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Abstract

Structural health monitoring (SHM) plays a key role towards condition assessment of

large-scale civil structures using modern sensing technology. Once the rich vibration

data is collected, important system information is extracted from the data and sub-

sequently such information is used for necessary decision making including adopting

maintenance, retrofitting or control strategies. System identification is one of the key

steps in SHM where unknown system information of the structures is estimated based

on the response measurements. However, depending on excitation characteristics

or system behavior, vibration measurements become complicated where traditional

methods are unable to accurately analyze the data.

In this thesis, Multivariate Empirical Mode Decomposition (MEMD) method is ex-

plored to undertake ambient system identification of structures using the multi-sensor

vibration data. Due to inherent sifting operation of EMD, the traditional MEMD re-

sults into mode-mixing that causes significant inaccuracy in structural modal identifi-

cation. In this research, Independent Component Analysis (ICA) method is integrated

with the MEMD to alleviate mode mixing in the resulting modal responses. The pro-

posed hybrid MEMD method is verified using a suite of numerical, experimental and

full-scale studies (e.g., a high-rise tower in China and a long-span bridge in Canada)

considering several practical applications including low energy modes, closely spaced

frequencies and measurement noise in real-life buildings and bridges. The results

show significantly improved performance of the proposed method compared to the

standard EMD method and therefore, the proposed method can be considered as a

robust ambient modal identification method for flexible structures.
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Chapter 1

Introduction

1.1 Structural Health Monitoring

Large-scale civil infrastructure such as long-span bridges, tunnels, tall buildings, tow-

ers and stadiums have seen a vast growth worldwide in last several decades. Some of

these existing aging structures are subjected to damage in the course of their service

life due to exposure of a variety of loads such as earthquakes, winds, traffic loads and

may lose their structural integrity. This may cause a real danger to the human being

(i.e., infrastructure owners, users and operators) due to any undesirable movement

or catastrophic failure of existing structures. Structural health monitoring (SHM) is

one of the major and accurate tools for early damage detection and finding timely

retrofitting of these structures.

The SHM is a diagnostic and prognosis tool developed for continuous monitoring

of physical state of structure. It uses a class of methods to analyze the existing

state of any structure including the traditional visual inspection method to evaluate

the exterior condition of structure, and the vibration-based monitoring system to

measure the responses of structure (i.e., displacements, accelerations responses) using

the sensor devices. Vibration measurements primarily help to detect early invisible

damages, this is why, vibration-based monitoring has become more popular in recent

years.

The fundamental idea of vibration-based SHM is that damage can change the

1
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structural parameters such as stiffnesses and frequencies which are clearly appeared

in the model responses of the structure. Condition assessment of structure is the

prime stage of the SHM that is used to evaluate its current condition, predict early

damages and conduct proper maintenance before the failure occurs. Enhancing the

safety of structures, avoiding abnormal behavior, and selecting the suitable mainte-

nance strategies can be achieved by adopting appropriate SHM strategies. The SHM

was initially developed in offshore field in the 70’s of the twentieth century to mon-

itor civil structures in the 80’s [1]. The SHM is consisted of four major steps: (a)

data collection, (b) system identification, (c) condition assessment and (d) decision

making. As shown in Fig. 1.1, once the rich vibration data is collected using sensors,

system identification [2] is undertaken that enables to obtain the model parameters

(i.e., frequencies, damping and mode shapes) from vibration data and is used to

evaluate current condition of the structure. In last few decades, there has been signif-

icant research in the area of system identification for civil and mechanical structures

addressing a wide range of challenges depending on the structure of interests.

1.2 Literature Review of System Identification

System Identification (SI)[3] is the process of modeling an unknown system based

on a set of input and output. The SI is also known as an inverse problem since the

main objective is to extract system information from the vibration measurements

collected from the structure. The SI is an important tool to evaluate the current

performance or safety functions of the structure and recognize the extent of damage

due to natural hazards such as earthquake, strong wind or in-service loads. It helps to

extract the model parameters using vibration data by estimating the model responses

of structures. However, it is very difficult and expensive to measure the excitation



3

y

t

Figure 1.1: Steps of the SHM

(i.e., input) in large-scale infrastructures while it is easier to measure output just

by using cheaper sensors. This is why, output-only modal identification has been

very popular for civil structures. There are different output-only modal identification

techniques [4, 3] used in both structural and mechanical system since early 20’s.

These techniques work either in the time, frequency or time-frequency domain which

are reviewed next.

1.2.1 Time-domain Methods

Among all time-domain methods [5, 6, 8, 7, 19], complex exponential (CE) algorithm

based on Prony’s method [9] is possibly the first single-input single-output paramet-

ric identification technique. The main idea of Prony’s method is to obtain the model

parameters from a uniformly sampled signal by creating a sequence of damped com-

plex exponentials, or sinusoids using impulse response functions (IRFs). The CE

algorithm was then integrated with least-squares (LSCE) [7] to make it suitable for
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single-input multiple-output systems.

Expanding the concept of Prony’s method, Ibrahim time domain (ITD) method

was developed as a modal identification method for single-input single-output sys-

tems. The ITD method estimated the modal parameters using free acceleration re-

sponses rather using impulse response functions (IRFs). However, the ITD method

was computationally expensive. The ITD method was combined with random decre-

ment method to perform modal identification of structural systems [10, 11]. A new

method named as poly-reference complex exponential was developed as an extension

of the least squares complex exponential (LSCE) algorithm which was used first time

as modal identification for multiple-input multiple-output systems [12, 3].

The eigen system realization algorithm (ERA) [8, 4] was developed based on the

general state-space description for linear dynamic systems by using impulse response

functions. The eigen-value decomposition of the Hankel matrix was used to extract

the modal parameters. However, in this method, free or impulse responses of struc-

tures were needed which may not be available in some structural systems due to

several factors including safety, size, and availability of ambient vibrations. Natu-

ral Excitation Technique (NExT) [13] was developed to address this drawback. The

NExT can be processed as free responses since it meets the requirement of the homo-

geneous differential equation of motion [3]. Furthermore, the NExT in conjunction

with eigensystem realization algorithm (ERA) was conveniently utilized for structural

modal identification lately [13, 14, 15, 4].

Another time-domain method, Stochastic Subspace Identification (SSI), was devel-

oped in the early to mid of 1990’s [16, 17] that provided a powerful tool of output-only

system identification. The stochastic state space system is used as the framework of

the stochastic subspace identification method. The SSI technique is suitable in case
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of having large number of outputs data [18]. However, SSI method is computation-

ally expensive and time-consuming process as it involves stability diagram and model

order pre-selection.

1.2.2 Frequency-domain Methods

The frequency domain methods perform the vibration analysis with respect to fre-

quency, rather than time. Frequency domain techniques are mainly based on fre-

quency response functions [12, 20, 21]. There were two methods developed [12, 3]:

rational fraction polynomial based method and Ewins-Glesson method. A power spec-

tra density based on peak picking is another classical frequency domain method was

developed by [20, 4]. However, this method was found to be inaccurate to estimate

the damping ratios and mode shapes. The frequency domain decomposition (FDD)

was a new frequency domain method that was developed to resolve the difficulties

encountered in pick picking with retaining the advantages of the classical pick pick-

ing method [21, 3]. This method had some useful features over the other frequency

domain methods such as processing speed and simplicity.

