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Abstract 

Demand for sustainable and new technologies striving for sequestration of greenhouse gases, 

particularly carbon dioxide, is an area of considerable focus. In recent years there has been an 

increased interest in using an enzyme biocatalyst, Carbonic Anhydrase (CA) for this purpose. 

CA is an ubiquitous metalloenzyme that catalyzes the reversible hydration of CO2 in aqueous 

biological systems. In this study, Carbonic Anhydrase was extracted and partially purified from 

a plant source which is spinach leaves. The extracted enzyme was immobilized on different 

materials for increased stability, recyclability and cost-effectiveness. Immobilization of 

Carbonic Anhydrase was done on alginate beads, chitosan beads and chitosan film. After 

immobilization the activities for alginate beads, chitosan beads and chitosan film were found 

to be 23.37, 20.96 and 17.58 U/mg respectively. Optimum pH for alginate beads and free 

enzyme was 8, while for chitosan beads and film it was 8.5 and 7.5 respectively. The optimum 

temperature for free enzyme was 30°C, while for alginate beads, chitosan beads and chitosan 

film it was 40°C, 35°C and 35°C respectively. For both free and immobilized enzyme, calcium 

carbonate precipitation was approximately same per unit of enzyme activity. The recyclability 

of immobilized enzyme was tested up till four cycles. The immobilized enzyme showed better 

stability than the free enzyme. Alginate beads, chitosan beads and chitosan film retained 76.59, 

80.75 and 83% of their activities over a period of 4 weeks. It was concluded that carbonic 

anhydrase obtained from plant source can be used for CO2 sequestration purposes. On 

immobilization, the enzyme has better storage stability, recyclability and can be used in 

industrial process.   
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Chapter 1 Introduction  



 

2 
 

The escalation of greenhouse gas (GHG) levels in atmosphere in the last five decades is 

believed to be the principal cause of global warming. Among other greenhouse gases, CO2 is 

the biggest contributor in respect of its sum display in the atmosphere adding to 60% of global 

warming effects. The total quantity of carbon in the atmosphere is fixed and is distributed 

between the lithosphere, biosphere and atmosphere. But since the introduction of 

industrialization the concentration of CO2 is increasing rapidly in the atmosphere (IPCC, 2005). 

IPCC panel also predicts that by the year 2100 the atmospheric CO2 levels might reach up to 

570 ppmv as compared to that of 377 ppmv in 2004, which in turn will lead to a rise in mean 

global temperature and increase in mean sea level of 38 m. 

To reduce the CO2 emission in the atmosphere there are three alternatives available i.e., 

reducing CO2 emissions in the atmosphere, reducing energy intensity and improve 

sequestration of CO2. To improve CO2 sequestration, attempts are being made to escalate CO2 

fixation by developing new approaches to capture and sequester CO2 and to avoid its discharge 

into the atmosphere such as ocean sequestration, mineral carbonation, geological sequestration, 

etc. CO2 sequestration is a solution to mitigate environment impact and allows us to use fossil  

energy until renewable energy technologies mature.  

CO2 sequestration methods such as adsorption on membranes, cryogenic systems and use of 

chemical solvents is highly expensive (Abu-Khader 2006), corrosive and solvent loss occurs 

(Amornvadee Veawab et al. 1999). CO2 sequestration to mineral carbonates is an environment 

friendly, steady, safe and long term sequestration method, but it is a slow process (R Ramanan 

et al. 2009). Recently an enzyme based CO2 capturing technology has been described by 

researchers which mimics naturally occurring CO2 reactions in living organisms (Frommer 

2010).  
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Carbonic Anhydrase is a zinc metalloenzyme which is found in all living organisms such as 

plants, animals and prokaryotes (C. Boone et al. 2013). CA catalyzes the conversion of CO2 to 

bicarbonates and vice versa (Rishiram Ramanan et al. 2009a).  

𝐶𝑂2 + 𝐻2𝑂 ↔  𝐻𝐶𝑂3
−  +  𝐻+……….(i) 

CA makes the fastest rapid mass transfer of CO2 from gaseous phase (Bhattacharya et al. 2003). 

It can catalyze the hydration of CO2 at a rate of 104-106 s-1 as compared to that of 6.2 x 10-3 s-1 

(Bhattacharya et al. 2003).  

Most of the industrial processes that seek to employ CA for CO2 capturing and sequestration 

are quite harsh by biological standards which means that these processes involve extreme 

change in pH and temperatures (Gonz et al. 2014). The use of free enzyme in solution also has 

its disadvantages such as non-reusability, low enzyme stability, decreased recovery from the 

reaction environment (Vinoba et al. 2012) and deactivation of enzyme in strong acid or alkali 

solutions.  

Immobilization of enzyme can improve the stability and reusability of enzyme, provide 

operational flexibility and would pave a way for cost competitive route for commercialization 

of the process (Ekrem Ozdemir 2009a). As compared to free enzymes, immobilized enzymes 

are resistant to environmental changes and more robust (Oviya et al. 2013). Entrapment in 

matrices, adsorption on solid support, cross-linking with polymers and covalent bonding are 

some of the methods that have been used for enzyme immobilization. A variation of support 

materials such as, silica, alginate, chitosan, glass, polyurethane foam have been investigated 

for CA immobilization (Ekrem Ozdemir 2009b), (Prabhu et al. 2011), (Vinoba et al. 2012).  

Chitosan and alginate are inert materials which have been used for immobilization of various 

enzymes. Chitosan is obtained from deacetylation of chitin. It is user friendly, non-toxic and 

has protein affinity (B Krajewska 2004). Alginate is a polysaccharide of marine brown algae 

and a cheap alternative for enzyme entrapment (J. Sharma et al. 2010). Chitosan and alginate 
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have both been used for immobilization of CA extracted from bacteria, microalgae and 

commercially available Bovine Carbonic Anhydrase but the effect of immobilization on CA 

extracted from plants has not been studied yet. The present study thus aims at extraction and 

partial purification of CA from Spinacia oleracea (spinach) and its immobilization on chitosan 

and alginate to assess its CO2 sequestration potential. 

The specific objectives of this study were: 

I. To extract Carbonic Anhydrase from spinach and partially purify it by ammonium 

sulphate precipitation. 

II. Immobilization of Carbonic Anhydrase on alginate beads, chitosan beads and chitosan 

membrane. 

III. Determine the effect of temperature and pH on free and immobilized enzyme. 

IV. Assess the CO2 sequestration potential of free and immobilized enzyme. 

V. Study the reusability and stability of free and immobilized enzyme. 
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2.1. Climate Change 

One of the major challenges the world faces today is climate change. It has been proven 

unequivocally that climate change is happening at a very fast pace. Climate change is defined 

as the change in weather patterns which lasts for an extended time period. Climate scientists 

confirm that the main cause of climate change is global warming. Sometimes climate change 

and global warming are used interchangeably but they are two different phenomena. On one 

hand climate change is a global phenomenon engendered primarily by the heat entrapping gases 

on the earth’s surface, while on the other hand global warming results from increasing 

temperatures across the globe since the industrial revolution. Climate change comprises of 

increased temperatures because of global warming along with rising sea levels, extreme 

weather, melting of ice glaciers etc. Global warming is caused by increased greenhouse gases 

in the earth’s atmosphere. It results by the atmospheric entrapment of heat being radiated from 

the surface of the earth (Pachauri et al. 2014).  

 

Figure 2.1: Greenhouse gases acting as thermal blanket around the Earth. (Courtesy: NASA 
Earth Observatory, January 20, 2018). 

2.1.1. Greenhouse Effect 

The heat from the Sun is one of the reasons for the Earth to be inhabitable by all living 

organisms including humans. Solar rays falling on earth are reflected into space, however a 
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tiny portion of these rays are trapped by the layer of gases around the Earth which makes up 

our atmosphere as shown in figure 1. These gases are called greenhouse gases are some of them 

are as follows: 

→ Water Vapour 

→ Methane 

→ Nitrous Oxide 

→ Chlorofluorocarbons 

→ Carbon Dioxide 

 

Figure 2.2: Mean annual and decadal change in temperature between 1850-2012 (IPCC, 
2013). 

The presence of these greenhouse gases help maintains average temperature of earth’s surface 

at 15°C which might be -18°C in the absence of these gases (greenhouse wiki). The average 

temperatures   are expected to rise further in the next century (Dhanwantri et al. 2014).  
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Since 1850, Earth’s temperature was rapidly increasing every decade as shown in figure 2. It 

can be attributed to climate change and global warming. To take an action against these climatic 

conditions, it is important to understand the carbon cycle. 

2.1.2. Carbon Cycle  

On Earth, carbon is an abundant element and the backbone of every form of life on the earth 

including the oceans, plants, soil, fossils and atmosphere. The flow of carbon from one 

reservoir to another is known as the carbon cycle. Carbon can be released into the atmosphere 

by activities such as cutting down trees and burning fossil fuels. If there is a change in any of 

the cycles, then carbon is shifted from one reservoir to another. Any change that increases the 

level of carbon in atmosphere is promoting the chances of Earth getting warmer.  

The carbon cycle helps maintain a balance which prevents the carbon from entering the 

atmosphere. The carbon cycle has been divided into two subsystems i.e., the slow carbon cycle 

and the fast carbon cycle (Riebeek 2011). 

