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Abstract 

Pseudomonas aeruginosa is a common Gram-negative opportunistic bacterial 

pathogen capable of infecting humans with compromised natural defenses and causing 

severe pulmonary disease. It is the major cause of severe chronic pulmonary disease in 

cystic fibrosis (CF) patients subsequently resulting in progressive deterioration of lung 

function. Interaction between P. aeruginosa and host induces a number of marked 

inflammatory responses and is associated with complex therapeutic problems. NOD-like 

receptors (NLRs) can recognize a variety of endogenous and exogenous ligands and its 

activation initiate inflammasome formation that induces maturation of the pro-

inflammatory cytokine interleukin (IL)-1β through activation of caspase-1. Through a 

literature search, no prior research on mutant strains as well as clinical isolates of P. 

aeruginosa from CF patients at different stages of infection has been conducted to 

explore NLR-mediated innate immune responses to this bacterial infection. All the work 

presented in this thesis focuses on the exploration of inflammasomes as targets for 

therapy of P. aeruginosa infection. We hypothesized that genetic alterations of P. 

aeruginosa affect the innate immune response of human monocytes. THP-1 human 

monocytic cells were infected with clinical P. aeruginosa isolates from CF patients, or 

with P. aeruginosa mutant strains lacking flagella, pili, lipopolysaccharide, or pyocyanin. 

The overall involvement of NLRs in innate immune recognition of P. aeruginosa was 

addressed through demonstrating of NLR-mediated caspase-1 activation or P. 

aeruginosa-induced IL-1β secretion. Our findings suggest that P. aeruginosa, which lost 

certain virulence factors during pulmonary infection, may fail to induce caspase-1 



 III 

activation and secretion of IL-1β in the process of host-pathogen interactions. This may 

reveal novel mechanism of the pathogen adaptation to avoid detection by NLR(s). 

As P. aeruginosa infections are characterized by strong inflammation of infected 

tissues anti-inflammatory therapies in combination with antibiotics have been considered 

for the treatment of associated diseases. Spleen tyrosine kinase (SYK), a non-receptor 

tyrosine kinase, is an important regulator of inflammatory responses. Several studies have 

highlighted SYK as a key player in the pathogenesis of a multitude of diseases. Inhibition 

of SYK activity was explored as a therapeutic option in several inflammatory conditions; 

however, this has not been studied in bacterial infections.  We used a model of an in vitro 

infection of human monocytic cell line THP-1 and lung epithelial cell line H292 with 

both wild type and flagella-deficient mutant of P. aeruginosa strain K, as well as with 

clinical isolates from CF patients, to study the effect of a small molecule SYK inhibitor 

R406 on inflammatory responses induced by this pathogen. The role of SYK in 

regulation of inflammasome activation was also determined by evaluating the effect of 

SYK inhibitor on innate immune responses in P. aeruginosa infected cells. The results 

suggest that SYK is involved in the regulation of inflammatory responses to P. 

aeruginosa, and R406 may potentially be useful in dampening the damage caused by 

severe inflammation associated with this infection.  

 

Keywords: P. aeruginosa, Cystic Fibrosis, Innate immunity, host-pathogen interaction, 

NOD-like receptors, Caspase-1, Cytokines, SYK, small molecule inhibitor, R406 
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Chapter I: Literature Review  

1.1 Pseudomonas aeruginosa – Pathogenesis and Pathogenic Mechanisms 

 

Published Review: International Journal of Biology 

Author: Alaa Alhazmi  

 

Abstract  

Pseudomonas aeruginosa is a common Gram-negative opportunistic bacterial 

pathogen capable of infecting humans with compromised natural defenses and causing 

severe pulmonary disease. It is one of the leading pathogens associated with nosocomial 

infections. It has a vast arsenal of virulence factors that are used to interfere with host 

defenses. P. aeruginosa virulence factors facilitate adhesion, modulate or disrupt host cell 

signaling pathways, and target the extracellular matrix. The propensity of P. aeruginosa 

to form biofilms further protects it from antibiotics and the host immune system. P. 

aeruginosa is intrinsically resistant to a large number of antibiotics and can acquire 

resistance to many others, making treatment difficult. P. aeruginosa provokes a potent 

inflammatory response during the infection process. Most deaths in immunocompromised 

patients with cystic fibrosis is attributed to the progressive decline of lung function 

resulting from chronic infection caused by P. aeruginosa. Antibiotic treatment of chronic 

P. aeruginosa infections may temporarily suppress symptoms; however, this does not 

eradicate the pathogen. Lung diseases caused by P. aeruginosa are a leading cause of 

death in immunocompromised individuals. Although leukocyte recruitment is critical for 

the host defense, excessive neutrophil accumulation results in life-threatening conditions, 
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such as acute lung injury. Several P. aeruginosa virulence factors have been studied as 

potential vaccine candidates, although there is currently no clinically accepted vaccine. 

Understanding host-pathogen interactions is critical for the development of effective 

therapeutic strategies to control the damage in the lung caused by this infection. 

 

Keywords: Pseudomonas aeruginosa, nosocomial infection, virulence factors, antibiotic 

resistance, cystic fibrosis 

P. aeruginosa is a motile, non-fermenting, Gram-negative organism belonging to 

the family Pseudomonadaceae. In 1850s, Sédillot observed that a blue-green discharge 

was frequently present and associated with infection in surgical wound dressings [1]. The 

infectious organism was a rod-shaped and blue-green pigmented bacterium [2]. By 1961, 

the ability of this organism to cause both severe acute and chronic infections was 

recognized [3]. In 1960s, P. aeruginosa emerged as an important human pathogen [4]. 

Despite anti-pseudomonas activity being one of the pharmaceutical drug discoveries for 

several decades, it remains one of the most recalcitrant and difficult to treat organisms. 

Accordingly, P. aeruginosa is considered as a Superbug.  

Genome analysis revealed that P. aeruginosa genome has a markedly large genome 

(6.3 million base pair (Mbp); encoding 5567 genes) compared to 4.64 Mbp (4279 genes) in 

Escherichia coli K12, 2.81 Mbp (2594 genes) in Staphylococcus aureus N315, and 1.83 

Mbp (1714 genes) in Haemophilus influenzae Rd. Also, the proportion of predicted 

regulatory genes in P. aeruginosa genome is greater than in all other sequenced bacterial 

genomes [5,6], lending to its adaptability to various environments. P. aeruginosa has a 

broad range of growth substrate, minimal nutrient requirements and it is a non-fastidious 



 

 3 

microorganism [7]. The organism is tolerant of temperatures as high as 50ºC and is capable 

of growing under aerobic, as well as anaerobic conditions [8]. Due to possessing a large 

number of virulence factors P. aeruginosa is truly a challenging pathogen in the hospital 

setting as it is resistant to many antibiotics. Also, it is capable of forming highly resistant 

biofilms, both within the body and on the surfaces of medical instruments [9-11]. P. 

aeruginosa continues to be problematic from a treatment perspective.  

P. aeruginosa is armed with potent virulence factors. Although ubiquitously present 

in the environment, P. aeruginosa never causes disease in an immunocompetent host as 

the immune system effectively prevents the infection. However, the pathogen causes 

severe infections in Cystic Fibrosis (CF) patients. In CF, a genetic defect in cystic fibrosis 

transmembrane conductance regulator (CFTR) underlies the development of persistent 

infection with P. aeruginosa that gradually leads to irreversible tissue damage. Several 

conserved microbial structures in P. aeruginosa are recognized by Toll-like receptors 

(TLRs) and NOD-like receptors (NLRs); which have been implicated in activating the 

host innate immune responses to P. aeruginosa [12,13]. There are a number of clinical 

conditions associated with P. aeruginosa infection. P. aeruginosa is an opportunistic 

organism infecting burn victims, CF, leukemic, transplant, neutropenic, long-term urinary 

catheters, and diabetic patients as well intravenous drug abusers.  

1.1.1. Nosocomial Infection Due to P. aeruginosa  

Nosocomial (hospital-acquired) infections are those not present at the time of 

hospital admission, but they usually develop post-admission. The 2006-2007 report by 

the National Healthcare Safety Network (NHSN) at the Centers for Disease Control and 

Prevention (CDC) ranked P. aeruginosa as the sixth most common pathogen associated 
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with healthcare associated infections. The NHSN reports that in United States in 2006-7, 

8% of all hospital-associated infections were due to P. aeruginosa, with P. aeruginosa 

causing 3% of central line-associated bloodstream infections, 6% of surgical site 

infections, 10% of catheter-associated urinary tract infection and 16% of ventilator-

associated pneumonia (VAP) infections [14]. Mechanical ventilation, antibiotic therapy, 

surgery, and chemotherapy are the major predisposing factors contributing to the 

acquisition of a P. aeruginosa infection in the hospital [15]. It is worth noting however, 

that difficulties in treatment of such infections and the associated morbidity and mortality, 

have made P. aeruginosa one of the most feared hospital pathogens.  

1.1.1.1 Burn Wound Infections 

P. aeruginosa is the leading cause of invasive infections in burn patients; 75% of 

all deaths in patients with severe burns are related to sepsis from invasive burn wound 

infection [16-18]. In addition to skin injury, inhalation injury is common in burn patients. 

This results in edema and sloughing of the respiratory tract mucosa and impairment of the 

normal mucociliary clearance mechanism, thus making these patients more susceptible to 

upper respiratory tract infections as well as P. aeruginosa pneumonia [19].  

Gram-positive organisms such as Staphylococcus aureus and Streptococcus 

pyrogens are typically the first microorganisms to colonize the site of infection, following 

by other microbes including P. aeruginosa colonize these wounds [20,21]. Success with 

early wound excision practices was shown to contribute to the prevention of invasive 

infections disseminating from the wound site [22]. Animal studies of partial-thickness 

cutaneous burns showed that mature P. aeruginosa biofilms could develop during 48 to 
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72 hours, indicating a major potential source of further difficulties in antimicrobial 

therapy at these sites [23].  

In addition to the P. aeruginosa virulence factors that undoubtedly contribute to the 

success of P. aeruginosa as a pathogen in the burn patients, the impairment of host 

immunity, beyond a simple loss of the skin’s physical barrier, plays a role in enhancing 

susceptibility to infection. Recent studies have demonstrated that thermal injury causes 

impaired production of the host defense peptides β-defensins in the tissues surrounding 

the wound. These antimicrobial peptides have been proposed to play an important role in 

primary defense against P. aeruginosa and synthetic β-defensin was recently shown to be 

protective against P. aeruginosa infection in a burned mouse model [24]. 

1.1.1.2 Bacteremia  

P. aeruginosa is among the five leading causes of nosocomial bacteremia and 

frequently leads to sepsis. In the 1960s and early 1970s, aminoglycosides and polymyxins 

were the only options for treatment of P. aeruginosa bacteremia but were found to be fairly 

ineffective for these infections. Mortality of greater than 50% was reported when mortality 

was used as the end point [25,26], and was as high as 70% in febrile neutropenic patients 

[27]. Despite the introduction of effective anti-pseudomonal β-lactams and the associated 

reduction in mortality rates, P. aeruginosa bacteremia is still one of the most feared 

nosocomial infections. These infections are generally associated with higher mortality 

compared to other infecting pathogens, and their persistence, particularly related to device-

related bacteremia, continues to plague patients [28].  

The main distinguishing feature of P. aeruginosa sepsis is the presence of ecthyma 

gangrenous, and these infarcted skin lesions occur only in markedly neutropenic patients 
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[29]. When P. aeruginosa disseminates from a site of local infection, it gains access to 

the bloodstream by breaking down epithelial and endothelial tissue barriers [30]. To 

evade the bactericidal activity of the serum complement, P. aeruginosa produces a 

smooth lipopolysaccharide (LPS) [31,32]; full-length O side-chain of the bacteria.  

1.1.1.3 Hospital-Associated Pneumonia 

The human respiratory tract presents a favorable environment to which P. 

aeruginosa has become particularly well adapted. P. aeruginosa has the formidable 

ability to cause both chronic infections in the lung of CF patients and acute nosocomial 

pneumonia [33]. Animal model studies of P. aeruginosa pneumonia have demonstrated 

the involvement of proteases, flagella, pili and LPS O side chains as well as the delivery 

of the extracellular toxins ExoS, ExoT and ExoU via a type III secretion system (T3SS) 

in the disease pathogenesis. For example, administration of anti-pcrV antibodies blocking 

the T3SS has been shown to offer protection against acute P. aeruginosa pneumonia 

when tested in animal models [34,35].  

1.1.1.4 Ventilator-Associated Pneumonia 

P. aeruginosa is commonly found to be the first or second major pathogen causing 

VAP [14]. It is the most common multidrug resistant pathogen involved in this disease 

and recovery rate of P. aeruginosa is increased with increased duration of mechanical 

ventilation. In addition to being amongst the most common pathogens causing VAP, P. 

aeruginosa is also amongst the most lethal pathogens, since reports suggest up to 70-80% 

mortality when the organism remains confined to the lung [36], with directly attributable 

mortality rates reaching 38% [37]. 
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1.1.2. P. aeruginosa Infections in Cystic Fibrosis  

Cystic fibrosis (CF) is an autosomal reccesive genetic disorder and is the most 

common fatal genetic disease in the Caucasian population. CF is caused by a mutation in 

a gene on chromosome 7 known as CFTR. The most common mutation is ΔF508 (or 

F508del), which is a three-nucleotide deletion of a phenylalanine residue with subsequent 

defective intracellular processing of the CFTR protein, which is an important chloride 

channel [38]. CF is affecting 1:2,500 in the Caucasian population [39]. CF is multi-

system disease, which affects mainly the lung and digestive system. Most CF-related 

deaths are due to lung disease [38].  

Mortality in this afflicted population is mainly attributed to chronic respiratory 

infections and the associated gradual deterioration of lung function. There are several 

pathogens known to play a role in CF lung infection, with Staphylococcus aureus and 

Haemophilus influenzae being the predominant pathogens colonizing in infancy and early 

childhood, and eventual replacement by P. aeruginosa. However, P. aeruginosa is often 

isolated from patients less than 2 years of age and is the most predominant concern in 

adults [40,41]. Up to 90% of individuals suffering from CF become infected with P. 

aeruginosa during their lifetime, and this organism is the leading cause of morbidity and 

mortality among those patients. It is the dominant pathogen in chronic lung infection in 

CF. In the majority of cases, colonization of the CF airway by P. aeruginosa leads to a 

chronic infection that is resistant to antimicrobial therapy [42,43]. Chronic colonization 

and infection with P. aeruginosa is an inevitable reality for the majority of adults with CF, 

as over 80% of adults over the age of 18 years return positive cultures for P. aeruginosa 
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[44]. The nature of this disease is critical in understanding why P. aeruginosa dominates 

as the primary pathogen in CF patients and so the pathology is addressed below.  

The defective gene involved in CF encodes for CFTR resulting in pathological 

changes in organs that express CFTR, including lungs. In a normal airway epithelial cells, 

the gene encoding for CFTR regulates the transport of chloride, sodium, and water. 

Abnormalities of the CFTR gene product lead to a thick and dehydrated mucous secretion 

that impairs mucociliary clearance of bacterial pathogens [45]. In the normal lung, the 

mucus layer functions in binding and cleaning inhaled pathogen, and although the 

bacterial load can be quite high in the upper airways, the lower airways remain free of 

bacteria [46]. Due to the characteristic thickened mucus associated with CF resulting an 

inability of ciliary beating to remove the mucus, invading pathogens become trapped in 

the mucus layer. As a result, a constant presence of bacteria with expression of pathogen-

associated molecular patterns (PAMPs) leads to chronic inflammation, consequently 

damaging the epithelial surface [47-49]. 

A novel concept of host susceptibility emerged in that the epithelial cells use CFTR 

as a receptor for internalization of P. aeruginosa and subsequent removal of bacteria 

from the airway surface [50,51]. Accordingly, CFTR is considered as a pattern 

recognition molecule that extracts P. aeruginosa LPS from the organism’s surface into 

epithelial cells [52]. The prevention of CFTR-P. aeruginosa interactions leads to 

decreased bacterial clearance and increased bacterial burden in the lungs.  

1.1.2.1 Adaptation During Chronic Infection 

CF patients frequently become colonized in the upper airways by environmental 

isolates of P. aeruginosa [53,54]. During the process of infection, a number of 
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adaptations occur leading to the characteristic persistence and antibiotic resistance of 

isolates found from chronic infection. Amongst the most common adaptations of P. 

aeruginosa found in CF isolates is the conversion to the mucoid phenotype due to 

overexpression of alginate [55]. Environmental isolates usually present a non-mucoid 

phenotype. However, as P. aeruginosa penetrates the thickened mucus lining of the 

airways travelling down the oxygen gradient, an increased expression of alginate and a 

switch to a mucoid phenotype occur [56,57]. This phenotype often occurs coincidently 

with the establishment of chronic infection and becomes stabilized by regulatory 

mutations as described earlier. The mucoid form of P. aeruginosa is associated with 90% 

of P. aeruginosa CF infections compared to only 2% of P. aeruginosa non-CF infections 

[58,59]. This phenotype is often coordinately regulated with a loss of flagella by the 

alternative sigma factor AlgT [60]. The loss of flagella causes not only loss of motility, 

but also a decreased activation of host inflammatory responses [61]. 

Other easily identified morphological adaptations of P. aeruginosa include the 

switch from smooth to rough colony morphology and the appearance of small colony 

variants. The rough colony morphology is representative of strains that have lost the LPS 

O-antigen [31]. As the O-antigen is the immunodominant portion of the LPS, this 

adaptation leads to a less virulent phenotype. It also makes rough isolates more 

susceptible to complement killing and perhaps explains in part why these organisms 

virtually never cause invasive infections. Modifications to the lipid A moiety of the LPS 

are also observed. These include the addition of palmitate, aminoarabinose and the 

retention of 3-hydroxydecanoate [62]. The small colony phenotype is less well 

understood but is of considerable interest as these isolates exhibit increased antibiotic 
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resistance. Isolates exhibiting this phenotype have been found to be hyperpiliated with 

increased abilities in twitching motility and biofilm formation, and with a decreased 

ability for swimming [63]. 

Another phenotype of relevance to the resistance to antimicrobial therapy is the 

hypermutator phenotype, which is frequently observed in CF isolates, but less commonly 

in nosocomial isolates of P. aeruginosa [64]. This phenotype, characterized by up to 

1000-fold increased mutation frequency, has been attributed to mutations in genes 

encoding DNA replication and repair mechanisms, such as mutS, mutL, and mutY. Most 

importantly, these hypermutator isolates can develop resistance more readily during a 

course of antimicrobial therapy than do non-mutator isolates. The hypermutator 

phenotype can give rise to a variety of mixed morphologies within the lung, including 

those described above [65]. These diverse populations can colonize or infect different 

compartments within the lung and often have variable antimicrobial susceptibilities with 

difference virulence properties [66-68]. 

Comparison of P. aeruginosa isolates from the CF lung to strains from non-CF 

patients clearly shows that CF isolates tend to demonstrate an overproduction of β-

lactamase, loss of OprD, and an overproduction of MexXY. This efflux pump 

overproduction leads to high-level aminoglycoside resistance and the overproduction of 

this and other efflux systems also lead to quinolone resistance, amongst which MexCD-

OprJ is the most frequent [69]. 

1.1.2.2 Antimicrobial Therapy for Treatment of P. aeruginosa  

P. aeruginosa isolates from CF patients frequently develop multi-drug resistance. 

Combination therapy can be used to avoid resistance development and to exploit the 
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synergistic effects of the bactericidal antibiotics. The use of aerosols allows for drugs to 

be delivered directly to the lung in CF patients and a number of antibiotics including 

gentamicin, tobramycin, colistin, ceftazidime, carbenicillin aztreonam, and amikacin have 

been administered as aerosols to CF patients, although approved formulations and 

adequate controlled studies have not been performed on most of these [70,71]. 

1.1.2.2.1 Antimicrobial Therapy for Colonization and Initial Infection 

Eradication of P. aeruginosa from the CF lung is possible only in the early stages 

of colonization. At this point, the bacterial load tends to be low, and the organism is non-

mucoid and has not begun to undergo significant morphological changes. Aggressive 

antimicrobial treatment upon first isolation of P. aeruginosa has been demonstrated in 

most cases to delay and occasionally prevent the onset of chronic infections resulting in a 

better quality of life and a greater life expectancy [72,73]. Successful eradication is 

judged by the observation of at least three consecutive negative cultures at intervals of at 

least one month. After one year of negative cultures following the onset of antimicrobial 

therapy, any isolation of P. aeruginosa is considered to represent a new isolate [40]. 

Aggressive antimicrobial use at the early stage has proven to be successful in certain 

cases, with a number of patients having remained culture negative for P. aeruginosa for 

several years after treatment [74,75]. 

1.1.2.2.2 Antimicrobial Therapy for Chronic Infections  

Once chronic P. aeruginosa infection has been established the high bacterial load 

present in the lung, as well as the phenotypic changes occurring in the pathogen 

complicate the antimicrobial therapy. The high bacterial load and thickened mucus are 

barriers to the attainment of sufficient exposure of the entire bacterial population to 
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bactericidal concentrations of antibiotics [76]. Administration of insufficient 

concentrations of antibiotics adds to an increased selective pressure for resistant 

phenotypes, thereby enhancing the diversity of the population, lending further difficulties 

to effective treatment [68,77]. 

Antimicrobial therapy is used during chronic infections in CF for two main 

purposes: maintenance therapy and treatment of acute exacerbations of infection [78]. 

Maintenance therapy is recommended for CF patients with chronic P. aeruginosa 

infections in order to reduce bacterial load and maintain overall lung function. 

Unfortunately, a number of side effects are associated with long-term antimicrobial use 

including loss of hearing, increased cough, alterations of the voice, and the appearance of 

antibiotic resistant strains. The use of on/off cycles of intermittent drug administration 

lead to the reduced occurrence of these side effects [79]. 

1.1.3. Pathogenesis and Major Virulence Factors 

Pathogenesis of P. aeruginosa infection is mediated by multiple bacterial virulence 

factors that facilitate adhesion and/or disrupt host cell signaling pathways while targeting 

the extracellular matrix (Figure 1). P. aeruginosa stands out as a unique and threating 

organism as it is capable of causing severe invasive disease and of evading immune 

defenses causing persisting infections that are nearly impossible to eradicate [29]. The 

subsequent tissue damage, invasion, and dissemination of P. aeruginosa are likely 

attributed to the many virulence factors it produces. These virulence factors play an initial 

role in motility and adhesion to the epithelium. These virulence factors are thought to be 

critical for maximum virulence of P. aeruginosa; however, based on observations of 

diverse plant and animal models, the relative contribution of any given factor may vary 
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with the type of infection [80-84]. Several of these virulence factors have also been 

studied for their roles as potential vaccine candidates although there is currently no any 

generally accepted vaccine. The following section briefly outlines several prominent 

virulence factors produced by P. aeruginosa and their proposed roles in contributing to 

disease. 

1.1.3.1 Lipopolysaccharide 

The LPS is a predominant component of the outer membrane of P. aeruginosa. 

Bacterial LPS typically consists of a hydrophobic domain known as lipid A (or 

endotoxin), a non-repeating core oligosaccharide, and a distal polysaccharide (or O-

antigen) [85]. The composition of O-antigen determines the serotype of P. aeruginosa 

isolates and there are currently 20 serotypes based on serological reactivity of the O-

antigen [86]. LPS plays a prominent role in the activation of the host innate and adaptive 

(or acquired) immune responses; LPS also causes dysregulated inflammatory responses 

that contribute to morbidity and mortality [87].  

Recognition of LPS occurs largely through the TLR4–MD2–CD14 complex, which 

is present on many cell types including macrophages and dendritic cells. Recognition of 

lipid A also requires an accessory protein, LPS-binding protein (LBP), which converts 

oligomeric micelles of LPS to a monomer for delivery to CD14, which is a high-affinity 

membrane protein that can also circulate in a soluble form [88-92]. In addition, NLRs 

regulate both inflammation and pyroptosis. The activation of NLRs results in an assembly 

of complex structures called inflammasomes [93]. The NLRP1 inflammasome was first 

described in 2002 in human monocytes as a molecular compound that responds to LPS 

[94]. Many stimuli that trigger the assembly of the inflammasomes have been described. 
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LPS’s are also reported to activate NLRP3 when administered in the presence of ATP 

[95], as well as NLRP2 [96]. A number of LPS vaccines have been investigated for use in 

CF patients in phase II and III clinical trials; however, these have not been successful 

[97-101]. The LPS based vaccines provided little immunity and did not appear to protect 

the patients from infection with P. aeruginosa [102].  

