
Extracting Specific Text From Documents

Using Machine Learning Algorithms

by

Sahib Singh Budhiraja

Lakehead University

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTERS

in the Department of Computer Science

Lakehead University

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Extracting Specific Text From Documents

Using Machine Learning Algorithms

by

Sahib Singh Budhiraja

Lakehead University

Supervisory Committee

Dr. Vijay Mago, Supervisor

(Department of Computer Science, Lakehead University, Canada)

Dr. Salimur Choudhury, Departmental Member

(Department of Computer Science, Lakehead University, Canada)

Dr. Philippe J. Giabbanelli, External Member

(Department of Computer Science, Furman University, USA)

iii

ABSTRACT

Increasing use of Portable Document Format (PDF) files has promoted research

in analyzing the files’ layout for text extraction purpose. For this reason, it is im-

portant to have a system in place to analyze these documents and extract required

text. The purpose of this research fulfills this need by extracting specific text from

PDF documents while considering the document layout. This approach is used to

extract learning outcomes from academic course outlines. Our algorithm consists of

a supervised leaning algorithm and white space analysis. The supervised algorithm

locates the relevant text followed by white space analysis to understand document

layout before extraction. The supervised learning approach used for detecting rele-

vant text does so by looking for relevant headings, which mimics the approach used

by humans while going through a document.

The data set used for this research consists of 500 course outlines randomly sam-

pled from the internet. To show the capability of our text detection algorithm to

work with documents other than course outlines, it is also tested on 25 reports and

articles sampled from the internet. The implemented system has shown promising

results with an accuracy of 81.8% and remediated the limitation shown by the current

literature by supporting documents with unknown format. The algorithm has a wide

scope of applications and takes a step towards automating the task of text extraction

from PDF documents.

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables viii

List of Figures ix

Acknowledgements x

Dedication xi

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 2

1.3 Problem Description . 3

1.4 Brief Description of Methodologies 3

1.4.1 Supervised Learning . 3

1.4.2 Document Layout Analysis . 6

2 Related Work 9

2.1 HTML Conversion . 9

2.2 Heading Detection . 10

2.3 Layout Analysis . 11

2.4 Conclusion . 13

3 Preprocessing PDFs 14

3.1 Overview . 14

v

3.2 Dataset . 15

3.3 Tool Selection . 16

3.4 Conversion Techniques . 16

3.4.1 HTML Conversion . 16

3.4.2 XML Conversion . 19

3.5 PDF To Image Conversion For White Space Analysis 21

3.5.1 Choosing A Pixel Size . 21

3.6 Conclusion & Future Work . 22

4 Supervised Learning Approach For Heading Detection 24

4.1 Introduction . 25

4.2 Methodology . 25

4.2.1 Data Collection . 25

4.2.2 Data Preprocessing . 27

4.2.3 Feature Selection . 31

4.2.4 Grid Search . 32

4.2.5 Training . 33

4.3 Evaluation . 39

4.3.1 Training and Prediction Time 39

4.3.2 Confusion matrix . 40

4.3.3 AUC . 41

4.4 Test Results . 42

4.4.1 Training and Prediction Time 42

4.4.2 Confusion Matrix Based Evaluation 43

4.4.3 AUC . 43

4.5 Discussion & Future Work . 44

4.5.1 Overall Results . 44

4.5.2 Testing The Generalizability 45

4.5.3 Analysing The Results . 46

4.5.4 Extending The Classifier . 46

4.6 Conclusion . 47

5 Document Layout Analysis & Text Extraction 48

5.1 Overview & The Framework . 48

5.2 Selecting Relevant Headings - Supervised Approach 50

vi

5.2.1 Data Collection, Labelling & Keyword Selection 50

5.2.2 Data Transformation . 51

5.2.3 Training . 52

5.3 Selecting Beginning and End Markers 52

5.4 Layout Analysis . 55

5.4.1 Detecting Headers and Footers 56

5.4.2 Locating Text Columns and Images 57

5.5 Text Extraction . 57

5.5.1 Targeted Text Extraction . 57

5.5.2 Formatting Output . 59

5.6 Test Results & Discussion . 61

5.7 Conclusion . 62

6 Discussion, Future Work & Conclusion 63

6.1 Overview . 63

6.2 Main Contributions . 64

6.3 Scope For Improvement & Current Exceptions 64

6.3.1 Extending The Heading Detection Classifier 64

6.3.2 Scanned Documents . 66

6.3.3 Text in Tables . 69

6.3.4 Extending The Keyword Based Approach 69

6.3.5 Documents Without Headings 69

6.4 Conclusion . 71

A Application API 72

A.1 Overview . 72

A.1.1 Run & Configure . 72

A.2 Methods Available . 73

A.2.1 Extracting Learning Outcomes 73

A.2.2 Extracting Headings . 74

A.2.3 Extracting Text Format From the Document 76

A.2.4 Locating Header & Footer Area 78

A.2.5 Formatting The Extracted Text 80

B List of Abbreviations 82

vii

C Values For All Classifier Parameters 84

Bibliography 88

viii

List of Tables

Table 2.1 Evaluation results for the approach proposed by El-Haj

et al. [10] . 11

Table 3.1 Text format recovery tools and their supported formats 16

Table 4.1 List of all features . 30

Table 4.2 Selected features for each classifier 32

Table 4.3 Classifier Accuracy 43

Table 4.4 AUC Values for all Classifiers 44

Table 4.5 Test Results For General Set 45

Table 4.6 Pearson Correlation Coefficient Between Each Feature

Used in the Selected Classifier and Final Decision Labels 46

Table 5.1 Test Results For Relevant Heading Selection 61

Table 5.2 Individual Test results 61

Table 5.3 Overall Test Results 62

Table C.1 Decision Tree Parameters 84

Table C.2 Support Vector Machine Parameters 84

Table C.3 K-Nearest Neighbors Parameters 85

Table C.4 Random Forest Parameters 85

Table C.5 Gaussian Naive Bayes Parameters 85

Table C.6 Quadratic Discriminant Parameters 85

Table C.7 Logistic Regression Parameters 86

Table C.8 Gradient Boosting Parameters 86

Table C.9 Neural Net Parameters 87

ix

List of Figures

Figure 1.1 Supervised Learning Method 4

Figure 1.2 Simple Linear Regression 5

Figure 1.3 Bounding Box Based Approach 6

Figure 1.4 White Space Analysis 7

Figure 3.1 Preprocessing PDFs 15

Figure 3.2 Extraction of Data from Documents 18

Figure 3.3 CMBX10 Font without making it bold 19

Figure 3.4 Pixel Size Example 22

Figure 4.1 The Research Methodology 26

Figure 4.2 Font Size Threshold Assumption Example 28

Figure 4.3 Confusion Matrix Example 40

Figure 4.4 Time (in seconds) required to train classifiers and run

predictions on test data 42

Figure 5.1 A Framework to extract learning outcomes from PDF

documents . 49

Figure 5.2 Sample of Data Points for Relevant Heading Selection 52

Figure 5.3 Defining the beginning and end markers 53

Figure 5.4 Header Detection Example 55

Figure 5.5 Layout Example . 58

Figure 6.1 Heading False Possitive 65

Figure 6.2 Example of Scanned PDF With Skew 67

Figure 6.4 Relevant Text in Table Example 68

Figure 6.5 Example Of Documents Without Headings 70

x

ACKNOWLEDGEMENTS

I would like to thank:

First of all Dr. Vijay Mago, for providing me with the opportunity to work under his

supervision and for supporting me through all the tough times. It was not an easy

journey, but I have been very fortunate to have a supervisor who cared deeply about

my work. His guidance, constructive suggestions, and encouragement are the reason

I was able to learn and grow as a researcher. It was an absolute privilege to work

with him on this research.

Dr. Salimur Choudhury, for the advice and patient guidance he has provided me

throughout my time here at Lakehead University. I would also like to thank him for

all the time he has devoted in helping me write my thesis.

Datalab.science Team and Andrew Heppner, for helping with proofreading and revi-

sions. I greatly appreciate their help.

Ontario Council on Articulation and Transfer (ONCAT), for their financial support

provided through Project Number-2017-17-LU. This research would not have been

possible without it.

xi

DEDICATION

“What we find changes who we become.”

- Peter Morville

I would like to dedicate this thesis to,

My parents, who gave me the foundation of something they always enjoyed, edu-

cation. For inspiring me and always believing in my ability to accomplish anything I

set my mind to. For making sure I had access to all the resources I need to succeed

no matter the circumstances. My sister, who always took care of my chores when

I was busy studying and made me laugh whenever I would feel low. They are my

driving force, what keeps me going.

My uncle, who always thought of me as a son. Watching futurist documentaries

on the Discovery channel with him when I was little is what got me interested in

science and technology in the first place. Without his support and encouragement, I

would not be where I am today.

I would also like to dedicate this thesis to all the teachers and mentors who in-

spired, empowered, taught, and shaped me into the person I am today.

Chapter 1

Introduction

1.1 Overview . 1

1.2 Motivation . 2

1.3 Problem Description . 3

1.4 Brief Description of Methodologies 3

1.4.1 Supervised Learning . 3

1.4.2 Document Layout Analysis . 6

1.1 Overview

The Portable Document Foment (PDF) format is portable, thus allowing its users

to open these documents independent of the underlying platform. PDF is the one

of the most commonly used document formats for storing text based data. A PDF

document is visually an exact digital copy that displays text by drawing characters

on a specific location, so the extracted text will contain the whole text from the

document extracted in a left to right and top to down flow ignoring any formatting

details like multiple columns or header/footer text [4].

The shift from analog to electronic storage of text based documents is one of the

most significant accomplishments which has lead to led to an exponential increase in

the number of electronic documents used in both professional and non-professional

contexts. With the rising number of electronic documentation, the demand for text

2

based analysis and the extraction of meaningful and specific information from digital

documents / e-documents is also increasing. Software applications with the ability

to automatically extract specific text from e-documents can save a lot of time and

human effort when dealing with numerous documents. While extracting text from a

PDF is straightforward if the intention is to extract the entirety of the text, given that

it is neither embedded in images nor present in an unknown font. But, extraction

gets complex when only a certain part of that text is needed. Decisions related to

selecting the appropriate sections of the whole text while maintaining the integrity

and flow of the information present challenges that are addressed in this research.

1.2 Motivation

Systematic extraction of textual structure and text is increasingly necessary and use-

ful as demonstrated in El-Haj et al.’s work involving 1500 financial statements [10].

El-Haj performed an analysis of the document structure and extracted specific sec-

tions in a structured manner. It’s application is not just limited to one field as it

can be used to extract information about a company’s performance from financial

statements, in healthcare sector to extract specific notes from patient records, in le-

gal sector to extract procedural history or judgement from case briefs and, for the

purpose of this research, extracting post-secondary learning outcomes from course

outlines for analysis and review [10, 53]. Proposing a method for efficiently extract-

ing learning outcomes from course outlines is the main motivation behind this thesis.

Learning outcomes for a course define what a student will gain from taking a spe-

cific class [21]. Specifically, learning outcomes detail the skills and knowledge the

instructor of the course expects the students to gain from the course [50]. This makes

learning outcomes a useful means of comparing the objectives of multiple courses for

the purpose of credit transfer between institutions and also for measuring an educa-

tional credential against accreditation or Quality Assurance standards. Extracting

learning outcomes is not a straightforward task because there is no standardized for-

mat for course outlines and varies across institutions and professors/instructors. The

purpose of extracting learning outcomes for this research is to support the automation

of university/college transfer credit agreements in Ontario using semantic similarity

algorithms to assess the similarities in learning outcomes between post-secondary cre-

3

dentials [35, 36, 37].

1.3 Problem Description

Automating the process of extracting learning outcomes from course outlines requires

the program to identify which text to extract and then extract it while accounting

for the document’s layout and formatting. The approach followed here is to isolate

the text required to be extracted by looking for headings that are relevant to what

needs to be extracted, which in this case are learning outcomes. We assumed that

learning outcomes are mentioned under a separate heading and not in a continuous

form where the outline consists of a series of paragraphs with no headings to specify

about the content. A supervised learning approach is necessary to train an algorithm

to detect, label, and classify learning outcomes from the ambiguous textual context

of non-standardized post-secondary course outlines.

1.4 Brief Description of Methodologies

1.4.1 Supervised Learning

Supervised learning is a branch of machine learning that deals with algorithms learn-

ing from labeled training data, therefore it mimics the process of learning under a

supervising teacher [31]. A supervised learning algorithm uses the input variables

(X), and its corresponding output variable (Y) to train a mapping function [46]. The

algorithm keeps on learning until an acceptable performance level is attained. Math-

ematically, it can be represented using the Equation 1.1.

