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Abstract 

This case study examined the impact of using designed visual representations of simple 

linear functions on Grade 2/3 students’ development of algebraic thinking. I also looked 

for the connections between the use of visual representations of linear functions and 

young students’ understanding of multiplication. A pre-assessment interview, five-lesson 

intervention, and post-assessment interview sequence was used over the span of one and 

a half weeks with a retention task that followed approximately two weeks later. The five-

lesson intervention was developed to prominently feature designed visual representations, 

along with other representations (e.g. table of values, pattern rules, narrative contexts), of 

simple linear functions to encourage students’ development of explicit reasoning skills. 

All students developed some level of explicit reasoning and were able to generalize about 

simple linear functions by the end of the study. Most students moved beyond recursive 

thinking and were able to generate and apply explicit pattern rules for simple linear 

functions in order to generalize about any term within that function. Students’ 

development of explicit reasoning in order to work with simple linear functions often 

sparked a need for a new operation: the invention of repeated addition and, or, 

multiplication. Activities involving explorations of simple linear functions that 

prominently feature designed visual representations led most of the students in the study 

to develop explicit reasoning skills and an early understanding of multiplication. 
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Chapter 1: Introduction 

Algebra has historically been an agent of inequality; it is a gateway to higher 

mathematics that is often only accessible to the elite segments of a population (Kaput, 

2008; Stephens et al., 2013). Many researchers have asserted that it is poor instruction, 

rather than limited ability that has caused this situation (Carpenter, Loef Franke, & Levi, 

2003). Algebra is usually introduced in the middle grades or high school years as an 

isolated area of mathematics limited to the memorization of meaningless procedures 

(Carraher, Schliemann, & Schwartz, 2008; Kaput, 2008). The memorization of 

procedures has long been a central tenet of school mathematics (Van de Walle, Folk, 

Karp, & Bay-Williams, 2011). However, the National Council of Teachers of 

Mathematics (NCTM), along with numerous educators and researchers, have been calling 

for curricular and instructional shifts towards reform oriented mathematics instruction for 

two decades (Battista, 1994). 

More recently, researchers have called for a restructuring of algebra and its 

introduction into mathematics curricula in the primary grades through meaningful 

activities connected to arithmetic (Carpenter, et al., 2003). We have some limited 

evidence that early algebra is not only possible, but also lays the foundation for a greater 

understanding of many areas of mathematics for many students in the later grades 

(Carpenter, et al., 2003; Stephens et al., 2013). It has been suggested that this early 

algebra would revolve around helping students to develop a meaningful understanding of 

symbol systems, equation structure, number patterns and constructing generalizations that 

apply to all numbers (Carpenter, et al., 2003; Carraher, et al., 2008; Ferrini-Mundy, 

Lappan, & Phillips, 1997; Schifter, Russell, & Bastable, 2009). 
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The study of number patterns and relationships, or functions, from the primary 

grades through to the intermediate grades, has been identified as one area of mathematics 

that can provide a rich context for learning algebraic concepts and developing the ability 

to reason algebraically (Beatty & Bruce, 2012; Beatty, Day-Mauro, & Morris, 2013; 

Ferrini-Mundy, et al., 1997; Moss & London McNab, 2011). Functions have been one of 

the reoccurring themes that make up high-level studies of algebra yet they are often a 

source of difficulty for students who have been taught algebra following methods of 

traditional instruction (Beatty & Bruce, 2012). Therefore, researchers have suggested that 

it is important for educators to approach studies of functions in a fundamentally different 

way; functions need to be taught in such a way that it encourages the development of 

mathematical power among young people (mathematical power refers to the notion that 

students should be encouraged to look for connections and become flexible thinkers who 

are capable of working through complex problems). Beatty and Bruce further contend 

that the use of multiple representations can make the study of functions accessible to 

students of all ages; moreover, experience working with multiple representations can 

support the development of algebraic thinking.  

1.1 The Context: Reform Mathematics Education 

These calls for change in algebra instruction come out of a more global call for 

change or reform in mathematics instruction. The reform movement of mathematics 

instruction and curricula development was born out of an evaluation of mathematics 

education by the NCTM in 1989 (Battista, 1994). The NCTM is an organization 

comprised of teachers, mathematics educators and researchers from both Canada and the 

United States (Van de Walle, et al., 2011). In 1989 the NCTM released the document 
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Curriculum and Evaluation Standards for School Mathematics, which called for a major 

rethinking of both the content of mathematics curricula and the ways in which teachers 

viewed teaching and learning (Battista, 1994; Van de Walle, et al., 2011). This curricular 

and instructional rethinking of mathematics education was referred to as the reform 

movement or reform mathematics (Van de Walle, et al., 2011).  

The reform movement represents a shift from a curricular focus on mathematical 

procedures to a focus on mathematical understanding. The movement calls for teachers to 

abandon mathematics curricula that focus solely on pen-and-paper computation. Instead 

teachers are asked to focus the mathematical learning of students on problem solving and 

developing conceptual understandings of mathematical ideas (Battista, 1994; Hiebert et 

al., 1996; Van de Walle, et al., 2011). One of the main goals of the reform movement is 

“to replace the current obsolete, mathematics-as-computation curriculum with a 

mathematics curriculum that genuinely embraces conceptual understanding, reasoning, 

and problem solving as the fundamental goals of instruction” (Battista, 1994, p. 463). The 

reform movement was born out of a realization that a curricular focus on computational 

skills alone did not ensure that students understood the concepts behind the required 

procedures, and that conceptual understanding was necessary as these students pursued 

higher-level studies of mathematics (Battista, 1994; Hiebert et al., 1996; Van de Walle, et 

al., 2011). While early calls for change focused largely on number sense, as the 

movement gained strength other areas such as algebra were included in the discussion.  

 1.1.1 The role of constructivist and sociocultural theories of learning. The 

reform movement is underpinned by constructivism and the sociocultural theory of 

learning. Within a constructivist lens, learning is believed to occur through active 
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construction rather than passive reception of knowledge. Students cannot simply absorb 

the teacher’s knowledge through repetition of the teacher’s mathematical thinking. 

Reform mathematics is therefore underpinned by the belief that mathematics can be made 

more accessible to students if, among other things, it builds on the student’s prior 

knowledge and involves a relevant context. Reformers assert that students will construct 

stronger mathematical understandings when teachers expect them to act as 

mathematicians and engage in worthwhile mathematical tasks (Geist, 2000; Hiebert et al., 

1996). They also believe that students acquire knowledge through interactions with 

others; social interactions are the medium through which mathematical knowledge is 

explored, refined and then integrated with that individual’s existing knowledge (Smith & 

Stein, 2011). The movement towards reform mathematics education is based on two 

central beliefs: teaching through problem solving will support students to construct their 

own understandings; and, productive discussions will help children to refine, adjust and 

precisely communicate their mathematical understandings (Chapin, O’Connor, & 

Anderson, 2009; Hiebert et al., 1996; Hufferd-Ackles, Fuson, & Gamoran Sherin, 2004; 

Smith & Stein, 2011).   

1.2 Purpose of the Study 

The purpose of this study was to explore the ways in which patterning activities 

that involve simple linear functions (a directly proportional relationship between two sets 

of data which are connected by a pattern rule) can be used to promote the algebraic 

thinking in primary students by capitalizing on the basic tenets of reform mathematics 

instruction and newer ideas presented in recent research on the role of representations in 

early algebra, patterning and generalization. This study comprised a Grade 2/3 class and 
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the impact of a patterning unit on the students’ abilities to reason and communicate ideas 

algebraically. The patterning unit was taught with an emphasis on the development of 

explicit reasoning (focusing on the functional relationship between multiple sets of data) 

and determining patterning rules rather than recursive thinking (finding the next term in a 

pattern or attending to patterns in only one set of data).  

1.3 Research Questions 

In what ways do primary students use or develop explicit reasoning skills when 

examining linear functions using designed visual representations? 

How does working with these visual representations of linear growing patterns 

affect the algebraic thinking of young students? 

• In what ways can students move beyond additive or recursive thinking 

when working with linear functions? 

How do the various representations of linear growing patterns help or encourage 

students to invent multiplication?  

1.4 Significance of the Study  

 There is some evidence that primary students are capable of developing and 

employing algebraic reasoning when working with linear functions (Beatty, et al., 2013; 

Blanton & Kaput, 2011; Moss & London McNab, 2011). Some researchers also suggest 

that early and continuous exposure to patterning activities that promote student fluency 

with multiple representations of linear functions are beneficial to the mathematical 

development of children (Beatty & Bruce, 2012; Blanton & Kaput, 2011). It is accepted 

that early algebra must be approached very differently than the traditional and rote 

algebra that has long been common to high school mathematics classrooms (Carpenter, et 
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al., 2003; Carraher, et al., 2008; Kaput, 2008; Stephens et al., 2013). There is however, 

still much to be learned about the kinds of patterning activities that are mathematically 

worthwhile when teaching young children; there is only limited research that has been 

done on the types of activities that support the development of algebraic reasoning in 

young children. Searches of education databases, such as ERIC or CBCA, return few 

related articles with the search terms “linear function” or “linear growing pattern” and 

“early algebra” or “early algebra education.” This study will contribute to the knowledge 

base on primary students’ capacities for algebraic reasoning. This study will also add to 

the research on the role and effectiveness of patterning activities that employ multiple 

representations of simple linear functions in early algebra.  

1.5 Limitations of the Study  

The main limitations of this research project include the design of the project and 

the interview tasks that were used. The study employed an embedded case study design 

and as such, it provided rich and context-based descriptions of six case studies bound by 

one overall study and context (Yin, 2009). As a result I did not attempt to generalize 

findings to other groups of students. Instead, the data were used to try and better 

understand the issue at hand (Baxter & Jack, 2008), that is: how can designed visuals of 

simple linear functions be used to support young students’ development of explicit 

reasoning skills? The class of Grade 2/3 students who participated in the study were not 

considered to be representative of all students at the Grade 2 or 3 level. This case study 

was also not designed to compare the effectiveness of various types of instruction 

methods; instead the intent of the study was to examine six representative children from 

one class as they worked with simple linear functions to determine whether or not 



                                                                                Beyond Recursive Patterning 

 

7 

 

multiple representations of such patterns encouraged the students to reason algebraically 

about the relationships underlying the patterns.  

The pre and post-assessment interviews differed from the questions students 

worked on during the five-lesson intervention. Although all were designed to address the 

same content at a comparable difficulty level, the differences in wording and numbers 

used may have impacted student achievement on each task. The students were also video 

recorded for the pre and post-assessment interviews; all attempts were made to reduce the 

intrusiveness of the video recorder on student-researcher interactions. However, the 

presence of the video recorder may have influenced student responses on the interview 

tasks. The students may have also become more comfortable with the presence of the 

video recorder by the end of the unit, leading to possible inconsistencies across the data. 
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Chapter 2: Literature Review 

2.1 Algebra: How Important is it in the Study of Mathematics? 

Often, a student’s mastery of algebra is viewed as an indicator of their potential 

for success in advanced mathematics (Kaput, 2008; Stephens et al., 2013). Many students 

are prevented from pursuing a high school or university level mathematics education due 

to a lack of understanding of algebraic concepts (Stephens et al., 2013). Secondary 

students commonly view algebra as a disconnected area of mathematics and yet it 

“pervades all of mathematics and is essential for making mathematics useful in daily life” 

(Van de Walle, et al., 2011, p. 262). Algebra is involved in nearly all of the mathematics 

that an individual will encounter in later life and it has a central role in the majority of 

university, college and high school level mathematics courses (Kaput, 2008). Therefore, 

students of all ages need to be provided with opportunities to form a strong foundation of 

the algebraic understandings upon which they can build the capacity for complex 

mathematical thought (Carpenter, et al., 2003). Considering the importance of algebra 

and the impact it can have on one’s mathematical future, it is necessary to first determine: 

what is algebra? 

2.2 Defining Algebra and its Centrality in Mathematics 

The way that teachers, administrators and policymakers understand and define 

algebra or algebraic reasoning has a huge impact on the ways in which they will approach 

algebra instruction (Kaput, 2008). Kaput (2008) argued that it is important that 

individuals involved in mathematics education come to realize “algebra’s breadth, 

richness, and organic relation to naturally occurring human cognitive and communicative 

powers” (p.8). A more comprehensive understanding of what it means to think 
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algebraically will make it possible for teachers to use algebra to strengthen and add depth 

to the existing curriculum (Blanton & Kaput, 2003; 2011). It is therefore important for 

teachers, researchers and administrators to also recognize the diversity within the field of 

algebra.  

While there are different ways to organize the field of algebra, many mathematics 

educators and researchers delineate a number of common areas:  

• symbolization (working with and manipulating variables);  

• equality and conjectures (understanding that the equal sign represents a 

mathematical relationship where two expressions have the same value and 

using the property of equality to argue that some statements may be true 

for all numbers);  

• patterns and rules (repeating and growing patterns as well as 

mathematical functions); and,  

• representations (representing mathematical relationships in many ways 

such as through the use of graphs, tables, equations, narratives and 

images) (Chapin & Johnson, 2000).  

These four areas of algebra are interconnected yet different.  

2.2.1 Symbolization. Many researchers assert that symbolization is strongly 

linked to all other areas of algebra (Chapin & Johnson, 2000; Kaput, Blanton, & Moreno, 

2008). It is difficult for students to develop an understanding of equality, pattern rules, 

and representations if they do not have a strong grasp of the symbol systems that are the 

cornerstones of algebra (Chapin & Johnson, 2000; Kaput, et al., 2008). Kaput (2008) 

suggests that some form of symbolization or generalization is required in order for a 
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reasoning process to be termed algebraic. He contends “that the heart of algebraic 

reasoning is comprised of complex symbolization processes that serve purposeful 

generalization and reasoning with generalizations” (Kaput, 2008, p. 9). However, 

symbolization is not limited to the manipulation of variables or of typically written 

symbols (e.g. x, f (x), =, ��. Instead symbolization is embodied in any reasoning process 

where the individual looks through symbols or uses some type of symbolization or 

generalization to express, manipulate, or analyze a mathematical idea (Kaput, 2008, 

Kaput et al., 2008). This ability to use symbols facilitates an individual’s ability to work 

within the other areas of algebra. 

While symbolization is important because it provides the foundation for learning 

in other areas of algebra, the ability to express and analyze mathematical ideas 

symbolically is itself mathematically powerful. Algebra and symbolization are 

inextricably linked because it is symbolization that makes it possible for individuals to 

communicate mathematical generalizations, which are central to the study of algebra 

(Kaput, et al., 2008). Mathematical generalizations are dependent upon and are the 

inspiration for symbolization; it is through generalization and the symbolization of these 

generalizations that one may begin to reason algebraically (Kaput, et al., 2008; Radford, 

2011). However, some researchers argue it is possible to reason algebraically without the 

use of formal symbol systems because “[thinking is characterized] as algebraic [when] it 

deals with indeterminate quantities conceived of in analytic ways” (Radford, 2011, p. 

310). It is important to realize that it is possible for students to engage in mathematical 

symbolization and generalization (e.g. through the use of a detailed diagram or the use of 

a simple shape to represent an unknown variable) without knowledge of the traditional or 
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formal systems of algebraic notation or with an incomplete understanding of these 

systems.  

2.2.2 Equality and conjectures.  As previously mentioned, many researchers in 

the field of algebra education agree that symbolization is important and there is one 

symbol – the equal sign – that has been the focus of a great deal of research (Carpenter, et 

al., 2003; Falkner, Levi, & Carpenter, 1999; Kieran, 1981). Many researchers suggest 

that a comprehensive understanding of the meaning of the equal sign, and the property of 

equality that it represents, will help students to efficiently manipulate, extend and 

understand equations (Carpenter, et al., 2003; Falkner, et al., 1999; Fosnot & Jacob, 

2010). Developing a strong understanding of equality, and what it means for expressions 

to be equal, is fundamental to understanding the structure of equations (Carpenter, et al., 

2003; Fosnot & Jacob, 2010).  

A strong understanding of the equal sign is also essential to the process of 

recognizing and precisely communicating conjectures about numbers and operations 

(Carpenter, et al., 2003). A conjecture is a mathematical hypothesis such as, addends can 

be reversed and still result in the same sum, or more precisely: a + b = b + a. Conjectures 

can help students make their mathematical knowledge explicit through the use of precise 

language, which is central to the communication of conjectures and the study of 

mathematics more generally (Carpenter, et al., 2003; Schifter, et al., 2009). Furthermore, 

“in the process of carefully articulating, refining, and editing conjectures, students 

confront important mathematical ideas and engage in basic forms of mathematical 

argument” (Carpenter, et al., 2003, p. 48). Through discussions that surround the process 

of proving a conjecture, students come to value the importance of their word selection 
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when explaining their ideas and consequently develop a more thorough understanding of 

the mathematical principle in question. This need for precise language can also lead to 

the student’s realization that the use of variables and symbols can aid in the clear 

communication of mathematical ideas (Carpenter, et al., 2003; Russell, Schifter, & 

Bastable, 2011). 

2.2.2.1 Equality and relational thinking. Although equality is the foundational 

knowledge required to make sense of the structure of equations, a strong understanding of 

this property will also encourage students to develop the ability to recognize and 

efficiently capitalize on the relationships that exist within our number system (Carpenter, 

et al., 2003). A comprehensive understanding of equality and the meaning of the equal 

sign encourages the development of relational thinking; an understanding of equality 

allows individuals to view mathematics as a field to explore interconnected number 

relations (Carpenter, et al., 2003; Fosnot & Jacob, 2010). Relational thinking is based on 

constructing an understanding of the relationships that exist between real numbers and 

the operations. For example, a student who recognizes the relationships between numbers 

and operations may recognize: 4 x 7 = 7 + 7 + 7 + 7 (Carpenter, et al., 2003). A relational 

approach to mathematics encourages the comparison of expressions and helps individuals 

realize that they do not always need to immediately carry out a calculation when working 

with the equal sign (Carpenter, et al., 2003). For example, students can solve 7 + 8 = 6 + 

☐ by thinking relationally about what number is 1 more than 8 rather than completing a 

string of calculations: 7 + 8 = 15 and then 15 – 6 = 9. Students who have strong relational 

thinking skills will then be able to better understand how to manipulate and solve 

traditional algebraic equations in later schooling because they will have a strong 
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understanding as to how the relationships between real numbers and how the operations 

apply to the variables and symbols traditionally used in algebra (Carpenter, et al., 2003; 

Fosnot & Jacob, 2010; Stephens et al., 2013). 

2.2.3 Functions and representations. Although symbolization and equality are 

important in the study of algebra, patterning activities often comprise the first encounters 

that students will have with algebra (Chapin & Johnson, 2000). Certain types of patterns 

can be represented as mathematical functions and these representations can be 

communicated through the use of various algebraic symbols, which require an 

understanding of the property of equality (Chapin & Johnson, 2000). Functions are a type 

of mathematical relationship “in which two sets are linked by a rule that pairs each 

element of the first set with exactly one element of the second set” (Chapin & Johnson, 

2000, p. 131). In the early elementary grades, students may encounter growing patterns, 

which are an earlier version of linear functions. Functions are a central aspect of high 

school and post-secondary algebra and they are a part of our daily lives. For example, the 

relationship between the amount of tax and the cost of an item is a functional relationship 

that we encounter on a daily basis (Chapin & Johnson, 2000).  

The ability to recognize, manipulate and work with functions is central to the 

study of algebra and mathematics in general (Beatty & Bruce, 2012; Beatty, et al., 2013; 

Blanton & Kaput, 2011; Ferrini-Mundy, et al., 1997). Beatty and Bruce (2012) suggest 

that the study of linear functions, or growing patterns, “helps students develop a deep 

understanding of relationships among quantities that underlie mathematical relationships. 

It also helps students develop the capacity for generalizing” (p.7). A strong understanding 

of linear functions provides students with mathematical knowledge that is the foundation 
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for many areas of high-level mathematics, algebra included (Beatty & Bruce, 2012; 

Blanton & Kaput, 2011).  

Many researchers have suggested that early experiences with patterning are 

valuable because they encourage students to attend to the relationships between sets of 

data; the study of patterns focuses student attention on the dependent relationships that 

underlie linear functions (Beatty & Bruce, 2012; Blanton & Kaput, 2011; Moss & Beatty, 

2006). Patterns and linear functions are also powerful because they provide a context 

from which students can begin to generalize and symbolize their mathematical ideas in a 

meaningful way (Beatty & Bruce, 2012; Blanton & Kaput, 2011; Coulombe & Berenson, 

2001; Moss & Beatty, 2006). Working with linear functions helps students to develop the 

ability to engage in functional thinking where they are “building and generalizing 

patterns and relationships using diverse linguistic and representational tools and treating 

generalized relationships, or functions, that result as mathematical objects useful in their 

own right” (Blanton & Kaput, 2011, p. 8). Patterning is important in the early elementary 

grades because it encourages students to make generalizations by looking through the 

different symbols that may be used to represent a pattern (Beatty & Bruce, 2012; Blanton 

& Kaput, 2011; Kaput, et al., 2008). 

