations (Steenberg et al. 
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2013) and climate change (Scheller and Mladenoff 2005, Steenberg et al. 2011). For full 

methodologies on the simulation of ecological processes see Boulanger et al. (2017b).  

We initialized simulations with current forest composition and age structure estimated 

from National Forest Inventory forest cover maps (Beaudoin et al. 2014). We used simulations to 

project the expected future forest conditions and estimated their above ground biomass 

fluctuations for analysis. Permanent sample plots provide data for species-specific growth, yield 

and mortality curves within each region. Forest-level data and stand characteristics for describing 

forest growth and species composition were utilized from previous studies (Boulanger et al. 

2016, Boulanger et al. 2017b).  Initial biomass estimations were updated from methods used in 

Tremblay et al. (2018). 

We used the climate-sensitive forest patch model PICUS 1.5 (Lexer and Hönninger 2001) 

to simulate climate change impacts on growth and establishment in LANDIS (Boulanger et al. 

2017b). Mono-specific stands of each tree species on all ecoregions were simulated with PICUS 

starting from bare-ground, using parameters described in Boulanger et al. (2017b). Monthly time 

series of climate data for each time period (2000-2010, 2011-2040, 2041-2070, 2071-2200) and 

forcing scenario (baseline, RCP 2.6, RCP 4.5, RCP 8.5) were used to drive each simulation for 

300 years. Species-, ecoregion- and climate-specific dynamic inputs (species establishment 

probabilities, maximum above ground species biomass, and annual species NPP) were then 

directly derived from these simulations. Full details on model parameterization and 

implementation are described in previous studies (Boulanger et al. 2017b, Taylor et al. 2017). 

Dynamic drought-induced mortality  

We sought to predict species-level tree mortality rates as climate moisture changes temporally 

and spatially. We did this through a linear mixed effects model using Climate Moisture Index 
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(CMI) to evaluate tree mortality in repeatedly measured permanent sample plots (PSP); a similar 

process to those done in previous studies (Peng et al. 2011, Luo and Chen 2013). CMI shows the 

difference between expected precipitation (cm) and potential evapotranspiration demand (cm); 

negative results show reduced available moisture (Wang et al. 2014). Historical monthly CMI 

values were generated for each PSP using BIOSIM-10. BioSIM projected daily maximum and 

minimum temperatures (C), precipitation (mm), mean daily relative humidity and wind speed 

by matching georeferenced sources of weather data (weather station with daily weather data) to 

spatially georeferenced points, adjusting the weather data for differences in latitude, longitude, 

and elevation between the source of weather data and each cell location using spatial regressions.  

Monthly values were then summed to an annual level (ACMI) and applied to our model. 

The baseline relationship was produced from historical PSP tree data and plot level ACMI 

values. First, we determined the annual plot-level, species mortality rates: 

      𝑀 = 1 − (1 −
𝑁𝐷

𝑁𝑆
)
1

𝐿        [1] 

where M is the annual mortality rate, ND is the number of dead stems over the census period in 

each plot, NS is the number of total stems over the census period in each plot, and L is total 

length of time the plots were censused. We then estimated the effect of ACMI on stand level 

annual mortality rates for each species according to the following linear mixed effects model: 

𝑙𝑜𝑔𝑖𝑡(𝑀𝑖𝑗) = 𝛽0 + 𝛽1 × 𝐴𝐶𝑀𝐼𝑖 + 𝛽2 ×𝑀𝐵𝐴𝑖 + 𝜋𝑗     [2] 

M is the mortality rate of tree species at the ith census for the jth plot. MBA is the mean basal 

area for each tree, found by subtracting the previous census year’s basal area from the current 

census’ basal area. ACMI is the value calculated annually from 2010-2100 for each climate 
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change scenario. Our initial model included ACMI, MBA, and MSA (mean stand age), however 

lower AIC values caused us to select the reduced model (equation 2).  