Y = f(X) (1.1)

The purpose of training the algorithm is to make it capable enough to make predic-

tions on unseen situations. Fig 1.1 shows the framework for the whole process. Once

trained, the algorithm can generalize based on the training data and make reasonable

predictions on new instances. Supervised learning algorithms can be further divided

4

into two categories: classification and regression.

Figure 1.1: Supervised Learning Method

Classification

The final output of classification algorithms is discrete and are usually labels or

categories. The purpose of the algorithm is to use a data point to predict the category

or class for that observation [1]. An example of this is the classification of text as

a heading or non-heading. These algorithms can be multi-class, two-class or binary,

depending on the nature and number of output classes. These algorithms usually

generate a continuous value representing the probability of a given class, and this

value represents the confidence level of the decision. This probability is used to make

the final choice regarding the final predicted class. The example in Box 1.1 illustrates

the process.

5

Box 1.1: Classification Example

Lets say an algorithm is classifying text as either heading or non-heading.

If P(heading) = 0.75,

Therefore, P(non-heading) = 0.25

So, the class chosen is heading for this observation.

This example uses a default threshold of of 0.5, which we can change to different

values to adjust how the algorithm behaves.

Figure 1.2: Simple Linear Regression

Regression

Regression algorithms use a set of inputs to generate a continuous variable as out-

put, which is a real value such as float or double value. In simple linear regression

as illustrated in Fig 1.2, the aim is to find a linear function that can predict the

dependent variable as accurately as possible based on the independent one [13]. An

example relating to this thesis would be an algorithm estimating the size of the header

6

or footer region using any one of page layout characteristics as input because both

these regions can range from 0 to 50% of the page height, so the output is continuous

variable dependent on one independent variable.

1.4.2 Document Layout Analysis

The purpose of performing layout analysis on a document is to identify elements like

text columns, header/footer, and tables in it. Both methods discussed below have

their advantages and disadvantages, depending on the nature of the document being

analyzed.

Figure 1.3: Bounding Box Based Approach

Examining Text blocks

This approach analyzes the text content in the document to comprehend its layout

and involves using complex data structures to accomplish it. Ramakrishnan et al.

proposed an approach for examining text blocks using the bounding boxes that sur-

round each word, as shown in Fig 1.3 [42]. The structural information gathered is

aggregated to understand the structure of the document. The bounding box data

can be extracted from a document using XML conversion of a document which is

7

Figure 1.4: White Space Analysis

8

discussed further in chapter 3.

White Space Analysis

White space refers to the part of the document that is completely empty. The white

space separates paragraphs, text columns, and header/footer text. Therefore, it can

be used to analyze the layout. As shown in Fig 1.4, the white spaces represented by

the pink shaded area divide different elements of the page. The idea behind separat-

ing all the elements is to eliminate anything that is not required and to stitch the

required text in the right order as in the case of multiple text columns. Detecting the

white space can be done in a number of ways, for example by checking pixel color

and looking for large empty rectangles.

An example of white space analysis is presented by Berg et al. based on the work

originally presented by Breuel, which works by looking for the largest empty rectan-

gle [3, 6]. The largest empty rectangle works by finding the largest possible rectangle

that can be placed amongst all the text blocks in the document without overlapping

with them. There are many other approaches and some of them are discussed in the

next chapter.

Overview To The Thesis

Introduction to the problem and motivation is presented in this chapter. Chapter 2

discusses the merits and limitations of the available literature. Preprocessing PDFs

to extract data for analysis is discussed in chapter 3. For extracting this data the

PDF is converted to HTML for supervised learning models and images to perform

white space analysis. Chapter 4 presents a supervised learning approach to detect

headings, which provides information about the contents of the PDF. Chapter 5 deals

with identifying the relevant heading(s) using the headings detected earlier and also

presents an approach for layout analysis used for extracting the text in its proper

flow. Chapter 6 discusses the whole system included the main contributions, current

limitations and future work.

9

Chapter 2

Related Work

2.1 HTML Conversion . 9

2.2 Heading Detection . 10

2.3 Layout Analysis . 11

2.4 Conclusion . 13

2.1 HTML Conversion

While PDF format is convenient as it preserves the structure of a document across

platforms, extracting textual layout information is required for detecting headings

and further analysis. One solution to extracting layout information is to convert the

PDF into HTML and use the HTML tags for further analysis, the other one being

conversion to XML discussed later in chapter 3. Once converted to HTML all the

information related to text formatting required for the analysis, like font size and

boldness of text, can be easily extracted.

Jiyang and Yang proposed an approach to perform the conversion from PDF to HTML

using text detection [20]. The output is a HTML file that preserves the font infor-

mation and the layout of the whole document. The process works by detecting text

fragments and merging them. The conversion is made possible by using the coordi-

nate information gathered using PDFBox [38]. They claim good results but did not

include the results. Rahman and Alam [41] also use conversion to HTML to perform

10

their analysis as discussed in Section 2.3 of this chapter. It is clear from the available

literature that HTML conversion is already an established approach for analyzing a

PDF’s textual content. The justification for the choice of tool to make the conversion

is discussed in Section 3.3 of the next chapter.

2.2 Heading Detection

Previous research provides insight into processes related to extracting the heading

layout of a HTML document [29]. In Manabe’s work, headings are used to divide

a document at certain locations that indicate a change in topic. Document Object

Model(DOM) trees are used to sort candidate headings based on their significance and

to define blocks. They made a binary judgement by classifying a candidate as a head-

ing or a block. A recursive approach is applied for document segmentation using the

list of candidate headings. They computed the Fleiss Kappa coefficient which mea-

sures the degree of agreement between the results and the manually labelled dataset,

for headings it came out to be 0.693 and for blocks, it is 0.583. The evaluation based

on the manually labelled dataset shows good results, but still not enough for our

objective. Heading detection is the first step in the extraction process, and its accu-

racy needs to be near perfect to get good overall results. The reason for this claim

is the fact that this application will be divided into multiple small modules, and the

accuracy of the each module will contribute towards the applications overall accuracy.

El-Haj et al. provide a practical application of document structure detection through

the analysis of a large corpus of UK financial reports including 1500 annual reports

from 200 different organizations [10]. They use the content page to get the list of

sections for the report. The generated list of synonyms for section headings is cross-

referenced against a list of ‘gold standard’ section names created from 50 randomly

selected reports. The structure is then extracted using this list and evaluated, in

addition to being reviewed by a domain expert for accuracy.

11

Table 2.1: Evaluation results for the approach proposed by El-Haj et al. [10]

Count %

of PDFs 105 -

Headers in PDFs 2473 -

Extracted Headers 2502 -

Extract Matches 2202 88.01%

Partial Matches 105 4.2%

Wrong Headers 195 7.8%

Missing Headers 166 6.6%

Correct Headers 2307 93.3%

Detected Page Number 94 89.5%

Detected Contents Pages 97 92.4%

Table 2.1 shows the evaluation results from both the evaluation stages. These are the

motivation behind using a keyword-based approach for detecting relevant headings in

our proposed approach. One major drawback is that for this approach to work the

document under review needs to have a table of contents page. In the case of course

outlines and many other types of documents, a table of contents is not used. To make

this a generic approach that works on all kinds of documents, we need a mechanism

to look for section headings before using the keyword-based approach to select the

relevant headings.

The literature discussed in this section has taken steps towards developing a system

which analyses a document’s textual structure. This served as the motivation behind

using headings as a means to locate relevant text, but there is still a need to have an

approach that can efficiently and accurately analyse the textual layout of a document

and divide it into content sections to automate the process of extracting text from a

PDF documents.

2.3 Layout Analysis

Analysing the layout of a document is an essential part of text extraction as it ensures

the consistency and flow of the text. Ramakrishnan et al. propose using contiguous

12

text blocks to analyze the layout and determine the text flow in scientific articles for

text extraction. The proposed method uses the GPL version of JPedal which is an

open-source Java PDF library, to get bounding boxes of words from the document

and then performs aggregation to build up bigger blocks while taking the document

layout into account [42].

Various page formats are supported by computing proximity of the boxes automat-

ically. Once the blocks have been aggregated together, they are classified into pre-

defined categories using a rule-based system. Some of the attributes used for this

rule-based classification are alignment, page number, and last section. After classifi-

cation, the blocks are stitched together in the correct sequence using the section they

are classified under. Stitching them together ensures that the text is extracted in

the correct sequence. Although the provided approach shows good accuracy it only

works with documents that have a defined format and does not present a generic

solution [42].

Gao et al. uses an approach originally presented by Lin et al. for detecting the header

and footer text of PDF documents [14, 24]. The proposed approach uses page associ-

ation and looks for repeating characters across different pages. Using the relationship

between header/footer text spread across multiple pages their system compares one

page with the other for detecting headers/footers. The algorithm needs text and their

bounding boxes to initialize the process by which they directly extract from the PDF

documents.

The whole process is divided into 4 steps:

• The text lines are constructed using text bounding boxes.

• Candidate header/footer text lines are selected by choosing the top five lines as

candidates for the header and bottom three lines as candidates for the footer.

• Each candidate is then evaluated quantitatively to determine if they qualify as

a header/footer by assigning it a score.

• All the candidates that have scores above a certain threshold are chosen as

header/footer text.

13

Even though this approach has a precision rate of 98% and recall of 92.7%, it was

not chosen as it only presents a solution for detecting header and footer text, not for

detecting multiple text columns. We discuss more about this choice in the conclusion

section.

Finally, Rahman and Alam [41] use an approach that looks for the largest rectan-

gle made up of white space and converts the file into Hypertext Markup Language

(HTML) to perform their analysis. The algorithm identifies the white and black space

in the document and creates boxes that only contain white spaces. This process is

performed both in vertical and horizontal directions to come up with these rectan-

gles which they refer to as White Space Rectangles (WSR). After that, the algorithm

detects columns by looking for maximal WSR in the vertical direction. Rows are

detected using the same algorithm, but first, the document is rotated by 90 degrees.

Once all WSRs in vertical and horizontal direction have been detected, they are re-

cursively merged together into White Space Polygons (WSP) until all of the WSRs

have been merged together. WSPs are used to define the document segment, which

is then classified into distinct categories. Once classification is done, the next step

involves rendering (or re-ordering in the correct content flow) by using the informa-

tion from segmentation and recognition. Even though they provide a novel approach

for analysing document layout, no testing results validating the approach are cur-

rently available and the system is confined to detecting multiple text columns and

not header/footer text.

2.4 Conclusion

We found that there is currently no single algorithm or tool that can extract specific

components, in our case Learning Outcomes, from a text based document. The

current approaches relies on table of contents or a known structure to identify the

headings in the document, this limits their application. The approaches for analysing

the layout perform good, but use different techniques for analysis; thus requiring

more processing which can be avoided if they use the same technique. Therefore, for

specific text extraction to be feasible, there is a need to improve and combine the

currently available algorithms.

14

Chapter 3

Preprocessing PDFs

3.1 Overview . 14

3.2 Dataset . 15

3.3 Tool Selection . 16

3.4 Conversion Techniques . 16

3.4.1 HTML Conversion . 16

3.4.2 XML Conversion . 19

3.5 PDF To Image Conversion For White Space Analysis 21

3.5.1 Choosing A Pixel Size . 21

3.6 Conclusion & Future Work . 22

3.1 Overview

PDF was created to have a fixed layout representation that displays documents ir-

respective of the application or the platform being used to view them. The format

preserves the overall outlook of the original document by including the low-level struc-

tural objects in the representation like images, lines, curves and grouped characters

[4]. All of the structural objects are shown on the page canvas in a visually oriented

way by a PDF parser. While this is an efficient way to store the visual representation

of a document, the resulting structure is difficult to work with if the aim is to extract

specific parts of the text in a structured manner.

15

Simple text extraction only gives you text from the PDF with no indication of where

that text came from: it could be from a paragraph, heading, or a table. To get infor-

mation such as font size, character bounding box location and other style attributes,

the PDF needs to be converted into mark up languages such as Hypertext Markup

Language (HTML) and eXtensible Markup Language (XML). Fig 3.1 shows the con-

versions that will be performed and their respective outputs.

Figure 3.1: Preprocessing PDFs

3.2 Dataset

Our dataset consists of 500 documents1 downloaded from Google using Google Cus-

tom Search API [9]. The keywords used for sampling the dadaset were “Course

Outlines”, “Course Description” and “Syllabus”. The downloaded documents were

then checked manually to make sure all are course outlines. The documents other

than course outlines were discarded.

1Repository available at: https://github.com/sahib-s/Heading-Detection-PDF-Files

16

Table 3.1: Text format recovery tools and their supported formats

Tool Name Formats Supported
pdf2text HTML, XML

pdftohtml HTML, XML
pdftohtmlEX HTML

pdfextract XML

3.3 Tool Selection

A number of tools are available for recovering the structure of document by converting

them into HTML or XML depending on the need. Table 3.1 lists the ones that were

suitable for further evaluation for the task at hand. Choosing a tool that outputs an

easy to parse format is important because it will reduce the processing time required

to extract the formatting information required. After evaluating we found pdf2text,

which is a PDFMiner wrapper available in Python as the best suited for the task[48].

