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Abstract 

Induction motors (IMs) are commonly used in industry. Online IM health condition monitoring 

aims to recognize motor defect at its early stage to prevent motor performance degradation and 

reduce maintenance costs. The most common fault in IMs is related to bearing defects. Although 

many signal processing techniques have been proposed in literature for bearing fault detection 

using vibration and stator current signals, reliable bearing fault diagnosis still remains a 

challenging task. One of the reasons is that a rolling element bearing is not a simple component, 

but a system; its related features could be time-varying and nonlinear in nature. The objective of 

this study is to investigate an online condition monitoring system for IM bearing fault detection. 

The monitoring system consists of two main modules: smart data acquisition (DAQ) and bearing 

fault detection. In this work, a smart current sensor system is developed for data acquisition 

wirelessly. The DAQ system is tested for wireless data transmission, consistent data sampling, and 

low power consumption. The data acquisition operation is controlled by using an adaptive 

interface. In bearing fault detection, a generalized Teager-Kaiser energy (GTKE) technique is 

proposed for nonlinear bearing feature extraction and fault detection using both vibration and 

current signals. The proposed GTKE technique will demodulate the signal by tracking the 

instantaneous signal energy. An optimization method is proposed to enhance the fault-related 

features and improve signal-to-noise ratio. The effectiveness of the proposed technique is verified 

experimentally using a series of IM tests. The robustness is examined under different operating 

conditions. 
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Chapter 1 Introduction 

1.1 Overview 

Condition monitoring (CM) is a maintenance strategy to track the health state of machinery. The 

purpose is to recognize machinery a defect at its earliest stage so as to prevent machinery 

performance degradation and malfunction, and to assist schedule repair and maintenance 

operations. Reliable health monitoring information of critical machinery can reduce costs by 

preventing downtime due to unexpected catastrophic failures and improving equipment reliability 

[1]. Figure 1.1 illustrates the CM process. The appropriate signals representing the machine health 

condition are collected using data acquisition (DAQ) systems. DAQ system consists of 

transducers/sensors, signal conditioning and an analog-to-digital converter (ADC), etc. The fault-

related features contained in the collected signals are extracted using appropriate signal processing 

techniques. The fault diagnostics is carried out by decision making. Traditionally, decision making 

is done by categorizing features into different categories corresponding different machinery health 

conditions. This study focuses on the DAQ and feature extraction of a CM system. 

Data acquisition

Signal processing Decision making
 

Figure 1.1. A flowchart of a machinery CM system.  

Traditional CM is implemented by offline data collection where the signal is measured 

manually by field technicians. In an online CM system, the DAQ system is remotely activated. 

Remotely operating the DAQ system allows data collection from machinery from hazardous 

locations without endangering the safety of the personnel. Furthermore, with a remote-controlled 

DAQ system, it is feasible to collect data in a controlled mode and on a continuous basis. The 

installation cost can also be reduced by using wireless sensor networks [2]. Moreover, with the 
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decreasing transducer and microcontroller unit (MCU) costs, it is possible to use of smart sensor 

technologies with onboard DAQ systems and wireless communication modules [3]. 

Induction motors (IMs) are commonly used in different industrial applications, such as 

manufacturing facilities, electric vehicles, and pump stations. IMs are the workhorse of the 

industry due to their easy installation, durability, and low maintenance requirements. An IM is a 

machine that converts electrical energy into mechanical energy. In general, IMs power 

consumption can reach up to 50% of the generated electricity [4]. Due to these facts, it is of great 

importance to monitor the health of the IMs with reliable fault diagnostic methods to prevent 

performance degradation, minimize shutdown times and reduce maintenance costs [5]. 

Figure 1.2 shows the cutaway view of an IM. A general IM is composed of stator windings, 

a rotor, two rolling element bearings and the output shaft. These components operate under a 

combination of thermal, mechanical, electrical and environmental stresses [6]. These stresses lead 

to defects in IMs such as mechanical faults (e.g., broken rotor bar, shaft misalignment, bearing 

damage) and electrical faults (e.g., unbalanced supply voltage, winding short-circuits, grounding 

faults) [7]. Surveys indicate that among these, bearing defects constitute up to 70% of the faults in 

small to medium sized IMs [8, 9]. Bearings frequently fail due to dynamic loading in operation 

[10, 11]. A damaged bearing generates not only extra vibration and noise, but also extra heat due 

to the increased friction in the defected location, which in turn decreases the lifetime of the IM. 
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offsetting and amplification. In comparison, a smart sensor is a device that integrates the sensor 

with an onboard DAQ system as well as the communication capabilities for ADC and data 

transmission [16]. The first commercial smart sensor device was an air data transducer developed 

by Honeywell in 1984 for aerospace applications [17]. Since then, the smart sensor technologies 

have been implemented in many intelligent monitoring and control applications [18]. 

Figure 1.3 demonstrates a smart sensor setup with each module serving a specific function 

in the overall operation. The signal of interest is converted to an electrical signal by the sensor. 

The output signal of many analog sensors requires signal conditioning before the signal is 

digitized. The signal conditioning unit ensures the output signal of the sensor is suitable for 

transmission, display, and recording [19]. The MCU is the unit that contains the processor unit, 

system clock, embedded memory, input/output pins, ADC or digital-to-analog converter. The 

functions of an MCU in a smart sensor are to set the voltage reference of the sensors, operate the 

ADC to convert the analog voltage to digital values, store, and process data and transmit the results 

for further processing. The communication interface is responsible for data transmission between 

the smart sensor and other devices such as a computer or another MCU. A communication can be 

wired using serial communication protocols or wireless using a transceiver. MCUs are often 

compact low-power devices that can be battery-powered. Some researchers have studied the 

effectiveness of the MCU-based low-cost smart sensors as DAQ units [20, 21]. 

Communication 
interface

Power source

Microcontroller ADCSignal conditioningSensorSignal

 
Figure 1.3. A block diagram of a typical smart sensor with an onboard DAQ unit. 

 The CM using wired DAQ has been employed in the industry [22]. However, wired CM 

has limitations in real industrial applications, such as expensive installation and maintenance costs 

due to the additional cabling, labor, hardware and labor, as well as limitations due to constrained 

space. WSSs provide an alternative cost-effective mobile monitoring solution for fault diagnostics. 
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A WSS transmits the data to a receiver device using wireless communication, such as radio 

frequency (RF) transmission, ZigBee, or wi-fi. 

To design a WSS system for remote CM, specific requirements to be considered include 

higher sampling frequency rates and sufficient ADC resolution. A reliable wireless DAQ should 

prevent any loss of communication packets in transmission. The challenge in the WSS is related 

to the development of a reliable DAQ system and the selection of suitable wireless communication 

protocols that meet the requirements of the CM with optimal use of the limited resources, such as 

memory, processor speed, and battery power.  

1.2.2 Induction Motor (IM) Bearing Fault Detection 

Rolling element bearings are commonly used not only in IMs, but also in geneal industrial 

machinery equipment. Rolling element bearings can be grouped into many categories. For 

example, based on rolling element types, bearings can be classified as ball bearings, 

tapered/cylinderal/needle roller bearings. Figure 1.4 illustrates the structure of a ball bearing 

comprised of an outer ring, an inner ring, rolling elements and a cage to keep the balls uniformly 

spaced in the bearing. IMs generally consist of bearings with a fixed outer ring and a rotating inner 

ring that carries motor shaft. 

Outer ring

Inner ring

Rolling element

Cage
 

Figure 1.4. Ball bearing structure (reproduced from [23]). 
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The bearings are subjected to dynamic loading, inherent eccentricities, and material 

fatigue. Localized bearing defects such as spalling and pitting can occur from the dynamic stresses 

or external causes such as improper lubrication, contamination, corrosion and improper installation 

[7]. These localized defects commonly occur in the fixed ring race first, due to its much higher 

dynamic load/stress cycles than those on other bearing components. The rotating ring race and the 

rolling elements are also subjected to localized defects, which will degrade IM performance. 

IM bearing fault detection can be based on analysis of signals such as vibration, electric 

current, thermal and acoustic. Among these, vibration and stator current-based analysis has been 

studied extensively [14, 24]. Unlike other machinery components such as a shaft and a gear, a 

bearing is a system that consists of inner/outer rings and rolling elements. Its accurate fault 

diagnosis in bearings still remains a very challenging task in this research field, as its features 

could be nonlinear and nonstationary especially considering the effects of slide between rolling 

elements and rings.  

Many signal processing techniques in literature are proposed for vibration and current 

analysis for bearing fault detection, which are summarized below: 

 

 

(a) Vibration Analysis 

If a bearing is damaged, say, a localized defect, as the rolling elements pass through the defect, 

impacts are generated, which will excite resonance in the support structure [25]. The excitations 

will generate impact vibrations at frequencies that depend on the shaft rotation speed and the 

geometry of the bearing. Bearing fault detection techniques aims to extract the fault frequency 

features related to the localized defect from the vibration signal. 

Among these vibration-based techniques, frequency and time-frequency analysis 

techniques are commonly used. The frequency spectrum is calculated using the Fourier Transform 

(FT) to investigate the components related to bearing faults [26]. However, spectral analysis 

assumes stationary signals and fails to catch the transient properties of the signal. Short-time FT 
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is deployed to represent the transient properties of the vibration by calculating the time-frequency 

map [27]. However, short time FT has limited resolution between time and frequency domains due 

to fixed time windowing. The wavelet transform (WT) is implemented to study the transient 

properties of non-stationary signals [28]. For example, in [29], the effectiveness of WT in the 

detection of different pitting conditions is examined; however, the WT has some leakage effects 

especially along the ends of the filter banks. Empirical mode decomposition is proposed to 

represent the signal as a sum of oscillating, zero mean mono-components. For example, Du et al. 

[30] deployed empirical mode decomposition to separate vibration signals caused by surface 

irregularities and to detect localized defects. However, empirical mode decomposition suffers from 

mode mixing of closely spaced frequencies. The resonance frequencies of the bearing support 

structure are enhanced using bandpass filtering [31]. Spectral kurtosis and kurtogram techniques 

are proposed to determine the support structure resonance frequencies for bearing fault detection 

[32, 33]. Minimum entropy deconvolution filtering is used to demodulate the noise associated with 

the signal transmission path [32]. However, the minimum entropy deconvolution filter length 

strongly influences the effectiveness of the denoising process, whose optimal value depends on 

transmission path impedance. The envelope analysis method is one of the well-accepted techniques 

to extract fault frequencies from resonance related frequency bandwidths [34] which has some 

limitation such as the ineffectiveness in detecting the fault-related modulation under noisy 

conditions.  

Several studies examined the application of Teager-Kaiser energy (TKE) in bearing fault 

detection using vibration. For example, the TKE-based time domain measures of the vibration 

signals are examined in [35]. The vibration signal is decomposed into mono-components using 

empirical mode decomposition and post-processed using TKE for fault feature enhancement [36]. 

A Teager-Huang transform technique is proposed in [37] to extract fault-related features from 

vibration signals using a combination of empirical mode decomposition and TKE. 

Another challenge in using vibration analysis for IM fault detection is that vibration sensors 

are usually difficult to be properly installed in an IM with a cylindrical structure. On the other 

hand, it is difficult to use vibration-based analysis for IM fault detection in rotor bars and electrical 

systems. The alternative would be the use of current-based analysis. 
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 (b) Motor Current Signature Analysis (MCSA) 

The accelerometers used for vibration measurements are usually expensive and require 

direct access to the machinery for installation [44]. Moreover, the mounting location of the 

vibration sensor also influences the effectiveness of the vibration analysis [45]. Motor current 

signature analysis (MCSA) is proposed to tackle these problems related to vibration analysis. 