In order to project future drought-related mortality, monthly CMI values for each LANDIS-II 

ecoregion were generated  from the years 2010-2100 (in 30 year segments) for each climate 

change scenario through BioSIM; projections were run with 45 replications (Régnière et al. 

2014). This was done separately for all regions; three RCP scenarios and a baseline- no climate 

change projection (using climate normals from 1981-2010). Mortality rates for each tree species 

were then predicted using coefficient 𝛽1 from equation 2 and projected ACMI values from 

BioSIM-10. All analyses and predictions were run in R statistical software version 3.4.4 and the 

lme4 package (Bates et al. 2015, R Core Team 2017). Annual drought-related mortality was 

averaged over the 45 replicates and then summed over ten years in accordance with simulation 

time steps. Drought mortality levels were implemented accordingly in LANDIS simulations as a 

background mortality at each time step for each tree species, ecoregion and climate scenario.  

Disturbances 

Fire is an ongoing disturbance that is present in all three regions and important in boreal 

forest dynamics (Gauthier et al. 2015a) and was simulated using the LANDIS-II Base Fire 

extension (He and Mladenoff 1999). Fire regime data (annual area burned, fire occurrence, and 

mean fire size) were summarized into “fire regions” corresponding to the intersection of the 

study region and the Canadian Homogeneous Fire Regime (HFR) zones of Boulanger et al. 

(2014). As in Boulanger et al. (2016), baseline and future fire regime parameters within each fire 

region were calibrated according to models developed by Boulanger et al. (2014) and further 

updated for different RCP scenarios (Gauthier et al. 2015b).  
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Our LANDIS simulation accounts for the periodic outbreak of spruce budworm (SBW) 

outbreaks, which are known to cause some of the most widespread forest damage in the eastern 

North America’s boreal forest. SBW outbreaks were simulated only in the BSW and BSE 

regions as it is not important in western (BP) Canada. Host tree species for SBW were, from 

most to least vulnerable, balsam fir (Abies balsamea), and white (Picea glauca), red (P. rubens) 

and black (P. mariana) spruce. Outbreaks were simulated as probabilistic events at the grid cell 

level with probabilities being a function of site and neighborhood resource dominance (e.g., host 

abundance within a 1-km radius) as well as regional outbreak status. Outbreak impacts (tree 

mortality) are contingent on these probabilities as well as on host species- and age-specific 

susceptibility. Parameters used in this study were calibrated and validated using various sources 

for the mixedwood forest (e.g., (Hennigar et al. 2008)). Regional outbreaks were calibrated at the 

highest severity level possible using the BDA extension (Sturtevant et al. 2004) and were set to 

last, at most, one time step (10 years) and to occur every 40 years in accordance with typical 

observed regional recurrence cycles (Boulanger et al. 2012). Specific parameterizations for both 

fire and insects are described in Boulanger et al. (2016). 

 Previous simulations (Boulanger et al. 2016) using this calibrated LANDIS-ii model had 

specific harvesting prescriptions which followed economic priorities. We built on these 

prescriptions to assess different levels of harvesting intensities. We used three levels of area-

based harvesting; no harvest, 4% and 8% of the area per time step. This was done to determine if 

climate change effects on forest dynamics would influence the sustainability of harvesting 

operations meeting their goals. It would also show if there is enough harvest eligible land 

throughout the study period. 
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Study framework  

LANDIS simulations were run according to a full factorial design with climate scenarios and 

harvest prescriptions as factors. The four climate scenarios were baseline, RCP 2.6, RCP 4.5 and 

RCP 8.5 while there were three levels of harvest prescriptions (No harvest, 4%, 8%). Scenarios 

were replicated 5 times in order to assess convergence of results for a total of 60 simulations (4 

climate scenarios x 3 harvesting strategies x 5 replicates) per region. All simulations were run for 

200 years at 10-yr time steps starting in year 2000. Climate sensitive parameters (fire regime; 

growth [maxANPP, maxAGB and SEP]) were allowed to change in 2010, 2040, and 2070 

according to the forcing scenario and were held fixed thereafter for the 2070 – 2200 period.  