The classical FDD was extended [22] to identify the symmetrical structures with

closely-spaced modes. This technique was based on singular value decomposition

of spectra density matrix at power spectra density peaks. However, some issues

correlated with FFTs still existed in this method. Thereafter, a new method was

proposed to determine the damping ratios using the extended FDD technique [23].

FDD was a simple and computationally faster method, however it was not suitable for

high damped systems with closely spaced modes. This is a common case in flexible

structures with supplemental damping devices such as active and tuned mass dampers

(TMDs). Lately, there has been a significant growth in signal processing that led to
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the development of powerful system identification using time-frequency techniques.

1.2.3 Time-frequency domain Methods

Time-frequency domain methods [24] present a picture of frequency and time domain

information simultaneously. In last two decades, time-frequency domain methods

have gained significant attention especially in civil and mechanical systems. The

methods including wavelet transform (WT) [25, 28, 30, 26, 27, 29], blind source

separation (BSS) [31, 32, 34, 3, 33] and empirical mode decomposition (EMD) [38,

35, 36, 37] are used as modal identification methods for large-scale civil infrastructure.

Wavelet Transform (WT) method [26, 29] provides a useful transformation to

represent signals by using a suitable basis functions that satisfy certain properties of

linear vector spaces in <3. This method has gained significant popularity in structural

applications [25, 29]. The use of sinusoidal basis in Fourier transform restricts the

non-stationary response of system, which makes its usage limited to ambient system

identification. Since the Fourier basis functions are localized in frequency only, a

new method called short-time Fourier transform (STFT) was proposed to provide

the time-varying information of signals. However, the achievable time and frequency

resolutions are considerably restrained due to fixed nature of the windows used in

STFT.

Similar to Hiesenberg’s uncertainty principle, it is impossible to achieve good time

and frequency resolutions at same time. This prompted the development of an alter-

native method that produced a preferred time-frequency representation of the signals

in a multi-resolution framework, known as wavelet transform (WT). This method re-

sults in accurate representation of vibration measurement because of its compactness,

quick decaying characteristics, and higher order moments. With such properties, the
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useful information content of the signal is preserved while the casual contributions

from noise are discarded. This gives sufficient time-frequency representation of the

signals and makes them more compact, smooth and noise free [40]. The wavelet

transform of a signal x(t) is a linear transform which can be defined as:

wjk(x) =
1√
j

∞∫
−∞

x(t) ψj∗k (t) dt (1.1)

Where the function ψ is known as the mother wavelet and ∗ stands for complex

conjugation. k and j indicate translation and scale parameters, respectively. Thus,

wavelet transform decomposes a signal x(t) through basis functions that are essentially

scaled and translated versions of the mother wavelet (ψ). There are two categories

of wavelet transforms, redundant and non-redundant wavelet transforms. Discrete

wavelet transform (DWT) belongs to the former category, whereas continuous wavelet

transforms (CWT) and stationary wavelet transforms (SWT) belong to the later

[42, 43, 41].

The separation of original source signals from their observed mixed signal without

knowing system information and the source signals, is known as blind source sep-

aration (BSS). BSS is a powerful tool that is widely used in many different fields

of science and engineering [43, 34]. BSS can be utilized to recover a linearly mixed

sources from just their observed mixtures. All of that can be achieved by using the

output signal only [44, 43]. The BSS was lately used as inverse problems for ambient

structural modal identification [34, 31, 45]. In general, there are two popular tools to

solve the BSS problems: Independent Component Analysis (ICA) and Second-Order

Blind Identification (SOBI). While the ICA method utilizes high-order statistics to

separate the inherent signals, the SOBI method uses the second-order statistics like

covariance matrices of vibration measurements for the decomposition [33].



8

Empirical Mode Decomposition (EMD) is one of the time-frequency decomposi-

tion tools that can deal with both nonlinear and nonstationary signals [47] without

requiring any basis functions. Owing to this property, it has gained significant popu-

larity in the area of structural condition assessment and damage detection. The EMD

method was originally developed by Huang et al. [38] that creates a set of intrinsic

mode functions (IMF) representing time and frequency domain information of the sig-

nal. The EMD is also known as an adaptive time-frequency decomposition method

that decomposes a multi-component signal into a number of mono-component signals.

The IMFs are extracted by sifting operation that is undertaken by multiple averag-

ing and interpolation operations of the raw signal. However, sifting operations cause

considerable mode mixing in the IMFs [35]. Recently a wavelet-bounded EMD [54]

is proposed to find an optimization-based solution to the problem of mode-mixing.

Unlike the WT and BSS, the EMD method is self-adaptive in nature [38]. Fur-

thermore, the EMD method can deal with a single real-valued signal to obtain a

subset of modal responses [56]. However, the standard EMD method is not suitable

for multivariate vibration data [58, 48]. While dealing with vibration measurements

from multiple sensors of a large structure, the EMD method faces mode-mixing prob-

lem [47, 37]. In order to alleviate this limitation, the EMD method is extended to

a method called multivariate EMD (MEMD) which is appropriate for multichannel

data measurements [48]. The MEMD treats any signal as n-variate multidimensional

time series and decomposes its inherent components along suitable directions in a

multidimensional space. In order to estimate all possible envelopes [59], the multiple

signals are projected to the chosen direction vectors, and then the average of all en-

velopes is taken as a local mean of multiple signals.

An integrated MEMD method [37] is recently developed where ensemble EMD
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(EEMD) is used to inject artificial noise repeatedly to the measured signal eliminat-

ing the effect of mode-mixing in the modal responses of the MEMD. However, the

EEMD method has several limitations especially for large-scale structures associated

with higher computational time and intensive signal processing [57, 37]. Moreover,

the MEMD method is never validated under a wide range of practical situations in-

cluding closely-spaced frequencies, measurements noise and vibration measurements

of full-scale structures. This thesis integrates MEMD with the ICA [55] to solve the

mode-mixing problem while dealing with the multichannel vibration measurements of

large-scale structures. The ICA method is perfectly suitable to deal with multichannel

measurement with lesser computational time and results in improved performances of

the MEMD under closely-spaced modes and low energy frequencies due to the higher-

order analysis. Apart from numerical and experimental studies, the performance of

the proposed method is validated using two real-life structures showing the efficacy

of the MEMD first time in the full-scale civil infrastructure.

1.3 Gap Areas

• Large scale structures have several low energy modes in vibration response which

are difficult to identify using traditional model identification methods. Such sit-

uations primarily occur due to inadequate energy in high frequency modes under

ambient vibration or improper placement of sensors throughout the structures.

• Structural systems have closely-spaced frequencies in the modal responses which

is another major challenge in system identification using traditional methods.

Presence of control devices (e.g. tuned mass dampers) or symmetrical configu-

ration of structures result in such closely-spaced modes. Structural retrofitting

or vibration control requires accurate modal identification of these structures.
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• Traditional methods are time-intensive and incapable of separating mode-mixed

modal responses of vibration data.

• The existing methods are not robust to measurement noise and result in signif-

icant inaccuracy when applied to large-scale structures.

• In spite of its popularity, the EMD is suitable only for single channel mea-

surement. There is a need to develop a robust EMD method that can utilize

multiple sensor measurements together and avoid separate data processing of

each channel of measurements.

1.4 Thesis Objectives

With above mentioned gap areas of the existing literature of modal identification

methods, the main objectives of this thesis are summarized as follows:

• Develop a new time-frequency algorithm for modal identification of structures

addressing the issues of low energy modes and closely-spaced frequencies.

