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Abstract 

 Practical and scientific importance can be found in this research topic since the 

results directly apply to remediation of industrial and mined lands in the boreal forest 

region. Plants suitable for phytostabilization of As, Mo and Sb are identified as well as 

two hyperaccumulators of Zn.  Using phytostabilization practices, metals are 

immobilized by the below ground components of the plants therefore restricting the 

flow into the ecosystem and lessening the impacts of metal pollution to the 

surrounding area.  As long as there is little disturbance of the soil physically or 

chemically, the plants will continue to stabilize the metal in the organic portion of the 

deceased plants.  The ease of replanting a site could incorporate successional 

ecosystem in the region by focusing on trees and shrubs that are earlier in the 

revegetation process after a disturbance.  The addition of woodbark to the 

reestablishment of the top soil increases potential nutrients, organic matter, water 

holding potential as well as diluting potential harmful metal content of the soil and 

providing a mulching effect.  Some concerns exist by using agronomic plant species as 

the sole part of revegetation as they have the potential to impact the wildlife in the 

region through excess Mo.  Results from this thesis could be helpful for future mine 

closure plans and in the rehabilitation of other industrial sites. 
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1. Introduction 

1.1. Definition of the Problem 

 
Mining has been a dynamic part of Ontario since before European settlement and has 

been constantly changing with discovery of new deposits, techniques and 

environmental practices (Ontario MNDM, 1986).  The days of leaving a site as is after 

the ore is removed are in the past.  Replanting a site with new green growth is a part of 

the closure and rehabilitation process in the life cycle of a mine.  Even before the site 

has been opened for mineral production, plans are in the works for the life of the 

property after operations have finished. Soil cover, vegetation and surface water must 

return to as close as pre-development as possible (Ontario Mining Act 

RSO 1990, c. M.14-7).  Revegetation of the soil is one part of this progression. 

 Revegetation is a complicated process even with no additional difficulties. 

When there are poor soil conditions, little to no seed sources, and contamination due 

to waste materials, the difficulty level increases (Renault, 2004). Soil conditions 

following mining show poor pH (either acidic or alkaline), low nutrients, minimal 

organic matter, low water potential and elevated metal contamination.  Due to soil 

redistribution of stockpiled topsoil, water can also be poorly drained or the soil may 

not be able to hold any water. Many processes can occur to move localized metal 

contaminants into the surrounding systems via plant growth (Figure 1-1).  Therefore 

phytoremediation practices should be included in closure plans for mines. 

 Phytoremediation techniques integrate the use of plants to rehabilitate soils, 

sludges, sediments, and water to remove, contain or degrade contaminants (UNEP, 
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2002).  These procedures are a low cost method of remediation and are very useful on 

surface contamination or in circumstances with lower levels of contaminants.  They can 

be used on their own or in conjunction with different methods of rehabilitation, 

including other mechanical, and biological practices.  

 

Figure 1-1 Hazard/pathway/target model of risks to be assessed through potential 
mobilization of heavy metals in soil by planting trees 

 

 Other remediation practices to control metal movement can be costly.  

Excavate and dispose is one method.  The site has all the contaminated soil excavated, 

processed with biological or chemical agents  and moved to a waste site (Smith and 

Underwood, 2000, Mulligan et al., 2001).  This expensive practice tends to occur in the 
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event of land sales or if the contamination is moving to neighbouring properties to 

remove any liabilities of soil contaminations.  But this migration of contamination does 

not necessarily solve the problem of the soil once it has been moved and can 

completely change a landscape or require soil from a non-contaminated area to be 

backfilled into the site.   

 Another type of remediation involves treating the contaminated soil in situ with 

biological and chemical additives (Shilev et al., 2006; Gadd, 2010; Glick, 2010; Ma et al., 

2011).  Bioremediation with bacteria can help organic contaminants to degrade into 

less toxic counterparts.  Pipes are distributed into the contaminated soil and injected 

with bacteria .  Degradation would be monitored on a regular basis until the 

hydrocarbon contamination would be reduced to unregisterable levels.  Other 

techniques involve engineered caps and terraces to contain the contamination behind 

a barrier and prevent soil and water movement (Buckley et al., 2012; Hosney and 

Rowe, 2014).  These practices can be prone to leaks and require monitoring as well as a 

high expense involvement. 

 Past practices of revegetation involved planting commercially available seeds, 

herbs and trees.  Strip coal mines in Appalachia tree planted the repositioned topsoil 

which was standard practice from the 1940s to the 1970s (Brenner, 1979; Wade and 

Thompson, 1990).  Little concern was focused on regeneration of other species or the 

introduction on exotic species to the area.   

 In the early 70s, Peters (1984) combined his knowledge of agriculture with the 

reclamation process to re-green the mine impacted land in the Sudbury, ON region and 
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his work became the standard practice around the world.  Techniques included 

fertilizer, lime, and cover crops to build up the soil and ameliorate some of the 

contaminants from the mining processes (Peters, 1984) .  Agricultural species were 

planted on mines, and his work yielded excellent results and changed the landscape for 

the re-greening of Sudbury (CLRA, 2015).   Barley (Hordeum vulgare L.) is a hardy, 

annual crop species can prevent erosion, and improve leaching of ions in tailings 

(Renault et al., 2003). However, some concerns exist over the long term results of these 

plantings. Few native species are able to compete with agronomic plant species and 

fertilizer and lime inputs are needed in some areas. 

 Not all plants or soils are created equal when it comes to phytoremediation.  

Soil metal availability depends on pH, organic matter content, particle size, total metal 

content, and mineral source material (Magua et al., 2007). Plants remove both 

essential and non-essential elements from the soil. Various species can withstand a 

variety of levels of different metals and variation can even occur within a species. Some 

of the metals are required by the plant for metabolic processes such as Fe, B, Zn, Cu, 

Mn and Mo (Mengel et al., 2001). Concentrations of these elements can be deficient, 

adequate, luxury consumption (in excess of what the plant actually needs but not 

impacting growth), or toxic. Some of these elements are easily  transported to leaves 

including Zn, Cd, Co, B, and Mo.  Others have limited mobility within plant via water 

movement in the xylem sap or more so translocated in the phloem saps (Hazama et al., 

2015). These include Cr, Pb, Hg, and Cu, which are . Other metals, still although not 

required for plant growth and metabolism, are taken up by plants, such as Pb, Ni, Cd, 
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Ti, As, Sb, Sn (Cataldo and Wildung, 1978).  Metals not required for growth only have 

two types of dose concentration: luxury consumption, and toxic. Mechanisms for 

tolerance of these metals appear to be compartmentalization, complexation and 

metabolic adaptation. Table 1-1 shows background concentrations of several metals of 

interest in mining (Bes et al., 2010; Barrutia et al., 2011; Banasova, 2012).  Some of 

these metals are required in small amounts in biotic systems.  

 Trees have a greater tolerance for metal content in the soil (Pulford and 

Watson, 2003). Their size makes it possible to spread their root systems to a larger area 

in comparison to smaller herbs and shrubs. The larger root system is able to seek out 

areas of less contamination and also attain better nutrition and water sources.  Betula 

pendula was found to grow in soil with 29000 µg Pb g-1 with had plant tissue of 7000 µg 

Pb g-1  with a pH of 3.83-6.61 (Magua et al., 2007). 