MCSA is a non-intrusive diagnostics method that utilizes the stator current signals. IM 

defects generate fluctuations in the shaft torque; anomalies in the rotor magnetic field could 

modulate the stator current. These effects can provide fault indicators without direct access to the 

IM [40]. Many research efforts were taken to apply MCSA for IM fault detection such as broken 

rotor bars, shorted winding turns, and abnormal air gap eccentricities [4]. Schoen et al. [41] used 

MCSA for bearing fault detection to detect fault frequencies caused by the bearing vibration. In 

[42], an analytical model was proposed using MCSA for localized IM bearing defect detection. 

The MCSA were also extensively studied for IM bearing fault detection in [43-48]. 

Several techniques were also suggested to detect characteristic frequency components for 

IM fault detection. For example, the Wigner Ville distribution was adopted to track the oscillating 

instantaneous frequency of the electrical supply to detect the fault-related phase modulations [49] 

However, Wigner Ville distribution suffers from interference of closely spaced frequency 

components in multicomponent signals limiting the time and frequency resolution of the analysis. 

Adaptive noise cancellation using Wiener filtering of the current was implemented to increase the 

signal-to-noise ratio (SNR) [50]. However, the baseline signal of the healthy motor is required to 

optimize the filter, and the continuous monitoring of the motor is required to track the statistical 

properties of the signal. A time-shifting subtraction method was utilized to denoise the periodic 

components of the signal that are not related to the bearing fault [51]. However, the time-shifted 

addition method fails to prevent the noisy components in the presence of a nonstationary signal 

with fluctuating supply harmonics. WT packet was applied to decompose the current signal with 

low SNR into predetermined frequency bands to investigate the energy levels for fault indicators 

[52]. However, the selection of WT packet parameters require prior knowledge of the signal 

properties. 



 
  

9 
 

The challenge of MCSA related techniques for bearing defects detection is related to its 

low SNR. Stator current signals acquired from the IM are dominated by the supply frequency 

harmonics, rotor slot harmonics, and spectral components related to inherent mechanical 

tolerances such as imbalances and misalignments. The signals generated from the bearing defects 

are usually weak compared to the power signals, while the complex signal transmission path from 

the defect location to the current sensors will lead to even low SNR [53].  

1.3 Objectives and Strategies 

To tackle the previously mentioned challenges, the goal of this research is to develop an online 

condition monitoring system for bearing fault detection in IMs using both vibration analysis and 

MCSA. The focus of the study will be on the analysis of initial bearing fault, which occurs on the 

outer race of the bearing.  

The first objective of this research is to develop a smart sensor system to collect vibration 

and current signals online. Software solutions will be investigated to develop an MCU-based WSS 

system with more accurate data sampling, low power consumption, and wireless communication 

capability.  

The second objective is to propose a new signal processing technique, namely generalized 

Teager-Kaiser energy (GTKE), for bearing fault detection using both vibration and current signal 

analysis. The GTKE technique aims to detect the characteristic fault frequencies from the vibration 

and current signals. The proposed GTKE technique will be new in the following aspects: 1) the 

frequency spectrum of GTKE is investigated for the detection of bearing faults as signal 

demodulation method, and 2) GTKE is optimized to enhance the bearing fault frequency of the 

vibration and current signals with low SNR. The effectiveness of the GTKE technique is verified 

experimentally under different load and speed conditions. 
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1.4 Thesis Outline 

This thesis is organized as follows: Chapter 2 presents the proposed software improvements to 

tackle the limitations of the existing WSS systems such as the optimal use of battery power, 

memory extension, reliable wireless communication and consistent data sampling. The developed 

software will be tested experimentally to verify the performance.  

Chapter 3 presents the theoretical basis of the signal models for bearing defect. The 

fundamentals of the signal modulation, as well as vibration and current based bearing modulation 

models, are introduced. The existing signal demodulation techniques are also presented. 

Chapter 4 discusses the proposed GTKE technique. The effectiveness of the proposed 

method to enhance the fault related features will be demonstrated by a series of simulation tests. 

This chapter also includes the overview of the classical TKE technique, provides a mathematical 

basis on the use of TKE for signal demodulation and summarizes the limitations in processing 

signals with low SNR.  

Chapter 5 presents the experimental results and demonstrates the effectiveness of the 

examined GTKE technique for bearing fault detection by examining vibration and stator current 

signals. The robustness of the GTKE technique is tested for IMs under various speed and load 

conditions. The results are compared with the related techniques. 

Chapter 6 summarizes the achievements of this work and conclusions based on the 

conducted experimental tests. Possible future work to improve the sensor development and the 

feature extraction method will be provided. 
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Chapter 2 Smart Sensor Development 

In this chapter, a WSS system is developed to meet specific DAQ requirements for IM fault 

detection, including low power consumption, stable data sampling, sufficient data memory, and 

reliable wireless communication. Figure 2.1 presents the schematic of the WSS, which consists of 

a sensor node and a receiver. Figure 2.2 shows the developed MCU-based wireless sensor module 

with an analog current sensor node and a receiver module with the serial-to-USB communication. 

Sensor Signal conditioning Microcontroller ADC Wireless 
transceiver

Power source

Microcontroller

Power source

Wireless 
transceiver Bus interface

Receiver node

Sensor node
Signal

 
Figure 2.1. WSS with a sensor and a receiver node. 
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1 2

 
Figure 2.2. The tested WSS system: (1) the receiver module, (2) the sensor module. 

2.1 Sensing Element 

The tested sensor module is designed for current measurements using analog current sensors. The 

sensing unit measures the physical current quantity and outputs a voltage output. The sensor 

voltage output can be digitized using the ADC, as illustrated in Figure 2.3. There are seveal types 

of analog current sensors available in the market. Among these, Hall effect sensors are commonly 

used due to their low cost and high performance [15], which will be used in this work. Hall effect 

is a magnetic phenomenon that can be utilized for current measurement without electrical contact. 

A Hall effect sensor can be classified as open-loop or closed-loop on the circuit design as shown 

in Figure 2.4(a,b). Open-loop sensors are cheaper and have simpler circuit designs than their 

closed-loop counterparts. However, closed-loop sensor provides better frequency response, better 

immunity to stray magnetic fields and higher range of linearity. 
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Figure 2.3. Signal measurement using an analog sensor. 

The tested sensor module in this work is an LTS 6-NP closed-loop Hall effect current 

sensor shown in Figure 2.4(a). The current measuring range is ± 6 A. The required voltage supply 

is 5 V. The sensitivity is 104.16 mV/A. 

(a) (b)
 

Figure 2.4. Hall effect current sensors: (a) LTS 6-NP closed-loop Hall effect current sensor (reproduced 

from [54]), (b) SCK1-100A open-loop Hall effect current sensor (reproduced from [55]). 

2.2 Microcontroller Unit (MCU) 

The function of the MCU is to operate the tasks such as data sampling, data storage, and wireless 

communication. It can be considered as the brain of the smart sensor system. The MCU in a smart 

sensor system should meet some requirements, such as ADC capability, stable timing 

measurement, sufficient computational power, low power consumption, low cost, and availability 

of development tools for programming [15]. 
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 Unlike the general purpose microprocessors in personal computers, an MCU is an 

embedded processor designed to perform some specific tasks. One of the most commonly used 

architecture formats for MCUs is Harvard Architecture that utilizes separate, dedicated memories 

for data and executed program [56]. This architecture provides fast and efficient program 

execution. Figure 2.5 illustrates the MCU design based on a Harvard Architecture with separate 

on-chip program read only memory (ROM) and random-access memory (RAM) for data storage 

operated by the central processing unit (CPU). 

 The ROM stores the instructions to be executed by the MCU. MCUs with on-chip erasable 

programmable ROM (EPROM) and flash memories are suitable for testing and debugging 

procedures of the software development. EPROMs and flash memories can be reprogrammed 

easily without requiring specialized devices or a formatting process. The RAM is used for data 

storage. RAMs provide faster data read/write operation than program memory types, regardless of 

the physical location of the data in the memory, however, data stored in the RAM are lost when 

the power is turned off [57]. 

 
CPUROM RAM

 
Figure 2.5. MCU design based on Harvard Architecture. 

 The CPU is the IC that operates the MCU by executing program instructions. These 

instructions include arithmetic and Boolean logic operations [56]. The data size of the instructions 

is defined in 2b-bits depending on the MCU hardware capabilities. MCUs can handle more bits 

with higher computational power. However, these systems require more complex hardware design, 

consume higher power, and are more expensive. 

 Computation operations are based on timing provided by a clock unit. The smart sensor 

systems require a stable timing for consistent data sampling. Most MCUs include a built-in crystal 

oscillator-based clock unit. The computation speed of the MCU depends on the clock speed in Hz. 

High-frequency clocks are faster but require more power to operate. 
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 MCUs communicate with external devices such as sensors and wireless communication 

modules through digital and/or analog peripherals. In an embedded MCU, the peripherals are 

hardwired to a specific input/output pin. The MCU communicates digital devices such as ICs and 

digital sensors through digital peripheral protocols such as an inter-integrated circuit (I2C) or serial 

peripheral interface (SPI). Analog peripherals include ADC and digital-to-analog converter. 

The MCU selected for the WSS in this work is an AVR® family Atmega 328p with low 

power consumption, relatively high performance, and available development tools. Atmega 328p 

is an 8-bit MCU with 32 kB reprogrammable flash memory, 1024 byte EPROM and 2 kB static 

RAM (SRAM). The built-in clock speed is 8 MHz for 3.3 V supply, which can also reach 16 MHz 

with 5 V supply. Atmega 328p supports both SPI and I2C and has a built-in ADC unit, which can 

be programmed and operated using a serial to USB interface using an IDE.  

2.2.1  Programming Structure 

Atmega 328p is programmed using C language. However, C++ based libraries can be included as 

headers to utilize the object-oriented language structure. The most common approach is to utilize 

a setup function to initialize variables, which is called when the MCU is connected to the power 

supply. Then a main function is defined to operate the MCU as long as the MCU is powered on. 

2.2.2  Registers 

A register is a memory tightly coupled with the CPU’s arithmetic and logical unit, which can store 

data, hold an instruction or specify a pin location [56]. The register values are loaded to the MCU 

before the program is loaded. Atmega 328p has a 8-bit register architecture, where 16-bit registers 

are stored in 2×8-bit locations. The registers are utilized to operate ADC, assign input/output pins, 

and initialize data sampling with the appropriate interrupts.  

2.2.3 Interrupts 

The normal operation of the MCU executes a sequence of instructions following the main function. 

However, some high priority events require the disruption of the normal operation. Interrupts are 
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events that are immediately handled by the MCU [17]. When an interrupt is triggered, the CPU 

pauses the current task and executes a set of codes called interrupt service routine. The content of 

the interrupt service routine is specified by the program. It is good practice to keep the interrupt 

service routine code short to quickly return the MCU to its normal operation. 

An interrupt is enabled by an associated register that contains an interrupt enabled bit. The 

interrupt is triggered when the interrupt flag bit is set, which is unset automatically when the 

interrupt service routine is executed. 

An interrupt can be triggered internally or externally. An internal interrupt is triggered by 

MCU operations such as the ADC-Conversation-Complete-Interrupt when the ADC of a data point 

is completed. An external interrupt can be triggered physically by an associated interrupt pin when 

an electrical signal is applied such as a reset button. 