1.1.3.2 Flagellum 

The single unsheathed polar flagellum of P. aeruginosa is responsible for the 

swimming motility of this organism [103]. Nonetheless, its role in virulence goes beyond 

simple motility. Flagellar proteins have been shown to play critical roles in attachment, 

invasion, biofilm formation, and mediating inflammatory responses. Flagellar protein 

synthesis, assembly and regulation involves more than 40 genes and is intricately 

controlled through transcriptional and post-translational events by the four primary 

regulators RpoN, FleQ, FleR and FliA [104]. 

Non-flagellated mutants are often isolated from chronic infections in CF patients 

[105] due to the repressor activity of AlgT, which acts on the FleQ regulator [60]. The 

loss of flagella in these isolates is believed to be useful for the invasion of the host 

immune system. Flagellin mediates the inflammatory response via the activation of the 

innate immune system, through its specific interaction with a number of pattern 

recognition receptors (PRRs) of the host [106]. Flagellin is recognized by both TLR5 

[107] and NLRC4 [108,109]; as well NLRP3 [110]. However, different amino acid 

residues of flagellin are critical for sensing by NLRC4 or TLR5 [108]. Moreover, 

cytosolic delivery of P. aeruginosa flagellin is required for the activation of NLRC4 

[111]. Surprisingly, the NLRC4 inflammasome can be activated independently of 
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flagellin. The flagellin-deficient strains of P. aeruginosa can efficiently activate caspase-

1 in an NLRC4-dependent manner. This discrepancy in the requirement for flagellin in 

NLRC4 inflammasome activation was recently explained in an elegant study by Maio 

and colleagues [112]. They found that the NLRC4 inflammasome was activated in 

response to the basal body rod component of the T3SS apparatus from P. aeruginosa 

(Pscl), as well as from other microorganisms, such as S. typhimurium (PrgJ), 

Burkholderia pseudomallei (BsaK), Escherichia coli (EprJ and EscI), S. flexneri (MxiL) 

[112]. These rod proteins contain a sequence motif that resembles the one found in 

flagellin; hence, NLRC4 is activated by either of these similar stimuli. Furthermore, 

flagellar vaccines have been investigated in pre-clinical studies in mouse models and 

have reached phase III clinical trials for CF patients; however, limited protection was 

observed with a monovalent vaccine and development of a bivalent vaccine has been 

terminated [97].  

1.1.3.3 Type IV Pili 

The type IV pili of P. aeruginosa have a role in adhesion to many cell types and this 

is likely important in such phenomena as tissue tropism (attachment to particular tissues), 

initiation of biofilm formation and non-opsonic phagocytosis, which is mediated by 

phagocyte receptors that recognize corresponding adhesins on microbial surfaces [113-115]. 

Several studies have found a direct correlation between the presence of glycosphingolipids 

on host cells and P. aeruginosa adherence, thus demonstrating thir role as bacterial 

receptors. In particular, P. aeruginosa pili bind to the glycosphingolipid contained within 

host epithelial cell membranes, ganglio-N-tetraosylceramide (asialo-GM1) [116]. The 

interaction of pili and asialo-GM1 is followed by the internalization of P. aeruginosa in 
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host epithelial cells. In addition, these pili also mediate twitching motility found to be 

important in the formation of biofilms in vitro [117]; as well as in the initiation of bacterial 

dissemination from an initial point of colonization [118,119]. Although more than 50 genes 

have been identified to play either a direct or indirect role in the synthesis, function and 

control of the type IV pili of P. aeruginosa, the pili are composed of a single type IV pilin 

protein encoded by pilA [120]. Five alleles of pilA have been identified with group I pili 

being the most prevalent in both lung CF and environmental isolates [121]. P. aeruginosa 

pilin, the major component of the type IV bacterial pili, is identified as an inflammasome-

activating factor; as purified pilin activated caspase-1 and lead to secretion of mature IL-1β 

[122].  

1.1.3.4 Type III Secretion System 

P. aeruginosa has a variety of secretion systems of which at least four likely play a 

role in virulence (Type I, II, III, and IV). One of the most intriguing is T3SS that involves 

a flagellum-basal-body related system for delivering proteins directly from the cytoplasm 

of P. aeruginosa into the cytosol of host cells. A functional T3SS contributes to the 

successful phagocytosis evasion by P. aeruginosa as well as to the damage to host tissues, 

promotion of immune avoidance and bacterial dissemination. The T3SS of P. aeruginosa 

delivers up to four cytotoxins, ExoS, ExoT, ExoU and ExoY, directly to host cells [123-

125].  

ExoS and ExoT are bifunctional cytotoxins that possess both Rho GTPase-

activating protein and ADP ribosyltransferase activities. These molecules can inhibit 

phagocytosis by disrupting actin cytoskeletal rearrangement, focal adhesions and signal 

transduction [126]. Moreover, ExoU is a phospholipase, which contributes directly to 
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acute cytotoxicity towards epithelial cells and macrophages; while ExoY is an adenylate 

cyclase that affects intracellular cAMP levels and cytoskeleton reorganization [127,128]. 

Recent evidence has implicated a role of T3SS in P. aeruginosa pathogenesis in humans. 

The presence of large amount of T3SS products, particularly ExoU, in P. aeruginosa 

cultures isolated from intubated patients was linked to increased mortality regardless of 

whether these patients had symptoms or confirmation of VAP [129]. Also, P. aeruginosa 

T3SS activates the NLR inflammasome. However, in the absence of any of the known 

effector proteins, P. aeruginosa T3SS apparatus is sufficient to trigger the activation of 

caspase-1 by the inflammasome via NLRC4 [130]. In another words, a functional T3SS is 

critical for the induction of caspase-1 activity, IL-1β secretion and cell death, whereas the 

effectors ExoS, ExoT and ExoY are dispensable [108]. 

1.1.3.5 Exotoxin A 

There are several critical virulence factors that are secreted through Type II 

secretion mechanism, which use a pilus-like apparatus to secrete proteins into the 

extracellular environment, including exotoxin A, lipase, phospholipase, alkaline 

phosphatase, and protease; animal experiments have indicated the significant role of these 

factors in a model of infection [131]. For example, exotoxin A has been demonstrated to 

be involved in local tissue damage and invasion. This cytotoxin is encoded by the gene 

toxA and has been found to be present in most clinical isolates of P. aeruginosa, although 

its role in virulence is poorly understood [131]. Besides, exotoxin A enters host cells by 

receptor-mediated endocytosis and catalyzes the ADP-ribosylation of eukaryotic 

elongation factor-2 (EF-2) [132]. The EF-2 inhibits protein synthesis, ultimately leading 

to cellular death. 
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1.1.3.6 Proteases 

P. aeruginosa produces several secreted proteases including the zinc 

metalloprotease (elastase) LasB, the metalloendopeptidase LasA, and alkaline protease. 

These proteases work in a concerted fashion to destroy host tissue and hence they play a 

significant role in both acute lung infections and in burn wound infections [133-135]. A 

definite role of these destructive proteases in acute infections has been established. LasA 

and LasB elastases have also been found in the sputum of CF patients suffering from 

exacerbations of pulmonary infection [136,137]; yet, their role in chronic infection is not 

well understood. 

1.1.3.7 Alginate  

P. aeruginosa can produce a mucoid exopolysaccharide capsule, comprised of 

alginate, an acetylated random co-polymer of β 1-4 linked D-mannuronic acid (poly-M) 

and L-guluronic acid [138]. The overproduction of alginate is believed to play a role in 

cell adherence within the CF lung and is also thought to be involved in resistance to host 

defense by reducing susceptibility to phagocytosis [139], also in resistance to antibiotics. 

The small minority of CF patients, who are carrying only nonmucoid P. aeruginosa, have 

significantly better lung function over time compared to those patients infected with 

mucoid P. aeruginosa [140]. The tendency of P. aeruginosa to change to a mucoid 

phenotype is one of the most striking and clinically relevant features of infection by this 

bacterium. Additionally, poly-M shares with LPS the ability to stimulate human 

monocytes for CD14 cytokines production; in a CD14-dependent manner [141]. 

Involvement of TLR2 and TLR4 in cell activation by poly-M has been found in primary 

murine macrophages [142].  
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1.1.3.8 Quorum Sensing  

Quorum sensing is a mechanism of bacterial “cell-to-cell” communication via 

diffusible chemical compounds. A critical number of bacteria (the quorum) are required 

to produce a sufficient amount of a secreted signal molecule (termed an autoinducer) to 

trigger expression of a large regulon [143-145]. Quorum sensing and biofilm 

development are two social phenomena exhibited by bacteria. The connection between 

quorum sensing and biofilms has been named sociomicrobiology [146,147]. In addition, 

P. aeruginosa is regarded as a "model organism" in the quorum sensing field, which has 

been studied in most detail. Quorum sensing is known to control a number of bacterial 

genes. More than 300 genes are regulated via quorum sensing in P. aeruginosa [148]. 

The most common class of autoinducers used by Gram-negative bacteria is acyl-

homoserine lactones (AHL), which diffuse freely across bacterial membranes. AHL 

signals produced by P. aeruginosa are oxohexanoyl-homoserine lactone and butanoyl-

homoserine lactone [149,150]. AHL signals are produced by AHL synthase (LasI/RhlI), 

which diffuse into the environment. Increasing in bacterial density during infection leads 

to an increase in autoinducer concentration. When autoinducer reaches a particular 

threshold, it subsequently binds to transcriptional activator (LasR/RhlR) forming a 

complex that activates genes involved in biofilm formation and coding virulence factors 

[151-153]. The production of virulence factors, such as extracellular enzymes and cellular 

lysins (e.g., rhamnolipid) are important for the pathogenesis of infections as a protective 

shield against phagocytes [154-156]. Quorum sensing has been shown to determine the 

tolerance of P. aeruginosa biofilms to antibiotic therapy [157].  
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Recent advances in the understanding of quorum sensing in P. aeruginosa have 

generated interest in using quorum sensing as a target for therapeutics. The macrolide 

antibiotic, azithromycin, has been a promising candidate in this regard as it has been 

demonstrated to be capable of both penetrating biofilms and interfering with quorum 

sensing [158]. 

1.1.3.9 Biofilm Formation  

P. aeruginosa is capable of forming complex structures called biofilms. Resistance 

to antimicrobial agents is the most important feature of biofilm infections. Biofilm 

development is a complex process partly controlled by quorum sensing signals (Figure 2). 

Furthermore, a variety of components play a role in the initial attachment of cells to the 

surface and development of biofilm matrix including extracellular DNA (eDNA) [159], 

exopolysaccharide (Psl, Pel, and alginate) [160,161], iron siderophore pyoverdine, 

biosurfactant rhamnolipid [162], and proteinaceous surface appendages such as type IV 

pili, flagella [119], Cup fimbria [163]. There are still numerous factors that are involved 

in biofilm formation process and dispersion, which are related to signals, regulatory 

networks, and materials, reviewed elsewhere [161,162,164]. 

During biofilm formation, cell differentiation occurs, and oxygen and water-filled 

channels are formed to provide nutrition to the deep-rooted cells of the mature biofilm 

[165-168]. P. aeruginosa has been demonstrated to form biofilms on a variety of 

indwelling medical devices [169,170]. It is particularly problematic for patients requiring 

mechanical ventilation and catheterization, as the surfaces of medical devices can readily 

develop P. aeruginosa biofilms that are difficult to remove. Also, P. aeruginosa has been 

demonstrated to grow as a biofilm within the body particularly at the site of burn wounds. It 



 

 21 

has been proposed that P. aeruginosa exists as a biofilm in the CF lung [9,171] and this has 

been observed in a mouse model of CF lung infection [172].  

In addition to evasion of the host immune system, a highly resistant nature of 

biofilms to killing by bactericidal antibiotics contributes to bacterial persistence in chronic 

infections [173]. It has been demonstrated that cells growing in a biofilm can be up to 1000 

fold more resistant to antibiotics than free-swimming, planktonic cells [174]. Biofilms 

present not only a diffusion barrier to antibiotics, but also the cells in a biofilm have been 

demonstrated to have significantly different gene expression compared to their planktonic 

counterparts [175]. 

1.1.3.10 Type VI Secretion Systems 

Bacterial pathogens frequently possess a number of secretion systems that function 

to translocate protein secretion. The T6SS represents one of the most recently recognized 

examples of these secretion systems. An interest in T6SS has led to its rapid study in P. 

aeruginosa in term of structure, mechanical function, assembly, and regulation of 

secretion [176,177]. P. aeruginosa T6SS provides defense against other bacteria in the 

environment [177,178] and facilitates interactions with other eukaryotic [179]. P. 

aeruginosa encodes three distinct T6SS, which are known as H1-, H2-, and H3-T6SS, 

each involved in bacterium’s interaction with other organisms. The H1-T6SS delivers at 

least six toxic effectors into host bacteria and is a model for studying physiological 

function of T6SS antimicrobial activity [177,178,180]. H2- and H3-T6SS have a dual role 

allowing interaction with both eukaryotic and prokaryotic target cells. The antibacterial 

activities are mediated through H2-T6SS-dependent phospholipase D (PLD) PldA and 

H3-T6SS-dependent PldB. Both T6SS effectors, PldA and PldB can degrade membrane 
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phospholipids, resulting in antibacterial activity. T6SSs, H2-T6SS-dependent PldA and 

H3-T6SS-dependent PldB, have also been linked to P. aeruginosa immune evasion by 

promoting internalization into human epithelial cells [179]. Interestingly, mutations in the 

catalytic domains of both PldA and PldB reduced P. aeruginosa internalization into 

epithelial cells, which shows that phospholipase activity is essential for invasion of the 

mammalian epithelium by P. aeruginosa [179]. 

Previous works have shown that the internalization of P. aeruginosa is dependent 

on the activation of the eukaryotic phosphoinositide 3-kinase (PI3K) that results in AKT 

phosphorylation in presence of phosphatidic acid, subsequent actin rearrangement and 

protrusion formation [179,181,182]. In addition, PI3K/AKT signaling pathway is crucial 

for some processes including cell growth, proliferation, and programmed cell death [183]. 

Notably, epithelial cells that were infected with P. aeruginosa mutants (PldA, PldB, H2-

T6SS, or H3-T6SS deficient) displayed reduced levels of AKT phosphorylation 

compared to the wild type strain. Furthermore, PldA and PldB were shown to bind to 

AKT, and both PldA-AKT and PldB-AKT complexes localized close to the epithelial cell 

plasma membrane [179]. These data suggest that PldA and PldB have a central role in the 

activation of the PI3K-AKT signaling pathway to promote the invasion of epithelial cells 

by P. aeruginosa. Whereas P. aeruginosa is known to colonize the lungs of CF patients, 

previous studies have indicated that PldB and H3-T6SS loci are both up-regulated under 

low-oxygen conditions [184] and also during biofilm formation [185]. For this reason, 

induction of both PldB and H3-T6SS in these conditions may allow better colonization of 

the lung epithelium through invasion. These findings reveal a function for the P. 

aeruginosa H3-T6SS effector PldB and show that PldB and PldA can influence both 
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bacterial competition and interaction with mammalian hosts. T6SSs are promising targets 

for the development of new approaches to diagnosis, vaccine development and 

antimicrobial drug design [186,187]. 

1.1.3.11. Oxidant Generation in the Airspace 

Oxidative stress refers to as an imbalance in the redox status of the cell favoring an 

oxidizing environment. Extensive reactive oxygen species (ROS) production leads to the 

depletion of antioxidants and results in cellular damage. In particular, ROS can damage 

DNA strands by reacting with base pairs and the deoxyribose phosphate backbone of 

DNA, the primary target of radical damage [188]. Without the protection by antioxidants, 

ROS can also initiate lipid peroxidation of polyunsaturated fatty acid components of cell 

membrane phospholipids, affecting cellular integrity [189]. Amino acids can also be 

damaged by ROS, leading to protein denaturation and enzyme deactivation [188,189]. 

When left unmanaged, oxidative stress can eventually lead to cell death.  

During the infectious process, P. aeruginosa induces ROS production within 

epithelial cells in a few ways. Following its secretion into the microenvironment, 

pyocyanin permeates the epithelial cell membrane and directly oxidizes intracellular 

pools of NADPH and glutathione, producing superoxide and downstream ROS [190]. 

Recognition of P. aeruginosa LPS by the epithelial cells leads to ROS production 

through protein kinase C (PKC)-NADPH oxidase signaling pathway in human epithelial 

cells [191]. Other potential sources of ROS are derived from the activated epithelium via 

induction of the mitochondrial electron transport chain, cytochrome p450, and xanthine 

oxidase. In the case of mechanical ventilation, the introduction of excess oxygen can also 

fuel the production of ROS [192]. In acute lung injury, however, stimulated phagocytes 
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produce the majority of ROS [193]. Overwhelming oxidant injury may lead to alveolar 

collapse and extensive fibrotic scarring, impairing gas exchange between the affected 

airways and the capillary system [193].  

1.1.4. Antimicrobial Resistance 

P. aeruginosa can be an especially challenging organism to treat once infection has 

been established as it is intrinsically resistant to many of the available antibiotics. Four 

mechanisms have been studied by which P. aeruginosa resist the action of antibiotics. 

The outer membrane of P. aeruginosa restrictes the penetration of antibiotics. The 

efficient removal of antibiotics molecules by efflux pumps before acting on their targets 

occurs. P. aeruginosa has the genetic capacity to inactivate and modify antibiotics. This 

bacterium can become resistant through mutational changes in antibiotic’s targets [6]. 

Consequently, P. aeruginosa has now achieved the status of the superbug. This section 

will provide an overview of the main mechanisms of resistance present in clinical isolates 

of P. aeruginosa. 

1.1.4.1 Intrinsic Resistance 

P. aeruginosa exhibits intrinsic resistance to almost all of the available antibiotics, 

indicating that the one strain possesses number of genetic mechanisms that contribute to 

reducing susceptibility of the organisms. One of the major factors contributing to this 

intrinsic resistance is the low permeability of the outer membrane. The outer membrane is 

essential for passively determining the rate of uptake of antibiotics and small molecules 

[10]. However, by itself this is insufficient to mediate significant resistance, and 

antibiotics will equilibrate across the outer membrane. Thus, intrinsic resistance arises 

from the combination of slow uptake and secondary mechanisms that benefit from this 
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slow uptake including degradative enzymes such as periplasmic β-lactamase and 

particularly multidrug efflux systems. There are at least four antibiotic efflux systems that 

have been described including MexAB-OprM and MexXY-OprM, MexCD-OprI, and 

MexEF-oprN elsewhere [6,10,194,195].  

The P. aeruginosa outer membrane is an asymmetric membrane composed of an 

inner leaflet of phospholipids, predominantly phosphatidylethanolamine, and outer layer 

of polyanionic LPS. The latter presents a negatively charged surface, which, together 

with the divalent cations bridging the individual LPS molecules, forms a matrix around 

the cell that is relatively impermeable to polar compounds except polycations [196]. 

Multidrug efflux pumps also mediated resistance to many classes of antibiotics. The P. 

aeruginosa genome contains a large number of drug efflux systems [5], which have been 

categorized into five superfamilies including: the small multidrug resistance family, the 

ATP-binding cassette family, the multidrug and toxic compound extrusion family, the 

resistance-nodulation-cell division family, and major facilitator superfamily [195,197-

200]. 

P. aeruginosa also expresses periplasmic β-lactamases to degrade β-lactan 

antibiotics. The β-lactamases are hydrolyzing enzymes that cleave the lactam ring of 

penicillins, carbapenems, cephalosporins and monobactams, thus leading to inactivation 

of the antibiotic [201-203]. In P. aeruginosa, this activity is due to a chromosomally 

encoded AmpC β-lactamase. The AmpC β-lactamase of P. aeruginosa can degrade and 

contribute to intrinsic resistance to ticarcillin, piperacillin and the third-generation 

cephalosporins. It is strongly induced by carbapenems, particularly imipenem, although 

these inducing carbapenems are stable against its hydrolytic activity [204].  
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1.1.4.2 Adaptive Resistance  

Discrepancies between in in vitro susceptibility of P. aeruginosa isolates and 

treatment outcomes in CF patients have been observed, and can be attributed to the 

phenomenon of adaptive resistance. Adaptive resistance occurs when cell populations are 

exposed to non-lethal concentrations of antibiotic and then undergo specific changes in 

gene expression that result in reduced susceptibility. It is a form of inducible resistance 

that does not require the presence of mutations; it has been demonstrated in vitro using 

CF isolates and in mouse models, when isolates were pre-incubated with subinhibitory 

concentrations of antibiotics [205-207]. However, the concern arises that this induction 

may allow small population to survive and acquire stably resistant mutations. Similarly, 

polymyxin susceptibility in P. aeruginosa is associated with the LPS structure, which is 

determined by arnBCADTEF and modulated by PhoPQ and PmrAB [208]. Adaptive 

resistance to polymyxins and antimicrobial peptides has been shown to occur through 

altered expression of the PhoPQ and PmrAB systems in response to these agents. This 

also leads to modulation of Lipid A fatty acid composition [209], which ultimately affects 

resistance to not only polymyxin and antimicrobial peptides, but also the 

aminoglycosides, which rely on the LPS binding for self-promoted uptake. 

1.1.4.3 P. aeruginosa as a Superbug 

The accumulation of multiple resistance mechanisms in clinical isolates of P. 

aeruginosa resulted in strains that are resistat to all available antibiotics. This pandrug 

resistance, which means resistant to all antimicrobial agents, together with high 

attributable mortality, has thrust P. aeruginosa into the spotlight as an emerging superbug. 

According to report by the National Nosocomial Infections Surveillance (NNIS) System, 
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which focused on nosocomial infections in ICU, not only were resistance rates increasing, 

but the incidence of occurrence of most infection types was also increasing [210]. In 2003, 

the NNIS reported a 9% increase in resistance to the third generation cephalosporins, a 

15% increase in ciprofloxacin resistance, and most alarming, a 47% increase in imipenem 

resistance over a five year period. According to the European Antimicrobial Resistance 

Surveillance System, 18% of P. aeruginosa isolates were multidrug resistant, with 6% of 

all isolates being resistant to piperacillin, ceftazidime, fluoroquinolones, aminoglycosides 

and carbapenems [211]. The drug of last resort for infections with multidrug resistant P. 

aeruginosa is colistin (polymyxin E), and while resistance rates remain low 

(approximately 1% in most countries), mortality of 80% has been observed for infections 

caused by colistin resistant Gram-negative bacilli [212].  

1.1.5. Conclusion 

In conclusion, it would be impossible to remove P. aeruginosa from the 

environment, even from the internal environment of the hospitals because it is so hardy 

and metabolically versatile. However, the last two decades have seen a remarkable 

addition in active medication and therapy to the treatment of CF lung infection. These 

therapies have enhanced the overall health of patients with CF and this is apparently a 

partial reason that demanded survival has increased. However, these therapies do not 

offer a cure and they primarily target downstream complications of the pathophysiology 

of CF lung infection, meaning that patients continue to have morbidity. However, innate 

immunity is critical in protecting the host from bacterial invasion, but at the same time it 

can directly & indirectly damage tissues. In addition, these therapies add to a 

considerable treatment burden and are thus also associated with poor adherence. What is 
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more, it appears likely that the antibiotic resistance will continue to be a problem in 

dealing with P. aeruginosa infections. The fundamental issues underlying this problem 

are the conditions of the patients that are prone to such infections, and, the high intrinsic 

resistance of this bacterium, which has remained constant. Chronic P. aeruginosa airway 

infection and the accompanying inflammatory response are clearly the significant clinical 

problems for CF patients today. No doubt, there is an urgent need for alternative 

therapeutic strategy with P. aeruginosa infection. 
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Figure Legend 

Figure 1 P. aeruginosa Pathogenesis and Major Virulence Factors 

Pathogenesis in P. aeruginosa infection is mediated by various adhesins and secreted 

toxins, proteases, effector proteins and pigments that facilitate adhesion, modulate or 

disrupt host cell signaling pathways, and target the extracellular matrix. Figure has been 

recreated from Hauser and Ozer [213]. Abbreviations: ADP, adenosine diphosphate; 

Asialo-GM1, asialo-gangliotetraocyl ceramide 1; EF2, elongation factor 2; FpvA, feeric 

pyoverdine receptor; PA, phosphatidic acid; RAS, ribosyltransferase; SOD1, superoxide 

dismutase 1; 14-3-3, 14-3-3 protein family. 