• Develop a robust EMD method that can perform accurate modal identifica-

tion using multi-channel vibration measurements without introducing any mode

mixing.

• Demonstrate and validate the proposed method to several numerical, laboratory

and full-scale structures under a wide range of practical situations.

• The proposed method should be also robust with respect to measurement noise

present in the vibration sensors.

The thesis is outlined as follows. First, a background of EMD, MEMD and ICA

is presented in Chapter 2 followed by the formulation of the proposed algorithm.
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In Chapter 3, numerical simulation are conducted using a wide range of dynamical

models subjected to various excitation. Experimental and full-scale studies using a

high-rise tower and large-span bridge are conducted in Chapter 4. Finally the key

conclusions of the proposed research are discussed in Chapter 5 followed by the the

major research contributions and future work.



Chapter 2

Proposed Algorithm

In this chapter, a multi-variate EMD (MEMD) algorithm is explored as a possible

tool for modal identification. The proposed method is derived from the equation

of motion of a dynamical system using the classical theories of structural dynamics.

Unlike EMD, the MEMD uses multi-channel measurement data to perform system

identification. In order to alleviate the mode-mixing issue of EMD (as explained in

the previous chapter), Independent Component Analysis (ICA) is utilized to extract

mono-component modal responses from the mode-mixed results obtained from the

MEMD.

2.1 Background

In this section, a brief background of the EMD, MEMD and ICA method is presented

first before going into the details of the proposed algorithm.

2.1.1 Empirical Mode Decomposition

Empirical mode decomposition (EMD) [38] is a time-frequency domain signal decom-

position technique that has gained significant popularity in the area of output-only

modal identification of structures [56]. The EMD method decomposes an original sig-

nal into a set of oscillatory waveforms named as intrinsic mode functions (IMFs) that

are intended to be single frequency components. An IMF is a function that satisfies

following two conditions: (1) the number of extrema and the number of zero-crossings

12
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have to be either equal or differ at most by one in the whole data set, and (2) at any

point, the mean value of the envelope denoted by the local maxima and the local

minima is zero. The procedure of extracting an IMF is called sifting (see Fig. 2.1).

Suppose x(t) is the signal to be decomposed, the main steps of EMD are as follows:

• Connect all the local maxima and the local minima by using a cubic spline in

order to shape the upper and lower envelops.

• Determine the mean of upper and lower envelops which is designated as c1(t).

Then, find the difference between the signal x(t) and the mean c1(t), i1(t) =

x(t)− c1(t) which could be first IMF.

• Check whether i1(t) satisfies the two conditions of IMF that are mentioned

above. If i1(t) satisfies the both conditions to be an IMF, then i1(t) is the first

IMF of the original signal x(t).

• If i1(t) does not satisfy the requirements of IMF, the sifting process will be

repeated by treating the i1(t) as original signal until it meets the two conditions

of IMF.

• The original signal subtracted from the IMF, and the sifting process is repeated

to decompose the data into m IMFs [38].

Finally, the signal x(t) can be expressed as :

x(t) =
m∑
j=1

ij(t) + rm(t) (2.1)

Where ij(t) (j = 1, 2, 3, .....,m) represents the IMFs of the original signal x(t)

and rm(t) is a single value function that represents the residue of x(t). Ideally, every

IMF must has only one frequency component. However, sometimes one IMF contains

several frequency components which are known as mode-mixing.
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Figure 2.1: Sifting process [38]

2.1.2 Multi-variate EMD

As mentioned in previous chapter, the traditional EMD method is suitable just for

analyzing single data measurement. EMD faces significant issues while dealing with

multiple data measurements [38]. Furthermore, the joint information between multi-

ple sensors can not be utilized due to the individually treated signals at each sensor

locations. In order to address this limitation, the standard EMD was recently ex-

tended to its multivariate form which is perfect for multichannel signal [46]. In the

MEMD method, the multidimensional envelops are generated by taking signal pro-

jections along different directions, and then the local mean of signals can be obtained

by taking the average of these envelops. In case of analyzing n-dimensional signal,

quasi-Monte Carlo lower deviation sequence is used in order to create a group of

uniformly distributed points on a unit (n-1)-sphere [48, 47]. In case of dealing with

n-dimensional signal x(t) = [x1(t), x2(t), ......., xn(t)], and Dk = [dk1, d
k
2, ......., d

k
n] is

the direction vectors along the k-th direction, the MEMD is performed using these
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steps below [48]:

(a) choose an appropriate group of direction vectors, D.

(b) determine the k-th projection , denoted by pk(t) of the input signal x(t)

over the k-th direction vector, Xk, for all k (k=1,2,.....,L, where L is the number of

direction vectors D).

(c) find the moment tki of maximum pk(t) for all k for all k.

(d) interpolate [tki , y(tki )] to obtain multi-dimensional envelopes, ek(t) over all k.

(e) calculate the mean of envelope, M(t) for a set of L direction vectors:

M(t) =
1

L

L∑
k=1

ek(t) (2.2)

(f) extract the residual R(t) using R(t) = x(t)−M(t). If R(t) satisfies the stopping

criteria of multivariate IMF, repeat the above steps to [x(t) − R(t)] until the next

order IMF is diminished. Otherwise repeat it to R(t).

In order to illustrate how the MEMD works, a simple example involving a mixture

of sine signals (see Eq. 2.3) is considered where ω = {1.1, 2.3, 3.7} Hz, respectively.

A =


7 −3 5

−4 7 −5

3 −5 7




sin(ω1t)

sin(ω2t)

sin(ω3t)

 (2.3)

The measurement noise with SNR = 10 is also added in the mixtures. Then the

MEMD is applied on the three mixtures, and the extracting IMFs of each mixture

xi(t) for i = 1, 2, 3 are shown in Fig. 2.2. First column of Fig. 2.2 contains the IMFs

of first mixture x1(t), second column contains the IMFs of x2(t) and third column

contains the IMFs of x3(t). In order to check the accuracy of the estimated IMFs,

each xi(t) is reconstructed using the IMFs and compared with the original mixtures.
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it can be observed that the estimated signals totally match with the actual signals as

shown in the fourth row of Fig. 2.2.

It may be noticed that Eq. 2.3 is equivalent to the modal superposition of the

structural systems where the sine signals represent the modal responses and A is the

corresponding mode shape matrix. In general, there are many low energy modes in

the vibration responses of a tall flexible civil structure. Low energy modes occur due

to either placed of sensors on nodes which have zero displacements, presence of higher

modes or mass/stiffness distributions of the structure. It is quite difficult to identify

such low energy and closely spaced modes in modal responses.

In order to simulate such low energy modes case, the amplitude of the sine wave

that has frequency value 2.3 Hz (see Eq. 2.3) is decreased by multiplying it by factor

of 0.1. Then the MEMD is used to separate the sources. Fig. 2.3 shows the typical

results of the identified IMFs and it can be observed that IMF-3 of all measurements

contains a substantial amount of mode mixing due to its low energy contents in the

vibration measurements.

Most of structural systems are often equipped with closely-spaced modes due to

the symmetrical geometry or the existence of tuned-mass dampers. In order to sim-

ulate such closely-spaced situations, the frequencies of the signals in Eq. 2.3 are

changed to 0.8, 1.3 and 2.3 Hz and the MEMD is employed to separate the sources.