2.2.4 Timers 

A timer is a module for timing. A timer module is associated with specific registers. A timer 

counter is a register with a value that increases/decreases automatically at a predefined rate. The 

value of the counter changes independently from the MCU without any CPU intervention. The 

independent timer count makes the time measurement process more accurate.  

Timers have different operation modes that can be selected by setting timer control register 

to a specific value. These values can be found in the MCU data sheet. In normal operation, the 

counter value is reseted when the maximum bit resolution is achieved. The b-bit timer register is 

set to zero when the register value reaches the upper limit at 2b - 1. In the clear-timer-on-compare 

mode, the upper limit can be set by a program to address an output compare register. Timer 

registers also include internal interrupts. When the counter reaches the defined maximum value, 

the CPU triggers a timer interrupt to be handled with an interrupt service routine. 

The timers counting rate is adjusted with a prescaler system, which is set by addressing 

clock-select bits of the timer control register. The prescaler defines the ratio between the clock 

frequency to the timer cycle frequency, such that; 
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clock
timer

timer

fp
f

  (2.1) 

where ftimer is the frequency at which the timer count is changed, and fclock is the clock frequency 

that operates the timer unit. The timer can be clocked internally with the MCU clock or externally 

using an additional clock unit. 

The independent counting of the timer and the interrupt feature allow the use of the timer 

modules for time-sensitive operations such as datasampling. Atmega 328p provides three timer 

channels with different operation modes and bit resolution. The sampling time for the sensor 

module will be controlled by the 16-bit Timer-1 count register that can be set to have a count cycle 

by a prescaler of 8, 64, 256 or 1024. 

2.2.5 Digital Peripherals 

Digital peripherals are essential for the exchange of data between two devices. There are many 

protocols for digital communication which can be categorized as parallel or serial communication. 

Serial communication is the transfer of one bit at a time whereas, in parallel communication, 

multiple data bits can be simultaneously transmitted through different channels. Serial 

communication is used commonly for the MCU based applications due to more simple hardware 

design. 

SPI is one of the serial communication protocols supported by Atmega 328p. It is a clocked 

serial communication protocol that supports data transfer from a master device to multiple slave 

devices. The communication is deployed one slave at a time. SPI is a synchronous serial 

communication protocol where the master device provides the clock speed to the slave devices. 

Figure 2.6 depicts the SPI communication diagram between a master and two slaves. SPI 

communication is implemented using four serial bus lines: 

▪ CLK (Serial clock): Synchronizes the clock of the master with the slaves for 

facilitate the data communication. 

▪ MOSI (Master-out-slave-in): Transfers data from the master to the slave. 

▪ MISO (Master-in-slave-out): Transfers data from the slave to the master. 
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▪ CS (Chip/Slave select): Selects the slave device to communicate. The CS pin is 

connected to the voltage supply through a pull-up resistor to prevent pin floating. 

The developed WSS in this study utilizes the SPI communication for the wireless antenna 

and an additional SRAM. 
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Figure 2.6. SPI communication with one master, two slaves. 

2.2.6 Analog-to-Digital Conversion (ADC) 

As illustrated in Figure 2.7, ADC is the interface of the MCU to convert an analog signal to a 

digital counterpart, such that 

/

( )
[ ]

s

pin

t n f

V t
x n

Q


  (2.2) 

where Vpin(t) is the pin voltage, n is the data number, fs is the sampling frequency of the ADC and 

Q is the analog quantization size, such that 

2
supply

b

V
Q   (2.3) 

where Vsupply is the voltage of the power supply and b is the bit resolution of the ADC. Increasing 

bit resolution decreases the quantizing steps that represent a voltage value. 
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Atmega 328p includes a built-in 10-bit ADC. For a voltage supply of Vsupply = 5.0 V, the 

quantization is Q = 4.88 mV. The ADC cannot recognize voltage changes in the analog signal 

smaller than the quantization size. 

ADC
x [n]

Analog 
signal

Digital 
signal

Vpin(t)

 
Figure 2.7. ADC based on voltage reading. 

ADC in Atmega is programmed using a combination of registers. These registers activate 

the ADC unit, select an analog pin, start a conversation, and store the ADC reading [58]. Similar 

to the timer module, the ADC clock is adjusted using a prescaler with division factors of pADC  = 

2, 4, 8, 16, 32, 64 or 128. Although decreasing the ADC prescaler increases the speed, the trade-

off is a decreased ADC accuracy.The sampling frequency of the ADC is given as  

( )( )
clock

s
ADC ADC

ff
c p

  (2.4) 

where fclock is the MCU clock frequency, cADC is the number of ADC cycles in one ADC 

conversation and pADC is the ADC prescaler. For example, if cADC = 13 cycles, pADC = 128 

(recommended value), and fclock = 16 MHz, the sampling frequency will be fs = 9.85 kHz.  

The standard programming approach is to operate the data sampling in the normal 

operation, which is the main script that is run by the MCU. In theory, the data sampling should be 

consistent. However, in practice, there is no guarantee that the line of code to start the ADC will 

be executed at the same consecutive time interval. Correspondingly the desired sampling 

frequency is difficult to achieve.  

To overcome this problem, the use of special function register is proposed in this work. As 

illustrated in Figure 2.8, this register will allow the start of ADC conversation by triggering an 

interrupt. The trigger source can be linked to the timer module. This allows the timer to control 
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when the ADC conversation is initiated. Using the interrupt triggered by the timer module can 

ensure that the ADC is called immediately by the MCU without the interference of normal 

operation. 

Normal
operation

Interrupt 
triggered?

Trigger 
ADC

Interrupt Service 
Routine

Read ADC results
Store ADC results

Timer count
Yes

No

 

Figure 2.8. Proposed ADC with timer count and data storage. 

2.3 Memory Extension 

Atmega 328p has a 2 kB internal SRAM for data memory with 8-bit address architecture. The data 

storage capability is 2048×8-bit data points. In the developed smart sensor system, the data 

memory is required to store the ADC results. Since the ADC resolution is 10-bits in Atmega328p, 

for each data point, 2×8-bit memory locations are required to store the high-byte and low-byte 

values separately, as shown in Figure 2.9. Correspondingly, the 2 kB built-in SRAM of 

Atmega328p can store a maximum 1024 ADC readings. The data storage capacity decreases 

further since the variables related to the script are also stored in the data memory. An external 

SRAM is added using SPI protocol to increase the data storage capacity of the MCU. 
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0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

1 1

1 10 00 00 0

10-bit data

8-bit data 8-bit data  
Figure 2.9. Storing of 10-bit data in 8-bit memory locations. 

A Microchip 23K256 IC SRAM is selected for this work. The SRAM features include 

32,768×8-bit address organization. The corresponding memory of the SRAM for 10-bit ADC is 

16,384 data points. If the smart sensor requires further expansion of the data storage capacity, 

multiple SRAM chips can be used as slave devices (refer to Figure 2.6). 

Figure 2.10 shows the breadboard prototype including an Atmega 328-p MCU, 23K256 

IC-SRAM, and the Sparkfun FT231X serial-to-USB interface to communicate with the computer. 

The software related to the SPI communications is verified by testing the breadboard prototype. 

 
Figure 2.10. SPI communication test setup. 
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2.4 Sampling Frequency Adjustment 

As mentioned in subsection 2.2.6, ADC can be clocked to operate up to 12.5 kHz. However, the 

addition of external SRAM as the data memory is the bottleneck point of the data sampling. The 

sampling frequency depends not only on the ADC speed, but also the speed of data storage in the 

SRAMs through SPI protocol. The overall speed of ADC and the data storage should be considered 

when determining the minimum time interval to trigger ADC without losing data. 

The safe limit for the maximum sampling frequency is approximated by speed testing the 

ADC in normal operation mode. Figure 2.11 illustrates the proposed algorithm. Atmega 328p 

offers built-in functions to measure the clock time of the CPU. The maximum sampling frequency 

can be determined by 

,maxs
total

Nf
t

  (2.5) 

where N is the number of data points, ttotal is the time duration of the sampling process and 

represents the round-off operator. If N = 16,384, and the total time is measured to be ttotal = 152.49 

µs, then the corresponding maximum sampling frequency is calculated as fs,max = 6558 Hz. This 

value can be used as a reference for the upper limit of the timer triggered ADC algorithm. 

•
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Figure 2.11. The schematic of the algorithm for the SPI speed. 

 The timer-count to achieve the desired sampling frequency fs can be calculated as 

clock
timer

timer s

fK
p f

  (2.6) 

where fclock is the MCU clock frequency, ptimer is the timer prescaler given in Equation (2.1). Based 

on the approximated fs,max, the timer count should be smaller than 2440.  

2.5 Wireless Communication 

Wireless communication in smart sensor systems allows mobility while reducing installation  and 

maintenance costs. Wireless communication is deployed using RF signals that are categorized by 

the electromagnetic signal frequency. The frequency bands that the RF ICs operate are labeled by 

a letter by the IEEE standard [59]. The commonly used RF frequency bands and the corresponding 

letter labels are presented in Table 2.1. 
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Table 2.1. RF frequency bands according to IEEE [59]. 

Letter 
Designation UHF L S C X Ku K Ka 

Frequency 
range 
(GHz) 

0.3 - 1 1 - 2 2 - 4 4 - 8 8 - 12 12 - 18 18 - 27 27 - 40 

         

RF signals are picked up by an antenna. The frequency band selection is made by a radio 

tuner to tune into the particular frequency band. The information is transmitted using a modulated 

signal, where the carrier corresponds the frequency band to tune into and the modulating signal 

contains the transmitted information. In digital wireless communication, the transmitted 

information is a discrete set of bit values. Increasing the RF frequency range speed up the 

communication but increase the overall cost and the power consumption [60]. 

Commonly used WSS communication technologies include Bluetooth, ZigBee and WiFi, 

which are based on RF signal communication. This work implements a lightweight receiver based 

handshake protocol that implements RF signal communication. The requirements to implement a 

wireless communication system in a WSS include low cost, sufficient communication range, and 

low power consumption. Furthermore, to implement an RF IC to an MCU-based WSS system, the 

wireless module should be compatible with the MCU digital peripherals such as the SPI protocol. 

2.5.1 Microcontroller-based Radio Frequency (RF) Communication 

The radio module used in the developed WSS system is A1101R09C integrated RF module by 

Anaren 1101,  which includes the RF IC and the antenna. The IC of the radio module is the CC1101 

RF transceiver by Texas Instruments. The frequency selection and the programming are based on 

IC configurations. The frequency range selected is in UHF band at 900 MHz. The module is 

operated with 3.3 V supply. A voltage regulator is needed in the design to connect the radio module 

to the sensor module that operates with 5 V supply voltage. 
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The CC1101 transceiver is programmable with SPI with four designated SPI pins (refer to 

Figure 2.6). The IC also includes a built-in output pin to trigger an external interrupt for incoming 

transmission notification. When the receiver antenna picks up a signal, the interrupt is triggered, 

and the MCU is programmed to retrieve the data from the RF IC using SPI protocol. 

CC1101 data is transmitted and received in packets. Figure 2.12 illustrates the packet 

structure proposed for the sensor data transmissions. One packet consists of 64 bytes. The first-

byte address is used to define the transceiver ID to synchronize the sensor module and the receiver 

module. The second-byte address defines the packet i to be sent or received. The byte addresses 

from 3 to 64 store the 10-bit ADC readings. Each 10-bit reading is stored in 2 bytes. Therefore, 

one packet can contain up to 31 ADC readings. The sensor module can sample up to N = 16,384 

ADC readings using the external SRAM. The data transmission can be completed using 
 
N / 31 = 

529 packets. 