The Slow Carbon Cycle: In this, it takes millions of years for the carbon to change forms 

among oil, oceans, rocks and atmosphere with the aid of tectonic activity and chemical 

reactions. Every year, on an average of 10-100 million metric tonnes of carbon shifts through 

the slow carbon cycle. 

The Fast Carbon Cycle: The time taken by carbon to go through a fast carbon cycle is 

calculated in a lifespan. It is the movement of carbon through biosphere. About 100-1000 

million metric tons of carbon moves through a fast carbon cycle in a year. 

The fast and slow carbon cycles keep a balanced carbon concentration in ocean, plants, land 

and atmosphere. Today, the carbon cycle is being disturbed by anthropogenic activities. Cutting 

of dense forests exposes the soil which in turns releases carbon dioxide from decay plants into 

atmosphere. Without human intervention, carbon would be released by volcanoes into 
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atmosphere slowly over millions of years (Reichle et al. 1999). This process is accelerated 

when oil, coal, natural gases are burnt for our daily use. 

since 1950, carbon dioxide levels are increasing drastically as shown in figure 2.3. 

Approximately 30 billion tonnes of CO2 is generated each year currently (Sheppard 2018). 

 

Figure 2.3: Increasing atmospheric CO2 since the Industrial Revolution (Courtesy: NASA 
Earth Observatory, January 26, 2018). 

2.1.3. Mitigating Carbon Dioxide 

Overabundance of carbon dioxide in the atmosphere warms up the planet, it also makes the 

water in oceans acidic which is dangerous for marine life (Riebeek 2011). 

Increasing levels of carbon dioxide have substantial impact on earth’s climate. Hence, it is 

crucial to find ways to tackle this problem of growing atmospheric CO2 emissions. There are  

ways by which atmospheric CO2 levels can be alleviated such as (i) developing alternatives for 

C-based fuels; (ii) capturing and long-term storage of carbon dioxide; (iii) reducing emissions 

of CO2 into the atmosphere (Mirjafari et al. 2007).  

2.2. Carbon Dioxide Sequestration Methods 

Sequestration is a method used for keeping the levels of carbon below the threshold level to 

maintain a balanced carbon dioxide pool in the atmosphere. It helps in storing the carbon in a 

form that does not cause global warming (Yamasaki 2003). Many researchers have tried to 
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classify various sequestration strategies to capture carbon in different forms based on the 

methods, carbon sinks, organisms etc. A very broad classification is done based on the non-

biological and biological methods (Nogia et al. 2016). 

2.2.1. Non-Biological Methods 

Sequestration done with the help of physical and chemical processes without involving any 

living organisms comes under this category. This includes chemical, geological and oceanic 

sequestration.  

2.2.1.1. Mineral Carbonation (Chemical) 

In this method the atmospheric carbon is converted to a stable compound. Carbon dioxide 

reacts to various metal oxides like calcium oxide, iron oxide, magnesium oxide etc to form 

their respective carbonates (Oelkers et al. 2008). The carbonates are stable and can help in 

avoiding the carbon to liberate into the atmosphere which eventually reduce global warming 

effects. These carbonates can be stored very easily for a longer time (Rattan Lal 2008). An 

example of natural mineral carbonation is the weathering of rocks. In this, CO2 present in 

rainwater reacts with minerals present in rocks.  

𝐶𝑂2(𝑔) + 𝑀𝑂 ↔  𝑀𝐶𝑂3 + ℎ𝑒𝑎𝑡 ………..(ii)    

Such kind of reactions occur in nature but can be replicated in an industrial setting. O’Connor 

et al. described the industrial process of mineral carbonation (O’Connor et al. 2001).  

2.2.1.2. Geological Sequestration 

Geological sequestration is the process of capturing, transportation and injection of CO2 into 

deep geological bed like oil wells, gas aquifers, coal mines, stable rocks (Klara et al. 2003). It 

depends on many factors which are yet to be understood properly.  

An example of geological sequestration is Sleipner project, Norway. CO2 separated from 

natural gas in pumped into aquifer below sea level (Sipilä et al. 2008). CO2 from industry is 

also being stored in saline aquifers where CO2 reacts with salts present in the aquifer to form 
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carbonates (Rattan Lal 2008). Countries like Canada, Australia, Algeria have started small 

demonstration projects. 

2.2.1.3. Oceanic sequestration 

Oceanic sequestration involves the direct injection of CO2 into the deep ocean beds. The 

gaseous CO2 forms carbonic acid which then dissociates into hydrogen ion and bicarbonate ion 

according to the equation given below (IPCC 2005). 

𝐶𝑂2(𝑔)  + 𝐻2𝑂(𝑙)  ↔  𝐻2𝐶𝑂3(𝑎𝑞)  ↔  𝐻𝐶𝑂3
−  + 𝐻+  ↔  𝐶𝑂3

2−  +  2𝐻+………(iii) 

This process must be stable, and the CO2 should be injected at maximum possible depths so 

that its undisturbed and does not leak into the environment. Since CO2 is lighter than water, the 

process must be carried out approximately 3000 meters below the ocean level which is 

considered stable for CO2 injection. It prevents carbon dioxide from escaping. (O’Connor et 

al. 2001).  

2.2.1.4. Reforming of methane 

Dry reforming is a process to produce synthesis gas (mixture of carbon monoxide and 

hydrogen) by reacting CO2 with hydrocarbons such as methane. CO2 acts as an oxidising agent 

for the oxidation of methane. The most reduced form (CH4) is combined with the most oxidized 

form of carbon (Amin et al. 2018). This process was introduced by Fischer and Tropsch in 

1928.  

Reforming is of two types, namely steam and dry reforming. The are endothermic in nature so 

they require higher temperatures to achieve higher conversions of methane. 

𝐶𝐻4 + 𝐻2𝑂 → 𝐶𝑂 + 3𝐻2……………….(iv) 

𝐶𝑂2 + 𝐶𝐻4 → 2𝐻2 + 2𝐶𝑂………..……(v) 
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2.2.2. Biological methods 

Biological sequestration involves the use of living organisms or naturally occurring biological 

processes to capture and storage of CO2. Some of the biological ways to sequester carbon are 

forestation, ocean fertilization, soil sequestration, phyto-sequestration, biocatalyst. 

2.2.2.1. Forestation 

Forests act as a major carbon pool in which there is continuous exchange of CO2 with the 

environment. About 19% of carbon is stored in plants at a global level. Forests can be 

considered as a carbon source if it releases more carbon into the atmosphere than it holds. 

Usually, carbon from forests is released by burning of trees or by decaying when they die.  

Trees take up the CO2 from the atmosphere and use it for photosynthesis. They also store the 

CO2 in the form of wood (Dhanwantri et al. 2014).  Harvested timber, plant woody debris and 

wooden chips are all sequestering the forest carbon. Hence, afforestation is a feasible way to 

sequester carbon (Lamb et al. 2005).  

2.2.2.1. Ocean fertilization 

Ocean nutrition is a way to enrich the upper ocean with the help of nutrients to elevate marine 

food production and to reduce the levels of CO2 from the atmosphere (Matear et al. 2004). The 

ocean removes about 30% of carbon from the atmosphere (Battle et al. 2000). Phytoplankton 

need macronutrients (nitrate and phosphate) and micronutrients (iron and zinc) to survive and 

grow. Addition of such nutrients to ocean stimulates the growth of phytoplankton, which in 

turn consume carbon dioxide through photosynthesis (Ingall et al. 2013). 

2.2.2.2. Soil sequestration 

A small amount of carbon dioxide that is converted to organic material in plants with the help 

of photosynthesis is transferred to soil from the roots. As a result, carbon is stored in both 

organic and inorganic form in the soil (Jansson et al. 2010b). Soil sequestration refers to 

enhancing the concentration of organic carbon and inorganic carbon content of soil. Soil’s 
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efficiency to sequester carbon depends on rainfall, soil texture, content of clay, moisture 

content, climate, mineralogy (Metting et al. 2001).  

To increase the soil organic carbon levels, the carbon is restored with the help of humification 

of the soil surface (0.5-1 m depth). Soil organic carbon content is lost by erosion, leaching and 

mineralization (Rattan Lal 2008). Ways to increase organic carbon content are no-tilling 

farming (Paustian et al. 2000), nutrient management (Metting et al. 2001) and wood burial 

(Zeng 2008).  

2.2.2.3. Phyto-sequestration 

Plants act as potential carbon sink for carbon sequestration. Phyto-sequestration and soil carbon 

sequestration are more or less corelated terms (Nogia et al. 2016). A huge amount of carbon is 

stored in plants through photosynthesis. Storing carbon in living biomass, converting the 

biomass to composites and fibre cement materials are short term alternatives. Long term carbon 

sequestration is achieved when the biomass containing carbon is transferred to the underground 

organic and inorganic soil carbon pool. Few ways to achieve long term sequestration are 

biochar, phytoliths, photo-assimilation of carbon dioxide etc (Jansson et al. 2010a). 

2.2.2.1. Biocatalysts 

Biocatalysts have the capability to effectively transform carbon dioxide into reduced forms. 