The selection of PDFMiner is mainly based on its ability to analyze the page structure

and generating an output with elements grouped based on the hierarchy. The fact

that it has been widely adopted in many similar studies involving extraction from

PDFs and is well maintained are also contributing factors[51, 52]. It also supports

XML conversion which provides us finer details about the tags via bounding boxes

that will be required to further this research in the future.

3.4 Conversion Techniques

3.4.1 HTML Conversion

HTML conversion provides us with tags which include information such as font size,

font type and whether if the text is bold or not. This data helps in training and

testing of the supervised classifier used for identifying headings, which is a crucial

part of the proposed algorithm.

Pre-Processing HTML Tags

While extracting the text format information the following points need to be ad-

dressed:

17

• Break tags contained in the text are needed to be replaced by new line character

to make sure the extracted text does not have any unknown tags left at the end

of the process.

• & entity needs to be replaced with & sign because in HTML they are

mentioned as &, which won’t match the & sign in the extracted text.

• Sorting the tags based on their location from top of the page is important

because we need to process the document from top to bottom and sometimes

the tags are not in this order.

Parsing HTML Tags

The HTML files generated using the PDFminer wrapper only use span tags to dis-

play text; therefore, the algorithm looks for these tags only. The span tags from the

generated file are separated and stored in a list in the sequence in which they appear.

Once the list of tags is generated, each tag is processed one by one and this process

is done for all the tags. The style attribute in the tags contain the font family and

the font size.

To determine if the text in the tag is bold or not, the tag style attribute is extracted

using Algorithm 1. This is illustrated in Fig 3.2 which shows some sample text

and its corresponding HTML tags generated using the conversion process. Each tag

is compared with a Regular Expression (REGEX) to extract: the style and the text

[15]. A REGEX is a string of characters used to define a search pattern. The REGEX

used for parsing the tags are mentioned in Box 3.1.

Box 3.1: Regular Expressions Used for Parsing

To extract Font size and corresponding text:

r‘< \s∗?span[∧>] ∗ font− size : (\w∗)px[>]∗ > (.∗?) < \/span \ b[>]∗ > ’

To check if text is bold we look for the following REGEX for the word bold in

the starting tag:

r‘[Bb]old’

18

Figure 3.2: Extraction of Data from Documents

19

Figure 3.3: CMBX10 Font without making it bold

Extracted Data Points

The final data points are also shown in the Fig 3.2, which was generated by parsing

the HTML tags using REGEX. BoldList referred to in Algorithm 1, is a list of fonts

that are already bold due to their properties and do not require to be made bold such

as CMBX10, CMBX12 and BlairMdITCTT-Medium. For example, the font style

CMBX10 as shown in Fig 3.3 already looks bold even without style attribute having

any mention of it being bold. In such cases the font family attribute has no mention

of it being bold, so the algorithm compares the font family to a list of such fonts to

check if the text contained in the tag is bold or not. Document Data (DOC DATA)

is the output of Algorithm 1. Each element of the output list represents a data point,

which contains some text, its boldness flag, and its font size. The whole process

yielded 83,194 data points, which was then exported into an Excel file.

It is not enough to only test the heading detection approach from chapter 4 on course

outlines. To illustrate the generalizability of this approach, we validated it using

12,919 data points extracted using the same process as discussed above from 25 doc-

uments randomly sampled from the internet using search keywords like “report” and

“article”. This dataset would be referred to as general set throughout this research.

3.4.2 XML Conversion

XML Conversion provides finer details about the tags. Each tag represents a single

character and contains its font size, font family, location and tells if the character is

bold. The location of each character is stored in an attribute called bbox (bounding

box) which mentions its location and size using 4 numbers. An example of how this

looks in a converted document is given in Box 3.2.

20

Algorithm 1 Extracting Text Format Information

Input: The document
Output: A list DOC DATA containing text with their font size and boldness flag

BoldList = List of all fonts that are already bold . Initializations
Regex = r“< \s∗?span[∧>] ∗ font− size : (\w∗)px[>]∗ > (.∗?) < \/span \ b[>]∗ >”
StartIndices = []
EndIndices = []
BoldnessFlag = 0

Convert PDF to HTML using pdf2txt . Document Conversion
Set HTMLCode as the extracted code from the generated HTML file

for m in FindIndices(‘<span’,) do
Append m in list StartIndices . Look for the starting of span tags

end

for n in FindIndices(‘’, HTMLCode) do
Append n in list EndIndices . Look for the ending of span tags

end

for s,e in StartIndices, EndIndices do
Append HTMLCode[s:e] in a list TagText . Get the content of each span tag

using the locations found above.
end
for tag in TagText do

. Extraction of style information from the tags.
StartIndex = FindLocation(‘style=’, tag)
EndIndex = FindLocation(‘px”’, tag)
if If tag[StartIndex:EndIndex] contains the word bold or any fonts from BoldList
then

Set BoldnessFlag for tag element to 1.
end

end

for tag in TagText do
for For Match in LocateMatches(Regex, HTMLCode) do

Append BoldnessFlag, match in the list DOC DATA
. Consolidation of the final output list using the extracted information. The

variable Match contains the font size and text from tag
end

end

21

Box 3.2: Regular Expressions Used for Parsing

For example the word Sings appears as a sequence of the following tags:

<text font=“Georgia-Bold” bbox=“36.000,742.332,43.788,755.880”

size=“13.548”>S</text>

<text font=“Georgia-Bold” bbox=“43.801,742.332,51.697,755.880”

size=“13.548”>i</text>

<text font=“Georgia-Bold” bbox=“51.725,742.332,57.965,755.880”

size=“13.548”>n</text>

<text font=“Georgia-Bold” bbox=“57.965,742.332,62.213,755.880”

size=“13.548”>g</text>

<text font=“Georgia-Bold” bbox=“62.231,742.332,70.511,755.880”

size=“13.548”>s</text>

3.5 PDF To Image Conversion For White Space

Analysis

The process begins with the conversion of the PDF document into a set of images

for white space analysis, using BufferedImage class which is available in a basic Java

library. A PDF with N pages will generate N images. Once the images have been

generated, their resolution is reduced to make the processing faster due to the fact

that it significantly reduces the number of pixels to be analysed. Deciding how much

to reduce the resolution is important, because the purpose of the process is to rec-

ognize the white spaces only. The next section examines how to reduce the resolution.

3.5.1 Choosing A Pixel Size

To decide how much to reduce the resolution we use the distance between two lines

as a measure. Fig 3.4 shows the distance between the lines; denoted by X. When the

pixel size is equivalent to a square of size X/2 or less as shown in Fig 3.4(a), we will

be able to detect either the pixels from upper line or lower line. But if the size of the

pixel is chosen to be larger than that, as shown in Fig 3.4(b), there is a possibility

of missing the white line. The reason is that the text might be present in upper and

22

lower pixel, which eliminates the possibility of both rows being white rows(lines only

consisting of white spaces). The size of the pixel should be smaller than half of the

minimum distance between any two lines.

Figure 3.4: Pixel Size Example

Once the images are ready to be analysed, each of the image is converted into a Page

Matrix (P) of zeros and ones using the Equation 3.1.

PAGE MATRIXij =

{
0; if pixel at (i, j) is white/background color

1; otherwise
(3.1)

Therefore, pixels containing text is marked as 1 and the ones which are of white/background

color are marked as 0. Background color is selected as the most commonly used pixel

color in the document.

Note: The algorithm uses the most common pixel color as the background color for

the page.

3.6 Conclusion & Future Work

This chapter discussed all the conversions used to extract data from documents used

for further analysis. HTML conversion provides us with all the information we need

for detecting headings as discussed in chapter 4 because it provides us with font size,

23

type and if the text is bold or not. This process successfully converted and extracted

data from 498 out of 500 documents. Pdf2Text failed to convert 2 documents into

HTML which resulted in no extracted data from these files. Further testing revealed

that some PDF files, generated by conversion from HTML webpages, also fail when

they are converted back to HTML for data extraction. Exploring other tools to use as

alternatives to Pdf2Text that enable HTML conversion for the identified documents

would be beneficial in future research.

The steps for converting PDF to image using Java’s BufferedImage class were also dis-

cussed. This process generates a matrix that is used for detecting header/footer text

and multiple text columns by performing white space analysis as discussed in chapter

5. Although not required for this application, XML conversion could be considered for

future research as it provides us with more details such as the exact location of each

character and the bounding box location that could be useful for further extending

the classifier and also improving the document layout analysis process by reducing

false positives.

24

Chapter 4

Supervised Learning Approach For

Heading Detection

4.1 Introduction . 25

4.2 Methodology . 25

4.2.1 Data Collection . 25

4.2.2 Data Preprocessing . 27

4.2.3 Feature Selection . 31

4.2.4 Grid Search . 32

4.2.5 Training . 33

4.3 Evaluation . 39

4.3.1 Training and Prediction Time 39

4.3.2 Confusion matrix . 40

4.3.3 AUC . 41

4.4 Test Results . 42

4.4.1 Training and Prediction Time 42

4.4.2 Confusion Matrix Based Evaluation 43

4.4.3 AUC . 43

4.5 Discussion & Future Work . 44

4.5.1 Overall Results . 44

4.5.2 Testing The Generalizability 45

4.5.3 Analysing The Results . 46

4.5.4 Extending The Classifier . 46

25

4.6 Conclusion . 47

4.1 Introduction

As the amount of information stored using PDF documents increases worldwide, large

scale text based analysis requires increasingly automated processes, as the amount of

document processing is time consuming and labour intensive for human profession-

als. Categorizing data into separate sections is quite easy for humans, as they rely on

visual cues such as headings to process textual information. Machines, despite being

able to process large amounts of information at high speeds, require effort to classify

and interpret text based data. This chapter explores the application of classifiers to

operationalize a system that would aid in the identification of headings.

A classifier, by being trained on labelled data enables categorization of PDF text into

headings and non-headings based on the training data. This research involved com-

paring and systematically testing a variety of classifiers for the purpose of selecting

the ones best suited for detecting headings in a PDF document. Identifying headings

is the next step in looking for the relevant text that needs to be extracted.

Section 4.2 discusses the methodology followed, including preprocessing of the data

points and training of classifiers. Section 4.3 contains details of the evaluation metrics

used. Section 4.4 contains all the test results, which are discussed further in Section

4.5 to make a selection for the best suited classifier for detecting headings. Section

4.6 concludes the chapter by discussing everything that has been done.

4.2 Methodology

The whole process is divided into four sections. The detailed flow structure is shown

in Fig 4.1.

4.2.1 Data Collection

The data collection process is explained in the previous chapter. 83,194 data points

collected from 500 documents are used to train and evaluate the classifiers using 10

26

Figure 4.1: The Research Methodology

27

fold cross validation.

4.2.2 Data Preprocessing

The process of transforming raw data into usable training data is referred to as data

preprocessing. The steps of data preprocessing for this research are as follows:

Data Labelling:

Data labelling refers to the process of assigning data points labels, this makes the

data suitable for training supervised machine learning models. I manually labelled

all 83,914 data points. If the text in the data point is a heading the label is set to

1 and for all other elements the label is set as 0. This defines two possibles classes

for the classifier to make predictions on. Labelling data is one of the most impor-

tant steps of preprocessing because the performance of the trained model depends on

how well the data is labelled. Example of labelled data points is provided in Fig 3.2(c).

Balancing The Dataset:

The dataset is considered imbalanced if the prevalence of one class is more than

the other. The number of headings in our dataset is very less as compared to non-

headings, this is because of the fact that the number of headings in a document is far

less than the number of other text elements. Sklearn’s implimentation for Synthetic

Minority Over-sampling Technique (SMOTE) is used to balanced the dataset, which

does so by creating synthetic data points for the minority class to make it even [8, 39].

Data Transformation:

The process of transforming data into a form that has more predictive value is known

as data transformation. The purpose of data transformation is to convert raw data

points into ‘features’ that contribute to more predictive value in training and decision

making related to heading identification. For example, font size and text are two

features from the raw data which, in their base form, do not have much value but

can be transformed into useful features for training an efficient model. The list of

transformed data fields are as follows:

28

Figure 4.2: Font Size Threshold Assumption Example

29

• Font Flag

Headings tend to be larger in terms of font size as compared to the paragraph

text that follows. Therefore, a higher font size increases the probability that

the text is a heading. However, since each document is unique, there can not

be a single threshold applied across all instances.

Thresholds are calculated for each document by measuring the frequency of

each font size where each character with a particular font size is counted as

one instance. The font size which has the maximum frequency is used as the

threshold. This approach relies on the assumption that the most frequently

used font size is the one that is being used for the paragraph text, so having

any font size above that increases the probability of that text being a heading.