Byte 1 Byte 2 Byte 3 Byte 4 Byte 2j + 1 Byte 63+…+ +…+Byte 2j + 2 Byte 64

Transceiver
ID

Packet No
i

10-bit data 1 10-bit data j 10-bit data 31

 
Figure 2.12. Proposed wireless packet structure for CC1101 RF transceiver. 

2.5.2 Receive-based Handshake Protocol 

When the WSS system is implemented for real-world machinery health condition monitoring, 

machinery components can interfere with the wireless transmission. These components can block 

the line of sight of the antenna and cause packet loss in the transmission path. A receiver-based 

handshake protocol is deployed in this work for the wireless data communication to prevent packet 

loss. The receiver-based handshake protocol operates on the principle of validating the 

transmission of each data packet by the receiver.  

As illustrated in Figure 2.13, each packet contains a packet number. The receiver requests 

the data based on this packet number. When the sensor node receives the request, the packet i is 
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transmitted. In case the request does not arrive at the sensor, or the packet is lost during 

transmission, the receiver continuously requests the packet i until the packet arrives. When the 

transmission is complete, the receiver continues with the same procedure for the next packet i + 1. 

This is repeated for every data packet i = 1, 2, ..., 529, to prevent packet loss in wireless 

transmission. 

Sensor module
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packet requests

Packet i 
received?

Yes

No

Packet 
request 

received?

Request packet i

i = i + 1 Obtain i Transmit packet 
i

Yes

No

Receiver module

 

Figure 2.13. Handshake protocol based wireless communication. 

2.6 Low Power Consumption 

The sensor node of the WSS system is designed to be powered with batteries to collect signals. 

The power consumption of the system will be another consideration in WSS system design. Power 

consumption will be reduced by introducing sleep/idle mode to the sensor module when there is 

no scheduled data collection. 

2.6.1 Sleep Mode 

Atmega 328p offers a selection of sleep modes with different levels of power consumption. A 

combination of registers controls these features. Power-down mode offers the minimum power 
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consumption by putting the MCU to sleep and disabling its functions such as the external 

oscillator, timer modules, and other I/O pins. Some units require separate handling in code. The 

ADC, wireless communication unit and the brown-out detector (a safety module required for 

normal MCU operations) are disabled before entering the sleep mode. Properly using these units 

can reduce the total current consumption significantly.  

2.6.2 Current Consumption 

The current consumption for the regular operation mode and the power down mode is measured 

by connecting an amperemeter into MCU supply line, as illustrated in Figure 2.14. Figure 2.15 

shows the current measurement for the normal operation and the power-down mode, respectively. 

For the Atmega 328p, the respective current consumption in the normal operation and the power-

down mode are measured as 16.17 mA and 0.04 mA, which is a significant reduction. 

Microcontroller
5 V

 
Figure 2.14. Current consumption measurement of the MCU. 

(a) (b)
 

Figure 2.15. Current consumption of the sensor module: (a) normal mode, (b) power down mode. 
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2.6.3 Exiting the Sleep Mode 

When the MCU enters the power-down mode, the normal operation can be resumed by triggering 

an external interrupt. Although the RF IC includes a built-in external interrupt pin for incoming 

transmission notifications, the wireless module is powered off in the power-down mode. The MCU 

is turned on using a particular internal interrupt triggered by the watchdog timer (WDT) that is a 

timer module with a separate on-chip 128 kHz oscillator designed to limit the maximum time 

allowed for the power-down mode. The WDT can be enabled as a separate internal interrupt source 

to track time when the sensor node is turned off and to resume MCU operations. WDT can count 

up to some specified period, which is selected to count up to 8 seconds in this case. As illustrated 

in Figure 2.16, the sensor enters in the power-down mode when there is no request for data 

transmission from the receiver module. The sleep mode is operated using the WDT and the related 

WDT interrupt. 
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Figure 2.16. Low power mode algorithm. 

2.7 Wireless Smart Sensor (WSS) System Verification 

The developed WSS system is tested for the wireless communication and stator current sampling 

using the IM. Figure 2.17 shows the experimental setup used to test the WSS system. The tested 

IM is a three-phase, 1/3-hp motor (by Marathon Electric). The IM is supplied with 50 Hz supply 

frequency. 

The sensor node is connected to one of the three stator current phases. The 5 V voltage is 

supplied by a 9 V lithium-ion battery set for longer battery life. A voltage regulator is used to 

convert 9 V to 5 V for the MCU. 16384 data points are collected in this case and stored in an 

SRAM, with a sampling frequency fs = 6550 Hz to test the system, which is maximum sampling 

frequency of the MCU. 
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The sensor node is controlled wirelessly using the receiver module that is powered and 

controlled using the serial-to-USB interface with a computer. The results are displayed using a 

serial display platform. 

1

2

3

4

 
Figure 2.17. Experimental setup: (1) tested IM, (2) wireless sensor module, (3) voltage regulator, (4) power 

source. 

Since IM stator current signal is a sinusoidal wave, any distortions in the signal due to 

sampling or wireless communication issues will be visible in the time domain. Figure 2.18(a) 

shows the stator current signal representing a non-distorted sine wave. Therefore, the data 

sampling and the wireless communication of the WSS system is successful. Figure 2.18(b) shows 

the frequency spectrum of the collected signal, with the supply frequency at fe = 50 Hz. 

The sampling frequency can be caluculated by measuring the total sampling time. Using 

the MCU’s internal oscillator, the time required to collect N data points can be measured in 

microseconds. For example, if the total measuring time for N = 16,384 is ttotal  = 2501374µs, the 

calculated sampling frequency is fs =  N / ttotal ≈ 6549.99 Hz. 
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Figure 2.18. WSS system data sampling results: (a) IM stator current signal, (b) the frequency spectrum 

(the arrow indicates the supply frequency). 

2.8 Serial Display Interface 

A serial communication-based computer interface is developed in this work to operate the receiver 

module of the WSS system. The interface consists of a serial display to communicate with any 

MCU that is capable of serial communication. Figure 2.19 shows the screenshot of the interface in 

operation.  
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Figure 2.19. A serial communication based interface. 
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Chapter 3 Induction Motor (IM) Bearing Fault Models 

The IM faults can result in modulation of the vibration and stator current signals [61, 62]. Bearing 

fault detection relies on the detection and examination of the charateristic features related to the 

IM defect. In this chapter, the fundamentals of signal analysis and system models are reviewed. 

This study focuses on fault detection in rolling element bearings, using both the vibration and 

current signals. 

3.1 Analysis of the Signal Modulation 

Modulation is defined as the time variation of some specific properties of a signal. A modulated 

signal consists of a carrier and a modulating envelope. Modulation is categorized into two groups: 

▪ Amplitude modulation (AM): A carrier signal with varying envelope. 

▪ Angle modulation: A carrier signal with a varying angle. Angle modulation is 

further categorized into frequency modulation and phase modulation. 

When the vibration or current signals are investigated for an IM with a mechanical fault, 

the dominant modulation mechanism is AM of the carrier signal envelope. 

3.1.1 Amplitude Modulation (AM) 

An AM signal is defined as a signal with an envelope varying with time, such that 

( ) ( ) cos(2 )AM m cx t A t f t    (3.1)  

where Am(t) is the envelope function, and fc is the carrier frequency, and θ the phase of the carrier 

signal that is assumed to be equal to zero for simplicity. The envelope can be modeled as a 

sinusoidal wave plus a DC offset to ensure Am(t) is always positive, such that 

( ) 1 cos(2 )m mA t f t    (3.2) 
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where fm is the modulation frequency, and κ[0, 1] is the modulation index. Increasing κ increases 

the strength of the modulation signal. Substituting Equation (3.2) into Equation (3.1) gives 

( ) cos(2 ) cos(2 )cos(2 )AM c m cx t f t f t f t      (3.3)  

which can be further expanded as 

    ( ) cos(2 ) cos 2 ( ) cos 2 ( )
2AM c c m c mx t f t f f t f f t

        (3.4)  

Thus, AM signal is represented as the summation of sinasoidal functions with frequencies fc, and 

the modulation sidebands (fc ± fm). Figure 3.1 depicts an AM signal with time-varying envelope 

and the corresponding frequency spectrum with modulation sidebands. It can be noted that the 

spectral components corresponding to the modulating frequency fm will not be recognized directly 

on the spectrial map, but becomes sidebands around the carrier frequency fc. The modulation 

frequency can be obtained using signal demodulation techniques.  

t f

Time 
varying 

envelope

(a) (b)

xAM (t) XA M  ( f )

fc - fm

fc

fc + fm

 
Figure 3.1. Example of an AM signal: (a) Time domain, (b) Frequency domain 

3.1.2 Envelope Detector-based Demodulation 

The envelope detector is proposed initially as a circuit scheme to demodulate analog signals for 

AM radios [63]. Firstly, any DC offset is removed to obtain the zero mean AM signal. The absolute 

value of the signal is obtained by a rectifier consisting of a diode and a capacitor. The signal is 
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then low pass filtered using a resistor-capacitor circuit. The output is the signal envelope that 

contains the modulating frequency. Digital signals can be demodulated using the same procedure 

with digital filters. Figure 3.2 illustrates the demodulation of a zero mean digital AM signal using 

an envelope detector. The signal is rectified by calculating the absolute value, and the envelope is 

obtained by using a digital low pass filter.  

t

(a)

xAM (t)

t
(b)

|xAM (t)|

t
(c)

Am (t)

 
Figure 3.2. Demodulation using an envelope detector: (a) AM signal, (b) signal passed through a rectifier, 

(c) extracted envelope by the lowpass filter. 

3.1.3 Hilbert Transform and Signal Demodulation 

The envelope analysis accuracy can be improved using advanced signal processing methods. One 

such technique is based on the expansion of the original signal into an analytical signal, such that 

 ( ) ( ) ( )ax t x t jH x t   (3.5) 
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where xa is the analytical signal, x(t) is the original signal, j = 1  and H(⦁) represents the Hilbert 

transform, which can be calculated as 

 
1 ( )( ) xH x t d

t



 










  (3.6) 

where τ is the integration variable for time t. 

For the AM signal given in Equation (3.1), then the Hilbert transform can be calculated as 

[14] 

 ( ) ( )sin(2 )AM m cH x t A t f t  (3.7) 

Moreover, the corresponding analytical signal is given as 

 ( ) cos(2 ) sin(2 )
aAM m c cx A t f t j f t    (3.8) 

By some manipulation, Am(t) can be obtained by calculating the absolute value of the analytical 

signal, such that  

 2 2 2( ) cos (2 ) sin (2 ) ( )
aAM m c c mx A t f t f t A t     (3.9) 

3.2 Vibration-based Bearing Models 

Even if a rolling element bearing is healthy, it generates vibration in operation as contact dynamics 

between rolling elements and rings vary with time. Thesurface of the raceways and the bearing 

rings also have imperfections caused by the manufacturing tolerances. The level of vibration is 

influenced by the rotation speed of the shaft and the carried load. In bearing fault detection, those 

vibration components not generated by a defect would be considered noise. Unlike a shaft or a 

gear which are components, the rolling element bearing is a system consisting of multiple moving 

parts. Furthermore, the position of the rolling elements carrying the load change with the rotation 

of the shaft, giving rise to vibration signals that are nonlinear and nonstationary. However, when 
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a localized defect occurs in the bearing, the vibration levels increase due to impact resonances; 

effective fault detection techniques should be developed by examining the vibration signatures of 

the bearing defect. 