Parameters calibrated for the baseline climate were used for the 2000-2010 period for all 

simulations as well as for the spin-up phase, when initializing tree species biomass. To illustrate 

the temporal trends of available standing timber between the three study regions and across three 

climate change scenarios, we graphed the mean response from all five simulations. Trends were 

assessed for total AGB, species-specific AGB, total drought-related biomass mortality as well as 

total harvested area. We focused results on the following commercially important species: Abies 

balsamea (Bf), Betula papyrifera (Bw), Pinus banksiana (Pj), Populus tremuloides (Pt), Picea 

mariana (Sb), and Picea glauca (Sw). All others were deemed either commercially unimportant 

in the boreal forest or are temperate forest species; many of the additional species found in the 

BSE region are considered temperate species. 

Results 

Total biomass fluctuations   

Total regional aboveground biomass (AGB) strongly declines with increasing climate forcing 

(Fig. 3-2). Changes in AGB were compared between study regions, climate scenarios and over 
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the 200-year simulation time.  Declines in AGB are more extreme in the RCP 8.5 scenario, 

especially for the BSW and BP regions. Major changes during the RCP 8.5 scenario take place 

around 2050 for all regions due to a combination of increased fire occurrence (Fig. S3-5) and 

increasing drought related mortality (Fig. 3-4). Among three regions, the temporal changes in 

AGB in the BSE were less dramatic than those in the other two regions. The BSE is younger 

than the other two regions (Fig. S3-1), and experiences biomass accumulation until 

approximately 2050. AGB is relatively stable in the BSE across the entire study period for the 

baseline, but decline with increasing climate forcing, despite lower declines than the other two 

regions.  

Fig. 3-2. Average AGB (Mg ha-1) from the total area in each region shown through the four 

climate scenarios over 200 years.  

Species biomass changes  

Most boreal conifer species decline considerably during our study period and with 

increasing climate forcing, though temperate broadleaf species increase (Fig. 3-3 and Fig. S3-

3a). Throughout the three study regions, broadleaf species constitute the majority of future total 
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biomass. This is especially true for: Populus balsamifera (Pb) in the BP, Betula papyrifera (Bw) 

in the BP both for RCP 4.5 and 8.5 after 2100, Populus tremuloides (Pt) in the BSW, and Acer 

rubra (Mr), Acer saccharum (Ms), and Pt in the BSE (Fig S3-3b). Baseline scenarios tend to 

show increases in later successional species over time, such as Picea spp. and Abies balsamea 

(Bf). However, these species decline with increasing climate forcings. Picea mariana (Sb) seems 

to perform well in most regions and scenarios, though this does not hold true throughout the 

BSW after 2100. Both Sb and Picea glauca (Sw), along with Abies balsamea (Bf), do not 

decline drastically in BSE except under the RCP 8.5 forcing. There are noticeable fluctuations in 

Bf biomass over time in the BSE and in the baseline/RCP 2.6 scenarios of the BSW (absent in 

the BP).  Pinus banksiana (Pj) begins as the most abundant conifer throughout the simulations, 

especially in the BSW where it declines considerably. Losses of Pj are much more pronounced 

since it starts with such high initial biomass, much like Bf in the BSE and Pt in the BP. However, 

Pt still makes up a substantial portion of the regional biomass (top row Fig S3-3b) whereas Pj 

declines considerably in relative biomass in the BSW (middle row Fig. S3-3b). All species 

decline considerably under the RCP 8.5 forcing showing a substantial reduction in commercial 

boreal tree species. Despite this, broadleaf species still have greater relative abundances than 

conifers in general (Fig. S3-3b). 
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Fig. 3-3. Changes in individual species AGB (Mg ha-1) with harvest, drought, fires and insect disturbances. Specific commercially 

important boreal species are shown for easier identification and interpretation while temperate and non-commercial species are 

removed (full figure is shown in Fig S3-3a). Note: the y-axis is not normalized between regions and dashed indicates broadleaf 

species.
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Tree mortality and growth 