Table 1-1 Background concentrations in plant tissues with toxic effects (mg kg-1) 
(based on Reeves et al., 1999; Garbisu and Alkorta, 2001; Wang et al., 2002; Yang et 
al., 2004; Babula et al., 2008; Nagajyoti et al., 2010) 

 Micronutrients Essential for Plant Growth Non-essential Elements 

 Cu  Zn  Ni  Co  Mo  Cd  Pb  As  Sb  

Mean  14.2  55.3  23.3    0.22  23.1    

Normal  2-250  1-400 0.02-5  0.02-1  0.03-5  0.1-2.4  0.2-20  0.02-7   

Excessive  6-100  400-900  100-200  40-50  50  30-200  300  20  5-10  

 
  



18 
 

1.1.1. Motivation for this study 

 The Hemlo Gold Camp, now owned by Barrick Gold, is slowly ending its 

production capacity. The Golden Giant Mine was the first to close in 2005, with David 

Bell Mine following in 2014. Williams open pit and underground operation will be 

continuing operations for the near future. Closure will involve a variety of procedures 

which are designed to return the site to a sustainable and functioning natural 

ecosystem. An important part of this closure process will be the revegetation of 

impacted areas on the site. Given the highly visible location of Hemlo beside the Trans-

Canada Highway near the town of Marathon, Ontario, this aspect of its closure is 

particularly important.   Metals of concern in the soils at this location have been 

identified as arsenic (As), molybdenum (Mo) and antimony (Sb).  Other locations (Steep 

Rock Mine near Atikokan, ON; Winston Lake Mine near Schreiber, ON; and Premier's 

properties near Beardmore, ON) were chosen as we had permission to go onto these 

properties and they were available by road access. As the mines in this study have been 

completely disturbed, there is no residual plant roots that can regenerate via cuttings 

or roots. All the species growing on the sites have started via seeds. The distance of the 

disturbed area to the surrounding forest ecosystem or the size of the disturbed area 

would have shown an increased amount of vegetation or species richness on the edges 

of the site but this did not appear to occur on these soils showing that soil conditions 

have a large impact on the plants survival and welfare (Thompson et al., 1998).   

1.1.2. Metals of Concern for the Study  

 Arsenic is one of the metals considered to be non-essential to plants.  Much is 

known about toxic effects due to its use as a pesticide in many products used to deal 
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with disease, insects and rodents (Mandel and Suzuki, 2002).  Plants that have a 

tolerance for As tend to have mycorrhizal associations to assist in limiting the 

availability of As to the plant (Fitz and Wendel, 2002).  Arsenic uptake into the 

aboveground portions of plants is mostly due to the P metabolic pathway (Alloway, 

1995 and Kumpiene et al., 2008).  There are three main groups of As: inorganic 

compound, organic compound and gasses.  Of the multitude of As complexes, the 

inorganic compounds are thought to be the most toxic, with arsenites more toxic than 

arsenates (Vaclavikova et al., 2008).  Symptoms of As toxicity in plants include sterility, 

inhibition of cellular function and cell death (Akter et al., 2005). 

 Excess Mo is not readily evident or easily identified in plants (Gupta and Lipsett, 

1982).  Mo is one of the elements required for growth so metabolic pathways are the 

main method of accumulation in the plant (Kaiser et al., 2005).  In comparison to Pb, 

Cd, or Ni, Mo has a higher inhibition to plant growth when in excess (Kevresan et al., 

2001).  Bioavailability of Mo increases as the soil pH increases (McGrath et al., 2010).  If 

plants with elevated molybdenum content are consumed by ruminant species, 

molybdenosis can be a toxic result (Raisbeck et al., 2006). Mo is the least required 

element for plants and has the least amount of research of how plants accumulate and 

utilize Mo (Kaiser et al., 2005). Molybdate is the predominate form for uptake and is 

used for redox reactions within the plant.  The uptake mechanism of Mo from the soil is 

thought to be prokaryotic transport systems similar to S (Self et al., 2001). 

 Antimony is a less common issue for plants. As one of the non-essential metals 

in plants, Sb is starting to become a concern but As still remains more of a worry. Much 
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research is started due to toxic effects to humans via plant intake (Tschan et al., 2009). 

At one time Sb was thought to be immobile and inactive in the soil but Sb impacts root 

and shoot growth and chlorophyll synthesis as the main toxic response in plants (Flynn 

et al., 2003). In rice and corn, Sb concentration in tissue directly related to 

concentration in soils in China (Hammel et al., 2000; Pan et al., 2011). The primary 

mechanism for Sb uptake is the competition for site with essential P and Ca 

metabolites (Alloway, 1995). The chemical forms of Sb (V) and Sb(III) are directly 

related to its availability and mobility in the soil and plant tissues (Feng et al. 2013).   
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Figure 1-2 Types of terrestrial phytoremediation and the end fate of the 
contaminants   (based on Greipsson 2011) 

 
 
 



22 
 

1.1.3. Phytoremediation Strategies 

 Within the realm of phytoremediation lies an array of technologies.  Depending 

on the type of contaminant involved, a range of fates can happen to contaminants 

when various plants grow in the impacted soil.   Table 1-2 lists the types of 

phytoremediation technologies, the fate of the contaminant, which type of 

contaminant best suited for the process and the maintenance involved in the 

vegetation (Salt et al., 1995; Greipsson, 2011).  Visual representation of these 

processes can be seen in Figure 1-1 and Table 1-2. 

 Phytoremediation can work on one or multiple contaminants. Types are as 

follows: 

 Phytodegradation - plant contaminants are metabolized into other less 

toxic substances but this process can only work for certain organic 

pollutants that can be degraded (Newman and Reynolds, 2004).  An 

example from Denmark shows a variety of herbaceous species can 

metabolize methyl tertiary butyl ether, a gasoline additive, from the soil 

(Trapp et al., 2003). 

 Phytovolatilization - plant converts the organic contaminant into a 

gaseous state and releases the subsequent products into the 

atmosphere, (Arnold et al. 2007).  An example can be found in Ma and 

Burken (2002) with hybrid poplar that remove trichloroethylene from 

groundwater and volatalize it through the trunk. 
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 Phytoextraction - accumulates in the aboveground portions of the plant 

including leaves, stems, fruit or seeds. The phytoextraction plants can 

be harvested and refined to use the extracted product (Raskin and 

Ensley, 2000).  Plants used for this process are called 

hyperaccumulators. The active production of a crop of phytoextraction 

plants is known as phytomining (Brooks et al., 1998).   An example from 

Port Colborne, Ontario, Canada is the use of Alyssum murale and 

Alyssum corsicum to clean up Co and Ni (Li et al., 2003). 

 Phytostabilization -  the reduction of movement of the mobility of 

metals in the root zone.  Plants phytostabilize by decreasing water and 

wind erosion, decreasing metal solubility and lessening bioavailability. 

For many circumstances, phytostabilization can be the optimal choice 

for many rehabilitation projects (Raskin and Ensley, 2000).  With less 

continued maintenance, a containment of the contamination and 

suitability on a variety of pollutants, phytostabilization species should 

be identified for many circumstances (Mendez and Maier, 2008).    
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Table 1-2 Types of terrestrial phytoremediation techniques, fate of the contaminant, 
types of contaminants and whether vegetation is harvested or maintained (based on 
Greipsson, 2011). 