3.2.1 Vibration Signature of a Bearing Defect 

A localized defect frist occurs on the fixed race or outer ring race in general. As the rolling elements 

pass through the damaged location, the resulting impacts excite the resonance in the support 

structure. The defect leads to the generation of short duration impulses in the vibration with unique 

characteristics that depend on the location of the defect, the speed of rotation and the geometry of 

the bearing.  

D

d

θ

 
Figure 3.3. The geometry of a ball bearing (D = pitch diameter, d = ball diameter, θ = contact angle). 

 Spectral analysis of the vibration signal is one of the most commonly used techniques for 

bearing fault detection. It is based on the extraction of fault characteristic frequencies. Consider a 

rolling element bearing as shown in Figure 3.3, the characteristic frequency of a defect on the fixed 

outer race will be 

1 cos( )
2

r
od

f df Z
D


 

  
 

 (3.10) 
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where d is the ball diameter, D is the pitch diameter, θ is the contact angle, Z is the number of 

balls, and fr is shaft rotating speed in Hz. 

 These bearing dimensions are provided by the bearing manufacturers and can be obtained 

based on the bearing model number. However, the IM bearings are concealed within the motor 

casing, and in some cases, the bearing model may not be available to the diagnostician. 

Correspondingly, the outer race defect frequency can be approximated for most bearings, such that 

[64] 

0.4od rf Zf  
(3.11) 

3.2.2 Envelope Analysis 

Fault related features are contained in collected vibration signal, which is the repetition of the 

impulses, not the resonance frequencies of the bearing support structure. However, the frequency 

spectrum obtained directly from the raw vibration signal is usually dominated by the former. The 

spectral contents of the raw vibration signal are further modulated by the residual imbalances in 

the shaft and the gears signals.  

One method to extract the repetition frequency is to extract the envelope of the impulses. 

In this approach, the bearing vibration signature is modeled as an AM signal. Figure 3.4 shows the 

typical vibration signal consisting of a series of impulses generated by the outer race bearing defect 

and the corresponding signal envelope that represents the impulse repetition. 
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 Envelope signal

Outer race defect signal

1/fod

 
Figure 3.4. Simulated vibration signal of an outer race bearing defect and the corresponding signal 

envelope. 

The envelope analysis technique is a benchmark method for vibration based bearing fault 

detection. The premise of the envelope analysis is the extraction of the fault-related information 

by demodulating the resonance excitations using the related techniques, as stated in subsection 

3.1.2 and subsection 3.1.3. The fault-related features are further enhanced by bandpass filtering 

the frequency resonance frequencies. Bandpass filtering allows keeping the signals at resonance 

frequencies but prevents the masking of the fault characteristic frequencies by other high-level 

signals not related to the defect. The effectiveness of the envelope analysis depends on the selection 

of the proper frequency band. 

3.3 Current-based Bearing Models 

In a healthy IM, the stator current is a sinusoidal wave dominated by the supply frequency and its 

harmonics. When a mechanical fault occurs in the IM, the stator current is modulated by the several 

factors such as the variation of the torque load and the fluctuations in the air-gap eccentricities. 

Similar to the vibration signal, each mechanical fault generates a particular feature that contains 
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fault-related information. The challenge of mechanical fault detection using MCSA is the detection 

of weak fault-related features masked by high-level signals.  

3.3.1 Stator Current Signature of a Bearing Defect 

The IM works on the principle of electromagnetic induction. The alternating current supplied to 

the IM creates a rotating magnetic field. The changing magnetic field induces a current flow in the 

rotor bar consisting of electrically conducting material. The result is a magnetomotive force that 

rotates the rotor and the shaft with speed slower than the synchronous speed of the magnetic field. 

The magnetomotive force depends on the air-gap length between the stator and the rotor of the IM. 

When an air-gap eccentricity occurs due to the radial displacement of the rotor as illustrated in 

Figure 3.5, the air-gap length between the stator and the rotor varies with the rotation of the shaft.  

Stator

Rotor

(a)

Air-gap

(b)  
Figure 3.5. Air-gap eccentricity due to the rotor displacement: (a) Normal motor, (b) Motor with air-gap 

eccentricity 

The variations in the air-gap length affect the air-gap flux density. This causes a variation 

in the inductance of the IM and produces additional spectral harmonics in the frequency spectrum 

of the stator current, such that 
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fecc  = | fe ± kfr | (3.12) 

where k = 1,2,3,…;  fe is the supply frequency, and fr is the shaft speed. 

 In an IM, the rotor is attached to the shaft. Any displacement in the shaft results in the 

displacement of the rotor. In a bearing with an outer race defect, when there is no contact between 

the rolling elements and the defect, the rotor is centered as illustrated in Figure 3.6.(a). As the 

rolling elements pass through the defect, the rotor center is displaced, as shown in Figure 3.6.(b). 

The displacement causes an air-gap length, which in turn introduces frequency components in the 

stator current, such that 

fecc;or  = | fe ± kfod | (3.13) 

where fod is the fault characteristic frequency, defined in Equation (3.10).  

 
Figure 3.6. Rotor displacement caused by the bearing defect (the fault size is exaggerated for better 

illustration). 

A common method for bearing fault detection is based on the analysis of the sidebands 

given in Equation (3.13). The challenge is the detection of modulation sidebands related to the 

fault if the SNR is low.  
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3.3.2 Demodulation 

Based on Equation (3.13), the stator current of the IM with outer race bearing defect can be 

calculated as  

      
1

( ) cos 2 cos 2 ( ) cos 2 ( )e e od e od
k

I t f t f k f t f k f t  




      (3.14) 

In signal processing, the stator current of an IM with a bearing defect is an AM signal with carrier 

frequency at the supply frequency fe and the modulation frequency fm at the vibration characteristic 

frequency. The vibration-based fault characteristic frequency can be extracted using appropriate 

demodulation techniques [42]. However, it should be noted that the carrier frequency in this case 

can be lower than modulating frequency, unlike the vibration signal where the resonance 

frequencies are usually higher than the fault frequency.  

 Although the use of stator current for bearing fault detection has been investigated by many 

researchers [40, 52], the effectiveness of the demodulation techniques for bearing fault detection 

has not been fully studied. In [65], the authors investigated the effectiveness of the vibration 

envelope analysis used previously by bandpass filtering the frequency bands with high kurtosis. 

However, it did not provide any explanation of the relationship between the kurtosis value and 

fault information. Dalvand et al. [51] examined the envelope spectrum of the denoised stator 

current signal to demodulate spectral components corresponding to the vibration-based fault 

characteristic frequency. However, their results based on envelope spectrum provide no clear 

improvement over the frequency spectrum of the raw signal.  

To tackle the related problems, a new demodulation technique will be proposed in the next 

chapter to extract the weak vibration signal modulating the supply frequency, and enhance the 

fault-related information. 
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Chapter 4 Proposed Generalized Teager-Kaiser Energy (GTKE) 

Technique 

A new GTKE technique is proposed in this chapter to detect the modulating frequency components 

in signals with low SNR for IM fault detection. Its processing procedures are illustrated in Figure 

4.1. Different from the classical TKE method that demodulates the signal using the TKE operator, 

the proposed GTKE technique implements the GTKE operator that can be optimized to detect a 

modulation frequency under noisy condition. 

(a)

(b)

TKE operator Spectral analysis
Signal energySignal 

GTKE operator Spectral analysis

Denoised 
signal energySignal 

 
Figure 4.1. Envelope detection: (a) TKE technique, (b) Proposed GTKE technique. 

4.1 Analysis of Classical Teager-Kaiser Energy (TKE) Technique 

In general, signal energy is calculated in the form of E = |x(t)|2, where the energy required to 

generate the oscillating signal is proportional to the square of the amplitude only. However, this 

expression is incomplete since the energy required to generate a signal increases at higher 

frequencies. Consider the free vibration of a spring-mass system. The equation of motion is given 

as 

0kx x
m

   (4.1) 

where x  and x represent the respective first and second time derivative, k is the spring constant, 

and m is the mass. The simple harmonic motion of the system is given as 
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( ) cos( )x t A t  (4.2) 

where A is the amplitude and ω is the angular frequency in rad/s such that ω = k
m

= 2πf. The 

total energy of the system can be calculated by 

2 21 1
2 2

E kx mx   (4.3) 

Substituting Equation (4.2) into Equation (4.3) gives 

2 21
2

E mA   (4.4) 

Thus, the energy of oscillation is proportional not only to the square of the amplitude but also to 

the square of the frequency.  

4.1.1 The TKE Operator 

The TKE operator was first introduced in by Kaiser in [66] as an on-the-fly energy calculation 

method for signals. It is a nonlinear differential operator to tracks the instantaneous energy of the 

signal. For a continuous signal x(t), the TKE is defined as  

  2( ) ( ) ( ) ( )x t x t x t x t    (4.5) 

which can be expanded further as 

 

 

2 2

2 2 2 2

2 2

( ) ( sin( )) cos( )( cos( ))

sin ( ) cos ( )

x t A t A t A t

A t t

A

   

  



    

 



 (4.6) 

Thus, energy estimation based on TKE operator includes the amplitude and the frequency. For a 

discrete signal x[n], the TKE can be calculated by  

  2[ ] [ ] [ 1] [ 1]x n x n x n x n      (4.7) 
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 The TKE operator is based on the estimation of the instantaneous signal energy using the 

discrete difference operation in Equation (4.7), which can be used to examine the spectral 

components. 

4.1.2 The TKE and Demodulation 

The TKE operator can track the energy required to generate a modulated signal [67-69]. The TKE 

based demodulation techniques in literature rely on the computation of instantaneous frequency 

and the instantaneous amplitude to separate the carrier signal from the modulating signal. 

However, the TKE itself contains information related to the modulation and can be used to detect 

the signal envelope. Consider the AM signal defined in Equation (3.4). The respetive first and 

second time derivatives of the signal can be calculated as 

    ( ) ( )sin ( ) ( )sin ( )
2
sin( )

AM c m c m c m c m

c c

x t A t t

Aw t


       



 
       

 



 (4.8) 

    2 2

2

( ) ( ) cos ( ) ( ) cos ( )
2
cos( )

AM c m c m c m c m

c c

x t A t t

A t


       

 

 
       

 



 (4.9) 

By substituting Equations (4.8) and (4.9) into Equation (4.5), the TKE of the signal will be 

      

 
1

2 2
2 3 4

cos (2 ) cos (2 )

cos(2 ) cos(2 ) cos( t)

AM c m c m

c m m c m

x A t t

A t t A A

   

    

    

   
 (4.10) 

where 
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2
2

1

2 2

2

2
2 2

3

2 2
4

4

2

(4 )
2

(3 )
2

m

c m

c m

AA

AA

AA

AA







 

 





 

 

 (4.11) 

Based on Equation (4.10), the frequency domain representation of the TKE will consist of 

several spectral components, including the sidebands at (2fc ± fm), the second harmonic of the 

carrier frequency 2fc, the modulating frequency at fm, and its second harmonic at 2fm. The presence 

of the modulating frequency in the frequency spectrum indicates that the TKE operator can detect 

the envelope of the signal.  