Different representations of these functions can be used to analyze and understand 

various characteristics of the function (Carraher, Schliemann, & Brizuela, 2006; Chapin 

& Johnson, 2000). Representation refers to the communication of functional relationships 

through graphs, symbols, pictures, verbal explanations, tables and pattern rules or 

equations (Beatty & Bruce, 2012; Chapin & Johnson, 2000). In order to create and 

analyze the many different representations of functions, a strong understanding of 
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equality and symbol systems is required. Algebra curricula that encourage the study of 

functions and representations, patterns, equality and symbolization have been proposed as 

a solution to the problems surrounding traditional algebra instruction (Carraher, et al., 

2006; Chapin & Johnson, 2000).  

2.3 The Problem of the Traditional Instruction of Algebra  

Researchers focusing on algebra instruction have identified what they characterize 

as the algebra problem, which refers to ineffective algebra instruction that is causing 

students to be ill prepared for advanced mathematics (Kaput, 2008). The algebra problem 

refers to the fact that students often have a fragile understanding of algebraic concepts 

due to the procedural ways in which algebra is typically taught (Kaput, 2008; Stephens et 

al., 2013). According to Kaput (2008), algebra education, like any other form of 

education, has been shaped by both historical and societal contexts. Algebra has 

traditionally followed arithmetic and often it is limited to the manipulation of symbols 

based on specific rules. This notion that algebra must follow arithmetic dates back to the 

start of the 20th century. At that time, students were required to complete only elementary 

school, and the majority of the population was expected to know only basic arithmetic. 

Therefore, algebra was accessible to only the elite segments of the population who were 

able to attend secondary school (Kaput, 2008). When high school was made publicly 

accessible, the historical context in which algebra was initially integrated into school 

curricula continued to negatively affect the ways in which algebra was taught and 

presented. As a result, algebra largely remains an isolated, procedure-based area of the 

mathematics curriculum that is inaccessible to many students, especially those who are 

socially or economically disadvantaged (Kaput, 2008; Stephens et al., 2013). 
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2.3.1 Early algebra: Addressing the algebra problem. Researchers focusing on 

algebra education have suggested that algebra could be made accessible to the majority of 

students if it was introduced in the early elementary years and focused on symbolization, 

equality, patterns and representations, as mentioned earlier (Carpenter, et al., 2003; 

Carraher, et al., 2008; Chapin, et al., 2009). Many researchers believe that algebra should 

be treated “as a K-12 strand, as opposed to an isolated eighth- or ninth-grade course, as a 

way to…ensure that more students have access to algebra and the opportunity to be 

academically and economically successful” (Stephens et al., 2013, p. 173). We have 

evidence from current research that algebra in the elementary grades, or early algebra, 

would be beneficial to students’ understanding of algebraic concepts and could help them 

to develop algebraic reasoning skills (Carpenter, et al., 2003; Kaput, 2008). Researchers 

suggest that the early introduction of algebra is part, but not all, of the solution. This early 

algebra instruction must also be inherently different from traditional algebra courses and 

it should make use of symbolization, equality and conjectures, patterns and rules, and 

representations (Chapin & Johnson, 2000). There is extensive existing research on the 

ways in which instruction can be designed to develop students’ understandings of 

symbolization, equality and conjecture (e.g. Carpenter, et al., 2003; Carraher, et al., 2008; 

Chapin, et al., 2009; Falkner, et al., 1999; Fosnot & Jacob, 2010; Schifter, Monk, Russell, 

& Bastable, 2008; Schifter, et al., 2009; Stephens et al., 2013). However, gaps in the 

research are present concerning the ways in which early algebra instructions should be 

designed to address the areas of functions and representations.  
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2.4 Developing an Early Algebra Curriculum in Functions and Representations 

Since the NCTM has suggested that algebra should have a place in mathematics 

curricula from Kindergarten to Grade 81, researchers and mathematics educators have 

been trying to determine the best ways to approach algebra in the elementary years 

(Carraher, et al., 2008; Chapin & Johnson, 2000). There are many problems with existing 

algebra curricula because curriculum developers and those who created mathematics 

textbooks did not traditionally consider the developmental needs and abilities of children 

when designing materials (Fosnot & Jacob, 2010). Instead, mathematics and algebra were 

viewed as a process of accumulating sets of skills so that one would be able to perform 

algebraic procedures (Fosnot & Jacob, 2010; Kaput, 2008). However, this view of what it 

means to understand algebra is too simplistic as algebra involves a great deal more than 

the carrying out of multiple procedures (Fosnot & Jacob, 2010; Kaput, et al., 2008; 

Kaput, 2008). Instead of a focus on the memorization of procedures, early algebra 

instruction must encourage students to explore patterns, work with symbols and make 

generalizations leading to a strong understanding of functions and representations 

(Carraher, et al., 2008; Chapin & Johnson, 2000). Early algebra curricula suggested by 

various researchers tend to follow two paths: one path involves generalized arithmetic 

(e.g. Carpenter, et al., 2003), and the other focuses on patterns and functions (e.g. Beatty 

& Bruce, 2012; Beatty, et al., 2013). A great deal of research has been conducted to 

explore the path involving generalized arithmetic, however less is known about the path 

toward algebra in the early grades that involves the study of patterns and functions.  

                                                
1 See the recent call in 2011 for submissions for a focus issue on beginning 

algebra in the NCTM’s journal Mathematics Teacher 
http://www.nctm.org/publications/article.aspx?id=30915 
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2.4.1 Common student difficulties with patterning activities. One entry point 

into early algebra is the study of early patterning; however, researchers and educators 

have found that many elementary students currently struggle with patterning concepts 

(Beatty & Bruce, 2012; Beatty, et al., 2013; Moss & Beatty, 2006; Moss & London 

McNab, 2011; Noss, Healy, & Hoyles, 1997). This is often due to the ways in which 

patterning exercises are presented to students (Beatty & Bruce, 2012; Beatty, et al., 2013; 

Moss & Beatty, 2006; Noss, et al., 1997); patterning in the elementary grades is often 

limited in scope and attention is “focused on the numeric attributes of the output” (Noss, 

et al., 1997, p. 205). When teachers reduce a patterning activity to an arithmetic task, 

where students are simply required to find a few values based on a pattern, the students 

are not encouraged to generalize or think mathematically (Beatty & Bruce, 2012).  

2.4.1.1 Reliance on recursive thinking. The first problem that students may 

encounter when working with patterning activities is that they may rely too heavily on 

recursive or additive thinking when trying to determine the rule for a pattern (Beatty & 

Bruce, 2012; Beatty, et al., 2013; Moss & London McNab, 2011). Recursive thinking 

allows students to determine the next terms in a pattern using the previous term but it 

limits the student’s ability to create a generalized rule for the pattern. For example, a 

child looking at the following table of values (see Figure 1) could determine the next 

output simply by looking at the output column and adding on another 2, rather than 

thinking multiplicatively and looking for relationships between the inputs and outputs to 

determine that any input number multiplied by 2 plus 1 will give the output. Researchers 

working in Canadian and American primary classrooms have found that patterning 

activities often only require recursive or additive thinking; patterning activities in 
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textbooks commonly use a table like that in Figure 1 and ask things like what is the next 

output? rather than asking what is the output for an input of 25? or what is the output for 

any input? (Beatty & Bruce, 2012; Blanton & Kaput, 2011; Moss & London McNab, 

2011). If the student is simply required to look over the table of values and determine 

which number would come next, they will develop a narrow understanding of functions 

and patterns in general. The prevalence of tasks that involve ordered tables of values and 

only require students to find the next term of a pattern are in part responsible for students’ 

reliance on recursive thinking and their limited understandings of functions. Instead 

students need to be encouraged to explore in depth the relationships between the two sets 

of data that are a part of the function (Beatty & Bruce, 2012; Beatty, et al., 2013). They 

need to learn how to work across the table rather than only being able to work down the 

output column.  

  

Figure 1. Table of values for the linear function Output = Input x 2 + 1 

2.4.1.1.1 Challenges with multiplication. Linear functions involve two sets of data 

that are connected through a pattern rule that involves multiplication and sometimes the 

addition or subtraction of a constant; however, many students struggle to move beyond 

 

 

 

 

 

 

 

 

 

 

 

Input Output 

1 3 

2 5 

3 7 

4 9 

5  
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recursive thinking because the operation of multiplication is difficult for young students 

to conceptualize when it is first introduced in the primary years (Van de Walle et al., 

2015). In the early primary grades, students spend a great deal of time developing an 

understanding of addition and subtraction which is why they feel comfortable using 

recursive thinking to work with linear functions. They explore the part-whole 

relationships involved in these operations and they come to conceptualize addition as the 

repeated adding of units of one. At the same time, these units of one are also involved in 

inclusion (or hierarchical) relationships: 1 is included within 2 and 2 is contained within 3 

and so on (see Figure 2, Part A). When adding 3 + 3 + 3 + 3 (as shown in Figure 2 Part 

A), “the groups are combined successively, on one level, as 3 + (3 more ones)” and so on 

until the correct number of ones have been added (Clark & Kamii, 1996, p. 42). When 

students are expected to then develop multiplicative reasoning, they often build on what 

they know about addition (Young-Loveridge, 2005). However, the structures involved in 

multiplication are much more complex than those present in addition because there are 

more inclusion relationships occurring (Clark & Kamii, 1996). For example, when 

thinking about 4 x 3, within a group of 3 there are 3 units of 1 where the 1 is included in 

2 and the 2 is included in 3 (see Figure 2 Part B). At the same time, the groups of 3 can 

also be conceptualized as one unit: 1 group of three is included in 2 groups of three, 2 

groups of threes are included in 3 groups threes, and finally 3 groups of threes are 

included in 4 groups of threes (the red ovals in Figure 2 Part B).  Researchers agree that 

the transition from additive reasoning to multiplicative reasoning is difficult for students 

because “a major conceptual hurdle [that students face] in working with multiplicative 

structures is understanding groups of things as single entities while also understanding 
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that a group contains a given number of objects” (Van de Walle et al., 2015, p.157). 

Researchers such as Clark and Kamii (1996) use the term many-to-one correspondence to 

refer to the idea that one can have a unit that is both one group and three individual 

objects, where as other researchers such as Lamon (1996) and Fosnot and Jacob (2010) 

use the term unitizing (see Figure 2, Part B). Due to its prevalence in more recent 

research, for the purpose of this project, the term unitizing will be used whenever 

referring to this concept. It is essential for students to develop a strong conceptual 

understanding of unitizing and the complex part-whole and inclusion relationships 

involved in multiplication before they will be able to effectively use or apply 

multiplicative reasoning within the context of linear functions (Chapin & Johnson, 2000; 

Clark & Kamii, 1996; Fosnot & Jacob, 2010; Young-Loveridge, 2005). It is also valuable 

for students to have time to explore working with groupings in contextual situations 

before they are expected to generalize the idea that repeated addition is one way of 

conceptualizing multiplication (i.e. it is hard for students to make the jump that 3 + 3 + 3 

+ 3 is the same as 4 x 3) (Clark & Kamii, 1996; Van de Walle, et al., 2011).  
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(Adapted from Clark & Kamii, 1996, p. 42) 

Figure 2. Comparing structures of addition and multiplication 

2.4.1.2 Whole-object reasoning. The second problem that students may 

experience when working with patterns is that they “may use what is referred to as the 

whole-object strategy” (Beatty & Bruce, 2012, p. 5). This means that some elementary 

students may use proportional reasoning in ways that may not be correct in the context of 

the function— particularly if the function involves a constant (Beatty & Bruce, 2012; 

Lannin, 2005; Moss & London McNab, 2011). For example, when working with the 

pattern shown in Figure 1, if asked, Given an input of 8, what would the output be? some 

primary students may use a whole-object strategy to double the output for an input of 4 

(which is 9) and state that the output for an input of 8 would be 18 (Moss & London 

McNab, 2011). A student who makes this type of error is incorrectly using proportional 

reasoning and failing to attend to the relationship between the input and output numbers. 
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2.4.1.3 Difficulty justifying pattern rules. The third problem that students face 

when working with patterns is that they may not feel confident enough to explain and 

justify the rules they have identified for a pattern (Beatty & Bruce, 2012). Students are 

often hesitant to discuss or refine the rules that they formulate for patterns and this can 

limit their understanding of patterning in general. Researchers have suggested alternative 

curricula to address the three problems.  

2.4.2 A more effective curriculum for linear functions. Some researchers 

suggest that when students are beginning to work with algebra, it is valuable for them to 

have a familiar context from which to construct representations of mathematical ideas 

(Coulombe & Berenson, 2001). Mathematicians commonly place high value on the use of 

visualization and they mentally employ many different representations and 

symbolizations of mathematical ideas before moving to transcribe these representations 

using algebraic notation (Noss, et al., 1997). However, traditional algebra instruction 

limits opportunities for visualization and context-based representations while placing 

high value on mathematical products or completing a procedure to find the answer 

(Coulombe & Berenson, 2001; Noss, et al., 1997). Some argue that students need to be 

provided with opportunities to explore symbolic representations of their mathematical 

thinking so that they will have the “cognitive room to explore more complex ideas in 

later elementary grades” (Blanton & Kaput, 2011, p. 12). There is some existing research 

that suggests primary students are capable of using forms of symbolic notation and 

algebraic reasoning (Beatty, et al., 2013; Blanton & Kaput, 2011; Moss & London 

McNab, 2011).    
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Many researchers suggest that even in the early elementary years, teachers can 

support their students’ algebraic development and nurture their capacities to represent 

and generalize mathematical ideas (Blanton & Kaput, 2003; Blanton & Kaput, 2011; 

Carpenter, et al., 2003; Kaput, et al., 2008; Moss & London McNab, 2011). Blanton and 

Kaput (2011) suggest “instruction should begin to scaffold students’ thinking toward 

symbolic notation from the start of formal schooling so that students can transition from 

an opaque to transparent use of symbols as they progress through the elementary grades” 

(p.14). In the early elementary years, students need to be provided with opportunities to 

formulate mathematical generalizations and employ symbolization throughout the 

process of communicating, proving and justifying generalizations. How can teachers 

scaffold children as they make algebraic generalizations and use symbolization in the 

process of developing an understanding of linear functions? 

2.4.2.1 Representations or mathematical models? Many researchers have 

suggested that mathematical models (Fosnot, 2007; Fosnot & Jacob, 2010; Gravemeijer, 

2002) and representations (Beatty, 2010; Beatty & Bruce, 2012; Chapin & Johnson, 

2000; Moss & London McNab, 2011) can be used to help children construct an 

understanding of, and proficiency with, algebra. Although mathematical models and 

mathematical representations overlap and are interrelated, there are some differences 

when applied to the area of early algebra and the study of linear functions.   

Mathematical models introduced in the elementary grades are often called 

emergent models, meaning that they are built upon a specific problem context that can 

eventually be applied to multiple situations or problems (Fosnot, 2007; Fosnot & Jacob, 

2010; Gravemeijer, 2002; van Oers, 2002). These models allow students to flexibly and 
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efficiently reason with mathematical problems (Fosnot & Jacob, 2010). For the purpose 

of this research project, models used by elementary students are conceptualized as a class 

of mathematical representations that contain regularity and aid in the carrying out of a 

calculation. In the area of early algebra the open double numberline would be one model 

that can be developed from a specific context, such as comparing the jumps a of frog and 

toad who travel the same distance but take different sized jumps (Fosnot & Jacob, 2010). 

Children can use the double numberline that emerges to make relational calculations 

across the equal sign in many new situations, including any problems that deal with 

common multiples, least common multiples and greatest common factors (Fosnot & 

Jacob, 2010). 

While it is accepted that mathematical models such as the double numberline are 

powerful tools that can help students efficiently solve a variety of algebraic problems, 

they are not well suited to the study of functions. Models (as defined by Fosnot and 

Jacob) are not as well suited to the study of linear functions because the goal of working 

with a function is to analyze aspects of a mathematical relationship rather than to 

complete a calculation. Some researchers contend that instead, representations are well 

suited to the study of functions and that they can be used to help students develop a 

comprehensive understanding of functional relationships (Beatty & Bruce, 2012; 

Carraher, et al., 2008; Moss & London McNab, 2011).  

Mathematical representations refer to “the display of mathematical relationships 

graphically, symbolically, pictorially, or verbally” (Chapin & Johnson, 2000, p. 140). 

Unlike mathematical models, representations are not a tool (like a calculator) that 

students can use to complete calculations. Studies involving students in the primary to 
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intermediate grades have identified the following common mathematical representations 

that support some students’ developing understandings of functions: a table of values, 

pattern rules, visuals, graphs and oral or written descriptions (Beatty & Bruce, 2012; 

Chapin & Johnson, 2000; Moss & London McNab, 2011).   

They contend that mathematical representations should be central to the study of 

functions because they allow students to explore many aspects of one relationship (Beatty 

& Bruce, 2012). The use of multiple representations to study functions should ensure that 

one does not come to view the representation as the function (Carraher, et al., 2008). It is 

important that individuals do not come to equate a representation with a function because 

this will provide them with a very limited understanding of that mathematical 

relationship. For example, “equating numbers with their written forms can lead to serious 

problems such as the mistaken view that ¾ and 0.75 are different numbers” (Carraher, et 

al., 2008, p. 265). The same can be said about the representation of functions; each 

method of representing a function communicates only certain aspects of that 

mathematical relationship. For example, “the table tends to be a poor representation for 

conveying the continuity of a function. The graph conveys continuity, but can be ill-

suited for displaying precise values of the function” (Carraher, et al., 2008, p. 266). 

Although it is difficult to see the continuity of a linear function in a table of values, that 

continuity is still a part of the function (which may go unnoticed if the individual does 

not study other representations of the function). Therefore, the use of multiple 

representations of a function ensures that the individual develops a comprehensive 

understanding of the multiple aspects of that functional relationship (Beatty & Bruce, 

2012; Carraher, et al., 2008). 
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2.4.2.2 The purposeful use of supporting visual representations. Even with these 

multiple representations of linear functions, adults and students of all ages continue to 

struggle with their study of linear functions. Beatty and Bruce (2012) state that many 

students “have difficulty making connections among patterns, pattern rules, and other 

representations of linear relationships” (p.7). Therefore, some researchers have developed 

ways to make aspects of linear relationships more clearly visible through the purposeful 

use of a particular supporting visual representations of patterns that include: position 

numbers (corresponding to the input number in a table of values), and different coloured 

tiles (Beatty & Bruce, 2012; Beatty, et al., 2013; Moss & London McNab, 2011). A 

supporting visual representation of a function, as depicted in Figure 3, is meant to 

scaffold student construction of the linear function by drawing their attention to the 

constant (black tiles) and growing aspects (gray lined tiles) of the pattern, while 

encouraging connections between two sets of data (connecting the total number of tiles 

with the position number through the use of the term or position numbers below each 

pattern term) (Beatty & Bruce, 2012; Beatty, et al., 2013). 

Figure 3. A supporting visual representation 

Beatty and Bruce (2012) suggest, “students need to explore the interactions 

among representations to learn how changes to one or more representations can affect 

1 2 3 
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other representations” (p.9). Creating and identifying multiple representations of 

functions is valuable because these processes encourage the development of a 

comprehensive understanding of the properties of that relationship (Beatty & Bruce, 

2012; Chapin & Johnson, 2000; Moss & London McNab, 2011). The various 

representations shown in Figure 4 represent the same function but they highlight different 

aspects of that relationship. 

 

Figure 4. Examples of multiple representations of a linear function 
 

The role of purposely scaffolded visual representations of a linear function 

developed from a contextual problem and linked to other representations of a linear 

function (a table of values and a pattern rule) has been studied by a handful of researchers 

(Beatty, 2010; Beatty & Bruce, 2012; Beatty, et al., 2013; Moss & London McNab, 

 
1. Written Description or Narrative Context 

A construction company is planning an apartment building and would like the 
building to have one floor or story for each family that will live in the building. 
They also need one floor for the swimming pool and one floor for the building 
management offices. The height of the building is a function of the number of 
families for which the building is built. 

2. Visuals Using Coloured Tiles 
 
 
 
 
 
 
 
 

3. A Table of Values 
Number of Families Number of Stories 

1 3 
2 4 
3 5 

4. Pattern Rule 
Number of Stories = Number of Families + 2   or   s = f x 1 + 2 

0                          1                          2 
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2011). Given the positive results of their work, more research is needed to explore the 

effectiveness of this aspect of an early algebra curriculum. 

 2.5 Summary 

Algebra is a cornerstone of mathematics; algebraic thinking often determines 

success in many areas of mathematics (Kaput, 2008) and yet it is often poorly taught. 

Therefore, it is very important for teachers to adopt reform methods of mathematics 

instruction that will promote student understanding of essential algebraic concepts 

(Beatty & Bruce, 2012; Blanton & Kaput, 2003; Carpenter, et al., 2003; Carraher, et al., 

2008). Many researchers studying algebra instruction look to the study of functions as a 

valuable and worthwhile endeavor (Beatty & Bruce, 2012; Beatty, et al., 2013; Blanton & 

Kaput, 2011; Ferrini-Mundy, et al., 1997; Moss & Beatty, 2006; Moss & London 

McNab, 2011). However, there is only limited evidence suggesting primary students are 

capable of algebraic reasoning when working with linear functions (Beatty, et al., 2013; 

Blanton & Kaput, 2011; Moss & London McNab, 2011). More research is therefore 

needed to explore early elementary students’ capacities for algebraic thinking and the 

ways in which the study of functions can be made accessible to these young students. 