The identification results under closely spaced signals are shown in Fig. 2.4 and it can

be seen that the signals are containing significant amplitude and frequency modula-

tions in the separate signals. Both Figs. 2.3 and 2.4 are the key results and give the

basic motivation to develop a robust MEMD method which can perform structural

modal identification using the vibration measurements containing low energy modes,
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closely spaced modes and measurement noise. It will be shown later how the pro-

posed method can be employed to perform modal identification of large-scale real-life

structures under these situations.

Figure 2.2: Performance of the MEMD method

Figure 2.3: Performance of the MEMD under low energy signals
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Figure 2.4: Performance of the MEMD under closely spaced signals

2.1.3 Independent Component Analysis

Independent Component Analysis has gained a wide popularity for performing blind

source separation [49] of acoustic or bio-medical signals. In the ICA, the observed

signals are assumed to be linear combination of statistically independent sources.

The ICA decomposes a multiple measurements into independent non-Gaussian signals

[50]. In case of analyzing multi-component signal that is consisted of several mono-

component signals from different sources, it is possible to separate those participating

sources from the mixed signals. The ICA of any random signal x(t) is extracted by

estimating a n×m full order separating matrix W with n ≤ m and then the output

signal vector can be expressed by:

y(t) = Wx(t) (2.4)

Where y(t) is totally independent in statistical sense. Therefore, the independence

can be computed by the information theoretic cost function such as maximization of

cumulants [49]. The ICA method is based on three main principles: (a) the sources are
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independent to each other, (b) each source signal has non-Gaussian distribution, and

(c) un-correlatedness. Following is a brief discussion of each of these three primary

principles of the ICA.

(a) Statistical Independence

This criteria assumes that the sources should be statistically independent. Without

this assumption, it is not possible to separate the hidden sources. For instance, lets say

there are two source signals s1(t) and s2(t) then the first implication is that s1(t) and

s2(t) are temporally uncorrelated. As a rule, this is not enough requirement to provide

a suitable solution. Moreover, it is possible to check that sets {s1(t) + s2(t)} and

{s1(t)− s2(t)} are independent whereas clearly not being the standard solution. The

most significant description of statistical independence of two random components

s1(t) and s2(t) is expressed by:

p(s1(t), s2(t)) = p(s1(t)) · p(s2(t)) (2.5)

where p(s1(t)) reveals the probability density function of the component s1(t). How-

ever, signals are independent when their joint density function can be factorized.

(b) Non-Gaussianity

In the ICA, the source signals have to be non-Gaussian. In order to achieve this, the

Central Limit Theorem is used by utilizing the contrast functions such as kurtosis and

negentropy. The Central Limit Theorem shows that a sum of independent random

variables tends toward Gaussian distribution. However, to extract a source, the main

step is to increase the non-Gaussianity of a linear combination of signals which ensures

that the individual source is distant away from a Gaussian distribution compared to

the mixture of sources.
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(c) Whitening

As a main step of the ICA, it is important to whiten the data where the signal can be

de-correlated by whitening. It is basically a transformation that gives the covariance

matrix of the signals an identity matrix. Whitening performs a significant role in

achieving the statistical independence condition. As uncorrelated Gaussian signals

are also independent, satisfying non-Gaussianity and whitening automatically satisfy

statistical independence.

With above brief background of the ICA, lets see how the ICA can be performed

to extract mono-component signal from a mixed signal and how it can be effective

in the framework of the MEMD. In Eq. 2.6, the source signals s (i.e., independent

components) are multiplied with the mixing matrix A to form the mixed signal x.

x = As (2.6)

In the ICA model, the challenge is to separate both A and s using just x where the

higher order statistics including kurtosis, mutual information or non-Gaussianity are

utilized, respectively [50]. After finding A, its inverse is computed (i.e., W = A−1)

that can be used to estimate the independent components by, y = Wx, where y is

the estimated source vector.

The weight vectors can be estimated by using [43]:

W(N + 1)−W(N) = ηF(y)W(N) (2.7)

Where, η is the learning rate that controls the speed of convergence and the matrix

F(y) contains the objective function based on the selected measure of independence

(i.e., non-Gaussianity, negentropy or mutual information), for example F(y) = An −

f(y)gT (y) with appropriate chosen nonlinearities f(y) = [f(y1), ....., f(yn)] and g(y) =
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[g(y1), ....., g(yn)] [51]. With a prior known knowledge of the source distributions

pi(yi), W can be estimated by utilizing the principle of maximum likelihood with the

following likelihood function,

J(y,W) = −1

2
log(| det(WWT )|)−

n∑
i=1

E {log(pi(yi))} (2.8)

In general, stochastic gradient method of optimization [51] is used to solve above

optimization function and estimate the demixing matrix W.
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Figure 2.5: Sine signals and their mixtures
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The ICA method has excellent capability of separating the signals from their

determined or overdetermined mixtures. Moreover, it is relatively fast and computa-

tionally less expensive. This is why, the ICA is chosen to separate the signals from

their mode-mixed components. In order to demonstrate the signal decomposition

capability of the ICA, a mixture of three sine signals is considered next. Fig. 2.5 (a)

shows sine signals with frequencies 1, 3 and 5 Hz, respectively and Fig. 2.5 (b) shows

the mixtures of the sine signals. These multi-component signals are then decomposed

using the ICA. The results of the ICA are shown in Fig. 2.6. It can be observed that

the estimated signals in Fig. 2.6 are identical to the original signals as shown in Fig.

2.5(a) which corroborates with the accuracy of the ICA method.
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ŝ
1
(t
)

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

ŝ
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Figure 2.6: Estimated sine signals obtained from the ICA
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2.2 Formulation

With the brief background of MEMD and the ICA, let us now formulate the proposed

method from the basic equation motion of a dynamical system. Consider a linear,

classically damped and lumped-mass n degrees-of-freedom (DOF) structural system,

subjected to a wide-band random input force, F(t):

Mẍ(t) + Cẋ(t) + Kx(t) = F(t) (2.9)

where, x(t) is a vector of displacement response at the DOF. M, C and K are mass,

damping and stiffness matrix, respectively. The solution to Eq. 2.9 for those of

broad-band F(t) can be written in terms of an expansion of vibration modes:

x = Ψη (2.10)

where, x and η is the response and modal coordinate matrix, respectively. Ψm×n

is the modal transformation matrix. n and m is the number of modal responses and

measurements, respectively. The measurement at the i-th DOF (i = 1, 2, ...,m) of

Eq. 2.10 can be expressed as

xi(t) =
n∑
j=1

ψijηj(t) (2.11)

Performing MEMD of x(t), we can express each signal of x(t) in terms of its IMFs

(i.e., Iij):

xi(t) =
n∑
j=1

Iij(t) (2.12)

where Iij is the j-th IMF of xi(t). Considering the similarity of Eq. 2.11 and Eq.

2.12, we get [37]:

Iij(t) = ψijηj(t) i = 1, 2, ....,m (2.13)
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Eq. 2.13 relates the IMFs of ith measurement with its modal responses. Therefore,

following the same logic for i = p and i = r in Eq. 2.13, the partial mode shape

coefficients of pth sensor measurement normalized with respect to the rth measurement

is:

Ipj
Irj

=
ψpjηj
ψrjηj

=
ψpj
ψrj

= ψ̄pr; j = 1, 2, ..., n (2.14)

Then, ψ̄pr = ψpj

ψrj
represents the estimated normalized mode shape coefficient of

the jth mode at the pth DOF w.r.t r-th mode. Therefore, we get:

Ipj = ψ̄prIrj (2.15)

Where, the true value of ψ̄pr can be estimated [37]:

ψpr =
|ρpr|
ρpr

σp
σr

(2.16)

Where, ρpr is the cross-correlation coefficient.