To test the effectiveness of the TKE technique as an envelope detector, an AM signal is 

simulated based on Equation (3.4), whose properties are summarized in Table 4.1. Figure 4.2 

shows the simulated AM signal and the corresponding TKE, respectively. The similarity between 

the signal envelope and its TKE can be observed. Figure 4.3 illustrates the frequency spectrum of 

the AM signal and the corresponding frequency spectrum of the TKE. As predicted in Equation 

(3.4), the modulation sidebands near the carrier frequency can be observed, while the modulating 

frequency is not present in the spectrum. On the contrary, the frequency domain of the TKE 

contains fundamental frequency and its second harmonic of the modulating signal, as predicted in 

Equation (4.10). 
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Table 4.1. Simulated AM signal information. 

fm fc κ A fs N 

10 Hz 50 Hz 0.3 1 6000 Hz 5000 
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Figure 4.2. (a) The simulated AM signal, (b) the TKE of the simulated AM signal 
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Figure 4.3. The frequency spectra: (a) the simulated AM signal, (b) the corresponding frequency spectra. 
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4.1.3 Noise Sensitivity 

Consider a discrete signal x[n] with additive zero-mean Gaussian noise N[n], with variance σN
2, 

such that 

[ ] [ ] [ ]x n x n N n   (4.12) 

The expectation of the discrete TKE will be [66] 

    2E [ ] [ ] Nx n x n        (4.13) 

The TKE of the signal with added noise deviates from the clean signal x[n] by the variance 

of the noise. The sensitivity of the TKE operator to noise can also be estimated from examining 

Equation (4.6), where the instantaneous energy is proportional to the signal frequency. This 

implies that the TKE operator is sensitive to high-frequency noise such as spikes and sudden 

changes. Although the noise sensitivity problem cannot be fully solved, the TKE operator can be 

modified to decrease the noise sensitivity over some frequency bandwidth, which can enhance 

particular spectral components in the signal by reducing the sensitivity to high-frequency noise. 

4.2 Generalized Teager-Kaiser Energy (GTKE) Technique and Optimization 

The signals collected from the IM have low SNR for IM fault detection [70]. An effective fault 

detection technique should be able to compensate for the noise masking fault information. The 

proposed GTKE technique in this work aims to increase the robustness of classical TKE operator 

against noise [71].  

4.2.1 The Proposed Generalized Teager-Kaiser Energy (GTKE) Technique 

GTKE is defined by introducing a resolution parameter, such that 

  2[n] [ ] [ ] [ ]k x x n x n k x n k      (4.14) 
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where k is an arbitrary integer referred to as the lag that is used to adjust the distance between the 

samples. When k = 1, the extension reduces to the classical TKE operator. 

4.2.2 Optimal Lag Parameter Estimation 

The lag k of the GTKE technique can be adjusted to enhance a targeted frequency bandwidth. The 

optimization of the lag k for a particular modulating frequency can be conducted by analysing a 

series of simulated signals. An AM signal with additive Gaussian noise is simulated in the form  

[ ] cos[2 ](1 cos[2 ]) [ ]AM c mx n A f n f n N n      (4.15) 

where N[n] is the additive noise.  

Two conditions are considered for the simulations:  

1) The AM signal with fm < fc. This is the general case for modulated signal, which can 

represent the bearing fault model for the vibration signal. 

2) The AM signal with fm > fc. This condition could be specific for the IM stator current 

signal with bearing defect where the bearing defect corresponds to a higher frequency 

than the carrier signal with the electrical supply frequency.  

For condition 1), the properties of the simulated signal are summarized in Table 4.2. These 

values are selected to simulate an AM signal with low SNR and weak modulating signal. Figure 

4.4 shows the time domain and the corresponding spectral representations of the simulated signal. 

The modulating frequency of the signal is smaller than the carrier frequency. Correspondingly, the 

modulation sidebands are generated above and below the carrier frequency 800 Hz in this case. 

The right-hand sideband is masked by the noise, while the left-hand sideband can be barely 

detected. 
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Table 4.2. AM signal simulation parameters for fm < fc. 

fm fc κ A fs N noise  

150 Hz 800 Hz 0.03 1 6247 Hz 16000 0.3 
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Figure 4.4. (a) The simulated AM signal with additive Gaussian noise, (b) the corresponding frequency 

spectrum. 

The processing results using the TKE operator is presented in Figure 4.5. From Equation 

(4.10), the predicted modulating frequency should be present in the frequency domain 

representation of the TKE. However, the modulation signal is masked by the noise and TKE 

operator failed to detect the modulating frequency.   
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Figure 4.5. (a) TKE of the simulated AM signal, (b) the corresponding frequency spectrum. 

 The magnitude of the modulating frequency in the spectrum can be highlighted by using 

the GTKE using an optimal lag for the given modulating frequency fm. By using an itinerary 

process, the GTKE technique is applied to the simulated signal with different lag k. The optimal 

lag will generate a spectrum where the amplitude of the modulating frequency is enhanced against 

the background noise. This itinerary procedure can be mathematically expressed as 

 ( )arg max ( )
m kf k mk P f f   (4.16) 

where 
k

P is the frequency spectrum of GTKE and 
mf

k is the optimal lag for the given fm. Figure 

4.6 illustrates the results of the itinerary process. Classical TKE corresponding to k = 1 is the worst 

in this case for the noise reduction with the lowest dB enhancement. The optimal lag is at 
mf

k = 

20. Figure 4.7 shows the time domain representation of the optimized GTKE. The modulating 

frequency is the dominating spectral component, indicating that the optimized GTKE technique 

can effectively recognize the modulating frequency for the signal with additive noise. 
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Figure 4.6. The frequency enhancement of the modulating frequency in the frequency spectrum of GTKE 

for different k values. 
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Figure 4.7. (a) The optimized GTKE of the simulated AM signal, (b) the corresponding frequency spectrum. 

Another AM signal is simulated for the different modulating frequency between 100 Hz 

and 400 Hz to determine using the same itinerary approach as discussed before. The objective 

is to enhance the spectral amplitude of each fm. Figure 4.8 illustrates the resulting frequency 

spectrum corresponding to the simulations for fm: fm = 100 Hz, 200 Hz, and 300 Hz. The frequency 

spectra of the classical TKE with k = 1 have the lowest SNR due to the noise sensitivity, as depicted 

in Figure 4.8(a,b,c). Figure 4.8(d,e,f) present the resulting spectra of GTKEs with non-optimized 

lags, those the SNR is improved compared to the classical TKE when k = 1. The corresponding 

mf
k
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optimized GTKE results with maximum enhancement of the modulation frequency are illustrated 

in Figure 4.8(g,h,i). 
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 (a) fm = 100 Hz, k = 1  (b) fm = 200 Hz, k = 1  (c)  fm = 300 Hz, k = 1

 (d) fm = 100 Hz, k = 15  (e) fm = 200 Hz, k = 10  (f) fm = 300 Hz, k = 5

 (g) fm = 100 Hz, k = 31  (h) fm = 200 Hz, k = 17  (i) fm = 300 Hz, k = 10

 

Figure 4.8. Frequency spectra of the GTKEs calculated by different lag k for three AM signal simulations. 

Figure 4.9 shows the results of GTKE technique with optimization tests for modulation 

frequencies from 100Hz to 400 Hz. In comparison with the results in Figure 4.8, it is seen that 

there is a correlation between the modulation frequency and the corresponding lag k. Based on the 

simulation results, a mathematical expression for an optimal lag to maximize the modulating 

frequency component against noise will be computed as 
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2
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fk
f

  (4.17) 

where fs is the sampling frequency. Figure 4.9 depicts the generated theoretical optimal lag 

parameter from Equation (4.17).  

k

100 150 200 250 300 350 400
5

10
15
20
25
30
35

Theoretical
Simulated

Modulating frequency,  fm (Hz)

O
pt

im
al

 la
g 

pa
ra

m
et

er
,

 
Figure 4.9. The simulation results for GTKE technique optimization for signals with different modulation 

frequencies. The simulation results are depicted with the blue squares and the red line represents the 

generated theoretical value, based on Equation (4.17). 

 If the same tests are conducted for the AM signal with a carrier frequency lower than the 

modulating frequency, or fm > fc, the dataset information of the simulated signal is summarized in 

Table 4.3. Figure 4.10 shows AM signal in its time domain and frequency domain representations. 

Since the modulated frequency is higher than the carrier frequency, the sidebands occupy higher 

frequency bandwidths than fc. However, the sidebands are masked by the noise in this case. Figure 

4.11 shows processing results of the TKE operator, where the modulating frequency is masked by 

the background noise. 
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Table 4.3. AM signal simulation parameters for fm > fc. 

fm fc κ A fs N noise  

150 Hz 50 Hz 0.03 1 6247 Hz 16000 0.3 
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Figure 4.10. (a) The simulated AM signal with additive Gaussian noise, (b) the corresponding frequency 

spectrum. 

(a)

(b)

Frequency (Hz)

Time (s)
0 0.1 0.2 0.3 0.4

0

0.5

A
m

pl
itu

de

0.5

0.25

0 100 200 300

0

30

60

Po
w

er
 (d

B
)

fm

 
Figure 4.11. (a) The TKE of the simulated AM signal, (b) the corresponding frequency spectrum. 
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 Figure 4.12 shows the processing results by the use of the proposed GTKE technique; the 

optimal parameter is  = 40. Similarly, the TKE corresponding to k = 1 has the worst 

performance in enhancing the modulation frequency component against noise. 
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Figure 4.12. The frequency enhancement of the modulating frequency in the GTKE for different k values. 

 The GTKE and the corresponding frequency spectra of the signal are illustrated in Figure 

4.10. The optimized GTKE technique can successfully recognize the modulation signal buried in 

noise. 

mf
k



 
  

57 
 

(a)

(b)

Frequency (Hz)

Time (s)

0.25

0 0.1 0.2 0.3 0.4
0

A
m

pl
itu

de
0.5

0.5

Po
w

er
 (d

B
)

0 100 200 300

0

30

60
fm

 
Figure 4.13. (a) The optimized GTKE of the simulated AM signal, (b) the corresponding frequency 

spectrum. 

 For AM signals with modulating frequency over [100, 400] Hz, the optimal lag is 

calculated and shown in Figure 4.14. The theoretical optimal lag that maximizes the modulating 

frequency is represented with the red line, and will be calculated as 
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Figure 4.14. (a) The optimized GTKE of the simulated AM signal, (b) the corresponding frequency 

spectrum. 
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In summary, for an AM signal, the optimal lag for the GTKE technique can be 

calculated as 

2
m

s
m c

m
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f f f
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 (4.19) 
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Chapter 5 Experimental Tests and Results 

The proposed GTKE technique is implemented to detect closely spaced frequency components. 

The effectiveness of GTKE-based signal demodulation against noise will be investigated 

experimentally in this chapter corresponding to different IM conditions. It will be stated that the 

proposed WSS is a comprehensive DAQ system, consisting of many units. Several challenging 

issues have been solved in Chapter 3, including low power consumption, consistent data sampling 

and reliable wireless communication. Although the developed WSS system has reached the 

capability for fundamental DAQ operations, it still has some limitations to be implemented for 

large number of data acquisition in real applications due to reasons such as SRAM space 

limitations, consistency of the data sampling time due to the SRAM and MCU communication, 

and wireless communication speed. Correspondingly, in this test, an existing wired DAQ board is 

used for data collection, to take advantage of the 12-bit ADC resolution instead of the 10-bit ADC 

in the developed WSS system. 