Fig 4.2 shows that the most frequently used font size is for the paragraph text

with size 9 and all other text above it has more chances of being a heading. Font

Flag can take two possible values 0 and 1. If the font size for that data point is

less than the corresponding threshold then the value is set to 0, otherwise it is

set as 1.

• Text

The text is transformed into the following feature variables, which also are listed

in Table 4.1.

– Number of Words: The number of words in the text can be used for train-

ing, as headings tend to have less words when compared to regular sen-

tences and paragraphs.

– Text Case: Headings mostly use title case, while sometimes they are in

upper case as well. This variable tells whether the text is in upper case

(all letters in upper case), lower case (all letters in lower case), title case

(first letter of all words in uppercase) or sentence case (only the first letter

of the text in uppercase).

– Features From Parts of speech(POS) Tagging: POS Tagging is the process

of assigning parts of speech (verb, adverb, adjective, noun) to each word,

which are referred to as tokens. The text from each data point is first

tokenized and then each token is assigned a POS label [5].

The POS frequencies provides the model with information on the grammatical

aspect of the text and can be used to exploit the frequency of these labels in

30

a text to identify headings and contribute to the accuracy of the model. For

example, headings tend to have no verbs in them, though some might have them

but absence of verbs increases the probability of the text being an heading. All

frequency data collected from POS tagging is analysed in the feature selection

process to differentiate between useful and irrelevant features collected through

it. The frequency for each POS label is calculated and used to calculate the

frequency of each POS tag in the text for each data point. These frequencies

serve as potential features for the model.

All these brings the count of total number of features generated using the text to 11,

9 from POS tagging the text and 2 using its physical properties.

Table 4.1: List of all features

All features are integers, except for Bold or Not and Font Threshold Flag which are

binary.

Feature Name Description

Characters Number of characters in the text.

Words Number of words in the text.

Text Case Assumes the value 0,1,2 or 3 depending on the text being

being in lower case, upper case, title case or none of the

three respectively.

Bold or Not Assumes the value 1 or 0 depending on the text being

bold or not.

Font Threshold Flag Assumes the value 1 or 0 depending on the font size of

the text being greater than the threshold or not.

Verbs Number of verbs in the text.

Nouns Number of nouns in the text.

Adjectives Number of adjectives in the text.

Adverbs Number of adverbs in the text.

Pronouns Number of pronouns in the text.

Cardinal Numbers Number of cardinal numbers in the text.

Coordinating Conjunctions Number of coordinating conjunctions in the text.

Predeterminers Number of predeterminer in the text.

Interjections Number of Interjections in the text.

31

4.2.3 Feature Selection

After pre-processing, 14 training features are established. There is a need to select

the top features for building each individual model with maximum accuracy. Table

4.1 lists all the features we are choosing from. To achieve this we used Recursive

feature elimination with Cross-Validation (RFECV), which recursively removes weak

attributes/features and uses the model accuracy to identify features that are con-

tributing towards increasing the predictive power of the model [17]. The selection

process is performed using the machine learning library, “scikit-learn”.

Cross validation is done by making 10 folds in the training set where one feature is

removed per iteration. As per this analysis the accuracy does not increase on choosing

to train the Decision Tree classifier with more than the following seven features:

• Bold or Not

• Font Threshold Flag

• Number of words

• Text Case

• Verbs

• Nouns

• Cardinal Numbers

The same process is repeated for all the classifiers and their individual set of chosen

features are listed in Table 4.2.

32

Table 4.2: Selected features for each classifier

Classifier Name Selected Features

Decision Tree Bold or Not, Font Threshold Flag, Words, Text Case, Verbs,

Nouns, Cardinal Numbers

SVM Bold or Not, Font Threshold Flag, Words, Text Case, Verbs,

Nouns, Adjectives, Adverbs

k-Nearest Neaighbors Bold or Not, Font Threshold Flag, Words, Verbs, Nouns, Ad-

jectives, Cardinal Numbers, Coordinating Conjunctions

Random Forest Bold or Not, Font Threshold Flag, Words, Text Case, Verbs,

Nouns, Adverbs, Cardinal Numbers, Coordinating Conjunc-

tions

Gaussian Naive Bayes Bold or Not, Font Threshold Flag, Words, Verbs, Nouns, Ad-

jectives, Cardinal Numbers, Coordinating Conjunctions

Quadratic Discrimi-

nant Analysis

Bold or Not, Font Threshold Flag, Words, Verbs, Nouns, Ad-

jectives, Coordinating Conjunctions

Logistic Regression Bold or Not, Font Threshold Flag, Words, Text Case, Verbs,

Nouns, Adverbs, Coordinating Conjunctions

Gradient Boosting Bold or Not, Font Threshold Flag, Words, Text Case, Verbs,

Nouns, Cardinal Numbers

Neural Net Bold or Not, Font Threshold Flag, Words, Text Case, Verbs,

Nouns, Cardinal Numbers

4.2.4 Grid Search

Tuning each classifiers parameters for optimal performance is performed using accu-

racy from cross validation as a measure. We use various combinations of classifier

parameters and choose the combination with the best cross validation accuracy. This

process is performed on various classifiers to choose their corresponding parameters.

A code snippet for performing this process for Gradient Boosting classifier is given in

Box 4.1.

33

Box 4.1: Grid Search Code Snippet for Gradient Boosting Classifier

GDB params = {
‘n estimators’: [100,150,200,250,300,350,450,500],

‘learning rate’: [0.05,0.1,0.15,0.2,0.25],

‘criterion’: [‘friedman mse’, ‘mse’, ‘mae’]

‘loss’: [‘deviance’, ‘exponential’]

‘min samples split’: [2,3,4,5],

‘min samples leaf’: [1,2,3,4,5]

}
for estim num in GDB params[‘n estimators’]:

for lrn rate in GDB params[‘learning rate’]:

for critrn in GDB params[‘criterion’]:

for ls in GDB params[‘loss’]:

for sp in GDB params[‘min samples split’]:

for lf in GDB params[‘min samples leaf’]:

classifier=GradientBoostingClassifier(n estimators=estim num,

learning rate=lrn rate,criterion=critrn,loss=ls,

min samples split=sp,min samples leaf=lf)

classifier.fit(training data, training labels)

scores = cross val score(classifier, training data, training labels

, cv=10)

print “Estimator: ”,estim num, “Learning Rate: ”, lrn rate,

“Criterion: ”, critrn[:3],“loss: ”,ls[:3],“min samples split: ”,sp,

“min samples leaf: ”, lf,“Cross Validation Score: ”,scores

The description along with the final selected tuning parameters for each classifier used

in this research are discussed in the next section.

4.2.5 Training

After the most suitable features and parameters for each classifier have been selected,

we can proceed with training the classfiers using scikit-learn [39].

34

Decision Tree

Decision trees are the most widely used amongst classifiers as they have a simple

flow-chart like structure starting from a root node. It branches off to further nodes

and terminating at a leaf node. At each non-leaf node a decision is made, which

selects the branch to follow. The process continues to the point where a leaf node

is reached, which contains the corresponding decison[26]. The classifier configuration

used is listed in Table C.1 (Appendix C). Gini impurity is used as a measure for

quality of a split, which tells if the split made the dataset more pure. Gini makes it

computationally less expensive as compared to entropy which involves computation

of logarithmic functions. The “best” option for strategy chooses the best split at each

node. The minimum number of samples required to split an internal node is set to

2 and the minimum number of samples needed to be at a leaf node is set to 3. The

code snippet for training this classifier with the chosen parameters is given in Box 4.2.

Box 4.2: Code Snippet for Training Decision Tree Classifier

treeclf = DecisionTreeClassifier(criterion = ‘gini’, splitter = ‘best’,

min samples split = 2, min samples leaf = 3)

treeclf = treeclf.fit(traindata, truelabels)

Support Vector Machine (SVM)

It is a classifier that uses multi-dimensional hyperplanes to make classification. SVM

also uses kernel functions to transform the data in sucha way that it is feasible for

the hyperplane to effectively partition classes[2]. Table C.2 (Appendix C) lists the

classifier configuration parameters used for training. The kernel used is radial basis

function(rbf), degree of the polynomial kernel function is set to 3 and gama is set

to “auto”. The shrinking heuristics were enabled as they speed up the optimization.

Tolerance for stop criteria is set to 2e − 3 and ‘ovr’(one vs rest) decision function is

chosen for decision function shape. The code snippet for training this classifier with

the chosen parameters is given in Box 4.3.

35

Box 4.3: Code Snippet for Training Support Vector Machine Classifier

svmclf = SVC(kernel=‘rbf’, degree=3, gamma=‘auto’, shrinking=True,

tol=0.002, decision function shape=‘ovr’)

svmclf = svmclf.fit(traindata, truelabels)

k-Nearest Neighbors

The main idea behind k-Nearest Neighbors is that it takes into account the class

of its neighbors to decide how to classify the data point under consideration. Each

neighbors class is considered as their vote towards that class and the class with the

most votes is assigned to that data point[22]. As listed in Table C.3 (Appendix C),

the number of neighbours used to classify a point is set to 10. Each neighbours are

weighed equally as weights is set to ‘distance’. Minkowsky distance function used

as the distance metric. The code snippet for training this classifier with the chosen

parameters is given in Box 4.4.

Box 4.4: Code Snippet for Training k-Nearest Neighbors Classifier

neighclf = KNeighborsClassifier(n neighbors = 10, weights = ‘distance’, metric

= ‘minkowski’)

neighclf = neighclf.fit(traindata, truelabels)

Random Forest

This classifier works by choosing random data points from the training set and cre-

ating a set of decision tress. The final decision regarding the class is made by ag-

greggation of the outputs from all the trees [27]. As listed in Table C.4 (Appendix

C), the number of trees in the forest is set to 2 and ‘gini’ is used as a measure for

quality of a split. The maximum depth of trees is set to 5 and the maximum number

of features to be considered while searching for the best split is se to ‘auto’. The

36

minimum number of samples required to split an internal node is set to 2 and the

minimum number of samples needed to be at a leaf node is set to 3. The number

of parallel jobs to running for both fit and predict is set to 1. The code snippet for

training this classifier with the chosen parameters is given in Box 4.5.

Box 4.5: Code Snippet for Training Random Forest Classifier

RandomForestClassifier(n estimators = 2, criterion = ‘gini’, max depth = 5,

max features=‘auto’, min samples split=2, min samples leaf=3, n jobs=1)

rndForstclf = rndForstclf.fit(traindata, truelabels)

Gaussian Naive Bayes

This classifier works by using Bayesian theorem with assumption of strong indepen-

dence between the predictors(features). It is very useful for large data sets as it is

quite simple to build and has no complicated iterative parameters[44]. Table C.5

(Appendix C) lists the classifier configuration parameters used for training. This

classifier does not have much to set when it comes to configuring parameters. Prior

probabilities of the classes is set to [0.5, 0.5] as the number of headings is less as

compared to other text. The code snippet for training this classifier with the chosen

parameters is given in Box 4.6.

Box 4.6: Code Snippet for Training Gaussian Naive Bayes Classifier

gaussianclf = GaussianNB(priors = [0.5, 0.5])

gaussianclf = gaussianclf.fit(traindata, truelabels)

37

Quadratic Discriminant Analysis

It works under the assumption that the measurements for each class are normally

distributed while not assuming the covariance to be identical for all the classes. Dis-

criminant analysis is used to choose the best predictor variable(s) and is more flex-

ible than linear models making it better for a variety of problems [49]. Table C.6

(Appendix C) lists the classifier configuration parameters used for training. Prior

probabilities of the classes is set to [0.5, 0.5] as the number of headings is far less as

compared to other text. The threshold used for rank estimation is set to 1e− 4. The

code snippet for training this classifier with the chosen parameters is given in Box 4.7.

Box 4.7: Code Snippet for Training Quadratic Discriminant Analysis Classifier

quadclf = QuadraticDiscriminantAnalysis(priors = [0.5, 0.5], tol = 0.0001)

quadclf = quadclf.fit(traindata, truelabels)

Logistic Regression

It is a discriminative classifier, therefore it works by discriminating amongst the dif-

ferent possible values of the classes [40]. Table C.7 (Appendix C) lists the classifier

configuration parameters used for training. Penalization method is set to l2. The

tolerance for stopping criteria is set to 2e − 4. The parameter ‘fit intercept’ is set

to true adding a constant to the decision function. The optimization solver used is

‘liblinear’ and the maximum number of iterations taken for the solvers is set to 50.

Multiclass is set to ‘ovr’ fitting a binary problem for each label. The number of CPU

cores used for parallelizing over classes is set to 1. The code snippet for training this

classifier with the chosen parameters is given in Box 4.8.