 Drought induced tree mortality is greatest in the most westerly study region, across all 

climate forcing scenarios. Annual trends differ between species, regions and climate change 

scenarios (Fig. 3-4). Drought is more impactful in western Canada as there are greater losses 

observed there over the study period, e.g., three times as much in the BP compared with the 

BSW and BSE. Surprisingly, total drought mortality declines under RCP 8.5 in both the BP and 

BSW. There are also much greater fluctuations in the amount lost between each climate scenario 

in the BP region compared with the relatively consistent losses in the BSW and BSE. 

Interestingly, the BSE has slightly greater drought-related losses than the BSW site, even though 

there is generally greater regional precipitation in eastern Canada. These losses are very similar 

to the biomass replaced through annual net primary production (NPP) and may therefore be 

balanced (Fig. 3-5). NPP is rather consistent between climate forcings except in RCP 8.5 where a 

negative trend occurs. For BP and BSE, NPP slightly increases after 2100 within this climate 

forcing.  

 

Fig. 3-4. Annual biomass losses to drought-related mortality (Mg ha-1 year-1) in the 3 Canadian 

regions across 4 climate scenarios. 
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Fig. 3-5. NPP (Mg ha-1 year-1) trends across the three regions and 4 climate forcings.  

Harvesting scenarios 

Biomass harvested is strongly reduced with increased climate forcing, especially for BP 

and BSW. To see the impact of fire, drought and insects on the trends in boreal forest harvesting, 

climate change scenario harvests are compared to baseline levels (Fig. 3-6). When trend lines 

appear over 1.00, climate change scenarios are providing enough areas with mature timber to be 

harvested and exceeds baseline levels. 

Generally, harvests are extremely low relative to their respective baseline harvests when 

considering the highest harvesting scenario (Fig. 3-6b). Harvests are least impacted in BSE and 

BP (RCP 2.6 and 4.5) whereas harvest levels are considerably lower in BSW under both RCP 4.5 

and 8.5. Harvested biomass strongly declines under the RCP 8.5 scenario in all study sites, 

especially in BSW where area harvested is reduced by more than 75%. In total, losses of harvest 

could be around 25% less than expected for all study areas.  

The lower harvesting intensity is generally able to maintain consistent harvesting levels, 

especially in BSW and BSE. When looking at the 4% harvesting prescription, the relative harvest 
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levels are slightly higher than the 8% (Fig. 3-6a). Biomass harvested in RCP 2.5 and 4.5 are 

much closer to the baseline scenario under these new conditions. In BP however, harvests are 

noticeably lower than the other areas and quite similar to Fig. 6b. In this case, harvesting 4% of 

the area per decade may still be too great a target under these forcing scenarios. Biomass 

harvesting improves in BSW as both RCP 2.6 and 4.5 surpass baseline levels. There doesn’t 

appear to be any difference between the RCP 8.5 harvests from Fig. 3-6a and Fig. 3-6b. This 

probably means that, under either harvesting intensity, this climate forcing is so extreme that 

there just is not enough harvestable biomass to meet the criteria for harvesting eligibility 

requirements (minimum stand age). 

  

Fig. 3-6. Harvested biomass in each climate change-scenario relative to baseline levels (1.00); 

model shows how harvesting is impacted by fire, drought and insects. Top graphs (a) show the 

4% area removed scenario compared to 8% removal scenario (b) on the bottom. 
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 Discussion 

Under increasing anthropogenic climate forcing, our simulations project a steady decline 

of timber resources that is consistent between regions, climate scenarios and across most boreal 

commercial tree species. This coincides with general increases in tree mortality (through fire or 

drought) which out matches future NPP, severely influencing overall harvest levels. Further, our 

simulations show that most major changes occur prior to the year 2100 (~2050-2075), suggesting 

there may be considerable risk in the near term sustainable management of these boreal forest 

regions. 