Technology  Contaminant 
Fate  

Contaminant 
Type  

Vegetation  

Phytoextraction  Removed  Metals  Harvested  

Phytodegradation  Attenuated  Organics  Maintained  

Phytovolatilization  Removed  Organics and 
Metals  

Maintained  

Phytostabilization  Retained  Organics and 
Metals  

Maintained  

 
 Decisions need to be made on what type of plants are used for 

phytostabilization including well used agronomic species or native species that are well 

adapted to the area which is contaminated. Since the site is required to be regreened, 

native plants and domesticated agronomic species are both useful in rehabilitation. The 

seeding of agronomic grasses and legumes are used on sites as reclamation tools for 

prevention of erosion.  They also provide forage for ruminants and other animal 

species, fixation of N and improved soil characteristics due to increased organic matter, 

water holding and addition of other nutrients (Oxenham et al., 1966).  These species 

require some fertilization or pH adjustments and can prevent the site from resembling 

the surrounding forested areas.  The native species are well adjusted for climate, are 

the natural food and habitation species for the wildlife and will blend with the 

surrounding areas in the future (Cadotte and Lovett-Doust, 2001). But, native species 

can be hard to source, be expensive, and few can fix nitrogen for soil improvement 

(Knops et al., 2002; Mendez and Maier, 2007).    With use of spatially diverse native 
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species identified for phytostabilization, the added benefit is the metal contaminants 

will not enter into the local food chain as easily. 

1.2. Scope and Objectives 

Much of this research was undertaken to contribute to a rehabilitation strategy for 

mine closure and other bioremediation interests in a boreal forest setting.  The 

following objectives were:  

 Identification of species of plants suitable for boreal forests in Northern Ontario 

climate and soil conditions that are potential phytostabilization candidates for 

As, Mo and Sb.  Phytostabilization was emphasized to ensure that the potential 

contaminants in a mined area do not spread into the surrounding region 

through the food chain. Plants naturally growing on three closed mines with 

highly impacted soils were identified, collected, and analyzed for their 

efficiencies as phytoremediation species. 

 Analysis of the soil and plant metal concentration growing at Barrick Hemlo was 

performed to understand the metal contents of the soil, roots and shoots of 

plants already growing on the mine site to identify metals of concern in the 

plant population. A field experiment was established to determine a plan for 

replanting the mine area using Populus tremuloides, Salix sp., Picea glauca, 

Physocarpus opulifolius, and Cornus  sericea planted in spring or fall in four 

different topsoil/woodbark treatments using a mycorrhizal fungus, Pisolithus 

tinctorius. A rehabilitation plan for replanting will be found with a broad range 

of planting options and low costs. 
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 A greenhouse experiment of Betula papryrifera, Trifolium pratense, Trifolium 

repens, Medicago sativa, and Festuca Rubra  in known quantities of As, Mo and 

Sb was done to study the removal of these plant growth, biomass quantities 

and health as well as metal contents of the above and belowground parts of the 

plant.  Many mines in Northern Ontario use these species in current 

rehabilitation practices so I wanted verify their suitability for phytostabilization 

use. 

1.3 Dissertation organization 

This thesis dissertation is presented in five parts addressing several aspects of 

phytostabilization of As, Mo and Sb in mining contaminated soils in Northwestern 

Ontario.  Chapter one provides a general introduction into rehabilitation practices using 

plants,  for phytoremediation and an introduction to phytostabilization, as well as the 

objectives of this study, and research plan.  The next three chapters are the research 

papers for journals.  Chapter two focuses on identifying potential phytostabilization 

species by exploring closed mines in Northwestern Ontario.  Versions of this chapter 

were presented at the Ontario Mine Reclamation Symposium and Field Trip  in Cobalt, 

June 18-19, 2013 and Peterborough, June 17- 19, 2014 as the research developed. An 

investigation into current vegetation and soil as well revegetation of Barrick Hemlo 

comprises chapter three.  A version of this chapter was presented at the Canadian Land 

Reclamation Association/Manitoba Soil Science Society  Joint Conference: Land 

Reclamation and Soil Science - Solutions for a Sustainable Future in Winnipeg, MB June 

15-18, 2015 as well as a tour stop on Ontario Mine Reclamation Symposium and Field 
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Trip in Marathon, ON September 1-2, 2015 .  Chapter four deals  with a greenhouse 

study investigating Betula papryrifera, Trifolium pratense, Trifolium repens, Medicago 

sativa, and Festuca Rubra as potential phytostabilization species for As, Mo and Sb.  

This chapter was presented at Ontario Mine Reclamation Symposium  and Field Trip in 

Marathon, ON September 1-2, 2015.  Chapter five is a summary of the conclusions and 

recommendations developed throughout this research.  It is followed by an appendix 

section with additional data, QA/QC procedures, experimental design and posters 

created throughout this thesis. 
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2. Plants growing in closed mines of Northwestern 
Ontario are useful for phytostabilization potential of 
arsenic, antimony and molybdenum in mine 
reclamation   

 

2.1. Abstract 

We examined plants that have tolerance to metal contaminations and the ability to 

survive on lands with poor growing conditions, including low water holding capacity, 

low fertility,  and low pH levels.  These plants are able to survive, reproduce and thrive 

under these tough growing conditions. In particular we were interested in plants 

growing on closed mine sites  that were contaminated from arsenic (As), antimony (Sb) 

and molybdenum (Mo) and that have the phytostabilization potential to keep the 

contamination contained to the impacted site rather than uptake these metals into 

their plant tissue and thereby introduce the contaminants into the environment.   Soil 

and plant samples were collected at four mining areas in Northwestern Ontario (Steep 

Rock Mine, Winston Lake Mine and Premier's properties near Beardmore, ON) and 

analyzed for their total metal content. While many plants were growing on these sites, 

changes in colour, size and increased insect and disease pressures indicated that often 

these plants were stressed by the metal contents of the soil and the poor growing 

conditions. 

Bioconcentration factors and translocation factors between the soil and plant tissue 

were calculated for over 30 species. A good phytostabilizer was defined as one with a 

low bioconcentration and translocation index. Species showing good phytostabilization 

potential included white birch (Betula papyrifea Marshall), willow (Salix spp. 
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L), trembling aspen (Populus tremuloides Michx.), goldenrod (Solidago canadensis 

L), pearly everlasting (Anapahlis margaritacea  L) and tamarack (Larix laricina Du Roi). 

The most common tree found on these sites was white birch which was sometimes 

growing symbiotically with the fungus, Pisolithus tinctorius (Pers.) , a known metal 

accumulator.  No species were considered to be hyperaccumulators of As, Mo and Sb 

suggesting that even to survive, metal uptake had to be limited.  Management 

implications to establish specific phytostabilizing species on mine sites with elevated 

metal levels were considered. 

2.2. Keywords 
Metals, Rhizosphere, Mining, Boreal, Bioavailability, Phytoremediation, 

Bioconcentration, Translocation, Contaminated Soils 

 

2.3. Introduction  

 Northwestern Ontario is a boreal forest region on the Canadian Shield that is 

rich in mineral resources with active as well as closed and abandoned mines.  These 

areas have the potential to be reclaimed with phytoremediation species to prevent 

wind and water erosion as well as prevention of metal contamination from entering the 

food chain and waterways (Salt et al., 1995; McIntyre, 2003; Pilon-Smits, 2005; Peer et 

al., 2005).  Whereas organic contaminants can be degraded and reduced to less toxic 

components, metals are non-biodegradable, persist in waterways near the 

contaminated area, can endure within the soil for the unforeseeable future and be 

taken up by plants including agricultural crops and natural revegetation of the region 

(Ashraf et al., 2011; Nouri et al., 2008). 
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 Three locations in Northwestern Ontario have been closed with little to no 

replantings: Steep Rock Mine near Atikokan, ON; Winston Lake Mine near Schreiber, 

ON; and the Premier properties near Beardmore, ON.  Each of these areas was not 

active for over ten years. They have highly mineralized soils with high metal content  of 

a variety of elements and have had the opportunity for native species to colonize the 

sites. 

