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Abstract

In the last few years, structural health monitoring has gained significant popular-

ity to perform real-time condition assessment of civil structures. With the aid of

mobile sensing network, movable wireless sensors have made a paradigm shift in cost-

effective and faster deployment of sensors in large-scale structures. A wide range of

system identification methods has been developed by different researchers to accu-

rately identify modal parameters from the measured vibration data. However, most

of these techniques are suitable only when all key locations of the structures are in-

strumented. In the case of mobile sensing network where a sensor is autonomously

moved from one location to another, only a few sensors are available at any time. In

this research, a newer time-frequency method, namely the empirical mode decompo-

sition (EMD), is explored and improved to conduct system identification using single

channel measurement.

The original EMD method results in significant mode-mixing in the modal re-

sponses when utilizing closely-spaced modes and data with measurement noise. In

this thesis, time-varying filtering based empirical mode decomposition (TVF-EMD)

is proposed to undertake ambient modal identification. The proposed method is fully

adaptive and suitable for automation since it uses only one channel of data at a time.

An energy-based thresholding criterion is proposed to identify dominant frequency

components of the vibration data. Once the key signal components are identified, a

cluster diagram is integrated with TVF-EMD to identify modal responses that are uti-

lized for modal identification. Such modification shows improved performance of the

x



TVF-EMD in identifying modal parameters using single channel measurement under

a wide-range of challenging situations including closely-spaced modes and measure-

ment noise. The proposed method is verified using a suite of numerical, experimental

and full-scale studies using wireless sensors in a decentralized manner. The proposed

methodology shows significant potential towards its application in modern mobile and

robotic sensors.
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Acronyms

Following is the list of all relevant acronyms used in this thesis.

Table 1: List of acronyms

EMD Empirical mode decomposition

TVF-EMD Time-varying filtering EMD

SHM Structural health monitoring

MSN Mobile sensing network

WSN Wireless sensing network

SI System identification

CE Complex exponential

SSI Stochastic subspace identification

FDD Frequency domain decomposition

WT Wavelet transform

BSS Blind source separation

IMF Intrinsic mode function

NExT Natural excitation technique

RD EMD-based random decrement

VMD Variational mode decomposition

MEMD Multivariate empirical mode decomposition

ICA Independent component analysis

DOF Degrees-of-freedom

RMS Root-mean-square

FE Finite element



Chapter 1

Introduction

In this chapter, condition assessment of structure and its overall importance in moni-

toring of large-scale infrastructure is introduced. Structural health monitoring (SHM)

requires rich vibration data collected from structures under in-service condition. Once

data are collected, system identification is conducted to extract useful information of

the structure. Recent development of decentralized wireless sensing network followed

by mobile sensing approaches has shown a paradigm shift in modern data collection

technology. A brief overview of mobile sensing network (MSN) is discussed in light

of decentralized health monitoring techniques. While discussing this, potential chal-

lenges of system identification in MSN are identified to establish the gap areas of this

research. Limitations of existing system identification methods are next discussed

followed by organization of key research objectives proposed in this thesis.

1.1 Condition Assessment of Structure

Large-scale civil infrastructure including bridges, buildings, wind turbines, retaining

walls, and towers may lose structural integrity due to exposure to extreme loads such

as strong winds, floods, fires, earthquakes, and traffic loads. If progression of damage

is unattended over a period of time, these structures can suffer long-term damage,

even a catastrophic failure in the near future. Typical examples of deterioration

are corrosion, wood decay, fatigue, spalling and delamination of concrete, foundation

2
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settlement, and vibrations from adjacent construction. Structural Health Monitoring

(SHM) is an important tool to evaluate current condition of the structure and predict

future damage. It can reduce the overall repair and maintenance cost by detecting

and measuring early damages when they occur. Through continuously monitoring of

the existing structural condition in a timely manner, SHM can effectively mitigate

long-term damage [1]. The main idea of system identification is to detect damage

by discovering the change in structural parameters such as stiffnesses and frequencies

through the model responses of the structure based on the measured vibration data.

Sensors Data Acquisition Data Processing

Figure 1.1: Key steps of SHM

SHM is accomplished using four key steps which are data collection followed by

system identification and condition assessment, finally making a decision about the

maintenance and retrofitting as shown in Fig. 1.1. Traditional approaches of data

collection involve attachment of wired sensors to the structures which are then mon-

itored through oncoming data (i.e., acceleration and displacement). The collected
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data is processed by using system identification techniques [2] to estimate system pa-

rameters (i.e., frequencies, damping and mode shapes) and evaluate current condition

of the structure. Recently, wireless sensors have become a promising technique in the

field of SHM as it is relatively inexpensive and easier to install compared to wired

sensors. Owing to its decentralized nature of data collection and transmission, it has

gained significant popularity to the SHM community all over the world. Extending

this concept using robots and movable vehicles, mobile sensing approach has gar-

nered potential attention where wireless sensors or cameras are attached to a robot

or vehicle and used for data transmission and data processing, wirelessly.

1.2 Wireless and Mobile Sensing Technology

In recent years, wireless sensing network (WSN) [3] has offered easier and feasible

solution to collect good quality vibration data and estimate dynamical properties of

structures. It has potentially become an efficient tool that monitors acceleration and

displacement of various structures without requiring a large central data acquisition

system. Unlike wired sensors, WSN is cost-effective and easier to install with fewer

labors, thereby leading to substantial cost saving for the infrastructure owners. Over

the past 10 years, many academic and industrial prototypes [3] have been developed

and studied in laboratory and field-based applications. In general, low-cost wireless

sensing units are usually required to be inserted with high-accuracy accelerometers for

accurate data measurement and system identification of civil structures [4]. Once all

sensor nodes are set up, each node (known as slave node) communicates with the base

station (namely the master node) independently and wirelessly as shown in Fig. 1.2,

thereby making data collection and acquisition decentralized [5]. Such decentralized

sensing approach eliminates labor-intensive and costly cable placement, and reduce
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overall maintenance costs to the infrastructure owners.

Figure 1.2: (a) Traditional (centralized) vs. (b) decentralized sensing network [5]

Expanding the concept of WSN with mobile sensors further, a mobile sensor net-

work (MSN) is exploited to perform condition assessment of different structural sys-

tems. With recent development in robotic technology, mobile sensing can be used to

perform accurate real-time data acquisition with minimal setup cost. It is considered

an enhancement of wireless sensing technology that can offer higher data rates and

accurate time synchronization. A mobile sensing node can be a small mobile robot

being equipped with WSN that offers flexible architecture compared to static wireless

sensor deployment. Apart from these sensors being cost-effective, time-saving, and
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compact, it can easily be implemented with camera and wireless sensors for easy and

fast data acquisition.

In recent studies, various MSNs have been utilized to monitor the performance

of different civil structures. Interestingly, MSN can accomplish adaptive and high

spatial resolutions with little human effort and relative few number of mobile sensor

nodes [6]. This technology has efficiently shown an improved performance in the field

of SHM by exploiting its potential as wireless mobile sensors. For instance, Tche et al.