Enzymes are a promising alternative to catalyze carbon fixation steps. In carbon assimilation 

pathways, they transform the feedstock into metabolites which are further used for the 

production of chemicals and wide range of fuels (Alissandratos et al. 2015).  

Carbonic anhydrase is one such biocatalyst that has been used for carbon capturing. It is widely 

being used in industries in the process of conversion and storage of atmospheric carbon dioxide. 
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Table 2.1: Sequestration methods advantages and disadvantages. 

Sequestration 
Methods 

Advantages Disadvantages Reference 

Non-Biological methods 

Mineral 
carbonation 

Long term storage Potential air, water and soil 
pollution of surrounding 
areas.  

(Mazzotti et al. 2007) 

Geological Helps in methane and 
oil recovery 

Risk of CO2 leakage from 
storage location and high 
storage cost. 

(IPCC 2005), (Sipilä 
et al. 2008), (Kovscek 
2004) 

Oceanic Minimum leakage of 
stored carbon dioxide 

Organisms show reduced 
rates of growth, 
calcification, 

reproduction, mobility and 
circulatory oxygen supply. 
Increased mortality over 
time. 

(Lampitt et al. 2008), 
(IPCC 2005) 

Conversion to 
methanol 

Produces a value-
added product  

Kinetic limitations low (Barton et al. 2008) 

Biological methods 

Forestation Natural process  Needs improved 
management strategies 

(Larjavaara 2008) 

Ocean 
fertilization 

Phytoplanktonic CO2 
fixation is enhanced 

Effects the ocean biota (Lampitt et al. 2008), 
(Nogia et al. 2016) 

Soil 
sequestration 

Decreases soil erosion, 
help conserve water, 
increase plant 
productivity 

Soil saturation (Oren et al. 2001), (R 
Lal 2004) 

Phyto-
sequestration 

Cost effective, large 
carbon sink capacity 

Plantation efficiency should 
be increased, deforestation 
should be reduced 

(Jansson et al. 2010c) 

Biocatalyst Long term storage and 
cost effective 

Denatures under harsh 
conditions 

(Nogia et al. 2016) 

 

2.3. Carbonic Anhydrase (CA) 

Carbonic anhydrase or carbonic dehydratases belongs to a family of enzymes that catalyzes the 

hydration of carbon dioxide to bicarbonate and protons and vice versa. This reversible 
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hydration of CO2 is fundamental to multiple biological processes such as respiration and 

photosynthesis.  It was discovered in 1933 due to the biomedical applications of its inhibitors 

(Supuran 2013). It is an ubiquitous enzyme that is found in all kingdoms of life (C. D. Boone 

et al. 2013). 

𝐶𝑂2  +  𝐻2𝑂 
𝑐𝑎𝑟𝑏𝑜𝑛𝑖𝑐 𝑎𝑛ℎ𝑦𝑑𝑟𝑎𝑠𝑒
↔                𝐻2𝐶𝑂3  ↔  𝐻

+  +  𝐻𝐶𝑂3
−………..(vi) 

They are classified as metalloenzymes as most of them contains zinc ion at their active site 

(Del Prete et al. 2014). Iron, cadmium and cobalt have been demonstrated as metal cofactors 

for carbonic anhydrase (MacAuley et al. 2009), (Park et al. 2008), (Yee et al. 1996). In human 

CAII, Zn2+ ion is located at the centre of the molecule occupied by three amino acid residues 

(H94, H96 and H119) as shown in figure 2.4 (Goodsell 2004). 

 

 

Figure 2.4: Human CAII; metal binding site with zinc ion and amino acid residues (Lionetto 
et al. 2016). 

2.3.1. Mechanism of action 
Most carbonic anhydrases have zinc ions at their active site and have similar catalytic activity 

(Madhumati Mondal, Saumyakanti Khanra. O.N. Towari, K. Gayen 2016). The reversible 

hydration by all carbonic anhydrase isoenzymes occurs through a process called metal 

hydroxide mechanism. Carbonic anhydrases have three key amino acid residues (ligands) 

which differ according to class as shown in figure 2.5. The zinc prosthetic group is coordinated 

by histidine side chains at three positions and the fourth position is occupied by a water 
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catalyse the same reaction although they have different organization of active center and don’t 

have any structural homology (Rudenko et al. 2015). They use the same catalytic mechanism 

with different metal atoms at their active sites.  

2.3.1.1. α-CA:  

α-CA are found in vertebrates (Hewett-Emmett 2000), algae (Fukuzawa et al. 1990), bacteria  

(Soltes-Rak et al. 1997)  (Soltes-Rak et al. 1997), ascomycetes (Elleuche et al. 2010). At least 

16 isoforms of carbonic anhydrase has been discovered in mammals (Supuran 2008a). The first 

ever discovered and purified α-CA was from Neisseria sicca in 1972 (Adler et al. 1972). CAs 

have not been detected in archae (Kumar et al. 2014).  

α-CAs are monomers of molecular mass ranging from 29 kDa to 35 kDa (Shazia Faridi 

Satyanarayana T. 2015). Human CAs structure comprise of a tertiary fold with a 10 stranded 

β-sheet, Zn is located at the active site coordinated with three histidine residues and a water 

molecule. 

2.3.1.2. β-CA:  

It was first discovered in 1939 in plants, but it was not until 50 years later that it was reported 

to be not homologous to CAs from animals (Rudenko et al. 2015). In 2000 the first crystal 

structure of β-CA was reported (Mitsuhashi et al. 2000). β-CA are generally found in 

microalgae(Eriksson et al. 1996), eubacteria, archaebacteria (Smith et al. 2000), higher plants 

(Elleuche et al. 2010).  

β-CAs are dimers, tetramers, hexamers and octamers (Tripp et al. 2001) with molecular mass 

ranging between approximately 45 kDa to 200 kDa (Shazia Faridi Satyanarayana T. 2015). A 

dimer is considered as the basic building block of this class of CAs. Zinc is the metal ion at 

active sites of all the β-CA which is coordinated by three residues i.e., two cystines (Cys32 & 

Cys90) and one histidine (His87) and a water molecule/hydroxide ion as shown in figure 2.6 

(Di Fiore et al. 2015).  
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Figure 2.6: Active site representation of β-CA. 

2.3.1.3. γ-CA:  

γ-CAs are said to have evolved 3-4.5 billion years ago and are one of the most ancient form of 

carbonic anhydrase. They are found in diatom (Roberts et al. 1997), bacteria, green algae, 

Archaebacteria (Alber et al. 1994) and higher plants. They have both zinc and cobalt at their 

active site (Roberts et al. 1997).  

They are said to have a homotrimeric structure having a monomeric subunit of molecular mass 

20 kDa (Shazia Faridi Satyanarayana T. 2015). The homotrimer has a left-handed parallel beta 

helix. The active site has the ligand coordinated with three histidine residues (His81, His117, 

His122) and a water molecule/hydroxide ion (R. R. Yadav et al. 2014).  

2.3.1.4. δ-CA: 

δ-CAs are found in diatoms. In 1997 it was discovered and purified from Thalassiosira 

weissflogii having a molecular mass of approximately 34 kDa (Roberts et al. 1997). They were 

structurally very similar to α and γ carbonic anhydrases except for the amino acid sequences 

(Kupriyanova et al. 2017). δ-CAs have similar active site structure as that of α-family (Rudenko 

et al. 2015). 
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2.3.1.5. ζ-CA: 

ζ-CAs are mostly found in marine diatoms (Lane et al. 2000). They have cadmium at their 

catalytic center instead of Zinc which is due to lack of Zinc ions in sea water (Kupriyanova et 

al. 2017). 

2.3.1.6. η-CA: 

η-CAs are a relatively new member of carbonic anhydrase family. It has been found in 

plasmodium. 

2.3.3. Sources of Carbonic Anhydrase 
Carbonic anhydrase is an ubiquitous enzyme. It is found in all organisms including prokaryotes 

and eukaryotes (Wong 2014). Its availability varies from species to species and many of them 

have been found to express genes of more than one family.  

The first carbonic anhydrase was discovered and purified from human red blood cells in 1933 

(The Late U Meldrum et al. 1933) and so far 15 human α-CA isoforms have been discovered  

having different tissue localization, catalytic activity and cellular distribution in forms of 

cytosolic, membrane bound and mitochondrial (Aggarwal et al. 2013) as shown in table 2.2. 

Three of these isoforms are acatalytic and lack Zn2+ active site and are known as CA related 

proteins.  

Photosynthetic carbon capture function of CAs have been studied in cyanobacteria and algae. 