 Naturally occurring plants on closed mine sites are usually the best adapted for 

growth on soils with elevated metal composition (Salt, 1995).  They are often highly 

tolerant of metals that remain directly from the mining processes that occurred in the 

area, via direct contribution from mining or indirectly from air, water and soil erosion 

(Freitas et al., 2004).  Metallophytic plants have evolved to grow and potential thrive 

on elevated metal soils and are useful for reclamation purposes of other industrial sites 

or as indicators of potential ore bodies to be explored (Whiting et al., 2004).  Ideal 

candidate species for rehabilitation should be plants that are thriving in the elevated 

metal contaminated soils, produce high amounts of biomass and are well adapted to 

the local climate (Khan et al., 2000; Dickinson et al., 2009; Chen et al., 2012; Majumder 

and Jha, 2012).   

 Phytoremediation with native plants is a multifaceted approach using 

metallophytic species that are more suited to the local environment as compared to 

agricultural or introduced plantings (Oppelt, 2000; Pilon-Smits, 2005).  Various 

phytoremediation strategies exist including phytoextraction and phytostabilization.  

Phytoextraction removes the contaminant from the soil profile and plants are known as 
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accumulators.  If the concentration of the contaminant in the plant is extremely high in 

comparison to the concentration in the soil, these species are known as 

hyperaccumulators (Kumar et al., 1995; Peer et al., 2006). Phytostabilizers which do 

not uptake metals and other contaminants into the above ground tissues of the plant 

are known as excluders (Wong, 2003).  Phtyostabilization prevents the elevated metal 

contents of the soil from spreading into the food chain via plant uptake and helps 

contain the contamination to the affected area (Mendez and Maier, 2009). 

 Metal pollution on these mine sites is directly influenced by the type of deposit 

mined, so potential phytostabilizers need to cater to each type of circumstance. 

Absence and/or excess of various metals and nutrients can affect the success of each 

type of plant as well as other characteristics such as lifespan, size, root systems, and 

predation.  It is important to identify and produce the specific plant species that cater 

to these contaminated areas (Tordoff et al., 2000; Mendez and Maier, 2008).   

 Both arsenic and Sb are not required for plant growth (Nagajyoti et al., 2010). 

Natural As tolerant plants on contaminated soils have been studied by Craw et al. 

(2007), Antosiewicz et al. (2008), Zandsalimi et al. (2011), and Bergqvist and Greger 

(2012).  Sb and As were investigated at a Chinese mine by Fu et al. (2011) and at a 

Portuguese mine by Pratas et al. (2005). Sb contaminated soils and their impact on 

plants was studied by Hammel et al. (2000), Qi et al. (2011) and Pan et al. (2011).  

While all these studies have been done, very little research has been done on their 

phytostabilization use for replanting metal contaminated areas. Mo is essential to plant 
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growth but is biologically inactive, mechanisms that exist for uptake in plants are 

closely tied with iron (Bittner, 2014).   

 This paper explores the phytostabilization potential of plants naturally 

regenerating on closed mines in Northwestern Ontario. Data will be presented with 

their associated soils including pH and the various metal concentrations. The sites 

chosen for this study are mines that operated in the 20th century in Northwestern 

Ontario, located on the Canadian Shield and are in the Lake Superior and Seine River 

Watersheds. Minerals mined varied but two mines had contamination from As, Mo and 

Sb.  Remediation of these sites would help to meet government environmental 

requirements as well as reduce the impact on the local populations of humans and 

wildlife. Surface soil contaminants from these sites have the potential to runoff into 

surface waters, leach into ground waters, and negatively impact the local food chains.  

It may be possible that a combination of native boreal species can be planted on closed 

mines in order to restrain the movement of these potentially harmful metals.  

Chlorophyll content of the leaves are measured as a sign of plant health and can aid in 

identification of healthy metallophytes. 

2.3.1. Objectives and Hypothesis 

 The objectives of the study were  i) to identify plants growing on these closed 

mines, ii) to examine the variation in the soil conditions natural regenerating species 

experience on these closed mines, and iii) to classify these species as candidates for 

phytostabilization.  Plant species will be identified that are tolerant to metal stress, and 

provide phytostabilization for mine soils. 
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2.4. Materials and Methods 

2.4.1. Site Description 

 This study examines three closed mines areas in Northwestern Ontario with no 

replanting of plants or trees following closure (Figure 2-1 and Table 2-1). Located on 

the Canadian Shield, these mines sites sampled have been closed or not disturbed for a 

minimum of 25 years and had restricted road access.  

Table 2-1 Mine characteristics of Steep Rock, Winston Lake and Premier Gold 

Mine Main Ore 

Extracted 

Metals 

of 

Concern 

Vegetation 

Zone 

Frost 

Free 

Days 

Precipitation 

(mm) 

Latitude Longitude Altitude 

Steep 

Rock 

Iron As, Cr, 

Ni, Se 

Boreal 

forest 

109 762.2 48.49 91.37 396.7 

Winston 

Lake 

Zinc Zn Boreal 

forest 

100 809.6 48.58 87.21 482.1 

Premier 

Gold 

Gold As, Ni, 

Sb 

Boreal 

forest 

101 764.6 49.37 88.2 298.9 

 

 Steep Rock Iron Mines, encompassing just over 100 square kilometers, are 

located near Atikokan, ON and operated as a source of high grade hematite from 

goethite-hematite deposits for 30 years from the 1950s to the early 1980s (Shklanka, 

1972).  These open pit mines had areas of milling, hydrocarbon and ore storage and 

many mined rock piles. 

 The Winston Lake mine near Schreiber, ON which produced primarily zinc, silver 

and copper with secondary amounts of gold began in 1988 and ended in the late 1990s. 
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Surrounded by granatic terrain, this mine location is on a sliver of metamorphosed 

sedimentary and volcanic rocks on the west end of the Big Duck Greenstone Belt 

(LaFrance et al., 2004).  Operations included an underground shaft, milling and storage 

areas.  The only elevated metal on this location is zinc. 

  The third area consists of several properties managed by Premier Gold located 

in the Beardmore/Geraldton greenstone Belt: Northern Empire and Leitch mines. The 

project area encompasses gold mineralization hosted by quartz veins in 

metagreywacke. Northern Empire was and underground operation producing gold 

from 1934 to 1941 with other exploration occurring since that time period.  Leitch was 

mined for gold from 1936 to 1968 (White, 2011; GEDC, 2005). The areas chosen for 

sampling were where elevated metal concerns were evident, such as known 

contaminated soils, tailings, processing sites and ore storage.  

 
Figure 2-1 Location of the mines studied: Steeprock Iron Mine near Atikokan, ON, 
Premier Gold Mine in Greenstone, ON and Winston Lake Mine near Schreiber, ON 
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2.4.2. Field and Sample Preparation 

 Thirty metre long transects (Figure 2-2) were placed on the mined rock piles, 

tailings areas and former building locations to determine naturally regenerating plant 

communities on the closed mines.  On these transects samples were collected as 

follows: 15 1 m2 quadrats of herbaceous plants, 6 5 m2 quadrats of shrubs and 3 10 m 

2quadrats of trees (Bagatto and Shorthouse 1999). Plants used for metal analysis in this 

investigation were identified and sampled based on abundance, amount of biomass in 

root and shoot tissue, healthy leaf colour and active growth on the sites.  Chlorophyll 

content was used as a method to determine how the species were resistant to the 

stress of their mine environment (Walters 2005). Chlorophyll content of species were 

obtained using the CCM-300 Chlorophyll content meter using an average of 3 readings 

per measurement (Gitelson, 1999). 
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Figure 2-2 Transect diagram of a sample plot of all trees, shrubs and herbs in the 
plant community 

 
 Plant and soil samples were taken along these transects: 3 soil samples per 

transect with areas with large plant populations and three plant samples per species. 