[7] developed a small robot with two magnetic wheels in a motorcycle arrangement

to inspect internal casing of ferromagnetic pipes with complex-shaped structures.

Another study [8] designed a mobile inspection robot with an automatic pipe tracking

system through machine vision. Wall-climbing robots were also developed by using

dry elastomer adhesion [9] or claw-gripping [10]. Some researchers integrated mobility

into traditional sensors for SHM. For example, a beam-crawler was developed for

wirelessly powering and debrief battery-less peak-strain sensors [11]. A robot able to

creep on a 2D surface was developed for visually inspecting aircraft exterior where

the robot used ultrasonic motors for mobility and suction cups for adhesion [12]. As

a mobile host, a remotely controlled model helicopter was demonstrated for charging

and communicating with wireless sensors [13]. Fig. 1.3 and Fig. 1.4 show different

types of mobile sensors that can be attached to a robot that moves along the structural

elements to collect the vibration data.

Initial development of the mobile robotic systems was carried out to develop robots

for automation in construction as well as non-destructive testing (NDT) in bridges.

Lorenc et al. [16] developed a robotic bridge maintenance system primarily for ser-

vice inspection and maintenance of bridges. Tung et al. [17] developed a mobile

manipulator image system for bridge crack inspection that was consisted of cameras,
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Figure 1.3: Mobile sensors [14, 15]

(a)

(b)

(c)

Figure 1.4: Mobile sensing network [4]: (a) under a horizontal element, (b) above
horizontal element and (c) on a vertical element

and a manipulator mounted on a mobile vehicle. Few years later, Oh et al. [18]

developed a seven degrees-of-freedom robotic system equipped with a hydraulic ac-

tuator system. A machine vision system was integrated into the robotic system for

tracing, detecting and evaluating the dimensions of the cracks in the bridge. Zhu et

al. [19] developed and validated a new mobile sensing system as a proof-of-concept

study for the SHM. The proposed mobile sensing device consisted of two two-wheeled

cars connected with a beam carrying the accelerometers. The goal of this study was

to detect the structural damage in steel portal frame. Limll et al. [20] proposed a

robotic crack inspection and mapping system for accurate assessment of cracks in the



8

bridges. Multiple mobile sensing systems [4] were used to collect modal parameters

of pedestrian bridges wirelessly.

In the study [21], an autonomous robot was used as a mobile sensing device for

inspection and evaluation of the bridge deck. The robotic system was built with elec-

trical resistivity sensor, impact echo sensors, and the panoramic camera was mounted

on a computer-controlled, extendable mast. Matarazzo et al. [22] studied the use of

mobile sensors for system identification with missing observations. Stochastic state-

space-based modified Kalman filtering was used to account for the missing observa-

tions in the ambient vibration data collected at the Golden Gate bridge. Recently,

Goorts et al. [23] evaluated the use of a mobile sensor to understand the densification

of modal coordinates instead of a broad array of wireless sensors. The mobile sensor

moved over the structure and was attached with an accelerometer onto specific points

where modal coordinates were required. [14] aimed at developing a deployable au-

tonomous control system for short-term vibration mitigation. The research used an

unmanned ground vehicle for accurate positioning of sensors, a modified husky A200

robot mounted with electromechanical mass damper for better control, and onboard

vision sensors to facilitate self-sufficient positioning of the device as well as sensing.

Apart from their several advantages, the mobile sensing systems pose several chal-

lenges that require future advancement to make them suitable in a wide variety of

SHM applications. The MSN has the following limitations in the context of SHM

applications:

• These sensors require sophisticated robots and control systems through a con-

tinuous multidisciplinary collaboration of researchers from computer science,

electrical engineering, mechanical engineering and civil engineering, for instance.
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• The sensor in MSN does not attach directly to the structure; therefore robot-

sensor interaction may significantly influence the data collected from the struc-

ture.

• MSN relies on moving sensors and deals with single channel measurement which

requires development of theoretically challenging, underdetermined system iden-

tification methods.

In this thesis, the last limitation of MSN is addressed through a novel time-

frequency decomposition technique. The first two aspects are reserved for future

research and are not considered here. In the following section, a comprehensive

review is given to identify the challenges of existing system identification method

in the context of MSN and single measurement.

1.3 Literature Review of System Identification

A shown in Fig. 1.5, System Identification (SI) [24, 25] is a technique of building

mathematical models from the input-output data extracted from the system. The

main objective of SI is to understand the behavior of a structure and predict its

performance for fault diagnosis and maintenance. SI is an important tool to evaluate

the current performance or safety functions of the structure and recognize the extent

of damage due to natural hazards such as earthquake, strong wind and in-service

loads. SI is primarily comprised of three categories of techniques: a white box, black

box, and grey box [26].
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?
?

Figure 1.5: System identification

In white box modeling, the models are formulated based on simple experiments

to inquire into the physical laws. In black box modeling, the model form and system

behavior are entirely unknown where a model is built without any previous knowledge

of the system and is entirely based only on data. The model characterizes how the

outputs depend on the inputs, not on how the system actually is. Grey box model-

ing is an intermediate technique when peculiarities of internal laws are not entirely

known. Due to unavailability of input information, black box modeling is most com-

mon method of SI for civil engineering structures. There are different output-only

modal identification techniques (also known as operational modal analysis) [5, 27]

used in both structural and mechanical system since early 19’s. These methods work

either in the time, frequency or time-frequency domain.

1.3.1 Time-domain Methods

Time-domain methods are among the most preliminary methods of the SI. Complex

exponential (CE) algorithm [28] based on Prony’s method is probably the first single-

input single-output parametric identification technique among all time-domain meth-

ods [29, 30, 31, 32, 33]. Asmussen et al. [34] and Lin et al. [35] combined the Ibrahim
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time-domain method with random decrement method to perform modal identification

of structural system. In the early to mid 1990’s [36, 37], Stochastic Subspace Iden-

tification (SSI) was developed which became a powerful tool for output-only system

identification. The stochastic state space modeling was used as the framework of SSI

method. In [38], vibration data were used to track the changes in stiffness, however,

the study found that noise contamination and environmental changes affected the

performance of the method to detect small variations in stiffness.

In [39], an optimization method was adopted to reduce the error between the mo-

ment generating function and a numerical modal of the structure to identify damage.

This method used limited sensors but it required a significant user intervention. Liu

et al. [40] utilized random decrement technique to analyze non-stationary response

whereas Zhong et al. [41] applied recursive subspace identification to identify struc-

tural changes under non-stationary excitation. In summary, time domain methods are

easier to implement. However, it is a computationally intensive and time-consuming

process. Also, the generality of time domain methods requires input data which

are difficult to obtain in large structures and has shown poor performance towards

progressive damage detection.

1.3.2 Frequency-domain Methods

The frequency domain methods perform the vibration analysis concerning frequency,

rather than time. In other words, it converts a time history into its frequency spec-

trum which allows the user to see frequencies that are present in the system. Fre-

quency domain techniques are fundamentally based on frequency response functions

[42, 43, 44]. Richardson et al. [42] developed a rational fraction polynomial based
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method whereas a power-spectral density based on peak picking method was devel-

oped by [43]. The other popular frequency domain method called frequency domain

decomposition (FDD) was developed to resolve the complexities encountered in peak

picking while retaining the advantages of the traditional peak picking technique [44].