Box 4.8: Code Snippet for Training Logistic Regression Classifier

38

logisticRegr = LogisticRegression(penalty=l2, tol=0.0002, fit intercept =

True, solver=‘liblinear’, max iter=50, multi class = ‘ovr’, n jobs=1)

logisticRegr = logisticRegr.fit(traindata, truelabels)

Gradient Boosting

This classification method uses an ensemble of weak prediction models in a stage wise

manner. In each stage, a weak model is introduced to make up for the limitations of

the existing weak models[43]. Table C.8 (Appendix C) lists the classifier configuration

parameters used for training. The loss function to be optimized is set as ‘deviance’

and learning rate is set to 0.1. The minimum number of samples required to split

an internal node is set to 2, the minimum number of samples needed to be at a leaf

node is set to 1 and maximum depth of the individual regression estimators set to 3.

The number of boosting stages is set to 150 and the measure of quality of a split is

set to ‘friedman mse’. The code snippet for training this classifier with the chosen

parameters is given in Box 4.9.

Box 4.9: Code Snippet for Training Gradient Boosting Classifier

grdbstcf = GradientBoostingClassifier(loss = ‘deviance’, learning rate = 0.1,

min samples split = 2, min samples leaf = 1, max depth = 3, n estimators =

150, subsample = 1.0, criterion = ‘friedman mse’)

grdbstcf = grdbstcf.fit(traindata, labels)

Neural Net

This classifier works by imitating the neural structure of the brain. One data point

is processed at a time and the actual classification is compared to the classification

made by the classifier. Any errors recorded in the classification process are looped

back into algorithm to improve classification performance in future iterations[16, 28].

39

As listed in Table C.9 (Appendix C), the classifier is configured to have one hidden

layer with 100 units. The activation function used for the hidden layer is ‘tanh’. The

solver used for weight optimization is ‘lbfgs’. The batch rate is set to ‘auto’ and the

initial learning rate is set to 0.001. The parameter ‘max iter’ is set to 300, which

for ‘adam’ solver defines the number of epochs. Sample shuffle is set to true, which

enables sample shuffling in each iteration. The exponential decay rates for estimates

of the first and second moment vector is set to 0.9 and 0.999 respectively. The code

snippet for training this classifier with the chosen parameters is given in Box 4.10.

Box 4.10: Code Snippet for Training Neural Net Classifier

nurlntclf = MLPRegressor(hidden layer sizes = (100,), activation = ‘tanh’,

solver = ‘lbfgs’, learning rate = ‘invscaling’, batch size = ‘auto’, learn-

ing rate init = 0.001, max iter = 300, shuffle = True, beta 1 = 0.9, beta 2 =

0.999)

nurlntclf = nurlntclf.fit(traindata, labels)

4.3 Evaluation

Evalution is going to be based on the following measures:

4.3.1 Training and Prediction Time

When dealing with a large number of documents, the time required to train a model

and make predictions is important and is dependant on the type of classifier used,

the number of features and the amount of data points. In this research all classifiers

are trained using the same number of features and data points, therefore ‘time taken’

provides a good measure of variations in training and prediction speed associated

with each different classifier being used. Of note, the training time for a classifier

should be considered in context, as training only needs to be performed once and can

be saved for later use. Therefore, a model that takes a long time to train can still be

practical so long as it does not take a lot of time to make predictions.

40

4.3.2 Confusion matrix

Confusion matrix is used to represent a classifier’s performance with respect to a data

set having known true values, an example representation of such matrix is shown in

Fig 4.3. A confusion matrix is generated for each classifier, serving as a summary

of prediction results for it and further used to calculate the evaluation parameters.

These calculated evaluation parameters are used to compare these classifiers to each

other and are mentioned below [33]. The code snippet for generating a confusion

matrix using sklearn is given in Box 4.11.

Box 4.11: Code Snippet for Training Decision Tree Classifier

sklearn.metrics.confusion matrix(truelabels, predictedlabels)

n = 200 Predicted NO Predicted YES
Actual No 600 (TN) 121 (FP) 721
Actual Yes 79 (FN) 1200 (TP) 1279

679 1321

Figure 4.3: Confusion Matrix Example

• Sensitivity: It is also known as recall or true positive rate and is the odds of

getting a positive test outcome given a positive case.

• Specificity: It is also known as true negative rate and is the odds of getting a

negative test outcome given a negative case.

41

• Precision: It gives the odds of that the outcome classified as positive is actually

positive.

• F1 Score: It provides a score for the balance between precision and recall.

• Total Accuracy: It is the measure of how many predictions in total are correct

or the measure of trueness of the results.

These parameters are calculated as follows:

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Precision =
TP

TP + FP

F1Score =
2TP

2TP + FP + FN

TotalAccuracy =
TP + TN

TP + TN + FP + FN

where,

TP means true positives,

TN means true negatives,

FP means false positives, and

FN means false negatives

4.3.3 AUC

A receiver operating characteristics(ROC) curve is used to visualize the trade-offs be-

tween sensitivity and specifity. These graphs are used for performance based selection

42

Figure 4.4: Time (in seconds) required to train classifiers and run predictions on test
data

of classifiers. The graph can be reduced to a numerical measure, AUC(or AUROC)

which is the area under the ROC graph with values ranging from 0 to 1[12].

4.4 Test Results

4.4.1 Training and Prediction Time

Fig 4.4 shows time required for training and making predictions using these classi-

fiers. Time shown is average of 10 observations, which is done to reduce the effect of

programs running in the background on the comparison.

43

4.4.2 Confusion Matrix Based Evaluation

Table 4.3 shows the results of this evaluation. Gradient Boosting classifier shows the

best specificity, precision and net accuracy. Gaussian Naive Bayes shows the best

sensitivity and SVM shows the best F1 score.

4.4.3 AUC

Table 4.4 shows the AUC scores for the classifiers used in this research. The discus-

sion section provides more information on how we used AUC score to select the best

classifier.

Table 4.3: Classifier Accuracy

Highest Value For Each Measure is Bold

Classifier Sensitivity Specificity Precision F1 Score Accuracy

Decision Tree 0.972 0.944 0.897 0.933 95.37 %

SVM 0.970 0.933 0.881 0.930 95.09 %

K-Nearest

Neighbors

0.940 0.932 0.907 0.923 94.82 %

Random For-

est

0.971 0.935 0.882 0.926 94.85 %

Gaussian

Naive Bayes

0.960 0.911 0.847 0.909 93.47 %

Quadratic

Discriminant

Analysis

0.963 0.912 0.848 0.910 93.52 %

Logistic

Regression

0.956 0.919 0.855 0.903 93.17 %

Gradient

Boosting

0.981 0.946 0.902 0.940 95.83 %

Neural Net 0.980 0.946 0.901 0.939 95.80 %

44

Table 4.4: AUC Values for all Classifiers

Classifier AUC

Decision Tree 0.98

SVM 0.97

K-Nearest Neighbors 0.96

Random Forest 0.97

Gaussian Naive Bayes 0.96

Quadratic Discriminant Analysis 0.96

Logistic Regression 0.95

Gradient Boosting 0.98

Neural Net 0.98

4.5 Discussion & Future Work

4.5.1 Overall Results

We recorded the time (in seconds) required for training each classifier and also time

for making predictions as shown in Fig 4.4. Time taken by a classifier to make

predictions is important when processing documents in bulk as it can increase the

processing time. Time taken to train a classifier only has to be done once therefore it

is not given that much importance. The Decision Tree Classifier took the least time

for training while Gradient Boosting took the most. On comparing the prediction

time Logistic Regression takes the least time and Random Forest takes the most.

While prediction time is not the most important factor while choosing a classifier we

take it into consideration when two classifiers are performing approximately the same.

The top three classifiers based on net accuracy are Decision Tree, Gradient Boost-

ing, and Neural Network, however classifier selection can not solely rely on accu-

racy [18, 25]. Therefore, we also weigh the metrics like AUC, F1 score, sensitivity,

and specificity to choose the best suited classifier for detecting headings.

The top three classifiers in terms of F1 score, precision, sensitivity and specificity

are Decision Tree, Gradient Boosting, and Neural Network and the top 3 in terms of

AUC as shown in Table 4.4 are again Decision Tree, Gradient Boosting, and Neural

45

Network. The system is going to be dealing with documents in bulk and the predic-

tion time for Decision Tree is better when compared to both Gradient Boosting and

Neural Network. Therefore, we would be choosing our configuration of the Decision

Tree for making the classifications.

4.5.2 Testing The Generalizability

Testing the chosen classifier on a general set of documents is important to show that

it performs well on documents other than course outlines. We tested the chosen De-

cision Tree classifier on 12,919 data points collected from documents like reports and

articles1. These data points were manually tagged using a survey. All the participants

were graduate students from computer science department and were asked to point

out headings and subheadings in the documents. Table 4.5 shows the results which

are equivalent as compared to when tested on course outlines.

Table 4.5: Test Results For General Set
Category Value

Total Data points 12919

Sensitivity 0.928

Specificity 0.966

Precision 0.964

F1 SCORE 0.946

Accuracy 94.73 %

AUC 0.97

1Repository available at: https://github.com/sahib-s/Generalizability/

46

Table 4.6: Pearson Correlation Coefficient Between Each Feature Used in the Selected

Classifier and Final Decision Labels

Feature Name Pearson Correlation Coefficient

Bold or Not 0.7022

Font Threshold Flag 0.2385

Words 0.1389

Verbs 0.1229

Nouns 0.1207

Cardinal Numbers 0.1201

Text Case 0.0660

4.5.3 Analysing The Results

The discussed configuration of Decision Tree is best suited to detect heading as dis-

cussed in Section 4.5.1. Analyzing the contribution of each feature towards the final

decision made by the classifier is also important to understand the implications of the

results. Table 4.6 shows the pearson correlation coefficient for all the features used

in the selected classifier and final decision label. The list is in descending order of

pearson correlation coefficient, therefore the top feature in the table contribute the

most towards the final decision. Each feature was removed from the classifier one at

a time and drop in evaluation metrics also verify the order of contribution presented

by using the pearson correlation coefficient. Therefore, the top three contributing

features are the ones that rely on the physical attributes of the text.

4.5.4 Extending The Classifier

The extension of this work includes tagging of multiple labels like heading, paragraph

text, header/footer text and table text. While classifying paragraph text is possible

using the existing features, for properly classifying table text and header/footer text

more data features are necessary. We are currently looking features from our white

space detection approach discussed in chapter 5 and bounding box data from PDF to

XML conversion to provide the model with what it needs to make this classification.

47

4.6 Conclusion

This chapter has provided a structured methodology and systematic evaluation of

a heading detection system for PDF documents. The detected headings provide

information on how the text is structured in a document. This structural information

is used for extracting specific text from these documents based on the requirements

of the field of application.

48

Chapter 5

Document Layout Analysis & Text

Extraction

5.1 Overview & The Framework . 48

5.2 Selecting Relevant Headings - Supervised Approach 50

5.2.1 Data Collection, Labelling & Keyword Selection 50

5.2.2 Data Transformation . 51

5.2.3 Training . 52

5.3 Selecting Beginning and End Markers 52

5.4 Layout Analysis . 55

5.4.1 Detecting Headers and Footers 56

5.4.2 Locating Text Columns and Images 57

5.5 Text Extraction . 57

5.5.1 Targeted Text Extraction . 57

5.5.2 Formatting Output . 59

5.6 Test Results & Discussion . 61

5.7 Conclusion . 62

5.1 Overview & The Framework

Extracting learning outcomes requires identifying which text to extract from the out-

line of a post-secondary course descriptive documents. The approach proposed here

49

Figure 5.1: A Framework to extract learning outcomes from PDF documents

50

is similar to the steps a human follows which is to use headings to judge the context

of the text that follows. The assumption made here is that all the content within the

course outline PDF is appropriately divided using descriptive headings.

This chapter provides a methodology to extract the learning outcomes from course

outlines as illustrated in Fig 5.1. The classifier discussed in the previous chapter uses

the output of Algorithm 1 to generate a list of headings which is consequently used to

identify learning objectives. Once the text is identified for extraction, analyzing the

layout of the document is imperative to ensure that the extraction proceeds according

to the flow of the text and the header/footer text does not get extracted with the

required text as it will disrupt its flow. This is accomplished by performing White

Space Analysis, in which the system looks for patterns in the empty spaces around

the text. The original document acts as the input for the white space analysis. This

process enables the script to extract the learning outcomes while taking the layout

of the document into consideration. The extracted text is then formatted to get the

final learning outcomes.

5.2 Selecting Relevant Headings - Supervised Ap-

proach

This section discusses a supervised keyword based approach similar to bag-of-words

model to select relevant headings from a list of headings generated using the classifier

discussed in last chapter. Bag of words is a representation used to model textual data

by describing the occurrences of words within a text [23]. The approach proposed

here uses relevant headings to select keywords for identifying relevant headings based

on their occurrence in unseen documents.