Transect number per mine was determined by the size of the mine and number of 

contaminated areas.  Winston Lake had three transects, Steeprock had six transects, 

and Premier had five transect areas. Plant samples were identified following local plant 

identification guides and verified at the Lakehead University Herbarium. The foliar 

samples were rinsed with distilled water, air-dried at room temperature for several 

weeks, and the samples were ground to a homogeneous powder.  Analysis of metals 

performed in the plant material encompassed all aboveground plant material at the 

time of collection in late August including twigs, leaves or needles, and flowers.  Soil 
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samples were collected in the rhizosphere of the plant, not always at the same depth 

due to plant type and variations in soil depth.  Plants were dug out of the ground and 

shaken over a bag for the soil.  Soils were air-dried and sieved with a 2mm mesh to 

remove plant matter and rocks.   

2.4.3. Laboratory analysis 

 Analyses were done at the Lakehead University Environmental Laboratory 

(LUEL) according to the LUEL (2012) Quality Assurance/Quality Control (QA/QC) 

protocols. A blank sample was run at the beginning of each tested parameter, then a 

QA/QC sample, and followed by a repeat of the next field sample.  This was repeated 

for every ten field samples. 

 The moisture content of soil was determined by gravimetry on a separate 

aliquot of sample.  A 2.0 g aliquot of soil was weighed and then dried in a drying oven 

at 70o C overnight and the dry weight determined. Percent moisture was the oven 

dried weight divided by wet weight. Soil samples were dried in a drying oven at 70o C 

prior to analysis for total metals for up to 72h checking every 12 hours. Both soil and 

plant samples were homogenized to pass through a 2 mm mesh.  For total 

concentration of metals, a 0.2 g aliquot for soil and a 0.25 g g aliquot for plant tissue 

were allowed to predigest in teflon express microwave digestion tubes overnight in a 

3:1 ratio of concentrated HNO3:HCl acids. The samples were then digested in a MARS 5 

microwave digestion oven for 45 minutes at 175o C. Samples were removed and diluted 

to 25 ml with distilled deionized water (DDW) and concentrations  of Al, As, Ba, Be, Ca, 

Cd, Co, Cr, Cu, Fe, K, Mg, Mo, Na, Ni, P, Pb,Sb, Sr, Ti,  Va, and Zn were determined by 
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the VarianPro Inductively Coupled Argon Plasma Spectrometer (ICP-OES).  Replicate, 

QC , and lab blank samples were measured during each batch of samples. pH and 

conductivity of soil were measured in a 1:1 ratio by volume of dry sample to DDW on a 

Mettler Model  Seven Multi equipped with a conductivity cell and a pH probe. Loss on 

ignition was used as an estimate of organic matter for soil by placing 2.0 g of soil into a 

crucible and then ashing it overnight at 550o C in a muffle furnace. Organic matter was 

calculated as ash weight – dry weight divided by dry weight. 

2.4.4. Statistical Analysis 

Statistical analysis were performed using SPSS 23 package for Windows as follows: 

i. For the transect data from the plant populations, herb, shrub and tree data 

were summarized using species richness (mean number of species and identity 

per mine) and the density (mean number of stems per mine) (Magurran 2013).  

Differences in mean species richness and density at all stand levels among the 

three mines were examined using one way analysis of variance (ANOVA). The 

model for the this can be stated as: 

yij=m+ai+ϵij 

The equation indicates that the jth data value, from level i, is the sum of three 

components: the common value (grand mean), the level effect (the deviation of 

each level mean from the grand mean), and the residual (what's left over) 

(Christensen, 1996). 

ii. Plant species data were analyzed using ordination and classification (non-metric 

multi-dimensional scaling (NMS) and cluster analysis), to identify species with 
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similar habitats. Vegetation data were screened for outliers, normality, and 

heteroscedasticity. All plots were included in the analyses as none were 

identifed as outliers. Rarely occurring herbaceous species (those that occurred 

in only one of the 13 transects) were removed to reduce noise in the data set 

(McCune, 1996).  The PROXSCAL algorithm with a Torgerson start  and Chi-

square measure for count data was applied because it allows similarity matrices 

to be used.  Raw stress and stress-I values are reported for each outcome.  

Cluster analysis using Ward's linkage and Squared Euclidean distance was 

performed to confirm separation of the species. 

iii. In order to distinguish the mines based on soil characteristics, mean and 

standard deviation of metals were determined for each mine. Data was log 

transformed to curtail skewness. Discriminant function analysis on the soil 

characteristics was performed.  Statistical significance was defined as P < 0.05.  

iv. For plant metal data, aboveground and belowground metal concentrations 

were summarized using the means for each mine. Translocation factor (TF) and 

bioconcentration factor (BCF) were calculated using the total metal 

concentrations (dry weight) in the aboveground biomass, belowground biomass 

and the soil.  TF is the metal in the aboveground biomass/metal in the root 

biomass while the BCF is the metal in the aboveground tissue/the metal content 

of the soil.  A TF value higher than 1 is considered an accumulator of metals 

(Deng et al., 2004; Juarez-Santillan et al., 2010), while a hyperaccumulator is a 

plant with a TF value above 10 (Ashraf, 2011). BCF is the representation of the 
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metal accumulation efficiency and can show the bioaccumulation of the metal 

in the food chain.  If the value of BCF is higher than 1, the plant can be classified 

as a phytoextraction species (Zhang et al., 2002; Santillan et al., 2010; Dowdy 

and McKone, 1997). 

2.5. Results 

2.5.1. Plant Characterization  

 Sampling at the mines resulted in a collection of 36 plant species, from 31 

genera and 14 families, with richness and density data shown in Table 2-2.  The 

transect data showing the stand structure of the plants present at each mine is shown 

by Table 2-3, with the proportion of herbs, shrubs and trees.  Winston Lake  and 

Premier had more plant species and a larger cover but less trees than Steeprock, which 

had an even richness of herbs, shrubs and trees.  None of the species were found at all 

of the transect sites but willow (Salix spp. L), white birch (Betula papyrifea Marshall), 

goldenrod (Solidago canadensis L), hawkweed (Hieracium canadense Michx), and 

trembling aspen (Populus tremuloides Michx) were found at all three mining areas.  

Pearly everlasting (Anapahlis margaritacea L) was found solely at Winston Lake mine. 

At Steep Rock Mine, which was closed the longest, there are either older trees and very 

little understory with very few herbaceous species or areas with no trees, some shrubs 

and sparse herbs.  At Steep Rock, soils and surrounding water have vivid multicoloured 

hues with very low populations of unhealthy herbs (Figure 2-3).  Many of these trees 

are seen with fungal mycorrhizae to aid in their growth.  Sites investigated at Premier's 

properties showed stunted shrub-like trees and some herbaceous species but no large 
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overstory.  Winston Lake had no trees with some areas with shrubs and intermittent 

herbs. 

 

Figure 2-3 White birch, Betula papyrifera, growing at Steep Rock Mine with 
mychorrizal fungus, Pisolithus tinctorius (see the square) 

Table 2-2 Mean number of herbaceous, shrub, and tree species (richness) and mean 
values of stand structure characteristics in three mines in northwestern Ontario* 

 Herbs  Shrubs  Trees  

 Richness Density 
(stems/m2) 

Richness Density  
(stems/100 
m2) 

Richness Density 
(stems/ha) 

Premier 4.7 a 47.6 a 2.4 a 207.5 a 0.0 a 0.0 a 
Steep Rock 1.5 b 12.3 b 1.1 b 183.9 a 1.4 b 10888.9 b 
Winston 
Lake 

3.6 c 42.1 a 2.3 a 281.1 a 0.0 a 0.0 a 

*Values within the rows with the same letters (a, b, and c) are not significantly different  at the    
P <0.05 level. 
 