Some researchers suggest that the use of multiple representations of linear functions can 

make the study of functions accessible to young students and support the building of 

algebraic understanding in students of all ages (Beatty & Bruce, 2012; Beatty, et al., 

2013; Moss & London McNab, 2011). More research surrounding the role of multiple 

representations of linear functions (in particular a contextual description, supporting 

visual representations of the pattern, table of values and a pattern rule) could help to 
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inform the practice of mathematics educators and give them the necessary information to 

plan and implement mathematics programs that would build strong algebraic thinkers.   
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Chapter 3: Methodology  

3.1 Research Design 

This research study employed a qualitative case study design that examined 

primary students’ capacities for explicit reasoning when working with visual 

representations of simple linear functions (along with other representations of these 

functions). Reform oriented mathematics instruction was the central context of the case 

study and the instructional interventions focused on developing a conceptual 

understanding of linear functions. I used an embedded case study design where six 

students were studied as embedded cases within the overall case of the five-lesson 

intervention (a five-day early algebra unit) and in the context of one grade 2/3 classroom. 

Within the embedded cases, I studied six children’s mathematical development over the 

course of the intervention. The intention was to understand how the children’s thinking 

changed over the course of the five-lesson intervention. This overall case was used to 

explore the ways in which patterning activities and visual representations of patterns can 

be used to promote algebraic thinking in young students. The study sequence included: 

pre-assessment interviews, a five-lesson intervention, post-assessment interviews, and a 

retention task.  

3.2 Research Sample 

A convenience sample was used for this study based on the availability of 

participants (Creswell, 2014). A Grade 2/3 class and their teacher from a school board in 

Northwestern Ontario participated in the research project. This class was purposely 

chosen as a convenience sample because I had spent many hours in the classroom as a 

volunteer and substitute teacher – which is believed to reduce the impact of an observer 
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effect on the data collection process (Creswell, 2014). The classroom teacher and I 

identified two high level students, two average students and two low achieving students 

to be the focus of the case studies and therefore the data collection efforts.   

3.3 Procedure 

 Ethics approval was required from Lakehead University, the school board, and 

the school’s administration. Since data was collected about the students within the class, 

letters explaining the research project as well as permission forms were sent to the 

students’ parents or guardians (Appendices A and B). The research project was also 

verbally explained to the students and they were provided with the opportunity to refuse 

participation in the study (Appendix C). The teacher was also given a letter and consent 

form before the study began (Appendices D and E). The principal of the school also 

received a letter and consent form to be completed before the commencement of data 

collection (Appendices F and G). Any names or terms that could indicate the identity of 

research participants have been altered in the appendices, and following sections, in order 

to maintain the anonymity of the participants.  

The research project spanned a two-week period and the retention test was 

administered approximately two weeks after the post-assessment interviews. Each math 

lesson was approximately 1 hour and 20 minutes in length, occurring in the mid-morning. 

The tasks that were used in the pre and post-assessment interviews were developed and 

had been previously field tested by researcher Ruth Beatty (Appendix H).  The five-

lesson intervention was designed by modifying lessons from Beatty and Bruce’s (2012) 

resource From Patterns to Algebra: Lessons for Exploring Linear Relations. 

Modifications were required in order to make the material more accessible and 
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appropriate for the younger participants in this project (grade 2/3 students compared to 

grade 4-10 students in Beatty and Bruce’s resource); the modifications drew on the 

findings of Moss and London McNab’s (2011) study with Grade 2 students. The lesson 

sequence is outlined in Table 1 (with more information to follow in the Results Chapter) 

and it was designed to push students beyond recursive thinking through the use of many 

representations of linear growing patterns (Beatty & Bruce, 2012; Moss & London 

McNab, 2011). Beatty and Bruce along with Moss and London McNab have suggested 

that patterning activities can push students towards algebraic thinking in the early 

elementary years when linear growing patterns are represented in multiple ways and 

students are provided with opportunities to develop the skills to explore the explicit 

pattern rule for any given linear function. The lesson sequence outlined in Table 1 was 

designed to provide students with many opportunities to work with a variety of 

representations of linear growing patterns in order to challenge them to develop algebraic 

reasoning skills. 
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Table 1  

Five-Lesson Intervention  

 

The research project began with structured pre-assessment interviews following 

the interview guide created by Beatty (Appendix H). I video recorded the interviews in 

order to review the interviews and fully analyze the students’ understandings of linear 

growing patterns. We explained to the students that they were not being marked on their 

answers and that the questions would be used to guide the work we would be doing with 

Sequence  Topic  Representations of linear functions 
     

1  Exploring linear functions 
with multiplicative rules. 

Developing narrative contexts 
for the study of linear 

functions and pattern rules. 
 

-  - Narrative context to explain 
connection between pattern 
and pattern rule 

- Written pattern rules 
- Visual representation 
- Table of values 

 
2  Exploring linear functions 

with multiplicative rules. 
Developing narrative contexts 

for the study of linear 
functions and pattern rules. 

Building linear functions from 
a pattern rule. 

 

-  - Narrative context to explain 
connection between pattern 
and pattern rule 

- Written pattern rule 
- Visual representation 
- Tables of values 

 

3  Determining near terms, far 
terms and pattern rules. 

Exploring and building linear 
functions with multiplicative 

rules. 
 

-  - Written pattern rule 
- Visual representations 
- Table of values 

 

4  Creating a pattern rule and 
building a visual to match that 

rule. 
 

-  - Written pattern rule, with 
use of symbols 

- Multiple visual 
representations 

- Table of values 
 

5  Comparing multiplicative 
rules to rules that involve 

multiplicative growth and a 
constant.  

-  - Narrative context 
- Students can create any 

other representation 
independently 
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patterning in the weeks to come. Interviews were selected as the main method of data 

collection at this stage of the project due to the age of the students and their limited 

written communication skills. Interviews provided me with rich data surrounding the 

conceptual understandings that the students held about linear growing patterns.  

The pre-assessment interviews were followed by the five-lesson intervention on 

linear functions. The lessons were co-taught by the classroom teacher and me. The lesson 

sequence in Table 1 was taught using reform methods of mathematics instruction that had 

previously been employed throughout the school year. The lesson plans were developed 

based on the existing research and through consultation with the classroom teacher.  

The five-lesson intervention ended with post-assessment interviews following the 

interview guide outlined in Appendix H. The students were once again interviewed 

individually and asked the same interview questions as in their pre-assessment interview 

to measure any changes to their understandings of linear functions. The retention task 

was then administered approximately two weeks following the end of the unit on linear 

growing patterns. The retention task was based on components of the five-lesson 

intervention using different numbers and a slightly different context. The items included 

in the retention task were selected after examining student work from the lesson sequence 

and the results of the pre and post-assessment interviews. The retention task was used 

only for the purposes of the study; that is, the goal of determining the effectiveness of the 

five-lesson intervention. 

3.4 Data Collection  

As Baxter and Jack (2008) suggest, an important aspect of “case study research is 

the use of multiple data sources, a strategy which also enhances data credibility” (p. 554). 
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Therefore, I used many separate sources of data, and attempted to converge that data 

during the analysis. As outlined in Table 2, the main sources of data were videotaped 

whole-group lessons, videotaped activities where the selected high, average and low 

students were working with their partner, as well as their responses to the pre and post-

assessment interviews. I also recorded observation notes, which were brief written notes I 

recorded directly on a student’s work sample or in a separate notebook while working 

with a student or following each lesson. These observation notes were used to clarify 

students’ strategies or methods based on conversations I had with the student or what I 

had observed while they were working. Copies and photos of work samples were also 

included in the data set. 
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Table 2 

Timing and Type of Data Sources 

 

Before the start of the study, the classroom teacher and I identified six students to 

be the focus of the data collection efforts. The focus students were selected based on their 

general mathematics achievement level: two high achieving students, two average 

students (at grade level), and two low achieving students. With parental and student 

consent, additional students were occasionally selected to be video recorded during the 

five-lesson intervention based on the mathematical thinking they were developing. I 

Day  Activity  Data sources 
     

1  Pre-assessment  Video recorded pre-intervention interviews 
 

2  Lesson 1 -  Video record group lesson 
Student work samples  

Observation notes 
 

3  Lesson 2 -  Video record group lesson 
Video record students working with partner 

Student work samples 
Observation notes 

 
4  Lesson 3 -  Video record group lesson 

Video record students working with partner 
Student work samples 

Observation notes 
 

5  Lesson 4 -  Video record group lesson 
Video record students working with partner 

Student work samples 
Observation notes 

 
6  Lesson 5 -  Video record students working with partner  

Student work samples 
Observation notes 

 
7  Post-assessment -  Video-recorded post-intervention interviews 

8  Retention task -  Student work samples  
 



                                                                                Beyond Recursive Patterning 

 

38 

 

video recorded the six focus students working with their partners and during whole group 

lessons. The teacher and I selected student partnerships for the six focus students to 

ensure each student was matched with a peer of a similar ability; this partner was usually 

not one of the other six students selected to be a focus for data collection. I also collected 

work samples from these six students and focused my observation notes on the students’ 

developing algebraic reasoning processes.   

Additionally, the collected work samples from the six selected students were used 

to supplement the video recorded data. Upon collecting a work sample, I recorded notes 

pertaining to the students’ explanations or their thinking surrounding the work sample 

(i.e. comments students made either independently or following a prompt from myself or 

the teacher). The work sample was then photographed or photocopied and subsequently 

added to the database. These samples were used to support the analysis of video recorded 

data of the students working on various problems.  

I also recorded observation notes during and following each lesson. These 

observations aided in the planning of subsequent lessons. I documented any important 

mathematical thinking, conjectures, or ideas presented by the students throughout the 

course of the lesson sequence and used these notes to help clarify the students’ strategy 

development.  

3.5 Data Analysis 

I undertook three main stages in my data analysis procedure: 

Stage 1: general viewing of the data to develop overall themes about    

children’s algebraic and multiplicative development 

Stage 2: coding of the data and refining of the themes 
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Stage 3: interpretation. 

Stage 1 of my data analysis process involved mainly inductive analysis, whereas Stages 2 

and 3 involved both inductive and deductive analyses procedures because as Creswell 

(2014) suggests, a researcher should “build their patterns, categories, and themes from 

the bottom up by organizing the data into increasingly more abstract units of 

information…Then deductively, the [researcher will] look back at their data from the 

themes to determine if more evidence can support each theme” (p.186). Initially in Stage 

1, I focused on an inductive data analysis process as I attempted to pull themes from my 

data about how the students approached linear functions. These themes resulted in more 

generalized ideas about how explicit reasoning developed, how the students’ strategies 

progressed and the ways in which they developed an understanding of multiplication. 

Then the addition of deductive processes in Stages 2 and 3, allowed me to review specific 

segments of my database, as well as the existing research, in order to verify my theories 

about the development of explicit reasoning, students’ strategies and multiplicative 

reasoning in primary students.      

3.5.1 Stage 1: General viewing of the data. In the first stage of my data analysis 

I watched the video recorded pre- and post-assessment interviews in order to determine 

the six students’ general progressions throughout the study. I examined the pre- and post-

assessment interviews of the six selected students focusing on the strategies they used 

and looking for ways in which their methods changed from the pre- to the post-

assessment interview. I then looked at the student work samples, as well as video clips of 

whole-class lessons and students working on problems with their partners, in order to 

identify major themes in the data. The themes identified centered around: the students’ 
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strategy development, their level of explicit reasoning, and their evolving understandings 

of multiplication. I then began to code the data. 

 3.5.2 Stage 2: Coding procedures. All data gathered for each of the students who 

had parental permissions to participate in the study were assigned a unique identifying 

number. However, only the data pertaining to the six students who were selected as the 

focus of this study were analyzed. This identifying number was attached to any data 

collected that pertained to that particular student. The six students were subsequently 

given an alias. Video clips of each student responding to interview tasks for both the pre 

and post-assessment interviews were labeled with the participant’s identification number. 

Any work samples collected were also labeled with the participant’s identification 

number and names or information that could indicate the author of the work were cut or 

blacked out. No participants were made aware of their identifying number or the 

identifying numbers of other participants.  

 All video recorded data of the pre- and post-assessment interviews, whole class 

lessons and students working with their partners were input into Atlas.ti, qualitative data 

analysis software. Student work samples for all students throughout the five-lesson 

intervention and the retention test were also input into Atlas.ti. A unique Primary 

Document (PD) number was generated for each piece of data input into Atlas.ti resulting 

in a total of 200 PDs.  

All data for the six selected students were coded based on five main categories 

(the code category was indicated by a prefix attached to each code name) and following 

the order outlined in Table 3. Data were first coded for correctness (“A” codes) and, 

where applicable, the type of pattern term a student was working to determine (“T” 
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codes). Then the data were coded for the student’s strategy (“Stgy” codes) based on 

Fosnot and Jacob’s (2010) Landscape of Learning for Algebra (see Appendix I) as well 

as additional strategy codes (see Appendix J for a full list of codes). Next, I coded for the 

student’s level of explicit reasoning (“EorR” codes). Then the data were coded focusing 

on the ways in which the student used or did not use the visual representations of linear 

functions (“V” codes). Based on the data and the ways in which the students thought 

about or approached the patterning activities, I generated the following additional 

categories of codes to accurately label and analyze the students’ thinking: 

1. “PofG” codes – were a subset of the “Stgy” codes and they identified different 

ways that students proved their generalizations or pattern rules 

2. “SorR” codes – were a subset of the “V” codes and they indicated the type of 

symbolization or representation processes that a student used  

3. “IwP” codes – indicated various ways that students interacted with a pattern 

4. “O” codes – indicated instances when students made observations about the 

relationships between numbers and operations 

Codes were generated based on the existing research and the specific goals of this 

research project (see Appendix J for a full list of codes). Once all of the data for the six 

selected students were coded, the student work samples and video tapes were re-analyzed 

to check for consistency in data coding processes and to refine themes or theories I had 

about the data. As I coded, I also used Atlas.ti to attach memos to the data that contained 

theories and ideas I could later pursue in the third stage of the analysis.  
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Table 3 

Main Code Categories and Coding Sequence 

Sequence  Main code category  Purpose of code category 
     

1  “A” codes  Identify information about a student’s 
answer and the correctness of student 

responses 
 

2  “T” codes -  Indicate the type of pattern term that a 
student was determining (i.e. were they 

finding the next, near or far term?) 
 

3  “Stgy” codes -  Identify the type of strategy that a student 
used to determine a pattern term or to work 

with a linear function 
 

4  “EorR” codes -  Indicate the student’s level of explicit 
reasoning 

 
5  “V” codes -  Identify the ways in which a student used or 

did not use the visual representation of a 
linear function 

  

 3.5.3 Stage 3: Interpretation. In the third stage of the data analysis procedure I 

revisited segments of the database in order to further refine my developing theories and to 

confirm or invalidate my various interpretations. I used Atlas.ti to filter the database in 

order to reexamine specific segments of the data. I also used previous and new memos 

within Atlas.ti to record my analysis of segments of data and revisited many of these 

memos multiple times. I reviewed the existing literature at this stage in an attempt to find 

additional evidence to either substantiate or contradict my theories.  

It was intended that the multiple sources of data be “converged in the analysis 

process rather than handled individually” (Baxter & Jack, 2008, p. 554). These sources of 

data were expected to collectively show that students in Grades 2 and 3 are capable of 
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some level of explicit reasoning. It was also expected that the various representations of 

linear functions would encourage the participants to progress towards the use of explicit 

reasoning and away from recursive thinking when working with linear functions.  
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Chapter 4: Results 

4.1 Overview 

The research project began with the pre-assessment interviews on the first day. 

The six students, who ranged in ability, and had been selected to be the focus of data 

collection efforts, were interviewed on the same day, just prior to the five-lesson 

intervention. I interviewed each student individually using the interview guide in 

Appendix H. The interview questions had the students solve seven problems, five of 

which involved examining different patterns and building the next term using tiles, then 

mentally determining the number of tiles needed to build position 10 of the pattern (a 

near term) and position 100 of the pattern (a far term). The students then participated in a 

five-lesson intervention over the course of five consecutive days. The lessons in the five-

lesson intervention were video recorded and samples of the students’ work were 

collected. Following the five-lesson intervention, the same six students who participated 

in the pre-assessment were interviewed again in a post-assessment that followed the same 

structure and involved the same questions as the pre-assessment. All of the students then 

participated in a retention activity approximately two weeks later that presented students 

with a problem similar to those covered in the five-lesson intervention.  

The data from the pre-assessment and the post-assessment interviews were 

reviewed and analyzed to determine how the whole group preformed. These results are 

reported in the next section. For each of the six selected students, the analysis of data 

from the five-lesson intervention and retention test, along with their pre- and post-

assessment interviews were reported as individual case studies to determine how each 

student progressed during the research project.  
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4.2 Pre- and Post-Assessment Interviews 

In both the pre- and post-assessment, the students were asked to solve 7 problems, 

however Problems 3 to 7 only will be discussed in detail while Problems 1 and 2 will not 

be discussed as they asked the students to describe the general nature of patterns and the 

data collected was not informative. In the pre-assessment, over the four items where the 

students were asked to find the next term of a pattern, all students were able to build the 

next term (see Table 4). For each problem that will be discussed in both the pre-and post-

assessment interviews the students were shown the first three terms of a pattern (see Part 

A of Figure 5) and all students were able to independently build the next term of that 

pattern (see Part B of Figure 5). However, when asked to determine the near terms, the 

six students interviewed were able to accurately do so 21 of 30 times (see Table 4). The 

results involving determining the far terms were similar; when asked to determine the far 

terms, the students were able to do so 20 of 30 times (see Table 4).  

 

Figure 5. Building next terms in the pre- and post-assessments 
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Table 4:  

Pre- and Post-Assessment Results 

 

In the post-assessment, all students were again able to build the next term for each 

pattern. With respect to determining the near and far terms of the patterns, there was 

some improvement from the pre to the post-assessment. In the post-assessment students 

were able to determine the near terms 23 of 30 times; in the post-assessment, the students 

identified two more correct near terms compared to the pre-assessment (see Table 4). 

Students were able to accurately determine the far terms 24 of 30 times in the post-

assessment, or 4 more correct far terms compared to the pre-assessment (see Table 4).   

4.3 Looking at the Problems in the Pre-Assessment Interviews  

The problems that the students worked with in the pre-assessment interview will 

be discussed in order of difficulty, with Problems 4, 5 and 6 being the easiest problems, 

Student  Next terms 
n=24  Near terms 

n=30  Far terms 
n=30  Total       

n=84 

  Pre Post  Pre Post  Pre Post  Pre Post 

 
Amy 

 
 4 4  0 1  0 1  4 6 

Nicole 
  4 4  3 5  3 4  10 13 

Brandon 
  4 4  4 4  3 4  11 12 

Corey 
  4 4  5 4  4 5  13 13 

Alison 
  4 4  4 4  5 5  13 13 

Eric 
  4 4  5 5  5 5  14 14 

Total 
correct  24  

 
24 

 
 21 

 
23 

 
 20  

 
24 

 
 65 71 

 

 

Pre-interview correct answers for number of tiles for next, near and far terms for all 6 

students  
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Problem 7 being slightly more difficult and Problem 3 being the most difficult. Problems 

4, 5 and 6 build upon each other and are easier because they only involve multiplicative 

growth (i.e. input times one, input times two and input times three respectively) with no 

constant.  

4.3.1 Problems 4, 5, 6: Multiplicative growth (no constant) and full visual. In 

the pre-assessment interviews, Amy was the only student who could not identify the near 

terms in Problems 4 to 6, and Alison was the only other student who made an error when 

determining the near term for the pattern in Problem 6 (see Table 5).  

Table 5  

Student Success Determining Near Terms in Pre- and Post-Assessment Interviews  

 
a O = I x 1 refers to the pattern rule where the I indicates the Input or the position number 
and the O indicates the Output or number of tiles at a given position. 
 

In the pre-assessment interviews, Amy was the only student who could not 

determine the far terms in Problems 4 to 6, and Brandon could not figure out the far term 

Student  
Problem 4: 
O = I x 1a 

n=6 
 

Problem 5: 
O = I x 2 

n=6 
 

Problem 6: 
O = I x 3 

n=6 
 

Problem 7: 
O = I x 4 

n=6 
 

Problem 3: 
O = I x 2 +1 

n=6 

  Pre Post  Pre Post  Pre Post  Pre Post  Pre Post 
 

Amy 
 

     ✓          

Nicole 
  ✓ ✓  ✓ ✓  ✓ ✓   ✓   ✓ 

Brandon 
  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓    

Corey 
  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓  

Alison 
  ✓ ✓  ✓ ✓     ✓ ✓  ✓ ✓ 

Eric 
  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓ 

Total 
correct  5 5 5 5 6  4 4  4 5  3 3 

 

Note: In the headings of the table, the equation represents the pattern rule for each pattern 

used in the interview. For example O = I x 2 +1 in the first column represents a pattern 

where the output (total number of tiles) was equal to the input (the position number) 

times two plus . The notation and symbols O for output and I for input were used because 

this is the notation and symbols that the students used.  