 

Figure 2 Development of a P. aeruginosa biofilm. 

Biofilm formation starts with the attachment of free-swimming bacteria (planktonic) to a 

surface via their type IV pili and flagellum, followed by twitching motility and the 

formation of microcolonies; then quorum sensing signals begin to accumulate. Once a 

critical threshold of quorum sensing signals is reached, microcolonies increased in the 

extracellular matrix. Cells enter a sessile phase of growth and become highly resistant to 

antimicrobials and then evolve into mature biofilms. Biofilm architecture depends on the 

production of the biofilm matrix, which consists of the polysaccharides Pel (synthesized 

by PelA–PelG), Psl (arranged in a helical pattern around cells) and alginate, extracellular 

DNA (eDNA), and proteins, including the CupA, CupB and CupC fimbriae, which 

mediate bacterial attachment during initial biofilm formation, and the lectin LecB. The 

extracellular polymeric matrix delays diffusion of some antibiotics into the biofilm. A 

gradient of oxygen and nutrients results in the formation of distinct bacterial 
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subpopulations that vary in their susceptibility to antibiotics; exposure to β-lactams or 

colistin can cause the production of resistance factors (AmpC β-lactamase and MexA–

MexB–OprM efflux pumps). Rhamnolipids at the bacterial surface cause necrosis of 

neutrophils. Finally, planktonic bacteria are released from parts of a mature biofilm. 

Individual cells and small microcolonies slough from the mature biofilm initiating further 

biofilm development. Figure 2 bacteria has been recreated from Hauser and Ozer [213]. 
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1.2 NOD-like receptor(s) and host immune responses with Pseudomonas aeruginosa 

infection 

 

Published Review: Journal of Inflammation Research  

Author: Alaa Alhazmi  

 

Abstract  

Introduction: Molecular mechanisms underlying the interactions between 

Pseudomonas aeruginosa, the common opportunistic pathogen in cystic fibrosis 

individuals, and host induce a number of marked inflammatory responses and associate 

with complex therapeutic problems due to bacterial resistance to antibiotics in chronic 

stage of infection. Methods: P. aeruginosa is recognized by number of pattern 

recognition receptors (PRRs); NOD-like receptors (NLRs) are a class of PRRs, which can 

recognize a variety of endogenous and exogenous ligands, thereby playing a critical role 

in innate immunity. Results: NLR activation initiates forming of a multi-protein complex 

called inflammasome that induces activation of caspase-1 and results in cleavage of pro-

inflammatory cytokines interleukin (IL)-1β and IL-18. When the IL-1β is secreted 

excessively, this causes tissue damage and extensive inflammatory responses that are 

potentially hazardous for the host. Conclusions: Recent evidence has laid out 

inflammasome-forming NLR far beyond inflammation. This review summarizes current 

knowledge regarding the various roles played by different NLRs and associated down-

signals, either in recognition of P. aeruginosa or may be associated with such bacterial 
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pathogen infection, which may relate to for the complexity of lung diseases caused by P. 

aeruginosa. 

 

Keywords: Pseudomonas aeruginosa, Infection, Inflammation, NOD-like receptors, 

Caspase-1 

1.2.1 Introduction 

Host innate immunity, with its intense concern over how microbes are sensed, is 

very much linked to microbial pathogenesis. Innate immunity, as a first-line host defense, 

recognizes either pathogen- or danger-associated molecular pattern molecules (PAMPs 

and DAMPs, respectively), by the engagement of pattern recognition receptors (PRRs) 

[1,2]. Thus far, a large group of PRRs have been shown to mediate immune responses. 

Toll-like receptors (TLRs) and C-type lectin receptors (CLRs) are expressed on both cell 

surface and endosomes [3,4]. RIG-like receptors (RLRs) and AIM2-like receptors 

(ALRs) are both expressed in the cytoplasm [5]. NOD-like receptors (NLRs) are 

expressed in the nucleus and cytoplasm [6,7]. As well as some other recently identified 

PRRs for intracellular pathogens [8].    

While the role of TLRs in bacterial immunity has been relatively well studied, the 

contribution of NLRs is less defined. Activation of NLRs have recently been recognized 

as an essential part of the innate immunity and, consequently, mediate host cellular 

responses leading to inflammation [1]. NLRs are expressed in many different species 

such as rat, mouse, cattle, and chimpanzee [9-11], but have been studied more extensively 

in humans. Structurally, NLRs are composed of a conserved central domain that mediates 

nucleotide binding and oligomerization, a C-terminal leucine-rich domain (LRR) that 
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senses NLR agonists, and a N-terminal region required for protein-protein interaction. 

Human NLR family is composed of 22 known members to date (Table 1) and classified 

into number of subfamilies based on domain type [1,12]. The activation of NLRs, results 

in a protein conformation change. This allows the NLR to interact with target proteins 

(ASC speck and pro-caspase-1) to assemble complex structures called inflammasome 

[13], which have the ability to either positively or negatively regulate inflammatory 

responses (Figure 1). Inflammasome is a high-molecular weight signaling platform 

required for the activation of caspase-1 (also known as interleukin-1 converting enzyme 

or ICE), which is expressed in various cells in an inactivated form (46 kDa) for 

maturation of pro-interleukin (IL)-1β and pro-IL-18 into biologically active molecules to 

evoke inflammatory response [2,14,15]. A general scheme for inflammasome-forming 

NLR activation is presented in Figure 2. As NLRs have only been studied during the last 

decade, specific molecular mechanisms of their activation remain largely undefined 

[1,16]. Inconsistencies in the naming of several NLR members have led to confusion and 

the work by Ting et. al. has proposed a method of nomenclature based on structure [17]. 

All naming of NLRs in this review follow that recommendation. 

While inflammasome-forming NLRs activation initiates a robust innate immune 

response [1], its activation regulates homeostatic processes the same as inflammation 

during infection and tissue injury, which is defined as regulatory NLRs. Over the last 

decade, significant progress has been made in identifying general characteristics of NLR 

family members. However, despite this progress, many of the identified NLRs lack 

significant mechanistic and functional insight [18]. Several questions are outstanding 

regarding the clinical relevance and therapeutic potential of NLRs in human disease, 



 

 52 

mostly in the specificity of the mechanisms associated with bacterial pathogen 

recognition [18]. While the role of the NLRs in response to an opportunistic pathogen, 

such P. aeruginosa, is still an emerging area of study, especially for some regulatory 

NLRs, this review focuses on the current understanding related to inflammatory-mediated 

NLRs, unique regulatory NLRs, and emerging concepts associated with their function in 

bacterial innate immunity.      

1.2.2 P. aeruginosa as an opportunistic pathogen in Cystic Fibrosis patients 

P. aeruginosa is an opportunistic pathogen and a leading cause of morbidity and 

mortality in cystic fibrosis (CF), which can colonize the lung of CF individuals [19,20]. 

This bacterial pathogen is equipped with multiple virulence factors that allow it to adhere, 

infect, invade, adapt, and develop resistance against therapeutic agents [21]. P. 

aeruginosa is also highly adaptable in the CF host lungs with a hypermutable genome 

[22]. Over the course of in vivo infection, P. aeruginosa accumulates multiple loss-of-

function mutations and mutated bacteria have been isolated from chronically infected CF 

patient lungs [22-24]. P. aeruginosa becomes challenging to treat, as a result of its 

antibiotic resistance [25,26]. P. aeruginosa has proven to be an adaptable pathogen that 

ensures it persists in CF patients; hence, this persistent bacterial infection underlies the 

chronic lung infection and continues to provoke the immune responses that CF patients 

experience [27]. However, bacterial inflammation, the process aimed at restoring 

homeostasis after an infection, can be more damaging than the infection itself if 

uncontrolled, excessive, or prolonged and may cause tissue damage, which eventually 

can interfere with bacterial clearance. Therefore, understanding the molecular 

mechanisms underlying the host-pathogen interaction and the persistence of P. 
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aeruginosa infection, is a primary step for changing the natural course of this disease. 

NLRs could be the axis point to attenuate inflammatory responses in P. aeruginosa-

infected cells and thus, a number of studies have been conducted from a variety of 

perspectives including: 1) testing P. aeruginosa for potency to activate NLRs in 

leukocytes or respiratory epithelial cells, 2) bacterial challenges in mice deficient in 

particular NLR gene(s) or signaling molecules, and 3) bacterial challenges of cells or 

mice with deficiencies in cystic fibrosis transmembrane conductance regulator (CFTR) 

gene, sometimes combined with deficiencies in NLRs. In this review, NLRs will be 

considered as a therapeutic target capable of protecting the lung damage during infection.  

1.2.3 NLR Signaling  

1.2.3.1 Activation of Caspase-1  

Caspase-1 was initially identified as the protease responsible for cleave of pro-IL-

1β and induce apoptosis. Deeper understanding of this process was provided by the 

discovery that NLRP3 and ASC are required for the activation of caspase-1 in response to 

ATP and certain bacterial pore-forming toxins [28]. The mechanism by which caspase-1 

is activated in response to infection or tissue damage was found to be regulated by an 

inflammasome, which consists of a NLR family member, ASC, and an inactive caspase-1 

precursor (pro-caspase-1), followed by production of biologically active IL-1β and IL-18 

[16,29-32]. 

There is a discrepancy related to caspase-1 concentration; it has been demonstrated 

that caspase-1 has low substrate specificity at high concentrations, which is drastically 

increased by lowering its concentration. Also, it has been reported that the half-life of 

active caspase-1 is very low comparing to other caspases [33]. Interestingly, pro-IL-1β 



 

 54 

and pro-IL-18 are not the only substrates of active caspase-1 since several proteomics 

approaches led to the identification of novel caspase-1 cleavage products [33-36] (Figure 

3). Active caspase-1 cleaves several enzymes required for glycolysis, which is essential 

for the synthesis of ATP as required for macrophage survival and activation, such as 

aldolase, GAPDH, triose-phosphate isomerase, and α-enolase [36]. However, whether 

involvement of caspase-1 with glycolysis contributes to host immune response or plays 

an important role in pathogenesis, is not known. Interestingly, executioner caspase-7 is 

involved in apoptosis pathway and it has been shown that caspase-1 activate caspase-7 in 

both in vitro and in vivo [34]. This cleavage requires expression of NLRP3 and NLRC4 

when macrophages are stimulated with NLRP3 or NLRC4 activators, respectively [34]. 

This induction of expression of NF-κB target genes by inflammasome-induced caspase-7 

activation points into a different direction, which results in translocation of caspase-7 to 

the nucleus, where it cleaves PARP1. This induces PARP1 release from chromatin and 

eventually induces the expression of NF-κB gene [37].   

 Although capsase-1 supports cell death of immune cells infected by Salmonella 

[38], it can also support survival and confer resistance to pathogenic bacteria [39,40]. 

Some bacteria express pore-forming toxins as virulence factors, which create holes of 

various sizes in the plasma membrane of the host cell. These pores lead to the efflux of 

intracellular potassium, which triggers the NLRP3-, NLRC4-, and ASC-dependent 

activation of capase-1. Interestingly, active caspase-1 is required for activation of sterol 

regulatory element binding proteins (SREBPs), which are transcription factors that 

function predominantly in cholesterol and fatty acid biogenesis. Inactive SREBPs are 

located in the ER membrane. Upon cholesterol depletion, which induces their activation, 
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SREBPs move to the Golgi apparatus, where they are processed and liberated by two 

Golgi proteases. Eventually, SREBPs translocate to the nucleus, where they induce the 

expression of target genes and switch on lipid metabolic pathways [39,40]. SREBP 

activation is blocked by inhibition of caspase-1 activity or by knockdown of caspase-1, 

NLRP3, NLRC4, and ASC expressions. This cross-talk between active caspase-1 and 

SREBP is demonstrating an unexpected role of caspase-1 in cell survival, due to the 

repair of the damaged plasma membrane through the SREBP-dependent synthesis of 

lipids. However, the molecular mechanism of how caspase-1 activates SREBPs is 

completely unknown; this process suggests the existence of an unknown substrate of this 

protease, which, in turn, activates SREBPs. It would be interesting to know whether 

caspase-1 is also able to increase survival in macrophages, which are the primary cells 

involved in defense against pathogens [40]. The relevance of these less-known pathways 

with P. aeruginosa infection remains to be determined. In order to demonstrate caspase-1 

involvement in disease processes, caspase-1 inhibitors are commonly used to investigate 

inflammasome-forming NLRs’ activities [41-49], which are discussed elsewhere [50-52].  

1.2.3.2 Release of Inflammatory Cytokines: IL-1β and IL-18 

IL-1β is a well-known player in the process of inflammation [53-56]. 

Fundamentally, production of active IL-1β requires two signals; first, usually due to PRR 

signaling (e.g., TLR), induces pro-IL-1β expression. The second signal involves 

activation of inflammasome-forming NLRs and subsequently active caspase-1 [57]. Upon 

activation, active IL-1β is released from the cytosol, and it acts as a signaling molecule 

by autocrine and paracrine fashion through binding to IL-1R; this leads to production of 

pro-IL-18 [58], tumor necrosis factor (TNF) [59], and further synthesis of IL-1β [60]. 
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Caspase-1 is described as the principal activator of pro-IL-1β [57,61,62] and therefore, a 

central regulator of the inflammatory response. In addition, active caspase-1 can also 

activate pro-IL-18 [63].  

The active form of IL-18 is a potent stimulator of interferon gamma (IFN-γ) 

synthesis by NK (natural killer), Th1 (T helper), and Tc (T cytotoxic) cells. IL-18 is also 

involved in activation of TLR2 [64], and induction of IL-6 [65]. Interestingly, pro-IL-1α, 

pro-IL-1β, and pro-IL-18 lack a signal peptide for protein secretion and are released from 

cells by a poorly understood pathway termed unconventional protein secretion, which 

occurs independently of the classical ER/Golgi pathway [30,53]. 

1.2.3.3 Induce Inflammatory Cell Death: Pyroptosis  

When a cell dies from a physiological reason such as aging, a process of normal 

cell turnover, the cell is cleared in the apoptotic process and inflammatory response is not 

activated. However, in the case of pathological cell death, production of chemokines, 

transmigration of leukocytes (neutrophils) to the site of damage, and activation of 

inflammatory response occur [66]. Therefore, cell death can be classified to different 

types, such as: apoptosis, necrosis, and pyroptosis [67-70], according to the 

Nomenclature Committee on Cell Death (NCCD) 2012 [67]. Since these subroutines are 

numerous and often overlap, only pyroptosis, one type of inflammatory cell death, will be 

focused on in this review.  

Pyroptosis is a caspase-1-dependent programmed inflammatory cell death and can 

be distinguished clearly from apoptosis [61,62,71-73], which involves DNA 

fragmentation; however, it does not lead to membrane blebbing, cytochrome c release, 

and caspase-3 activation as observed in apoptosis. Furthermore, pyroptosis and necrosis 
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lead to cell swelling, pore formation, and cell lysis, which subsequently release active 

caspase-1 (an important characteristic that is not related to necrosis). Therefore, 

pyroptosis is associated with anti-pathogen response during inflammation and has 

characteristics of both apoptosis and necrosis [74,75]. Activation of inflammasome-

forming NLRs with consequent induction of pyroptosis, has been demonstrated for 

several microbial pathogens [70,76-78]. In the case of bacterial pathogens, pyroptosis is a 

mechanism that effectively contributes to infection control; thus, some bacteria and 

viruses use diverse strategies to evade recognition and inflammasome-forming NLRs 

activation, including P. aeruginosa [71,79,80]. However, the molecular mechanisms of 

inflammasome-forming NLRs inhibition by pathogens, particularly P. aeruginosa, 

remain largely unknown. Pyroptosis was first described in mouse macrophages infected 

with Salmonella typhimurium [38] and caspase-1 induction occurs via NLRC4 and ASC 

[81]. However, pyroptosis induced by Bacillus anthracis seems not to involve NLRC4, 

but instead involves NLRP1 protein [82]. Interestingly, LPS-stimulated human 

macrophages have been shown to undergo ASC- and caspase-1-dependent pyroptosis 

[83]; thus, distinct models of pyroptosis exist uncertain in literature. Studies discussing 

the mechanism of pyroptosis inhibition by some bacterial pathogens and, in case of P. 

aeruginosa, T3SS (exoenzyme S (ExoS) and ExoU) has been suggested in the 

involvement of pyroptosis inhibition [84]. Indeed, the theory of induction of pyroptosis or 

NLR inhibition with P. aerguionsa infection is still undefined.      

Recent studies discussed the activation of specific caspase family members 

(Caspase-1, -4, -5, and -11) with cystolic LPS, as well as activation of NLRP1, NLRP3, 

NAIP, and NLRC4 induce the cleavage of Gasdermin D (GSDMD), which is considered 
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to be involved in epithelial cell proliferation and causing pore-formation on cell 

membrane [85]. It is also reported that GSDMD pores required for IL-1β release with 

macrophages [86].    

1.2.4 Recognition of P. aeruginosa by NLRs  

1.2.4.1 Inflammasome-dependent Caspase-1 Activation in P. aeruginosa-infected 

Cells  

A number of studies demonstrated the activation of caspase-1 with P. aeruginosa 

infection, either directly by addressing its involvement, or indirectly through studying 

NLRs activation and the release of pro-inflammatory cytokines active IL-1β and IL-18. It 

has been reported that pro-caspase-1 expressed in various human tissues with different 

levels of expression, as well as in some cultured cell lines [87]. It has been found that 

caspase-1 activation, together with IL-1β secretion, in infected human macrophages with 

P. aeruginosa up-regulated in a time- and dose-dependent [88]. Activation of single NLR 

led to formation of inflammasome and followed by caspase-1 activation; however, there 

are many NLRs that could be triggered by different activators in a timely manner and all 

eventually activate caspase-1. Accordingly, it should be noted there is a difference at the 

level of inflammatory cytokines release between inducing single NLR with well-known 

related activator compared to using multiple activators, which may be triggering more 

than a single NLR (e.g., using whole bacteria such as P. aeruginosa). Hence, it is worth 

to raise some questions regarding this: Does each NLR have limited threshold for 

activating caspase-1? Or, Does the activated caspase-1 have threshold with each specific 

activated NLR? While there is synergy between activated NLR and activation of caspase-

1 and IL-1β production, why does not all of pro-caspase-1 get activated?  
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Some of active caspase-1 has been reported that it released extracellular. However, 

there is no data regarding whether there is a specific receptor on cell membrane for active 

caspase-1 or even its role outside of the cells. Recent studies found that overexpression of 

caspase-1 in infected-THP-1 cells with P. aeruginosa enhanced autophagy in infected 

cells by the increased expression of LC3-II protein, which is recruited to autophagosomal 

membranes [88]. Release of pro-inflammatory cytokines and induction of pyroptosis are 

both dependent on caspase-1 activation. Based on the literature, activation of caspase-1 is 

involved in the pathogenesis of P. aeruginosa and contributes to an efficient immune 

response by the host.  However, the role of caspase-1 with either cell death or other less-

known pathways in P. aeruginosa infection still remains elusive. 

1.2.4.2 Importance of NOD1 in Host Defense Mechanisms against P. aeruginosa 

Some studies have highlighted the importance of NOD1 and NOD2 in innate 

immune response and, as a result, those have become well-characterized members in the 

NLR family [12]. NOD1 is expressed ubiquitously in various cell types, while NOD2 is 

primarily found in antigen presenting cells such as macrophages and dendritic cells (DCs) 

[89]. Furthermore, NOD1 and NOD2 are cystolic receptors for specific muropeptides 

present in bacterial peptidoglycan to achieve this sensing [90]. Where NOD1 recognizes 

diaminopimelic acid (DAP) found in the peptidoglycan of many Gram-negative bacteria 

like P. aeruginosa, NOD2 is a more general sensor of bacteria and detects muramyl 

dipeptide (MDP) present in the peptidoglycan of both Gram-positive and -negative 

bacteria. In bacteria unable to enter the cell, the mechanism by which these peptides are 

detected remains unknown [90-92]. Most NLRs do not alter NF-κB signaling, however, 

NOD1 and NOD2 are associated with NF-κB activation after stimulation with 
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peptidoglycan [90,93-95]. Studies have reported the internalization of P. aeruginosa 

within human epithelial cells [96,97], and investigated the role NOD1 with P. aeruginosa 

peptidoglycan, which involved in NF-κB activation and bacterial killing [21]. Another 

study identified a novel mechanism of P. aeruginosa to deliver peptidoglycan to NOD1 

in host cells via outer membrane vesicles (OMVs) [98]. While it has been demonstrated 

that the involvement of NOD1 and human β-defensin 2, which is a pulmonary 

antimicrobial peptide [99], in direct killing of Gram-negative bacteria, Helicobacter 

pylori [100], it will be interesting to look at mechanisms involved in NOD1-dependent 

intracellular bacterial killing, as well induction of autophagy [101] and host defense to 

elucidate the role of NOD1 in P. aeruginosa infection.  

1.2.4.3 NLRC4 and TLR5 have unique and redundant roles in lung immunity 

against P. aeruginosa 

NLRC4 is required for the activation of caspase-1 in macrophages infected with 

pathogenic bacteria, including Salmonella enterica [102,103], Legionella pneumophila 

[104-106], and P. aeruginosa [107,108]. The activation of caspase-1 by these pathogenic 

bacteria requires a functional bacterial secretion system, which has been suggested as a 

link between bacterial pathogenicity and NLRC4 activation [109]. These secretion 

systems, which include the T3SS and T4SS, act as molecular needle-like structures that 

inject effector proteins into the cytosol of host cells and are critical for pathogen 

colonization. Flagellin, the principle substituent of the flagellum, is also important for 

activation of the NLRC4 inflammasome [102,103]. Since the delivery of purified 

flagellin to the macrophage cytosol triggers caspase-1 activation through NLRC4 

[102,103], it had been thought that NLRC4 is activated in macrophages via the leakage of 
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small amounts of flagellin through a T3SS (for example, S. enterica and P. aeruginosa), 

or T4SS (for example, L. pneumophila), during infection [110]. However, Shigella 

flexneri, an aflagellated pathogenic bacterium, also induces activation of the NLRC4 

inflammasome through the T3SS [81]. Furthermore, flagellin-deficient S. enterica and P. 

aeruginosa can activate NLRC4 at high ratios of bacteria to macrophages, which further 

suggest that factors other than flagellin can induce activation of the NLRC4 

inflammasome [111,112]. Initial insights into the flagellin-independent pathway were 

provided by the observation that proteins, which form the basal body rod component of 

the T3SS, such as PrgJ, can activate the NLRC4 inflammasome. PrgJ-like proteins 

contain regions structurally homologous to the carboxy-terminal portion of flagellin [111], 

which is the critical portion of flagellin that is sufficient to trigger NLRC4 inflammasome 

activation [103,113].  

The NLRC4 inflammasome has been recently identified as an essential element in 

innate immunity against P. aeruginosa [107,114], which is activated by flagellin and 

T3SS rod protein [111,115]. Although P. aeruginosa strains express multiple cell-

associated and secreted virulence factors, which activate innate immune responses, their 

specific role in inflammasome activation remains elusive. Indeed, while activation of the 

NLRC4 inflammasome depends on flagellin and the T3SS [114], flagella-deficient P. 

aeruginosa strains are still able to induce the inflammasome activation. Other data 

suggests that P. aeruginosa pilin and the rhs gene product can activate inflammasome-

forming NLRs, although the underlying mechanisms are unknown [116,117]. 

Remarkably, study findings indicated that redundant and cooperative interactions 

between TLR5 and NLRC4 in lung immunity against P. aeruginosa infection in mice 
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model and double-knockout mice with those PPRs resulted in an impaired bacterial 

clearance [118]. It is noteworthy to compare these finding with flagella-deficient P. 

aeruginosa strain as other studies explored the role of TLR4 and TLR5 in the host 

response to pulmonary infection with P. aeruginosa [119,120]. 