 The proximity values for the plant species at the three mines are represented by 

a two-dimensional NMS map based on the resulting raw stress of 0.05007 and a Stress-
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I value of 0.22377 (Figure 2-4).  The stress values reflect how well the solution 

summarizes the distances between the data so a low stress value shows a good fit 

ordination. Cluster analysis was run for 39 cycles to also determine the groups of plant 

species and compare to the NMS results (Figure 2-5).  With a line drawn at the 6 

distance in the cluster analysis,  the majority of the plant species are separated in two 

clusters as well as outliers of the grass species of false melic grass (Schizachne 

purpurascens Torr.), and horsetail (Equisetum spp.)  The next group of species features 

birdsfoot trefoil (Lotus corniculatus L), hawkweed (Hieracium canadense Michx),   as 

well as raspberry (Rubus idaeus L),  pearly everlasting  and the shrubs of white birch.  

The last cluster is the remaining plant species, which can also be seen within the circle 

of the NMS diagram as seen in Figure 2-4: white pine (Pinus strobus L), white spruce 

(Picea glauca Moench), willow, white birch, trembling aspen, red pine (Pinus resinosa 

Aiton), balsam fir (Abies balsamea (L) Mill), heart leaved aster (Symphyotrichum 

cordifolium L), fireweed (Epilobium angustifolium L), jack pine (Pinus banksiana Lamb.), 

blueberry (Vaccinium angustifolium Aiton), tamarak (Larix laricinia Michx), dandelion 

(Taraxacum officinale FH Wigg), yarrow (Achillea millefolium L), sedge (Carex 

brunnescens Pers.), daisy (Leucanthemum vulgare Lam), balsam poplar (Populus 

balsamifera L) , strawberry (Fragaria vesca L), cedar (Thuja occidentalis L), red clover 

(Trifolium pratense L), bladder campion (Silene vulgaris Poir.), goldenrod (Solidago 

canadensis L),  and primrose (Oenothera biennis L). 

 Chlorophyll concentrations in vegetation at the mines are shown by Table 2-4.  

Some of the plant species with leaves had highly chlorotic and the chlorophyll content 
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was below the detection limit on the CCM-300 meter.  Chlorophyll concentrations of 

the leaves ranged from 166 mg/m2 to 718 mg/m2 .  Higher concentrations of 

chlorophyll were found at Winston Lake where no chlorosis was evident.  Many leaves 

on the plant species at Premier had chlorophyll levels below detection for the meter 

but the plants that did give readings were higher values than the plants found at Steep 

Rock, except for white birch and red clover. 
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Table 2-3 Plant Density m-2 of plants found growing on the mines WL - Winston Lake, S - Steeprock, and P - Premier. 

   WL1 WL2  WL3 S1 S2 S3 S4 S5 S6 P1 P2 P3 P4 P5 

Herbs Balsam fir Abies balsamea 
      

0.27 
      Balsam poplar Populus balsamifera 

  
0.67 

     
0.53 1.13 

 
0.60 

 bearberry Arctostaphylos uva-ursi  
      

0.27 
      White birch Betula papryrifera 0.07 

  
6.20 

        
1.47 1.80 

Birds foot trefoil Lotus corniculatus 0.53 
 

0.80 
 

13.33 0.53 5.87 
      Lowbush blueberry Vaccinium angustifolium 0.53 

             Cattail Typha spp. 
           

0 
  Cedar Thuja occidentalis 

            
0.07 8.33 

Oxe eye daisy Leucanthemum vulgare 
  

0.13 0.13 
     

1.13 0.07 
 

1.20 
 Dandelion Taraxacum officinale 0.07 0.27 

      
1.00 0.13 

   Horsetail Equisetum spp. 6.67 
 

3.73 
       

18.67 0 24.20 2.33 
Goldenrod Solidago canadensis 3.73 0.60 5.33 

   
4.27 

  
0.53 1.00 

 
0.87 1.20 

False melic grass Schizachne purpurascens 4.87 14.00 12.67 0.33 
  

5.87 0.07 
 

62.80 1.60 
 

0.47 25.20 
Hawkweed Hieracium canadense Michx  0.67 17.00 0.60 12.27 

  
10.00 3.13 

 
0.47 1.40 

 
6.87 7.00 

Heartleaved aster Symphyotrichum cordifolium 
     

0.07 
  

2.27 1.33 
 

1.33 
 pepperweed Lepidium densiflorum 

          
0.07 

   Pearly everlasting Anaphalis margaritacea 3.60 17.40 6.80 
       

0.07 
   Plantain Plantago lanceolata 

            
0.07 

 Trembling aspen Populus tremuloides 
       

0.07 
      Evening primrose Oenothera biennis 

 
5.33 

 
0.07 

          Raspberry Rubus idaeus 0.33 
             Red clover Trifolium pratense 
  

5.00 
   

0.13 
      Sedge Carex brunnescens 1.27 

 
0.07 0.47 

   
0.13 

   
0 0.47 

 Sow thistle Sonchus arvensis 
     

0.07 
       Wild strawberry Fragaria vesca 

     
1.93 0.73 

     
0.60 

Sweet clover Melilotus albus 
  

0.13 
          Tamarack Larix laricina 

             
0.80 

Vetch Vicia americana 
  

0.07 
          

 
White clover Trifolium repens 

 
0.67 

           
0.533333 

White pine Pinus strobus 
      

0.07 
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Table 2-2 Plant Density m-2 of plants found growing on the mines WL - Winston Lake, S - Steeprock, and P - Premier. (Continued) 

 

   WL1 WL2  WL3 S1 S2 S3 S4 S5 S6 P1 P2 P3 P4 

Shrub White pine Picea glauca 
         

1.13 
  

0.80 
Willow Salix spp. 

   
0.33 

   
0.07 

 
0.13 

  
1.13 0.53 

yarrow Achillea millefolium 0.13 1.00 0.07 0.73 
  

0.07 
   

0.13 
  

 
Balsam poplar Populus balsamifera 

  
0.50 

  
7.00 

  
7.17 8.67 

 
1.33 

 
5.5 

White birch Betula papryrifera 13.17 5.83 3.33 36.33 12.67 
 

3.83 
   

0.50 
 

1.83 4.33 
Lowbush 
blueberry Vaccinium angustifolium 

 
0.17 

           

 

Cedar Thuja occidentalis 
      

0.17 
      

5.50 
Jack pine Pinus banksiana 

   
0.17 

          Trembling 
aspen Populus tremuloides 5.00 0.17 0.67 1.33 0.17 

 
0.67 

  
0.17 

    Red pine Pinus resinosa 
    

1.33 
 

0.17 
      

 
White spruce Picea glauca 2.00 0.17 0.17 

   
0.83 

     
0.17 2.83 

Trees Tamarack Larix laricina 
             

3.33 
White pine Pinus strobus 

   
0.33 

         
 

Willow Salix spp. 9.00 0.83 1.83 0.83 0.33 
 

1.33 
  

2.17 1.00 
 

1.17 1.33 
White birch Betula papryrifera 

   
1.00 

 
23.00 

 
28.67 4.33 

     Jack pine Pinus banksiana 
   

0.33 
         

 
Trembling 
aspen Populus tremuloides 

   
0.67 

   
0.33 

     
 