 

This chart shows whether or not a student correctly determined a near term for each 

problem in the pre-interview 



                                                                                Beyond Recursive Patterning 

 

48 

 

in Problem 4 and yet correctly found the far term in Problem 5 and 6 (see Table 6). Even 

though Brandon struggled with Problem 4 and could not find the far term, it appears that 

working with the pattern in Problem 4 may have given him some time to think about how 

these patterns worked. He was then able to figure out the far terms with the next patterns 

(Problems 5, 6 and 7). Working with Problem 4 where the multiplier was one, may have 

helped Nicole, Brandon, Corey, Alison and Eric accurately determine the far terms in 

Problems 5 and 6. Since the multiplier in the linear function was one, Problem 4 allowed 

most students to identify a clear connection between the term number and the number of 

tiles (i.e. at term one there is one tile, at term two there are two tiles and the term number 

tells you how many tiles there will be), which may have helped them attend to the term 

number for all subsequent patterns. Amy who was using less sophisticated strategies was 

unable to figure out the far terms for any of the patterns. 

Table 6 

Student Success Determining Far Terms in Pre- and Post-Assessment Interviews 

 

Table&5&
Student'Success'Determining'Far'Terms'in'Pre3'and'Post3Assessment'Interviews'

&

Student  
Problem 4: 
O = I x 1 

n=6 
 

Problem 5: 
O = I x 2 

n=6 
 

Problem 6: 
O = I x 3 

n=6 
 

Problem 7: 
O = I x 4 

n=6 
 

Problem 3: 
O = I x 2 +1 

n=6 
  Pre Post  Pre Post  Pre Post  Pre Post  Pre Post 
 

Amy 
 

     ✓          

Nicole 
  ✓ ✓  ✓ ✓  ✓ ✓   ✓    

Brandon 
   ✓  ✓ ✓  ✓ ✓  ✓ ✓    

Corey 
  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓   ✓ 

Alison 
  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓ 

Eric 
  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓ 

Total 
correct  4 5  5 6  5 5  4 5  2 3 
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4.3.2 Problem 7: Multiplicative growth (no constant) and partial visual. 

Problem 7 was more challenging because the students were not given a complete visual 

of the first 3 terms of the pattern. With Problem 7, the students were shown the pattern in 

Figure 6 and asked to imagine that an additional column of green tiles was added beside 

the last yellow column of tiles, then they had to determine the near and far term of that 

new pattern (now with 4 columns of tiles). Although Problem 7 also built upon the 

previous patterns, some of the students struggled with this pattern with two of the six 

students in the pre-assessment (Amy and Nicole) unable to determine the near or far 

terms (see Table 6 and Table 5).   

 

Figure 6. Introducing problem 7: Students have to imagine an additional green column 

4.3.3 Problem 3: Multiplicative growth with constant and full visual. The first 

pattern that the students analyzed (Problem 3) was the most difficult because it involved a 

constant as well as multiplicative growth (see Table 6, Table 5 and the interview guide in 

Appendix H). Only three of the students were able to determine the near term for 

Problem 3 (see Table 5). The students struggled with finding the far terms of Problem 3 
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and only Alison and Eric were able to accurately determine the far terms in the pre-

assessment (see Table 6).  

4.4 Looking at the Problems in the Post-Assessment Interviews 

The problems in the post-assessment interviews will also be discussed according 

to the difficulty of the problem, starting with the least difficult problems (Problems 4, 5, 

and 6), then moving on to Problem 7 and finally discussing Problem 3 which was the 

most difficult. 

4.4.1 Problems 4, 5, 6: Multiplicative growth (no constant) and full visual. In 

the post-assessment, for Problems 4, 5 and 6 Amy was able to determine only the near 

term for Problem 5 (see Table 5). Alison accurately determined the near terms for 

Problems 4 and 5 but made a minor computational error when determining the near term 

for Problem 6, and all other students were able to accurately determine the near terms for 

these three problems. 

In the post-assessment, Amy was the only student who could not determine all the 

far terms for Problems 4 and 6 (see Table 6). She was able to accurately determine the far 

term for the pattern in Problem 5 and all other students accurately found the far terms for 

all three problems.  

4.4.2 Problem 7: Multiplicative growth (no constant) and partial visual. In the 

post-assessment, Amy was the only student who was unable to determine the near and far 

terms for Problem 7; all other students were able to determine both the near and far terms 

(see Table 6 and Table 5). 

4.4.3 Problem 3: Multiplicative growth with constant and full visual. Problem 

3 was the most difficult for the students as it involved multiplicative growth and a 
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constant. Nicole, Alison and Eric were the only students able to accurately determine the 

near term for the pattern in Problem 3 (see Table 5). Alison and Eric were also able to 

determine the far term for Problem 3, but Nicole was not able to accurately do so as the 

calculation seemed too difficult for her and instead she made an estimate (See Table 6). 

When trying to determine the near term (term 10) for Problem 3, Corey looked at the 

number of tiles in term 5 (11 tiles) and then doubled the number of tiles at term 5 to find 

the number of tiles at term 10. However, this strategy resulted in an error because the 

pattern involved a constant and only part of the pattern grew from term to term. Corey 

did not make the same mistake when determining the far term for Problem 3 and he used 

a strategy that employed more explicit reasoning when working with the far term and was 

able to accurately find the far term. 

4.5 Going Deeper: The Focus Students as Embedded Case Studies  

Although the data collected through the pre- and post-assessment interviews 

provided some indication of the students’ progress, tabulating this data (as was done in 

Table 4, Table 5 and Table 6) only provided information surrounding the correctness of 

student responses to each interview task. Within each task on the pre- and post-

assessment interviews, students could answer one of the interview tasks correctly but the 

types of strategies that students used, and the efficiency of their reasoning processes, 

varied greatly across students and individually from the start of the project to the end of 

the project. Due to the focus on the students’ levels of correctness in the data from the 

pre- and post-assessment interviews, this general overview of the data belies some of the 

real progress that many of the students made throughout the study. Therefore, I now turn 
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to each of the six focus students to explore in more depth the many ways in which their 

strategies and reasoning processes evolved throughout the research project.  

The following individual case studies will discuss each student’s progression 

through the research project. After the pre-assessment interviews, the six focus students 

and their classmates participated in a five-lesson intervention where each lesson was 

designed to encourage the students to develop explicit reasoning skills. The five-lesson 

intervention followed the sequence outlined in Table 1 and Figure 7. Each lesson exposed 

the students to various representations of linear functions in order to help the students 

focus on the multiplicative growth present in linear functions (most of the lessons 

prominently featured a visual of a growing pattern along with other representations such 

as a narrative context, table of values and/or a pattern rule). All lessons were designed to 

encourage the students to reason explicitly and move toward beginning multiplicative 

reasoning, rather than focusing solely on recursive or additive reasoning. In each case 

study that follows, and for every day of the project (some days may be missing for 

particular students due to absences), wherever possible I will discuss: 

1. the student’s level of explicit reasoning,  

2. the strategies they used to determine near or far terms, and  

3. the ways in which the student used the visual images of linear functions.  
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Figure 7. Sequence of the research project  

4.5.1 Identifying a student’s level of explicit reasoning. In order to better 

understand and analyze students’ reasoning processes, I drew upon existing research (e.g. 

Beatty & Bruce, 2012; Beatty, et al., 2013; Lannin, 2005) to create Figure 8. For the 

purpose of this project, the students’ progression from recursive toward explicit reasoning 

was identified based on their degree of proficiency in determining a pattern core and 

generalizing about linear functions (this progression is outlined in Figure 8). Before a 

student can reason with a growing pattern, they must be able to determine the core of the 

pattern or “the string of one or more elements that repeats” (Van de Walle et al., 2015, p. 

 
Monday Tuesday Wednesday Thursday Friday 

Day 1: Interviews           2 Day 2: Lesson 1           3 Day 3:Lesson 2             4 Day 4: Lesson 3             5 Day 5: Lesson 4            6 

-Pre-assessment interviews 
with: 
Amy, Nicole, Brandon, Corey, 
Alison and Eric 
 
 

-Function Machine Activity: As 
a class, selected random position 
number to put in machine, 
analyzed the visual of the 
position that came out. Recorded 
findings in table of values and 
discussed pattern rules. 
-Math Journal: look at image of 
one pattern term and discuss 
what the pattern rule could be. 
 

- Function Machine Activity: 
Same as Day 2, with more 
challenging patterns 
-Guess my Rule Game in Pairs: 
Partner A makes up a pattern 
rule and builds pattern terms of 
that pattern so Partner B can 
guess the pattern rule  
  

- Worms in the Garden 
Problem in Pairs: students 
given visual of 5 worms in 
garden on day 1, 10 worms on 
day 2, 15 worms on day 3, 20 
worms on day 4 and empty table 
of values. Asked to solve: How 
many worms would there be on 
the 10th day, 20th day and 100th 
day? 
- Guess my Rule Game in 
Pairs: Same as Day 3 

-Pattern Building Activity: 
Students created pattern rules, 
then built the first three terms of 
their pattern. Students did a 
gallery walk to see their peers’ 
patterns and selected 2 patterns 
to study. For each peer’s pattern 
the student recorded the next 
term, the near term of 10 and 
some form of pattern rule.   

9 Day 6: Lesson 5          10 Day 7: Interviews         11 12 13 

 -Paying a Sitter Problem: 
Students compared two linear 
functions: Is it better to be paid a 
$10 flat fee and $2 per day or $3 
per day? Which is the better 
option if they work 5 days, 10 
days or 20 days? 
  

- Post-assessment interviews 
with: 
Amy, Nicole, Brandon, Corey, 
Alison and Eric 
 

  

16 17 18 19 20 

     

23 Day 8: Retention Task  24 25 26 27 

 - Growing Cucumbers 
Problem: Students given visual 
of 3 cucumbers on day 1, 6 
cucumbers on day 2, 9 
cucumbers on day 3, 12 
cucumbers on day 4 and empty 
table of values. Asked to solve: 
How many cucumbers would 
there be on the 10 day, 25th day 
and 100th day? 
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268) and furthermore, be able to extend that core. Once students can identify and extend 

the pattern core, they must begin to “look for a generalization or an algebraic relationship 

that will tell them what the pattern will be at any point along the way” (p. 270). Students 

who were relying mainly on recursive reasoning showed that they understood patterns to 

be made of iterated units (a predictable repetition of the pattern core) and they thought 

about linear functions as “adding” one unit of the pattern core at each successive pattern 

term. Some students then developed a whole-object strategy indicating that they had 

some understanding of a linear function’s multiplicative growth but were unable to 

generalize about any term of the pattern. Since the problems used in this study focused on 

multiplicative growth alone, the presence of whole-object reasoning was not problematic 

for students but this type of reasoning could be difficult to accurately apply to linear 

functions involving multiplicative growth and a constant.  Then as students moved closer 

to explicit reasoning, they were able to predict the visual structure of a linear function 

beyond the next term and they had some idea of what the pattern would look like at any 

given term. Students at this moderate level of explicit reasoning were able to predict the 

structure of the pattern beyond the next term due to some kind of understanding that there 

existed a relationship between the term number and the characteristics of that specific 

term. As students became more proficient in their explicit reasoning and their abilities to 

generalize about growing patterns, they were able to provide a general description of how 

the pattern was growing or a general pattern rule using everyday language. This general 

pattern rule also included some kind of description of the way in which the term number 

could be used to determine information about the growing pattern at any term. Finally, as 

students became more confident in their explicit reasoning abilities, they were able to 
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generate and use an explicit pattern rule that would allow them to determine the 

characteristics of any term of the pattern (these explicit pattern rules were often 

structured based on the following notation that was developed during the Function 

Machine Activity on Days 2 and 3: Output = Input x ___). 

Figure 8. Students’ shifting algebraic thinking: From recursive to explicit reasoning 

4.5.2 Identifying the strategies used to determine near and far terms. The 

strategies that students used to determine near and far terms also provided a lot of 

information about how a student was thinking about a problem and what they understood 

about multiplication. Therefore, drawing upon existing research (e.g. Beatty & Bruce, 

2012; Beatty, et al., 2013; Carpenter, Fennema, Loef Franke, Levi, & Empson, 1999; 

Chapin & Johnson, 2000; Fosnot & Jacob, 2010; Lamon, 1996; Young-Loveridge, 2005), 

I created Figure 9 in order to consistently label each student’s strategies and to be able to 

better analyze their strategy development. In the primary years, students begin to build on 

what they know about addition in order to work with multiplicative problems. As 

students gain experience working within multiplicative contexts they can develop 
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strategies increasing in complexity. Figure 9 depicts a progression from strategies 

founded on addition that form the basis for the early foundations of multiplicative 

reasoning toward strategies that require multiplicative thought and lead to the beginning 

of multiplicative reasoning. For the purpose of this project, and due to the young age of 

the study’s participants, a focus has been placed on the early foundations and beginning 

of multiplicative reasoning. However this progression will continue beyond the 

progression depicted in Figure 9 and toward more complex multiplicative reasoning as 

the students move into the junior grades and beyond. In sections 4.5.2.1 and 4.5.2.2 that 

follow, the strategies the students used to determine the near and far terms of simple 

linear functions as well as how these strategies fit within the stages of the early 

foundations of multiplicative reasoning and the stages of beginning multiplicative 

reasoning are discussed (refer to Figure 9). 

 
Figure 9. Progression of strategies used to determine pattern terms with linear functions 

4.5.2.1 Strategies in the early foundations of multiplicative reasoning. Students 

begin to solve multiplication problems and develop the earliest foundations of 
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multiplicative reasoning by directly modelling multiplicative situations (Carpenter, et al., 

1999). Early on, a student might make a physical model of the groupings, model the 

objects within the groups using manipulatives or a drawing, and then count the total 

number of objects. Students who have a slightly stronger understanding of unitizing may 

be able to use an existing visual of a linear growing pattern and extend that visual in 

order to determine information about other terms in the pattern. Students who have an 

even stronger understanding of unitizing may use a shorthand visual or model to help 

them unitize accurately and either count by ones, skip-count, or use a combination of the 

two, to determine information about other pattern terms (see Figure 9).  

As students become more confident with direct modelling and counting strategies, 

they generally progress toward more sophisticated counting strategies that make use of 

skip-counting (Carpenter et al., 1999). The earliest skip-counting strategies that students 

use when working with linear functions involve creating a shorthand model of groupings 

in order to track and help them skip-count. Beginning skip-counting strategies are slightly 

more sophisticated and a student who can use beginning skip-counting strategies can 

skip-count independently but only by some numbers (e.g. they can skip-count by 2 or 5 

but not by 3 or 7) or only for part of a sequence (e.g. to determine 4 x 4 a student might 

skip-count for part of the sequence then count by ones: 4, 8, 12 (13, 14, 15…) 16) 

(Carpenter et al., 1999). Then as students practice skip-counting strategies, they may 

move on to proficient skip-counting strategies where they can skip-count for long 

sequences and by any number, or they may be able to start at any number and skip-count 

on from there (see Figure 9).  
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Students may then move towards thinking about multiplication in terms of 

repeated addition. Students will often begin to think about repeated addition by 

employing doubling strategies (e.g. to solve 5 x 4 a student might double 5 to find that 

two 5s are 10 and then double that again to find that four 5s are 20) (Carpenter et al., 

1999). Doubling strategies can be efficient in some contexts however it is important for 

students to move beyond doubling and toward “a rich, dense structuring of multiplicative 

relations” (Fosnot & Jacob, 2010, p. 55). As students move on from doubling strategies 

they may employ more efficient repeated addition strategies that may involve regrouping 

the parts being repeatedly added (e.g. to solve 10 x 3 a student might think about the 

problem like 10 + 10 + 10 and then group the addends to make the problem easier (10 + 

10) + 10 = 20 + 10) (see Figure 9). 

4.5.2.2 Strategies in the beginning of multiplicative reasoning. After students 

have developed an understanding of the early foundations of multiplicative reasoning 

they may move on to more sophisticated strategies founded on an understanding of the 

beginning of multiplicative reasoning. When students use strategies that recognize 

multiplicative structures, they are working with strategies that are more multiplicative in 

nature and less additive. Students may initially identify the multiplier and multiplicand or 

use known multiplication facts with only a limited number of factors or combinations of 

known addition facts to solve multiplication problems. Students will automatize some 

facts and be able to recall known multiplication facts quickly or use a combination of 

known facts to solve a multiplication problem (Carpenter et al., 1999). Students may also 

make use of the commutative property to make problems easier to solve (e.g. a student 

may realize that 7 x 4 is the same as 4 x 7 and that the order does not affect the amount; 
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they can select the order of the factors based on what is easiest for them to calculate) 

(Van de Walle et al., 2011).  

4.5.2.3 The progression of the strategies used by the research participants. 

Generally, early on in the project, the six students were mainly using direct modeling and 

counting strategies or skip-counting strategies in order to find near and far terms of the 

linear functions explored. By the end of the research project, all of the students had 

progressed toward the use of repeated addition and a few of the student were regularly 

using known multiplication facts (although only with some factors) and the commutative 

property.  

4.5.3 Turning to the Case Studies. The case studies that follow describe how six 

students (two Grade 2 and four Grade 3 students) progressed throughout the research 

project. Overall, the six students began the project with little formal knowledge of 

multiplication but some experience working with multiplicative contexts. Many of the 

students initially relied on additive strategies but by the end of the project they were 

beginning to construct an understanding of multiplication and some were able to use 

multiplicative strategies efficiently. Initially, the students primarily viewed growing 

patterns through a recursive lens. By the end of the project, after students had worked 

with the multiple representations of linear growing patterns, most students moved toward 

more explicit reasoning processes.  

4.5.4 Case 1: Amy’s progression through the five-lesson intervention. First we 

turn to the case study of Amy who was one of the younger students participating in the 

research project (Grade 2). Even by the end of the project, Amy had not yet developed an 

understanding of multiplication and she almost always used recursive reasoning and 
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strategies that were additive. Amy began the research project with an understanding that 

patterns are made from iterated units; she primarily used beginning skip-counting 

strategies, but with some difficulty. She was just constructing the early foundations of 

multiplicative reasoning and had not yet determined how to unitize. By the end of the 

research project, Amy had begun to construct an understanding of the early foundations 

of multiplicative reasoning and she was able to use skip-counting and repeated addition 

strategies more effectively with some assistance from her peers.  

4.5.4.1 Pre-assessment. In the pre-assessment Amy demonstrated that she knew 

that patterns were made from iterated units and she thought about some of the linear 

functions as “adding” one pattern core at each term. She was able to determine all of the 

next terms because she could add on one pattern core to the previous term. However, 

when asked to think about a near or far term of 10 or 100 respectively, she was unable to 

accurately determine any of the near or far terms; she could only provide a guess as to 

how many tiles would be needed (P31v2 to P35v). Her guesses, about the near and far 

terms, showed that she was unable to move toward more explicit reasoning and was only 

able to think about adding one core at a time to each successive term in a pattern. Her 

guesses showed that she knew the near term would be bigger than the last given term and 

that the far term would be even bigger, but she did not know how to form a generalization 

about the pattern at any term.   

4.5.4.2 Five-lesson intervention. During the first lesson in the five-lesson 

intervention, Amy showed that she was beginning to unitize and think about 

                                                
2 ‘P’ refers to Primary Documents that have been labeled with an unique identifier 

all beginning with ‘P’ in the research database. The letters following the Pnumber refer to 
the type of primary document: “v” indicates videos, “ws” indicates student work samples, 
and “on” indicates observation notes.  
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multiplicative growth as repeated addition, but she was not able to use repeated addition 

strategies independently at this time. She was also thinking about linear growing patterns 

as “adding” one core at each term as was evident when she explained the rule for a linear 

function as “adding 5, 3 times” at position 3 (P47ws). She was unable to generalize about 

the whole growing pattern, or write a generalized pattern rule; but, she recognized that 

within position 3 there were 3 groups of 5. 

In their work in Lesson 3, Amy and her partner showed a more sophisticated 

reasoning process based on the early foundations of multiplicative reasoning. Amy and 

her partner made use of the visual image of the growing pattern and their first step was to 

circle the groups of five in the visual representation of the pattern. They used this existing 

visual model of groupings in order to help them begin skip-counting (see Figure 10). 

They first circled the group of five at position 1 and recorded “5” in the chart below, then 

circled the two groups of five at position 2 and said “that’s five (while circling the first 

group of five) and that’s ten (after circling the second group of five)” (P75v minute 0:25). 

They continued skip-counting by groups of five and used the visual as a model of 

unitizing in order to accurately determine the number of worms on day 10. After they 

knew that on day 10 there would be 50 worms, Amy’s partner employed a doubling 

whole-object strategy to find the number of worms on day 20. Amy’s partner said “there 

is 50 there (pointing at day 10) and 20 (day 20) is just 10 numbers ahead so it would be 

100 (worms)” (P75v minute 4:30). Amy’s partner then very quickly calculated the 

number of worms on the 100th day and she said, “on the 100th day there would be 500… 

because it’s that number five times” (P75v minute 5:30). Amy’s partner used a general 

pattern rule and an efficient repeated addition strategy that involved the identification of 
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the multiplier and multiplicand to find the far term of 100. Amy did not come up with 

these strategies on her own, and she likely would not have been able to use these 

strategies independently. She was nonetheless working with these ideas, and at times, she 

agreed with her partner and encouraged her partner to continue with her more 

sophisticated strategies. However, it was clear that Amy was more comfortable with their 

initial skip-counting strategy and she was more actively contributing to the partnership 

when they were skip-counting to find the near term of 10, compared to when her partner 

began using more sophisticated strategies to determine the far terms of 20 and 100. This 

uncertainty when working to find the far terms also indicated that Amy was likely still 

thinking about growing patterns as adding one core at each term. This was why she was 

comfortable skip-counting to find the near term of 10 but seemed confused when her 

partner used strategies that required more sophisticated reasoning processes to determine 

the far terms of 20 and 100.       