Bacteria and cyanobacteria have been found to have all classes of CAs. Some of the bacteria 

possessing this enzyme are Rhodospirillum rubrum, Acetobacter woodii (Gill et al. 1984), 

Neisseria gonorrhoeae (Yeates et al. 2008), Helicobacter pylori (Marcus et al. 2005), 

Citrobacter Freundii (Rishiram Ramanan et al. 2009b), Bacillus subtilis , Pseudomonas fragi, 

Micrococcus lylae, and Micrococcus luteus (A. Sharma et al. 2009). CA obtained from 

Methanobacterium thermoautotrophicum is found to be active at high temperatures (up to 

75°C) (Yeates et al. 2008).  
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Table 2.2: Isoforms of α-CA found in humans. 
Isoform Tissue Location Cellular location Reference 

hCA I GI tract, RBCs Cytosol (Supuran et al. 2004) 

hCA II GI tract, RBCs, eyes, 

kidneys, lungs, brain 

Cytosol (Supuran et al. 2003) 

hCA III Skeletal muscles Cytosol (Supuran 2008b) 

hCA IV Kidney, endothelium Extracellular 

Membrane bound 

(Supuran et al. 2004) 

hCA VA liver Mitochondria (Nishimori et al. 2005) 

hCA VB Skeletal muscles, hearts, 

pancreas, spinal cord, 

kidneys, GI tract 

mitochondria (Nishimori et al. 2005) 

hCA VI Mammary and salivary 

glands 

Milk/saliva 

(secretory) 

(Nishimori et al. 2007) 

hCA VII Central nervous system Cytosol (Vullo et al. n.d.) 

hCA-RP 

VIII 

Central nervous system Cytosol (Supuran et al. 2004), 

(Supuran et al. 2003) 

hCA IX Tumours, GI mucosa Cell membrane 

associated 

(Thiry et al. n.d.) 

hCA-RP X Central nervous system Cytosol (Supuran 2008b) 

hCA-RP XI Central nervous system Cytosol (Supuran et al. 2003), 

(Supuran et al. 2004) 

hCA XII Renal, eye, intestinal, 

tumours, kidneys 

Transmembrane (Whittington et al. 2001) 

hCA XIII Reproductive tract, gut, 

lungs, brain, kidneys 

Cytosol (Lehtonen et al. 2003) 

hCA XIV Kidneys, brain, liver transmembrane (Whittingtons et al. 2004) 

 

As of the moment algae to stand out when to be the most effective of carbon fixing 

microorganisms. Both micro and macro-algae have been utilized for carbon fixation because 

of their capability to uptake and utilize carbon at a fast speed, ability to produce secondary 

products like lubricants and biofuels (Wong 2014). Recently, algal transgenics has become an 
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area of interest for many researchers. Diatoms like Phaeodactylum tricornutum and green algae 

like Chlamydomonas reinhardtii and Volvox carteri have been used as model organisms for 

advanced genetic tools (Walker et al. 2005). Some algae have been used for carbon 

concentrating mechanisms by growing them in controlled photobioreactors using Scenedesmus 

abundans and Chlorella pyrenoidosa (Kargupta et al. 2015). Scenedesmus obliquus has been 

identified as temperature and high CO2 tolerant microalgae which can sequester carbon form 

flue gas (de Morais et al. 2007).  

Plant carbonic anhydrase was first extracted from leaf cytoplasm by Neish (Neish 1939). Plants 

have been found to have three types of CA: α, β, γ (Moroney et al. 2001). Plants having all 

three types of Carbonic Anhydrase are shown in table 2.3. The carbonic anhydrase is present 

in chloroplast of plants which carry out photosynthesis. Any change in the activity of Carbonic 

anhydrase directly affects CO2 fixation and rate of photosynthesis (Ganai 2017). In higher 

plants, carbonic anhydrases show variations in their distribution as they have different number 

of genes present in each family. For example, Arabidopsis Thaliana has 19 genes (Initiative 

2000), on the other had rice also have similar number of genes (Yuan et al. 2005). In higher 

plants, isoforms of α-CA, β-CA and δ-CA have the same catalytic mechanism despite their 

structural difference (S Lindskog 1997).  

In C3 plants, the enzyme in leaves constitute 1 to 2% concentration of the total soluble protein 

(Okabe et al. 1984). About 95% of the total CA is found in chloroplast (Tsuzuki et al. 1985) 

and the other 5% is present in mesophyll cells. Carbonic anhydrase activity varies in different 

plants. CA had been diversely compartmentalized among tissues, organs and cellular organelles 

and his has been exhibited by CAs different physiological roles. CA helps to raise the 

concentration of CO2 in the chloroplast which plays a significant role as a substrate by the 

RuBisCO enzyme, therefore increasing carbon fixation rate.  
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Table 2.3: List of plants having Carbonic Anhydrase. 

Plant 

Type of Carbonic 

Anhydrase Reference 

Physcomitella patens α, β, γ (Rathnam et al. 1975) 

Gossypium hirsutum (cotton) β (Chang 1978) 

Arabidopsis thaliana α, β, γ (Tsuzuki et al. 1985) 

Lactuca sativa (lettuce) β (Walk and Metzner 1975) 

Spinacia oleracea (spinach) β (pocker and Ng 1973) 

Petroselinum crispum (parsley) β (Tobin 1970) 

Lycopersicon lycopersicum  

(tomato) 
β 

(Kositsin and khalidova 1974) 

Ananas comosus α, β, γ (Ming et al. 2015) 

Flaveria pringlei β (Tetu et al. 2007) 

Neurachne munroi β (Clayton et al 2016) 

Neurachne alopecuroidea β (clayton et al. 2016) 

 

In C4 plants, Carbonic anhydrase provides continuous supply of HCO3- at the site of carbon 

fixation (Rathnam et al. 1975). Carbonic anhydrase also helps in the diffusion of CO2 through 

plasma membrane and the chloroplast in plants.  

2.3.4. Factors affecting Carbonic Anhydrase enzyme 

2.3.4.1. Effect of temperature on Carbonic Anhydrase enzyme 

Temperature plays a very important role in the biological activity of any enzyme. After a 

specific temperature any enzyme can be denatured very easily resulting in the loss of activity. 

Sarraf et al. studied the temperature dependence of the activity and structure of the enzyme 

bovine carbonic anhydrase (Sarraf, et al. 2004). Firstly, they noted that the amino-acid 
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sequences of bovine and human carbonic anhydrase are almost 87 percent identical. It has been 

shown that there is a decrease in the amount of β-structures and amount of random coil, from 

25 to 40°C. But from 40 to 52°C, the amount of helix is slightly decreased and there is an 

increase in the percentage of β-structures. They reported that the initial decrease may be due to 

the lower stability of β-structures comparing to helices and enzyme became looser at higher 

temperatures. The reason of this could be either amino acid may be liberated from their relevant 

hydrogen bond in protein structure or the establishment of β-structures may become more 

favorable. 

Thermal behaviour of bovine carbonic anhydrase was also carried out by Lavecchia and Zugaro 

(Lavecchia and Zugaro 1991). They heated the enzyme solution from 40°C to 70°C and 

measured the activity of carbonic anhydrase. They noted that carbonic anhydrase was active 

under 60°C, but it lost its activity between 60-65°C. They explained irreversible denaturation 

as the structural deformation of carbonic anhydrase and it’s caused unfolding.  

2.3.4.2. Effect of pH on Carbonic Anhydrase activity 

An enzyme’s activity or the rate of chemical reaction is affected by the structure of the enzyme. 

When the pH of an aqueous solution changes it leads to changes in the shape of enzyme. The 

change in pH may also lead to a change in the shape and charge of the substrate as well. This 

change in structural shapes of the substrate and enzyme can be reversible if the change in pH 

is within narrow range. But if the change in pH is significant then the substrate and enzyme 

may go through denaturation. In which case they will not identify each other and there will be 

no reaction.  

pH is the concentration of hydrogen ions in a solution and any slight increase or decrease in 

pH changes the concentration of the solution. Theses ions are responsible for change in 

structure of the enzyme, due to breakage of existing bond or formation of new bonds.   
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2.3.5. Applications of CA  

Applications of carbonic anhydrases used in industries are many. Some of them are as follows. 

Artificial Lungs:  

Respiratory failure affects thousands of patients all over the world. Because of this the patient 

has to either go through a lung transplant surgery or put on mechanical ventilators. But these 

solutions are short term as they put pressure on lung tissues, causing damage in the long run 

(Kaar et al. 2007). An artificial lung is a device capable of replacing mechanical ventilators. 

They are capable of assisting in respiration without the involvement of lungs. Current models 

are good for gas exchange but can only be used for patients in intensive care units and are not 

implantable because of their large size. Hollow fibre membranes have been used to make 

artificial lungs and lot of work has been done in this area (Kaar et al. 2007). The main issue 

with artificial lungs as of now is the transfer of CO2 across the HFM. One was to increase CO2 

removal rate is by immobilizing CA on the membrane. CA treated HFM shows 75% higher 

rate of CO2 removal rate than untreated HFM. These findings indicate possibility of smaller 

artificial lungs being engineered and used (Kimmel et al. 2013). 

Biosensors:  

Chemical media containing trace number of similar molecules is hard to quantify. To achieve 

such specificity and sensitivity biosensors can be used. Human carbonic anhydrase (HCA-II) 

has strong affinity towards zinc, which has been used to quantify trace amounts of zinc in sea 

water and waste water (Sven Lindskog et al. 1964). The biosensor would work along the sea 

bed and give out fluorescence signal at the surface upon binding of inhibitor, upon binding of 

zinc at the active site of CA (Thompson et al. 1993). 
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CO2 sequestration for confined spaces: 

 High levels of CO2 have negative effects on human beings such as problem in breathing, 

impaired judgement and even death in extreme cases. Controlling the amount of CO2 gas in 

confined spaces is very important. Initially it was NASA who developed CA based CO2 

capturing technology for submarines and spacecrafts. CA was added to thin aqueous buffered 

films and compressed between porous membranes. The concentration of CO2 in confined 

spaces is relatively low as compared to industrial fumes. The CO2 dissolves in the enzyme 

containing buffer, then diffuses across the membrane and is removed on the back with vacuum 

(Pierre 2012).  