Red pine Pinus resinosa 
   

0.33 
 

0.33 
         White pine Pinus strobus       1.67 2.67       

 White spruce Picea glauca       1.00        
 Willow Salix spp.        1.00       
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Table 2-4 Chlorophyll Concentrations of various plant species found at mine locations 
in Northwestern Ontario 

   Mine Location 
 Premier Steep Rock Winston Lake 
  Concentration   

(mg  m-2) 
 

 Mean Standard 
Deviation 

Mean Standard 
Deviation 

Mean Standard 
Deviation 

Species Balsam 
poplar 

Populus 
balsamifera 

535.7 116.3         

White 
birch 

Betula 
papyrifera 

330.0 134.4 453.5 79.3 569.3 226.3 

Birdsfoot 
trefoil 

Lotus 
corniculatus 

    479.7 76.6 349.0 215.0 

Blue 
spruce 

Picea 
pungens 

        386.0 0.0 

Cedar Thuja 
occidentalis 

289.0   250.0       

Goldenrod Solidago 
canadensis 

471.0   316.0 114.6 440.0 79.7 

Horsetail Equisetum 
spp 

166.0           

Pearly 
everlasting 

Anaphalis 
margaritacea 

        339.3 119.5 

Trembling 
aspen 

Populus 
tremuloides 

    648.3 218.7 667.0 173.4 

Evening 
primrose 

Oenothera 
biennis 

        244.0   

Red clover Trifolium 
pratense 

278.0   538.5 47.4     

Red pine Pinus 
resinosa 

    300.5 68.6     

Sedge Carex 
gynocrates 

        347.0 0.0 

White pine Pinus strobus     432.5 57.3     
White 
spruce 

Picea glauca 318.0   265.0 65.0 389.0 92.2 

Wild 
strawberry 

Fragaria 
vesca 

    560.0       

Willow Salix spp. 540.8 149.8 405.3 130.8 718.0 174.4 

Yarrow Achillea 
millefolium 

        351.5 111.0 
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Figure 2-4 A two-dimensional ordination plot derived from non-metric multi-
dimensional scaling (NMS) of 13 transects using herbaceous species composition and 
abundance data. 
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Figure 2-5 Hierarchical cluster analysis of 13 transects using herbaceous species 
composition and abundance data. 
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Figure 2-6 Discriminant Function Analysis Plot with all the soil variables at the mine 
locations. Standardized discriminating function 1 Fe -4.08, Ni - 1.70, K -1.38, Cr -1.29, 
Co and Pb +1.85, V +2.27, As, +2.28, P +2.34. Function 2 Mg -0.94, Cr -0.92, Co -0.84  
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Table 2-5 Soil chemistry characteristics of the studied areas on the three mines 
includes total metal concentrations in mg kg-1, moisture (%), conductivity (us cm-1), 
bulk density (g cm-3), organic matter (%) and pH 

  Mine Location 

Premier Steeprock Winston Lake 

Mean Standard 
Deviation 

Mean Standard 
Deviation 

Mean Standard 
Deviation 

Moisture 19.54 7.87 9.23 3.52 15.54 6.23 
Conductivity  347.35 157.86 139.79 101.31 235.71 229.09 
Bulk Density  .87 .22 .93 .21 .91 .20 
Organic Matter 2.72 1.13 5.80 1.16 4.57 7.23 
pH 7.90 .17 5.86 1.94 6.36 .90 
Aluminum (%) 1.2 0.3 0.6 0.2 0.8 0.2 

Arsenic 2245.36 3106.81 320.65 104.37 2.00 0.00 
Barium 41.16 32.73 77.41 225.74 21.70 9.15 
Beryllium .04 0.00 .55 .26 .17 .08 
Calcium (%) 2.2  1.2  1.7  4.5  0.19  0.18  
Cadmium .04 0.00 .18 .51 2.60 1.92 
Cobalt 17.83 8.57 25.12 11.74 2.47 1.09 
Chromium 34.46 25.06 313.81 214.59 35.91 14.11 

Copper 51.04 21.82 41.93 13.99 54.39 63.29 
Iron (%) 4.4  1.5  4.6  17.6  1.4  0.36  
Potassium 2265.84 1275.54 573.20 340.97 304.39 151.20 

Magnesium (%) 1.0  0.34  0.81  1.65  0.39  0.19  

Manganese 762.66 422.32 2624.90 2213.43 133.02 70.77 

Molybdenum 7.74 24.37 4.46 12.06 2.00 0.00 

Sodium 422.42 291.58 76.53 43.05 99.72 22.66 
Nickel 53.66 43.90 124.94 39.50 20.10 8.84 
Phosphorus 355.64 93.11 227.90 51.74 304.81 156.11 

Lead 28.97 33.98 61.60 19.81 4.51 1.30 
Antimony 1472.30 805.71 674.91 1001.75 2.00 0.00 
Strontium 86.04 26.38 34.40 20.21 4.48 1.62 
Titanium 298.14 152.31 306.89 162.44 410.64 75.70 
Vanadium 32.17 20.57 125.90 65.92 23.83 4.50 
Zinc 78.37 24.43 112.88 45.87 787.61 953.26 
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2.5.2. Soil Characterization 

 A summary of the soil analysis of each of the studied mines is given in Table 2-5. 

Soil values were highly variable and had wide ranges of metal concentrations. Metals 

with elevated concentrations in the soil samples were As, Mo and Sb at Steep Rock and 

Premier sites.  Winston Lake had elevated amounts of zinc due to ore mined at the site.  

The pH at the mines varied from slightly basic at Premier with a pH of 7.9 to Winston 

Lake with 6.8 and Steep Rock with the more acidic conditions at 5.86.  Each location 

showed similar bulk density ranging from 0.87 at Premier to 0.91 at Winston Lake and 

0.93 at Steep Rock.  

 All soils chemistry data was used in the discriminant function analysis that 

classified 100%  of the samples collected correctly (Figure 2-6). Function 1 explained 

72.8% of the and function 2 explained 27.2%. Function 1 could be interpreted as the 

ratio of Fe (negative coefficient ) to P, As, V, Pb, and Co (positive coefficient).  Function 

2 has Fe, Ca, Mn and K as the positive coefficients and Mg, Cr and Co as the negative 

coefficients. Each of the mines is completely separated with different soil 

characteristics and so plants found at all three locations are possible universal 

candidates for rehabilitation.   

2.5.3. Metal Bioaccumulation in Plant Tissues 

 While all metals were analyzed, more focus was placed on As, Mo, and Sb as 

these are metals of concern in surface soils for many closed mining operations in 

Northwestern Ontario.  The summary of the soil and plant As, Sb and Mo 

concentrations is seen in Table 2-6,Table 2-7, and Table 2-8 as well as the translocation 

factors and bioconcentration factors. Winston Lake had no registerable levels of Sb and 
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Mo in the plant tissue and levels of As at 1 mg kg-1 in the aboveground tissue and up to 

9 mg kg-1 in the roots.  Plants grown at Steeprock Mine had no to very low levels of Sb 

and Mo in their tissues.  Sb was found in the roots at the Premier locations up to 16 mg 

kg-1 in balsam poplar and in horsetail. in the aboveground tissue at 5 mg kg-1.  Very little 

Mo was found in plants at Premier except for the grass species false melic grass, which 

had 24 mg kg-1 in the aboveground tissue and 85 mg kg-1 in the roots.  As was found in 

many of the plant species grown at Premier and Steeprock locations.  Highest levels 

were found in false melic grass at Premier with levels of 180 mg kg-1 in the leaves and 

stems, and 2129 mg kg-1 in the roots.  The levels for the TF and BCF at the Premier 

mines are considered to be non accumulating considering the amount of As in the soil, 

except for  tamarack with a TF of 1.53. Meanwhile plants accumulating As at Steeprock 

are mullien (Verbascum thapsus L) (TF 1.41), white pine (TF 9.17) and white spruce (TF 

2.35). 
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2.6. Discussion 

2.6.1. Plant Characterization  

 Species richness and density was much lower than typical southern boreal 

forests in Canada.  Very few species were tabulated compared to Haeussler et al. 