With this procedure, the normalized mode shape coefficients can be estimated

using IMFs of sensor measurements. As discussed in the previous sections, mode-

mixing results in due to (a) the repetitive averaging process of EMD , (b) multiple

measurements in MEMD, (c) low energy contents and closely-spaced frequencies in the

vibration. However, Eq. 2.15 and Eq. 2.16 are valid only when the IMFs are mono-

component signals. In order to identify the mono-component sources in the IMFs, the

cross-correlation between Ipj and Irj is used, and if more than one source is detected,

the ICA method is used to find the mono-component IMFs among the mode-mixing

IMFs. In this paper, the performance of MEMD is improved by integrating it with

the ICA used to eliminate the presence of mode-mixing in the modal responses.

For a mixture of two sources (j = e, f) present in Iij as in Eq. 2.13, it can be

expressed as,

Ipj = ψpeηe + ψpfηf (2.17)
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Irj = ψreηe + ψrfηf

Above equation can be written in a matrix form and formulated as the ICA model

as shown in Eq. 2.6,

Ī = ψ̄η̄ (2.18)

ȳ = WĪ = Wψ̄η̄ (2.19)

Where W is an unknown matrix that can be estimated using Eq. 2.7. The proposed

method is illustrated using the flowchart as shown in Fig. 2.7.

MEMD IMFs mode-mixing

mono-component
(modal response)

No

ICA
mono-component
(modal response)

Yes
xixixi

Figure 2.7: Flowchart of the proposed method



Chapter 3

Numerical Studies

In this chapter, the proposed method is validated using three different numerical

simulation models with a wide range of dynamical characteristics. The properties of

these models are chosen such that the proposed method can be suitably checked with

respect to the low energy modes, closely-spaced frequencies and measurement noise.

3.1 3-DOF Model

A 3-storey structure model as shown in Fig. 3.1 is simulated to demonstrate the

methodology, and present the key results of the proposed method. The lumped mass

and stiffness are assumed to be 144 tonne and 2 × 108 N/m, respectively in each

floor, and a modal damping of 5% is considered. The resulting natural frequencies

are 2.65, 7.44 and 10.75 Hz, respectively. The model was excited by Imperial Valley

earthquake at its base.

Fig. 3.2 shows the Fourier spectra of floor vibration measurements. It can be

observed that the 2nd and 3rd modes have significantly low energy compared to

the first mode. Fig. 3.3 shows the Fourier spectra of the resulting modal responses

obtained from the vibration measurements by using the MEMD method revealing that

the modal responses contain both mono-component as well as mode-mixed signals.

For example, it can be observed that the first IMFs in all floors (i.e., first row of Fig.

3.3) are all mono-components. However, other IMFs (i.e., in second row of Fig. 3.3)

have mode-mixed modal responses. In order to extract the mono-component modal

26
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Figure 3.1: 3-DOF model

responses, the ICA is then applied in the mode-mixed IMFs that are highlighted in

red box.

The resulting ICA components (i.e., extracted modal responses) of these IMFs are

shown in Fig. 3.4. Fig. 3.4 (a) and (b) show the IMFs with mode-mixing resulting

from the MEMD that are highlighted in Fig. 3.3 (red box). Fig. 3.4 (c) and (d) show

the separated IMFs using the ICA. Once the modal responses are extracted using the

proposed method, auto-correlation function of modal responses are used to extract

the modal damping ratio. Fig. 3.5 shows the estimation of damping ratio as obtained

from the IMFs. Table 3.1 shows the identification results revealing the efficiency of

the proposed method under low energy modes.
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Figure 3.2: Fourier spectra of the floor vibration measurements
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MEMD
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Figure 3.4: (a - b) IMFs with mode-mixing and (c - d) separated IMFs using the ICA
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Figure 3.5: Damping ratio of the resulting modal responses
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Table 3.1: Theoretical and identified modal parameters of 3-DOF model
Mode # 1 2 3
ωi (Hz) 2.65 7.44 10.75
ω̂i (Hz) 2.66 7.48 11.18

ζ̂i (%) 2.6 4.9 2.9

3.2 4-DOF Model

A 4-DOF dynamical system is now considered as shown in Fig. 3.6 [52]. Two different

models (i.e., model A and model B) are used to show the effectiveness of the proposed

method under low energy modes and closely spaced frequencies, respectively.

m

k1

c1 c2

k2

m

k3

c3

m

c4

k4

m

Model A: m = 1 Kg, k1 = k3 = 7000 N/m and k2 = k4 = 8000 N/m

Model B: m = 5 Kg, k1 = k3 = 1000 N/m and k2 = k4 = 1500 N/m

Figure 3.6: 4-DOF systems: model A and B

3.2.1 Low-energy modes

In model A, the lumped mass is assumed to be 1 kg in each floor, and a modal

damping of 2% is considered. The resulting natural frequencies are 4.74, 13.59, 21.5

and 25.94 Hz, respectively. Fig. 3.7 shows the Fourier spectra of floor vibration

measurements. It can be observed that the 3rd and 4th modes have significantly low

energy compared to the other modes.
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Figure 3.7: Fourier spectra of the floor vibration measurements of model A

Fig. 3.8 shows the Fourier spectra of the resulting modal responses obtained from

the vibration measurements by using the MEMD method revealing that the modal

responses contain both mono-component as well as mode-mixed signals. For example,

it can be observed that the first IMFs in all floors (i.e., first row of Fig. 3.8) are all

mono-components. However, other IMFs (i.e., in second and third row of Fig. 3.8)

have mode-mixed modal responses. In order to extract the mono-component modal

responses, the ICA is then applied in the mode-mixed IMFs that are highlighted in

black and red boxes. The resulting ICA components (i.e., extracted modal responses)

of these IMFs are shown in Fig. 3.9 and Fig. 3.10, respectively. Fig. 3.9 (a) and (b)

show the IMFs with mode-mixing resulting from the MEMD that are highlighted in

Fig. 3.8 (black box). Fig. 3.9 (c) and (d) show the separated IMFs using the ICA.

Similarly, Fig. 3.10 (a), (b) and (c) show the IMFs with mode-mixing of 1st, 2nd

and 3rd floor as obtained from the MEMD that are highlighted in Fig. 3.8 (red box).
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Fig. 3.10 (d), (e) and (f) show the separated IMFs using the ICA. As shown in Fig.

3.9 (c-d) and Fig. 3.10 (d-e-f), the proposed method has successfully separated the

modal responses of model A even with extremely low energy modes.
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MEMD
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Figure 3.9: (a - b) IMFs with mode-mixing and (c - d) separated IMFs using the ICA
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Once the modal responses are extracted using the proposed method, auto-correlation

function of modal responses are used to extract the modal damping ratio. Fig. 3.11

shows the estimation of damping ratio as obtained from the IMFs. Similarly analysis

is conducted using the data contaminated with 10 % measurement noise. Table 3.2

shows the summary of the identification results under 0% and 10 % noise revealing

the efficiency of the proposed method under measurement noise.