5.1 Experimental Setup 

Figure 5.1 shows the exprimental setup used in this testing. The tested IM is three-phase, 50 Hz 

supply frequency, squirrel cage, 1/3-hp motor (by Marathon Electric). The shaft speed of the motor 

is controlled by a VFD speed controlling system (VFD-B by Delta Electronics) with a speed range 

of 1 - 400 Hz. The external load is applied by a high torque magnetic particles clutch (PHC-50 by 

Placid Industries) with a torque range of 1.3-40 Nm. The load level of the magnetic clutch is 

controlled by a constant current source. The shaft speed ratio is adjusted for the load system by a 

gearbox (Gear 800 by Boston Gear) to safely operate the load system. An analog accelerometer 

(ICP 603C01 by IMI Sensors) is mounted over the IM with a magnet to track the shaft rotation 

speed and to collect the vibration data with a measurement range of ±50 g and a frequency range 

from 0.5 Hz to 10000 Hz. The stator current signals in three phases are measured by using three 

analog hall effect current transducers (LTS 6-NP). The DAQ board (Quanser Q4) with four analog 

inputs and 12-bit ADC is used for the vibration and stator current detection.  
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1 2 3 4 5 6 7 8 9

 
Figure 5.1. IM experimental setup. 1 – Tested IM, 2 – ICP acceleration sensor, 3 – VFD speed controlling, 

4 – Clutch, 5 – Gearbox, 6 – Hall effect current sensors, 7 – Load system, 8 – DAQ system, 9 – Computer. 

Two ball bearings are connected to the IM shaft. A healthy bearing is installed at the fan-

end of the IM. A 0.02 inch hole is drilled through the outer race of the drive-end bearing to simulate 

a localized outer race defect, as illustrated in Figure 5.2. The deep groove ball bearings are 

NSK6203 with a pitch diameter D = 28.7 mm, ball diameter d = 6.747 mm and number of balls N 

= 8. The contact angle θ = 0º in theory. The corresponding fault characteristic frequency is 

calculated to be fv = 3.053f r  based on the bearing geometry according to Equation (3.10).  
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Figure 5.2. A representative picture of a ball bearing with an artificially introduced outer race defect. 

5.2 Vibration-based Bearing Fault Detection 

Firstly, the vibration signal is used for analysis. The motor is tested under three different supply 

frequencies fe: 35 Hz, 50 Hz, and 60 Hz. For each condition, the motor is tested under four load 

conditions: no load (IM is decoupled from the load system), low load (approximately 30% of the 

rated power), medium load (approximately 60% of the rated power) and heavy load 

(approximately 90% of the rated power) based on the slip. The vibration data is collected from a 

healthy motor (with healthy bearings) and a motor with an outer race bearing defect. The default 

sampling frequency of the DAQ system at fs = 6450 Hz is selected. Figure 5.3 shows part of the 

vibration signal collected at 50 Hz supply frequency and low load. Because the background noise 

masks the fault-related impulses, it is difficult to predict the health conditions of the IM bearings 

on the time signals of the vibration.  
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Figure 5.3. Part of vibration signal for IMs at 50 Hz supply frequency and low load, (a) Healthy IM, (b) IM 

with an outer race bearing defect. 

To examine the effectiveness of the proposed GTKE technique, the Hilbert transform-

based envelope analysis, and the TKE spectrum technique are implemented for comparison. For 

each load level and supply frequency, the vibration data of the healthy motor and the motor with 

faulty bearing is processed using the related signal processing techniques to examine the 

characteristic frequency components. Hanning window is used to reduce the leakage in spectral 

analysis. The spectrums are normalized in terms of the amplitude of the maximum spectral 

component to facilitate comparison analysis between the spectrums: 

 
 

  
[ ]

[ ]
max [ ]

v
norm v

v

F x n
F x n

F x n
  (5.1) 

where F(xv[n]) is the spectral function of the discrete vibration signal xv[n] using the Fourier 

transform. Correspondingly, the spectral amplitude will take values between [0-1].  

Figure 5.4 illustrates the implementation of the proposed technique for IM bearing fault 

detection. For each dataset, N = 100,000 data points are collected. The optimization of the GTKE 

technique is carried out by initially investigating the TKE spectrum of the signal to obtain the shaft 
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speed. Based on the shaft frequency, the expected characteristic fault frequency fv and the 

corresponding optimal lag are calculated.  

Sensor DAQ

TKE

Hanning window

Spectrum analysis

Shaft speed

GTKE
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Spectrum analysis

Fault feature extraction

Optimal k
 

Figure 5.4. Schematic of the IM bearing condition monitoring. 

5.2.1 Supply Frequency 35 Hz  

Firstly, these two IMs are tested under no load condition, with the magnetic load clutch being 

disconnected from the shaft of the IM. Figure 5.5 shows the processing results using the related 

techniques. The shaft speed fr = 35 Hz dominates the spectrums. The characteristic frequency is 

calculated as fv = 106.8 Hz. The optimal lag for the GTKE technique is calculated as k  = 29. 

Figure 5.5(a,b) illustrate the processing results using Hilbert based envelope analysis for the tested 

IMs. The characteristic frequency can be detected in the IM with the bearing defect, as shown in 

Figure 5.5(b). Figure 5.5(c,d) shows the TKE technique results. The two motors are not 

distinguishable as the characteristic frequency is not present in either case. It is seen from Figure 

5.5(e,f) that the proposed GTKE technque can recognize the bearing characteristic frequency fv 

using optimized lag, even though it is not the dominant spectral component. 
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Figure 5.5. The processing results for IMs with a healthy bearing (a,c,e) and a faulty bearing (b,d,f) at 35 

Hz supply frequency and no load, (a, b) Hilbert based envelope analysis, (c, d) TKE technique, (e, f) 

Proposed GTKE technique Red arrows indicate the shaft speed frequency; black arrows indicate the bearing 

characteristic frequency). 

The IMs are then tested under low load condition.  

Figure 5.6 presents the result, with the characteristic frequency fv = 105.6 Hz, and optimal 

lag parameter k  = 29. Although all three techniques can detect the fault in this case, the proposed 

GTKE technique outperforms the others in enhancing the fault related feature as the characteristic 

fault frequency component dominates the spectral map. 
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Figure 5.6. The processing results for IMs with a healthy bearing (a,c,e) and a faulty bearing (b,d,f) at 35 

Hz supply frequency and full load, (a, b)  Hilbert based envelope analysis, (c, d) TKE technique, (e, f) 

Proposed GTKE technique. (Red arrows indicate the shaft speed frequency; black arrows indicate the 

bearing characteristic frequency). 

5.2.2 Supply Frequency 50 Hz 

The fault detection techniques are tested with a supply frequency fv = 50 Hz under different load 

levels. Firstly, the IMs are operated with no external load. Figure 5.7 shows the processing results 

using the related techniques. The shaft speed can be estimated by examining the envelope 

spectrums. The characteristic frequency is calculated as fv = 152.49 Hz in this case and the optimal 

lag for the proposed GTKE technique is k  = 20. Figure 5.7(a,b) illustrates the processing results 

of the IMs using Hilbert based envelope analysis. Although, the bearing characteristic frequency 

is present in the spectrum, the amplitude of the related spectral component is low. In Figure 5.7(d), 

the TKE technique fails to clearly recognize the characteristic features to predict the health 

conditions of the IM with the outer race bearing defect. The optimized GTKE technique can 
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enhance the characteristic features in Figure 5.7(f) to diagnose the IM with a bearing fault, which 

outperforms other two techniques when the spectral amplitudes are compared.  
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Figure 5.7. The processing results for IMs with a healthy bearing (a,c,e) and a faulty bearing (b,d,f) at 50 

Hz supply frequency and no load, (a, b) Hilbert based envelope analysis, (c, d) TKE technique, (e, f) 

Proposed GTKE technique Red arrows indicate the shaft speed frequency; black arrows indicate the bearing 

characteristic frequency). 

The motor is then tested under low load. The characteristic frequency is fv = 152.1 Hz. The 

optimal lag for the GTKE technique is k  = 20. As illustrated in Figure 5.8, all three techniques 

can recognize the characteristic frequency components from the envelope spectrums of the faulted 

motors. But the proposed GTKE technique outperforms the other two techniques as the fault 

frequency dominates spectral map in Figure 5.8(f). 
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Figure 5.8. The processing results for IMs with a healthy bearing (a,c,e) and a faulty bearing (b,d,f) at 50 

Hz supply frequency and low load, (a, b) Hilbert based envelope analysis, (c, d) TKE technique, (e, f) 

Proposed GTKE technique. (Red arrows indicate the shaft speed frequency; black arrows indicate the 

bearing characteristic frequency). 

Figure 5.9 shows the processing results of the IMs tested under medium load state. The 

characteristic frequency is fv = 151.2 Hz. The optimal lag is k  = 20. Although the vibration signals 

from the IM with a faulty bearing has lower SNR than the healthy IM, both the Hilbert based 

envelope analysis and GTKE technique can recognize the characteristic fault frequency clearly, 

but the GTKE has better resolution as the fault feature dominates its spectral map in Figure 5.9(f). 
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Figure 5.9. The processing results for IMs with a healthy bearing (a,c,e) and a faulty bearing (b,d,f) at 50 

Hz supply frequency and medium load, (a, b) Hilbert based envelope analysis, (c, d) TKE technique, (e, f) 

Proposed GTKE technique. (Red arrows indicate the shaft speed frequency; black arrows indicate the 

bearing characteristic frequency). 

Figure 5.10 shows the processing results of the related techniques under a full load level; 

the characteristic frequency is fv = 150.9 Hz in this case, and the optimal lag for the GTKE 

technique is k  = 20. Similarly, both Hilbert based envelope analysis (Figure 5.10(b)) and GTKE 

technique (Figure 5.10(f)), can recognize the bearing fault. Under full load, the Hilbert based 

envelope technique also can recognize the second harmonic of the characteristic frequency. 
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Figure 5.10. The processing results for IMs with a healthy bearing (a,c,e) and a faulty bearing (b,d,f) at 50 

Hz supply frequency and full load, (a, b) Hilbert based envelope analysis, (c, d) TKE technique, (e, f) 

Proposed GTKE technique. (Red arrows indicate the shaft speed frequency; black arrows indicate the 

bearing characteristic frequency). 

5.2.3 Supply Frequency 60 Hz 

Two IMs with healthy bearings and a bearing with an outer race defect are tested with 60 Hz supply 

frequency under four load levels. Firstly, with no load, Figure 5.11 shows the analysis results. The 

characteristic frequency is fv = 182.9 Hz in this case, and the optimal lag for the GTKE technique 

is k  = 18. In this case, the optimized GTKE in Figure 5.11 is the only technique that can detect 

the bearing fault, even though the characteristic frequency does not dominate the spectrum.  
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Figure 5.11. The processing results for IMs with a healthy bearing (a,c,e) and a faulty bearing (b,d,f) at 60 

Hz supply frequency and no load, (a, b) Hilbert based envelope analysis, (c, d) TKE technique, (e, f) 

Proposed GTKE technique. (Red arrows indicate the shaft speed frequency; black arrows indicate the 

bearing characteristic frequency). 

Figure 5.12 shows the processing results with low load and a supply frequency of 60 Hz. 

The characteristic frequency is fv = 181.32 Hz, and k  = 18. All of these three techniques can 

diagnose the healthy motor clearly. The proposed GTKE technique outperforms other two methods 

for IM bearing fault detection with higher resolution.  
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Figure 5.12. The processing results for IMs with a healthy bearing (a,c,e) and a faulty bearing (b,d,f) at 60 

Hz supply frequency and low load, (a, b) Hilbert based envelope analysis, (c, d) TKE technique, (e, f) 

Proposed GTKE technique. (Red arrows indicate the shaft speed frequency; black arrows indicate the 

bearing characteristic frequency). 

Figure 5.12 shows the processing results under medium load with fv = 179.98 Hz and k  = 

17. In this case, the proposed GTKE technique can clearly recognize the IM bearing defect with a 

dominant spectral component. 
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Figure 5.13. The processing results for IMs with a healthy bearing (a,c,e) and a faulty bearing (b,d,f) at 60 

Hz supply frequency and medium load, (a, b) Hilbert based envelope analysis, (c, d) TKE technique, (e, f) 

Proposed GTKE technique. (Red arrows indicate the shaft speed frequency; black arrows indicate the 

bearing characteristic frequency). 