Drug Delivery:  

For treatment of analgesic overdose, CA employed CO2 responsive cationic hydrogels in 

antidote delivery has been used. Alternate medicines are effective but have side effects that can 

lead up to death due to increased CO2 levels and decreased O2 levels. The CA treatment 

involves antidote delivery system that responds to high CO2 levels. A cationic hydrogen based 

on DMAEMA polymer has been used for this purpose (Satav et al. 2010).  

Blood substitutes:  

For surgeries and trauma injuries, a continuous supply of blood is needed. Since, natural blood 

in limited in supply, there has been progress in development of blood substitutes which consist 

of 4–5 cross-linked stroma-free hemoglobin (polySFHb) molecules (Ge et al. 2002). These 

substitutes are found to have few advantages like they can be easily sterilized, stored for long 

time and contains no blood antigens.  

Carbon dioxide sequestration :  

Mirjafari et al. (2007) studied the effect of bovine carbonic anhydrase on the hydration of 

carbon dioxide, and its precipitation in the form of CaCO3. In their study, enzyme solution 



 

26 
 

prepared in phosphate buffer at different concentrations and then this solution mixed with a 

solution carbon dioxide saturated water. They reported that the rate of hydration reaction 

increased with both the temperature and enzyme concentration. They also showed that calcium 

carbonate precipitation was increased with the help of carbonic anhydrase, but the 

concentration of the enzyme did not have any effect on the precipitation. They indicated that 

temperature increase caused increase in calcium carbonate formation and the enzyme activity 

was not influenced by the pH.  

Bond et al. (2007) aimed to develop an enzymatic CO2 scrubber to reduce CO2 emissions from 

fossil fuel burning power plants. They used bovine carbonic anhydrase as a catalyst to improve 

the rate of CO2 hydration (Bond, et al. 2007). Investigation of the effect of other chemical 

species (NOx, SOx) on bovine carbonic anhydrase activity was also done. NOx and SOx is 

very important in the flue gases. According to their report, high concentrations of NOx 

(>0.05M) and SOx (>0.005M) inhibited the enzyme activity. 

Polymeric membranes have been also used for CO2 separation from flue gas. These membranes 

have selective layer that is non-porous film that transport gases by diffusion mechanism. Some 

types of polymeric membranes are polyarylene ethers, polyarylates, polyethylene oxide, poly 

carbonates, polymethacrylates which are used for CO2 separation (Yang et al. 2008), (S. J. 

Metz et al. 2004).  

Ren et al. (2012) used block co-polymers to prepare polymeric membrane. Poly (amide-6-b-

ethylene oxide) was used to prepare multilayer polyetherimide (PEI)/polydimethylsilicone 

(PDMS)/PEBA1657/PDMS composite membranes. They balanced hard and soft blocks to 

provide good CO2 separation performance without loss of its permeability (Ren et al. 2012). 

Liu et al. (2005) used a type of hollow fibre membrane (hollow fibre poly (ether block amide) 

(PEBA)/polysulfone (PSf) composite membranes for CO2/N2 separation. They showed that 
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CO2 permeability increases with increase in gas pressure, whereas N2 permeability was 

independent of pressure applied (Liu et al. 2004). 

Liu et al. (2005) studied the effect of cations in the produced water from the Permian and San 

Juan Basins to enzymatic CO2 scrubber. They used Bovine carbonic anhydrase to accelerate 

CO2 hydration by them. It was reported that precipitation of calcium carbonate occurred much 

faster in the presence of enzyme. They also investigated the effect of temperature on 

precipitation time. They have shown that the increases in temperature accelerated the 

precipitation for both enzymatic and control reactions (Liu, et al. 2005). 

 
2.4. Immobilization of CA 

Considerable research has been focused on stabilizing CA or binding CA to solid support. 

There are many advantages of immobilizing CA over free CA enzyme, including the 

improvement of enzyme stability and operational lifetime, enzyme recover and reuse, easy 

separation of products and flexibility in reactor design. There are mainly two types of 

immobilizations i.e., physical and chemical immobilization. Physical immobilization involves 

adsorption and entrapment while chemical immobilization covalent attachment or cross-

linking to a water insoluble support.   

Physical adsorption uses weak hydrogen bonds and Van Der Waals interaction for binding of 

the enzyme to the substrate. It is a simple and cheap method and the integrity of the structure 

of enzyme is retained mostly by this method. One of the disadvantages of adsorption is the 

desorption of enzyme from the solid support (Brena et al. 2013). In case of cross-linking and 

covalent binding the enzyme stability is higher, and the disadvantage is that there are high 

chances of loss of activity of enzyme. Entrapment method has wide applicability but there are 

high chances of leaching/leakage of enzyme from the support.  
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Ray (1997) purified and immobilized Human erythrocyte carbonic anhydrase in 

polyacrylamide gel. As compared to the soluble enzyme, the immobilized enzyme was 

considerably more resistant to heat and sulphanilamide action (Ray, 1977). 

Carbonic anhydrase has been reported to be immobilized on chitosan based activated alumina–

carbon composite beads. Synthesized adsorbent has been characterized by BET, FTIR, XRD 

and SEM. The optimized condition under which the highest enzyme activity was obtained is 

pH 9.5 and temperature 45°C at concentration of 1 mg/5 ml (Vinoba et al. 2012).  

Bond et al. proposed that bacterial overexpression was the suitable way for the carbonic 

anhydrase production and they proposed three different supports for carbonic anhydrase 

immobilization (acrylamide, alginate, and chitosan-alginate) (Bond, et al. 2001). They noted 

that alginate and chitosan-alginate support were better because these were easy to produce, 

non-toxic, cheap, biodegradable and environment friendly. 

 CA immobilized on chitosan beads has also been performed (Wanjari et al. 2011). It has been 

concluded as well that storage stability of immobilized CA is up to 20 days at -20°C, which is 

higher than free CA.  

There is also report carbonic anhydrase immobilized on surfactant-modified silylated chitosan 

(SMSC) as support. In this study, silylated chitosan material was treated with surfactant-like 

hexadecyltrimethylammonium bromide (HDTMABr) to increase the surface area of chitosan 

by forming mesh network that allows more CA to be embedded. The optimum temperature and 

pH value were reported to be 35°C and 7, respectively (R. Yadav et al. 2010).  

Other researches show that bovine carbonic anhydrase have also been immobilized on different 

types of support for biomimetic CO2 sequestration. One of the applications is the 

immobilization of BCA within polyurethane (PU) foam. For estimating activity, tris buffer 

containing 10% acetonitrile has been used due to the limit of p-NPA solubility. Stability test 

was performed, and the result showed that immobilized CA maintains stability and the same 



 

29 
 

activity after seven washings. The immobilized CA retains the same activity for 45 days stored 

in tris-buffer at room temperature (E Ozdemir 2009).  

Thermal stability of bovine CA immobilized within polyurethane (PU) foam has been done as 

well (Vinoba et al. 2012). CO2 gas generated when forming the foams plays the role of creating 

large pores in the crosslinked polymeric sponge-like material. TGA analysis showed that PU 

foam is thermally stable at the temperature of 280°C. The optimum temperature for 

immobilized CA activity was 45°C and 98% stability was obtained at less than 50°C. A 

decrease in the activity was seen from 50°C and until there was completely no activity at 60°C. 

Rationale: 

• The raw material (waste from supermarkets) is readily available. This vegetable waste 

usually ends up at landfills as they are not fit for human consumption anymore. So, it 

can be used to extract the enzyme (CA) which can further be used for CO2 sequestration 

purposes. 

• In addition to that not much study has been reported using plant-based enzyme for 

carbon capture and storage purposes.  
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Chapter 3  

Materials and methods 
 

 

 

 

 

 

 

 

 

 

 

 



 

31 
 

3.1. Equipment 

i. pH meter: For this study Sartorius PB-11 basic meter and Ph probe was used. 

ii. Centrifuge: Thermo Fisher Sorvall RT1 centrifuge was used. 

iii. Ultrasonic bath: For this study Thermo Fisher Scientific ultrasonic bath (5.7L) was 

used. 

iv. Magnetic Stirrer: For this study Fisher Scientific Isotemp® was used. 

3.2. Materials 

i. Spinach: Fresh spinach leaves were collected from Superstore and stored at -20°C 

until used. 

ii. Enzyme: Bovine Carbonic Anhydrase (BCA) was purchased from Sigma-Aldrich®, 

≥ 99% purity, specific activity ≥ 2500 W-A units/mg protein, lyophilized powder, 

and was stored between 2-6°C. 

iii. Alginate: Alginic acid sodium salt from brown algae was obtained from Sigma-

Aldrich®, powder, low viscosity and stored at room temperature. 

iv. Chitosan: Chitosan was obtained from Sigma-Aldrich®, medium molecular weight, 

powder and stored at room temperature. 

v. Trizma® Base: Trizma® base was obtained from Sigma-Aldrich®, ≥ 99.9% purity, 

crystalline, pH: 10.5-12 and stored at room temperature. 

vi. Dialysis membrane: Dialysis tubing cellulose membrane (76mm) was obtained 

from Sigma-Aldrich®. 