Brincker et al. [45] extended the classical FDD to identify the symmetrical structures

with closely-spaced modes.

The power spectral density functions of the dynamic strain measures [46] was

used to detect changes in stiffness of the structure [47]. By integrating FDD with

Bayesian approach, Figueiredo et al. [48] estimated modal parameters. Ding et al.

[49] addressed the problem of SI with incomplete structural information. In spite

of its success, frequency domain methods are not able to detect changes in system

parameters due to the fact that it localizes information only with respect to frequency.

Recently, there has been a significant growth in signal processing which results in the

development of robust SI methds using time-frequency decomposition techniques.

1.3.3 Time-frequency domain Methods

Time-frequency domain methods are able to give a picture of time and frequency do-

main variation of energy of a signal simultaneously [50, 51]. In the last two decades,

time-frequency domain methods have acquired a considerable interest, particularly in

civil and mechanical systems. Wavelet transform (WT) [52], blind source separation

(BSS) [5] and empirical mode decomposition (EMD) [53] are used as modal identifi-

cation techniques for large-scale civil infrastructure and widely used in many different

fields of science and engineering. Of all methods, EMD has the capability of using

only a single channel of measurement that could be utilized in MSN.

The empirical mode decomposition (EMD) is a time-frequency domain method
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which is purely data-driven, does not require any basis functions, and works with

nonlinear and nonstationary signal [55]. It is an adaptive time-frequency decomposi-

tion method which composes the signal into a set of oscillatory waveforms known as

intrinsic mode functions (IMF). IMFs are extracted using averaging and interpolation

operations. This process is known as sifting. However, sifting operations cause con-

siderable mode mixing in the IMFs. Recently, many studies were conducted to solve

this shortcoming. For example, Qin et al. [56] improved the EMD to solve mode-

mixing problems with closely spaced frequencies. A bandwidth restricted EMD was

used to decompose nonstationary output measurements with closely-spaced frequency

components. The modal parameters were then obtained from intrinsic mode function

(IMFs) using random decrement technique and stochastic subspace identification.

Natural excitation technique (NExT) was combined with EMD with intermittency

check criterion [57]. The decomposed signal was extracted by using EMD, in which

the cut-off frequency separated signal from its mode-mixed signals. A new method

called wavelet-bounded empirical mode decomposition was developed to solve the

problem of mode mixing in EMD [58].

Zhang et al. [59] developed a frequency modulated EMD to determine the vari-

ations in the modal parameters of a bridgeair system. It overcame one of the main

shortcomings of the EMD, the lack of separation of closely spaced modes. The pro-

posed method was used to extract frequencies and damping ratio of the aero-elastic

system during the free decay vibration and able to identify nonlinearity in the tran-

sient aero-elastic vibration. The modal parameters of power transformer winding were

identified by an improved EMD algorithm [60]. First, an ensemble EMD was used to

decompose the vibration signals. Then a masking signal was introduced to eliminate

the mode-mixing with the selected masking frequency. Hell et al. [61] developed an
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EMD-based random decrement (RD) technique to identify modal parameters from

vibrational data. After decomposing a nonstationary measurement data to a series

of quasi-stationary IMFs using EMD, RD technique was applied to the chosen IMFs

to obtain the free-decay response. The proposed method was validated using the

Nanjing Yangtze River Bridge. In another study [62], the bridge frequencies of higher

modes were extracted in some steps. Yu et al. [63] combined EMD with SSI to esti-

mate modal parameters of a slender bridge. Another derivative of EMD was recently

proposed as variational mode decomposition (VMD) that addressed the weaknesses

of the EMD method. The efficiency of the algorithm was evaluated by a series of

numerical, laboratory, and field case studies [64].

Lately, a new method called multivariate empirical mode decomposition (MEMD)

was developed as a modal identification tool that can deal with multisensor vibration

measurements of civil structures [65, 66, 67]. To alleviate mode mixing, ensemble

EMD [68] and Independent Component Analysis (ICA) method [69] were respectively

integrated with the MEMD. The performance of MEMD was evaluated using several

numerical, experimental and full-scale studies.

Apart from modal identification, Li et al. [70] combined EMD and wavelet trans-

form (WT) for damage detection of civil structures. Once the mono-component sig-

nals were extracted by the EMD, the exact location and extent of damage were

identified using the WT. The proposed method was validated using the numerical

simulation and a four-story shear structure building to harmonic excitation. Xu et

al. [71] presented a damage detection algorithm utilizing EMD where the structural

damage was simulated by suddenly releasing pre-tensioned springs simultaneously.

Then EMD was applied to the measured time histories to identify damage time

instant and location for different experiments. In [72], EMD was integrated with
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Hilbert transform to perform structural health monitoring of civil structures. The

method processed time-series measurement from the structure without damage and

with damage. In another research [73], the EMD method was applied for bridge dam-

age detection of a passing vehicle. A variation in the acceleration signals of healthy

and corresponding damaged structures was used to identify the damage location in

the presence of a road. EMD was also explored for damage detection by identifying

stiffness change from a localized feature in the traffic-induced structural response.

However, the effectiveness of this technique is limited by the roughness of the road

profile, the vehicle speed, and the noise level [74]. A method based on the lamb wave

mode and EMD was proposed on a composite material plate structures damaged by

the impact. In another study, Guo et al. [75] utilized EMD for fault detection of

water pipeline.

1.4 Gap Areas of Existing Literature

• In mobile sensing technology, a sensor is attached to the robot that can move

along the structure. In such sensing framework, at any particular time, only

a single sensor is used to collect the vibration data which requires underdeter-

mined SI (i.e., the number of sensors is less than the number of modal responses).

However, the traditional methods are unable to perform SI using single sensor

measurement.

• Most of the output-only SI methods require selection of model orders (i.e., time-

domain methods) and basis functions (i.e., time-frequency methods) which are

time-intensive in nature and involve significant user-intervention, hindering their

real-time application in mobile sensing technology.



16

• EMD is suitable for single sensor measurements. However, EMD has mode-

mixing issue that requires special treatment to separate modal responses.

• The vibration measurements of civil engineering systems are contaminated with

measurement noise that causes significant inaccuracies in the modal identifica-

tion.

• Large-scale civil engineering structures exhibit several closely-spaced modes. In

order to separate these frequencies, one requires a robust SI method that can

identify multiple frequencies in ease.

1.5 Thesis Objectives

With gap areas of existing SI methods as identified above, the main objectives of

this thesis are summarized as follows. The proposed method is developed addressing

these specific challenges.

• To develop a new output-only time-frequency algorithm for system identification

of structures that utilizes only single channel measurement. Once developed,

this technique can be directly implemented to mobile sensing network for real-

time applications and automation;

• To develop a robust EMD method (e.g., free of any basis functions) that can per-

form accurate modal identification without causing mode-mixing in the modal

responses. The robustness of the method is especially concerned with measure-

ment noise and closely-spaced frequencies such that it can be employed in a

wide range of civil structures; and
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• To demonstrate and validate the proposed method to several numerical, labo-

ratory and full-scale structures.