Regional biomass trends 

The more eastern BSE region is generally least impacted compared to either the BSW or 

BP, though which region is most negatively impacted is unclear. Indeed, the largest influence on 

forest resources in the BSW appears to be from fire, whereas drought seems most impactful in 

the BP region. Both fire (Gauthier et al. 2015b, Daniel et al. 2017) and drought-related boreal 

tree mortality (Michaelian et al. 2011, Peng et al. 2011, Hogg et al. 2017) have the potential to 

impact boreal wood supply considerably. Climate conditions under the RCP 8.5 forcing are most 

detrimental to biomass decline in all regions, as expected from previous studies (Charney et al. 

2016, Dyderski et al. 2017, Aubin et al. 2018). This is a result of both increased mortality rates 

removing biomass from the landscape and increasingly frequent disturbances lowering the 

average age of these forests affecting their harvesting potential (Fig. S4). Younger forests 

encompass smaller trees which contribute less to the overall biomass pool. Ramifications for 

industry are potentially alarming, as finding consistent, mature timber for manufacturing may 

prove difficult in these regions (NRTEE 2011). 
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Species-specific changes 

Nearly all species were negatively affected in our simulations though there are 

considerable differences in magnitude between climate forcings. Broadleaf species tend to be 

less negatively affected than conifers over time throughout each region as seen by their relative 

abundances. This agrees with observational studies showing that pioneer species like Populus 

tremuloides have been increasing in relative abundance over time (Johnstone et al. 2010, Searle 

and Chen 2017b). Increases in the relative abundance of warm-adapted temperate hardwoods 

(e.g., sugar and red maples) at the expense of boreal conifers in BSE are notable since it may 

show they have a competitive advantage with global change. These shifts in relative abundances 

have been observed (Fisichelli et al. 2014) and projected (Evans and Brown 2017, Taylor et al. 

2017) for other areas along North America’s southern boreal regions. Overall, these shifts 

towards greater abundance of deciduous broadleaves suggests greater prevalence of mixed wood 

forests or a northern shift in the boreal-temperate zone with ongoing climate change (Fisichelli et 

al. 2014, Evans and Brown 2017). This trend has serious economic implications since conifers 

are generally preferred in industry; decreases in conifer abundance will influence the type and 

quality of wood products that companies can manufacture (Boulanger et al. 2017a, Brecka et al. 

2018). If regionally unsuitable for specific wood products, a greater presence of mixed wood 

forests or broadleaf trees may necessitate intensive silvicultural practices to provide a secure 

supply of desirable species. 

Mortality and Growth Trends 

Drought mortality occurs more prominently in the BP than the other regions. Climate 

change impacts on stand scale drivers (growth rates, species establishment etc.) were previously 

found to be most influential to biomass dynamics in the BP region, confirming that drought may 



 

64 
 

be more important here (Boulanger et al. 2018). However, total biomass killed by drought 

declines under the RCP 8.5 forcing. Though odd, this is likely the result of much lower biomass 

left for drought mortality than under weaker climate forcings, since all disturbances are occurring 

simultaneously (Lucash et al. 2018). It should be noted that drought events in our simulation are 

not stand-replacing disturbances; nonetheless drought-affected stands offer less volume for 

harvest than those unaffected. With ongoing mortality taking place throughout the simulations, 

regional NPP isn’t great enough to compensate for increased biomass losses from all disturbance 

interactions. Productivity declines considerably in the most extreme climate forcing and so losses 

are emphasized since disturbance events are greater under this scenario. Biomass gains are then 

outweighed by losses from mortality leading to the overall decline in AGB and posing risk to 

sustainable boreal forestry operations.  