 

Figure 3.11: Damping ratio of the resulting modal responses
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3.2.2 Closely-spaced frequencies
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Figure 3.12: Fourier spectra of the floor vibration measurements of model B

In order to simulate the closely-spaced frequencies, model B is created using 5 kg as

a lumped mass of the system at each DOF and stiffness as presented in Fig. 3.6. The

Fourier spectra of floor vibration measurements is shown in Fig. 3.12. It can be ob-

served that the last two frequencies (i.e., 4.1 and 4.75 Hz) are very closely-spaced. The

proposed method is then applied and Fig. 3.13 shows Fourier spectra of the result-

ing modal responses obtained from the MEMD of vibration measurements. It shows

that modal responses contain both mono-component and mode-mixed signals. It can

be observed that IMFs in first and second row of Fig. 3.13 are mono-components.

However, IMFs in third row of Fig. 3.13 have mode-mixed modal responses. In order

to extract the mono-component modal responses, ICA is applied in the mode-mixed

IMFs that are highlighted in red box. The resulting ICA components are shown in
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Fig. 3.14.
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Figure 3.13: IMFs of first, second and third floor from the MEMD
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Figure 3.14: (a - b - c) IMFs with mode-mixing and (d - e - f) separated IMFs using
the ICA
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Fig. 3.14 (a), (b) and (c) show the IMFs with mode-mixing of 1st, 2nd and 3rd

modes as obtained from the MEMD that are highlighted in Fig. 3.13 (red box). Fig.

3.14 (d), (e) and (f) show the separated IMFs using the ICA. It can be seen that the

closely spaced signals are successfully separated by using the proposed method. The

resulting modal parameters are compared with their true values in Table 3.2 with

different level of measurement noise.

Table 3.2: Theoretical and identified modal parameters of 4-DOF models
Model A Model B

Actual 0 % noise 10 % noise Actual 0 % noise 10 % noise

(ωi) ω̂i ζ̂i (%) ω̂i ζ̂i (%) (ωi) ω̂i ζ̂i (%) ω̂i ζ̂i (%)
4.74 4.78 1.94 4.80 1.93 0.83 0.83 1.52 0.84 1.3
13.59 13.65 0.50 13.67 0.53 2.37 2.38 0.43 2.38 0.6
21.50 21.50 0.35 21.4 0.30 4.07 4.11 0.3 4.12 0.26
25.94 24.05 0.25 24.0 0.16 4.75 4.76 0.23 4.77 0.18
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3.3 10-DOF Model
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Figure 3.15: 10-DOF model

In order to demonstrate the proposed method with larger DOFs, simulations are

now performed on a 10-storey simulation model as shown in Fig. 3.15. For this

example building, the lumped mass of each floor is assumed to be 1 kg, and the

damping is assumed to be 2% critical in all modes. The natural frequencies are

obtained as 0.78, 1.79, 2.83, 3.88, 4.96, 6.07, 7.24, 8.49, 9.87 and 11.51 Hz using

eigen-value decomposition of the theoretical mass and stiffness distribution. The 10-

DOF building model is excited by Borrego earthquake at its base. Fig. 3.16 shows

the Fourier spectra of floor vibration measurements where it can be clearly seen

that couple of modes including 9th and 10th modes have significantly low energy

compared to the other modes. Fig. 3.17 shows the Fourier spectra of the resulting
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modal responses obtained from the vibration measurements by using the MEMD

method revealing that the modal responses contain both mono-component as well as

mode-mixed signals. For example, it can be observed that the first IMFs in all floors

(i.e., first row of Fig. 3.17) are all mono-components. However, other IMFs (i.e., in

second and third row of Fig. 3.17) have mode-mixed modal responses.
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Figure 3.16: Fourier spectra of the floor vibration measurements of the model

In order to extract the mono-component modal responses, the ICA is then applied

in the mode-mixed IMFs that are highlighted in red and black boxes. The resulting

ICA components (i.e., extracted modal responses) of these IMFs are shown in Fig.

3.18 and Fig. 3.19, respectively. Fig. 3.18 (a), (b) and (c) show the IMFs with mode-

mixing resulting from the MEMD that are highlighted in Fig. 3.17 (red box). Fig.

3.18 (e), (f) and (g) show the separated IMFs using the ICA. Also, Fig. 3.19 (a), (b),

(d), (e) and (f) show the IMFs with mode-mixing resulting from the MEMD that are

highlighted in Fig. 3.17 (blak box). Fig. 3.19 (g), (h), (i), (j), (k) and (l) show the
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Figure 3.17: IMFs of the first, second, third, fourth, sixth and eighth floor measure-
ments obtained from the MEMD

separated IMFs using the ICA. Consequently, it can be seen that the proposed method

has been successfully separated the mode-mixed signals even though the signal has

low energy. Table 3.3 shows the identification results revealing the efficiency of the

proposed method under a series of low energy and closely-spaced modes.
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Figure 3.19: (a - b - c - d - e - f) IMFs with mode-mixing and (g - h - i - j - k - l)
separated IMFs using the ICA

Table 3.3: Theoretical and identified modal parameters of 10-DOF model
Mode # 1 2 3 4 5 6 7 8 9 10
ωi (Hz) 0.78 1.79 2.83 3.88 4.96 6.07 7.24 8.49 9.87 11.52
ω̂i (Hz) 0.77 1.78 2.82 3.88 4.95 6.07 7.25 8.52 9.89 11.55



Chapter 4

Full-scale Studies

In this chapter, the proposed method is further verified using an experimental model

and two real-life structures located in China and Canada. Unlike simulation studies,

the identification results obtained from the measured vibration data is now compared

with the Finite Element (FE) models.

4.1 Experimental Study

A six-story experimental model is used to validate the proposed method as shown

in Fig. 4.1(a). The first three floors of the model have masses of 2.47 kg and the

other three floors have masses of 1.12 kg. The model is placed on a shake table which

is connected to a shaker manufactured by Crystal Instruments. In order to collect

the vibration data, the uniaxial sensors are placed at the middle of each floor of the

model, and the sensors are connected to the data acquisition system manufactured

by Data Translation attached with a computer. The model is excited using a random

shaking for 60 sec via a control system attached to the modal shaker and then the

vibration data is collected using the sensors. The S-Frame software of structural

analysis is used to develop the FE model as shown in 4.1(b).

43
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(a) (b)

Accelerometer

Modal shaker

Figure 4.1: (a) Experimental model and (b) FE model
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Fig. 4.2 (a) and (b) show vibration responses of third floor and its corresponding

Fourier spectrum, respectively. The vibration data from all floors are then analyzed

using the proposed method. Fig. 4.3 shows the Fourier spectra of the modal responses

as obtained from the MEMD. It can be observed that IMFs in first and third row

of Fig. 4.3 are mono-component. However, IMFs in second and fourth row of Fig.