1.2.4.4 NLRP3 is essential for autophagy not IL-1β production 

The NLRP3 is the most important type of NLRs as it is activated by numerous 

PAMPs and DAMPs [73]. Inflammasome-forming NLRP3 is activated by a plethora of 

microbial stimuli [15,29,121-123], as well endogenous stimuli such as uric acid, 

cholesterol or hydroxyapatite crystals, silica, aluminum salts, asbestos, malarial hemozoin, 

amyloid deposits, and fatty acids [28]. Given the chemical and structural diversity of the 

NLRP3 activators, it has been hypothesized that NLRP3 does not interact directly with its 

activators; instead, its activation is triggered through an intermediate cellular signal 

elicited by all these stimuli. Studies have reported that the transcription factor NF-κB, 

TNF-α, IL-1β, and SYK (a non-receptor tyrosine kinase) are effective in inducing NLRP3 

expression and promoting caspase-1 activation in response to NLRP3 activators [124-

128]. Several theories have been proposed for the identity of the cellular signal 

responsible for NLRP3 activation, including a change in the intracellular concentration of 

K+ and Na+, the formation of a large pore in cell membrane, the release of cathepsins 

from damaged lysosomes, the production of ROS, and damage in the mitochondria. 

[108,129-131]. Therefore, further studies are required to clarify the detailed mechanisms 

linking numerous chemically and structurally diverse stimuli from microbial pathogens as 

activators of the inflammasome-forming NLRP3. It is worth to mention, as it has been 

reported that SYK phosphorylation is involved in NLRP3-mediated caspase-1 activation 
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[130], that in our previous work we found that pre-treatment of human macrophages with 

SYK inhibitor R406 resulted in a significant inhibition of SYK phosphorylation and 

down-regulation of IL-1β production in infected cells with P. aeruginosa [132] 

The production of ROS and the release of mitochondrial DNA have been suggested 

to act as a common cellular signal upstream of NLRP3. However, ROS scavengers and 

NADPH-oxidase inhibitors block activation of NLRP3 [133-135]. Indeed, NLRP3 has 

been proposed to integrate signals that indicate cellular damage or stress [6,134,136]. P. 

aeruginosa can potentially activate NLRP3 as the pathogen is able to induce ROS 

production via several mechanisms, (for example, via the cytotoxin pyocyanin), which 

can oxidize glutathione and inactivate catalase contributing to the oxidative stress 

mediated cell damage [137,138]. However, mutant strains of P. aeruginosa exhibited a 

reduced ability to cause intracellular ROS production in infected human cells [97,139]. 

Accordingly, these findings inspire further studies on the role of specific P. aeruginosa 

virulence factors in the NLRP3 inflammasome activation. 

Remarkably, Chen et. al. studied partial knockdown of NLRP3, which decreased 

caspase-1 activation and significantly reduced pore formation in macrophages, whereas 

IL-1 β release was not significantly impaired [140]. This study supported that NLRP3 is 

not essential for IL-1β release. However, the low levels of capsase-1 from partial 

knockdown of NLRP3 might be sufficient for maturation of IL-1β, or other 

inflammasome-forming NLR may also contribute to IL-1β production. Recent studies 

demonstrated the activation of NLRP3 in human macrophages with P. aeruginosa, and 

explored a novel mechanism by this bacterial pathogen to escape from macrophage 
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intracellular killing by activation of NLRP3, as well as trigger the formation of 

autophagosome following NLRP3 overexpression [88]. 

1.2.5 Negative regulatory role of NLRs 

Most NLRs induce inflammatory responses, however, emerging studies of 

knockout gene(s) model have revealed that a number of NLRs negatively regulate 

inflammatory responses including: NLRC3, NLRC5, NLRP4, NLRP6, NLRP10, 

NLRP12, and NLRX1 [141-153]. This unique mechanism employed by members of this 

novel family of PRRs to regulate the host immune response following pathogen exposure 

is worth to be further addressed with P. aeruginosa infection, particularly NLRC3 and 

NLRC5, which will significantly improve our overall understanding of host innate 

immunity against P. aeruginosa infection.          

1.2.5.1 NLRC3 promotes host resistance 

NLRC3 is one of the most regulatory characterized NLRs, which attenuates T-cell 

signaling via TCR and co-stimulatory molecules, and alters NF-κB activation through 

interaction with TRAF6 [154]. It has been demonstrated that TRAF6 is involved in the 

TLR-mediated response to P. aeruginosa in human airway epithelial cells [155]. 

Remarkably, studies showed that NLRC3 down-regulated NF-κB transcriptional activity, 

which is induced either by NOD1 or NOD2 receptors, without any effects on the 

expression of these receptors [156]. Another pathway for NLRC3 as a negative regulator, 

is the interaction with a trans-membrane protein called stimulator of IFN genes (STING), 

which functions as an essential signaling adaptor in linking the cytosolic detection of 

DNA to TANK binding kinase 1 (TBK1) [148,152,157-159]. The latter results in IFN-

regulatory factor 3 (IRF3) activation and pro-inflammatory cytokine production 
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[160,161]. Interestingly, IRF3 contributes to host response during P. aeruginosa lung 

infection [162]. Recent studies identified that overexpression of a regulatory NLRC3 

significantly attenuated disease progression, decreased the production of cytokines 

release, and promoted degradation of interleukin-1 receptor-associated kinase 1 (IRAK1) 

after P. aeruginosa infection in keratitis model [151]. Although NLRC3 has no effect on 

both NOD1 and NOD2 protein levels, study findings indicated that NLRC3 suppressed 

NF-κB transcriptional activity in human embryonic kidney cells, while NOD1 and NOD2 

induced NF-κB activation [156].  

1.2.5.2 NLRC5 interacts with NLRP3 and negatively regulates NOD1 and NOD2  

Human NLR family members are typically localized in the cytoplasm. However, 

NLRC5 and CIITA (NLRA) can be found in the nucleus [7], which are regulating the 

gene transcription of major histocompatibility complex (MHC) class I and class II, 

respectively [163]. NLRC5 is the largest member of NLRs that also contains the largest 

number of C-terminal LRRs [164]. NLRC5 negatively regulates inflammatory responses 

through down-regulation of NOD1 and NOD2, which both are induced NF-κB 

transcriptional activity [42,144,165]. However, the complexity associated with NLRC5 

has been addressed in a study related to the role of NLRC5 in inflammasome activation in 

human monocytic cells infected with a panel of bacteria [166]. The findings indicated 

that NLRC5 cooperated with NLRP3, but not other NLR, to induce inflammasome 

activation. 

1.2.6 Conclusion 

Literature related to NLRs has provided evidence that several members of the NLR 

family play important roles in an inflammasome formation and more beyond that. 
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Through model studies, NLRs can be suitably stimulated to provide adequate immune 

responses, confirming that NLRs can be an axis to achieve immunity. Yet, respiratory 

tracts in immunocompetent individuals, innate mechanisms are sufficient to manage 

infection by P. aeruginosa. These mechanisms become disabled in the CF patient, which 

is permitting chronic infection. As the bacteria mutate and adapt, NLR stimulation may 

alter and even be exaggerated, which further promotes inflammation as failing lung 

function seen in these patients. This paradigm involving the relationship between the 

evolving bacterial adaptations and infected CF, where manipulating the NLR response, 

may prove to be beneficial.  

A major advance in our understanding of infection and immunity occurred with the 

discovery of NLRs. These intracellular PRRs are able to sense a variety of bacterial 

products and aid in initiation of an appropriate inflammatory response [21]. NLRs enable 

the host immune system to recognize and respond to microbes by their PAMPs and 

trigger the earliest immune responses that lead to inflammation. Microbial agents, or their 

PAMPs, via their interaction with NLRs and other pattern recognition receptors (PRRs), 

may be critically important in the pathogenesis of inflammatory lung diseases. A better 

understanding of these mechanisms is of fundamental importance to expand our 

knowledge about P. aeruginosa infection and innate immunity, as it may identify 

potentially new therapeutic target(s) for treating the threatening inflammatory lung 

diseases. This area of research is still in infancy. More knowledge of the NLR signaling 

pathways, as well as increasing evidence for the role of NLR ligands in the molecular 

pathogenesis of diseases, will be needed for the development of new therapeutic 

strategies, especially for infectious lung diseases. Understanding the complex 
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mechanisms underlying NLR localization and function will provide additional data that 

might help devise novel therapeutic approaches involving NLRs and their agonists, in an 

attempt to attenuate the immune responses associated with P. aeruginosa infection.  
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Figure Legend 

Figure 1 Human NLRs based on their functions.  

Members of NLR family play a critical role in the regulation of innate immune response 

and have diverse functions, which can be divided into four broad categories; nodosome, 

regulatory inflammasome, transcriptional activator NLR, and reproductive and 

embryogenesis NLR. Most NLR functions range from pathogen and damage sensing to 

antigen presentation, as well as, suppression of inflammation. As non-immune pathways, 

some NLRs are potentially involved in embryonic development.     

 

Figure 2 Inflammasome-forming NLR regulates inflammation during infection and 

tissue injury.  

NLRs are activated by a wide array of either PAMPs or DAMPs. The initial event leads 

to assembling of inflammasome, followed by activation of caspase-1 and release of IL-1β 

as well as IL-18. Release of IL-1β results in recruitment of effector cell populations of the 

immune response and tissue repair. Several inflammasome inhibitors, either endogenous 

or exogenous, have been shown to inhibit the activity and the formation of inflammasome. 

Ac-YVAD-cmk; acetyl-tyrosyl-valyl-alanyl-aspartylchloromethylketone, AG126; 

tyrosine kinase inhibitor, COPs; CARD-only proteins, ICEBERG; CARD-containing 

proteins, INCA; inhibitory caspase recruitment domain, POP; Pyrin-only protein, XIAP; 

X-linked inhibitor of apoptosis, Z-VAD-fmk; Nbenzyloxycarbonyl- Val-Ala-Asp-

fluoromethylketone. 

 

Figure 3 Multiple biological responses following caspase-1 activation. 
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Different inflammasome-forming NLRs activate caspase-1, which cleaves pro-IL-1β and 

pro-IL-18 to mature biologically active forms. Following caspase-1 activation, there is 

increasing evidence that caspase-1 contributes to regulation of other several pathways. 

Dash line shows tentative pathways.   
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Figure 2 
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Figure 3 
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1.3 SYK Tyrosine Kinase as Target Therapy for Pseudomonas aeruginosa Infection  

 

In preparation to be published: Journal of Innate Immunity 

Author: Alaa Alhazmi  

 

Abstract  

Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase, which associates directly 

with extracellular receptors and is critically involved in signal transduction pathways in a 

variety of cell types for the regulation of cellular responses. SYK is expressed 

ubiquitously in immune and non-immune cells, and has a much wider biological role than 

previously recognized. Several studies have highlighted SYK as a key player in the 

pathogenesis of a multitude of diseases. Pseudomonas aeruginosa is an opportunistic 

Gram-negative pathogen, which is responsible for systemic infections in 

immunocompromised individuals and accounts for major cause of severe chronic lung 

infection in cystic fibrosis patients, subsequently resulting in progressive deterioration of 

lung function. Inhibition of SYK activity was explored as a therapeutic option in several 

allergic disorders, autoimmune diseases, and malignancies. This review focuses on SYK 

as therapeutic target and describes the possibility of how current knowledge could be 

translated for therapeutic purposes, to regulate immune response to the opportunistic 

pathogen P. aeruginosa.  

 

Keywords: Pseudomonas aeruginosa, Infection, Cystic fibrosis, Inflammation, SYK, 

small molecule inhibitor, CFTR 
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1.3.1 Introduction  

Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase involved in signal 

transduction in a variety of cell types; it associates with different receptors on the surface 

of various cells, such as B cells, mast cells, monocytes, macrophages, and neutrophils and 

even osteoclasts and breast cancer cells. Following the engagement of these receptors 

with their ligands, SYK is activated and orchestrates diverse cellular responses, including 

cytokine production (in T cells and monocytes) and phagocytosis (in macrophages) [1,2]. 

SYK is expressed ubiquitously in both hematopoietic [3-14] and non-hematopoietic cells 

[15-20]. Notably, this widespread expression of SYK in human tissues implies that it 

plays important roles in different organs. Importantly, SYK is expressed in lung epithelial 

cells [21,22], which are the major components of the airway lining and the sites of 

infection by Pseudomonas aeruginosa. The role of SYK in these structural cells is 

puzzling, but recent studies shed some light on it. For these reasons, it may represent an 

attractive target for new therapeutics strategy of treating P. aeruginosa infection using 

inhibition of SYK kinase. In this review, the role of SYK and the effect of SYK inhibitor 

in treatment of P. aeruginosa infection are discussed. 

1.3.2 Structural Basis of SYK Activation 

SYK, a 72 kDa protein, is composed of two SRC homology (SH2) and one kinase 

domains, with an interdomain A located between the two SH2 domains and interdomain 

B located between the SH2 and kinase domains; the interdomains contain linker tyrosines, 

which can undergo phosphorylation (Figure 1) [22-25]. SYK contains at least ten tyrosine 

residues that can be autophosphorylated and thus provide binding sites for other 

molecules bearing SH2 domains [26]. Due to its catalytic activity and the ability to bind 
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other proteins via the interaction between phosphorylated tyrosines and SH2 domains, 

SYK has both kinase and adaptor protein properties.  

There are three states of SYK: inhibition of the kinase, activated kinase via 

phosphorylation of immunoreceptor tyrosine based activation motifs (ITAMs) and 

activated kinase via phosphorylation of linker tyrosines. In the inhibited kinase state, the 

binding occurs between interdomain A, interdomain B, and the kinase domain, producing 

the stable configuration of SYK; breaking apart this arrangement will allow for the 

activation of the protein kinase to occur [24]. ITAM tyrosine residues are rapidly 

phosphorylated following classical immunoreceptors’ engagement, i.e. B cell receptors 

(BCRs), T cell receptors (TCRs), and Fc receptors (FcRs), leading to the recruitment and 

activation of SYK. The other state of SYK is the activation of the kinase through 

autophosphorylation of the linker tyrosines in the interdomains; this process does not 

involve the dependence on the phosphorylated ITAMs for activation [22-25]. SYK can 

sustain activation following the temporary interaction with phosphorylated ITAMs by 

means of autophosphorylation of the linker tyrosines [24].  

SYK activation is not restricted to the two mechanisms stated; studies have also 

shown that SYK mediates signaling by classes of receptors, including integrin, G-protein 

coupled, and C-type lectins that do not contain conventional ITAMs [22,27]. During an 

inflammatory response of the immune cells, as a result of a variety of different signaling 

pathways, cytokines are produced as well; studies have shown that cytokines, such as 

tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1β, produced during 

inflammation also have the ability to activate SYK by means of cytokine signaling [27]. 
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Collectively, these studies have dramatically changed our view of the SYK tyrosine 

kinase. 

1.3.3 SYK and innate immunity 

Innate immune system plays a leading role through the cooperation of different 

germline-encoded pattern recognition receptors (PRRs) to detect both pathogen- and 

damage-associated molecular patterns (PAMPs and DAMPs, respectively) and trigger 

immune responses. Studies have shown that many PPRs participate in the immune 

response to P. aeruginosa infection, such as Toll-like receptors (TLRs), NOD-like 

receptors (NLRs), C-type lectin receptors (CLRs), etc.  [28,29].  Recently, SYK has been 

found to be a vital component of these pathways, which plays a crucial role in the innate 

immune response including pathogen recognition, inflammasome activation and even 

anti-fungal defense [24,30,31]. Following the activation of the kinase, SYK-mediated 

downstream signaling occurs as a result. SYK can bind directly to four binding partners: 

VAV, phospholipase Cγ (PLCγ), phosphoinositide 3-kinase (PI3K) and SH2 domain of 

the leukocyte protein 76 or 65 (SLP76 or SLP65, respectively). These four binding 

partners will further activate downstream signaling components that will lead to the 

eventual change in cellular response. Such cellular responses include reactive oxygen 

species (ROS) production, proliferation of cells, cytokine release, and inflammatory 

responses [24]. Up to now, there is little research on the involvement of SYK in cellular 

responses to P. aeruginosa infection, and targeting SYK for protecting infected human 

cells against the deleterious effects associated with this infection. However, it has been 

better demonstrated in several allergic disorders, autoimmune diseases, malignancies, and 

innate antifungal immunity.  
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It is well established that SYK activation in leukocytes is essential for phagocytosis 

and the development of B- and T-lymphocytes [24]. Studies have shown that many CLRs, 

such as Dectin-1 (also known as CleC7A) and Mincle (also known as CleC4e), resist the 

fungi mainly by activating the downstream SYK-caspase recruitment domain-containing 

protein 9 (CARD9)-nuclear factor kappa B (NF-κB) signaling pathway [32-36]. Recent 

studies have revealed the importance of SYK during fungal infection Aspergillus 

fumigatus [37]. Researchers have proved that SYK associates with the invasive breast 

cancer [38] and SYK is closely related to the occurrence and development of digestive 

tract tumors [39].  

Besides, because SYK is positioned upstream in the cell-signaling pathway, 

therapies targeting SYK might be more advantageous than inhibiting a single downstream 

event [40]. These make SYK a therapeutic target for an array of inflammatory diseases 

and for this reason, many pharmaceutical companies and academic institutions have been 

involved in the development of SYK small-molecule inhibitors. Recent studies have 

demonstrated the ability of SYK to regulate production of pro-inflammatory molecules 

by bronchial epithelial and monocytic cells, which are stimulated with TNF- α, rhinovirus, 

or P. aeruginosa [25,27,30,31,41]. For these reasons, it may represent an attractive target 

for new therapeutics strategy of treating P. aeruginosa infection using inhibition of SYK 

kinase. Indeed, several studies have highlighted SYK as a key player in the pathogenesis 

of multitude of diseases [2,42-51]. Several pathologies can be treated through the 

inhibition of SYK activity. Indeed, more selective commercially available small molecule 

SYK inhibitors show the great interest in this field [52]. 
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1.3.4 SYK and cystic fibrosis  

CF is an autosomal-recessive disease, mainly occurring in the Caucasian population. 

The condition is the manifestation of mutations in a transmembrane protein, called cystic 

fibrosis transmembrane conductance regulator (CFTR), which commonly results in a loss 

of the protein or deficiency of its function [53,54]. Mostly, CFTR functions as chloride 

ion (Cl−) channel at the apical surface of secretory epithelia. CFTR is a member of the 

ATP-Binding Cassette transporter family, which hydrolyzes ATP to pump substrates, 

such as ions, vitamins, drugs, toxins, and peptides across biological membranes [55]. 

Since its discovery in 1989, many mutations in the gene have been identified; 

approximately 127 are confirmed as CF disease-causing [56]. Among these mutations, a 

phenylalanine (3-bp) deletion at position 508 in the polypeptide chain (ΔF508) is 

resulting in a protein that fails to mature properly and becomes degraded [55,57]. ΔF508 

is present in nearly 85% of CF patients in at least one allele. A connection has been made 

between mutant or missing CFTR in human lung epithelial cell membranes and a failure 

in innate immunity, which is leading to initiation of P. aeruginosa infection. Epithelial 

cells use CFTR as a receptor for internalization of P. aeruginosa via endocytosis and 

subsequent removal of bacteria from the airway that does not occur in the absence of 

functional CFTR and results in increased bacterial loads in the lungs [58]. The static 

mucosal environment is presumed to render individuals susceptible to opportunistic 

infections, and CF patients become infected, to some extent in an age-related pattern, by 

multiple microorganisms but particularly, Haemophilus influenzae, Staphylococcus 

aureus, the Burkholderia cepacia complex, and ultimately, a high proportion (as many as 

80% of adult CF patients) are infected with P. aeruginosa [59]. P. aeruginosa becomes a 
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challenge to treat, as a result of its physiological properties, pattern of gene expression 

and antibiotic resistance, and because of this growing in biofilms, which is significantly 

different from planktonic cultures [60,61]. This persistent bacterial infection underlies the 

chronic lung inflammation that CF patient experience. Understanding the changes in lung 

innate immune mechanisms as a result of dysfunctional CFTR and the persistent P. 

aeruginosa infection is paramount to changing the natural course of this disease. 

The number of CFTR protein copies on the plasma membrane results from a 

balance between anterograde trafficking (i.e., CFTR is delivered from the endoplasmic 

reticulum to the plasma membrane), endocytosis (a process through which CFTR is 

retrieved from the membrane into vesicles), and recycling (with return of the internalized 

CFTR to the plasma membrane). Remarkably, one of the protein kinases that is involved 

in CFTR trafficking is SYK. This non-receptor tyrosine kinase has been reported to 

phosphorylate CFTR leading to decreased levels of CFTR in the plasma membrane 

[62,63]. Such a role of SYK in regulating protein trafficking has been reported previously 

for other substrates, for examples: trafficking a resident of the trans-Golgi network 

(TGN) 38 [64], trafficking of engaged high affinity IgE receptor (FcεRI) [65], and the 

small GTPase Rac1 [66], the latter was shown to play a role in CFTR trafficking and 

membrane anchoring [67]. Recent findings have shown that phosphorylation of CFTR by 

SYK resulted in reducing the CFTR plasma membrane abundance [68]. Accordingly, 

SYK inhibition may stabilize the plasma membrane level of CFTR. SYK knockdown in 

airway epithelial cells down-regulates proinflammatory mediators, such as IL-6 and 

ICAM-1 [22]; both are elevated in CF patients [69]. Recent studies expanded our 

understanding to recognize SYK as a potential target to stabilize CFTR plasma 
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membrane level and attenuate the proinflammatory mediators in P. aeruginosa-infected 

CF patients. 

1.3.5 Innate immune response to Pseudomonas aeruginosa infection  

P. aeruginosa causes systemic life-threating infection in immunocompromised 

individuals and chronic lung infection in CF patients. The major determinant of morbidity 

and mortality in CF patients can be attributed to the progressive deterioration of lung 

function resulting from chronic infection by such a ubiquitous opportunistic pathogen as 

P. aeruginosa [30,70]. During the infectious process, P. aeruginosa provokes a potent 

inflammatory response of infected tissue characterized by the activation of transcription 

factors, NF-κB and activator protein 1 (AP-1). This results in the release of pro-

inflammatory mediators, i.e. cytokines TNF-α, IL-1β, IL-6, chemokines IL-8 and 

RANTES (regulated on activation normal T cell expressed and secreted), increased 

expression of adhesion molecules (intercellular adhesion molecule, ICAM-1), induces the 

release of ROS, recruitment of activated neutrophils, and severe tissue damage, which 

eventually causes lung failure [71]. The infection of the airway by P. aeruginosa is 

accompanied by the activation of pro-inflammatory intracellular signaling pathways [72]. 

The activation of intracellular protein kinases has a significant role in the pathogenesis of 

P. aeruginosa lung infection. It has been demonstrated that both the bacterial invasion 

and cytotoxic effect of P. aeruginosa, as well as hyper-production of IL-8 and mucin by 

infected lung epithelial cells, depend on the activation of the p38 and ERK1/2 mitogen-

activated protein kinase (MAPK) signaling cascade and Src-like tyrosine kinases p60Src, 

p59Fyn, and Lyn [73-76]. 

Airway inflammation is a dominant pathophysiological characteristic of P. 
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aeruginosa infection influencing both the severity of the disease and its outcomes. Also, 

P. aeruginosa is intrinsically resistant to many antibiotics, making treatment difficult and 

often unsuccessful [77]. Based on the rapidly growing understanding of intracellular 

signaling pathways involved in the pathogenesis of bacterial inflammation, targeting the 

inhibition of specific signaling pathways/molecules is a potential treatment strategy in P. 

aeruginosa lung infection. 

1.3.6 Effect of SYK inhibitor in Pseudomonas aeruginosa infection  

Potent signaling abilities of SYK are due to both its molecular structure and 

strategic localization in the proximal part of intracellular signaling cascades.  Considering 

the vital role of inflammation in the pathogenesis of P. aeruginosa lung infection, the 

down-regulation of pro-inflammatory signaling pathways via a SYK inhibitor may be a 

beneficial addition to the antibacterial therapy of such conditions. Studies have found that 

natural SYK inhibitor piceatannol can inhibit the essential mechanisms of P. aeruginosa 

pathogenesis, i.e. bacterial internalization, production of pro-inflammatory mediators, 

oxidative stress, and apoptosis of infected human airway epithelial cells [30], which is 

supporting the involvement of SYK in the regulation of inflammatory responses caused 

by P. aeruginosa. Other studies using a model of human monocytic cells found that a 

small molecule inhibitor R406 decreased both inflammatory responses and apoptosis 

induced by P. aeruginosa infection [31]. SYK has been recently identified as a crucial 

mediator of NLRP3 inflammasome activation and IL-1β secretion in macrophages 

stimulated with fungi and crystals [78]. Although the underlying molecular mechanisms 

are still being defined, SYK is known to regulate ROS production and lysosomal activity, 

two significant signals for NLRP3 inflammasome activation in macrophages [24]. It has 
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recently been found that inhibition of SYK reduced the release of bioactive IL-1β by 

macrophage cells infected with a P. aeruginosa, [31] suggesting that SYK may regulate 

innate immune responses to P. aeruginosa via its involvement in inflammasome 

activation.  