Implications to forestry 

Relative harvest levels decline in both harvesting scenarios, but they are generally much 

less severe when using a lower harvesting intensity. Of particular interest is the lower harvesting 

intensity in the BSW region; there are years in both RCP 2.6 and 4.5 where harvesting levels 

improve enough to remain similar to baseline levels. This likely means that growth rates are 

improving stand biomass levels while mortality rates are not great enough to compromise 

harvesting success. Lowering long term harvest targets under this scenario may be enough to 

provide timber for future operations, despite ongoing disturbance events. A buffer stock of 

timber may alleviate the stress of unplanned tree mortality events (Raulier et al. 2014). While 

this is not the case in BP, where harvesting declines in a similar fashion regardless of harvesting 

intensity, BSE does see an improvement in future biomass harvested. In the context of climate 

change mitigation, harvesting less to allow for additional growth and carbon sequestration is only 
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effective in the short term so other methods will need to be investigated for long term mitigation 

goals (Smyth et al. 2014). It should be stated that across all regions and scenarios, the RCP 8.5 

scenario reduces harvesting levels to an impossibly low level. In this case, pursuing new options 

for improving harvesting yields is sorely needed.  

Forestry will remain an important industry in the boreal forest; whether for economic 

purposes (Ochuodho et al. 2012, Chen et al. 2017) or carbon sequestration strategies (Antón-

Fernández and Astrup 2012, Lutz et al. 2013). Forestry depends on a healthy and consistent 

supply of timber in the near term and long-term future to have economically viable and 

sustainable harvesting operations. This study provides further insight into the expected changes 

in aboveground biomass with important implications to boreal forestry (Boulanger et al. 2016, 

Boulanger et al. 2018). Drought and disturbance-related tree mortality remain vital components 

of wood supply projections. Here we show the importance of including drought since it is a 

major driver of biomass dynamics in the boreal forest and not commonly modelled in wood 

supply studies (Kellomäki et al. 1997, Gauthier et al. 2015b, McKenney et al. 2016, Nordström 

et al. 2016). Through our drought-related mortality model, a better estimation of biomass 

changes can be made for management decisions. Simulating disturbances in our projections 

provide biomass and harvesting estimates with more accountability of external factors. 

Moreover, visualizing trends in a variety of climate scenarios is useful for seeing a range of 

potential outcomes of climate change.  It is clear the RCP 8.5 forcing shows the most drastic 

changes in aboveground biomass, with significant changes occurring around 2075. However, 

sustainable forest management may be achieved with careful planning in affected areas. This 

could simply include reduced harvest rates creating a buffer stock against high mortality events, 

but other, more intensive options may be warranted with ongoing climate change. The loss of 
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aboveground and harvested biomass should prompt decision makers toward significant climate 

change mitigation efforts.  
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CHAPTER FOUR: GENERAL CONCLUSIONS 

This thesis explored the various ecological impacts of climate change and how boreal 

forest timber is affected. Since there are no current, comprehensive reviews on the impacts of 

climate change on boreal forest timber supply, my first objective was to address this knowledge 

gap. Secondly, though there are many timber supply studies analyzing the impact of climate 

change, most do not include forest disturbances. My second objective therefore, was to conduct a 

simulation study whereby drought-induced tree mortality was implemented into a landscape 

disturbance model utilizing climate projections.  

 In my second chapter, we found that climate change poses serious risk to the quantity and 

quality of boreal forest timber. Regional increases in tree growth are likely insufficient to 

outweigh the general, landscape wide increases in tree mortality. Increases in mortality occurs 

from forest disturbances, increased heat and moisture stress, and low adaptation to changing 

climate. Quality of extracted timber is affected by various insects and pathogens as well as new 

growing conditions which can negatively alter wood fibre. Chapter three utilized a published 

LANDIS-ii model in combination with a drought mortality factor that we produced. By studying 

two levels of area-based harvesting intensity, we found that harvest levels can only be 

maintained long term if lower intensities are used. Despite this finding, with more intense 

climate forcings (i.e. RCP 8.5) it still is an issue to harvest on a consistent basis.  