The thesis is outlined as follows. First, a background of EMD is presented in

Chapter 2 followed by the formulation of the proposed algorithm. In Chapter 3,

numerical simulations are conducted using a wide range of dynamical models sub-

jected to various excitations. Experimental and full-scale studies are conducted in

Chapter 4 using a lab-scale model and a pedestrian bridge. Finally, the conclusions

of the research are given in Chapter 5 followed by a list of major contributions and

recommendations for future work.



Chapter 2

Proposed Method

In this chapter, time-varying filter-based empirical mode decomposition (TVF-EMD)

algorithm is explored as a possible method for modal identification of dynamical sys-

tems. The TVF-EMD method is derived from the equation of motion of a dynamical

system using the classical theories of structural dynamics. Root-mean-square values

of the IMFs are utilized to develop a cluster diagram of the identified frequencies

from which key structural frequencies are identified in an automated manner. Unlike

EMD, the TVF-EMD method can extract the modal responses using single vibration

measurement without any mode mixing issue. A brief background of the EMD and

TVF-EMD method is presented first before going into the details of the proposed

algorithm. Once developed, the novelty of the proposed method is discussed at the

end.

2.1 Background

In this section, a brief background of EMD and TVF-EMD is presented followed by

a suite of numerical illustration with the aid of harmonic signals. The effectiveness of

the TVF-EMD method is demonstrated using examples of closely-spaced frequencies

and measurement noise added to the mixed signals. It will be shown how the TVF-

EMD method can be considered as a modal identification method for dynamical

system.

18
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2.1.1 Empirical Mode Decomposition

The empirical mode decomposition (EMD) [53] is one of the popular time-frequency

domain methods and a powerful data-driven technique that can work with nonlinear

and nonstationary signal. The EMD method decomposes the signal into a set of

oscillatory waveforms known as intrinsic mode functions (IMFs). An IMF is a function

that satisfies the following two conditions [53]:

• In the whole data set, the number of extrema and the number of zero crossings

must be either equal or differ by not more than unity.

• At any point, the average of the envelope set by the local maxima and the

envelope set by the local minima is zero.

In order to satisfy above criteria, the fundamental steps of EMD to decompose y(t)

signal are as follows:

1. Select all the local extrema and prepare a cubic spline line on all of the local

minima and local maxima as the lower and upper envelopes. All the data in

between have to be covered by the lower and upper envelopes. Their mean is

designated as k1, and the difference between the data y(t) and k1 is defined by

h1 = y(t) − k1 (2.1)

If h1 satisfies the two conditions of IMF that mentioned above, then h1 should

be the first IMF of signal y(t).

2. If h1 does not satisfy the conditions, presume h1 as the original data y(t) = h1(t)

and repeat the sifting process with i1 = h1 until the requirements are met and

the first IMF is obtained.
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3. The y(t) is then deducted from the IMF and the another IMF is obtained

by applying the sifting process again to the remaining signal. The process is

iterated to obtain n IMFs, as shown in:

y(t) =
n∑

j=1

ij(t) + pn(t) (2.2)

Where ij(t) (i = 1, 2, ...., n) represents the IMFs of the signal y(t) from higher to

lower frequency components, and each ij(t) contains a different frequency component.

pn(t) is the mean residual trend of the signal or a constant. However, due to multiple

averaging process of EMD, this step results in the IMFs that have more than one

component of the natural frequency which is known as mode-mixing [54]. In order to

alleviate mode-mixing, [54] introduced intermittency-based criteria. For example, let

us consider a mixed signal of two harmonic waves:

y(t) = a1 cos(2πω1t) + a2 cos(2πω2t) (2.3)

A criterion frequency fint (i.e., the intermittency frequency) similar to band-pass filter

is applied to eliminate the mode mixing. The fint is defined based on the period length

to decompose the signals into different modes [63]. This approach enables extraction

of a modal response as mono-component IMF. Thereafter, similar steps are repeated

for all IMFs.

Numerical Illustration of EMD

A following mixture of three harmonic signals are decomposed to show the efficiency

of the EMD method.

s1 = sin(2πω1t), s2 = sin(2πω2t), s3 = sin(2πω3t) (2.4)

y(t) = s1 + s2 + s3 (2.5)
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Where ω1 = 5 Hz, ω2 = 7 Hz, and ω3 = 10 Hz. Fig. 2.1 shows original sine signals,

their mixed signal and Fourier spectrum. It can be seen that there are three harmonic

frequencies that are clearly visible in Fourier spectrum. The estimated frequency

limit between higher and lower frequency for each individual natural frequency, i.e.,

ωhj > ωj > ωlj, can then be extracted from the Fourier spectrum.
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Figure 2.1: Original sine signals, their mixed signal and Fourier spectrum

First, the EMD method is applied to the mixed signal y(t) with the upper and

lower intermittency frequency bands. The first IMF and its Fourier transform are

shown in the first column of Fig. 2.2. It can be seen that i1 has the mono-component

frequency (one peak) which is the first sine frequency of the signal y(t). To extract

the next harmonic signal, EMD is applied to the rest signal without considering ω1.

The second column of Fig. 2.2 shows the resulting IMF and its Fourier transform.

Again, only there is one peak in the spectrum which is the second sine frequency of

the signal y(t). The procedure is repeated, and the last frequency is obtained from

the EMD as shown in the third column of Fig. 2.2.
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Figure 2.2: IMFs of y(t) and its Fourier spectrum

As shown above, the EMD method has an attractive feature of extracting hidden

signal components from their mixed signal. However, the EMD method has several

limitations as follows:

• Mode-mixing of the EMD can be eliminated using intermittency criteria, how-

ever such an approach is subjective and requires significant user intervention.

• The EMD is sensitive to noise and is computationally intensive for dynamical

systems with higher degrees-of-freedoms (e.g., flexible civil structures).

• As shown in Fig. 2.2, EMD has significant end-effect that causes hindrance to

accurately calculating damping calculations for structural systems.

2.1.2 Time-Varying Filtering-based EMD

In traditional EMD method, the estimation of the local mean can be observed as

a unique form of low pass filtering [76]. In time-varying filter-based EMD method
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(TVF-EMD), a B-spline approximation is adopted as a criteria to select time-varying

filter. Most of the present works use B-splines as an interpolation tool with polyno-

mial spline. However, TVF-EMD use B-spline functions which are piecewise poly-

nomials with time-varying cut-off frequencies. With such property, the TVF-EMD

can deal with single vibration measurement to identify all frequencies without any

mode-mixing issue in the modal responses. In order to form the desired signal, the

polynomial portions are joined together. The joining points of the polynomial sections

are denoted as knots. Every signal in B-spline space can be determined by [55]:

gnm(t) =
+∞∑

j=−∞

r(j)βn(t/m− j) (2.6)

Where r(j) is the B-spline coefficients and it is enlarged by a factor of m. The signal

(or approximation result) is determined by n,m, and r(j). That means, given the

B-spline order and knots, the B-spline approximation is used to determine the B-

spline coefficients r(j) that minimizes the approximation error. Let bnm (t) = βn(t/m)

and the asterisk denotes the convolution operator, For an original signal y(t), r(j) is

determined by minimizing the approximation error ε2m:

ε2m =
+∞∑

t=−∞

(y(t) − [r]↑m ∗ bnm(t))2 (2.7)

Where [.]↑m is the up-sampling operation (adding zeros between each sample) by m.