The role of SYK kinase in the regulation of inflammasome activation and ROS 

production induced by P. aeruginosa infection of human cells need to be addressed to 

clarify the mechanisms behind the involvement of SYK-mediated signaling in the 

regulation of innate immune responses to P. aeruginosa infection. Based on the literature, 

studies suggest an association of SYK with regulation of innate immune and 

inflammatory responses to P. aeruginosa; it endorses that SYK mediates inflammasome 

activation and promotes an enhanced production of pro-inflammatory mediators by 

infected cells. Indeed, a significant decrease in the release of pro-inflammatory mediators 

by both P. aeruginosa-infected human macrophage (IL-1β and TNF-α) and lung 

epithelial cells (TNF-α) following SYK inhibition by R406 has been reported recently 

[31]. 

1.3.7 Concluding remarks 

P. aeruginosa can cause chronic lung infection and systemic life-threating diseases 

in cystic fibrosis patients and immunocompromised individuals. Based on recent 

evidence, SYK mediates innate immune response to P. aeruginosa infection and it can be 

involved in the amount and activity of CFTR protein at the plasma membrane. Also, SYK 

is considered as a potential target of anti-inflammatory therapy of various clinical 

conditions. Indeed, SYK is mostly controlling the inflammatory process and inhibition of 

SYK activity is a valuable strategic therapy in P. aeruginosa infection. While a large 
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number of small molecules have been synthesized and tested as SYK inhibitors, it has 

been reported that some unwanted side effects are associated with its application. 

However, the therapeutic activity of some SYK inhibitors has already been demonstrated, 

and they are currently in the advanced phases of clinical trials. Despite these encouraging 

results, some issues may relate to these molecules such as an increased probability of off-

target effects. The role of SYK in cellular responses to P. aeruginosa in infected CF 

patients or animal models with deficiency in CFTR is completely unknown. Further 

research to discover capability of inhibition of SYK in CF patients and animal models to 

demonstrate its effect on the CFTR level along with P. aeruginosa infection and 

associated inflammatory responses, which significantly contribute to the pathogenesis of 

P. aeruginosa pulmonary infections may represent a reasonable approach.  
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Figure Legend 

Figure 1 Structure of SYK protein 

A schematic diagram of the linear structure of SYK with the tyrosines marked that are 

phosphorylated after activation. 

 
Figure 2 General mechanism of SYK activation and SYK-mediated signaling 

AKT: protein kinase B; ERK: extracellular signal-regulated kinase; GPCRs: G protein-

coupled receptors; IL-1R: interleukin-1 receptor; JNK: c-Jun N-terminal kinase; PM: 

plasma membrane; TNFR: tumor necrosis factor receptor. 
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Figures 

Figure 1 
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Figure 2 
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1.4 Rational, Hypothesis, and Objectives 

Through a literature search, no prior research on mutant strains as well as clinical 

isolates of P. aeruginosa from CF patients at different stages of infection has been 

conducted to explore NLR-mediated innate immune responses to this bacterial infection. 

This presented us with a unique opportunity for a fundamental molecular innate 

immunological research. Hence, the objective of this thesis is to appreciate the presence 

of certain cytosolic sensors: NLRs; which recognize PAMPs and DAMPs. This is to 

understand what the exact mechanism of P. aeruginosa infection to human cells is and 

how it may be used as a new target therapy. The role of NLRs and inflammasome 

activations in host immune responses has recently been studied during the last decade and, 

the current knowledge in this field is limited. Therefore, investigation of the role of NLR-

mediated innate immune responses to P. aeruginosa will bring new insights into the 

molecular pathogenesis of bacterial infections. Given that NLRs act in concert with other 

PRRs in activating innate immune responses to P. aeruginosa, the loss of certain 

virulence factors in the process of host-pathogen interactions will affect the recognition 

of P. aeruginosa by NLRs; this may help bacteria to evade host defenses. Thus, the main 

goal of this thesis is to clarify the role of NLRs and inflammasome activation in innate 

immune recognition of P. aeruginosa-associated molecular patterns, through NLR-

mediated caspase-1 activation and P. aeruginosa-induced IL-1β secretion. There are two 

main objectives in this thesis. First, to determine which P. aeruginosa virulence factors 

are essential for the activation NLR-mediated innate immune responses. Second, to 

dissect the role of SYK kinase in the regulation of inflammasome activation.  
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Chapter II: Pseudomonas aeruginosa Infection of Human Monocytic Cells Results in 

Caspase-1 Activation and IL-1β Production  

 

Submitted to: Federation of European Microbiological Societies (FEMS) Pathogen and 

Diseases 

Authors: Alaa Alhazmi, Marina Ulanova  

 

Abstract  

Pseudomonas aeruginosa is the major cause of severe chronic pulmonary disease in 

cystic fibrosis (CF) patients. NOD-like receptors (NLRs) can recognize a variety of 

endogenous and exogenous ligands, thereby playing a crucial role in innate immunity. 

NLR activation initiates inflammasome formation that induces maturation of the pro-

inflammatory cytokine interleukin (IL)-1β through activation of caspase-1. We 

hypothesized that genetic alterations of P. aeruginosa affect the innate immune response 

of human monocytes. THP-1 human monocytic cells were infected with clinical P. 

aeruginosa isolates from CF patients, or with P. aeruginosa mutant strains lacking 

flagella, pili, lipopolysaccharide, or pyocyanin. P. aeruginosa isolates from patients with 

chronic CF lung infection or mutant strains induced lower apoptosis, surface ICAM-1 

expression, caspase-1 activation, and proinflammatory cytokine release compared to 

isolates from CF patients with intermittent P. aeruginosa colonization or wild type strains. 

Our findings suggest that P. aeruginosa, which lost certain virulence factors during 

pulmonary infection, may fail to induce caspase-1 activation and secretion of IL-1β in the 
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process of host-pathogen interactions. This may reveal novel mechanism of the pathogen 

adaptation to avoid detection by NLRs. 

 

Keywords: Pseudomonas aeruginosa, Cystic Fibrosis, Infection, NOD-like receptors, 

Caspase-1, Cytokines 

2.1 Introduction 

Pseudomonas aeruginosa is an opportunistic Gram-negative bacterial pathogen that 

is responsible for chronic lung infection and the main cause of morbidity and mortality in 

cystic fibrosis (CF) patients [1,2]. Due to great intrinsic and acquired resistance, P. 

aeruginosa has brought a big challenge with current antibiotic therapies [3]. Therefore, 

understanding of the host immune response against this pathogen has attracted much 

attention. Lung infection with P. aeruginosa is often associated with exaggerated 

inflammatory responses and characterized by excessive production of various 

inflammatory cytokines and chemokines including interleukin (IL)-1β [4-7]. As IL-1β is 

a major inflammatory mediator, its high levels in the bronchoalveolar lavage and sputum 

of CF patients with P. aeruginosa infection are potentially important in the pathogenesis 

of exacerbations in CF chronic pulmonary disease [8-11]. 

Maturation and production of IL-1β is tightly controlled by caspase-1 [12-14]. 

Caspase-1 is regulated by a complex protein structure called inflammasome, which 

consists of nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR), 

apoptosis-associated speck-like protein containing a CARD (ASC), and pro-caspase-1 

[15,16]. Once NLR is activated as an intracellular sensor, these components rapidly 

assemble into inflammasome and recruit pro-caspase-1 for cleavage and activation [17]. 
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Pro-caspase-1, a cytosolic cysteine protease, is constitutively expressed by its producer 

cells [18] and is activated in various inflammasomes [19]. However, the role of P. 

aeruginosa virulence factors in NLR-mediated activation of caspase-1 in monocytes and 

macrophages, which are the major source of IL-1β in P. aeruginosa infection [4], remains 

poorly understood.    

Given the ability of P. aeruginosa to mutate during the process of adaptation to the 

host, and the important role of NLRs in recognition of P. aeruginosa, we hypothesized 

that the loss of certain virulence factors will affect the recognition of P. aeruginosa by 

NLRs, and this may help bacteria to escape the host defenses. To test this hypothesis, we 

studied the interactions of well-characterized clinical isolates of P. aeruginosa obtained 

from CF patients during longitudinal observation, or P. aeruginosa mutant strains lacking 

flagella, pili, lipopolysaccharide, or pyocyanin with human THP-1 

monocytic/macrophage cells in an in vitro model. Previous studies of these clinical 

isolates showed drastic differences in the expression of virulence factors between bacteria 

isolated from intermittently colonized versus chronically infected CF patients [20] that 

implies that the interactions between these two groups of bacteria and infected cells can 

be significantly different. We have examined apoptosis of infected cells, activation of 

caspase-1, production of proinflammatory cytokines, and adhesion molecule expression 

as well as used a specific caspase-1 inhibitor. Our findings suggest that loss of virulence 

factors over the course of chronic infection can result in decreased abilities of recognition 

of P. aeruginosa by NLRs and attenuate NLR-mediated caspase-1 activation; this may 

confer the persistence of P. aeruginosa in CF patients. Our results reveal a novel 
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mechanism of the pathogen adaptation to avoid detection by NLRs and may provide a 

better understanding of the host-pathogen interactions during P. aeruginosa infection.   

2.2 Materials and Methods 

2.2.1 Cell culture conditions 

Human THP-1 monocytic leukemia cell line (ATCC, Manassas, VA) was stored in 

liquid nitrogen until thawed for culturing and used at the passage numbers of 6-20. Cells 

were maintained at 37˚C with 5% CO2 in RPMI-1640 medium (Sigma-Aldrich, Oakville, 

ON, Canada) supplemented with 10% heat-inactivated fetal bovine serum (FBS) (SAFC 

Biosciences, Lenexa, KS) and 1% antibiotic-antimycotic (Invitrogen, Burlington, ON, 

Canada). Cells were seeded in T-25 cm2 flasks (Corning Incorporated, NY, USA) and 

passaged every 3-4 days when culture density reached 1 × 106 cells/mL; cells number 

and viability were determined by using 0.4% Trypan blue solution (Sigma-Aldrich, St. 

Louis, MO). To induce differentiation, cells were treated with 20 ng/mL phorbol 

myristate acetate (PMA; Sigma-Aldrich) at 37˚C with 5% CO2 for 12 hours, then washed 

and re-suspended in the same culture medium with FBS and antibiotics. After 48 hours of 

further incubation, the cells were washed twice and used for experiments with serum- and 

antibiotic-free medium.   

2.2.2 Pseudomonas aeruginosa strains and in vitro infectious model  

Pseudomonas aeruginosa strain K wild type (PAK WT, provided by Dr. R.J. Irvin, 

University of Alberta, Edmonton, AB), and the isogenic P. aeruginosa mutants PAK NP 

(pili deficient) and PAK fliC (flagella deficient, provided by Dr. A.S. Prince, Columbia 

University, New York), PAK rmlC (a lipopolysaccharide mutant with truncated core 

oligosaccharide) (Provided by Dr. J.S. Lam, University of Guelph, ON), P. aeruginosa 
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PAO1 (provided by Dr. H. Schraft, Lakehead University, Thunder Bay, ON) and its 

isogenic pyocyanin-deficient mutants ∆phzM and ∆phzS (provided by Dr. Gee W. Lau, 

University of Illinois at Urbana-Champaign, Urbana, IL), as well as P. aeruginosa 

clinical isolates from sputum of CF patients were used (Table 1). Among the clinical 

isolates, 13 were from intermittently colonized individual patients and 14 were from 3 

chronically infected patients (the latter obtained during longitudinal observation at the 

Danish CF Center); all were kindly provided by Dr. N. Høiby (Rigshospitalet, 

Copenhagen, Denmark). The characteristics of the isolates are described in our previous 

study [21].   

All bacterial strains were maintained in a sterile Luri-Bertani (LB) broth (Fisher 

Scientific, Fair Lawn, NJ) with 1% agar (LBA). A single colony of P. aeruginosa was 

grown overnight in sterile LB broth at 37˚C on a shaking platform at 150 rpm and diluted 

by a factor of 20 into fresh LB broth. Cultures were allowed to grow for approximately 1 

hr or until mid-log phase when optical density at 600 nm (OD600) reached 0.30. The 

culture was then centrifuged at 3500 × g, for 20 min at 4˚C, and washed twice in sterile 

phosphate-buffered saline (PBS, pH 7.4). Following the final re-suspension, bacteria 

were diluted to an OD600 of 0.30 in sterile serum- and antibiotic-free RPMI-1640 

medium corresponding approximately to 2 × 108 CFU/mL, as determined by serial 

dilutions and drop plating on LBA. From this stock, bacteria were added to THP-1 cells 

at a multiplicity of infection (MOI) of 5 or 10, as was optimized with PAK WT during 1, 

2, 6, 12, or 18 hours at 37˚C with 5% CO2 in our previous experiments [22]. For positive 

control, THP-1 cells were stimulated with either 100 ng/mL Escherichia coli LPS 
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O111:B4 or 5 mM ATP (Sigma-Aldrich) at 37˚C with 5% CO2. All compounds were 

solubilized in sterile distilled H2O. 

2.2.3 Pretreatment with Caspase-1 Inhibitor 

THP-1 cells were grown for 24 hours to 1 × 106 cells/mL and a specific caspase-1 

inhibitor Ac-YVAD-cmk (N-acetyl-tyrosyl-valyl-alanyl-aspartyl chloromethyl ketone, 

Sigma-Aldrich, Saint-Louis, MO) dissolved in DMSO was added to the medium to 

achieve a final concentration of 40 µM. The cells were incubated in the presence of Ac-

YVAD-cmk for either 2 or 5 hours, then washed twice with PBS and used for 

experiments. These conditions were developed based on published literature describing 

Ac-YVAD-cmk pretreatment [23,24] and cellular viability testing using 40 µM of Ac-

YVAD-cmk for 2 and 5 hours. No noticeable effect of 40 µM of Ac-YVAD-cmk on cell 

viability tested during 2, 5, and 18-hour-long incubations was detected (86-96% viable 

cells). 

2.2.4 Analysis of infected cells’ viability 

THP-1 cells at a concentration of 0.4 × 106 cells/2mL in serum- and antibiotic-free 

culture medium were stimulated with P. aeruginosa at an MOI of 5 for 3 hrs in 12-well 

plates (Fisher Scientific). Following incubation, the cells were washed with sterile PBS, 

centrifuged at 500 × g for 5 min, and re-suspended in the same medium. The viability of 

THP-1 cells was assessed by Trypan Blue Exclusion assay using a Vi-Cell™ XR 

Viability Analyzer (Beckman Coulter, Mississauga, ON).  

2.2.5 Flow cytometry analysis of surface expression of ICAM-1 

THP-1 cells were plated at 0.5 × 106 cells/mL in a 24-well plates (Fisher 

Scientific), and infected with P. aeruginosa at an MOI of 5 for 1 hr at 37˚C with 5% CO2, 
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then bacteria were killed by adding 100 µg/mL gentamicin (Sigma-Aldrich). Infected 

cells and dead bacteria were incubated together for a further 17 hrs. Following 

incubation, cells were washed and resuspended in 100 µl of PBS supplemented with 0.1% 

bovine serum albumin (BSA) (Sigma-Aldrich) containing phycoerythrin (PE)-conjugated 

monoclonal antibody (mAB) against ICAM-1 (Mouse anti-human CD54, BD 

Biosciences, Mississauga, Ontario) or mouse IgG1 isotype control at a dilution of 1:50 

and incubated for 1 hr at 4˚C. Samples were washed twice with PBS and analyzed by 

flow cytometry on the FACSCalibur with CELLQUEST PRO software (BD Biosciences, 

Mississauga, ON, Canada). The data were analyzed using CELLQUEST PRO software 

and expressed as mean fluorescence intensity (MFI).  

2.2.6 Apoptosis Detection 

THP-1 cells were plated at 0.5 × 106 cells in 2 mL in 12-well plates (Fisher 

Scientific), in serum- and antibiotic-free culture medium and incubated in 37˚C, with 5% 

CO2 for 24 hrs. Cells were stimulated with P. aeruginosa at an MOI of 5 for 3 hrs. 

Following stimulation, cells were washed with sterile PBS, centrifuged at 500 × g for 5 

min. Apoptosis was measured by the presence of active caspase-3 and caspase-7, detected 

by the CaspaTag caspase-3,7 in situ assay kit (Chemicon International, Temecula, CA) 

via flow cytometry according to the manufacturer’s protocol. The data were expressed as 

mean fluorescence intensity (MFI) of active caspase-3,7-expressing cells.  

2.2.7 Caspase-1 Detection 

For analysis of caspase-1 activation, THP-1 cells were stimulated with P. 

aeruginosa at an MOI of 5 for 3 hrs., then washed with sterile PBS as described above. 

The presence of active caspase-1 was detected by the FAM-FLICA® in vitro Caspase 1 
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Kit (ImmunoChemistry Technologies, LLC., Bloomington, MN, USA) via flow 

cytometry according to the manufacturer’s protocol. Four quadrants of cell populations 

were detected: lower left represented unstimulated and unstained cells; lower right, cells 

in early apoptosis with FLICA stain; upper right, cells in late apoptosis with FLICA and 

propidium iodide (PI) stains; upper left, necrotic cells with only PI staining. The results 

were expressed as MFI of active caspase-1-expressing cells.  

2.2.8 Western Blotting 

For detection of caspase-1 and IL-1β, THP-1 macrophages (2 × 106 cells/mL) were 

stimulated with PAK WT at an MOI of 5 for 1, 2, or 4 hours, or MOI of 10 and 20 for 2 

hours at 37°C, 5% CO2. Following stimulation, the cells were lysed in 100 µL of ice-cold 

RIPA lysis buffer, which included PMSF, sodium orthovanadate and protease inhibitor 

cocktail, and incubated for 30 min at 4°C. Following incubation, the cells were 

centrifuged at 8,000 × g for 10 min and protein lysate was collected. Samples were 

resolved by 15% SDS-PAGE gel electrophoresis and transferred to a nitrocellulose 

membrane. Blots were blocked with 5% nonfat dry milk in Tris-buffered saline 

containing 0.1% Tween 20, probed with primary antibody, i.e. anti-caspase-1 (D7F10), 

anti-IL-1β (D3U3E), and β-actin (13E5) antibodies followed by HRP-linked secondary 

antibody (7074S) (Cell Signaling Technology), and developed using enhanced 

chemiluminescence. Bands were scanned and images analyzed using ChemiDoc XRS 

(Bio-Rad). In some cases, the blots were stripped and re-probed with other antibodies.  

2.2.9 ELISA assays 

To measure the release of caspase-1 and cytokines, THP-1 macrophages were 

infected with P. aeruginosa at an MOI of 10, for 1 h at 37˚C, with 5% CO2, and then 
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bacteria were killed by adding 100 µg/mL gentamicin, as described above. Cell culture 

supernatants were aliquoted and stored at −80°C until analysis. The levels of IL-1β, TNF-

α, IL-10, and INF-γ were determined by ELISA from eBioscience (San Diego, CA) and 

caspase-1 from R&D Systems (Minneapolis, MN). The ELISA kits were used according 

to the manufacturer’s recommendations. The lower detection limits of the assays were 2 

pg/mL for IL-1β and IL-10, 4 pg/mL for TNF-α and INF-γ, and 1.24 pg/mL for caspase-

1. Samples from three independent experiments were run in triplicate. 

2.2.10 Statistics 

Data were expressed as mean ± SEM and represented at least 3 independent 

experiments. All data for intermittent (n = 13) and chronic (n = 14) strains have been 

pooled together. Statistical significance was determined by one-way analysis of variance 

(ANOVA) using GraphPad Prism 7.0 (La Jolla, CA, USA). P values < 0.05 were 

considered significant.  

2.3 Results 

2.3.1 Infection with Pseudomonas aeruginosa strains isolated from intermittently 

colonized CF patients caused reduction in THP-1 cells’ viability  

To assess the viability of THP-1 monocytic cells following P. aeruginosa infection, 

cells were infected as described in Materials and Methods. The number of live cells was 

significantly lower in cultures stimulated with 100 ng/mL LPS  (P < 0.01), or infected 

with PAK WT (either MOI of 5 or 10) (P < 0.05) compared to unstimulated THP-1 cells 

(figure 1A). However, no difference in viability was noted between cells infected with 

PAK WT at an MOI of 5 vs MOI of 10 (figure 1A). The viability of THP-1 cells infected 

with either pili- (PAK NP) or LPS-deficient (PAK rmlC) P. aeruginosa did not 
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significantly differ (P > 0.05), and was similar to viability of cells infected with PAK WT 

(Figure 1B). However, flagella-deficient mutant (PAK fliC) caused a decreased viability 

of the cells as compared to PAK WT (P < 0.01). The viability of cells infected with 

pyocyanin-deficient PAO1 mutants (either ΔphzM or ΔphzS) was slightly elevated 

compared to wild type PAO1 strain but only ΔphzS was statistically significant compared 

to wild type strain (P < 0.05). During 3-hr long infection, P. aeruginosa clinical isolates 

from either chronic or intermittent infection caused a significant reduction in cell viability 

as compared to PAK WT (P < 0.0001). However, the clinical isolates from intermittently 

colonized CF patients were capable to further reduce the viability of cells as compared to 

the isolates from chronically colonized CF patients (P < 0.01). These data suggest that the 

ability of P. aeruginosa to reduce the viability of monocytic cells depends on the 

presence of major cell-associated virulence factors.  

2.3.2 Apoptosis induced by P. aeruginosa is significantly higher when THP-1 cells 

are infected with strains isolated from intermittently infected CF patients compared 

to chronically infected ones 

As we have previously found that apoptosis of P. aeruginosa infected human lung 

epithelial cells depends on the presence of specific virulence factors, such as pili, LPS, or 

flagella, we extended the analysis to human monocytic cells [21]. We have detected cells 

committed to apoptosis using a fluorescence-labelled peptide, which specifically binds to 

active caspase-3,7 [25]. Three-hour-long infection of THP-1 monocytic cells with PAK 

WT (P < 0.05) induced higher expression of active caspase-3,7 in comparison to the 

effect of LPS suggesting that in addition to LPS, other bacterial components may 

contribute to cellular apoptosis (figure 2). Stimulation with P. aeruginosa strains, i.e. 
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PAK WT, pili-deficient (PAK NP), flagella-deficient (PAK fliC), LPS-deficient (PAK 

rmlC), PAO1, PAO1 pyocyanin-deficient mutants (∆phzM and ∆phzS), or strains isolated 

from intermittently colonized and chronic infected CF patients caused greater 

intracellular expression of active caspase-3,7 compared to unstimulated cells (P < 0.001, 

figure 2), indicating that infected cells were undergoing apoptosis. However, the 

expression of active caspase-3,7 was higher in the case of infection with strains isolated 

from intermittently colonized CF patients compared to infection with ‘chronic’ strains (P 

< 0.01, Figure 2).   