 

Figure 10. Amy and her partner use an existing visual model of groupings, skip-counting 

and repeated addition strategies 
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In Lesson 4 during the pattern building activity, Amy was able to build and record 

the next terms in her peers’ patterns. She was also able to accurately record an explicit 

pattern rule for her peers’ patterns. However, she likely did not fully understand all of the 

explicit reasoning involved in the symbolization process of representing a linear function 

as an explicit pattern rule. Although Amy could generate the pattern rule, she was unable 

to use that pattern rule to determine the near terms for the two patterns she studied 

(P193ws). This suggests she likely did not yet have a strong enough understanding of 

either the explicit reasoning or multiplicative reasoning (or both) necessary to generalize 

about any term in a linear function.  

4.5.4.3 Post-assessment. In the post-assessment interviews, Amy improved 

slightly in her ability to determine near and far terms when compared to the pre-

assessment. In the post-assessment, Amy was able to determine the near and far terms for 

Problem 5, likely because she was able to determine a general description of the pattern 

rule or pattern growth mentally and think about the pattern as doubling the position 

number. She was only able to think about a general pattern rule when she could use what 

she knew about doubling to conceptualize the pattern rule for Problem 5 as being “the 

position number doubled tells you how many tiles” rather than thinking about the rule as 

“Total tiles = Position number x 2”.   

4.5.4.4 Retention task. On the retention task Amy and her partner used a 

proficient skip-counting strategy beginning with use of the visual representation of the 

pattern to determine the total number of cucumbers on day 10. They used the visual to 

help them begin skip-counting by threes up to day 4 and then mentally continued to skip-

count to day 10. Then, knowing that on day 10 there were 30 cucumbers, they used a 
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combination of efficient repeated addition and skip-counting strategies to determine the 

total number of cucumbers on day 25 (P177ws). They decomposed day 25 into 10 days + 

10 days + 5 days, and knowing that each group of 10 days was the same as 30 

cucumbers, they used repeated addition to determine that 20 days would be 30 cucumbers 

+ 30 cucumbers, and needing five more days, they skip-counted by threes to find that in 

five days there would be 15 cucumbers. So they came to the conclusion that 25 days was 

the same as 10 days + 10 days + 5 days which meant there would be 30 cucumbers + 30 

cucumbers + 15 cucumbers (as can be seen at the bottom of Figure 11 below where the 

student circled “25th day”). They then used another efficient repeated addition strategy 

and identified the multiplier and multiplicand to determine the number of cucumbers on 

the 100th day; they stated that there would be “3 groups of 100” or 300 cucumbers on the 

100th day (P177ws).   

 

Figure 11. Amy and her partner use skip-counting and regrouping with repeated addition 
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4.5.5 Case 2: Nicole’s progression through the five-lesson intervention. Next 

we turn to the case study of Nicole because, like Amy, she began the project relying 

mostly on recursive reasoning. Early on in the research project, Nicole thought about 

growing patterns as “adding” one core at a time and she depended on the visual 

representation of the linear functions in order to be able to visualize and then predict the 

structure of the pattern beyond the next term with some success. However, by the end of 

the project Nicole was able to generate general pattern rules that used the pattern term 

number consistently, and she was even able to generate and use explicit pattern rules in 

some instances. From the pre-assessment to the retention activity Nicole’s ability to 

determine far terms improved and she became more proficient in her understanding of 

unitizing and use of skip-counting strategies. Nicole also developed some efficient 

repeated addition strategies and some known multiplication facts (only with the factors 1, 

2, 4 and sometimes 10 and 100) by the end of the project.   

4.5.5.1 Pre-assessment. In the pre-assessment Nicole thought about the linear 

functions as “adding” one core at a time and at times she was able to predict the visual 

structure of a growing pattern beyond the next term. She was able to predict the visual 

structure of 3 of the 5 near terms and 3 of the 5 far terms for the problems examined. It 

was evident that Nicole was using the visual structure of the pattern to determine what 

the pattern would look like and how many tiles of various colours she would need at the 

near and far terms with Problems 4, 5, and 6. For example, when asked to determine the 

number of tiles needed to build position 10 in Problem 6, Nicole used the visual structure 

of the last given position to generalize about the visual structure of other positions of the 

pattern; she said: “I would need (pointing to the column of red tiles) 10 red, (pointed to 
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column of blue tiles) 10 blue and (pointing to the column of yellow tiles) 10 yellow” 

(P13v minute 1:59) (see Figure 12). Although Nicole was able to predict the visual 

structure of some of the patterns, she was not able to do so accurately all the time and she 

was unable to determine the near or far terms for Problems 3 and 7. It was clear that 

Nicole was relying on the visual to help her determine what other positions of the pattern 

would look like when she was working with Problem 7. With Problem 7 she was able to 

describe what a portion of the near term would look like but she became confused by 

having only a partial visual of the first four terms of the pattern (refer back to Figure 6) 

and then guessed that there would be about 100 tiles at position 10 and 1000 tiles at 

position 100 (P14v).  

 

Figure 12. Nicole describes the visual structure of near and far terms using the existing 

visual of term 4 in Problem 6 

4.5.5.2 Five-lesson intervention. During the first lesson Nicole showed that she 

was able to describe in words a general pattern rule for linear functions after examining 

visual representations of that function. During the function machine activity, Nicole 

examined a visual representation that was comprised of randomly selected positions 

(meaning she did not see each position of the pattern in sequential order) of a linear 
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function and she shared with the group her finding that “every time you put in a number 

it’s going to double it” (P61v minute 18:50). This showed that Nicole was now able to 

determine a general description of a pattern rule using everyday language that also 

included a reference to the term number. Although Nicole showed she was beginning to 

think about pattern rules when working with linear functions in the first part of Lesson 1, 

she was not yet able to consistently generate and use a general descriptive pattern rule. 

Later in this first lesson, when working with a different pattern, Nicole was unable to 

generate a pattern rule or generalize about the nature of the pattern beyond the image that 

she was given. Instead, she used a direct modeling strategy and drew a picture of three 

groups of five in order to figure out the number of tiles at a given position; she was 

relying on a physical model of the groupings, which suggests she was still developing an 

understanding of unitizing. She was unable to communicate any information about an 

explicit rule or the nature of the pattern that would allow her to find the number of tiles at 

any given position (P44ws). This was likely because she did not yet have a strong enough 

understanding of unitizing to be able to think about a general pattern rule with a factor 

other than two; although she was comfortable doubling (or multiplying by two) she was 

not yet able to conceptualize multiplying by any other factors.  

In Lesson 3 it was clear that Nicole was thinking about linear functions as adding 

one core at a time. She and her partner used a beginning skip-counting strategy to find the 

near term of 10 but they were unable to continue skip-counting to find the far terms of 25 

and 100.  Nicole and her partner used a table of values to accurately skip-count by fives 

up to day 10 (they may not have used the table if it had not been provided for them, more 

on the design of tables of values to come in the Discussion section). They then moved to 
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a direct modeling strategy and attempted to draw and create a physical model of the 25 

groups of five in order to determine the far term of 25. Nicole and her partner needed to 

know the previous position and count on five more from that position in order to 

determine the next position; they could not yet generalize about any position of the 

pattern with this linear function.  

In Lesson 4 Nicole showed great creativity when creating her own patterns. The 

first pattern that Nicole created involved a constant (the bottom middle tile in each 

position) as well as multiplicative growth (the group of three tiles) (see Figure 13). 

Although her pattern was an accurate visual image of a linear function, Nicole did not 

fully understand this pattern. When I asked about the pattern rule for her pattern, Nicole 

thought that her pattern rule was Output = Input x 4. Following my questioning, Nicole 

realized that her visual did not have enough tiles for her desired rule at positions 2 and 3 

(see Figure 13). She then created a different pattern that followed the rule Output = Input 

x 5. Later in the lesson, when she looked at her peers’ patterns Nicole was able to 

determine the next terms and pattern rules but could not figure out how many tiles there 

would be at position 10 (P191ws). She was able to generate an explicit pattern rule but 

she was not able to multiply with any factor and use or apply that explicit pattern rule at 

this point.  

 

Figure 13. Nicole’s first pattern  
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During Lesson 5, Nicole used beginning skip-counting strategies that made use of 

a model of unitizing. Nicole and her partner used money manipulatives to act out or 

physically model the situations in the problem. To figure out the total pay after 20 days 

with the pay rate of $2 per day and a flat fee of $10, Nicole and her partner laid a $10 bill 

on the table and then counted out 20 Toonies and arranged them in 4 rows of 5 (see 

Figure 14). This organization of the Toonies into an array helped her to be sure that there 

were in fact 20 Toonies on the table but she did not use the array to help her find the total 

amount of money. After arranging the Toonies in a four by five array, she then skip-

counted by twos touching each Toonie (P106v minute 22:30). This strategy and the way 

that she organized the Toonies may be a pre-cursor to the development of more proficient 

skip-counting strategies or repeated addition strategies. In fact, when later determining 

the total pay after 20 days with the pay rate of $3 per day, she arranged the coins in 

groups with each group containing one Toonie and one Loonie demonstrating that she 

was beginning to unitize. She then tentatively tested a more sophisticated strategy: after 

counting one group of five Toonies and finding that it was $10, she put the remaining 15 

Toonies into groups of five and skip-counted by $10 to find that her 20 Toonies were 

worth $40 and then added the $20 value of the Loonies onto the $40 value of the Toonies 

(P106v minute 25:40). Most of the time she skip-counted by $2 to determine the total 

value at each day (essentially counting by ones), but she began to successfully develop 

more sophisticated strategies involving the re-grouping of the coins and skip-counting by 

larger and more friendly numbers by the end of this lesson.   
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Figure 14. Nicole arranges the toonies in groups of 5 but skip-counts by 2s 

4.5.5.3 Post-assessment. In the post-assessment interview, Nicole’s thinking had 

progressed and she used repeated addition strategies and known facts to determine the 

near and far terms of the problems discussed. In the post-assessment, Nicole also used the 

visual to help her determine a general pattern rule involving the term number so that she 

could generalize about any term of the growing pattern. Nicole was able to determine the 

near and far terms for all the problems (except the far term of Problem 3) fairly quickly 

using a combination of repeated addition (with factors like 3) and known facts. She 

determined the near and far terms very quickly indicating that she was using some known 

multiplication facts (with factors of 1, 2, 4, and sometimes 10 or 100) and at times she 

described a general pattern rule using the pattern term number that she then worked with 

mentally to determine the near and far terms.   

4.5.5.4 Retention task. In the retention task, Nicole was able to explain in words 

how she used repeated addition and a general pattern rule to find the number of 
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cucumbers on any day (P155ws). Nicole used the commutative property and a number 

line to explain her pattern rule and she wrote “we use 10, 25 and 100 (the day numbers in 

the problem) 3 times each” (P155ws). Nicole was able to identify the multiplier and 

multiplicand but she relied on repeated addition to solve the problem. She was thinking 

about a general pattern rule and she was able to use the commutative property and 

repeated addition to solve the following multiplication problems: 3 x 10, 3 x 25 and 3 x 

100. This repeated addition strategy (for example “10+10 is 20, 20+10 is 30” to solve for 

day 10) was much more sophisticated than Nicole’s strategies from the earlier lessons 

that often involved some direct modelling of groups and the contents of those groups 

before counting the total by either skip-counting or counting by ones. It looked as if in 

the retention activity, Nicole and her partner began working with a strategy similar to one 

of her earlier strategies as they began to draw out tick marks for groups of three 

cucumbers. However, they likely found this strategy problematic or inefficient as they 

abandoned it and moved to the more sophisticated strategy previously discussed that was 

based on repeated addition (P174ws). 

4.5.6 Case 3: Brandon’s progression through the five-lesson intervention. 

Next we turn to the case of Brandon who had a slightly stronger understanding of explicit 

reasoning than Amy and Nicole by the end of the project. From the pre-assessment 

interviews through to the retention activity, Brandon’s ability to determine the core 

pattern growth and generalize about linear functions progressed from thinking about 

linear functions as “adding” one pattern core at each term, toward generating and using 

explicit pattern rules. The strategies that Brandon used to determine pattern terms 

progressed from direct modeling strategies that used an existing visual and beginning 
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skip-counting strategies toward efficient repeated addition strategies and the use of some 

known multiplication facts (only with a limited number of factors) by the end of the 

project.  

4.5.6.1 Pre-assessment. In the pre-assessment interviews, similar to Amy and 

Nicole, Brandon described the growth in the various patterns as “adding” one pattern core 

or a certain number of tiles at each successive term. Like Nicole, Brandon was also able 

to predict the visual structure of the patterns beyond the next term with some accuracy for 

some of the patterns. With the first problems that he looked at (Problem 3 and 4) Brandon 

used a beginning skip-counting strategy to determine the near terms but was unable to 

find the far terms (P17v and P18v). He then developed a strategy that was similar to 

Nicole’s; he used the visual structure of the pattern to generalize about the pattern beyond 

the next position. He used his understanding of the visual structure of any position of the 

pattern along with a doubling strategy (with Problems 5 and 7 to solve problems 

involving multiplication by two and four respectively) and possibly some repeated 

addition (with Problem 6 to solve problems involving multiplication by three) to find the 

near and far terms (P19v to P21v).  

4.5.6.2 Five-lesson intervention. During the first lesson in the sequence of the 

five-lesson intervention, Brandon initially used a counting by ones strategy that relied on 

an existing visual of a pattern term but then moved on to a skip-counting strategy that 

was similar to his work in the pre-assessment. Brandon showed that he understood 

patterns were made from iterated units and he conceptualized linear functions as adding 

one core at each successive pattern term. When working with the Function Machine 

Activity (see Figure 7), to determine the number of tiles in an image of position 10 of a 
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new linear function (Figure 15 shows position 4 of the same pattern), Brandon used the 

existing visual and counted the tiles by ones. At this point in the activity, the students 

could only see one position of the pattern and in order to determine the total number of 

tiles used in that position Brandon counted the individual tiles rather than considering 

groups of tiles within the image and skip-counting by fives (P61v minute 37). Had 

Brandon been asked to examine the first three terms of the pattern and then find a near or 

far term he may have used strategies similar to those he employed in the pre-assessment 

where he predicted the visual structure of the pattern and used skip-counting or repeated 

addition to solve for specific terms. Some of Brandon’s peers who were more 

comfortable with unitizing and skip-counting or repeated addition saw that the tiles were 

arranged in groups of five and used the arrangement to determine the total number of tiles 

more efficiently. After one of his peers shared this idea, Brandon realized that every two 

groups or lines in Figure 15 were ten tiles; he employed whole-object reasoning and was  

able to very quickly use a beginning skip-counting strategy to count by tens and 

determine the total number of tiles. While Brandon’s initial strategy to count the 

individual tiles was less sophisticated, he revised his strategy based on suggestions from 

his peers and was able to use a beginning skip-counting strategy to determine the number 

of tiles. This showed that Brandon was developing an understanding of unitizing and one 

of the key ideas involved in multiplication; however, he was not yet completely confident 

in his use of strategies that relied on that key idea. He was able to unitize in some cases 

but he fell back on less sophisticated counting strategies before revising his thinking and 

developing more efficient strategies that used groupings and skip-counting. It was clear 

that the activities in Lesson 1 pushed Brandon to consider some of what he knew about 
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multiplicative growth. For example, when looking at the pattern term of a linear functions 

he stated “it’s like 10 x 2” (P61v minute 22:10). Brandon was able to use multiplication 

notation and vocabulary when discussing a possible pattern rule for a specific pattern 

term but did not yet have a strong enough understanding of these conventions (and the 

convention to use a variable or even a word to symbolize any pattern term number in an 

equation) in order to adequately describe a general pattern rule as was also evident in his 

Math Journal entry for Lesson 1. When asked to describe a possible pattern rule in his 

Math Journal, Brandon wrote that the pattern rule is “the number 5 because if you put in a 

2, two 5s would come out” (P45ws). He was able to predict the visual structure of the 

pattern beyond the next term but did not yet have the multiplication vocabulary to be able 

to articulate a general or explicit pattern rule (P45ws).  

 

Figure 15. Position 4 of a linear function used in Lesson 1 

During Lesson 3, Brandon was moving toward being able to generate an explicit 

pattern rule but was not quite there yet, and he used various skip-counting strategies in 

order to determine the near terms of the given pattern. With the Worms in the Garden 

Problem (see Figure 7 for lesson overview), Brandon used the last given term of 20 

worms in the garden on day 4, and he counted by fives to figure out the total number of 
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worms in the garden on day 10 (P69ws). He was also able to create his own pattern rule 

and build a visual representation of that pattern when playing the Guess my Rule Game 

with this math partner (see Figure 7 of lesson overview). When he built position 10 of his 

pattern it was clear that he was developing a stronger understanding of unitizing as he 

clearly counted and pointed to the number of groups and knew that there were three tiles 

within each of those groups (see Figure 16) (P70v minute 2:08). During this activity 

Brandon also explained to his partner the structure that can be used to write an explicit 

rule for a linear function; he said “if you are doing the equals (the pattern rule) you do 

Output = Input x___” (P70v minute 02:57). Although Brandon knew how to generate an 

explicit pattern rule, he was not yet able to efficiently multiply and still needed to use a 

skip-counting strategy to determine how many groups of the pattern core there would be 

at a given pattern term (the “input” in his pattern rule). After helping his partner record 

his pattern rule using the aforementioned format, he and his partner used a beginning 

skip-counting strategy and counted by threes to figure out how many tiles they used to 

make the tenth term that they knew consisted of 10 groups of three tiles. When skip-

counting by threes, the boys only got stuck once they reached 24 and needed to count by 

ones to get to 27 and then skip-counted by another group of three to get to 30 and 

accurately determine the total number of tiles at position 10 of Brandon’s pattern (P70v 

minute 03:47).  
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Figure 16. Brandon counts the groups of three in his pattern 

Interestingly, also during the Guess my Rule Game in Lesson 3 when building a 

pattern based on his own pattern rule, Brandon varied the visual structure of his pattern. 

First he created position 10 of his pattern with groups of three tiles stacked in 10 piles. 

Then when creating position 6 he laid out the tiles in a different arrangement; the tiles 

were still in distinct groups of three tiles but they were lined up on their side instead of 

stacked in a flat pile (see Figure 17). Brandon thought that it would be okay to do this 

because he still had the correct number of tiles in position 6 according to the pattern rule 

and he still had the tiles arranged in groups of three with the position number indicating 

the number of groups of three (i.e. his pattern rule was Output = Input x 3 and at position 

6 he had 18 tiles and at position 10 he had 30 tiles which was what the rule indicated he 

needed) (P70v minute 6:50). At this point in the lesson sequence, Brandon had an 

understanding of unitizing and knew that the number of groups and the number of tiles 

within each group was important and needed to remain consistent. However, it was not 

clear whether Brandon’s inconsistency in the structure of the visual of his linear function 

indicated a lack of understanding of the way in which his pattern grew physically or if 

this indicated that he no longer needed the visual as a support when thinking about 
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multiplicative growth. This also showed that he was able to produce a very creative 

visual representation of a linear function that was different from any pattern he had 

previously seen.   

 

Figure 17. Brandon built two terms of his pattern using different visual structures 

In Lesson 4, Brandon only made one small error when finding the near term for 

his peer’s growing pattern; he used a beginning skip-counting strategy to determine the 

near term for a peer’s pattern with the pattern rule of Output = Input x 5 and his answer 

was off by one group of 5 (P192ws). Although Brandon was able to accurately generate 

an explicit pattern rule for both of the patterns he studied, he was still not strong enough 

to multiply and instead used a skip-counting strategy to determine the Output with a 

given Input (position 10).   