After introducing the concept of B-spline approximation (i.e., revealing its low-pass

filtering property), the solution of r(j) is

r(j) = [lnm ∗ y]↓m(r) (2.8)

Where [.]↓m is the down-sampling operation by m and lnm is the pre-filter denoted by

lnm = [([bnm ∗ bnm]↓m)−1]↑m ∗ bnm (2.9)
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We can now rewrite gnm(t) Eq. 2.6 as:

gnm(t) = [lnm ∗ y]↓m ∗ bnm(t) (2.10)

By observing the equations, there are three steps to carry out the B-spline approxi-

mation of a signal. The signal y is first band-limited through a pre-filter bnm. Next,

by a factor of m, the band-limited signal is decimated. Finally, the approximation is

reconstructed using a post-filter bnm.

Numerical Illustration of TVF-EMD

In this section, TVF-EMD method is illustrated using two different examples with

varying level of measurement noise.

• Example 1: Same example as shown in Eq. 2.5 with 0%, 5% and 10% measure-

ment noise, respectively.

• Example 2: Frequencies of three harmonic signals of Example 1 are chosen

differently to simulate closely-spaced frequencies. The frequencies are selected

as 5 Hz, 5.5 hz and 6 Hz, respectively.

(a) Example 1

In this example, three signals are assumed as mentioned in Eq. 2.4 and 2.5, where

ω1 = 5 Hz, ω2 = 7 Hz, and ω3 = 10 Hz, respectively. Fig. 2.3 shows original

sine signals and their mixed signal with 0% measurement noise. Fig. 2.4 shows the

IMFs and its Fourier transform by using the TVF-EMD method. It can be observed

that the TVF-EMD method has extracted the mono-component components of the

original signal y(t) successfully without applying intermittency criteria. Moreover,
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unlike EMD, the TVF-EMD does not result in end-effects (compared with Fig. 2.2

and shows clear signal separations.
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Figure 2.3: Original sine signals, their mixed signal and Fourier spectrum under 0%
noise
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Figure 2.4: The IMFs and its Fourier spectrum under 0% noise
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Fig. 2.5 and Fig. 2.7 show the original time data and corresponding Fourier

spectrum of the mixed signal with 5% and 10% measurement noise, respectively. Fig.

2.6 and 2.8 show the resulting IMFs and its Fourier transform obtained from the

TVF-EMD method. It can be observed that the TVF-EMD method has extracted

the mono-component IMFs of each original signal y(t) successfully even with 5% and

10% measurement noise without any end effects.
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Figure 2.5: Mixed signal and its corresponding Fourier spectrum under 5% noise
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Figure 2.6: The IMFs and its Fourier spectrum under 5% noise
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Figure 2.7: Mixed signal and its corresponding Fourier spectrum under 10% noise
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Figure 2.8: The IMFs and its Fourier spectrum under 10% noise

(b) Example 2

In order to check the efficiency of TVF-EMD method under closely-spaced frequen-

cies, a mixture of three sine signals is considered with frequencies 5, 5.5 and 6 Hz,

respectively. Fig. 2.9 shows the original time data and corresponding Fourier spec-

trum of the data with 5% noise. Fig. 2.10 shows the IMFs and its Fourier transform

by using the TVF-EMD method with 5% noise. Similar exercise is repeated with the

mixed signal contaminated with 10% measurement noise and the results are shown

in Fig. 2.11 and 2.12, respectively. It can be seen that the TVF-EMD method has

successfully identified the mono-component modal response of each signal under 5%

and 10% measurement noise even under closely-spaced frequencies as shown in Fig.

2.10 and Fig. 2.12, respectively.
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Figure 2.9: Mixed signal and its corresponding Fourier spectrum under 5% noise

Figure 2.10: The IMFs and its Fourier spectrum under 5% noise
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Figure 2.11: Time domain data and corresponding Fourier spectrum
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Figure 2.12: The IMFs and its Fourier spectrum under 10% noise

2.2 Proposed Methodology

With a brief background of the TVF-EMD method, let us now formulate the pro-

posed method from the equation of motion of a dynamical system. Consider a linear,
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classically damped and lumped-mass n degrees-of-freedom (DOF) structural system,

subjected to a wide-band random input force, u(t):

Mẍ(t) + Cẋ(t) + Kx(t) = u(t) (2.11)

where, x(t) is a vector of displacement response at DOFs. M, C and K are mass,

damping and stiffness matrices, respectively. The solution to Eq. 2.11 for any dy-

namical system can be formulated using the state-space model with following form:

x̄ =

 x1

x2

 (2.12)

˙̄x = Ax + Bu (2.13)

y = Cx̄ + Du (2.14)

where A is the state matrix, B is input matrix, C is the output matrix, and D is

transmission matrix. Under broad-band excitation u(t), the resulting solution of Eq.

2.11 can be written in terms of an expansion of vibration modes:

x = Φq (2.15)

where, x and q is the response and modal coordinate matrix, respectively. Φm×n is

the modal transformation matrix. n and m is the number of modal responses and

measurements, respectively. The measurement at the k-th DOF (k = 1, 2, ...,m) of

Eq. 2.15 can be expressed as

xk(t) =
n∑

j=1

φkjqj(t) (2.16)

Performing TVF-EMD of x(t), we can express each signal of x(t) in terms of its IMFs

(i.e., ikj):

xk(t) =
n∑

j=1

ikj(t) (2.17)
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Comparing Eq. 2.17 and Eq. 2.16, we get:

φkjqj(t) = ikj(t) (2.18)

qj(t) = cikj(t) (2.19)

where c is a constant multiplier. Eq. 2.19 also states that modal responses can

be extracted using the IMFs. However, TVF-EMD results in a finite number of

IMFs. In order to select dominant IMFs that contain modal responses, a root-mean-

square (RMS) based thresholding criteria is set up. It is proposed that the IMFs that

have RMS values higher than mean RMS value of all IMFs (µrms) are considered for

estimation of frequencies. The resulting scatter diagram of the frequencies are used

to select the specific IMF that includes modal responses. Once the modal response

is identified, autocorrelation function of IMF is used to estimate the modal damping.

The proposed method is illustrated using the flowchart as shown in Fig. 2.13.

yi TVF-EMD IMFs RMS values of IMFs

Cluster diagram of frequenciesModal response

Figure 2.13: Flowchart of the proposed method



Chapter 3

Numerical Study

In this chapter, the proposed method is validated using three different numerical mod-

els (namely, the 3-DOF, 4-DOF and 10-DOF models) to perform modal identification

using single sensor measurement in a decentralized mobile sensing framework. The

properties of these models are chosen such that they cover a wide range of dynamical

characteristics including closely spaced frequencies and low energy modes. The mass

and stiffness of these models are appropriately selected to reflect realistic dynamic

behaviour of flexible civil engineering systems.