4.3 have mode-mixed modal responses. The ICA is then applied in the mode-mixed

signals (as shown in red box in fourth row of Fig. 4.3) to find the mono-component

responses. The resulting ICA components are shown in Fig. 4.4. Fig. 4.4 (a), (b), and

(c) show IMFs with mode-mixing of three modal response extracted from MEMD that

are shown in Fig. 4.3 (red box). Fig. 4.4 (d), (e) and (f) show the separated IMFs

by using the proposed method. Table 4.1 shows the accuracy of the identification

results. Fig. 4.5 shows the first six modeshapes of the model and the accuracy of the

identified modeshapes are assessed through the modal assurance criteria (MAC) in

Table 4.1.
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Figure 4.2: (a) Sample data and (b) Fourier spectrum of 3-th floor response
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Figure 4.3: IMFs of first, third and fifth sensor as obtained from the MEMD method
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Mode shape 1 Mode shape 2 Mode shape 3 Mode shape 4 Mode shape 5 Mode shape 6

Figure 4.5: Modeshapes of the model

Table 4.1: Accuracy of the identification results in experimental model
Mode # 1 2 3 4 5 6

ωi 4.6 11.3 18.6 25.6 28.8 39.2
ω̂i 4.5 10.7 18.7 25.0 28.3 38.7

ζ̂i (%) 0.1 0.52 0.73 0.83 0.32 0.053
MAC 1.0 0.99 1.0 0.98 0.98 0.99
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4.2 Real-life Structural Validation

The primary focus of this thesis was to perform modal identification of large-scale

civil infrastructure such as tall buildings and bridges. Real-life structures undergo

a series of dynamic loads that cause significant vibration which can be monitored

through multiple sensors installed throughout the premises. In order to validate the

proposed method under a wide range of practical challenges with closely-spaced and

low energy modal frequencies, two different full-scale structures are selected in this

study - (a) a high-rise tower in China and (b) a large-span highway bridge in Canada.

4.2.1 High-rise Tower

The Canton Tower (CT) is located in Guangzhou, China and was constructed in

2010. It stands at a height of 600m with 37 floors [53]. This super-tall structure

has experienced several typhoons and earthquake excitation in past few years. The

dynamical responses of the tower were successfully collected using a sophisticated

monitoring system. However, this study utilizes the vibration data that were collected

at the beginning of 2010, shortly after the completion of the CT where no typhoon

effect was recognized. This data forms an excellent test bed to validate the proposed

algorithm with a large number of DOFs.

Description of the tower

The CT remains the tallest TV tower in the world and it is located in Guangzhou,

China. The tower has a slender design with varying cross sectional dimensions

throughout as shown in Fig. 4.6 which makes it a unique and aesthetically pleas-

ing modern skyscraper. The main body of the tower is made of reinforced concrete.

The bottom of the building is an ellipse shaped cross sectional area at 50 m x 80 m.
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Figure 4.6: Schematic of sensor locations in the Canton Tower (Ni et al. 2009)

At the middle waist of the building, the ellipse shaped cross sectional area decreases

to 20.65 m x 27.5 m. Finally, moving to the top portion of the building, the ellipse

shaped cross sectional area increases to 41 m x 55 m [60]. In this research, a series of

20 sensors is studied. Additionally, a full-scale FE model was previously developed

[53] prior to the construction of the CT, but only the results of the FE model are

briefly mentioned to draw meaningful conclusions.

A schematic of 20 accelerometer sensors are shown in Fig. 4.6. Sample vibration

data is provided by the Hong Kong Polytechnic University and is released to the
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public for research studies. The data was collected for a 24-hour time-frame starting

on the day of January 19, 2010 at 18:00 pm and ended on January 20, 2010 18:00 pm.

For the temperature data, there was an observed data point per minute of the entire

sampling period, which resulted in 1440 varying temperature readings. The sampling

frequency of the accelerometer was set to 50 Hz.
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Figure 4.7: Fourier spectra of the vibration measurements at 3rd, 9th and 16th floor

Application of the proposed method

Typical Fourier spectra of sensors along directions 3, 9, and 16 (Fig. 4.6) of January

19, 2010 at 18:00 pm is shown in Fig. 4.7. Fig. 4.8 shows Fourier spectra of the

modal responses of the vibration measurements as extracted by the MEMD using

this data. In row one and two of Fig. 4.8, it can be observed the IMFs are mono-

component. Whereas, the third and fourth rows of Fig. 4.8 contain the mode-mixed

modal responses. The ICA is applied in the mode-mixed signal that are highlighted in
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Figure 4.8: IMFs of the third, fifth, eighth and sixteenth sensor as obtained from the
MEMD method

black box in third row to get a mono-component. The resulting ICA components are

shown in Fig. 4.9 that reveal the separated IMFs and their Fourier spectra. The first

column of Fig. 4.9 contains the mode-mixed IMFs that are highlighted in Fig. 4.8

using the black box and the second column contains the separated IMFs as obtained

using the ICA.

Similar studies are repeated with the data of entire duration and the daily variation

of the natural frequencies is investigated. Table 5.4 shows the variation of natural

frequencies for four different hours data and similar exercise is repeated for all 24

hours data. It can be observed that the proposed method has successfully separated

the closely-spaced and low energy modes of the CT tower. Fig. 4.10 shows the

variation of first two natural frequencies over 24 hours. It may be noted that there

is a fluctuation in frequencies (specially in ω1) due to the change in temperature

throughout the day and the difference can be seen in Fig. 4.10. The red lines in Fig.

4.10 present the first two natural frequencies as obtained from the FE model.
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Figure 4.10: Variation of the first two natural frequencies of CT tower over 24 hours
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Table 4.2: Daily variation of the identified natural frequencies of the CT tower

ω Full model 6PM 2AM 9AM 3PM

1 0.094 0.056 0.0083 0.093 0.096

2 0.14 0.11 0.15 0.184 0.182

3 0.29 0.23 0.24 - 0.27

4 0.366 - - 0.364 -

5 0.474 0.476 0.474 - 0.474

6 0.79 0.8 - 0.8 0.79

7 1.15 1.15 1.15 1.15 -

4.2.2 Long-span bridge

In order to validate the performance of the proposed method, the Main Street bridge

located in Thunder Bay, Canada as shown in Fig. 4.11 is utilized. Since its construc-

tion, the bridge has seen an increase in heavy traffic (e.g., trucks containing the wind

turbine parts) between the Port Authority and the City.

Figure 4.11: Long-span bridge in Thunder Bay
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                                         (a)                                                                            (b) 

                                                                                 (c) 

Figure 4.12: (a) Typical sensor placed on the sidewalk, (b) vehicles passing over the
bridge during a test and (c) location of sensors on the bridge

Description of the bridge

The Main Street bridge was built in 1960, its length and width are 288 m and 9 m,

respectively. The bridge is supported by 11 piers and maximum height of these piers

is 8 m and the spacing between piers is 53 m. In order to conduct the serviceability

assessment of this bridge, vibration testing was performed on January 20th, 2017

between 9 am - 12 noon. The temperature during the test was approximately −5◦C.

Six sensors were placed along the walkway on the North side of the bridge. Sensors

were set up to measure uniaxial vibration in the vertical direction and they were
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mounted using the steel plates as shown in Fig. 4.12 (a). The data acquisition

(DAQ) system is placed at the centerline of the bridge and the spacing of the sensors

were roughly 10, 100 and 200 feet off either side of the DAQ as shown in Fig. 4.12 (c).

Several tests were conducted with various numbers of vehicles crossing the bridge at

different speeds (50-60 km/h) where the duration of each test was kept between 30

seconds to 2 minutes. Apart from the vibration testing, the FE model of this Bridge

is developed using the S-Frame as shown in Fig. 4.13.

Figure 4.13: FE model of the bridge

The composite section was created using the principles of transformed sections.