5.2.1 Data Collection, Labelling & Keyword Selection

Dataset used in this chapter is the same as chapter 4 consisting of 500 documents.

Headings from these 500 documents are manually tagged as relevant (1) or not (0)

based on the text that is required to be extracted. All relevant headings are tokenized

and the frequency of each token (word) is calculated. Most frequent words that are

51

relevant to what needs to be extracted are selected manually. The selected keywords

are given in Box 5.1.

Box 5.1: Selected Keywords

The list of keywords for locating learning outcomes is as follows:

Keywords = [‘Learning’, ‘Academic’, ‘Objectives’, ‘Description’, ‘Aims’,

‘Class’, ‘Course’, ‘Goals’, ‘Outcomes’]

5.2.2 Data Transformation

The text is transformed into features which are as follows:

• Number of Words

The number of words in the heading.

• Relevance Score

Each heading is assigned a relevance score, calculated using Equation 5.1.

Relevance Score =
Number of relevant keywords in the heading

Total number of words in the heading
(5.1)

• Keyword Flag

The value is 1 if that keyword is present in the heading else 0. The total number

of such features depends on the number of keywords selected. For this research

there are nine such features one for each keyword.

Three instances of the data points generated are given in Fig ??.

52

Figure 5.2: Sample of Data Points for Relevant Heading Selection

5.2.3 Training

Grid Search is used to select the optimal combination of hyper-parameters, using the

same process as discussed in section 4.2.4. Consider the fact that there are only 3

types of features there is no need to perform feature selection. Decision Tree Classifier

is trained using the optimized hyper parameters and the code snippet for training is

given in Box 5.2.

Box 5.2.: Code Snippet For Decision Tree Classifier

treeclf = DecisionTreeClassifier(criterion = ‘gini’, splitter = ‘best’,

min samples split = 2, min samples leaf = 1)

treeclf = treeclf.fit(traindata, truelabels)

5.3 Selecting Beginning and End Markers

Once the relevant headings have been selected, the next step is to only extract the

text that follows the heading, as opposed to extracting all of the text. To extract this

specific text we need a beginning point i.e., beginning marker and an ending point

i.e. end marker in the text. The text that makes up the relevant heading is used as

the beginning marker and the heading that follows the relevant heading is used as

the end marker. These two markers serve as landmarks in the text and encapsulate

the part of the text required to be extracted.

53

Figure 5.3: Defining the beginning and end markers

54

Algorithm 2 Locating Beginning and End Markers

Input: A list HEADING LIST which contains all the headings in the document

and a list RELEVANT which contains all the relevant headings.

Output: Two lists containing the beginning and end marker(s) for all relevant

heading(s).

Function LocateMarkers (RELEVANT, HEADING LIST)

Set r = 0 . Loop Counter Initializations

while r is less than length of list(RELEVANT) do
Set n = 0

while HEADING LIST[n] is not equal to RELEVANT[r] do
. Finds the index of the relevant heading in HEADING LIST

Increment n by 1 . Increments loop counter

end

. Appends both marks to respective lists.

APPEND HEADING LIST[n] to the list BeginningMarkers

if HEADING LIST[n+1] has same font size as BeginningMarkers then
. To ensure text extraction does not stop at sub-headings

APPEND HEADING LIST[n+1] to the list EndMarkers

else
Increment n while Font Size(HEADING LIST[n+1] is not equal to Font

size (BeginningMarkers) do
Increment n

end

APPEND HEADING LIST[n+1] to the list EndMarkers

end

Increment r by 1 . Increments loop counter

end

Return BeginningMarkers, EndMarkers . Returns two lists containing the

markers.

Algorithm 3 explains the process of selecting these markers in detail. The algorithm

uses DOC DATA (output from Algorithm 1 discussed in chapter 3) and RELEVANT

(output from Algorithm 2) as input. The text between these two markers is extracted,

55

and each relevant heading generates its pair of beginning and end markers. In case

of multiple relevant headings, there would be multiple pairs of beginning and end

markers to enable extraction of multiple relevant paragraphs. As shown in Fig 5.3,

the relevant heading “Learning Outcomes:” is chosen as the beginning marker and

the heading that follows “How to Contact Me:” is the ending marker. The algorithm

uses their location in the text to extract the text that falls between these two markers.

5.4 Layout Analysis

Analysing the layout of the document is one the most important steps of this process

as it addresses the following two issues:

• Avoiding text from header and footer section in the final extracted text.

• Maintaining the integrity of text when dealing with multiple columns of text.

To accomplish these tasks, our approach analyses the white spaces in the document to

detect headers/footers and text column locations. The PDF document is converted

to set of images and pixel color is used to generate a 3D matrix(PAGE MATRIX),

which consisting of 2D matrices, one for each page. These matrices are generated

using the process described in chapter 3 and are used for further analysis. The 2D

matrices represent each page as a grid of pixels, where each box in the grid represents

a pixel.

Figure 5.4: Header Detection Example

56

Algorithm 3 Locating Header Region

Input: A 3-D matrix PAGE MATRIX, which represents the whole page as a grid

of pixels.

Output: A floating point number telling what percentage of the top of the page is

the header region.

Function DetectHeader (PAGE MATRIX)
Set p = 0 . Loop Counter Initializations

Set r = 0

while p is less number of pages in the document do

while r is less than half the number of rows in PAGE MATRIX[p] do
ROW SUM[p][r] is equal to the sum of all values in that row

if r is not equal to 0 then
NET SUM[p][r] = NET SUM[p][r-1] + ROW SUM[p][r]

else
NET SUM[p][r] = ROW SUM[p][r]

end

Increment r . Increments loop counter

end

Increment p . Increments loop counter

end

SET HEADER CUTOFF as the row till NET SUM is same for all matrices.

SET HEADER REGION as HEADER CUTOFF divided by number of rows in

matrix

Return HEADER REGION . Returns the header region.

5.4.1 Detecting Headers and Footers

Using PAGE MATRIX, Algorithm 4 generates a ROW SUM Matrix with each ele-

ment representing the sum of a row in PAGE MATRIX. The variable NET SUM is

the sum of all rows till that row. To search for headers, the algorithm checks the

NET SUM of all pages and the row till which NET SUM is the same is marked as

HEADER CUTOFF. It is assumed that the maximum height of the header or footer

area is half of the page height. Therefore, the algorithm checks the header and footer

length until half the page height, as their height can not be greater than half of the

page length. The example in Fig 5.4 shows how this works by showing two pages

side by side. The coloured pixels depict any text and blank ones depict the white or

57

background color pixels. The ROW SUM is calculated for all rows and once that is

done the NET SUM is calculated which remains same until row 5 in this example. So

according Algorithm 4, the header area is until row 5. All text in the header region

is considered as header text. The same process is repeated to search for footers, the

only difference is that the sum is checked from bottom to top.

5.4.2 Locating Text Columns and Images

To detect multiple text columns, we use two variables White Rows and White Columns.

The rows and columns that are completely blank and have no text in them. The Row-

Sum gives us the sum of all pixels in that row and if that sum is 0 , then that row is

considered as a white row. So, mathematically Rowi is a white row if

Rowi =

{
0; if row sum is greater than 0

1; otherwise

These white rows act as boundaries to detect columns of text in between them. Same

way the algorithm checks for the sum of column pixels using white rows as boundaries

and if the sum is zero that column is considered as a white column. In Fig 5.5, the

discussed approach first detects the white rows by looking for complete rows with

white or background color pixels and find R1, R2, R3 and R4. Once white rows

have been located, it starts to choose white rows in pairs as boundaries to detect any

columns in between those rows. First it chooses R1 and R2 and does not find any

column in between them. Then it chooses R2 and R3 and finds a column C1 between

those two white rows. At the end it checks between R3 and R4 and does not find

a column in between them. Using these rows and columns the algorithm figures out

the layout of the document for text extraction purposes. For the region with images,

the text extraction process discussed in the next section does not generate any text,

thus not effecting the final output.

5.5 Text Extraction

5.5.1 Targeted Text Extraction

The width of the footer and header region tells the algorithm not to extract the text

from that region. The detected columns and rows help the algorithm to divide them

58

Figure 5.5: Layout Example

59

into boxes of text and extract text from them individually. Now, for this information

to be useful the algorithm will also need to be able to extract text from specific regions

of a PDF rather than the whole document. To accomplish this the algorithm uses

PDFTextStripperByArea() method of PDFBox library available in Java [38]. This

method takes a rectangle object as input for the area from where the text needs to be

extracted. Once the text extraction is done, the algorithm finds the indices at which

these markers are in the text. Now the text in between these indices is extracted and

stored in a variable EXT TEXT. In case of multiple relevant headings, this process

will use their individual markers to get the relevant text from each of the relevant

headings.

5.5.2 Formatting Output

Once we have the text from each of the relevant headings, the text is still in the form

of a continuous string that needs to be divided into points in accordance to how the

author has formatted the document. Algorithm 5 explains the whole process in de-

tail. This step takes the text extracted from the previous step as input and outputs

a list (OUTPUT). At the end, each element of this list will store a sentence or a

paragraph depending on the text. To achieve this the algorithm looks for elements

such as new lines, periods and bullet points. The bullet points currently being used

by the algorithm are shown in Box 5.3.

Box 5.3: Currently Used Bullet Point Separators

[

‘ \ xef \ x82 \ xa7’ , ‘ \ xe2 \ x80 \ xa2’ , ‘ \ xef \ x82 \ xb7’ ,

‘ \ xef \ x81 \ xb1’ , ‘ \ xe2 \ x97 \ x8f ’ , ‘ \ xef \ x82 \ xa1’ ,

‘ \ xef \ x82 \ xbe’ , ‘ \ xef \ x83 \ x98’ , ‘ \ xef \ x81 \ xb6’ ,

r‘\ s[\ d]{1,2}’̇ , r‘\ s[\ d]{1,2}’ , r‘\ s[\ d]{1,2}\ .\)’,
r‘\ ([\ d]{1,2}\)’ , r‘\ s [A-Za-z] \. \ s’ , r‘\ s[A-Za-z]\)’,
r‘\ ([A-Za-z]\)’ , r‘\ s[-]’ ,r‘\ s[*]’ , r‘\ s[>]’

]

Using these elements the algorithm decides whether to segment the string at that

point or not. The indices at which the text needs to be segmented are stored in the

60

variable Dlist. If the author intended that information as separate sentences then this

step will output text segmented into separate sentences and if the text was intended as

a series of paragraphs then the output will be in the same format. This maintains the

integrity of what the author wanted to convey using the text. The system outputs

a list of Learning Outcomes or a paragraph if the instructor formatted it in that

manner. This step is aimed towards retaining as much formatting information as

possible to make further analysis of the extracted text more accurate.

Algorithm 4 Formatting Output

Input: A string EXT TEXT which is discussed in the last subsection.

Output: A list OUTPUT which contains all the headings in the document.

Function FormatOutput (EXT TEXT)
Set FirstIndex = 0 . Index Counter Initializations

if EXT TEXT contains bullet points then
. Look for bullet points as a point of seperation

for i = 0 to length(EXT TEXT) do

if EXT TEXT[i] has bullet point then
Append i to Dlist

end

end

else

for i = 0 to length(EXT TEXT) do
. Look for period followed by new line character as a point of seperation

if EXT TEXT[i] has a period then

if EXT TEXT[i+1] has new line character then
Append i to Dlist

end

end

end

end

for Index in Dlist do
Append EXT TEXT[FirstIndex:Index] to OUTPUT

Set FirstIndex = Index
end

Return OUTPUT . Output of the algorithm

61

5.6 Test Results & Discussion

Testing was performed on all the 500 documents for layout analysis and selecting be-

ginning/end markers, as there are no files required for training, which implies all files

are unseen. For testing everything else 10 fold cross validation was used. Table 5.1

shows the performance of the relevant heading selection classifier. Other classifiers

were not compared for this task as the first classifier tested gave near perfect results.

Table 5.1: Test Results For Relevant Heading Selection

Category Value

Sensitivity 0.999

Specificity 0.100

Precision 0.100

F1 SCORE 0.999

Accuracy 99.96 %

AUC 0.99

Table 5.2 shows the individual performance of the sub processes that use the whole

500 documents for testing. The text markers are correctly detected for 478 of 500

documents. Layout Analysis is divided into two parts: Header/Footer Detection and

Multiple Text Column Detection. Header/Footer detection worked for 459 out of

500 documents. For Multiple Text Column and/or Images 491 out of 500 documents

performed correctly.