Other Chemicals: 

Ammonium Sulphate (≥ 99%), Calcium chloride (≥ 97%) were purchased from Sigma-

Aldrich®. Hydrochloric acid and acetic acid were purchased from Fisher Scientific. 

CO2 cylinder: Carbon dioxide (CO2) cylinder was obtained from Praxair Inc. 
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3.3. Experimental Procedures 

3.3.1. Spinach preparation 

Spinach leaves were washed thoroughly with water and the stems were removed and discarded, 

then the leaves were dried at room temperature for 30 min to removed excess water and then 

stored at -20°C in a sealed plastic bag. 

3.3.2. Enzyme Extraction 

Slightly modified procedure of Pocker and Ng (1973) was followed for this step. The procedure 

was carried out at 4°C. The stored leaves were blended with 20nM Tris-Hcl buffer (pH 8) in a 

blender. Approximately 1.5 ml of buffer was used for each gram of leaves (Pocker et al. 1973). 

The suspension was filtered through cheesecloth and the pulp was discarded. This 

homogeneous mixture was centrifuged at 4000 rpm for 30 min at 4°C. The pellet was discarded, 

and the supernatant was used to purify carbonic anhydrase enzyme. 

3.3.3. Partial purification of enzyme 

Enzyme purification was done with the help of ammonium sulphate precipitation. The 

supernatant obtained from extraction step was used for partial purification of enzyme. The 

supernatant was brought up to 30% saturation with (NH4)2SO4 and stirred for 1 hour at 4°C 

before centrifuging at 4000 rpm (4°C) for 30 min. The pellets were discarded. To the 

supernatant more (NH4)2SO4 was added to bring the final concentration to 55% and mixed for 

1 hour followed by centrifugation at 4000 rpm (4°C) for 30 min. The precipitate was recovered 

and dissolved in 5ml of 20mM Tris-Hcl buffer (pH 8) and then dialysed against the same buffer 

at 4°C for 24 hours to remove salts (Marianne K. 1978). The enzyme obtained after dialysis 

was stored at 4°C for further experiments. 

3.3.4. Carbon Dioxide saturated water 

Carbon dioxide saturated solution was prepared by passing gaseous CO2 from a cylinder 

through 500 ml of deionized water at 0-4°C for 1hour. 
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3.3.5. Carbonic Anhydrase activity assay 

Carbonic Anhydrase activity was assayed by using electrometric method developed by Wilbur 

and Anderson in 1948. In a glass vial 3ml of 20mM Tris Base buffer (pH 8.3, 25°C) was poured 

followed by adding 50μl of enzyme solution. pH electrode was placed in the solution while 

stirring. After the pH reached maximum (pH > 8.5), 2ml of ice-cold CO2 saturated water was 

added to the solution. The drop in pH from 8.3 to 6.3 was monitored and the time was recorded 

for this 2 units pH drop. Chilled distilled water was used in place of enzyme solution for the 

control (Warrier et al. 2014). Wilbur-Anderson (WA) activity of CA was calculated using the 

following formula and expressed as WA units per ml of enzyme.  

   Enzyme activity (𝑈) = (Ti− Tf)

(Tf)
 …………..(x) 

Ti and Tf signify the time required for 2 units drop in pH in control and in test sample, 

respectively. Ti stands for time needed for change in pH without the enzyme and Tf stands for 

time needed for change in pH with enzyme. 

3.3.6. Protein estimation 

The concentration of protein was assayed according to the method of Lowry with Bovine 

Serum Albumin (BSA) as the standard protein (Lowry et al. 1951).  

Reagents: 

• BSA stock solution (1mg/ml) 

• Analytical reagents: 

a. 50 ml of 2% sodium carbonate mixed with 50 ml of 0.1 N NaOH solution. 

b. 10 ml of 1.56% copper sulphate solution mixed with 10 ml of 2.37% sodium 

potassium tartarate solution. Analytical reagent was made by mixing 2 ml of (b) 

with 100 ml of (a). 

• Folin-Ciocalteau reagent solution: equal volume of reagent and distilled water was 

mixed. This reagent is made fresh on the day of use. 
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For standard plot different dilutions (0.05-1 mg/ml) of BSA solution was prepared by mixing 

stock BSA solution (1mg/ml) and water. 0.2 ml of protein solution was taken in test tubes and 

to it 2 ml of the analytical reagent (copper sulphate reagent) was added and mixed. This solution 

is incubated for 10 mins at room temperature. Then 0.2 ml of Folin-Ciocalteau solution was 

added to the test tubes and incubated for 30 mins. Water was used as blank for standard plot 

and Tris-Hcl was used as blank for protein estimation. Absorbance was measured at 660nm. 

3.3.7. Preparation of alginate and chitosan beads 

3.3.7.1. Alginate beads 

4% (w/v) sodium alginate solution was made in distilled water and was stirred for 1 hour. CA 

enzyme (0.1mg/ml) was added to this solution. It was followed by drop wise extrusion of CA-

alginate solution into 2.5% (v/v) CaCl2 solution to form beads. The beads were incubated for 

1 hour at 4°C (R. R. Yadav et al. 2012). The beads were then washed with 20mM Tris buffer 

and kept in the fridge until further use. For control, beads were made without adding the CA 

enzyme solution.  

3.3.7.2. Chitosan Beads 

Chitosan solution was prepared by dissolving 2 g chitosan in 100 ml of 1% acetic acid. The 

solution was stirred at 30°C for 1 hour to obtain a viscous solution (Simsek-Ege et al. 2002). 

This viscous solution was the degassed for 2 hours followed by adding dropwise in 1M NaOH 

solution while continuously stirring to form beads. The beads were allowed to stabilize in 

NaOH solution for overnight. The beads were then washed thoroughly with distilled water to 

remove excess NaOH.  

3.3.7.3. Chitosan Membrane 

Membranes were prepared with varying concentration of chitosan (1-2%) and acetic acid (1-

2%). Chitosan was dissolved in acetic acid and stirred for an hour at 30°C. Then the chitosan 

solution was degassed for 1 hour followed by pouring it on glass plates and putting them in 
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oven at 60°C overnight for drying. After drying the glass plates were immersed in 1M NaOH 

solution for half an hour and then washed with distilled water to wash off excess NaOH. The 

sheets were then re-dried at room temperature for 3-4 days (Magalhães et al. 1998). 

3.3.8. Enzyme Immobilization 

For alginate beads, entrapment method was used for enzyme immobilization. Enzyme was 

added in the alginate solution and then added dropwise in 2.5% CaCl2 solution to form beads. 

The beads were incubated for one hour and then washed with Tris-HCl buffer (R. R. Yadav et 

al. 2012). The immobilized beads were stored in fridge for further experiments. 

For chitosan beads and membrane, adsorption was used for enzyme immobilization. The 

chitosan beads and membrane were incubated with enzyme solution (1mg/ml) for overnight at 

4°C with slight stirring. After incubation the beads and membrane were washed with distilled 

water. The supernatant obtained was used for protein estimation to determine the amount of 

enzyme immobilized on the substrate. 

3.3.9. Thermal and pH stability 

The immobilized or free enzymes were kept in Tris-HCl buffer (pH 8.0) at different 

temperatures (25-60°C) for 1 hour. The enzyme activity was measured to analyse the optimum 

temperature for both free and immobilized enzymes.  

For optimum pH the enzyme activity was measured after incubating the free or immobilized 

enzyme at various pH ranging from 5.5 to 10 in Tris-HCl buffer for 1 hour at room temperature. 

3.3.10. Storage stability 

The storage activity of free and immobilized enzyme was determined by storing it for 30 days 

at 4°C. The enzyme activity was determined every week with the help of enzyme activity assay. 

3.3.11. Sequestration of CO2 

1ml of 1M Tris buffer (pH 8) was added to 10ml of CO2 saturated water and shaken at room 

temperature. Then to this mixture, 10ml of 2% CaCl2 was added followed by 1ml of enzyme 
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solution (1mg/ml) and shaken. The precipitate formed was filtered using whatmann filter paper 

and dried in oven. The amount of precipitate formed was weighed. In case of immobilized 

enzyme, the enzyme solution was replaced with beads and film. 

3.3.12. Recyclability of immobilized enzyme 

Immobilized enzyme was used for CO2 sequestration as mentioned above. The immobilized 

enzyme was then washed with distilled water and reused again for CO2 sequestration. This was 

repeated until no CaCO3 precipitate was obtained in the end. 
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4.1. Extraction and purification of Carbonic anhydrase from spinach 

Carbonic Anhydrase was extracted from Spinach and partially purified by ammonium 

sulphate precipitation method. As mentioned in section 3.3 the spinach was blended in a 

blender and a homogeneous slurry was obtained, which was then filtered with muslin cloth to 

obtain the crude extract. The crude extract was then partially purified by adding ammonium 

sulphate precipitation followed by dialysis as shown in figure 4.1. Commercial CA (Bovine 

Carbonic Anhydrase) was used to compare the activities of fully and partially purified enzyme. 