The calculated section properties were verified by hand calculations. The average

depth of beams and web thickness were used as 1.55 m and 10 mm respectively. The

calculated section properties from the S-frame were transformed to the material of

the lower young’s modulus. This meant that when assigning the material properties

to the composite section it would be assigned as a concrete section with zero force

density. Assigning zero force density was important due to steel and concrete having

different densities. Density allocation was accounted for by computing the area of

concrete, steel, and asphalt for each girder and applying the unit weight accordingly

to obtain an equivalent uniformly distributed load. The values used for the density of

concrete, asphalt, and steel are 24, 23.25, and 77 kN/m3, respectively. When creating
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the S-frame model, the materials are considered to be at ambient temperature of

approximately 20◦C. Therefore, to get a closer representation of the vibrational data

collected from the Main Street bridge, there was a constant temperature load of

−25◦C applied to the entire span of the bridge to account for any gain in stiffness

due to decrease in temperature. By applying this thermal load, the model is assumed

to represent a temperature of −5◦C, which is the temperature during the test. S-

View was used to create rendered visuals that show the mode shape vibrating at

its natural frequency. The visual provided a more clear representation of the finite

element model. This resulted in the rendered image for revision being somewhat of a

wired-frame representation.
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Table 4.3: Overview of vehicles passing over bridge during each test

Test No Overview

Test 2: (50km/hr) 2 x large truck (Lake Bound)
car + truck (City Bound)

Test 3: (50km/hr) car + truck (LB)
car + dump truck (CB)

Test 4: (60km/hr) car (LB)
car + truck (CB)

flatbed transport (LB)
transport (LB)

Test 5: (60km/hr) car (LB)
car (CB)

Test 6 truck (LB)
3 x cars (CB)

Test 7 large truck (LB)
3 x cars (LB)

2 x heavy truck (CB) (crossed at same time)

Test 8 4 x cars + transport (CB)
2 x cars (LB)

Test 9 4 x cars (LB)
2 x cars (CB)

Test 10 3 x cars (CB)

Test 11 3 x cars (LB)

Test 12 4 x cars (CB)

Test 13 3 x transports (CB)

Notes:

• Order listed for each test in chronological order in which vehicles passed over

bridge.

• Assumed speed for most vehicles was 50-60km/hr. Large Trucks may have been

travelling more slowly.

• (CB): City Bound and (LB): Lake Bound.

• Power was provided to the DAQ and laptop computer using a car battery and

inverter.
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• Radios were used to coordinate the vehicles within our group passing over the

bridge.

Application of the proposed method
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Figure 4.14: Fourier spectra of vibration measurements at various locations

Typical Fourier spectra of three vibration measurements are shown in Fig. 4.14.

Fig. 4.15 shows Fourier spectra of the modal responses as obtained by applying the

MEMD. The results show modal responses containing both mono-component and

mode-mixed signals. It can be observed that the IMFs in row one, three and five

of Fig. 4.15 are mono-components. However, the IMFs in second and fourth row

of Fig. 4.15 have mode-mixed modal responses. The ICA is applied in the mode-

mixed modal responses that are shown in red box in second row to get the modal

responses. The resulting ICA components are shown in Fig. 4.16 that reveal the

separated IMFs and their Fourier spectra. The first column of Fig. 4.16 contains

IMFs with mode-mixed modal responses that are highlighted in Fig. 4.15 (red box)

and second column contains the separated IMFs as obtained using the ICA. The

resulting modal parameters are compared with their true values in Table 4.4. The
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results show that the proposed hybrid MEMD method is able to extract both low

energy and closely-spaced frequencies quite accurately.
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Figure 4.15: The IMFs of the second, fourth and sixth sensor from the MEMD

Table 4.4: Comparison of the identification results with the FE model of long-span
bridge

Mode # 1 2 3 4 5 6 7
ωi (Hz) 2.34 2.4 3.7 5.8 7.6 9.4 16.2
ω̂i (Hz) 2.38 2.5 3.9 5.5 7.8 9.9 16

ζ̂i (%) 2.3 1.0 0.55 0.4 0.5 0.63 0.1
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Figure 4.16: The IMFs with mode-mixed modal responses and the separated IMFs
using the proposed method



Chapter 5

Conclusions and Future Work

5.1 Key Conclusions

• The MEMD method has been first time explored as a possible candidate for

a modal identification method that can deal with multichannel vibration mea-

surements.

• The MEMD method is based on the assumption that the dynamic system has

lumped mass degrees-of-freedom. Therefore, while dealing with continuous sys-

tem, it needs to be discretized as a discrete dynamical system.

• Similar to EMD method, significant mode-mixing is observed in the resulting

modal responses as obtained from the MEMD method with the presence of low

energy modes, closely-spaced frequencies and measurement noise.

• The mode-mixing problem in the MEMD is resolved by integrating the MEMD

with another signal decomposition tool namely ICA. The results show signif-

icantly improved performance of the MEMD under a wide range of practical

situations.

• The proposed method is validated through a suite of numerical studies employ-

ing a broad class of dynamical models and excitation characteristics.

• The practicability of the proposed method is further verified by using an experi-

mental model subjected to base excitation and two real-life full-scale structures
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including a high-rise tower and a long-span bridge under ambient vibrations

and operational traffic loading, respectively.

5.2 Major Research Contributions

This research has resulted one journal and one conference paper in a leading structural

engineering journal and conference, respectively.

1. Sadhu, A. and Barbosh, M. (2016).“Structural modal identification using an

improved empirical mode decomposition.” CSCE Structures Specialty Confer-

ence, London, Ontario, Canada.

2. Barbosh, M., Sadhu, A. and Vogrig, M. (2017). “Multi-sensor based hybrid

empirical mode decomposition method towards system identification of structures.”

Journal of Structural Control and Health Monitoring, Wiley, accepted with

minor revisions.

5.3 Future Work

In this thesis, the proposed research is aimed to solve modal identification problems

only for linear systems. Following are few potential future work on the MEMD method

reserved for our research team:

• The proposed method will be explored for damage detection where the struc-

tures are subjected to both discrete and progressive damages.

• The proposed method will be automated to develop a software such that any

novice structural engineer can easily deploy this algorithm as a tool in real-time

applications.
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• The MEMD requires multiple channels of vibration measurements to yield sig-

nificantly accurate results. In future, the performance of the MEMD will be

also explored under limited number of sensor measurements.

• The proposed method will be investigated in structures with torsional modes.
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5.4 Acronyms

Following is the list of all relevant acronyms used in this thesis for the convenience of

the readers.

SHM Structural Health Monitoring

SI System Identification

CE Complex Exponential

IRF Impulse Response Function

LSCE Least-square Complex Exponential

ITD Ibrahim Time Domain

ERA Eigen Realization Algorithm

NExT Natural Excitation Technique

SSI Stochastic Subspace Identification

FDD Frequency Domain Decomposition

TMDs Tuned Mass Dampers

WT Wavelet Transform

DWT Discrete Wavelet Transform

CWT Continuous Wavelet Transform

SWT Stationary Wavelet Transform

BSS Blind Source Separation

SOBI Second-order Blind Identification

ICA Independent Component Analysis

EMD Empirical Mode Decomposition

EEMD Ensemble Empirical Mode Decomposition

MEMD Multivariate Empirical Mode Decomposition

IMF Intrinsic Mode Function

DOF Degrees-of-freedom

FE Finite Element

DAQ Data Acquisition
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