Table 5.2: Individual Test results

MODULE Total documents For

This Category

Properly

Working

Selecting Beginning & End Markers 500 447

Layout Analysis - Header Footer Detec-

tion

500 459

Layout Analysis - Multiple Text Col-

umn and/or Images

500 491

Table 5.3 shows the overall performance of the algorithm which uses 10 cross vali-

dation, Learning outcomes are correctly extracted from 81.8% documents. 9.6% of

62

the documents are partially working because the current algorithm does not have

the mechanisms to address them completely. The documents referred to as partially

working are the ones in which one or two of the sub processes fail leading to partially

correct output. The reason behind this is the current limitations of the system which

are discussed in Section 6.3 of the next chapter in detail.

Table 5.3: Overall Test Results

CATEGORY Accuracy

Working 81.8%

Partially Working 9.6 %

Not Supported 8.6 %

5.7 Conclusion

In this chapter, we propose a robust approach consisting of multiple sub tasks to

extract specific text from a document based on the application area, which in this

case is extraction of learning outcomes from course outlines. The keywords decide

what is getting extracted from the documents, so they need to be chosen as per the

application area. We implemented this algorithm to extract learning outcomes out of

course outlines, it can be used to extract other information from all kinds of supported

documents. Text under those relevant headings is extracted using the information

gathered from layout analysis for the header/ footer and text column location. The

extracted text is then segmented into small sentences and paragraphs according to

how the author of the document intended for the information to be conveyed.The

test results revealed that the accuracy of the system is currently 81.8% with scope of

improvement in a few areas.

63

Chapter 6

Discussion, Future Work &

Conclusion

6.1 Overview . 63

6.2 Main Contributions . 64

6.3 Scope For Improvement & Current Exceptions 64

6.3.1 Extending The Heading Detection Classifier 64

6.3.2 Scanned Documents . 66

6.3.3 Text in Tables . 69

6.3.4 Extending The Keyword Based Approach 69

6.3.5 Documents Without Headings 69

6.4 Conclusion . 71

6.1 Overview

The approaches proposed in this thesis has shown good overall accuracy with room for

improvement. The extracted learning outcomes are being used for further analysis[35,

36, 37] and, before proceeding with the analysis, the extracted learning outcomes are

shown to the user for review. While this step helps in making sure that the extracted

learning outcomes are correct, improving the accuracy even further could help reduce

human input even further. The areas that can be further improved are discussed in

64

detail below.

6.2 Main Contributions

The current literature and its shortcomings in supporting the task of extracting spe-

cific text from documents were discussed in chapter 2. An exploratory analysis of

extracting formatting information from documents is presented in chapter 3, which

also discusses all the conversions needed to extract this data. All the extracted data is

used for further analysis, which includes heading detection and white space analysis.

Detect headings in documents using the classifier discussed in chapter 4 enables our

approach to work on documents which do not have a given format, which is a lim-

itation in the approaches presented by El-Haj et al. and Ramakrishnan et al. [10, 42].

We also present an approach for analyzing the white spaces in documents to detect

header/footer text and multiple text columns using the same method. This reduces

the amount of computation required therefore reduces the time required to perform

the analysis. Thus, overcoming all the limitations, we discussed in the literature re-

view.

6.3 Scope For Improvement & Current Exceptions

6.3.1 Extending The Heading Detection Classifier

The classifier currently makes a binary decision where it classifies a candidate text as

heading or not. While this serves the purpose, extending its functionality by tagging

multiple labels like heading, paragraph text, header/footer text, and table text can

make this system more accurate and help support more types of documents. While

classifying paragraph text is possible using the existing features, for properly clas-

sifying table text[11, 19], text columns, and header/footer text more data features

are necessary. Future work should look into white space detection and bounding box

data from PDF to XML conversion to provide the model with what it needs to make

this classification[48].

65

Figure 6.1: Heading False Possitive

66

This will enable the classifier to perform both heading detection and layout analysis;

thus eliminating the need to perform layout analysis as a separate step. Such clas-

sifier will also help avoid text in header/footer areas to be detected as headings. As

illustrated in Fig 6.1, the bold text in the header region is classified as heading due

to its physical characteristics. The classifier is not able to tell that it is a part of the

header region. Therefore, having inputs on the physical layout in the classification

process will solve this problem discussed above. Also, if the classifier is able to classify

elements as header/footer text, table text and text columns, there won’t be a need

to perform separate layout analysis thus saving processing and time.

6.3.2 Scanned Documents

Scanned documents are currently not supported because our approach for text ex-

traction and relevant heading detection would not work on them. The two things

that are needed in the current algorithm to make it compatible with such documents

are:

• For scanned documents, it is important to address the skew angle, as not all

documents get scanned perfectly straight. This leads to text skewed in a slight

upwards or downwards direction as shown in Fig 6.2. A method to correct or

account for skew is required. Future work could extend our approach by combin-

ing it with published methods to address skewness in text documents[32, 45, 47].

• A Scanned document is a combination of scanned images of the original docu-

ment. Hence they require OCR to extract text and its format characteristics like

font size. There are many OCR approaches available for extracting text[7, 34].

The proposed approach also needs to extract the text format from scanned doc-

uments for which we are still researching the current literature.

Once these points have been addressed, our proposed approach will be able to support

scanned documents because our approach for layout analysis works on images and

would work fine with scanned documents once the skew is corrected.

67

Figure 6.2: Example of Scanned PDF With Skew

68

Figure 6.4: Relevant Text in Table Example

69

6.3.3 Text in Tables

The current algorithm does not detect tables. Therefore, the integrity of the text is

not maintained when extracted from tables. An example of such a case is shown in

Fig 6.4. To enable proper extraction, detecting tables and their underlying structure

is important. Future work should look into detecting tables using visual seperators

and table detection for scanned documents[11, 19].

6.3.4 Extending The Keyword Based Approach

The system currently looks for relevant headings using the classifier discussed in

chapter 5. While this approach has near perfect accuracy, it can be further improved

by using synonyms of these keywords in the scoring mechanism. The purpose of this is

to link the keywords with their synonyms while performing the analysis. Future work

should look into WordNet which is a lexical database that forms sets of synonyms by

grouping words [30].

6.3.5 Documents Without Headings

The current approach looks for headings and extracts the text under it to get the rel-

evant text. While this approach works well in majority of the documents, there are a

few documents which do not divide the text into paragraphs and are formatted with-

out headings as shown in Fig 6.5. For these kinds of documents a different approach

is require. Future work should look into relevant synonym frequency as solution to

look for relevant text. This approach looks for synonyms of relevant keywords in the

text and uses their frequency to make the decision regarding its relevance. This idea

is currently in its rudimentary state therefore needs more research and testing.

70

Figure 6.5: Example Of Documents Without Headings

71

6.4 Conclusion

In this thesis, an approach to extract specific text from documents is presented. This

approach is applied to extract learning outcomes from course outlines which are be-

ing used for further analysis to support the automation of university/college transfer

credit agreements in Ontario using semantic similarity algorithms to assess similari-

ties in learning outcomes between related post-secondary credentials. To start with

the analysis, we convert the document into HTML to extract text formatting infor-

mation and convert it into a set of images to perform layout analysis.

The whole process is broken down into multiple sub-tasks, the two main being de-

tecting headings and document layout analysis. The purpose of detecting headings

is to know what all information is presented in the document, which is one of the

limitations in the current literature as they work on documents with a given struc-

ture. Layout analysis is performed using white space detection and is used to detect

both header/footer text and multiple text columns.This saves time by reducing the

amount of processing required which is a big factor when dealing with documents in

bulk. The system has shown an accuracy of 81.8% in extracting learning outcomes

from course outlines and can be used for many other applications involving extraction

of specific text from documents.

72

Appendix A

Application API

A.1 Overview

The API focuses on providing access to all the modules discussed in this thesis.

A.1.1 Run & Configure

The file LO-API.py should be running as it will be handling all the requests sent to

the URLs given. The port on which it will run can be changed from the same file.

The system has the following basic dependencies:

• Python 2.7

External Libraries Required:

– PIL

– wand

– pdf2txt

– PyPDF2

• Java 6

External Libraries Required:

– PDFBox

– PDF2IMG

73

A.2 Methods Available

A.2.1 Extracting Learning Outcomes

Extracting learning outcomes from a course Outline

URL

/extract lo

Method

POST

URL Params

None

Data Params

Key: upfile (Passed using form data in body) < The PDF document >.

Success Response

HTML Code: 200

[[

“Our primary objective for First Year Chemistry is to offer you a

comprehensive and relevant course on the fundamental concepts.”,

“We offer a number of resources to support your studies.”

],[

“Describe the subatomic composition of atoms, ions and isotopes.”,

“Calculate spectroscopic quantities in relation to electronic transitions.”,

“Predict the relative strengths of acids and bases.”

]]

74

Content Description: The output is a list containing list of learning outcomes.

Each list inside the primary list represents the learning outcomes extracted from

different relevant paragraphs. This can be used to display the learning outcomes

extracted from different paragraphs separately.

Error Response(s)

• Passing a file other than PDF

HTML Code: 202

[[

“FILE TYPE NOT SUPPORTED”

]]

• Calling a method other than post for this URL

HTML Code: 405

{
“message”: “The method is not allowed for the requested URL.”

}

A.2.2 Extracting Headings

Extracting headings from a document

URL

/extract headings

75

Method

POST

URL Params

None

Data Params

Key: upfile (Passed using form data in body) < The PDF document >.

Success Response

HTML Code: 200

[[

“Introduction”,

“Learning Outcomes”,

“Grade Breakdown”,

.

.

.

“Attendance”,

“Expectations”,

]]

Content Description: The output is a list containing list of headings generated

using the supervised learning classifier discussed in chapter 4.

Error Response(s)

• Passing a file other than PDF

76

HTML Code: 202

[[

“FILE TYPE NOT SUPPORTED”

]]

• Calling a method other than post for this URL

HTML Code: 405

{
“message”: “The method is not allowed for the requested URL.”

}

A.2.3 Extracting Text Format From the Document

Extracts the text formatting information by converting PDF to HTML.

URL

/extract file format

Method

POST

URL Params

None

77

Data Params

Key: upfile (Passed using form data in body) < The PDF document >.

Success Response

HTML Code: 200

[[

“11”,

“Description”,

0

],[

“10”,

“Conversion of numerical grades to Final Letter Grades ”,

1

]]

Content Description: Each element in the list represents some text from the doc-

ument. The order of text depends on the order it appears in the document. Each

list element has the font size first, then the text and then the boldness flag (1 means

bold and 0 means normal or not bold).

Error Response(s)

• Passing a file other than PDF

HTML Code: 202

[[

“FILE TYPE NOT SUPPORTED”

]]

78

• Calling a method other than post for this URL

HTML Code: 405

{
“message”: “The method is not allowed for the requested URL.”

}

A.2.4 Locating Header & Footer Area

URL

/locate header footer

Method

POST

URL Params

None

Data Params

Key: upfile (Passed using form data in body) < The PDF document >.

Success Response

HTML Code: 200

79

[

8.522727272727273,

10.795454545454547

]

Content Description: The response consists of two numbers, which tells what per-

cent of the total page height are the header and footer regions.

So, for the above example content the header regions starts from the top of the

page and extends till (8.522727272727273 x Page Height) pixels in the downward

direction and footer regions starts from the bottom of the page and extends till

(10.795454545454547 x Page Height) pixels in the upward direction.

Error Response(s)

• Passing a file other than PDF

HTML Code: 202

[[

“FILE TYPE NOT SUPPORTED”

]]

• Calling a method other than post for this URL

HTML Code: 405

{
“message”: “The method is not allowed for the requested URL.”

}

80

A.2.5 Formatting The Extracted Text

Formats the extracted text according to how the author formatter in the document.

URL

/format text

Method

POST

URL Params

None

Data Params

Key: text (Passed using form data in body) < Text that needs formatting >.

Success Response

HTML Code: 200

[[

“This course is designed to provide an opportunity for students to satisfy

ACE Learning Outcome.”,

“Exhibit global awareness or knowledge of human diversity through

analysis of an issue.”

]]

Content Description: The output is a list containing sentences and paragraphs

depending on how the author formatted that document.

81

Error Response(s)

• Passing a file other than PDF

HTML Code: 202

[[

“FILE TYPE NOT SUPPORTED”

]]

• Calling a method other than post for this URL

HTML Code: 405

{
“message”: “The method is not allowed for the requested URL.”