The total activity and specific activity of commercial enzyme, crude extract and the precipitate 

obtained after partial purification is shown in Table 4.1.  

         

                (A)                                         (B)                                         (C) 

Figure 4.1: (A) Crude extract obtained after filtration; (B) Precipitate obtained after 

ammonium sulphate precipitation; (C) Dialysis of precipitate. 

The specific activity of partially purified enzyme is 621.78 U/mg which is considerably 

lower than that of commercial enzyme (BCA) 1706.67 U/mg, however, it should be considered 

that the spinach derived CA was obtained in a simple way and after partial purification it still 

contained some impurities which explains the differences in activities. It has been reported by 

Kandel et al. (1977) that partially purified CA from spinach had specific activity of 389 U/mg, 

specific activity of pecan leaves was reported to be 61.2 U/mg which is significantly less than 
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what was obtained from spinach in this study. Purification level of the of extracted sample is 

1.71 times which indicates that the partial purification step worked, and the sample got purified. 

Yield is the enzyme activity retained after purification step. The initial enzyme yield is said to 

be 100%, after purification step it was 188.53 times which indicates that the majority of 

proteins in the original crude extract was purified. 

Table 4.1: Partial purification of CA from spinach leaves. 

 

Total 

Protein 

(mg/ml) 

Total 

Activity 

(Units) 

Specific 

activity 

(Units/mg) 

Yield 
Purification 

Level 

 Bovine Carbonic 

Anhydrase (commercial) 
5 8533.33 1706.67 - - 

Crude extract 2.573 933.33 362.73 100 1 

55% (NH4)2SO4 saturation 

precipitate 
2.830 1759.64 621.78 188.53 1.71 

 

4.2. Immobilization on different materials 

Immobilization is confinement of enzyme to a support other than the substrates and 

products. Due to poor regeneration and recovery of enzyme in aqueous solutions, 

immobilization has drawn a lot of attention. Natural and inorganic polymers have been used 

for immobilization (Datta et al. 2013). Immobilization techniques have received attention in 

the past decade as they have several advantages like stability, inertness, physical strength, 

reusability, ease in separation, more robust and resistant to environmental changes (Lee JF et 

al. 2015), (Datta et al. 2013). One of the disadvantages of enzyme immobilization is the 

diffusional limitation of substrate to the enzyme, leaching of enzyme and cost of material 

(Homaei et al. 2013). For this study alginate and chitosan have been used as immobilization 
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materials/support. They both are natural polymers. Alginate has been extensively used because 

of its non-toxic nature and reusability for immobilization as calcium-alginate beads, alginate-

xanthan beads for enhanced enzyme activity and chitosan, a derivative of chitin, has several 

advantages as well such as its easy availability, biodegradability and biocompatibility (Harish 

Prashanth et al. 2007) (Homaei et al. 2013). 

In this study the partially purified enzyme was immobilized on alginate beads, chitosan 

beads and chitosan film. 4% (w/v) alginate beads, 2% (w/v) chitosan beads were made and 

immobilized with 0.1 mg/ml of enzyme solution overnight. For chitosan films different 

concentrations of chitosan (1-2% (w/v)) and acetic acid (1-2% (v/v)) were used for making 

films and then those films were immobilized with enzyme solution overnight. Table 4.2 and 

Table 4.3 show the amount of protein that got immobilized on the beads and film and their 

respective enzyme activities. Entrapment of enzyme was done in alginate beads, it showed 

specific activity of 23.37 U/g of alginate beads with protein content of 0.00037 g/g of beads 

which is higher as compared to immobilization of commercial CA on alginate beads which 

showed specific activity of 26.8 U/g of beads with protein content of 0.0019 g/g of beads (A. 

Sharma et al. 2011). On chitosan beads the enzyme was immobilized by adsorption method. 

The beads had specific activity of 20.96 U/g of beads with protein content of 0.039 mg which 

is better than that has already been reported in literature which shows that chitosan beads were 

immobilized with CA extracted from B. Pumilus by adsorption had specific activity of 2.85 

U/mg with protein content of 0.04 mg (Wanjari et al. 2011).  
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Table 4.2: Total activity, protein content and specific activity of enzyme immobilized on 
alginate and chitosan beads. For experiments 200 mg of alginate and chitosan beads were taken. 

Nature 

Total 

Activity for 

200mg 

beads (U) 

Protein 

content on 

200mg of 

beads(mg) 

Specific 

Activity 

(U/mg) 

Protein 

content 

for 1 g of 

beads 

(g/g beads) 

Total 

Activity for 1 g of 

beads 

(U/g of beads) 

Alginate 

beads 
1.74 0.074 23.37 0.000374 8.74 

Chitosan 

beads 
0.83 0.039 20.96 0.000199 4.18 

 

For making chitosan films different concentrations of chitosan and acetic acid was used to 

obtain the optimum concentrations of chitosan and acetic acid because in literature several 

different concentrations of the same were reported. Two concentrations of chitosan (1 and 2 % 

(w/v)) were taken along with two concentrations of acetic acid (1 and 2% (v/v)). On increasing 

the concentration of chitosan, the mixture became very viscous and was heated at 30°C to 

obtain a homogeneous mixture. Chitosan films with lower chitosan concentration were quite 

fragile as compared to those made with higher concentration of chitosan (2% (w/v)). Chitosan 

concentration could not be increased beyond 2% (w/v) as it became very difficult to dissolve 

even after heating and a very viscous mixture was obtained which was not appropriate for 

making films. Chitosan film with 2% (w/v) chitosan dissolved in 1% (v/v) acetic acid was the 

one which showed maximum specific activity (53.88 U/mg) after immobilization of enzyme 

and hence was selected for further experiments.  
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Table 4.3: Optimization of chitosan concentration and acetic acid percentage for chitosan film 
preparation. 

Chitosan concentration 

(g) 

Acetic acid 

(%) 

Specific Activity 

(U/mg) 

1 1 30.22 

1 2 20.14 

2 1 53.88 

2 2 22.48 

 

4.2.1. Effect of temperature on free and immobilized enzyme 

Temperature is known to have a very significant effect on the activity of enzymes. Most of 

the enzymes denature at higher temperature which is the reason why enzymes are being 

immobilized. In industrial processes the temperatures are very high which are not favourable 

for enzymes. Immobilization of enzymes has been proven to aid in the stability of enzymes at 

higher temperatures. In this study the effect of temperature on both free and immobilized 

enzyme was done to see which one is more effective for the enzyme to be used at a higher 

temperature. 

The effect of temperature on free enzyme, alginate beads, chitosan beads and chitosan film 

were studied by incubating free and immobilized enzyme in enzyme solution (0.1 mg/ml) at 

temperatures ranging from 25-60°C for an hour and then their activity was measured. Free 

enzyme showed maximum activity at 30°C as shown in figure 4.2. 
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film, the enzyme activity was maximum at 35°C which was 5°C higher than free enzyme 

(figure 4.5).   

 

Figure 4.4: Effect of temperature on enzyme immobilized on chitosan beads. 

 

Figure 4.5: Effect of temperature on enzyme immobilized on chitosan film. 

Free enzyme showed higher activity at 30°C while alginate beads (40°C), chitosan beads 

(35°C) and chitosan films (35°C) showed high activity at higher temperatures than free 

enzyme, this difference in temperatures for free and immobilized enzyme indicates that at 
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higher temperature the support protect the enzyme from denaturation. It has been reported that 

that immobilization increases the rigidity of enzyme, which increases the stability towards 

increasing temperatures compared to free enzymes in solution (Abdel-Naby 1993). The 

decrease in activity after reaching the optimum activity may be due to denaturation of enzyme 

at higher temperature which is in concurrence with earlier reported work (R. R. Yadav et al. 

2012), (Vinoba et al. 2012). At higher temperatures the protein denatures because of 

conformational changes and protein unfolding (Vinoba et al. 2012). Thus, it can be concluded 

that at higher temperatures the immobilized enzymes are more stable than free enzyme. 

Alginate beads show highest specific activity at 40°C and chitosan beads at 35°C. In case 

of alginate beads the enzyme is entrapped in the beads while in case of chitosan the enzyme 

has been adsorbed on the beads. Enzyme is more stable at higher temperature when 

immobilized by entrapment than by physical adsorption. In case of physical adsorption, the 

enzymes are released from the support at higher temperature. These results coincide with those 

reported by Ohtakara et al, (1988) whose report suggest that immobilization of glucoamylase 

on chitosan beads showed lesser stability on physical adsorption as compared to that of 

entrapment or ionic bonding (Skjak-Braek et al. 1989). 

4.2.2. Effect of pH on free and immobilized enzyme 

One of the most enzyme activity altering parameter in an aqueous medium is pH. Change 

in pH can alter the shape of protein which can lead to altered protein recognition or the 

enzyme might lose its activity. pH is a measure of H+ ions and therefore a good indicator of 

OH- ions. The charges on H+ and OH- ions interfere with the hydrogen and ionic bond that 

hold together an enzyme, since they will be repelled or attracted by the charges created by the 

bonds. This interference causes a change in the shape of the enzyme. Once the shape of 

enzyme changes the substrate cannot bind to it. pH alterations not only change the shape of 
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the enzyme but also the charge on the substrate because of which the substrate cannot bind to 

the active site and cannot undergo catalysis.    