2.3.3 P. aeruginosa infection decreases pro-caspase-1 and increases pro-IL-1β 

expressions in THP-1 macrophages   

To examine if inflammasome activation occurs in THP-1 macrophages infected 

with P. aeruginosa, we studied first the expression of pro-caspase-1 and pro-IL-1β using 

Western blot (Figure 3A – D). Previous studies showed that both LPS and ATP induced 

caspase-1 activation in THP-1 monocytic cell line [4,26]. Stimulation of THP-1 

macrophages with LPS (P < 0.001) or ATP in the presence of LPS (P < 0.0001) induced 

significant up-regulation of both pro-caspase-1 and pro-IL-1β compared to unstimulated 

cells (Figure 3A and C). Stimulation with PAK WT at MOI of 5 during 1, 2, or 4 hours 

led to a decreased expression of pro-caspase-1 compared with LPS (P < 0.001) or ATP in 

the presence of LPS (P < 0.0001) (Figure 3A). However, expression of pro-caspase-1 

during 2 hours stimulation with PAK WT at MOI 5 showed the only statistically 

significant difference in comparison to un-stimulated cells. Therefore, we extended our 

analysis using higher MOIs (i.e., 10 and 20) during 2-hour stimulation. While infection at 

MOI of 10 induced similar expression of pro-caspase-1 as in unstimulated cells, the 
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difference was statistically significant at MOI of 20 (Figure 3B). In contrast to pro-

caspase-1 expression, infection with PAK WT at MOI of 5 for 1 hour (P < 0.05), 2 (P < 

0.001), or 4 hours (P < 0.0001), or at MOI of 10 and 20 for 2 hours (P < 0.0001) led to 

significantly higher expression of pro-IL-1β compared to LPS stimulation (Figure 3C-D).  

2.3.4 The presence of major cell-associated and secreted virulence factors of P. 

aeruginosa results in increased abilities of bacteria to activate caspase-1  

To confirm the activation of caspase-1 by P. aeruginosa in our model, we used a 

fluorescent inhibitor probe to label active caspase-1 together with propidium iodide (PI) 

to distinguish between viable and non-viable cells, and two-color flow cytometry for 

analysis.  

Representative flow cytometry dot plots are illustrated in Figure 4A-H. For analysis, 

3 control cell populations were used, i.e. un-stimulated and un-stained THP-1 monocytic 

cells (Figure 4A), un-stimulated cells with PI stain to distinguish between living and dead 

cells (Figure 4B), and un-stimulated cells with bicolor staining, i.e. PI and FLICA (Figure 

4C). FLICA was used for active caspase-1 staining. To further confirm PI and FLICA 

staining, THP-1 monocytic cells were treated with 90% ETOH to discriminate between 

viable and non-viable cells via PI staining (Figure 4D), or with 5 mM ATP to activate 

caspase-1 via FLICA staining (Figure 4E).  Two-color staining with PI and FLICA was 

used for cells treated with both 90% ETOH and ATP (Figure 4F), 100 ng/mL LPS 

(Figure 4G), or infected with PAK WT (Figure 4H).  

Three hour-long infection of THP-1 cells with PAK WT resulted in a significant 

increase in the expression of active caspase-1 as compared to treatment with LPS (Figure 

4I). While PAK WT (607.1 ± 42.96) and PAO1 (650.8 ± 78.11) induced similar level of 
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active caspase-1 expression, P. aeruginosa mutant strains, i.e. pili-deficient (PAK NP), 

flagella-deficient (PAK fliC), and LPS-deficient (PAK rmlC), or PAO1 pyocyanin-

deficient mutants (∆phzM and ∆phzS) induced lower levels of active caspase-1 compared 

to stimulation with their isogenic wild type strains (PAK WT or PAO1, respectively) 

(Figure 4I). Clinical isolates obtained from intermittently colonized CF patients induced 

significantly lower active caspase-1 expression (P < 0.05) compared to PAK WT (Figure 

4I). The isolates obtained from chronically infected patients showed further reduced 

abilities to activate caspase-1 similar to the effect of mutant strains lacking the major 

virulence factors (Figure 4I).  

To further confirm the activation of caspase-1, we stimulated THP-1 macrophages 

with P. aeruginosa for 18 hours (1 hour infection, followed by 17 hours of incubation 

with bacteria in the presence of gentamicin). ELISA data showed that presence of active 

caspase-1 in culture supernatants of stimulated THP-1 macrophages (Figure 5A) were 

consistent with detection of active caspase-1 in THP-1 monocytic cells using flow 

cytometry (Figure 4I). Despite a different degree of caspase-1 activation induced by P. 

aeruginosa strains, the absence of specific virulence factor(s) was associated with 

decreased caspase-1 activation (Figure 5A). Moreover, pretreatment of cells with a 

specific caspase-1 inhibitor for 2 or 5 hours prior to P. aeruginosa infection greatly 

decreased the release of active caspase-1 (Figure 5B).   

2.3.5 Lack of specific cell-associated or secreted virulence factors of P. aeruginosa 

results in decreased inflammatory responses of THP-1 cells  

To study the release of cytokines and expression of ICAM-1, we stimulated THP-1 

macrophages with P. aeruginosa as described in Materials and Methods. Our preliminary 
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experiments indicated that THP-1 monocytic cells had low capacities of cytokine 

production (data not shown). Stimulation with all P. aeruginosa strains induced a 

significant increase in surface ICAM-1 expression by THP-1 macrophages (Figure 6). In 

comparison to PAK WT, stimulation with the isogenic mutants PAK NP (P < 0.001), 

PAK rmlC (P < 0.01), and PAK fliC (P < 0.01) resulted in lower expression of ICAM-1 

(Figure 6) suggesting that the lack of specific virulence factor(s) may account for this 

effect. We observed similar phenomenon when the infection with the isogenic P. 

aeruginosa PAO1 mutants ∆phzM (P < 0.01), and ∆phzS (P < 0.001) was compared to 

the wild type PAO1 strain (Figure 6). The expression of ICAM-1 in infected cells was 

higher in the case of infection with strains isolated from intermittently colonized CF 

patients compared to infection with ‘chronic’ strains (P < 0.05, Figure 6).  

Similar to the surface ICAM-1 expression, we observed a higher release of IL-1β 

and TNF-α by cells stimulated with PAK WT, PAO1, and isolates from intermittently 

colonized CF patients compared to infection with isogenic P. aeruginosa mutants or 

‘chronic’ strains (Figure 7A,B). These data corroborate our findings that the lack of 

specific virulence factors resulted in a significant attenuation of caspase-1 activation. IL-

10 release was significantly increased in cells infected with PAK WT, PAO1 mutant 

(∆phzM), and both types of clinical isolates as compared to the un-stimulated cells (figure 

7C). IFN-γ was statistically significantly induced by PAO1 and PAO1 mutant (∆phzM) in 

comparison to un-stimulated cells (figure 7D). Isolates from chronically infected CF 

patients induced a significant increase of IFN-γ release in comparison to un-stimulated 

cells (P < 0.001) or cells infected with isolates from intermittently colonized CF patients 

(P < 0.0001) (figure 7D).   
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In the next experiments, we tested the effect of a specific caspase-1 inhibitor Ac-

YVAD-cmk, which is reportedly effective in concentration of 40 µM in THP-1 cell 

culture condition [24]. Cell-surface expression of ICAM-1 in THP-1 macrophages 

pretreated with the inhibitor and stimulated with PAK WT at an MOI of 5, or LPS was 

similar to stimulated cells without pretreatment (data not shown). However, caspase-1 

inhibitor pretreatment of THP-1 macrophages stimulated with LPS, LPS + ATP, PAK 

WT or its isogenic mutants resulted in a significant attenuation of IL-1β release, with no 

significant difference between 2 and 5 hours of pretreatment (Figure 8A). In contrast, 

under the same conditions, no effect of caspase-1 inhibitor on the release of TNF-α was 

observed (Figure 8B).  

2.4 Discussion 

Early P. aeruginosa infection in an immunocompetent host involves a variety of 

functional cell types and mediators that recognize the pathogen and initiate innate 

immunity, eventually clearing the pathogen from the airways [27-29]. Individuals with 

mutation in CFTR have dehydrated and thickened airway surface liquid that hinders 

mucociliary clearance. The natural history of progression of lung disease in CF 

individuals shows susceptibility to pulmonary P. aeruginosa infection; the disease starts 

with an initial acute infection and vigorous inflammatory response, followed by chronic 

respiratory infection (CRI) [30,31]. P. aeruginosa isolates from CF patients with CRI 

undergo remarkable phenotypic and genotypic alterations, i.e. lose of a number of 

virulence factors, change the phenotype, form biofilm, and acquire resistance to many 

antibiotics. Several studies have suggested those alterations may confer survival 

advantages to P. aeruginosa in CRI and benefit persistent bacterial colonization 
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[20,30,32-40]. These observations suggest that there is a complex interplay between P. 

aeruginosa virulence factors and host defense mechanisms in CRI caused by P. 

aeruginosa.  

In this study, we hypothesized that the genetic diversification acquired by P. 

aeruginosa during the course of CRI may alter NLR-mediated caspase-1 activation in 

innate immune cells resulting in decreased host defenses. We first studied the viability of 

THP-1 monocytic cells infected with P. aeruginosa and established that the strains 

isolated from intermittently colonized CF patients caused a decreased THP-1 viability as 

compared to isolates from chronically infected CF patients. This could be related to their 

different abilities to become internalized as was demonstrated by our previous studies in a 

model of infected lung epithelial cells (Hawdon et al., 2009). Recent studies found that P. 

aeruginosa are cytotoxic to THP-1 monocytes [24] and THP-1 macrophages [41]. 

Engulfment and interactions of P. aeruginosa with phagocytic cells are mediated by a 

number of ligands expressed on the pathogen and numerous host receptors, for example 

asialo GM1 and TLRs [42-50]. Our data showed that pili, lipopolysaccharide, or blue 

pigment pyocyanin were not essential for decreasing cell viability because the mutant 

strains lacking any of these virulence factors caused similar decrease in cell viability as 

their isogenic wild type strains. However, infection with a flagella-deficient mutant 

resulted in decreased cell viability, which may be related to its reduced ability to activate 

the transcription factor NF-κB. Bacterial flagellin recognized by TLR5 and NLRC4 is 

known to activate the NF-κB pathway [51,52]. Indeed, our data showed that a flagella-

deficient strain induced significantly lower expression of ICAM-1 (Figure 6), release of 

proinflammatory cytokines IL-1β (Figure 7A) and TNF-α (Figure 7B), and caspase-1 
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(Figures 4I & 5A,B) compared to the wild type strain. While NF-κB regulates pro-

inflammatory responses [53], it also regulates cell survival [54], and this may explain 

why cells infected with flagella-deficient mutant show a decreased viability compared to 

the wild type P. aeruginosa 

Apoptosis was found to be necessary for protective host response against P. 

aeruginosa infection in vivo [55]. P. aeruginosa can cause apoptosis of host cells via both 

death-receptor associated (extrinsic) and mitochondrial (intrinsic) pathways [55,56]. 

Using the detection of active effector caspase-3,7 involved in both pathways, we found 

that P. aeruginosa strains causing chronic pulmonary infection induced less apoptosis, 

compared with strains causing intermittent colonization. These data suggest that 

diminished apoptosis of infected cells can contribute to the persistence of P. aeruginosa 

infection. These findings are consistent with our previous observations on lung epithelial 

cells [21]. However, in present study, P. aeruginosa mutants induced similar activation of 

caspase-3,7 as their wild type strains suggesting the role of some virulence factors apart 

from pili, flagella, LPS and pyocyanin, in inducing apoptosis of infected monocytic cells. 

While the role of pili, flagella, LPS, and the effectors of the T3SS in apoptosis caused by 

P. aeruginosa has been previously demonstrated [57-59], some studies suggest that P. 

aeruginosa may induce different forms of cell death by necrosis (caspase-1 and -3 

independent), oncosis (caspase-3 independent) or pyroptosis (caspase-1 dependent) 

[24,60]. These discrepancies may depend on the experimental model and need further 

investigation. 

ICAM-1, an adhesion molecule critical in the recruitment of inflammatory cells to 

the infected tissue, is constitutively expressed at low levels on macrophages [61], but not 



 

 126 

on circulating monocytes. However, its expression can significantly rise in the presence 

of proinflammatory cytokines such as TNF-α, or bacterial virulence factors [62-65]. We 

found that P. aeruginosa from early stages of CF pulmonary infection and wild type 

strains induced higher surface expression of ICAM-1, compared to the strains isolated 

from chronically infected patients and mutant strains. As P. aeruginosa wild type strains 

and clinical isolates from intermittently colonized CF patients tend to induce more 

proinflammatory cytokines compared with mutant strains and isolates from chronic lung 

infection, we found consistency in ICAM-1 (Figure 6) and proinflammatory cytokines 

IL-1β and TNF-α expression (Figure 7A,B).  

Once established, P. aeruginosa infection leads to an escalation of inflammation, 

severe tissue damage, and deterioration of lung function [2,27,66]. IL-1β is a potent 

inflammatory cytokine and its level is increased in bronchoalveolar lavage and sputum of 

immunocompromised individuals and CF patients with P. aeruginosa infection [67-69]. 

Previous studies have demonstrated that monocytes and macrophages are the primary 

source of IL-1β production in P. aeruginosa infection [4,12]. It was documented that the 

inflammatory response to P. aeruginosa is initiated following the recognition of 

pathogen-associated molecules by TLRs on the cell surface and NLRs within the cytosol. 

However, specific mechanisms of NLR-mediated caspase-1 activation in response to 

microbial stimuli remain poorly understood [70,71]. Following NLR activation, the 

inflammasome assembles and mediates the activation of caspase-1, which leads to 

proteolytic processing of immature pro-IL-1β to its biological active form [16,19,72,73]. 

Production of IL-1β requires two signals: initial one by the activation of TLR, which 

leads to pro-IL-1β production. The second signal is by the activation of NLR, which 
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initiates inflammasome formation and caspase-1 activation for release of IL-1β [74]. Our 

Western blotting results showed that pro-caspase-1 is expressed in unstimulated THP-1 

macrophages. In our PAK WT infection model, the expression of pro-IL-1β, but not of 

pro-caspase-1, was time- and dose-dependent. Stimulation with PAK WT led to a 

decreased expression of pro-caspase-1 compared with LPS or ATP + LPS, which may be 

attributed to proteolytic cleavage of pro-caspase-1 into enzymatically active caspase-1. 

Studies showed that caspase-1 has high substrates specificity at low concentration [75], as 

well as its overexpression induced autophagy [12].  

The activation of caspase-1 following P. aeruginosa infection in human monocytic 

and macrophage cells has recently been documented [4,12], but the role of specific 

virulence factors or source of clinical P. aeruginosa isolates have not been fully 

elucidated. We found that P. aeruginosa infection resulted in the activation of caspase-1 

in THP-1 monocytic cells and production of active caspase-1 in THP-1 macrophages; in 

both models, it was dramatically reduced with mutant strains or clinical isolates from 

chronically infected CF patients. Different types of NLRs can be activated in innate 

immunocytes during bacterial infection [76]. It was recently demonstrated that NLRP3, 

ASC, and caspase-1 were activated in human macrophages following P. aeruginosa 

infection, and their overexpression triggered autophagy, which impaired phagocyte 

killing [12]. Most importantly, P. aeruginosa-induced IL-1β secretion was significantly 

down-regulated in NLRP3-deficient human macrophages [12]. In contrast, previous 

studies showed that in mouse macrophages, NLRP3 was not crucial for P. aeruginosa-

induced IL-1β secretion, in contrast to NLRC4 [74]. Recent studies demonstrated that P. 

aeruginosa-induced IL-1β secretion was unaffected in AIM2-deficient mouse 
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macrophages; however, AIM2 gene expression and degradation of AIM2 protein were 

induced by P. aeruginosa infection [7]. Further studies are required to understand 

molecular mechanisms involved in inflammasome activation by P. aeruginosa 

Caspase-1 inhibitors are commonly used to investigate inflammasome activation 

[12,24,72,77-79]. In our experiments, pretreatment of THP-1 macrophages with a specific 

caspase-1 inhibitor significantly inhibited both caspase-1 and IL-1β secretion. While 

TNF-α is induced by P. aeruginosa infection its production is largely independent on 

NLR-mediated activation pathways [80]. Indeed, in our model, caspase-1 inhibitor did 

not cause significant decrease of TNF-α release induced by any stimulation (Figure 8B), 

although some studies showed that active caspase-1 can activate NF-κB, which is 

responsible for TNF-α gene expression [23,81]. Taken together, our results support that P. 

aeruginosa infection of THP-1 macrophages activates the NLR(s). While the role of other 

PRRs, such as TLRs, in pathogen immunity has been relatively well studied, the NLR 

contribution to host-pathogen interactions is less defined. It is worth mentioning that our 

findings corroborate recent data by others who used a caspase-1 inhibitor [24] or small 

interfering RNAs to treat THP-1 cells [12].  

We found that P. aeruginosa infected THP-1 macrophages produced low amounts 

of IL-10 and IFN-γ. Signals, which regulate production of IL-10, are initiated by the 

engagement of several PRRs [82], while production of IFN-γ by THP-1 macrophages 

requires IL-12 in combination of IL-18 as additional signals [83].  

In conclusion, our study of cellular responses to clinical P. aeruginosa isolates from 

CF patients obtained at different stages of lung infection along with mutant strains helps 

to understand the role of NLR activation in innate immune responses to this pathogen. In 
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particular, we found that P. aeruginosa strains isolated from the chronic stage of CF 

pulmonary infection have decreased abilities to induce caspase-1 activation and IL-1β 

secretion. As these bacteria were isolated from chronically infected patients, the loss of 

specific virulence factors during CRI likely enables or reflects P. aeruginosa ability to 

persist in the lung environment. Ability to avoid detection by NLRs may represent an 

important mechanism of immune evasion. Because clinical isolates during the chronic 

stage still continuously trigger inflammatory responses this can account for progressive 

deterioration of lung function in CF [84-91].  
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Table  

Table 1: Strains of Pseudomonas aeruginosa used in this study 

Strain Isolate Sources/References 

Wild-type PAK (PAK WT) R.J. Irvin/[89] 

Pili-deficient PAK (PAK NP) A.S. Prince/[90] 

LPS-deficient PAK (PAK rmlC)  J.S. Lam/[91] 

Flagella-deficient PAK (PAK fliC) A.S. Prince/[43] 

Wild-type PAO1 H. Schraft/[92] 

Pyocyanin-deficient PAO1 (∆phzM) G.W. Lau/[93] 

Pyocyanin-deficient PAO1 (∆phzS) G.W. Lau/[93] 

Isolates from intermittently colonized CF patients Danish CF Centre/[21] 

Isolates from chronically infected CF patients Danish CF Centre/[21] 
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Figure Legend 

Figure 1 Viability of THP-1 cells infected with Pseudomonas aeruginosa.  

A. THP-1 monocytic cells were stimulated with LPS or P. aeruginosa strain K (PAK 

WT) at an MOI of 5 or 10 for 3 h, and then viable cells were counted. B. THP-1 

monocytic cells were infected with mutant or wild type strains, or individual clinical 

isolates (27 isolates in total) at an MOI of 5. All data for intermittent (n = 13) and chronic 

(n = 14) strains have been pooled together. Un-stimulated THP-1 monocytic cells served 

as a negative control. For figure 1A,  ##, P < 0.01 compared between LPS and control; #, 

P < 0.05 compared between PAK WT at an MOI of 5 or 10 to control. For figure 1B, #, P 

< 0.05 compared between PAK WT, PAK NP, or PAK rmlC to control; ##, P < 0.01 

compared between ∆phzM to control; ###, P < 0.001 compared between PAO1 to 

control; **, P < 0.01 compared between PAK fliC to PAK WT; +, P < 0.05 compared 

between ∆phzS and PAO1; •••, P < 0.001 compared between chronic and intermittent 

strains. 

Figure 2 Apoptosis of THP-1 cells caused by Pseudomonas aeruginosa depends on 

the stage of pulmonary infection in CF patients.  

THP-1 monocytic cells were stimulated with P. aeruginosa clinical isolates from CF 

patients, PAK WT and PAO 1, or their isogenic mutant strains. Expression of active 

caspase-3,7 as indication of apoptosis was detected using flow cytometry. The results 

were expressed as mean fluorescence intensity (MFI). Un-stimulated THP-1 monocytic 

cells served as a negative control. ###, P < 0.001 compared between LPS, PAK WT, 

PAK NP, PAK rmlC, PAK fliC, PAO1, ∆phzM, or ∆phzS and control; ••, P < 0.01 
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clinical isolates from chronically infected CF patients compared to intermittently 

colonized. 

Figure 3 The effect of P. aeruginosa infection on the expression of procaspase-1 and 

pro-IL-1β.  

THP-1 macrophages were stimulated with P. aeruginosa strain K (PAK WT) either at an 

MOI of 5 for 1, 2, or 4 hours (A and C), or for 2 hrs at MOI of 10 and 20 (B and D). 

Following stimulation, pro-caspase-1 (48 kDa) and pro-IL-1β (31 kDa) were detected in 

cellular lysates by Western blot. Results are expressed as ratios of 48 kDa and 31 kDa 

band intensity to β-actin. Control: un-stimulated THP-1 macrophages. Results represent 

the mean ± SEM of 2 independent experiments; #, P < 0.05 PAK WT (MOI 20) 

compared to control; ###, P < 0.001 LPS or PAK WT (2 hrs) compared to control ; ####, 

P < 0.0001 ATP in the presence of LPS compared to; º, P < 0.05 PAK WT (1 hr) 

compared to LPS; ººº, P < 0.001 ATP in the presence of LPS or PAK WT (2 hrs) 

compared to LPS; ºººº, P < 0.0001 PAK WT (4 hr), PAK WT (MOI 10), or PAK WT 

(MOI 20) compared to LPS; n.s, not statistically significant.  

Figure 4 Effect of Pseudomonas aeruginosa infection on the expression of active 

caspase-1 in THP-1 cells.  

THP-1 monocytic cells were stimulated with P. aeruginosa clinical isolates from CF 

patients, PAK WT, PAO 1, or their isogenic mutant strains. Expression of active caspase-

1 was detected using flow cytometry as described in Materials and Methods. In figure 

4A-H, original representative flow cytometric dot plots are shown; A, un-stimulated and 

un-stained THP-1 monocytic cells; B, un-stimulated cells with PI stain; C, un-stimulated 

cells with PI and FLICA stains; D, 90% ETOH-treated cells with PI stain; E, ATP-treated 
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cells with FLICA stain; F, cells treated with 90% ETOH in the presence of 5 mM ATP; G, 

cells stimulated with LPS, H,, cells infected with PAK WT stained with PI and FLICA. In 

figure 4I, ##, P < 0.01 LPS compared to control; ####, P < 0.0001 PAK WT, PAO1, or 

clinical isolates from intermittently colonized compared to control; *, P < 0.05 PAK NP 

or PAK rmlC compared to PAK WT; **, P < 0.01 PAK fliC compared to PAK WT; +, P 

< 0.05 ∆phzM or ∆phzS compared to PAO1; •••, P < 0.001 clinical isolates from 

chronically infected CF patients compared to intermittently colonized. Results of three 

independent experiments are shown. FLICA stain is on FL1; PI stain is on FL2; Control: 

unstimulated cells. 

Figure 5 Effect of P. aeruginosa infection on the release of active caspase-1 by THP-

1 macrophages.   

THP-1 macrophages were infected with P. aeruginosa at an MOI of 10 for 1 h followed 

by 17 h incubation with gentamicin. A, caspase-1 levels in cell supernatants were 

examined by ELISA, and B, following pretreatment with 40 µM of the specific caspase-1 

inhibitor Ac-YVAD-cmk for 2 or 5 hours. In figure 5A, Control: un-stimulated THP-1 

macrophages. ###, P < 0.001 clinical isolates from intermittently colonized compared to 

control; ####, P < 0.0001 PAK WT or PAO1 compared to control; º, P < 0.05 ATP in the 

presence of LPS compared to LPS; *, P < 0.05 PAK NP, PAK rmlC, or PAK fliC 

compared to PAK WT; +, P < 0.05 ∆phzS compared to PAO1; ++, P < 0.01 ∆phzM 

compared to PAO1; ••, P < 0.01 clinical isolates from chronically infected CF patients 

compared to intermittently colonized. In figure 5B, stimulated THP-1 macrophages 

without caspase-1 inhibitor pretreatment served as a control. Release of caspase-1 by 
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cells pretreated with the inhibitor prior to stimulation in comparison to control, P < 0.001; 

∆∆∆∆, P < 0.0001. n.s, not statistically significant. 

Figure 6 Surface expression of the adhesion molecule ICAM-1 on THP-1 

macrophages following Pseudomonas aeruginosa infection.  