During Lesson 5, Brandon worked with Corey and both boys exhibited complex 

thought processes when confronted with a difficult problem based on a narrative context 

(more on Corey to follow). Brandon and Corey used graph paper to create a shorthand 

model of unitizing and to organize groups (they were keeping track of the multiplier and 

multiplicand in the pattern) that they used to ensure accuracy when later using a 

proficient skip-counting strategy to find the answer to various aspects of the problem (see 

Figure 18) (P107ws). The boys organized each group of two or three by placing one “2” 



                                                                                Beyond Recursive Patterning 

 

78 

 

or “3” in a square on the graph paper, they then skip counted to find how much you 

would have if you had 10 groups of three for example. Then in order to more efficiently 

skip-count they used whole-object reasoning and skip-counted by double the amount, 

reducing the number of skips. In the upper centre of the page it is clear that the boys 

circled the threes into groups of two threes; they then skip-counted 10 groups of six 

instead of skip-counting 20 groups of three as the original question had asked. On the 

bottom left it is clear that they employed the same strategy again; instead of skip-

counting 20 groups of two and then adding on the constant of 10 in this pattern, they 

skip-counted 10 groups of four and added on the constant of 10 (P107ws and P108v 

minute 12:06 onward). When initially trying to skip-count by fours the boys recorded 20 

groups of four and when the classroom teacher asked why they were counting by fours, 

the boys noticed their error while they were explaining their reasoning and adjusted their 

solution so that they had 10 groups of four instead of 20 groups of four. The teacher and I 

questioned Brandon and his partner while they were working on this problem and it 

seemed as though both boys understood the strategies they were using and had good ideas 

as to why these strategies would work in this context. However, this strategy was Corey’s 

idea and Brandon was able to help his partner implement all aspects of the strategy but he 

may not have accurately used a doubling and halving strategy to increase the efficiency 

of skip-counting on his own. Brandon was nonetheless working with these complex 

ideas, contributing to this partnership and actively working with Corey to find the far 

terms.  
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Figure 18. Brandon and Corey used the squares on the graph paper to create a shorthand 

model of unitizing 

4.5.6.3 Post-assessment. In the post-assessment interviews it was clear that 

Brandon employed more sophisticated strategies when compared to his pre-assessment 

interview. In the post-assessment interview Brandon exhibited strategies that used skip-

counting and efficient repeated addition or known facts. In the pre-assessment interview 

it took Brandon a while to figure out the near and far terms for many of the patterns 

because he was trying to skip-count on from the last given term. Surprisingly, in the post-

assessment he was able to determine the near and far terms almost instantly in many 

cases, suggesting that he was generating and using an explicit pattern rule along with 

some known facts and possibly some mental repeated addition (P131v to P135v). 

4.5.6.4 Retention task. Brandon’s work from the retention task suggested that he 

was able to use a shorthand model of unitizing and proficient skip-counting strategies 

with accuracy. On the retention task, Brandon used the existing visual and extended it in 
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order to create a visual model of the groups of cucumbers on each day. However, he then 

abandoned this diagram and moved to a more efficient shorthand model of unitizing and 

proficient skip-counting strategy. He was able to build on what he knew about the 10th 

day in order to figure out the number of cucumbers on the 25th day using a proficient 

skip-counting strategy. Brandon said that if he knew there would be 30 cucumbers on day 

10 that would help him figure out how many cucumbers there would be on day 25 

because 25 is 15 more than 10 so he needed 15 more groups of three on day 25 (Figure 

19). Knowing there were 30 cucumbers on day 10 he was then able to start at 30 

cucumbers on day 10 and create his own table of values which he used as a shorthand 

model of unitizing to accurately skip-count 15 more groups of three in order to determine 

that on day 25 there would be 75 cucumbers (see the red box in Figure 19). He was also 

able to determine the far term of 100 and most likely he mentally considered an explicit 

pattern rule then used the commutative property and repeated addition to think about 3 x 

100 as being 100 + 100 + 100 to find that on the 100th day there would be 300 

cucumbers.     
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Figure 19. Brandon uses a table to start at 30 and skip-count 15 more groups of three 

4.5.7 Case 4: Eric’s progression through the five-lesson intervention. Now we 

turn to the case of Eric who, like Brandon, made notable gains in his understanding of 

multiplication by the end of the project. Eric was one of the younger students 

participating in the research project (Grade 2) and he focused on the visuals early on. He 

was able to use the visual representations of linear growing patterns to construct an 

understanding of multiplication. Initially Eric used the visuals in order to predict the 

visual structure of the pattern beyond the next term and he used his understanding of the 

visual as a general pattern rule including the term number. He then used repeated addition 

along with his pattern rule in order to generalize about any term of a growing pattern. His 

focus on the visual and visualizing the growing patterns also led to his discovery of the 

commutative property later in the project. By the end of the project he was comfortable 

generating explicit rules and general rules with pattern term numbers that he could 
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efficiently use along with repeated addition or known multiplication facts (with factors of 

2, 4, 10 and 100) to find near and far pattern terms.   

4.5.7.1 Pre-assessment. In the pre-assessment it was clear that Eric was working 

with and using the visuals to predict the visual structure of the pattern beyond the next 

term. He was able to determine all near and far terms with some difficulty but, accurately 

nonetheless. He used his understanding of how the pattern grew visually to create and 

apply a general pattern rule that used the term number; he would think about how many 

groups of various coloured tiles there would be at a specified position. For example, 

when examining Problem 7 where the students were only given a partial visual of the 

pattern Eric initially struggled (see Figure 6). It was difficult for Eric to picture how 

many groups of 100 there would be at position 100 without being able to see how many 

groups of one there were at position 1 and how many groups of two there were at position 

2 and so on. To help solve the problem, Eric decided to create an extra column of red tiles 

to represent the new column of green tiles and he built a full visual of position 1, 2, 3 and 

4 based on my verbal description of the new pattern (see Figure 20). After having built 

the first four positions of the pattern he was able to determine a general rule that used the 

term number and he identified the multiplier and multiplicand when explaining that in the 

100th position “there would be 4 hundreds so there would be 400” (P28v minute 3:05). 

Eric initially approached some of the patterns with a focus on “adding” one core at a time 

and he skip-counted to find some of the near terms. However, he then switched to 

strategies that used explicit reasoning when thinking about the near and far terms; he used 

his understanding of the visual structure of the pattern to think about how many groups of 

red, blue, or yellow tiles there would be as well as how many individual tiles there would 
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be of each colour (or in each group) at any given term. He was able to determine the near 

and far terms by using repeated addition and a general rule involving the term number 

that was based on the visual structure of the pattern.  

 

Figure 20. Eric creates a full visual for Problem 7 

4.5.7.2 Five-lesson intervention. During Lesson 1 Eric showed that he was 

thinking about the nature of multiplicative growth in the patterns explored, as well as the 

ways in which various aspects of different pattern representations are connected. During 

the group discussion, Eric asked “will the machine work in reverse? If I put in an output 

(the image of a specific position) could I get out an input (the position number)?” (P61v 

minute 8:56). Eric’s question showed that he was thinking about the relationship between 

the visual image and the position number; he was considering how to determine what the 

position would look like from a given position number or what the position number 

would be from looking at a visual of a given position. Eric’s idea to use the function 

machine in reverse is also strongly tied to the concepts used to rearrange traditional 

algebraic equations in order to solve for different variables. He was working with an idea 

similar to the following example: with an equation like y = 4x, if I know x then I can 
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solve for y, or if I know y then I can solve for x.  However he did not yet have a strong 

understanding of the vocabulary used to describe multiplicative growth. When describing 

a pattern rule, Eric wrote “it will go up by 5s and down” which is not an explicit rule but 

a description of the pattern based on “adding” one core at each successive position 

(P46ws). However, he likely was also able to predict the visual structure of the pattern 

beyond the next term but was unable to communicate this on paper due to his low writing 

ability (with a scribe he may have been able to record something closer to a general 

pattern rule based on the visual structure of the pattern).   

During the group discussion introducing the problem for Lesson 3, Eric 

demonstrated that he was able to unitize as well as use repeated addition and the 

commutative property to determine the near and far terms of a linear function with great 

efficiency. When looking at a visual representation of the linear function used to 

introduce Lesson 3 (see Figure 21), many of the students said that on day 3 there would 

be three groups of two bugs. However, to increase efficiency, Eric impressively 

suggested that “if you turn it over… then I see there are two separate groups with three 

on one side and three on the other side… there are six bugs because I know 3 + 3 = 6” 

(P85v minute 2:30). To help his peers understand Eric’s suggestion, I then drew on chart 

paper what he had explained to the class and Eric clarified his understanding of the 

commutative property. Eric said that position 3 could look like three groups of two or if 

you turned it over then he could think about it like two groups of three which was faster 

for him to calculate (see Figure 22). He also explained to his peers that it was the same 

amount whether you thought about it like two groups of three or three groups of two 

because you were not changing the amount, the only thing that changed was the 
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orientation. His analysis of the visual along with his flexibility in making groups and re-

arranging those groupings allowed him to ‘create’ a new problem of 2 x 3 that he could 

easily think about in terms of repeated addition (3 + 3) and use a known addition fact to 

solve. In his work from later in Lesson 3, Eric used an explicit rule and likely some 

mental repeated addition to determine the far terms of 20 and 100 (P72ws). He also used 

skip-counting to determine the number of bugs for some of the closer days. Throughout 

this lesson, Eric showed a very high comfort level with many different strategies and he 

was able to quickly assess some of the relationships between numbers and operations so 

that he could efficiently solve all the problems.    

 

Figure 21. Bugs in the garden problem visual  

 

Figure 22. Eric discovers the commutative property  
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In Lesson 4 during the introduction to the pattern building activity, Eric again 

brought up the commutative property. After looking at Problem 1 and Problem 2 (see 

Figure 23), Eric asked to come up to the SMART Board to show his peers how position 3 

of Problem 2 was “the same” as position 2 of Problem 1 (P103v minute 11:30). With 

Problem 2 up on the SMART Board, Eric illustrated the commutative property by 

moving the tiles in position 3 to prove that the tiles in position 3 of Problem 2 could be 

rearranged to look like position 2 of Problem 1 (see Figure 24). His manipulation of the 

image was essentially a proof for the commutative property as he illustrated that 3 x 2 = 2 

x 3. During this lesson Eric also demonstrated his very strong understanding of the 

connections between various representations of linear functions and he explained to the 

class how he used the visual to identify the multiplier and multiplicand along with a 

pattern rule that involved the term number to almost instantly find the near term of 10 

(P103v minute 7:15). He explained that with Problem 1, “for position 1 there are 1 threes, 

for position number 2 there are 2 threes, for position number 3 there are 3 threes, for 

position number 4 there are 4 threes so at position number 10 there would be 10 threes” 

(P103v minute 7:15). In this way, he visualized the pattern structure and used it as a 

pattern rule to determine the total number of tiles at any given term number.  

Figure 23. Lesson 4, Problems 1 and 2  
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Figure 24. Eric re-arranged position 3 of Problem 2, illustrating and proving the 

commutative property 

In the final lesson of the five-lesson intervention, Eric and his partner tried to use 

a skip-counting strategy in order to compare the two linear functions but they were 

unable to do so accurately. Their mistakes were mostly due to the pair’s very unorganized 

record of their findings and were likely magnified by Eric’s low writing ability (had Eric 

had access to a scribe when working on this problem, he may have been able to solve the 

problem with greater efficiency and accuracy). It is also possible that Eric may have still 

needed a visual representation of the linear functions in order to be able to think about the 

growing patterns in Lesson 5 in a more general way; his earlier work relied heavily on 

using the visual and he may have struggled with Lesson 5 because no visual was 

provided.  

4.5.7.3 Post-assessment. During the post assessment Eric was again able to 

accurately determine all the near and far terms for all the problems explored. In the post-

assessment Eric calculated the near and far terms very quickly; he determined the 

answers accurately and almost instantly where as in the pre-assessment he needed some 
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time to think about how he was going to find the near and far terms. His increased speed 

in the post-assessment suggested that he was determining an explicit pattern rule, then 

using known facts (with factors of 2, 4, 10 and 100) and possibly some very efficient 

mental repeated addition.  

4.5.7.4 Retention task. In his work sample from the retention task, Eric and his 

partner used an explicit rule and either known facts or they may have mentally used 

efficient repeated addition to determine each far term (P176ws). He was also able to 

explain in words a general pattern rule that used the term number and he provided a few 

examples to prove that his rule worked for the pattern in question (P157ws). 

4.5.8 Case 5: Corey and Alison’s progression through the five-lesson 

intervention. The final case study focuses on Corey and Alison who both began the 

project with a stronger understanding of multiplication than the other students. Alison 

and Corey consistently demonstrated that they were able to select from a range of 

strategies based on what they believed to be the most efficient way to solve various 

problems. Throughout the entire project they moved between strategies that used 

proficient skip-counting, doubling, efficient repeated addition and known facts depending 

on what they believed to be most accurate and efficient for a specific problem. They often 

worked with strategies that made use of their strong mental computational abilities and 

Corey did not rely on the visual representations of the linear functions in many instances, 

perhaps because he was focusing on other aspects of the relationship between the two sets 

of data involved in the linear functions. Even in their pre-assessment interviews, Alison 

and Corey were already able to generate and use a general pattern rule that used the term 

numbers to help them efficiently determine the near and far terms. By the end of the 
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project they were able to generate and apply pattern rules; they considered the 

multiplicative nature of an explicit pattern rule for a linear function and used a known 

multiplication fact of a combination of strategies to determine the required multiplication 

fact.  

4.5.8.1 Pre-assessment. In the pre-assessment Corey was able to accurately and 

very quickly determine the near and far terms for all of the problems except for the far 

term of Problem 3. When he saw Problem 3, the most difficult problem, he said “it’s a 

growing pattern” and later added that he had seen this type of pattern before “with 

numbers” (P38v minute 1:04). It was clear that this was how he approached all the 

patterns that were studied in the interview; he did not use the visuals except to determine 

the number of tiles at each position. Corey made one error when determining the near 

term of Problem 3: he used a proficient skip-counting strategy to count by twos starting at 

three (position 1) to find position 10. Knowing position 10 he then tried to use whole-

object reasoning to find position 100 by repeatedly adding groups of 21 (the number of 

tiles at position 10). Corey was focused on the number of tiles at each position and he 

was able to efficiently generalize about the linear functions but he was not sure whether 

the visual arrangement of the tiles mattered as was evident when he built the next term of 

Problem 4 (see Figure 25). For all of the other problems, Corey was able to very 

efficiently and quickly find the near and far terms for the patterns by determining a 

general pattern rule that used the pattern term numbers and then using known 

multiplication facts or repeated addition to apply his pattern rule to any specified term.  
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Figure 25. Corey wonders if the visual arrangement of the tiles matters when building 

position 4 of Problem 4 

In the pre-assessment interviews Alison relied on the visual more than Corey did 

and she was able to predict the visual structure of the patterns beyond the next term. At 

times she was also likely mentally working with a general pattern rule that used the 

pattern term number. She used some repeated addition and known multiplication facts to 

quickly and accurately determine the far terms for all patterns, even the most difficult 

ones (P3v to P7v). She only made one error when determining a near term and her error 

indicated that she was working with a doubling strategy. When asked to determine the 

near term (position 10) in Problem 6, Alison looked at position 4 (the last position built) 

and saw that there were 12 tiles. She then said that at position 10 there would be 24 tiles 

because she made a small error in her doubling strategy; if she had been looking at 

position 5 and there were 12 tiles, then doubling both the position number to get to 

position 10 and the number of tiles to get to 24 tiles would have given her the correct 

number of tiles for position 10. Although she made an error, in that she did not double 

position 5 to find position 10 and instead doubled position 4 which would have actually 
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given her information about position 8 not position 10, this strategy showed that Alison 

was using whole-object reasoning in a logical way, she understood how the pattern was 

growing multiplicatively and she was able to use a doubling strategy (P6v minute 1:24). 

4.5.8.2 Five-lesson intervention. During Lesson 1 Corey used a number line to 

describe a general pattern rule that also used the pattern term numbers. He related the 

multiplicative growth of the linear function to the jumps on a number line and he knew 

that the position number indicated how many jumps of five to take on the number line 

(P48ws) (see Figure 26 where he is identifying the multiplier and multiplicand when 

tracking both the number of jumps and the size of each jump, along with a running total). 

Corey’s solution also showed that he was using an efficient repeated addition strategy.  

 

Figure 26. Corey used a number line to explain his pattern rule 

During Lesson 1 Alison was able to generate an explicit rule and she showed that 

she had an understanding of the language and notation often used with multiplication 

(P43ws). When asked to examine an image of one term of a pattern and describe a 
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possible pattern rule for that pattern, she wrote “the pattern rule could be: any number x 

5” and she used the visual to circle five groups within an image of a pattern term 

(P43ws). Surprisingly, even in this first lesson, Alison already exhibited a strong 

understanding of how to determine and clearly communicate an explicit pattern rule 

involving multiplicative growth in linear functions.   

In Lesson 3, Corey and his partner used an explicit rule and a known fact to 

determine the number of worms on day 10 and then used a doubling strategy in order to 

determine the number of worms on day 20 (see Figure 27). Corey and his partner 

explained that they used what they knew (that there were 50 worms on day 10) to use 

whole-object reasoning and a doubling strategy to determine the number or worms on 

day 20. They explained that they knew how to double, therefore knowing day 10 they 

doubled the day number and doubled the number of worms to find day 20. They then 

likely used the commutative property along with a known fact or some mental repeated 

addition in order to use their explicit rule to determine the number of worms on the 100th 

day (P76ws).  

 

 



                                                                                Beyond Recursive Patterning 

 

93 

 

 

Figure 27. Corey and his partner’s doubling strategy 

During Lesson 4, Corey described to the whole group how he used a skip-

counting by twos strategy to determine position 10 of one of the functions. He was also 

able to accurately determine an explicit pattern rule as well as describe the next and near 

terms for his peers’ patterns (P194ws).   

During Lesson 4, Alison accurately created at least two visual representations of a 

linear function from her own pattern rule (P87ws and P88ws). She also accurately 

identified the explicit pattern rule, next terms, and near terms (likely using an explicit rule 

and a known multiplication fact) for two different patterns that her peers’ had created 

(P190ws).  

As previously discussed, Corey worked with Brandon during Lesson 5 and his 

work for this lesson can be found in section 4.5.5.2. Corey used proficient skip-counting 
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strategies and a shorthand model of unitizing to find the near and far terms of the linear 

functions in Lesson 5.  

In Lesson 5, like Corey, Alison clearly used a short hand model of unitizing along 

with some skip-counting to solve the problem. However her model more closely 

resembled a visual representation of specific terms within the growing patterns and she 

used repeated addition in order to work with the problem more efficiently. In the top left 

corner Alison and her partner identified the two linear functions as “A” (you are paid $2 

each day plus a $10 lump sum payment to start) and “B” (you are paid $3 each day), then 

below that they created a visual representation first for B (see Figure 28 solid line box) 

and then for A (see Figure 28 dotted line box) (P104ws). For both linear functions the 

girls drew a circle to represent each day and then for function B placed three tick marks 

within each circle and for function A placed two tick marks within each circle and drew 

the constant of $10 separately. The way Alison represented the functions with a circle for 

each day and then the daily pay represented within each circle shows an understanding of 

unitizing. She then used some skip-counting and an efficient repeated addition strategy to 

find the amount of pay you would receive for working 20 days using the pay rate of $3 

per day (function B); she likely skip counted earlier on to find that four groups of three is 

12, she then boxed around groups of four days showing those are each $12 and then used 

another box to show an extra $6 which she then added together to figure out the total pay 

for half of the 20 days. She then likely used whole-object reasoning to figure out the total 

pay for 20 days having already found the pay for 10 days. Alison made one addition error 

when determining the pay after 10 days using the pay rate of $2 per day and a lump sum 

payment of $10 (function A), however the way she created and used a visual 
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representation of the functions involved in the problem suggests that she would be able to 

generalize about any term within each of the linear functions examined.    

 

Figure 28. Alison creates a visual representation of specific terms of the linear functions 

to find the specified pattern terms  

4.5.8.3 Post-assessment. In the post-assessment, much like in the pre-assessment, 

Corey was able to determine the near and far terms for the problems with great efficiency 

by generating and using an explicit rule along with known facts. When finding the near 

term for Problem 3, Corey tried to use whole-object reasoning and a doubling strategy, 

which resulted in an error because this problem involved a constant. However he did not 

repeat this error when finding the far term of the same problem; he was able to revise his 

strategy to accurately find the far term.  

In the post-assessment interviews Alison again only made one error and it was on 

the same near term. However, in the post-assessment the error that she made was of a 

different nature: when looking at the first few terms of the pattern Output = Input x 3 she 
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said that at position 10 (the near term) there would be 40 tiles (the correct answer would 

have been 30 tiles) (P122v). She answered the question very quickly indicating that she 

was multiplying, using known facts and using an explicit pattern rule, but she made an 

error when multiplying 10 x 3 likely because she was trying to use a doubling or repeated 

addition strategy and made an error (i.e. 10 + 10 = 20, 20 + 20 = 40 rather than 10 + 10 = 

20, 20 + 10 = 30). 

4.5.8.4 Retention task. Corey and his partner’s work from the retention task 

showed that they began by using a skip-counting strategy to extend the given table of 

values and they recorded the day number and number of cucumbers up to day 12. Then 

having found the number of cucumbers in 10 days, they tried to use this information to 

help them find the number of cucumbers after 25 and 100 days. They tried using repeated 

addition to add groups of 30 cucumbers (or groups of 10 days) to find the number of 

cucumbers on day 25 and 100 but this strategy was problematic for them so they revised 

their strategy. They then began thinking in terms of an explicit rule and identified the 

multiplier and multiplicand so they could use repeated addition to find a derived fact: 

Corey said that for 25 days “it’s like tripling: 25, 25, 25 so 75” (P178ws). This repeated 

addition strategy made use of a general pattern rule involving the term number and also 

employed the commutative property. Instead of thinking about the problem as being 

twenty-five groups of three (as was indicated in the problem context), Corey was able to 

use the commutative property and generate a general pattern rule that involved tripling 

the day number or in this case finding three groups of twenty-five. Although he did not 

show any work indicating how he found the far term of 100, Corey likely used the same 

“tripling” rule to mentally determine position 100.   
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Alison’s work from the retention activity made use of an explicit rule and 

repeated addition. Alison and her partner were able to very quickly and efficiently 

determine the near and far terms of this linear function. Initially, to find the near term of 

10, which was only six terms away from the last given term, the students skip-counted 

using a table as can be seen in the bottom left half of their solution (see Figure 29) 

(P173ws). Then knowing the pattern rule, which they generated from the visual and 

recorded on the far right of their paper, the students used repeated addition to determine 

the far terms of 25 and 100. The bottom right half of their solution shows how they added 

25 three times and then added 100 three times in order to solve 25 x 3 and 100 x 3 

respectively. Later in her math journal, Alison also described a general pattern rule that 

used the term number of this function as being “I multiply the day number by 3” 

(P152ws). She was able to independently and very clearly describe the way in which you 

could use an explicit rule to determine the number of cucumbers on any day but needed 

to use repeated addition to multiply by three.    