}

82

Appendix B

List of Abbreviations

• API Application Program Interface

• AUC Area Under Curve

• CPU Central Processing Unit

• DOM Document Object Model

• FN False Negative

• FP False Positive

• GPL General Public License

• HTML Hypertext Markup Language

• OCR Optical Character Recognition

• PDF Portable Document Format

• POS Parts Of Speech

• REGEX Regular Expression

• ROC Receiver Operating Characteristic

• SVM Support Vector Machine

• TN True Negative

• TP True Positive

83

• URL Uniform Resource Locator

• WSP White Space Polygons

• WSR White Space Rectangles

• XML eXtensible Markup Language

84

Appendix C

Values For All Classifier

Parameters

Table C.1: Decision Tree Parameters

Parameters Value

criteria gini

spliter best

min samples split 2

min samples leaf 3

Table C.2: Support Vector Machine Parameters

Parameters Value

kernel rbf

gamma auto

degree 3

shrinking True

tol 2e-3

decision function shape ovr

85

Table C.3: K-Nearest Neighbors Parameters

Parameters Value

n neighbors 10

weights distance

metric minkowski

Table C.4: Random Forest Parameters

Parameters Value

n estimators 2

criterion gini

max depth 5

max features auto

min samples split 2

min samples leaf 3

n jobs 1

Table C.5: Gaussian Naive Bayes Parameters

Parameters Value

priors [0.5, 0.5]

Table C.6: Quadratic Discriminant Parameters

Parameters Value

priors [0.5, 0.5]

tol 1.0e-4

86

Table C.7: Logistic Regression Parameters

Parameters Value

penalty l2

tol 2e-4

fit intercept True

solver liblinear

max iter 50

multi class ovr

n jobs 1

Table C.8: Gradient Boosting Parameters

Parameters Value

loss deviance

learning rate 0.1

n estimators 100

max depth 3

criterion friedman mse

min samples split 2

min samples leaf 1

presort auto

87

Table C.9: Neural Net Parameters

Parameters Value

hidden layer sizes (100,)

activation tanh

solver lbfgs

batch size auto

learning rate init 0.001

max iter 200

shuffle True

beta 1 0.9

beta 2 0.999

88

Bibliography

[1] Ethem Alpaydin. Introduction to Machine Learning. [Sl]. The MIT Press, 2010.

[2] Asa Ben-Hur and Jason Weston. A users guide to support vector machines. In

Data mining techniques for the life sciences, pages 223–239. Springer, 2010.

[3] Øyvind Raddum Berg, Stephan Oepen, and Jonathon Read. Towards high-

quality text stream extraction from pdf: technical background to the acl 2012

contributed task. In Proceedings of the ACL-2012 Special Workshop on Redis-

covering 50 Years of Discoveries, pages 98–103. Association for Computational

Linguistics, 2012.

[4] Tim Bienz, Richard Cohn, and Calif.) Adobe Systems (Mountain View. Portable

document format reference manual. Citeseer, 1993.

[5] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with

Python: analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”,

2009.

[6] Thomas M Breuel. Two geometric algorithms for layout analysis. In International

workshop on document analysis systems, pages 188–199. Springer, 2002.

[7] Jagruti Chandarana and Mayank Kapadia. Optical character recognition. Inter-

national Journal of Emerging Technology and Advanced Engineering, 4(5):219–

223, 2014.

[8] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.

Smote: synthetic minority over-sampling technique. Journal of artificial intelli-

89

gence research, 16:321–357, 2002.

[9] Google Developers. Custom search json api, 2018. https://developers.

google.com/custom-search/json-api/v1/overview,.

[10] Mahmoud El-Haj, Paul Rayson, Steven Young, and Martin Walker. Detecting

document structure in a very large corpus of uk financial reports. In: Proceedings

of the ninth international conference on language resources and evaluation, pages

1335–1338, 2014.

[11] Jing Fang, Liangcai Gao, Kun Bai, Ruiheng Qiu, Xin Tao, and Zhi Tang. A table

detection method for multipage pdf documents via visual seperators and tabular

structures. In Document Analysis and Recognition (ICDAR), 2011 International

Conference on, pages 779–783. IEEE, 2011.

[12] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters,

27(8):861–874, 2006.

[13] David A Freedman. Statistical models: theory and practice. cambridge university

press, 2009.

[14] Liangcai Gao, Zhi Tang, Xiaofan Lin, Ying Liu, Ruiheng Qiu, and Yongtao

Wang. Structure extraction from pdf-based book documents. In Proceedings of

the 11th annual international ACM/IEEE joint conference on Digital libraries,

pages 11–20. ACM, 2011.

[15] Jan Goyvaerts and Steven Levithan. Regular expressions cookbook. O’reilly, 2012.

[16] Daniel Graupe. Principles of artificial neural networks, volume 7. World Scien-

tific, 2013.

[17] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene se-

lection for cancer classification using support vector machines. Machine learning,

46(1-3):389–422, 2002.

https://developers.google.com/custom-search/json-api/v1/overview
https://developers.google.com/custom-search/json-api/v1/overview

90

[18] Jin Huang and Charles X Ling. Using auc and accuracy in evaluating learning

algorithms. IEEE Transactions on knowledge and Data Engineering, 17(3):299–

310, 2005.

[19] MAC Akmal Jahan and Roshan G Ragel. Locating tables in scanned documents

for reconstructing and republishing. In Information and Automation for Sus-

tainability (ICIAfS), 2014 7th International Conference on, pages 1–6. IEEE,

2014.

[20] Deliang Jiang and Xiaohu Yang. Converting pdf to html approach based on text

detection. In Proceedings of the 2nd International Conference on Interaction

Sciences: Information Technology, Culture and Human, pages 982–985. ACM,

2009.

[21] Declan Kennedy. Writing and using learning outcomes: a practical guide. Uni-

versity College Cork, 2006.

[22] Daniel T Larose. k-nearest neighbor algorithm. Discovering knowledge in data:

An introduction to data mining, pages 90–106, 2005.

[23] Svetlana Lazebnik, A Torralba, L Fei-Fei, D Lowe, and C Szurka.

Bag of words models. Dostopno na: http://cs. nyu. edu/˜ fer-

gus/teaching/vision 2012/9 BoW. pdf, 3, 2011.

[24] Xiaofan Lin. Header and footer extraction by page association. In Proceedings

of SPIE 5010, pages 164–171, 2002.

[25] Charles X Ling, Jin Huang, and Harry Zhang. Auc: a better measure than

accuracy in comparing learning algorithms. In Conference of the canadian society

for computational studies of intelligence, pages 329–341. Springer, 2003.

[26] Rokach Lior et al. Data mining with decision trees: theory and applications,

volume 81. World scientific, 2014.

[27] Gilles Louppe. Understanding random forests: From theory to practice. arXiv

91

preprint arXiv:1407.7502, 2014.

[28] Vijay Kumar Mago. Cross-Disciplinary Applications of Artificial Intelligence

and Pattern Recognition: Advancing Technologies: Advancing Technologies. IGI

Global, 2011.

[29] Tomohiro Manabe and Keishi Tajima. Extracting logical hierarchical structure

of html documents based on headings. Proceedings of the VLDB Endowment,

8(12):1606–1617, 2015.

[30] George A Miller. Wordnet: a lexical database for english. Communications of

the ACM, 38(11):39–41, 1995.

[31] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of

machine learning. MIT press, 2012.

[32] A Papandreou, Basilios Gatos, Stavros J Perantonis, and I Gerardis. Efficient

skew detection of printed document images based on novel combination of en-

hanced profiles. International Journal on Document Analysis and Recognition

(IJDAR), 17(4):433–454, 2014.

[33] Rajul Parikh, Annie Mathai, Shefali Parikh, G Chandra Sekhar, and Ravi

Thomas. Understanding and using sensitivity, specificity and predictive values.

Indian journal of ophthalmology, 56(1):45, 2008.

[34] Chirag Patel, Atul Patel, and Dharmendra Patel. Optical character recogni-

tion by open source ocr tool tesseract: A case study. International Journal of

Computer Applications, 55(10), 2012.

[35] Atish Pawar, Sahib Budhiraja, Daniel Kivi, and Vijay Mago. Are we on the same

learning curve: Visualization of semantic similarity of course objectives. arXiv

preprint arXiv:1804.06339, 2018.

[36] Atish Pawar and Vijay Mago. Calculating the similarity between words

and sentences using a lexical database and corpus statistics. arXiv preprint

92

arXiv:1802.05667, 2018.

[37] Atish Pawar and Vijay Mago. Similarity between learning outcomes from course

objectives using semantic analysis, blooms taxonomy and corpus statistics. arXiv

preprint arXiv:1804.06333, 2018.

[38] Apache PDFBox. Apache pdfbox, 2014. https://pdfbox.apache.org/,.

[39] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. Journal

of machine learning research, 12(Oct):2825–2830, 2011.

[40] Maja Pohar, Mateja Blas, and Sandra Turk. Comparison of logistic regression

and linear discriminant analysis: a simulation study. Metodoloski zvezki, 1(1):143,

2004.

[41] Fuad Rahman and Hassan Alam. Conversion of pdf documents into html: a case

study of document image analysis. In Signals, Systems and Computers, 2004.

Conference Record of the Thirty-Seventh Asilomar Conference on, volume 1,

pages 87–91. IEEE, 2003.

[42] Cartic Ramakrishnan, Abhishek Patnia, Eduard Hovy, and Gully APC Burns.

Layout-aware text extraction from full-text pdf of scientific articles. Source Code

for Biology and Medicine, 7(1):7, 2012.

[43] Greg Ridgeway. The state of boosting. Computing Science and Statistics, pages

172–181, 1999.

[44] Irina Rish. An empirical study of the naive bayes classifier. In IJCAI 2001

workshop on empirical methods in artificial intelligence, volume 3, pages 41–46.

IBM, 2001.

[45] Daniel Rosner, Costin-Anton Boiangiu, Mihai Zaharescu, and Ion Bucur. Image

skew detection: A comprehensive study. In Proceedings of IWoCPS-3, The Third

https://pdfbox.apache.org/

93

International Workshop On Cyber Physical Systems, Bucharest, Romania, 2014.

[46] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach.

Malaysia; Pearson Education Limited,, 2016.

[47] Mahnaz Shafii and Maher Sid-Ahmed. Skew detection and correction based on

an axes-parallel bounding box. International Journal on Document Analysis and

Recognition (IJDAR), 18(1):59–71, 2015.

[48] Y. Shinyama. Pdfminer: Python pdf parser and analyzer, 2010. http://www.

unixuser.org/~euske/python/pdfminer/,.

[49] Toshiyuki Sueyoshi. Dea-discriminant analysis: methodological comparison

among eight discriminant analysis approaches. European Journal of Operational

Research, 169(1):247–272, 2006.

[50] Linda Suskie. Assessing student learning: A common sense guide. 2010.

[51] Matthew C Swain and Jacqueline M Cole. Chemdataextractor: a toolkit for au-

tomated extraction of chemical information from the scientific literature. Journal

of chemical information and modeling, 56(10):1894–1904, 2016.

[52] E Umamaheswari Vasanthakumar and Francis Bond. A semantic multi-field

clinical search for patient medical records. 2018.

[53] Lakehead University. Learning objective automated gap analysis, 2017. http:

//www.loaga.science/,.

http://www.unixuser.org/~euske/python/pdfminer/
http://www.unixuser.org/~euske/python/pdfminer/
http://www.loaga.science/
http://www.loaga.science/

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Overview
	Motivation
	Problem Description
	Brief Description of Methodologies
	Supervised Learning
	Document Layout Analysis

	Related Work
	HTML Conversion
	Heading Detection
	Layout Analysis
	Conclusion

	Preprocessing PDFs
	Overview
	Dataset
	Tool Selection
	Conversion Techniques
	HTML Conversion
	XML Conversion

	PDF To Image Conversion For White Space Analysis
	Choosing A Pixel Size

	Conclusion & Future Work

	Supervised Learning Approach For Heading Detection
	Introduction
	Methodology
	Data Collection
	Data Preprocessing
	Feature Selection
	Grid Search
	Training

	Evaluation
	Training and Prediction Time
	Confusion matrix
	AUC

	Test Results
	Training and Prediction Time
	Confusion Matrix Based Evaluation
	AUC

	Discussion & Future Work
	Overall Results
	Testing The Generalizability
	Analysing The Results
	Extending The Classifier

	Conclusion

	Document Layout Analysis & Text Extraction
	Overview & The Framework
	Selecting Relevant Headings - Supervised Approach
	Data Collection, Labelling & Keyword Selection
	Data Transformation
	Training

	Selecting Beginning and End Markers
	Layout Analysis
	Detecting Headers and Footers
	Locating Text Columns and Images

	Text Extraction
	Targeted Text Extraction
	Formatting Output

	Test Results & Discussion
	Conclusion

	Discussion, Future Work & Conclusion
	Overview
	Main Contributions
	Scope For Improvement & Current Exceptions
	Extending The Heading Detection Classifier
	Scanned Documents
	Text in Tables
	Extending The Keyword Based Approach
	Documents Without Headings

	Conclusion

	Application API
	Overview
	Run & Configure

	Methods Available
	Extracting Learning Outcomes
	Extracting Headings
	Extracting Text Format From the Document
	Locating Header & Footer Area
	Formatting The Extracted Text

	List of Abbreviations
	Values For All Classifier Parameters
	Bibliography