For determining the effect of pH on the activity of free and immobilized enzyme, they 

were incubated for an hour in Tris-HCl buffer prepared at pH ranging from 5.5-10. The 

specific activity of the free and immobilized enzyme was calculated to obtain the pH at which 

each of them showed the highest activity.  

From figure 4.6 it can be seen that as the pH of the buffer was increased the enzyme 

activity also increased but after reaching the maximum activity (pH 8) it started decreasing. 

Alginate beads also showed the same pattern of increase in activity with increase in pH, with 

highest specific activity at pH 8 followed by a decreasing pattern (figure 4.7). According to 

literature, for both free enzyme and enzyme immobilized on alginate beads the pH with 

highest activity has been reported close to 8.5 which coincides with the results in this study 

(R. R. Yadav et al. 2012). 

 

Figure 4.6: Effect of pH on free enzyme. 
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Figure 4.7: Effect of pH on enzyme immobilized on alginate beads. 

Chitosan beads showed maximum activity at pH 8.5 and for chitosan film the maximum 

specific activity was obtained at pH 7.5 (figure 4.8 and 4.9).  

 

Figure 4.8: Effect of pH on enzyme immobilized on chitosan beads. 
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Figure 4.9: Effect of pH on enzyme immobilized on chitosan film. 
Out of all the materials used for immobilization Chitosan beads showed the maximum 

stability of enzyme at pH 8.5 as compared to that of free enzyme at pH 8, alginate beads at pH 

8 and chitosan film at pH 7.5. This difference in the optimum pH for chitosan beads and 

chitosan film is due to the different porosity and adsorption structure (Adarsh et al. 2007), 

(Ouyang et al. 2014). 

4.3. Sequestration of CO2 by free and immobilized CA 

To demonstrate the feasibility of CO2 sequestration the biomimetic approach using CA 

from plant domain was done. CA was added to CO2 saturated water containing calcium 

chloride solution for enhanced precipitation of carbonate and bicarbonate salts. The 

immobilized enzymes were used in place of free enzyme in the process to check sequestration 

efficiency of immobilized enzymes. Table 4.4 shows the CaCO3 precipitate formed after 

carbonation reaction.  
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Table 4.4: Precipitation catalysed by free and immobilized CA. 

Enzyme 

Nature 

Total 

Activity 

(U) 

Total 

Protein 

(mg) 

Specific 

Activity 

(U/mg) 

CaCO3 

Precipitate 

(g) 

Free enzyme 8.61 1 172.3 0.089 

Alginate 

Beads 

1.74 0.074 23.37 0.018 

Chitosan beads 0.83 0.039 20.96 0.009 

Chitosan film 0.29 0.017 17.58 0.005 

 

The carbonation capacity of free enzyme was found to be 89 mg as compared to 18mg for 

alginate beads, 9 mg for chitosan beads and 5 mg for chitosan film. Sharma and Bhattacharya 

(2010) successfully demonstrated the sequestration of CO2 to CaCO3 using indigenous CA 

from P. fragi, M. lylae, and M luteus. In another study, carbon composite beads were used for 

CA immobilization from Bacillus Pumilus showed 19.22 mg precipitate while the free enzyme 

gave 33.6 mg of precipitate (Prabhu et al. 2011). This shows that carbonate deposition was 

lower in immobilized enzyme than in case of free enzyme. The lower carbonation rate in 

immobilized enzyme can be due to lower accessibility of the active site to the substrate. The 

amount of enzyme immobilized also plays a very important role in carbonation because in case 

of immobilized enzyme the amount of enzyme that got immobilized on the substrate is very 

low as compared to free enzyme. Hence, lower enzyme immobilization means lower number 

of active sites for the substrate to bind and therefore lower carbonation. 
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Solubility of CO2 is 3.36 g per 1000 g of water at 0-4°C and 1 atmospheric pressure. Which 

means 0.0336 g of CO2 gets dissolved in 10 g of H2O (CO2 saturated water). Stoichiometrically, 

100 g of CaCO3 has 44 g of CO2. Theoretically, 0.0076 g of CaCO3 should have been formed 

from 0.0336 g of CO2. But, from the actual experiment 0.089 g of CaCO3 was obtained. This 

increased amount of CaCO3 could be the result of CO2 that entered the experimental setup 

while it was opened to add CaCl2 solution and because the setup was not completely sealed. 

4.4. Reusability of immobilized enzyme 

For industrial applications of enzyme, reusability is an essential parameter since it can 

reduce the cost of enzyme driven processes. The reusability of CA was evaluated for 4 cycles. 

The reaction was carried out with in the same manner as CO2 sequestration but after every 

cycle the immobilized enzyme was rinsed with Tris-Hcl buffer to neutralize the pH and to 

remove any excess ions.  

Table 4.5: Summary of precipitate of CaCO3 reaction for immobilized enzyme. 

Number of cycles 

CaCO3 Precipitate (mg) 

Alginate beads Chitosan beads Chitosan film 

1 18 9 6 

2 12 7 4 

3 8 5 3 

4 6 3 2.5 

 

Free enzyme could not be reused after one cycle as the enzyme cannot be separated from 

the solution. The amount of CaCO3 precipitate formed was highest in case of alginate beads 

(18 mg) than chitosan beads (9 mg) and chitosan film (2.5 mg). The decrease in precipitate 

formation has been explained because of the leaching effect of enzyme which means that with 

each cycle the enzyme on the immobilization material is leaching out (Wanjari et al. 2011).     
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4.5. Storage stability of free and immobilized enzyme 

Stability of free and immobilized enzyme was determined by storing them for 4 weeks at 

4°C. Samples were taken every week and enzyme activity was assayed.  

 

Figure 4.10: Stability of free and immobilized enzyme over a period of 4 weeks. 
In case of free enzyme there was a sudden drop in relative activity of the enzyme in the 

first week, but after that for the rest of the three weeks there was only 20% lost in activity in 

total. Because of this advantageous shelf life observed, it can be concluded that CA obtained 

from plants can be used in industries. This observation regarding the good stability of plant CA 

enzyme coincides with what has been reported in literature (Pocker et al. 1973), (Bednár et al. 

2016). 

In case of immobilized enzymes, chitosan beads retained about 83% of its original activity 

after 4 weeks while alginate beads retained 76.5% and chitosan film retained 80.75% of its 

original activity.  
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For this study, the extraction of carbonic anhydrase was done from a plant source namely 

spinach leaves. The extraction and partial purification of carbonic anhydrase was done 

successfully with total activity of 1759.64 Units.  

The partially purified enzyme was then immobilized on sodium alginate beads, chitosan beads 

and chitosan film to study the effectiveness of two immobilization techniques on two 

supports/materials. The immobilization method was used because it is an easy and cheap 

method to show better reusability and to preserve the stability of enzyme. Optimum 

temperature and pH for both free and immobilized enzyme was studied. The optimum 

temperature for immobilized enzyme was better than free enzyme. Free enzyme showed 

optimum temperature at 30°C, alginate beads had optimum temperature of 40°C while chitosan 

beads and film had an optimum temperature of 35°C both. The optimum pH for free enzyme 

was 8 which is lower than that of chitosan beads which is 8.5. Alginate beads and chitosan film 

showed optimum pH at 8 and 7.5 respectively. Chitosan beads showed higher relative activity 

in case of optimum temperature and pH.  

Transformation of CO2 to CaCO3 was carried out with the help of both free and immobilized 

enzymes. Free enzyme produced 89 mg of precipitate per 8.6 U of enzyme activity. Reusability 

of the immobilized enzymes was performed up till the 4 cycles. Both the free and immobilized 

enzymes produced relatively same amount of precipitate per unit enzyme. Solubility of CO2 is 

3.36 g per 1000 g of water at 0-4°C and 1 atmospheric pressure. Which means 0.0336 g of CO2 

gets dissolved in 10 g of H2O (CO2 saturated water). Theoretically, 0.0076 g of CaCO3 should 

have been formed from 0.0336 g of CO2. But, from the actual experiment 0.089 g of CaCO3 

was obtained. This increased amount of CaCO3 could be the result of CO2 that entered the 

experimental setup while it was opened to add CaCl2 solution and because the setup was not 

completely sealed. 
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Stability of free and immobilized was also compared over a period of 4 weeks. The free enzyme 

showed a relatively better stability than the enzymes extracted from microorganisms. 

Immobilized enzymes showed better relative stability than free enzyme. Free enzyme retained 

about 68% of its activity, while chitosan beads retained the maximum relative activity 83% as 

compared to chitosan film (80.75%) and alginate beads (76.59%). This shows that the 

immobilized enzyme can be more useful.  
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Chapter 6 Recommendations 
for future work 
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Recommendations for future work include: 

 

Listed below are some are some suggestions for future work with Carbonic Anhydrase: 

• Different plant sources can be utilized to check the CO2 sequestration purposes. 

• Cross linking of enzyme can be done during immobilization to prevent desorption or 

leaching of immobilized enzyme. 

• Chemical methods of immobilization can be explored for stability and reuse of enzyme. 

• Membrane immobilization of plant-based enzyme can be done for separation of CO2 

from flue gases. 
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