3.1 3-DOF Model

m

m

m

k

k

k

Figure 3.1: 3-DOF model
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A 3-DOF discrete lumped mass dynamical system is considered as shown in Fig.

3.1. The lumped mass and stiffness are assumed to be 144 tonne, and 2 × 108 N/m,

respectively in each floor. A modal damping of 5% is assumed for first two modes with

Rayleigh damping approximation. The resulting natural frequencies are 2.65, 7.44 and

10.75 Hz, respectively. The model is then excited by Imperial Valley earthquake at its

base. The time-history and Fourier spectrum of the ground motion is shown in Fig.

3.2. Fig. 3.3 shows the Fourier spectra of floor vibration measurements. As shown in

Fig. 3.2, the earthquake has significant energy only within 7.5 Hz. Such excitation

excites only first two modes of the 3-DOF model that appear in the Fourier spectra

of response in Fig. 3.3. Therefore, the number of target modes is selected as 2 (i.e.,

first two modes).
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Figure 3.2: Time-history and Fourier spectra of the ground motion
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Figure 3.3: Time-history and Fourier spectra of floor responses

The TVF-EMD method is applied on each floor measurement separately. When

the first floor measurement is chosen, it results in 155 IMFs. The RMS value of each

IMF is calculated and plotted in Fig. 3.4 to identify dominant frequency components

of the measurement that have RMS values higher than the average RMS value of all

IMFs (as highlighted in red line). Fig. 3.5(a) and (b) show the cluster of frequencies of

all IMFs and the IMFs that are above the mean RMS value (i.e., µrms), respectively.

It is observed that the clusters of frequencies that have nearly zero slope coincide

with true value of natural frequencies as highlighted in red lines. As stated earlier,

the third mode has extremely low energy and is not identified through the proposed

method. The resulting IMF components (i.e., extracted modal responses) of these

clusters are shown in Fig. 3.6 revealing the efficiency of the proposed method. It can

be seen that all IMFs are mono-component signals.
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Figure 3.5: Cluster of frequencies of (a) all IMFs and (b) IMFs that are above µrms

in the first floor measurement
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Figure 3.6: IMFs of the first floor measurement obtained from the TVF-EMD method

While using the second floor measurements, the TVF-EMD method has extracted

164 IMFs with RMS values as shown in Fig. 3.7. Fig. 3.8(a) and (b) show the

cluster of frequencies of all IMFs and the IMFs that are above the mean RMS value,

respectively. Fig. 3.9 shows the IMFs obtained from the second-floor vibration mea-

surements.
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Figure 3.7: RMS values of IMFs of the second floor measurement
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Figure 3.8: Cluster of frequencies of (a) all IMFs and (b) IMFs that are above µrms

in the second floor measurement
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Figure 3.9: IMFs of the second floor measurement obtained from the TVF-EMD

Taking the similar steps, the TVF-EMD method is applied on the third-floor

vibration measurements alone and 180 IMFs are obtained from the proposed method

as shown in Fig. 3.10. Based on the cluster diagram of frequencies in Fig. 3.11(a)

and (b), the modal responses are identified in Fig. 3.12. Once the modal responses

are obtained, auto-correlation function of modal responses is used to extract modal

damping ratio as shown in Fig. 3.13. Table 3.1 shows comparison of theoretical (ωi)

and identified (ω̂i) results which reveal significant accuracy of the proposed method.

Table 3.1: Theoretical and identified modal parameters of the 3-DOF model

Mode # 1 2
ωi (Hz) 2.66 7.45

ω̂
(1)
1 (Hz) 2.7 7.44

ω̂
(2)
2 (Hz) 2.7 7.32

ω̂
(3)
3 (Hz) 2.65 7.49

ζ̂i (%) 8.3 6.7
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Figure 3.10: RMS values of IMFs of the third floor measurement
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Figure 3.11: Cluster of frequencies of (a) all IMFs and (b) IMFs that are above µrms

in the third floor measurement
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Figure 3.12: IMFs of the third floor measurement obtained from the TVF-EMD
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Figure 3.13: Damping ratio of the resulting modal responses of second floor measure-
ment
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3.2 4-DOF Model

F
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m1 = m2 = m3 = 5 Kg, m4 = 10 Kg and k1 = k2 = k3 = k4 = k5 = 200 N/m

Figure 3.14: 4-DOF model

A 4-DOF dynamical model is now considered with the assumed values of mass

and stiffness as shown in Fig. 3.14. A modal damping of 5% is assumed for first

two structural modes. The resulting natural frequencies are 0.67, 1.14, 1.53 and

1.88 Hz, respectively. The model is excited by a random force F (with zero mean

and unit standard variance) and the resulting vibration measurements are simulated

using state-space modeling of the system. Fig. 3.15 shows resulting Fourier spectra
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Figure 3.15: Fourier spectra of floor vibration measurements
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of vibration measurements at each DOF. The TVF-EMD method is applied on each

measurement separately. The vibration measurement of first DOF results in 103

IMFs whose RMS values are shown in Fig. 3.16. Fig. 3.17 (a) shows the cluster of

frequencies of all IMFs, whereas Fig. 3.17 (b) shows cluster of frequencies of IMFs

that are above the mean RMS values of all IMFs. In Fig. 3.17 (b), it is quite clear

that the identified frequencies can be determined where there is zero slope in the

cluster diagram of frequencies. Fig. 3.18 shows the typical IMFs obtained from the

vibration measurements at first DOF by using the TVF-EMD method.
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Figure 3.16: RMS values of IMFs of measurement at first DOF
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Figure 3.17: Cluster of frequencies of (a) all IMFs and (b) IMFs that are above µrms

in the measurement at first DOF

0 0.5 1 1.5 2 2.5 3
0

0.5

1

0 0.5 1 1.5 2 2.5 3
0

5

10

0 0.5 1 1.5 2 2.5 3
0

5

10

0 0.5 1 1.5 2 2.5 3
0

1

2

Figure 3.18: IMFs of the measurement at first DOF obtained from the TVF-EMD
method
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Along the similar process, the measurement at fourth DOF is considered that

results in 98 IMFs whose RMS values are shown in Fig. 3.19. Fig. 3.20(a) shows the

scatter diagram of all IMFs’ frequencies and Fig. 3.20(b) shows the cluster frequencies

of IMFs that have relative higher RMS values. Fig. 3.21 shows the resulting modal

responses obtained from TVF-EMD method using fourth floor vibration measure-

ment. From these results, it can be observed that the actual frequencies can be easily

determined from the cluster diagram of the frequencies that have zero slope. The

proposed method has successfully identified all frequencies by using single channel

measurement. Once the modal responses are obtained, the auto-correlation function

of modal responses is used to extract modal damping ratio. Fig. 3.22 shows the

estimation of damping ratio as obtained from the IMFs of vibration measurement of

fourth DOF. Table 3.2 summarizes theoretical and identified results of modal identi-

fication of the 4-DOF model.