 There is a high probability of severe negative impacts of climate change in the near 

future. We have identified several forestry adaptation strategies to better cope with these stresses. 

Assisted migration is one method that continues to be studied in research but not necessarily 

implemented in industrial settings. Identifying species that pair favorably with local and future 

climates will allow industry to remain productive. Drought tolerant species in dry areas and some 
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temperate species along the southern areas of the boreal forest are notable suggestions. As 

climate continues changing, we may have to also adjust our harvesting or silvicultural intensities 

to be sustainable long term.  

To conclude, we found evidence both from literature and our simulations that boreal 

timber supply may be significantly reduced. Negative impacts to the quantity and quality of 

timber has serious implications to industry and nations located in the boreal. This topic requires 

continued study and demands policy action. Mitigation of climate change is incredibly important 

to lessen future negative impacts. Adaptation of forestry practices will also be key to mitigation 

strategies, whether improving carbon sequestration methods or operational efficiency, as well as 

allowing forestry to remain an economically viable industry.  
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SUPPLEMENTARY INFORMATION: CHAPTER THREE 

Parameterization  

      

       

      

Fig. S3-1. The initial biomass distribution (right column) and age classes (left column) present 

across the Boreal Plains (top row), Boreal Shield West (middle row) and Boreal Shield East 

(bottom row). Some of the densest stands are found in the BP whereas the youngest and least 

dense region is the BSE.  
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Climate change projections 

 This study utilized climate projections from the Canadian Coupled Global Climate Model 

CanESM2. This model was used for each of the three RCP scenario. Important climate 

components within the LANDIS modelling framework are both long term temperature (oC) and 

precipitation (mm). Below are the mean annual values used for both factors throughout the three 

regions.  

     

     

    

Fig. S3-2. Climate projections used in the simulations: temperature (left) and precipitation (right) 

within BP (top), BSW (middle) and BSE (bottom). 
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Species level biomass changes 

 

Fig. S3-3a. Changes in individual species mean aboveground biomass (Mg ha-1) shown across 4 climate scenarios in three study 

regions. Specific commercially important boreal species are highlighted for easier identification and interpretation. 
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Relative species biomass changes 

 

Fig. S3-3b. Relative abundances of all species throughout the simulations. Specific commercially important boreal species are 

highlighted for easier identification and interpretation. 



 

88 
 

Harvestable area (%) 

 

 

 

 

Fig. S3-4. Percent of land available for harvest in each harvesting scenario considering 

the impact of forest disturbances, particularly drought.   
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Fire disturbance 

 The area burned each year by fire is extremely variable between study sites and 

climate scenarios. Stand age is an important factor for this simulation because it relates to 

the amount of fuel present whereas time since last disturbance is the driver between 

likelihood of ignition. It is evident that there is much greater impact, in terms of biomass 

removal, in the BSW site, especially the RCP 8.5 scenario. In fact, RCP 8.5 affected the 

greatest area for all sites as expected. The reasons for this include, warmer temperatures 

and slightly less precipitation over the study period (Fig. S4, S4a). Greater fire return 

interval in the study, and the RCP 8.5 scenario in particular, contributes to the decreased 

stand volumes as there are lower stand ages present. This may also shift some of the 

species compositions that are better adapted to fire, as mentioned earlier; Pj regenerates 

through serotinous cones and broadleaf species are better at colonizing disturbed sites. 

Planning for fires will remain crucial in forecasting wood supply, especially in such fire 

prone areas. 

Fig. S3-5. Amount of burned area (ha/ year) for the three study regions and three climate 

scenarios over 200 years. 

 