  

Figure 29. Alison’s skip-counting moves to repeated addition to find far terms  
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Chapter 5: Discussion 

The general purpose of this study was to explore the following research question: 

do primary students have the capacity to intentionally use, or develop, explicit reasoning 

skills when examining linear functions using designed visual representations (in most 

cases with these visuals being designed by the teacher and provided to the students)? The 

findings indicate that, within the small sample of students used in this study, most Grade 

2 and 3 students are able to develop varying levels of explicit reasoning – even with little 

to no previous knowledge of multiplication. More specifically, I asked: how does 

working with designed visual representations of linear functions affect the algebraic 

thinking of young students? Can students move beyond additive or recursive thinking 

when working with linear functions? The results indicate that working with designed 

visuals of linear functions, even over a very short time (the lesson intervention had a 

duration of only one week), can encourage most students to develop explicit reasoning 

skills and refine their abilities to generalize about any term of a given linear function.  

This study investigated the research questions within the context of simple linear 

functions due to the young age of the study’s participants (Grades 2 and 3). The linear 

functions that were explored throughout the study all involved multiplicative growth with 

easy factors such as 2, 3, 4, and 5. Very few linear functions that involved a constant 

were used throughout the study and most of the near and far terms that students were 

asked to determine were also easy numbers to work with (e.g. 10, 20, 25, 100). Simple 

linear functions were used in the study to ensure that the young students, who had little 

prior knowledge of multiplication, would be able to work with the problems, and so that I 

could focus on the children’s development of multiplicative reasoning processes. Had the 



                                                                                Beyond Recursive Patterning 

 

99 

 

students been confronted with problems involving more complex linear functions (e.g. 

linear functions with more challenging multipliers like 9 or 13, linear function with 

constants, or if students were asked to find far terms like 63 or 79) the results of the study 

may have been very different.  

5.1 Developing Explicit Reasoning Skills Through Working with Linear Functions 

I found, along with Beatty and Bruce (2012), Chapin and Johnson (2000), and 

Moss and London McNab (2011), that the use of visuals combined with various other 

representations of linear functions (tables, pattern rules, verbal or written descriptions of 

pattern rules, narrative contexts) can encourage students to focus on the relationships 

between the two sets of data involved in linear functions. Similar to Carraher, et al. 

(2008) and Beatty and Bruce (2012), I found that the concurrent use of multiple 

representations of linear functions is a very powerful support for students working with 

linear functions. Moreover, students can develop strategies that employ explicit reasoning 

to varying levels of complexity. Figure 8, found in the Results Chapter (page 55), depicts 

a progression of young students’ abilities to generalize about any term of a linear function 

(i.e. their level of explicit reasoning); the characteristics of students at each level of 

explicit reasoning will be discussed in the sections that follow. The strategies that 

students commonly use as they transition from recursive to explicit reasoning will also be 

discussed (Figure 9 on page 56). The sophistication of a student’s algebraic reasoning 

(see Figure 8) does not always align with the sophistication of their strategies (see Figure 

9). For instance, a student may be able to use high explicit reasoning processes (they may 

understand the relationship between the two data sets and be able to identify an explicit 
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pattern rule), but they may be relying on less sophisticated strategies and have to use a 

skip-counting strategy to find a specified term.    

5.1.1 Indicators of recursive reasoning. Most students who exhibit recursive 

reasoning rely on a visual representation of a linear function in order to identify the core 

of the pattern, however, they are often unable to generalize about any term in the pattern. 

These students are able to consistently isolate the pattern core in a visual of a linear 

function and identify the next terms as well as some closer near terms. They are able to 

determine next and some near terms because they are able to add on the required amount 

of pattern cores. They can usually only determine near terms if they have the opportunity 

to directly model (either with manipulatives or some kind of drawing) the required 

number of groups of pattern cores to add; generally, they cannot determine near terms 

mentally. Many of these students rely heavily on the use of direct models of groups of the 

pattern core and then they either count by ones or use beginning skip-counting strategies 

to determine near and far terms. These students are unable to successfully determine far 

terms (e.g. usually not able to determine far terms of 20, 25 or 100 independently) likely 

because they are not able to accurately skip-count or directly model and count by ones 

very far ahead of the last given term. They are limited in their understanding of linear 

functions (they conceptualize linear functions as being made of iterated units or adding 

one core at each subsequent term) and consequently only have direct modeling and 

counting or beginning skip-counting strategies to draw upon.    

5.1.2 Indicators of moderate levels of explicit reasoning. Students with 

moderate levels of explicit reasoning can successfully generalize about some aspects of 

any term of a linear function and they often can determine next, near and far terms with 
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some consistency. These students may draw upon whole-object reasoning as they begin 

to focus on the pattern’s growth. Then, as students develop a more thorough 

understanding of the relationships between the two sets of data involved in a linear 

function, some may develop the ability to use the visual of a linear function as a means to 

facilitate their generalizations about that pattern; this is similar to the findings of Beatty, 

et al. (2013) and Moss and London McNab (2011). These students may also use the 

visual structure of one or more given terms of the linear function in order to communicate 

a generalization about any pattern term, about a specified unknown pattern term or about 

the pattern’s growth in general. For these students, as Beatty and Bruce (2012), Beatty, et 

al. (2013) and Moss and London McNab suggest, the inclusion of a term number in 

activities involving linear functions is instrumental to their understandings of linear 

functions and their development of explicit reasoning. Students with moderate explicit 

reasoning are often working with, or beginning to develop, repeated addition strategies 

and they use what they know about the visual structure of the pattern almost as a formula 

to govern or carry-out their repeated addition strategy (they use the visual structure to 

identify how many are in each group and how many groups need to be added). These 

students are also developing or have an early understanding of unitizing and they use 

their understanding of addition and unitizing in order to solve problems involving 

multiplicative growth. Although this study did not include any data to support this 

speculation, if given a pattern rule and asked to determine information about specific 

terms of that pattern, students at the moderate level of explicit reasoning would likely 

need to first build or draw a visual of a linear function.      
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5.1.3 Indicators of high levels of explicit reasoning. Students with high levels of 

explicit reasoning are able to communicate a generalization about any term in a linear 

function and they can use their generalization in order to determine the characteristics of 

any given term. These students are able to use the information about a linear function 

provided in a representation of that function in order to generate: a general pattern rule 

that uses every day language and a reference to the term number, or an explicit pattern 

rule that is structured like an equation and uses symbolization processes to represent 

unknown values. Most of these students have an understanding of multiplicative growth 

and are able to use repeated addition or multiplication in order to determine and apply an 

explicit rule. However, some students may have strong enough explicit reasoning skills to 

generalize about any term of a pattern, and yet they may still be figuring out the 

mechanics of multiplication; they may be able to determine a general or explicit rule yet 

not be able to actually carry out the required calculation at this time.  

5.2 Explicit Reasoning Sparks a Need to Invent Multiplication  

The final research question was: how do the various representations of linear 

growing patterns help or encourage students to invent multiplication? The findings 

suggest that working with visual representations (along with other representations) of 

linear functions, and activities that encourage explicit reasoning lead some students to 

invent repeated addition and, or, multiplication. Most students are able to fairly quickly 

develop moderate or high levels of explicit reasoning as previously discussed. The 

students’ use of explicit reasoning and their abilities to generalize about linear growing 

patterns can lead some of them realize that addition alone is not sufficient when working 

with problems that ask them to find near and far terms. Therefore, these students can 
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develop a way to more efficiently work with groups and many of them can use the visual 

of a linear function as a tool to help them unitize and repeatedly add groups of the same 

size. Other students who have stronger understandings of unitizing can also refine their 

understandings of multiplication through their work with the visual representations of 

linear functions. Many of the visual images of linear functions used throughout the 

research project were structured as an array, with one pattern core (a row or column of 

the array), added at each subsequent pattern term. This structure of the visual may have 

encouraged students to develop an understanding of some of the structures of 

multiplication. Young-Loveridge (2005) suggests that students often do not encounter 

multiplication as both repeated addition and arrays; most instruction in multiplication is 

limited to multiplication being described as repeated addition in the earlier grades. The 

activities used in this project represented many linear functions using an array structure 

and the students were never told that multiplication was like adding a certain number of 

equal size groups. Interestingly, students can use the visuals of linear functions 

(especially those structured as arrays) to unitize, and repeated addition strategies seem to 

follow naturally.  

Similar to Beatty and Bruce (2012), Beatty, et al. (2013), and Moss and London 

McNab (2011), I also found that the purposeful use of supporting visuals that included 

pattern term numbers and coloured tiles can help make aspects of linear functions 

accessible to young students. The use of visuals of linear functions provide students with 

a concrete model of unitizing that they can use to generalize about a linear function. In 

the visual, students can see the impact of adding on a pattern core, or one group, at each 

successive pattern term. This helps some students conceptualize the differences between 
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the impacts that additive and multiplicative growth have on the total; students can see that 

increasing by one (one pattern term) has a different impact on the total than increasing by 

one in an additive context. The visuals of linear functions, especially those that are 

arranged as arrays, help set the foundation for this important idea that will later lead to an 

understanding of area and proportional reasoning. Furthermore, as Clark and Kamii 

(1996) suggest, multiplication is complex due to the many different inclusion 

relationships that occur concurrently. I believe the visual representations of linear 

functions, especially those designed using an array structure, make some of the inclusion 

relationships involved in multiplication more transparent to young students. When 

examining a visual representation of a simple linear function (see Figure 30), students can 

simultaneously see: within each group of five there are five 1s involved in inclusion 

relationships (1 is included in 2, 2 is included in 3, 3 is include in 4 and 4 is included in 

5), and within each pattern term there are groups of five that could also be involved in 

inclusion relationships (1 group of five is included in 2 groups of five, 2 groups of five 

are included in 3 groups of five, 3 groups of five are included in 4 groups of five).  

 

Figure 30. Worms in the garden problem visual uses an array structure  

5.2.1 Students discover and prove the commutative property. Like Carpenter 

et al. (2003), I also found that the examination and proof of conjectures, in this case 
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mainly the commutative property of multiplication (a x b = b x a), encouraged students to 

refine their understandings of important concepts. The study showed that designed 

visuals of linear functions can encourage students to discover the commutative property, 

and the visuals can even be used to prove that the commutative property of multiplication 

holds true for any set of factors. Similar to the suggestions of Beatty and Bruce (2012), 

Blanton and Kaput (2011), and Moss and London-McNab (2011), I found activities that 

asked students to do more than simply determine the next term in a linear function led to 

powerful discoveries. When teachers use designed visuals of linear functions and ask 

students to determine next, near and far terms (not just next terms as is common in many 

textbooks and traditional classrooms) students will likely discover and use the 

commutative property. For example, if students are asked to look at the worms in the 

garden problem and they are asked to determine the next term, the near term of 10 and 

the far term of 100, it is almost impossible for young students to find the far term of 100 

without using the commutative property (see Day 4 in Figure 7 and see Figure 30). When 

the students see the visual (Figure 30 which uses an array structure) of the first four terms 

of the pattern, it is logical and efficient to think about a general pattern rule as being the 

day number tells you how many groups of five you have (this could be recorded as: 

worms = day number x 5) and this pattern rule would be easy to extend to find the next 

term and even a near term. To find the near term of 10, students may model or record 

groups of five until they have a total of 10 groups of five. However, when students then 

have to find the far term of 100 it is very difficult for some of them to calculate 100 

groups of five. At times they will begin modeling the 100 groups of five as they did when 

finding the near term and then realize that it is too difficult to keep track of the running 
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total and the number of groups of five. Therefore, these students will develop a new 

strategy in order to make it possible for them to work with this problem and many 

students quickly figure out that they can use the commutative property to make their 

problem easier and calculate five groups of 100 instead. Although many students make 

use of the commutative property in order to make a problem possible for them to 

calculate, as previously discussed with the worms problem, all of these students may not 

necessarily understand that the commutative property will hold true for any set of factors. 

5.3 Conclusions 

Algebra is something that Canadian students often do not encounter until their 

final years of elementary school. This abrupt (and often procedure dominated) 

introduction to algebra has made it a field that many students struggle to connect to their 

lives and existing understandings of mathematics (Kaput, 2008; Stephens et al., 2013). 

This study has demonstrated that all six of the grade 2 and 3 students who participated in 

the study could successfully develop and apply varying degrees of early algebraic 

concepts through explorations of multiple representations of linear functions. Designed 

visuals of linear functions, along with tables of values, pattern rules and narrative 

contexts provide students with multiple ways to identify and analyze multiplicative 

relationships between two sets of data.  

This study was conducted in order to determine primary students’ capacities for 

explicit reasoning when working with linear functions. It also examined the ways in 

which designed visuals affected young students’ reasoning processes when working with 

linear functions. Some students used the designed visuals as a support in order to begin 

generalizing about the growth of a linear function and to think about the characteristics 
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and structure of any term within a given linear function. The designed visuals, combined 

with other representations of linear functions, helped most students to generalize in some 

way about the relationship between the two sets of data involved in a linear function. 

Some of the Grade 2 and 3 students also saw the need to invent multiplication through 

their work with representations of linear functions as this new operation was necessary in 

order to be able to efficiently and accurately generalize about any term of a linear 

function. Other students (those who began the project with a stronger understanding of 

multiplication) did not need to rely on the designed visuals in order to generalize about a 

linear function. However students relying on recursive reasoning or moderate levels of 

explicit reasoning seemed to rely more on the visuals in order to reason with a linear 

function. By the end of the project, the students were also able to use various 

symbolization processes and many students were confidently able to use variables or 

other symbols to represent values in rudimentary algebraic equations.  

The findings of the study showed that Grade 2 and 3 students are able to develop 

varying levels of explicit reasoning. The use of visuals combined with various other 

representations of linear functions (tables, pattern rules, verbal or written descriptions of 

pattern rules, narrative contexts) encourages students to focus on multiple aspects of the 

relationships between two sets of data involved in linear functions. Each student can 

focus on different aspects of the relationship between the data sets and the visuals, and 

given the way in which the lessons were designed, each student was able to work with a 

wide selection of strategies (i.e. there were many ways to come to the right answer). 

Many of the students who participated in this study were working with some kind of 
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pattern rule and multiplication or repeated addition by the end of the project and they 

were not relying solely on recursive thinking.   

5.4 Considerations for Future Research  

Given the small sample size, it would be useful to repeat the study with a larger 

number of students in order to generalize the findings. Additionally, the analysis of 

lessons that involve designed visuals of linear functions (many of which involve an array 

structure) could lead to a more comprehensive understanding of the possible ways in 

which this style of activity could be used as an introduction to multiplication in the early 

primary years. Therefore, a longitudinal study with a larger sample size comparing the 

experiences of young primary students who were introduced to multiplication through 

activities involving designed visuals of linear functions and those who were introduced to 

multiplication in a different way could indicate whether or not these activities lead young 

students to develop a comprehensive understanding of the structures of multiplication.  

Future research should also ensure that when using a table of values as a 

representation of linear functions the students are not provided with an empty table to fill 

out from the next to near term. This style of table of values can actually encourage 

recursive thinking, influence the students’ strategies and almost force them into using 

skip-counting strategies. It is important that lessons and all activities encourage students 

to explore the relationships between the two sets of data that are a part of the linear 

function in question (Beatty & Bruce, 2012; Beatty, et al., 2013). However, the improper 

design of a table of values can prevent students from focusing on the relationships 

between data sets. In some of the activities used in this research project, the students were 

given a visual of the linear function and a blank table of values with spaces for term 1 to 
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term 10. The later activities were revised to only provide spaces for the given terms (i.e. 

only for the terms provided in the visual, term 1 to term 4) because when students were 

given spaces for the first ten terms they felt that they were required to fill in all of the 

provided boxes in the table and almost exclusively used skip-counting strategies to find 

the near term.  

An analysis of additional algebraic structures that arise out of activities that 

involve the study of linear functions with young students could also be useful. Exploring 

the impact of the study of linear functions in the early elementary years on students’ 

symbolization processes, their abilities to generate and use equations that involve some 

form of variable, as well as their understandings of mathematical conventions when 

involved in algebraic equations could be used to inform the development of early algebra 

curricula.  

Furthermore, a longitudinal study in the future could explore the impact that 

patterning activities involving multiple representations of linear functions in the primary 

years may have on student success when confronted with the more formal study of linear 

functions in the intermediate and senior years. More specifically, it could be useful to 

study the generation and structure of pattern rules as students progress from the primary 

to the intermediate grades. As Beatty and Bruce (2012) suggest, it is beneficial to 

structure pattern rules in any activities with linear functions so that they will easily 

translate to the structure of the equation for the slope of a line (a different, graphic, 

representation of linear functions). The students in this study were able to generate their 

own structure for pattern rules based on the Function Machine Activity (Output = Input x 

___); it would be interesting to explore the experiences of students as they attempt to 
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translate these types of pattern rules into to the traditional notation for the slope of a line:  

y = m x + b. 

Additionally, video recorded student interviews (like those done in the pre and 

post-assessment) are a very rich source of data and should be used in similar research 

projects in the future. However, it would be valuable to always ask students “How did 

you come to that answer?” or “How did you solve that problem?” especially after they 

have determined a near or far term mentally.    

Finally, future research could extend this study and additionally examine young 

primary students’ abilities to reason explicitly with more challenging linear functions. 

This research project involved simple linear functions, almost exclusively those with 

small multipliers of two through five, very few constants, and students were only asked to 

find “friendly” near or far terms such as 10, 20 or 100. It would be interesting to 

determine whether or not young primary students can successfully work with more 

complex linear functions (e.g. functions with challenging multipliers such as 7, and some 

that involve constants) or determine more challenging far terms (e.g. 17, 34, 93). An 

extension of this study that included similar activities with more complex functions may 

have different findings and could shed light on additional ways in which linear functions 

could be used to foster students’ understandings of multiplication and various algebraic 

concepts.     
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Appendix A: Parent Letter 

(to be printed on updated letterhead) 
May 2014 

Dear Parent or Guardian of Potential Participant, 
 My name is Kate Gillies and I am working on my Master of Education degree at 
Lakehead University. My goal for my thesis is to investigate an area of mathematics 
instruction that is often difficult for students, with the hope of improving instructional 
techniques. The focus of my research is algebra instruction and the ways in which 
teachers can use patterning activities to help students build an understanding of algebraic 
concepts. The title of my research project is “Beyond recursive patterning: Visual 
representations to promote algebraic thinking with primary students”.  

 I will be observing mathematics lessons in your child’s classroom during the unit 
on patterning and algebra. The unit will be taught for 2 weeks in June 2014. With 
parental permission, students will participate in interviews to determine their 
understanding of patterning and algebra before and at the end of the unit. Samples of 
students’ work will also be collected. During some of the lessons, [teacher’s] teaching 
methods and the responses of students will be videotaped. Also, with permission, some 
groups of students will be videotaped so that I will be able to listen more carefully to how 
they have solved particular problems. Their conversations may also be transcribed and 
quoted anonymously in my final thesis project. [Teacher], my supervisor Dr. Lawson, or 
I may also make use of some of the edited classroom footage and work samples for the 
professional development and training of other teachers. Upon completion of the project, 
you will be welcome to obtain a summary of the research findings by contacting me at 
the phone number or email address given below, or by providing your mailing or email 
address on the consent form.  

 Your child will not be identified, except with an alias, in any written publication, 
including my thesis, possible journal articles or conference presentation. If video data is 
used for professional development, your child will be identified by first name only. The 
raw data that is collected through out the course of the research project will be securely 
stored at Lakehead University for a minimum of five years and then destroyed. 
Participation in this study is voluntary and you may withdraw the use of your child’s data 
at any time. This study has been approved by the Lakehead University Research Ethics 
Board. If you have any questions related to the ethics of the research and would like to 
speak to someone outside of the research team please contact Sue Wright at the Research 
Ethics Board at 807-343-8283 or research@lakeheadu.ca. The research has also been 
approved by the [school board] and the Principal of [school].  
 Please note that this research does not affect classroom instruction time, with the 
exception of some of the interview time. The lessons are being carried out by [teacher] 
and myself in the same manner and length of time as they would be without the research 
project. This research will not take away from the normal learning environment in the 
classroom and there is no apparent risk to your child. The research is simply being 
conducted to make note of the effects of using patterning activities and visual 
representations of patterns to promote algebraic understanding. If you choose not to have 
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your child participate, he or she will still be engaged in the math lessons. The only 
difference is that his or her data will not be used. If you give permission for your child to 
participate, your child will also be asked whether or not he or she is willing to take part in 
the research project.  