Analysis of cell surface expression of ICAM-1 was performed by flow cytometry 

following infection with P. aeruginosa at an MOI of 5. Un-stimulated THP-1 

macrophages served as a negative control. ####, P < 0.0001 LPS, PAK WT, PAO1, or 

clinical isolates from intermittently colonized compared control; **, P < 0.01 PAK rmlC 

or PAK fliC compared to PAK WT; ***, P < 0.001 PAK NP compared to PAK WT; ++, 

P < 0.01 ∆phzM compared to PAO1; +++, P < 0.001 ∆phzS compared to PAO1; •, P < 

0.05 clinical isolates from chronically infected CF patients compared to intermittently 

colonized. 

Figure 7 Cytokine release from THP-1 macrophages stimulated with Pseudomonas 

aeruginosa for 18 h.  

THP-1 macrophages were infected with P. aeruginosa clinical isolates from CF patients, 

PAK WT and PAO 1, or their mutant strains at an MOI of 10. Un-stimulated THP-1 

macrophages served as a negative control. Concentrations of IL-1β (A), TNF-α (B), IL-

10 (C), and IFN-γ (D) in cell supernatants were measured by ELISA. Data represent 

mean cytokine concentration ± SEM (n=3). #, P < 0.05 PAK WT, PAO1, or ∆phzM 

compared to un-stimulated THP-1 macrophages; ##, P < 0.01 LPS compared to control; 

###, P < 0.001 ATP in the presence of LPS, or clinical isolates from chronically infected 

CF patients compared to control; ####, P < 0.0001 LPS, PAK WT, PAO1, clinical 

isolates from intermittently colonized or chronically infected CF patients compared to 
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control; **, P < 0.01 PAK NP, PAK rmlC, or PAK fliC compared to PAK WT; ***, P < 

0.001 PAK rmlC compared to PAK WT; ****, P < 0.0001 PAK NP or PAK fliC 

compared to PAK WT; ++++, P < 0.0001 ∆phzM or ∆phzS compared to PAO1; ••••, P < 

0.01 clinical isolates from chronically infected CF patients compared to intermittently 

colonized. 

Figure 8 Effect of caspase-1 inhibitor on cytokine production by THP-1 

macrophages infected with P. aeruginosa.  

THP-1 macrophages were pre-incubated with 40 µM of the specific caspase-1 inhibitor 

Ac-YVAD-cmk for either 2 or 5 hours and then infected with P. aeruginosa PAK WT or 

its isogenic mutant strains at an MOI of 10. Stimulated THP-1 macrophages without 

pretreatment served as a control. Concentrations of IL-1β (A) and TNF-α (B) were 

measured by ELISA. Data represent mean cytokine concentration ± SEM (n=3). Release 

of cytokines by cells pretreated with the inhibitor prior to stimulation in comparison to 

control, ∆, P < 0.05; ∆∆, P < 0.01; ∆∆∆, P < 0.001; ∆∆∆∆, P < 0.0001. n.s, not 

statistically significant. 
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Abstract  

As Pseudomonas aeruginosa infections are characterized by strong inflammation of 

infected tissues anti-inflammatory therapies in combination with antibiotics have been 

considered for the treatment of associated diseases. Syk tyrosine kinase is an important 

regulator of inflammatory responses, and its specific inhibition was explored as a 

therapeutic option in several inflammatory conditions; however, this has not been studied 

in bacterial infections.  We used a model of in vitro infection of human monocytic cell 

line THP-1 and lung epithelial cell line H292 with both wild type and flagella-deficient 

mutant of P. aeruginosa strain K, as well as with clinical isolates from cystic fibrosis 

patients, to study the effect of a small molecule Syk inhibitor R406 on inflammatory 

responses induced by this pathogen. One-hour long pretreatment of THP-1 cells with 10 

µM R406 resulted in a significant down-regulation of the expression of the adhesion 

molecule ICAM-1, pro-inflammatory cytokines TNFα and IL-1β, and phosphorylated 

signaling proteins ERK2, JNK, p-38, and IκBα, as well as significantly decreased TNF-α 

release by infected H292 cells. The results suggest that Syk is involved in the regulation 

of inflammatory responses to P. aeruginosa, and R406 may potentially be useful in 

dampening the damage caused by severe inflammation associated with this infection.  
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3.1 Introduction 

Pseudomonas aeruginosa is the major cause of chronic pulmonary infection in 

cystic fibrosis (CF) patients as well as of other serious conditions in 

immunocompromised individuals [1-4]. P. aeruginosa is a  Gram-negative opportunistic 

pathogen armed with potent virulence factors including the type III secretion and quorum 

sensing systems, lipopolysaccharide, several powerful exotoxins, and various enzymes 

that contribute to disease pathogenesis via severe tissue damage and inflammation as well 

as immune evasion [5]. As P. aeruginosa infection is characterized by exaggerated 

inflammatory responses, anti-inflammatory therapy is considered important for treatment 

of P. aeruginosa-associated conditions [6]. In particular, intracellular protein kinases 

involved in the regulation of pro-inflammatory signaling pathways may represent 

potential therapeutic targets. We have recently found that an inhibitor of Syk tyrosine 

kinase piceatannol is able to down-regulate inflammatory responses in P. aeruginosa-

infected lung epithelial cells [7]. However, the effect of piceatannol in this model 

extended beyond inhibition of Syk, i.e. via potential modulation of Syk-independent 

signaling pathways [7]. A small molecule inhibitor, N4-(2,2-dimethyl-3-oxo-4H-

pyrid[1,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine 

(R406) was demonstrated to selectively inhibit Syk kinase activity in an ATP-competitive 

manner both in vitro and in vivo [8-11]. R406 is the active metabolite of an orally 

available drug Fostamatinib, which had undergone several clinical trials for treatment of 
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some autoimmune and allergic diseases and hematological malignancies [12]. However, 

it is unknown whether R406 can modulate inflammatory responses in infections. In this 

study, we sought to assess the effect of R406 on inflammatory markers associated with P. 

aeruginosa infection of human monocytic and lung epithelial cells. 

3.2 Materials and Methods 

3.2.1 Cell culture conditions 

The THP-1 human acute monocytic leukemia cell line (ATCC, Manassas, VA) was 

used at the passage numbers of 6-20. These cells were maintained in RPMI 1640 medium 

(Sigma-Aldrich, Oakville, ON, Canada) supplemented with 10% heat inactivated fetal 

bovine serum (FBS) (SAFC Biosciences, Lenexa, KS) and 1% antibiotic-antimycotic 

(Invitrogen, Burlington, ON, Canada). Cells were grown at 37°C with 5% CO2 and 

seeded every 3-4 days when cell counts neared 1×106 cells/mL. In preparation for 

experiments, the cells were centrifuged at 400 × g for 5 minutes, washed with sterile PBS 

(pH 7.4), and suspended in culture medium without antibiotics. To induce differentiation, 

THP-1 cells were plated at 1×106 cells/mL/well in 24-well plates (Costar, Corning 

Incorporated, Corning NY), in serum- and antibiotic-RPMI 1640 medium. Cells were 

then treated with 20 ng/mL phorbol myristate acetate (PMA; Sigma-Aldrich) at 37°C in 

5% CO2 for 12 hours, then washed and re-suspended in the same medium. After 48 hours 

of further incubation, the cells were washed twice with serum- and antibiotic-free 

medium and used for experiments. 

The H292 human muco-epidermoid bronchiolar carcinoma cell line (ATCC) was 

used at the passage numbers of 10-25. These cells were maintained in RPMI 1640 

medium supplemented with 10% heat inactivated FBS without antibiotics. Cells were 
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grown at 37°C with 5% CO2 and seeded every 3-4 days when confluency approached 

80%. For viability testing, the cells were detached using 0.5% Trypsin-EDTA (Gibco, 

Eugene, OR), centrifuged at 400 × g for 5 minutes, washed with sterile PBS (pH 7.4), and 

suspended in culture medium. Cell viability was determined by the trypan blue exclusion 

method using a ViCell XR Cell Viability Analyzer (Beckman Coulter, Brea, CA, USA).   

3.2.2 Pseudomonas aeruginosa strains and in vitro infectious model 

Pseudomonas aeruginosa strain K wild type (PAK WT, provided by Dr. RJ Irvin, 

University of Alberta, Edmonton, AB) and the isogenic P. aeruginosa mutant PAK fliC 

(flagella deficient, provided by Dr. AS Prince, Columbia University, New York), as well 

as P. aeruginosa clinical isolates from sputum samples of CF patients were used (Table).  

One clinical isolate from an intermittently colonized and another from a chronically 

infected patient (the latter obtained during longitudinal observation at the Danish CF 

Center) were kindly provided by Dr. N Høiby (University Hospital Rigshospitalet, 

Copenhagen, Denmark). The characteristics of the isolates are described in our previous 

study [13].   

The bacteria were maintained on Luria Burtani (LB) medium (Fischer Scientific, 

Fair Lawn, NJ) with 1% agar (LBA). A single colony of P. aeruginosa was grown 

overnight in sterile LB medium on a shaking platform at 150 rpm and diluted by a factor 

of 20 into fresh sterile LB medium. Cultures were allowed to grow for approximately 1 

hour, until mid-log phase when optical density at 600 nm (OD600) reached 0.30. The 

culture was then centrifuged at 3,500 × g for 20 minutes at 4°C and washed twice in PBS. 

Following the final re-suspension, bacteria were diluted to an OD600 of 0.30 in RPMI 

1640 that corresponded to approximately 2×108 CFU/mL, as determined by serial 
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dilutions and drop plating on LBA. From this stock, bacteria were added to either H292 

cells to obtain a multiplicity of infection (MOI) of 50, as was optimized in our previous 

experiments [7], or THP-1 cells at a MOI of 5. The latter conditions were optimized using 

THP-1 cells infected with PAK WT during 1, 2, 6, 12, or 18 hours at MOI of 1, 5, or 10.  

3.2.3 Stimulation of THP-1 cells via Fcγ-receptor cross-linking 

The 96-well plates (Falcon, Corning Incorporated) were coated with human IgG 

(Sigma-Aldrich) at concentrations of 10 and 100 µg/mL and incubated for 3 hours at 

37°C, followed by overnight incubation at 4°C, then the plates were washed twice with 

sterile PBS. THP-1 cells at concentration of 0.4×106 cells/mL in 200 µL were added to 

the coated wells and incubated for 18 hours at 37°C with 5% CO2. 

3.2.4 Pretreatment with R406 

THP-1 or H292 cells were grown for 24 hours to 0.4×106 cells/mL, or until they 

reached approximately 80% confluence, respectively, and R406 (AstraZeneca) dissolved 

in DMSO was added to the medium to achieve a final concentration of 10 µM. The cells 

were incubated in the presence of R406 for 1 hour, then washed once with PBS and used 

for experiments.  These conditions were developed based on published literature 

describing R406 pretreatments [9,10,14] and our cellular viability testing using R406 

concentrations of 1, 5, 10, 15, and 20 µM. No noticeable effect of R406 concentrations up 

to 10 µM on cell viability tested during one hour was detected (97-99% viable cells), nor 

significant decrease in either THP-1 or H292 cell viability following 18-hour-long 

incubation with 10 µM of R406 occurred. Viability of THP-1 following 18 hour-long 

incubation with R406 or without R406 was 82% and 75% (P>0.05), for H292 cells, it was 

84% and 81%, correspondingly (P>0.05).  
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3.2.5 Flow cytometry analysis of ICAM-1 expression 

THP-1 cells (0.4×106) were infected with PAK WT for 6 hours at 37°C, 5% CO2, 

then washed and re-suspended in 100 µL of 0.1% BSA-PBS containing PE-conjugated 

mAb against ICAM-1 (Mouse anti-human CD54, BD Pharmigen, Mississauga, ON) at a 

dilution of 1:50 and incubated for 1 hour at 4°C. Following incubation, cells were washed 

twice with PBS and analyzed by flow cytometry on the FACSCailbur (BD Bioscience, 

Mississauga, ON, Canada). The data were analyzed using CellQuest Pro software and 

expressed as mean fluorescence intensity (MFI). 

3.2.6 ELISA for cytokine detection 

To measure the release of cytokines, PMA-differentiated THP-1 or H292 cells were 

infected with P. aeruginosa (MOI of 10, or 50, correspondingly), for 1 hour at 37˚C, with 

5% CO2, and then 100 µg/mL gentamicin was added, followed by incubation for a further 

17 hours at 37°C with 5% CO2. Following stimulation, cell culture supernatants were 

collected and stored at -80°C until analysis. The levels of TNFα and IL-1β were 

measured using eBioscience Ready-Set-Go ELISA kits (San Diego, CA) according to the 

manufacturer’s protocol. The lower detection limits of the assays were 2 pg/mL for IL-1β 

and 4 pg/mL for TNFα. Samples from three independent experiments were run in 

triplicate. 

3.2.7 Immunoprecipitation and Western blot 

THP-1 cells (2×106) were infected with PAK WT at an MOI of 5 for 2 hours at 

37°C, 5% CO2. Following stimulation, the cells were centrifuged, washed, re-suspended 

in 100 µL of ice-cold RIPA lysis buffer, and incubated for 30 minutes at 4 °C.  Following 

incubation, the cells were centrifuged at 8,000 × g for 10 minutes and protein lysate was 
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collected. Isolated proteins were immunoprecipitated with polyclonal anti-Syk antibody 

(N-19) (Santa Cruz Biotehnology, CA) using magnetic Protein A beads (Bio-Rad, 

Hercules CA), according to the manufacturer’s protocol. Samples were resolved by 12% 

SDS-PAGE and transferred to a nitrocellulose membrane. Blots were blocked with 5% 

nonfat dry milk in Tris-buffered saline containing 0.1% Tween 20, probed with primary 

antibody, i.e. anti-phospho-tyrosine (P-Tyr-100) (Cell Signaling Technology), or 

monoclonal anti-syk antibodies (4D10) (Santa Cruz Biotechnology, CA) followed by 

HRP-conjugated secondary antibody (7074S) (Cell Signaling Technology), and 

developed using enhanced chemiluminescence. Bands were scanned and images analyzed 

using ChemiDoc XRS (Bio-Rad). For analysis of total and phosphorylated intracellular 

signaling proteins, THP-1 cells were stimulated with PAK WT (MOI of 5), for 15, 30, or 

60 minutes at 37°C. Protein lysates were collected and stored at -80 °C. For analysis of 

protein expression by Western blot we used: monoclonal anti-JNK (D-2), anti-phospho 

JNK (G-7), anti-ERK 2 (12A4), anti-phospho ERK 2 (E-4), anti-p38α (9F12), anti-

phospho p38α (E-1), anti-IκB-α (H-4), anti-phospho IκB-α (B-9), anti- β-actin (C4) and 

mouse IgGκ BP-HRP (Santa Cruz Biotechnology). In some cases, the blots were stripped 

and re-probed with other antibodies.  

3.2.8 Statistical analysis 

All the experiments were repeated at least 3 times. Data were expressed as mean +/- 

SEM for n independent experiments. For comparison of two sample means, Student’s t 

test was applied. GraphPad Prism 7.0 (La Jolla, CA, USA) was used for the analysis. P - 

values <0.05 were considered significant.  
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3.3 Results: 

3.3.1 R406 down-regulates ICAM-1 expression induced by P. aeruginosa infection 

As the intercellular adhesion molecule 1 (ICAM-1) typically becomes up-regulated 

during inflammatory responses, particularly in cells infected with P. aeruginosa [15] we 

tested the effect of R406 on the cell-surface expression of ICAM-1 in THP-1 cells 

exposed to a virulent P. aeruginosa strain K (PAK WT) at an MOI of 5. As shown on 

Figure.1A, 6-hour long infection resulted in >15-fold increase in ICAM-1 mean 

fluorescence intensity (MFI) compared to uninfected cells. One hour-long pre-incubation 

of THP-1 cells with R406 used in concentrations between 0.1 and 20 µM down-regulated 

ICAM-1 expression in a dose-dependent manner, with a statistically significant effect for 

all the R406 concentrations >0.5 µM (Fig. 1A). There was no noticeable effect of R406 

concentrations up to 10 µM on cell viability; the percentage of viable cells after one hour 

of incubation with R406 was 97-99% (data not shown). Likewise, one hour-long 

incubation of THP-1 cells with 1, 5, or 10 µM of R406 did not have any visible effect on 

the baseline ICAM-1 expression (data not shown). 

To confirm the effect of R406 on Syk in our model, we stimulated THP-1 cells via 

Fcγ-receptor (FcγR) cross-linking, which is known to induce Syk-dependent signaling 

[16]. While stimulation of THP-1 cells with immobilized human IgG resulted in a 

significant increase in ICAM-1 surface expression in a dose-dependent manner, pre-

treatment with 10 µM R406 caused an attenuation of ICAM-1 expression at both 10 and 

100 µg/mL IgG concentrations (P<0.05) (Figure. 1B). Moreover, tyrosine 

phosphorylation of Syk induced by two hour-long exposure of THP-1 cells to live 

bacteria was significantly down-regulated in cells, pre-treated with 10 µM R406 (Figure. 
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1C). These experiments imply that down-regulation of ICAM-1 in P. aeruginosa infected 

cells by R406 could be mediated by inhibition of Syk-mediated signaling.  

3.3.2 R406 down-regulates the release of pro-inflammatory cytokines TNFα and IL-

1β induced by P. aeruginosa infection 

To further test the effect of R406 in our model, we studied the release of cytokines 

TNFα and IL-1β, which are the hallmarks of inflammatory responses caused by P. 

aeruginosa infection, by using a virulent P. aeruginosa strain K (PAK WT), the isogenic 

P. aeruginosa mutant PAK fliC (flagella-deficient), and clinical isolates from two CF 

patients (intermittently colonized and chronically infected). One hour-long infection of 

differentiated THP-1 cells, or H292 cells with PAK WT, followed by adding gentamicin 

with further 17 hours of incubation resulted in a large TNFα release by both cell types, 

with THP-1 cells producing over 35-fold greater amount of this cytokine as compared to 

H292 cells (Figure. 2B-C). 

When flagella-deficient mutant (PAK fliC) was used for stimulation, TNFα release 

by both cell lines was lower compared to stimulation with PAK WT (P<0.01) 

Interestingly, although stimulation of THP-1 cells with either clinical P. aeruginosa 

isolate resulted in lower TNFα release (P<0.0001), in case of H292 cells, an isolate from 

a chronically infected CF patient induced higher TNFα release compared to PAK WT 

(P<0.001), PAK fliC (P<0.0001), and isolate from a CF patient with intermittent P. 

aeruginosa infection (P<0.001). Nevertheless, TNFα release was significantly decreased 

in all infected cell cultures pretreated with R406, except for THP-1 cells stimulated with 

an isolate from a chronically infected CF patient (Figure. 2B-C). 
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While unstimulated differentiated THP-1 cells only produced a low amount of IL-

1β (78 ±9 pg/mL), infection with PAK WT resulted in a large increase in IL-1β release 

(3993 ±245 pg/mL, P<0.0001). Stimulation with PAK fliC, or either isolate from a CF 

patient with intermittent or chronically P. aeruginosa infected also significantly 

upregulated IL-1β release, although to a lesser degree compared to PAK WT (P<0.0001, 

P<0.01, and P<0.05 respectively). The lowest amount of IL-1β (1310 ±281 pg/mL) was 

released by THP-1 cells stimulated with an isolate from a chronically infected CF patient 

(significant lower than following stimulation with PAK WT, P<0.0001). Despite of 

different degrees of IL-1β release induced by P. aeruginosa strains, pretreatment of 

differentiated THP-1 cells with R406 down-regulated this response (Figure. 2A).  

3.3.3 R406 down-regulates the expression of phosphorylated ERK2, JNK, p-38, and 

IκBα in P. aeruginosa infected THP-1 cells 

As intracellular signaling molecules ERK2, JNK, p-38, and IκBα have been 

recognized as important regulators of inflammatory responses induced by P. aeruginosa 

[17-19], we investigated the effect of R406 on the expression of these total and 

phosphorylated proteins in our model. Stimulation of THP-1 cells with PAK induced 

significant up-regulation of phosphorylated ERK2 at 30 min (P<0.01) and 60 min 

(P<0.01), JNK at 15 min (P<0.001), 30 min (P<0.001), and 60 min (P<0.001), p38 at 15 

min (P<0.001), 30 min (P<0.0001), and 60 min (P<0.0001), and IκBα at 30 min (P<0.01) 

and 60 min (P<0.001). Pretreatment of infected cells with R406 led to a decreased 

expression of all phosphorylated signaling molecules that was statistically significant for 

JNK and p-38 at 15, 30, and 60 minutes of stimulation, and for IκBα and ERK2 at 30 and 

60 minutes of stimulation (Figure. 3A-D). 
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3.4 Discussion 

This study shows that a small molecule inhibitor of Syk down-regulates 

inflammatory responses of human cells infected with P. aeruginosa. Specifically, in 

monocytic cell line THP-1, R406 caused a significant decrease in cell surface expression 

of ICAM-1, an adhesion molecule, which mediates leukocyte migration to inflammatory 

sites, in a dose-dependent manner, as well as down-regulated the release of pro-

inflammatory cytokines TNFα and IL-1β. The transcriptional regulation of all these three 

molecules is largely dependent on the activation of transcription factor NF-κB, which is 

known to be a downstream target of Syk-mediated signaling along with the MAPK 

cascade [16,20]. Indeed, R406 caused a decrease in the expression of phosphorylated 

ERK2, JNK and p-38, as well as of IκBα; the latter, when phosphorylated, facilitates 

nuclear translocation of NF-κB, which is required for its activation and resulting 

production of inflammatory mediators [21]. In our previous study, inhibition of Syk using 

small interfering RNA caused down-regulation of the MAPK cascade phosphorylation 

and nuclear translocation of p65 NF-κB induced by TNFα stimulation of lung epithelial 

cells [22]. The data of the present study extend our earlier observations to monocytic cells 

and indicate that Syk is involved in the regulation of pro-inflammatory responses to P. 

aeruginosa infection via activation of downstream signalling pathways, including 

MAPK-mediated one. In support of this idea, we found an increase in the expression of 

tyrosine-phosphorylated Syk, an indicator of Syk activation, following two hour-long P. 

aeruginosa infection, and a decrease in the expression of phospho-Syk following pre-

treatment with R406 (Figure. 1C). As release of mature IL-1β requires inflammasome 

activation, in addition to IL-1β gene transcription, the effect of R406 on IL-1β release 
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suggests Syk involvement in the regulation of inflammasome activation in our model [23]. 

This is not surprising as previous studies identified Syk as a key mediator of NLRP3 

inflammasome activation and IL-1β secretion in innate immune cells stimulated with 

fungi and crystals [24-28]. 

There are potentially multiple pathways of Syk activation during P. aeruginosa 

infection of monocytic cells. This non-receptor protein tyrosine kinase is best known as a 

critical component of immunoreceptor tyrosine-based activation motifs (ITAM)-

dependent signaling in hematopoietic cells involving Fc receptors, T-, B-, and NK cell 

receptors [29]. Congruently, in our experiments, we observed a strong inhibitory effect of 

R406 on ICAM-1 expression induced by a classical mechanism of Syk activation, i.e. via 

Fcγ receptor cross-linking, with ICAM-1 expression level decreased to the baseline while 

using a 10 µg/mL concentration of human IgG for receptor activation (Figure. 1B). 

However, none of the cellular responses to P. aeruginosa have been completely inhibited 

by R406, although we could achieve their significant down-regulation using a 

concentration of 10 µM, which was commonly used in studies by others [9]; in case of 

ICAM-1, lower concentrations of 0.5 to 5 µM were also effective (Figure 1A). The data 

suggest that although Syk is certainly involved in the regulation of inflammatory 

responses to P. aeruginosa infection, it does not represent the major pathway among 

multiple mechanisms operating in cellular responses to this highly virulent 

microorganism, which is capable to interact with many pathogen-recognition receptors, 

including Toll-like receptors, Nod-like receptors, integrins, C-type lectins, asialoGM1, 

etc [15,30,31]. Ability of P. aeruginosa to stimulate TNFα and IL-1β synthesis and 

release from human monocytes, and activation of transcription factors NF-κB and AP in 
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infected cells have been established by previous studies [17,32-34]. Syk involvement in 

the regulation of signals generated by the engagement of TLR-4 complex by its ligand 

LPS in human neutrophils and macrophages has also been previously demonstrated [35-

37], and this mechanism likely operates in our model. Recent studies expanded our 

understanding of the role of Syk in fine-tuning of cellular responses stimulated by the 

engagement of innate immune receptors [38,39]. For example, it was demonstrated that in 

macrophages and dendritic cells, Syk regulates TNFα exocytosis induced by stimulation 

of TLR9 by bacterial CpG DNA [40]; such mechanism may potentially be involved in 

responses of differentiated THP-1 cells to P. aeruginosa. In addition, innate immune 

responses activated by P. aeruginosa result in the amplification of inflammatory 

responses, as for example, TNFα further activates the inflammatory cascade via its own 

receptor associated signaling [41]. The complexity of cellular responses to P. aeruginosa 

is further augmented by cross talk among multiple signalling pathways, including both 

pro- and anti-inflammatory [42].  