Figure 5.14 shows the processing results for the IMs with high load condition. The 

characteristic frequency is fv = 179.98 Hz and k  = 35. Both the Hilbert based envelope analysis 

and the GTKE techniques can provide clearly diagnostic results in this case.  
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Figure 5.14. The processing results for IMs with a healthy bearing (a,c,e) and a faulty bearing (b,d,f) at 60 

Hz supply frequency and full load, (a, b) Hilbert based envelope analysis, (c, d) TKE technique, (e, f) 

Proposed GTKE technique. (Red arrows indicate the shaft speed frequency; black arrows indicate the 

bearing characteristic frequency). 

5.3 Current-based Bearing Fault Detection 

Unlike the vibration signals, which consist of frequency components with relatively closer energy 

levels, the supply frequency harmonic of the stator current is in orders of magnitude stronger than 

the other frequency components. Correspondingly, a decibel representation of the spectral 

amplitudes is more appropriate for stator current representation, such that 

   
2

10
1[ ] 20log [ ]c cP x n F x n
N

 
  

 
 (5.2) 
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where F(xc[n]) is the frequency spectrum of the signal obtained by FFT, N is the length of the 

discrete current signal xc[n]. 
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Figure 5.15. Part of collected stator current signal for IMs at 50 Hz supply frequency and low load, (a) 

Healthy motor, (b) motor with an outer race bearing defect. 

The stator current signals for the testing are collected simultaneously with the vibration 

data of the previous tests. For each condition, the shaft rotation speeds and the characteristic 

frequencies remain the same. As previously mentioned, a preliminary investigation of the Hilbert 

based envelope analysis of the vibration signal can present the shaft rotation speed. The data 

processing is carried out off-line using MATLAB. Each signal consists of N = 100,000 data points 

with the default sampling frequency of the DAQ system fs = 6247 Hz. Figure 5.15 shows the parts 

of the collected stator current signals for these two motors. As can be seen, it is difficult to 

recognize the differences between the current signatures from two IMs. 

To test the effectiveness of the proposed GTKE technique, the stator current signals from 

a health IM and a IM with a bearing defect are collected under different supply frequencies and 

load conditions. For each condition, three techniques (Hilbert based envelope analysis, TKE 

technique and the proposed GTKE technique) are tested for effectiveness comparison in IM 

bearing fault detection. 
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5.3.1 Supply Frequency 35 Hz 

Figure 5.16 shows the processing results for the IMs with no external load. The characteristic fault 

frequency is fc = 106.8 Hz in this case. The proposed GTKE technique is the only technique that 

can recognize the faulty characteristic frequency, even though it is still very weak. Advanced 

filtering techniques can be implemented to improve SNR. 
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Figure 5.16. The processing results for IMs with a healthy bearing (a,c,e) and a faulty bearing (b,d,f) at 35 

Hz supply frequency and no load, (a, b) Hilbert based envelope analysis, (c, d) TKE technique, (e, f) 

Proposed GTKE technique. (Red arrows indicate the shaft speed frequency; black arrows indicate the 

bearing characteristic frequency). 

Figure 5.17 shows the processing results of the motors with low load. The proposed GTKE 

technique can detect the characteristic fault frequency at fc = 105.6 Hz with a relatively higher 

resolution, even though the features are weak. 
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Figure 5.17. The processing results for IMs with a healthy bearing (a,c,e) and a faulty bearing (b,d,f) at 35 

Hz supply frequency and full load, (a, b) Hilbert based envelope analysis, (c, d) TKE technique, (e, f) 

Proposed GTKE technique. (Red arrows indicate the shaft speed frequency; black arrows indicate the 

bearing characteristic frequency). 

5.3.2 50 Hz Supply Frequency 

Figure 5.18 shows the processing results with no external load. Similarly, the GTKE technique is 

the only method that can recognize the weak characteristic frequency in Figure 5.18. However, the 

fault-related features are weak and cannot be used reliably for IM bearing fault detection due to 

the low SNR. This is due to the fact that when the there is no external load on the rotor shaft, rotor 

slid is very small, it is difficult to demodulate irregular features related to bearing defects. 
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Figure 5.18. The processing results for IMs with a healthy bearing (a,c,e) and a faulty bearing (b,d,f) at 50 

Hz supply frequency and no load, (a, b) Hilbert based envelope analysis, (c, d) TKE technique, (e, f) 

Proposed GTKE technique. (Red arrows indicate the shaft speed frequency; black arrows indicate the 

bearing characteristic frequency). 

Figure 5.19 shows the processing results using the stator current for low load condition. 

The characteristic frequency components are visible in all three envelope spectrums. However, the 

proposed GTKE outperforms another two techniques as it can enhance the power of the fault-

related information. 
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Figure 5.19. The processing results for IMs with a healthy bearing (a,c,e) and a faulty bearing (b,d,f) at 50 

Hz supply frequency and low load, (a, b) Hilbert based envelope analysis, (c, d) TKE technique, (e, f) 

Proposed GTKE technique. (Red arrows indicate the shaft speed frequency; black arrows indicate the 

bearing characteristic frequency). 

The processing results for the IM with a bearing fault for a medium and a full load level 

are shown in  Figure 5.20 and Figure 5.21, respectively. It is seen that in these case, the GTKE is 

the only technique that can recognize the bearing defect due to his capability in enhancing the 

power of the fault-related frequency component. 
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Figure 5.20. The processing results for IMs with a healthy bearing (a,c,e) and a faulty bearing (b,d,f) at 50 

Hz supply frequency and medium load, (a, b) Hilbert based envelope analysis, (c, d) TKE technique, (e, f) 

Proposed GTKE technique. (Red arrows indicate the shaft speed frequency; black arrows indicate the 

bearing characteristic frequency). 
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Figure 5.21. The processing results for IMs with a healthy bearing (a,c,e) and a faulty bearing (b,d,f) at 50 

Hz supply frequency and full load, (a, b) Hilbert based envelope analysis, (c, d) TKE technique, (e, f) 

Proposed GTKE technique. (Red arrows indicate the shaft speed frequency; black arrows indicate the 

bearing characteristic frequency). 

5.3.3 Supply Frequency 60 Hz 

To examine the robustness of the proposed GTKE technique under different operating conditions, 

the IMs will be further tested with 60 Hz supply frequency. Figure 5.22 shows the processing 

results using the related techniques with no load. All of these three techniques can diagnose the 

IM condition when it is healthy. Unfortunately, none of these techniques could not recognize the 

bearing fault in this case due to low SNR. The characteristic frequency components are buried in 

noise. 
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Figure 5.22. The processing results for IMs with a healthy bearing (a,c,e) and a faulty bearing (b,d,f) at 60 

Hz supply frequency and no load, (a, b) Hilbert based envelope analysis, (c, d) TKE technique, (e, f) 

Proposed GTKE technique. (Red arrows indicate the shaft speed frequency; black arrows indicate the 

bearing characteristic frequency). 

Similarly, when load level increases, the slip and the corresponding mechanical effects of 

the bearing defect become more dominant. Correspondingly, the characteristic fault frequency 

becomes more visible in the frequency domain representations of the tested techniques. Figure 

5.23 to Figure 5.25 show the processing results of the related techniques for a healthy IM and an 

IM with a damaged bearing, corresponding to low, medium and heavy load conditions, 

respectively. It is seen that the proposed GTKE outperforms the Hilbert based envelope method 

and the TKE technique due to its efficiency in enhancing the spectral power of the fault related 

features. 
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Figure 5.23. The processing results for IMs with a healthy bearing (a,c,e) and a faulty bearing (b,d,f) at 60 

Hz supply frequency and low load, (a, b) Hilbert based envelope analysis, (c, d) TKE technique, (e, f) 

Proposed GTKE technique. (Red arrows indicate the shaft speed frequency; black arrows indicate the 

bearing characteristic frequency). 
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Figure 5.24. The processing results for IMs with a healthy bearing (a,c,e) and a faulty bearing (b,d,f) at 60 

Hz supply frequency and medium load, (a, b) Hilbert based envelope analysis, (c, d) TKE technique, (e, f) 

Proposed GTKE technique. (Red arrows indicate the shaft speed frequency; black arrows indicate the 

bearing characteristic frequency). 
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Figure 5.25. The processing results for IMs with a healthy bearing (a,c,e) and a faulty bearing (b,d,f) at 60 

Hz supply frequency and full load, (a, b) Hilbert based envelope analysis, (c, d) TKE technique, (e, f) 

Proposed GTKE technique. (Red arrows indicate the shaft speed frequency; black arrows indicate the 

bearing characteristic frequency). 
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Chapter 6 Conclusions 

6.1 Conclusions 

IMs are commonly used in industrial and domestic applications. A reliable CM system for IM 

health diagnostics is very useful to recognize IM defects at their early stages so as to prevent the 

related driving machinery performance degradation and malfunction. The objective of this 

research is to develop a new wireless CM solution and a new technique for IM bearing fault 

detection.  

A prototype a MCU-based smart sensor system has been developed for data acquisition. 

The general capability of Atmega 328p MCU has been investigated to develop an efficient ADC 

for data sampling and data storage. A SPI communication protocol is programmed and 

implemented to extend the data memory of the MCU using an additional SRAM. The ADC timing 

is controlled using the MCU timer and interrupt modules. A receiver-based handshake protocol is 

developed and primarily tested to prevent data loss in wireless transmissions. The power 

consumption of the MCU is studied for battery power saving in the WSS sensor node. A primary 

interface is designed to control the WSS system and data collection operations.  

Secondly, a generalized TKE, or GTKE, technique is proposed to improve the signal-to-

noise and for bearing fault. The GTKE technique uses simulated AM signals for signal 

demodulation. A new method is proposed to optimize lag in the GTKE to recognize the weak 

modulation frequencies in noisy signals. Its purpose is to improve the SNR and detect the initial 

outer race bearing faults in IMs that generate weak fault related signals.  

A series of IM tests have been conducted to verify the effectiveness of the proposed GTKE 

technique for bearing fault detection, using both vibration and stator current signals (using a 

conventional DAQ system with higher ADC capability). Its robustness is verified by testing the 

IMs under different load and supply frequency supply frequency conditions. The results indicate 

that the GTKE technique can effectively detect the IM bearing defect using both vibration and 

current signals. It outperforms the related techniques in most of these test conditions. 
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6.2 Contributions of This Study 

The following contributions have been made through the course of this study: 

• An MCU software package has been developed for a WSS system with low power 

consumption, reliable wireless data collect. 

• An adaptive interface has been developed to control the WSS operations. The functions of 

these related WSS modules have been verified using a WSS system. 

• The GTKE technique have been implemented for fault detection.  

• The lag of GTKE technique is optimized to increase the effectiveness of the technique in 

vibration/current signal demodulation. 

6.3 Future Work 

The following summarizes the future work related to this thesis project: 

• Multiple SRAM ICs will be implemented to test the WSS system for online CM. The WSS 

system will be used to collect sufficient number of vibration/current data from the IM and 

will be tested for outer race bearing fault detection. 

• The adaptive interface will be improved to include adjustable the sampling frequency and 

number of data points, to display real-time data and battery state. 

• To improve the effectiveness of the TKE calculation, a signal decomposition method such 

as the empirical mode decomposition will be investigated to represent the original signal in 

terms of its monocomponent parts. Correspondingly, the GTKE technique will be tested on 

an IM with an inner race bearing defect and multiple faults.  
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