 You are welcome to contact me at 355-1311 or kegillie@lakeheadu.ca if you have 
any questions concerning this research project. I would be very pleased to speak with 
you. 
 If you agree to allow your child to participate in the study, please sign the 
attached letter of consent and return it to [teacher]. Please keep this letter incase you 
would like to contact any of us. 

Sincerely, 

 
Kate Gillies 
 
Kate Gillies  
Master of Education Student 
Lakehead University 
807-355-1311 
kegillie@lakeheadu.ca 
 
Alex Lawson PhD 
Thesis Supervisor 
Lakehead University 
807-343-8720 
 
[Principal] 
 
Sue Wright  
Lakehead University Research Ethics Board 
807-343-8283 
research@lakeheadu.ca 
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Appendix B: Parent Consent Form 
(to be printed on updated letterhead) 

 
I DO give permission for my son/daughter,_______________________________, 
              (name of student/please print) 
to participate in the study with Kate Gillies as described in the attached letter. 
 
I understand that: 

1. My child will be videotaped in the classroom environment as a part of the 
research 

2. My child’s participation is entirely voluntary and I can withdraw permission at 
any time, for any reason. 

3. There is no apparent danger of physical or psychological harm. 
4. In accordance with Lakehead University’s policy, raw data will remain 

confidential and securely stored at Lakehead University for a minimum of five 
years and then it will be destroyed. 

5. All participants will remain anonymous in any publication resulting from the 
research project. 

6. The video clips of the classroom or student work may be included in Professional 
Development for teachers conducted by Kate Gillies, [teacher], or Dr. Lawson. If 
my child appears in the video clips he or she will be identified by first name only.  
 
 
 
 
 

7. I can receive a summary of the project, upon request, following the completion of 
the project, by contacting the researcher or providing my address or email address 
below.  

 
Please keep the introductory letter on file should you have any further questions. 
If you agree to let your child take part in the study, please complete this page and have 
your child return it to [teacher]. 
 
 
____________________________________________ 
Name of Student (please print) 
 
 
____________________________________________                         _______________ 
Signature of Parent or Guardian           Date 
 
 
________________________________________________________________________ 
Address or email address if you would like a summary of the findings 
 

I initial this box to give permission for my child to appear in 
video clips which may be used for Professional Development 
purposes, as outlined above in 6. 
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Appendix C: Script for Student Consent  
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Appendix D: Teacher Letter 
(to be printed on updated letterhead) 

 
May 2014 

Dear [teacher], 
 
 Thank you for considering participation in this study. My goal for my Master of 
Education thesis is to investigate an area in mathematics where students often struggle 
and to find ways to improve instruction in this area throughout the early elementary 
years. My research focuses on the ways in which primary teachers can help their students 
to build a strong foundation for later studies of algebra. This study was designed to 
explore the ways in which working with many representations of patterns impacts 
students’ abilities to reason algebraically. Presently, there is very little information on the 
ways in which various representations of patterns, such as building patterns with colour 
tiles, writing the pattern rule, tables of values and graphs, can be used together to 
encourage students to reason algebraically about a specific pattern. The title of my 
research project is “Beyond recursive patterning: Visual representations to promote 
algebraic thinking with primary students”. 
 
 In order to gather information needed for the study, I will be observing 
mathematics lessons in your classroom during the unit on patterning and algebra. The 
students will participate in a pre-intervention interviews, post-intervention interviews and 
a retention test to determine what they have learned in the unit. You will have access to 
the results for assessment purposes. Some samples of the students’ work will also be 
collected. During some of the lessons, your teaching methods may be videotaped. Also, 
with permission, some groups of students will be videotaped so that I will be able to 
listen carefully to how they have solved the problems. Conversations may be transcribed 
and quoted anonymously in my final project in order to illustrate the ways in which 
students interpreted the multiple representations of patterns. You, my supervisor Alex 
Lawson, or myself may also make use of some of the edited classroom footage and 
student work samples for professional development for teachers.  
 
 As a part of the project you will need to: distribute and collect the cover letters 
and permission forms from parents or guardians and students, collect student work and 
allow time for the interviews and retention test. I will ensure that you have any of the 
resources needed for the lessons. I hope that you will participate for the duration of the 
study. However, you may withdraw at any time, for any reason, without penalty, as your 
participation is entirely voluntary. I do no anticipate any negative consequences as a 
result of participation in this study.  
 
 You and your students will not be identified in any written publication, except 
with an alias, including my thesis, possible journal articles or conference presentations. If 
video data is used for professional development, your students will be identified by first 
name only, but if children use your surname it may be revealed. The raw data that is 
collected will be securely stored at Lakehead University for five years after completion of 
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the project and then it will be destroyed. A report of the research will be available upon 
request. I can be reached at 355-1311 or kegillie@lakeheadu.ca. 
 
 This study has been approved by the Lakehead University Research Ethics Board. 
If you have any questions related to the ethics of the research and would like to speak to 
someone outside of the research team please contact Sue Wright at the Research Ethics 
Board at 807-343-8283 or research@lakeheadu.ca. 
 
 If you agree to participate in the study, please sign the attached letter of consent 
and return it to me. 
 
Sincerely, 
 

 
Kate Gillies 
 
Kate Gillies  
Master of Education Student 
Lakehead University 
807-355-1311 
kegillie@lakeheadu.ca 
 
Alex Lawson PhD 
Thesis Supervisor 
Lakehead University 
807-343-8720 
 
[Principal] 
 
Sue Wright  
Lakehead University Research Ethics Board 
807-343-8283 
research@lakeheadu.ca 
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Appendix E: Teacher Consent Form 
(to be printed on updated letterhead) 

 
I,_______________________________, do agree to participate in the study with Kate   
 (name of teacher/please print) 
Gillies as described in the attached letter. 
 
I understand that: 

1. I will be videotaped in the classroom as a part of the project. 
2. My participation is entirely voluntary and I can withdraw permission at any time, 

for any reason without penalty.  
3. There is no apparent danger of physical or psychological harm. 
4. In accordance with Lakehead University’s policy, the raw data will remain 

confidential and securely stored at Lakehead University for a minimum of five 
years and then it will be destroyed. 

5. I will remain anonymous in any publication resulting from the research project. 
6. The Video clips of the classroom or student work may be included in Professional 

Development for teachers conducted by Kate Gillies, Dr. Lawson or myself. If I 
appear in the video clips I may be identified by surname.   
 
 
 

  
 
If you agree to participate in my study, please complete this form and return it to me.  
 
 
__________________________________________ 
Name of Third Party Witness (please print) 
 
 
__________________________________________                        __________________ 
Signature of Third Party Witness     Date 
 
 
__________________________________________ 
Name of Teacher (please print) 
 
 
__________________________________________                        __________________ 
Signature of Teacher       Date 

I initial this box to give permission for me to appear in video 
clips which may be used for Professional Development 
purposes as outlined in above in number 6.  
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Appendix F: Principal Letter 
(to be printed on updated letterhead) 

 
May 2014 

Dear [Principal], 
 
 Thank you for considering participation in this study. My goal for my Master of 
Education thesis is to investigate an area in mathematics where students often struggle 
and to find ways to improve instruction in this area throughout the early elementary 
years. My research focuses on the ways in which primary teachers can help their students 
to build a strong foundation for later studies of algebra. This study was designed to 
explore the ways in which working with many representations of patterns impacts 
students’ abilities to reason algebraically. Presently, there is very little information on the 
ways in which various representations of patterns, such as building patterns with colour 
tiles, writing the pattern rule, tables of values and graphs, can be used together to 
encourage students to reason algebraically about a specific pattern. The title of my 
research project is “Beyond recursive patterning: Visual representations to promote 
algebraic thinking with primary students”. 
 
 In order to gather the information needed for the study, I will be observing and 
co-teaching mathematics lessons in [teacher’s] classroom during the unit on patterning 
and algebra. The students will participate in interviews at the beginning and end of the 
unit as well as a retention test two to three weeks after the unit has been completed to 
determine what they have learned. [teacher] will have access to the data that I collect for 
assessment purposes. Some samples of student work will be collected to assist [teacher] 
with assessment, and with permission this work may also be included in my study. 
During some of the lessons, [teacher’s] teaching methods will be videotaped. Also, with 
permission, some groups of students will be videotaped so that I will be able to listen 
carefully to how they have solved the problems. Conversations may be transcribed and 
quoted anonymously in my final project in order to illustrate the students’ understandings 
of patterns and algebra. [Teacher], my supervisor Alex Lawson or myself may also use 
some of the edited classroom footage and student work samples for professional 
development for teachers.  
 
 This research does not affect classroom instruction time, with the exception of 
some of the interviews with the students. [teacher] and myself are carrying out the 
lessons in the same manner as when I volunteer in [teacher’s] classroom. This research 
project will not take away from the normal learning environment in the classroom and 
there is no apparent risk to any of the participants involved. If parents choose not to have 
a child participate, the child will still be engaged in all of the math lessons. The only 
difference is that his or her data will not be used. If parents give permission for a child to 
participate, the child will also be asked whether or not they would like to be a part of the 
research.  
 
 I hope that [teacher] and her students will participate for the duration of the study. 
However, you may withdraw your permission at any time, for any reason, without 
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penalty, as participation is entirely voluntary. I do not anticipate any negative 
consequences as a result of participation in this study.  
 The school board, [school], [teacher] and the students will not be identified in any 
written publication, including my thesis, possible journal articles or conference 
presentations. If video data is used for professional development purposes, the students 
will be identified by first name only and [teacher] may be identified by surname if the 
students use it in the video clip. The raw data will be securely stored at Lakehead 
University for a minimum of five years after completion of the project and then it will be 
destroyed. A report of the research will be available upon request. I can be reached at 
355-1311 or kegillie@lakeheadu.ca. 
 
 This study has been approved by the Lakehead University Research Ethics Board. 
If you have any questions related to the ethics of the research and would like to speak to 
someone outside of the research team please contact Sue Wright at the Research Ethics 
Board at 807-343-8283 or research@lakeheadu.ca. 
 
 If you give permission for participation in the study, please sign the attached letter 
of consent and return it to me.  
 
Sincerely, 
 

 
Kate Gillies 
 
Kate Gillies  
Master of Education Student 
Lakehead University 
807-355-1311 
kegillie@lakeheadu.ca 
 
Alex Lawson PhD 
Thesis Supervisor 
Lakehead University 
807-343-8720 
 
Sue Wright  
Lakehead University Research Ethics Board 
807-343-8283 
research@lakeheadu.ca 
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Appendix G: Principal Consent Form 
(to be printed on updated letterhead) 

 
I,_______________________________, do agree to participation in the study with Kate   
 (name of principal/please print) 
Gillies as described in the attached letter. 
 
I understand that: 

1. [teacher] and her students will be videotaped in the classroom as a part of the 
project. 

2. Their participation is entirely voluntary and I can withdraw permission at any 
time, for any reason without penalty.  

3. There is no apparent danger of physical or psychological harm. 
4. In accordance with Lakehead University’s policy, the raw data will remain 

confidential and securely stored at Lakehead University for a minimum of five 
years and then it will be destroyed. 

5. The [school board], [school], [teacher] and the students will remain anonymous in 
any publication resulting from the research project. 

6. The video clips of the classroom or student work may be included in Professional 
Development for teachers conducted by Kate Gillies, Dr. Lawson or [teacher]. If 
[teacher] appears in the video clips she may be identified by surname. If students 
appear in the video clips, they will be identified by first name only.  
 
 

 
 
 
If you approve of participation in my study, please complete this form and return it to 
myself or [teacher].  
 
 
__________________________________________ 
Name of Principal (please print) 
 
 
__________________________________________                        __________________ 
Signature of Principal       Date 

I initial this box to give permission for [teacher] and her 
students to appear in video clips which may be used for 
Professional Development purposes, as outlined above in 6. 
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Appendix H: Interview Guide  
(Adapted from R. Beatty, personal communication, March 3, 2014) 

Problem 1 
 
Show student 3x3 grid. 

 
1. Ask them to copy the grid using pencil and paper. 
2. Ask them to copy the grid using square tiles. 

 
Problem 2 

 
Ask the student “What is a pattern?”  
If the student seems unsure of how to answer the question, point out the manipulatives, 
paper, and markers available to see if they can communicate an answer. “Is there 
anything here you’d like to use?” 
 
Problem 3 

 
“Now I’m going to show you a different kind of pattern.” (After pattern is built, ask 
“have you seen this type of pattern before?”) 

 

 

Build the pattern (using tiles and position cards) and think-aloud as you build it. 

1. At the first position, position 1, I’m going to put 2 blue tiles…1, 2 (count the tiles) 
, and one yellow tile. 

2. At the second position, position 2, I’m going to put 1, 2, 3, 4 blue tiles and 1 
yellow tile. 

3. At the third position, position 3, I’m going to put 1,2,3,4,5,6 blue tiles and 1 
yellow tile. 

4. At the fourth position, position 4, I’m going to put 1,2,3,4,5,6,7,8 blue tiles and 1 
yellow tile. 
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Questions: 

1. What’s happening in this pattern? What do you see? 
2. What would come next, at the fifth position (position 5)? Can you build it using 

the tiles? 
3. How many tiles would there be in the 10th position? 
4. How many tiles would there be in the 100th position? 

 
Problem 4 

 
Build positions 1, 2 and 3 of this pattern: 

 

Questions: 
1. What’s happening in this pattern? What do you see? 
2. What would come next, at the fourth position (position 4)? Can you build it using 

the tiles? 
3. How many tiles would there be in the 10th position? 
4. How many tiles would there be in the 100th position? 

 
Problem 5 
Next, add a column of blue tiles: 
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Questions: 

1. Now what’s happening in this pattern? What do you see? 
2. What would come next, at the fourth position (position 4)? Can you build it using 

the tiles? 
3. How many tiles would there be in the 10th position? 
4. How many tiles would there be in the 100th position? 

 

Problem 6 
Add a column of yellow tiles: 

 

Questions: 
1. What’s happening in this pattern? What do you see? 
2. What would come next, at the fourth position (position 4)? Can you build it using 

the tiles? 
3. How many tiles would there be in the 10th position? 
4. How many tiles would there be in the 100th position? 

 
Problem 7 

 
What if we had four colours (what if we added green tiles)? How many tiles would be at 
position 10? 
How many tiles would be at position 100? 
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Appendix I: Modified Landscape of Learning  
 

(Adapted from Fosnot and Jacob, 2010, p. 30)3 

 

 

 

                                                
3 Checkmarks indicate strategies and big ideas that were used as codes in this 

study. 

✓ 

✓ ✓ 

✓ 

✓ 
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Appendix J: Definition of Codes 

Codes 
used 

 Code  
 name 

 Definition as it pertains  
to this project 

  
Source 

 

 A close  answer is not completely incorrect but not 
completely correct either 

  

✓  A correct  answer is correct   

✓  A incorrect  answer is incorrect   

✓  A with teacher 
assistance 

 student is able to come to correct answer with 
teacher prompting or questioning 

  

✓  T identification 
of far terms 

 identifying or describing pattern terms that do not 
directly follow the last given term and are very 

different from the last term 

 (Beatty & 
Bruce, 2012) 

✓  T identification 
of near terms 

 identifying or describing pattern terms that do not 
directly follow the last given term and are still close 

to the last term 

 (Beatty & 
Bruce, 2012) 

✓  T identification 
of next terms 

 identifying or describing the pattern term that 
follows the last given term 

 (Beatty & 
Bruce, 2012) 

✓  Stgy beginning 
unitizing 

 student is beginning to think about how much is in a 
group and the number of groups but needs a 

diagram or some support to do so 

  

✓  Stgy unitizing  student is able to think about how much is in a 
group and the number of groups 

 (Fosnot & 
Jacob, 2010) 

✓  Stgy 
commutative 

property 

 student uses the commutative property  
(a x b = b x a) 

 (Carpenter et al., 
2003) 

✓  Stgy 
multiplication 

as repeated 
addition 

 student uses repeated addition to solve a 
multiplication problem 

 (Carpenter, 
Fennema, Loef 
Franke, Levi, & 
Empson, 1999; 

Young-
Loveridge, 

2005) 

✓  Stgy counting 
by ones 

 student solves the problem by counting by ones, 
may have drawn a picture with each object 

 (Van de Walle 
et al., 2015) 

✓ 
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✓  Stgy doubling 
reasoning 

 student uses doubling or doubling multiple times to 
solve the problem.  

 (Carpenter et al., 
1999) 

✓  Stgy beginning 
multiplicative 

reasoning 

 student uses multiplication to solve the problem   

✓  Stgy 
proportional 

reasoning 

 student reasons with known value to find unknown 
value based on equal proportions  

 (Van de Walle 
et al., 2015) 

✓  Stgy skip 
counting 

 student uses beginning or proficient skip-counting 
strategies 

 (Carpenter et al., 
1999) 

✓  Stgy whole-
object 

reasoning 

 student uses proportional reasoning in ways that do 
not apply to the situation or may not be logical in 
the context of that specific function (e.g. if I know 
the output for 4, double it to find  the output for 8 
but this will not be logical if there is a constant in 

the function) 

 (Beatty & 
Bruce, 2012; 

Moss & London 
McNab, 2011) 

✓  EorR “adding”  student describes pattern growth as “adding” one 
core at each successive term 

 (Van de Walle 
et al., 2015) 

✓  EorR explicit 
reasoning 

 student identifies the functional relationship 
between multiple sets of data 

 (Beatty & 
Bruce, 2012; 

Moss & London 
McNab, 2011) 

✓  EorR patterns 
can be made 
from iterated 

units 

 student recognizes that patterns involve the 
repetition of some unit (a pattern core 

 (Fosnot & 
Jacob, 2010) 

✓  EorR reliance 
on recursive 

thinking 

 student focuses on only one set of data when 
examining a linear function 

 (Beatty & 
Bruce, 2012) 

✓  EorR using the 
term number to 

explain a 
pattern 

 student recognizes a relationship between the term 
number and some other characteristic of the pattern 

 (Beatty & 
Bruce, 2012; 
Beatty et al., 

2013) 

✓  V visual no 
support 

 the visual representation of the pattern does not 
support the student’s thinking 

  

✓  V visual 
supports 

 the visual representation of the pattern supports the 
student’s thinking and helps to push them 
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✓  V position 
number 

confusion 

 the visual is being used but the position number is a 
source of confusion for the student 

  

  PofG guess, 
check, and 

adjust 

 using trial and error to determine pattern rule  (Fosnot & 
Jacob, 2010) 

  PofG 
examining 

cases in which 
n=0 

 considering the pattern at term 0 when describing a 
pattern or determining a pattern rule 

 (Fosnot & 
Jacob, 2010) 

✓  PofG justifying 
by doing 
several 

problems 

 using many examples to prove a pattern rule or idea  (Fosnot & 
Jacob, 2010) 

✓  PofG justifying 
by explaining 

why 

 using reasoning to prove a pattern rule or idea  (Fosnot & 
Jacob, 2010) 

  PofG proving 
with all 

possible cases 

 using properties of number and/or operations to 
prove a pattern rule would hold for any term number 

 (Fosnot & 
Jacob, 2010) 

✓  SorR describes 
a pattern rule 
with words 

 uses everyday language to describe a pattern rule  (Beatty & 
Bruce, 2012; 

Chapin & 
Johnson, 2000) 

✓  SorR describes 
visual structure 

of pattern 

 the student describes how the pattern is growing  (Beatty & 
Bruce, 2012; 

Chapin & 
Johnson, 2000) 

✓  SorR draws 
visual 

representation 

 student draws a visual of the pattern  (Beatty & 
Bruce, 2012; 

Chapin & 
Johnson, 2000) 

✓  SorR explicit 
rule or 

symbolization 
using variables 

 student writes the explicit pattern rule and uses this 
to reason with the pattern 

 (Beatty & 
Bruce, 2012; 

Chapin & 
Johnson, 2000; 
Van de Walle et 

al., 2015)  
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✓  SorR physically 
builds 

representation 

 student builds the pattern with coloured tiles  (Beatty & 
Bruce, 2012) 

✓  SorR uses table 
of values 

 student uses a table to values to symbolize and 
reason with a pattern 

 (Beatty & 
Bruce, 2012; 

Chapin & 
Johnson, 2000) 

✓  IwP identifies 
growing part of 

pattern 

 student identifies the multiplicative growth within a 
linear function 

 (Beatty et al., 
2013) 

✓  IwP makes a 
connection 

 student makes a connection to a pattern they have 
previously seen or to some other pattern or idea they 

already know 

  

✓  IwP prediction 
spontaneous 

 student makes a prediction about an aspect of the 
pattern or problem on their own 

  

✓  IwP self 
corrects 

 student revises and corrects their own error or 
reviews their work looking for errors 

  

✓  O even and odd  observation about even and odd number 
relationships 

  

✓  O makes 
conjecture 

about numbers 
or operations 

 student makes a conjecture about number 
relationships or properties of operations 

 (Carpenter, Loef 
Franke, & Levi, 

2003) 

✓  O relational 
thinking 

 student uses what they know about the number 
system and operations to reason with a situation or 

to problem solve 

 (Carpenter et al., 
2003) 