Syk may become activated following P. aeruginosa infection via several potential 

mechanisms. It is well recognized that Syk is significantly involved in several ITAM-

independent signalling pathways, which are mediated by its interaction with G-protein 

coupled receptors, pattern recognition, and cytokine receptors [43,44]. In particular, Syk 

can be activated via interaction with integrin receptor cytoplasmic domains that is 

especially significant in lung epithelial cells, which do not express the plethora of innate 

immune receptors typical for leukocytes [45]. Our previous research demonstrated the 

involvement of integrin receptors in P. aeruginosa internalization and recognition by 

A549 alveolar epithelial cells; moreover, the data suggested an important role of integrin-
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mediated signaling in inflammation induced by this infection [46]. In the present study, 

the release of TNFα by infected bronchiolar epithelial cells was significantly down-

regulated by R406 implicating the involvement of Syk-dependent signaling in 

inflammatory responses to P. aeruginosa by lung epithelial cells, in addition to 

monocytes (Figure 1C). Indeed, we have previously demonstrated that H292 cells express 

Syk [7]; however, it is uncertain whether or not Syk is exclusively engaged via integrin 

receptors in this particular cell line, or some other mechanisms, for example, those 

mediated by TNF-receptor signaling are involved [47].   

Because Syk combines both kinase and adaptor protein properties, this molecule is 

capable to interact with multiple protein targets, and this explains why its inhibition leads 

to numerous biological effects. Indeed, Syk has been considered as a target for therapy of 

such diverse conditions as allergic diseases, rheumatoid arthritis, systemic lupus 

erythematosus, idiopathic thrombocytopenic purpura, and B-cell lymphoma, with several 

pharmacological compounds undergoing clinical trials [12]. One potential application 

could be the use of Syk inhibitors to dampen severe pro-inflammatory responses 

associated with pulmonary P. aeruginosa infection, which affects CF patients, as well as 

occurs in ventilator-associated pneumonia, aggravates the course of chronic obstructive 

pulmonary disease (COPD), and causes severe complications in cancer patients with 

neutropenia, caused by chemotherapy that predisposes to P. aeruginosa pneumonia [1-4]. 

In our previous study, we found that a natural Syk inhibitor piceatannol significantly 

suppressed inflammation, oxidative stress, apoptosis, and bacterial internalization in a 

model of P. aeruginosa infected pulmonary epithelial cells, although not all of these 

outcomes could be attributed to Syk-specific effect [7]. Results of the current study 
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corroborate our previous observations using this time both a model of infected THP-1 

cells, which represent innate immune cells, and a bronchiolar epithelial cell line H292 

[48].  

As bronchiolar epithelial cells represent the major component of the airway lining, 

have receptors for P. aeruginosa, are the site of infection, generate inflammatory 

responses to this infectious agent, and express Syk, they could be the major targets for 

potential therapeutic intervention using Syk inhibitors. Importantly, the response of H292 

cells to stimulation with various strains of P. aeruginosa was noticeably different from 

the response by differentiated monocytic THP-1 cells (Figure. 2B-C). Although the 

release of TNFα by H292 cells infected with PAK WT or PAK fliC was approximately 

50-times lower than the one by THP-1 cells, infection with clinical P. aeruginosa isolates 

caused relatively higher TNFα production in H292 cells. In particular, H292 cells 

infected with P. aeruginosa of a CF patient with long-term chronic infection released the 

largest amount of TNFα in comparison to other P. aeruginosa strains, i.e. 202 ±5 pg/mL, 

although THP-1 cells produced significantly less TNFα when stimulated with either 

clinical isolate (1545 ±237 pg/mL and 714 ±102 pg/mL) as compared to both wild-type 

(4795 ±463 pg/mL) and flagella-deficient (3691 ±255 pg/mL) laboratory strains PAK 

WT. These data corroborate our previous observations that P. aeruginosa isolates from 

chronically infected CF patients have increased abilities of causing inflammatory 

responses of A549 alveolar epithelial cells in comparison to bacteria from patients with 

intermittent P. aeruginosa colonization, owing to the adaptation process in the CF long 

during long-term infectious process [13]. The isolate #19731A/92 was obtained from a 

CF patient with 18-year long chronic P. aeruginosa infection [13]. As a flagella-deficient 
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strain (PAK fliC) induced significantly lower release of cytokines TNFα and IL-1β 

compared to the wild-type bacteria (Figure 2A-C) these data emphasize importance of 

flagella in stimulating potent pro-inflammatory responses to P. aeruginosa infection via 

the activation of pattern-recognition receptors such as TLR5 and NLRC4 inflammasome 

[49,50]. Importantly, in bronchiolar epithelial cells, R406 was able to significantly down-

regulate TNFα release caused by P. aeruginosa isolates from both chronically infected 

and intermittently colonized CF patients, although to a lesser degree than when the 

inhibitor was applied to cells, stimulated with PAK WT or PAK fliC (Figure 2C) 

suggesting potential clinical application of this inhibitor.  However, as recent studies 

found that Syk is essential for flagellin-specific T cell responses, it is important to 

consider complexity of the regulatory role of this signaling molecule in immune 

responses [51]. 

Compared to an early used inhibitor piceatannol, R406 has been demonstrated to be 

much more selective for Syk. However, R406 is not entirely specific to Syk, and able to 

inhibit JAK2 in addition to Syk of similar potency [52].  Although the present findings 

suggest Syk involvement in the regulation of P. aeruginosa triggered inflammatory 

responses in both human monocytic and bronchiolar epithelial cells, it will be highly 

desired to test more specific Syk inhibitors.  However, creating a truly selective Syk 

inhibitor apparently represents a challenge; indeed, all of the existing compounds with 

Syk-inhibitory capacities, including the most recent ones express certain off-target 

specificity [53,54]. When Fostamatinib, of which R406 is the active metabolite, was 

tested in phase II-III clinical trials for rheumatoid arthritis, adverse events related to its 

off-target effect have been noticed [55]. As it was demonstrated that inhibition of JAK2 
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down-regulated inflammatory responses in an animal model of polymicrobial sepsis, 

certain off-target effects of R406 may potentially be beneficial in case of P. aeruginosa 

infection [56].  Conducting clinical trials to ascertain capacity of this Syk inhibitor to 

alleviate exaggerated inflammatory responses, which significantly contribute to the 

pathogenesis of P. aeruginosa pulmonary infections may represent a sensible approach.  
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Table  

Table 1 Strains and Clinical Isolates of P. aeruginosa used in this study. 

 
Strain/Isolate Source/Reference 

Wild-type PAK (PAK WT) R.J. Irvin/Pasloske et al. (1985) 

Flagella-deficient PAK (PAK fliC) A.S. Prince/Feldman et al. (1998) 

Isolate from intermittently colonized 

CF patient (9793/92) 
Danish CF Centre/Hawdon et al. (2010) 

Isolate from chronically infected CF 

patient (19731A/92) 
Danish CF Centre/Hawdon et al. (2010) 
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Figure Legend 

Figure 1 The effect of R406 on ICAM-1 expression induced by Pseudomonas 

aeruginosa strain K (PAK WT) infection, or Fcγ receptor (FcγR) cross-linking.  

a) One hour-long pre-treatment of THP-1 cells with various concentrations of R406 

decreased ICAM-1 expression in THP-1 cells infected with PAK at an MOI of 5 for 6 

hours in a dose-dependent manner. b) Pre-treatment of THP-1 cells with 10µM R406 for 

1 hour prior to their stimulation with immobilized human IgG at concentrations of 10 and 

100 µg/mL decreased up-regulation of ICAM-1. THP-1 cells were infected with PAK or 

stimulated via FcγR cross-linking as described in Materials & Methods, and ICAM-1 

surface expression determined using immunostaining and flow cytometry analysis. Data 

are expressed as mean fluorescence intensity (MFI). Results represent the mean ± SEM 

of 3 independent experiments; ###P<0.001, difference between un-stimulated and 

stimulated cells; *P < 0.05, **P<0.01, ***P<0.001, difference between stimulated R406 

treated vs. un-treated cells. c) Ratios of Western blotting band intensity of Syk 

phosphorylated on tyrosine to total Syk. The lanes from left to right: un-stimulated THP-

1 cells, THP-1 cells infected with PAK for 2 hours, THP-1 cells pretreated with 10µM 

R406 followed by infection with PAK WT. The bands of Syk and phosphotyrosine on 

immunoprecipitated Syk were detected at 72 kDa. Results represent 3 independent 

experiments. *** P < 0.001, difference between R406-treated and un-treated infected 

THP-1 cells. 

Figure 2 The effect of R406 pre-treatment on cytokine expression induced by 

Pseudomonas aeruginosa. 
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Differentiated THP-1 cells were infected with P. aeruginosa for 1 hours at an MOI of 10 

per 1 × 106 cells, and cultured for another 17 h in the presence of 100 µg/mL gentamicin. 

Unstimulated differentiated THP-1 cells (1 × 106) in complete culture medium served as 

a negative control. The supernatant was collected and IL-1β (A) and TNFα (B) 

concentrations (pg/mL) in culture supernatants were examined using ELISA. For TNFα 

expression by H292 cells (C), the cells were infected at an MOI of 50 for 1 h and further 

cultured as described above. In samples involving R406, cells were pre-treated with 10 

µM R406 for 1 hour prior to infection.  Results represent the mean ± SEM of 3 

independent experiments; * P < 0.05, **P <0.01, *** P < 0.001, ****P <0.0001, 

difference between R406-treated and un-treated infected cells.   

Figure 3 The effect of R406 on expression of phosphorylated and total intracellular 

signaling proteins. 

THP-1 cells were stimulated with P. aeruginosa strain K (PAK WT) at an MOI of 5 for 

15, 30, or 60 minutes. Following stimulation, the levels of total and phosphorylated 

ERK2 (42 kDa), JNK (46 kDa), IκBα (41 kDa), and p-38 (38 kDa) were determined in 

cellular lysates by Western blot. Results are expressed as ratios of phosphorylated/total 

protein band intensity. In samples involving R406, cells were pre-treated with 10µM 

R406 for 1 hour prior to infection. β-actin served as a loading control. Results represent 

the mean ± SEM of 2 independent experiments; * P < 0.05, **P <0.01, *** P < 0.001, 

****P <0.0001, difference between R406-treated and un-treated infected cells.  
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Figure 3 
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Continue Figure 3 
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Chapter IV: General Discussion and Future Directions  

A decade ago, a fundamental discovery that activation of NLRs results in the 

assembles of inflammasomes has united immunologists and microbiologists who study 

basic mechanisms of PRR signaling and their interaction with bacterial pathogens in 

infectious models with clinicians and geneticists addressing the pathogenesis of 

inflammatory diseases. Developments in the past few years showed how NLRs and 

inflammasomes are activated to promote cytokine production and cell death responses in 

the context of microbial infection [1]. Other findings clarified how different NLRs 

respond to both PAMPs and DAMPs [2]. In addition, intricate communication between 

PRRs, e.g., TLRs and NLRs, and microbial infection has emerged as a critical 

mechanism controlling immunity, and several fine-tuning mechanisms modulating PRR-

induced immune responses have been discovered.  

Inflammasome, i.e. high-molecular weight signaling platforms, is required for the 

activation of caspase-1 followed by pro-IL-1β processing into the biological active IL-1β 

molecule, which is a key mediator of innate immune and inflammatory responses [3]. 

However, there are currently several challenges facing understanding of signaling 

mechanisms. First, specific molecular mechanisms of NLR activation remain largely 

undefined and it is unclear how P. aeruginosa-associated molecules are sensed by NLRs 

and engage innate immune responses. Over the course of an in vivo chronic infection, P. 

aeruginosa is failing to be eradicated from the CF lung and the disease course is 

characterized by continuing escalation of inflammation and deterioration of lung function 

(Figure 1), as well as, accumulate multiple loss-of function mutations, e.g., loss of 

motility and decrease of expression of T3SS, proteases, pyocyanin, pyoverdin, and the 
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quorum sensing system [4]. Second, it is unknown whether P. aeruginosa strains, which 

have mutated during the process of adaptation in the host, alter their abilities to activate 

inflammasomes and can consequently evade immune responses [5]. Then in a 

consecutive step, previous studies found an increased level of IL-1β in BALF from CF 

patients infected with P. aeruginosa [6] that might be involved in the pathogenesis of 

lung disease severity in CF patients infected with P. aeruginosa. Studies showed that 

non-classical IL-1β activation is pathogen-dependent but caspase-1-independent [7]. 

Again, it is unknown if P. aeruginosa infection able to activate IL-1β by caspase-1-

independent pathway. Other challenges include, studies support the role of caspase-1 to 

regulate several different pathways that lead to pore formation, autophagy, induction of 

NF-κB, cholesterol and fatty acid biogenesis, and cleaves several enzymes required for 

glycolysis [1]. Moreover, pyroptosis induced by P. aeruginosa has yet to be addressed [8]. 

Finally, SYK has been identified as a key mediator of NLRP3 inflammasome activation 

and IL-1β secretion in macrophages stimulated with fungi and crystals [9]. However, it is 

unknown if SYK mediates inflammasome formation and activation in response to P. 

aeruginosa infection. In brief, there are many unsolved mysteries in NLR biology with P. 

aeruginosa infection.   

All of the work presented in this thesis approaches some of these challenges in 

addressing the overall involvement of NLRs in innate immune recognition of P. 

aeruginosa, through demonstrating either NLR-mediated caspase-1 or P. aeruginosa-

induced IL-1β secretion. There were several reasons for this choice, to determine which P. 

aeruginosa virulence factors are essential for the activation of NLR-mediated innate 

immune responses, to clarify the critical role of caspase-1 following the recognition of P. 
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aeruginoa by NLR(s), and to examine, which signaling pathways are involved in NLR-

mediated innate immune responses to P. aeruginosa. These attributes lend to clarify the 

role of specific bacterial virulence factors in the activation of innate immune responses to 

P. aeruginosa and will contribute to the understanding of dynamical host-pathogen 

interactions during the infectious process. Also, these attributes assist to identify possible 

pathways of persistence of P. aeruginosa infection during an in vivo infectious process, 

as well as clarify the mechanisms behind the involvement of SYK-mediated signaling in 

the regulation of innate immune responses to P. aeruginosa infection. Nonetheless, this 

work is limited by the scope of our model. First and foremost, interpreting data from an 

in vitro model need cautious as an in vivo there are many more cell types involved in the 

pathophysiology of lung inflammation and bacterial infection.  

The majority of the body of work provided in this thesis was done with THP-1 cell 

line, monocytic and macrophage (differentiated) cells. There are several reasons for 

choosing THP-1 cell line as an in vitro model to study immune responses, which has been 

reviewed elsewhere [10]. Monocytes play a critical role in orchestrating of both innate 

defense and inflammatory responses. These cells are circulating in the bloodstream and 

act as gatekeepers in innate immunity. While they can differentiate into macrophages and 

DCs, monocytes themselves respond to various inflammatory stimuli by producing 

proinflammatory responses. Therefore, monocytes not only contribute to host defense 

against pathogenic bacteria, but are also closely associated with the pathogenesis of 

chronic sterile inflammation [11]. PMA, as a differentiation agent, is the most effective to 

obtain macrophage-like phenotype with similarities to peripheral blood mononuclear cell 

(PBMC) monocyte-derived macrophages based on the literature and our experience. 
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However, a number of factors should be taken into account i.e., the minimal 

concentration of PMA, incubation period with PMA, and the lenghth of resting 

incubation after removing PMA.   

First, all of the work presented in my first study was done to determine which P. 

aeruginosa virulence factors are essential for the activation of NLR-mediated innate 

immune responses in THP-1 cells. That is, to identify NLRs activation and 

inflammasome assembling through caspase-1 activation. With this work I was able to 

differentiate human monocytic cells to macrophage-like cells and optimize the infectious 

model with a highly virulent reference strain PAK WT during different times (1-18 hrs) 

at various MOIs (1-10). The results were compared to the effect of Escherichia coli LPS, 

which has a strong ability to induce innate immune responses, and served as a reference 

for data interpretation [5,12]. As a positive control of NLR activation, stimulation with 

ATP has been used [9]. To clarify the role of NLR activation in innate immune 

recognition, P. aeruginosa strains with distinct expression of major virulence factors 

were used. To examine whether bacteria, which have mutated in the process of adaptation 

to the host, alter their ability to activate inflammasomes, we used a collection of P. 

aeruginosa strains that have been genetically and phenotypically characterized by other 

studies [13]. These strains have been isolated at different times from the beginning of an 

in vivo infection: 13 of them caused short-term infection, whereas 14 persisted in the lung 

over 15 years. Based on previous studies by our group [13], we hypothesized that 

persistent strains that have lost major virulence factors in the process of adaptation to host 

defense are able to escape recognition by NLRs and have a reduced ability to activate 



 

 189 

caspase-1. As a result of the immune evasion, such bacteria become successful in the 

establishment of long-term parasitic interactions with the host.  

In biotechnological applications, the efficiency of enzyme, which accelerates the 

rate of chemical reactions, for proteolysis is critical. In general, non-controlled 

proteolytic activity is associated with many diseases [14]. Our results showed that 

procaspase-1 was expressed in THP-1 cells; however, following cell stimulation and 

inflammasome assembling, the enzyme autoproteolysis into p10 and p20 subunits, which 

both is represented as an active form. Therefore, we compared between different 

techniques, i.e., flow cytometry and ELISA, to determine the level of active caspase-1 in 

both monocytic cells and macrophages. Moreover, our results with caspase-1 inhibitor 

indicated the successful inhibition of caspase-1 and its end product, which is biologically 

active IL-1β. Several methods are illustrated for the assessment of NLRs activation and 

inflammasome assembling, which is leading to production and secretion of caspase-1 and 

IL-1β (Figure 2).  

Future study represents a foundation to clarify, which critical NLR-mediated innate 

immune mechanisms are activated following the recognition of P. aeruginosa. This 

includes looking at antimicrobial peptide human beta-defensin-2 (hBD-2). hBD-2 is 

essential in host defense as it causes direct lysis of Gram-negative bacteria and also 

activates adaptive immunity by recruiting dendritic and T cells to the site of microbial 

invasion [15]. It has been established that P. aeruginosa infection of epithelial cells 

induces hBD-2 gene expression and that flagella play an important role in this process 

[16,17]. Previous studies by our group showed that PAK WT rapidly induced hBD-2 

gene expression in A549 cells [18]. However, the role of specific virulence factors in the 
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regulation of hBD-2 expression is poorly defined and it is unknown whether their loss in 

the process of P. aeruginosa adaptation to the host can decrease hBD2 expression. 

Although it has been demonstrated that activation of NOD2 leads to the induction of 

hBD-2 [19], the role of other members of NLR family, as well as caspase-1 have not been 

defined. To elucidate whether the NLR-mediated responses result in the production of 

hBD-2, gene silencing with small interfering (si) RNA for NLR, as well as caspase-1 

inhibitor could be used.   

Understanding of molecular mechanisms involved in innate immune recognition of 

bacterial pathogens has fundamental biological significance. Investigation of the role of 

NLRs in innate immune responses to P. aeruginosa brought new insights into the 

molecular pathogenesis of bacterial infections. Further studies are needed to clarify a 

number of potential specific NLRs that might be involved in P. aeruginosa infection such 

as: NOD1/2 [1], AIM2 [20], NLRC3 [21], NLRC4 [1], , NLRC5 [22,23], NLRP3 [24], 

and NLRP10 [25,26]. The findings in such study can be important for developing of 

novel ways to control the bacterial-host interactions and may have broader application for 

innate immune responses to other microorganisms.    

In my second study, we used our previously established techniques to address the 

role of SYK kinase in the regulation of inflammasome activation by P. aeruginosa 

infection of human cells. We hypothesized that SYK mediates inflammasome activation 

and promotes an enhanced production of pro-inflammatory mediators by infected cells. 

SYK in both monocytic and macrophage cells was inactivated using the inhibitor R406 

and then cells were infected with P. aeruginosa. The release of biologically active IL-1β 

was used as indicator of inflammasome activation and we found that this parameter 
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decreased in cells with inactivated SYK. To confirm the effectiveness of SYK inhibition, 

we assessed SYK phosphorylation using immunoprecipitation and Western blot. 

Moreover, we evaluated the effect of SYK inhibitor in airway epithelial cells, which are a 

major target for potential therapeutic intervention. These experiments clarified the 

mechanisms behind the involvement of SYK-mediated signaling in the regulation of 

innate immune responses to P. aeruginosa infection. Indeed, we have recently found that 

SYK inhibitor down-regulated inflammation in an in vitro model of P. aeruginosa 

infection [27]. An important question left unaddressed is the direct effect of SYK 

inhibitor on bactericidal activity of THP-1 cells. An interesting way to measure this with 

respect to our model would be to determine the effect of SYK inhibitor on phagocytosis 

of P. aeruginosa into infected THP-1 macrophage cells. As phagocytosis of P. 

aeruginosa with alveolar epithelial cells determined in previous studies by our group [13]. 

Future work is required to address the role of ROS in the mechanisms of 

inflammasome activation by P. aeruginosa. In previous studies by our group, an 

antioxidant N-Acetylcysteine (NAC) abrogated ROS production in A549 cells infected 

with PAK WT [18]. Also, the antioxidant treatment caused down-regulation of P. 

aeruginosa-induced inflammatory responses and apoptosis [18], suggesting that ROS 

may induce inflammasome activation in P. aeruginosa infection. To determine whether 

ROS induced by P. aeruginosa are essential for inflammasome activation, THP-1 cells 

will be pretreated with the antioxidant NAC according to previously optimized conditions 

[18] and then infected by PAK WT, which induces high levels of intracellular ROS 

[13,28]. Intracellular ROS will be detected by flow cytometry (the CM-H2DCFDA assay) 

[18]. To detect inflammasome activation, we will study the release of active caspase-1 



 

 192 

and of biologically active IL-1β. To test an alternative hypothesis that ROS directly 

contribute to NF-κB activation, we will concurrently study the effect of NAC on the 

release of inflammasome-independent cytokine TNF-α using ELISA [9]. The proposed 

experiments will clarify whether P. aeruginosa-induced inflammasome activation 

requires ROS production.  

In conclusion, there are still many avenues of study needed to expand the ideas 

presented in this thesis. Remarkably, our findings suggest that P. aeruginosa, which lost 

certain virulence factors during pulmonary infection, may fail to induce caspase-1 

activation and secretion of IL-1β in the process of host-pathogen interactions. This may 

reveal novel mechanism of the pathogen adaptation to avoid detection by NLR(s). Most 

importantly, the results suggest that SYK is involved in the regulation of inflammatory 

responses to P. aeruginosa, and SYK inhibitor may potentially be useful in dampening 

the damage caused by severe inflammation associated with this infection. 
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Figure legend 

Figure 1 Effect of altred CFTR function in CF lung and promotion of chronic 

pulmonary infection.  

 
Figure 2 Schematic overview of appropriate techniques to evaluate production and 

secretion of caspase-1, IL-1β, and IL-18.  

(1) Gene expression analysis of IL-1β and IL-18 by quantitative PCR. (2) Measurement 

of protein levels of pro-IL-1β and pro-IL-18 by ELISA technique. (2, 3, and 4) Detection 

of pro-IL-1β, pro-IL-18, procaspase-1, and active caspase-1 by Western blot. (4) 

Intracellular activity assay of active caspase-1 by flow cytometry. (5) Measurement of 

protein levels of active caspase-1, IL-1β, and IL-18 by ELISA technique or detection by 

Western blot. (1, 2, 3, and 4): following cell lysis; (5): in cell culture supernantant; PRR: 

pattern recognition receptors; ATP: adenosine triphosphate; ASC: apoptosis-associated 

Speck-like protein containing a CARD.  
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Figure 

Figure 1 
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Figure 2 
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