Table 3.2: Theoretical and identified modal parameters of the 4-DOF model

Mode # 1 2 3 4
ωi (Hz) 0.67 1.14 1.53 1.88

ω̂
(1)
i (Hz) 0.65 1.14 1.53 1.86

ω̂
(2)
i (Hz) 0.72 1.12 1.53 1.92

ω̂
(3)
i (Hz) 0.67 1.15 1.57 1.83

ω̂
(4)
i (Hz) 0.67 1.15 1.47 1.9

ζ̂i (%) 4.9 1.2 5 6.6
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Figure 3.19: RMS values of IMFs of the measurement at fourth DOF
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Figure 3.20: Cluster of frequencies of (a) all IMFs and (b) IMFs that are above µrms

in the measurement at fourth DOF
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Figure 3.21: Fourer spectra of IMFs of the fourth floor measurement
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Figure 3.22: Damping ratio of the resulting modal responses the of the 4th floor
measurement
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3.3 10-DOF Model
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Figure 3.23: 10-DOF model

A simulation study is performed on a 10-storey model as shown in Fig. 3.23. The

lumped mass of each floor is assumed to be 1 kg and the stiffness from k1 to k10 are

175, 350, 525, 700, 875, 1050, 1225, 1400, 1575, and 1750 N/m, respectively. The

damping is assumed to be 2% in first two modes. The natural frequencies are obtained

as 0.78, 1.8, 2.83, 3.88, 4.96, 6.08, 7.25, 8.49, 9.87 and 11.52 Hz. The model is excited

by Imperial Valley earthquake at its base. Fig. 3.24 shows the Fourier spectra of

three typical floor vibration measurements of this model. In order to demonstrate

the performance of the proposed method, the TVF-EMD is utilized on the second
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and fifth floor vibration measurements.

First, the TVF-EMD method is applied on the second floor vibration measure-

ments and consecutively 137 IMFs are extracted. The RMS value is used to high

energy modal response components of all IMFs and the result is shown in Fig. 3.25.

Fig. 3.26 shows the cluster of frequencies of all IMFs while Fig. 3.27 shows the cluster

of frequencies of IMFs that are above the mean RMS values. It can be observed that

the frequency of first and eighth mode can not be found in Fig. 3.27 due to their low

energy in second floor measurement. Fig. 3.28 shows the IMFs obtained from the

second-floor vibration measurements by using the TVF-EMD method.
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Figure 3.24: Fourier spectra of floor vibration measurements
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Figure 3.25: RMS values of IMFs of second floor measurement
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Figure 3.26: Cluster of frequencies of all IMFs
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Figure 3.27: Cluster of frequencies of IMFs that are above µrms
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Figure 3.28: Fourier spectra of IMFs of the second floor measurement
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The TVF-EMD is then applied to fifth floor vibration measurement and 195 IMFs

are extracted using the proposed method. Then the RMS is applied to identify the

low energy modes. The result is shown in Fig. 3.29. Fig. 3.30 shows the frequencies

of all IMFs by using scatter diagram. Fig. 3.31 shows the scatter diagram of cluster

IMFs’s frequencies that are above the mean RMS values. From the Fig. 3.30 and Fig.

3.31, it can be observed that the identified frequencies can be determined where there

is no slope in scatter diagram. Fig. 3.32 shows the typical IMFs that obtained from

TVF-EMD. It can be observed that the proposed method has successfully extracted

the mono-component modal responses. Table 3.3 shows theoretical and identified

results revealing the efficiency of the proposed method with large DOFs.
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Figure 3.29: RMS values of IMFs of fifth floor measurement
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Figure 3.32: Fourier spectra of IMFs of the fifth floor

Table 3.3: Theoretical and identified modal parameters of second floor measurement

Mode # 1 2 3 4 5 6 7 8 9 10
ωi (Hz) 0.78 1.8 2.83 3.88 4.96 6.08 7.25 8.49 9.87 11.52
ω̂i (Hz) 0.78 1.8 2.87 3.87 4.96 6.07 7.23 8.72 9.89 11.53

ζ̂i (%) 1.5 1 1 1.4 1.1 1.1 2.2 1.1 1 1.1



Chapter 4

Experimental and Full-scale Studies

In this chapter, the proposed method is validated using an experimental model and

a footbridge bridge located at Lakehead University in Thunder Bay, Canada. In

both studies, data collection is conducted in decentralized fashion such that only

one sensor is available at a time. The proposed method is then employed over single

channel vibration measurement and the identified results are compared with the Finite

Element (FE) models.

4.1 Experimental Study

A six-story experimental model is used to validate the proposed method as shown in

Fig. 4.1. The mass of first three floors is 2.47 kg each, and the other three floors

have mass of 1.12 kg each, respectively. In order to apply dynamic load, the model is

placed on a horizontal table which is connected to a shaker manufactured by Crystal

InstrumentsTM. The top floor of the model is attached with a wired sensor which is

acting as a reference sensor. On the other hand, a wireless sensor is utilized here as

a mobile sensor which is roved over the structure across various DOFs during each

subsequent data collection. The wireless sensor called NaradaTM manufactured by

CivionicsTM is used in this experiment. As shown in Fig. 4.2 and 4.3, the Narada

sensor has two components. One is the sensor unit which is attached to the DOF and

the other unit is known as the base station which is responsible for collecting data

55
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Reference sensor 

Modal shaker 

Sensing 

transducer 

Narada Unit  

Figure 4.1: Experimental model

from the structure remotely. The details of these sensors can be found in [77]. A

sampling frequency of 100 Hz is used for both wired and wireless sensors.

Figure 4.2: The Narada unit Figure 4.3: The Narada base station

Once the setup is ready, the model is excited using a random shaking for 30

seconds via a control system attached to the modal shaker. The Narada sensor is
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used to collect the data which are transferred to the Narada base by the Narada unit.

Same steps are used to collect data from each floor, and Fig. 4.4 shows the position

of Narada sensor on different floors in a decentralized manner. In this study, the data

obtained from the second floor and fifth floor are used to demonstrate the results.

(a) (b) (c)

Figure 4.4: Mobile sensing where sensor is located at (a) 5th floor, (b) 4th floor and
(c) 1st floor

Fig. 4.5 shows the Fourier spectra of the second floor measurement. The TVF-

EMD method is first applied on the second floor vibration measurement and 250

IMFs are extracted by the proposed method. The RMS value is utilized to extract

the key vibration modes and the result is shown in Fig. 4.6. Fig. 4.7 shows the

cluster of frequencies of all IMFs. Fig. 4.8 shows typical IMFs obtained from the

TVF-EMD. It can be observed that the proposed method has successfully extracted

the mono-component modal responses.
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Figure 4.5: Fourier spectra of second floor vibration measurement
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Figure 4.6: RMS values of IMFs of the second floor measurement
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Figure 4.8: IMFs of the second floor measurement
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The results of the fifth floor vibration measurement give 250 IMFs. As aforemen-

tioned, the RMS is utilized to extract higher energy modes and the result is shown

in Fig. 4.9. Fig. 4.10 shows the scatter diagram of all IMFs frequencies. Fig. 4.11

shows the IMFs obtained from the fifth floor vibration measurements by using the

TVF-EMD method. It can be observed that the proposed method has successfully

extracted the mono-component components modal responses. Based on the known

mass and stiffness, an analytical dynamical model is developed for this experimental

system from which the theoretical frequencies are extracted. Table 4.1 shows The-

oretical and identified results revealing the efficiency of the proposed method using

real vibration data.
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Figure 4.9: RMS values of IMFs of the fifth floor measurement
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Figure 4.10: Cluster of freuqencies of all IMFs
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Figure 4.11: Fourier spectra of IMFs of the fifth floor measurement
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Table 4.1: Theoretical and identified modal parameters of the experimental model

Mode # 1 2 3 4 5 6
ωi (Hz) 4.6 11.3 18.6 25.6 28.8 39.2
ω̂i (Hz) 4.6 11.2 18.8 25.7 28.7 39.7

ζ̂i (%) 0.1 0.52 0.73 0.83 0.32 0.053

4.2 Full-scale Study

In this section, a footbridge located on the campus of Lakehead University is utilized

for the implementation of the proposed method.

Figure 4.12: Pedestrian bridge on the campus of Lakehead University instrumented
with wireless sensors

The pedestrian bridge crossing the Mcintyre River on the campus of Lakehead
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University is shown in Fig. 4.12. The bridge was built in 1967 and is supported by

concrete piers at in each end, and is connected by steel struts spaced equally along

the length of the bridge and wooden lumber for decking. During the test, sensors

were mounted along the bridge to measure the bridge acceleration across a variety

of locations and directions. Eight uniaxial wired sensors and six uniaxial wireless

sensors were placed along the bridge to measure vertical acceleration, two uniaxial

wired sensors were placed near the bridge to measure lateral acceleration and one

triaxial sensor was placed at midspan to detect acceleration along all three axes.

Wired reference sensor
Wireless sensor is switched on 
Wireless sensor is switched off 

Figure 4.13: Decentralized implementation of sensors placed along the footbridge

In order to implement the mobile sensing technique, the Narada units are utilized

in the similar fashion as it was done in the previous chapter. The decentralized sensor

placement is illustrated in Fig. 4.13. Although three wireless sensors were placed, only

one sensor was switched on during each test which was equivalent to decentralized

moving sensing network where a single sensor is roved along the structure. Once the
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instrumentation is completed, the bridge was subjected to a wide range of pedestrian

excitation including walking, running and jogging. In this thesis, the wireless node

that was placed in the middle of the bridge as shown in Fig. 4.14 is utilized.

Figure 4.14: The Narada unit at the mid-span of the bridge
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Figure 4.15: Fourier spectra of bridge vibration measurement
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Fig. 4.15 shows the Fourier spectra of vibration measurement. Then, 250 IMFs

are obtained from TVF-EMD method as shown in Fig. 4.16. Fig. 4.17 shows the

cluster diagram of all IMFs frequencies. In Fig. 4.17, it can observed that the actual

frequencies can be determined from the scatter diagram by observing their slopes.
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Figure 4.16: RMS values of IMFs of the mid-span measurement
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In order to validate the accuracy of the results, the structural plans of the pedes-

trian bridge are used to create a finite element model (FE) using S-FrameTM, and

this model is subjected to unstressed vibration analysis to predict its mode shapes

and natural frequencies. The main structural elements of the bridge are replicated

in the software and mass of the wooden deck and other non-structural elements is

estimated and applied to the structure as a uniformly distributed load. The bridge

is assumed to consist of two main beams fixed on both ends, and thirteen cross brac-

ing beams between them. Fig. 4.18 shows FE model and its mode shapes whereas

Fig. 4.19 shows the typical IMFs obtained from TVF-EMD. The proposed method

has successfully extracted the mono-component modal responses. After finding the

modal responses by using the proposed method, auto-correlation function of modal

responses is used to extract modal damping ratio. Fig. 4.20 shows the estimation of

damping ratio as obtained from the IMFs of bridge vibration measurement. Table

4.2 shows theoretical and identified results revealing the efficiency of the proposed

method using real vibration data.

Table 4.2: Theoretical and identified modal parameters of the footbridge

Mode # 1 2 3
ωi (Hz) 2.7 11.7 30.8
ω̂i (Hz) 2.7 11.7 27.7

ζ̂i (%) 1.1 0.6 1.3
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Figure 4.18: FE model and its mode shapes
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Figure 4.19: IMFs of the mid-span vibration measurement
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Figure 4.20: Damping ratio of the resulting modal responses of bridge



Chapter 5

Conclusions and Recommendations

In this Chapter, the conclusions of this thesis are summarized followed by the key

research contributions. Finally, several recommendations are made for possible future

work to contribute further in this area.

5.1 Conclusions

• The TVF-EMD method is explored for the first time as a potential system

identification tool.

• The proposed method is free of any basis function, is data-driven in nature and

suitable to perform modal identification using only a single sensor measurement.

• The TVF-EMD can correctly extract dominant modes without any mode-mixing.

• The results show improved performance of EMD under measurement noise and

closely-spaced frequencies. The proposed method is validated through a suite of

numerical studies employing a broad class of dynamical models and excitation

characteristics.

• The practicability of the proposed method is verified within the framework of

wireless decentralized framework in an laboratory model as well as a full-scale

pedestrian bridge.

69
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5.2 Major Contributions

The proposed research presented in this thesis has resulted in one conference paper

and a journal paper (under review).

• Lazhari, M., Sony, S., and Sadhu, A. (2018). “A newer time-frequency

decomposition-based modal identification technique for structures.” CSCE

Structures Specialty Conference, Fredericton, Ontario, Canada, (under re-

view).

• Lazhari, M. and Sadhu, A. (2018). “Decentralized modal identification of

structures using an adaptive empirical mode decomposition method.” Journal

of Sound and Vibration, under review.

5.3 Future Work

Even through all the specific objectives of thesis are met, following future research

is recommended to enhance the capability of existing mobile sensing-based SHM

strategy using the TVF-EMD method.

• In this thesis, with the absence of any robotic vehicle, the decentralized sensing

network is simulated through manual movement of wireless sensor from one

place to another DOF. Such approach does not take into account the effect of

sensor-vehicle interaction. It is proposed to expand this research considering a

smart robotic device for data collection and data processing, and validate the

accuracy of the proposed method.

• This method could be explored for damage detection where the structures are

subjected to both discrete and progressive damages. Single sensor-based damage
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detection method would be beneficial for the SHM community.

• The proposed method will be automated to develop a software such that any

novice structural engineer can easily deploy this algorithm as a tool in real-time

applications. Further efforts will be made to embed the algorithm into wireless

sensors attached with the mobile robot.

• The applicability of this method needs to be investigated in identifying torsional

modes.
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