(2002). They found that species richness was higher in clear cut forests compared to 

old growth forests. Heavy mechanical soil disturbance and removed soil organic layers 

could drastically decrease the residual and resprouting species so as to shift to 

pioneering species growing from seeds and spores, providing an opening for non-native 

species invasion.  The majority of the plant species could be classified as competitive, 

stress tolerant and ruderal (CSR) according to Grime (1977). The results of the NMS 

data and cluster analysis provide evidence of several factors: invasive species ability to 

adapt to the site conditions, type of soil conditions following mining operation and 

differences in the age of the stands due to time since closure. None of the mines had a 

completely unique set of plant species, but the species found on each of the mines 

showed a tolerance to heavily disturbed soils and have adapted to these site 

conditions.  The first group of plants in the NMS/Cluster analysis included the outlier 

species that have been classified as monocultural, invasive or exotic.  With the 

alteration of the landscape, monocultures of these species occur due to their quick 

adaptation to the soil conditions, open sunlight, little competition and their ease of 

reproduction through seed or rhizomes (Bosdorff et al., 2005).  They also tend to have 

hermaphroditic sex habits, extended flowering,  small seeds, and a short lifespan 

(Cadotte and Lovett-Doust, 2001).  Plants like Equisetum spp. can improve the soil 
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compaction and lower the conductivity of the soil as well as improve soil nutrition 

(Young et al., 2013). 

 The next group of plants in the analysis were found at the Winston Lake 

location which had different soil conditions compared to the other sites, so these 

plants can be found on disturbed soils but not necessarily elevated metal contaminated 

soils.  While all three sites were disturbed from mining operations, Winston Lake had 

levels of As, Sb and Mo in the soil considered normal to plants so plant species growing 

at this site are living on generally disturbed soils (Kabatas-Pendias, 2010).  All of the 

other plants investigated in this study are in the last group of the analysis:  white pine, 

white spruce, willow, white birch, trembling aspen, red pine, balsam fir, jack pine, 

blueberry,  tamarack, dandelion, yarrow, sedge, daisy, balsam poplar, strawberry, 

cedar, red clover,  bladder campion, and primrose .  This group contains all of the older 

trees and are found on the majority of the transects. All of these plants can be 

considered potential candidates for rehabilitation purposes as they are found on a 

variety of disturbed soils and have a wide range of habitat for wildlife, and growth 

habits. This group seems to be separated by the age of the stand as the trees from the 

older sites are at the top of the cluster analysis grouping and the shrubs and herbs in 

the lower part. 

 Some measure of plant health was taken with the measurement of chlorophyll.  

Other research has shown that stress from addition of sewage sludge and metaliferous 

water can contribute to lower chlorophyll concentrations in Typha sp. (Manios et al., 

2003). Paivoke and Simola (2001) found that chlorophyll content in Pisum sativum 
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increased with the addition of arsenate, while Mascher et al. (2002) found a decrease 

of chlorophyll with the addition of arsenate in Trifolium pratense.  Increased zinc, as is 

found in Winston Lake soils, has been shown to improve chlorophyll content (Wang 

and Jin, 2005).  Molybdenum has been known to influence chlorophyll synthesis in 

plants but is difficult to quantify through chlorophyll content (Kaiser et al., 2005).  Pan 

et al. (2011) found that antimony shows a reduction of chlorophyll with higher 

concentrations in the soil. 
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Table 2-6 Mean concentrations, translocation factors and bioconcentration factors of arsenic in  soils and plant species of mines in 
Northwestern Ontario (in mg kg-1 dry weight) Missing values are below detection limit. 

  Premier Steeprock Winston Lake 
  Shoot Root Soil TF BCF Shoot Root Soil TF BCF Shoot Root Soil TF BCF 

Balsam 
poplar 

Populus 
balsamifera 

19 749 1443 .18 .02           
White birch Betula 

papyrifera 
14 382 4804 .18 .05 1 12 330 .11 .00 1 2  1.23  

Birdsfoot 
trefoil 

Lotus 
corniculatus      1 42 334 .02 .01 2 4  1.91  

Cedar Thuja 
occidentalis 

41 134 781 .36 .16 0 13 197 0.00 0.00      
Goldenrod Solidago 

canadensis 
31 2820 1283 .11 .03 15 33 222 .34 .14 2 4  .62  

False melic 
grass 

Schizachne 
purpurascens 

180 2129 1869 .08 .10 31 65 212 .57 .16 1     
Horsetail Equisetum spp 155  3394  .07      1     
 Verbascum 

thapsus      24 46 415 1.41 .06      
Pearly 
everlasting 

Anaphalis 
margaritacea 

13 95 5028 .14 .01      1 9  .50  
Trembling 
aspen 

Populus 
tremuloides      4 7 218 .22 .03 2 2  1.31  

Evening 
primrose 

Oenothera 
glazioviana       0 27 407   2 3  .93  

Wild carrot Daucus carota      1 14 299 .24 .02      
Red clover Trifolium 

pratense      21 36 398 .59 .05      
Red pine Pinus resinosa      2 9 307 0.00 .01      

https://www.google.ca/search?espv=2&biw=1366&bih=643&q=anaphalis+margaritacea&stick=H4sIAAAAAAAAAGOovnz8BQMDQwgHnxCnfq6-gXmlhVG8EheIaVQUnxJfpGWZnWyln5SZn5OfXqmfX5SemJdZnBufnJNYXJyZlpmcWJKZn2eVk1-eWqSAKlgcsTR5JxOLpEqEj2JiRsCu-bG3r8wEABJXSJpxAAAA&sa=X&ei=52SPU9_3MYbK8wG-m4CoAQ&ved=0CKEBEJsTKAIwFw
https://www.google.ca/search?espv=2&biw=1366&bih=643&q=anaphalis+margaritacea&stick=H4sIAAAAAAAAAGOovnz8BQMDQwgHnxCnfq6-gXmlhVG8EheIaVQUnxJfpGWZnWyln5SZn5OfXqmfX5SemJdZnBufnJNYXJyZlpmcWJKZn2eVk1-eWqSAKlgcsTR5JxOLpEqEj2JiRsCu-bG3r8wEABJXSJpxAAAA&sa=X&ei=52SPU9_3MYbK8wG-m4CoAQ&ved=0CKEBEJsTKAIwFw
http://en.wikipedia.org/wiki/Oenothera_glazioviana
http://en.wikipedia.org/wiki/Oenothera_glazioviana
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Table 2-5 Mean concentrations, translocation factors and bioconcentration factors of arsenic in  soils and plant species of mines in 
Northwestern Ontario (in mg kg-1 dry weight) Missing values are below detection limit. Continued 

 
 

 
Premier Steeprock Winston Lake 

 
 

Shoot Root Soil TF BCF Shoot Root Soil TF BCF Shoot Root Soil TF BCF 
Sedge Carex 

gynocrates 
22 

 
1876 

 
.02 

     
3 3 

   
Sow thistle Sonchus 

oleraceus 
50 797 1819 .18 .03 

          
Sweet 
clover 

Melilotus 
officinalis      

1 19 298 .01 .00 
     

Tamarack Larix 
laricina 

23 280 1057 1.53 .05 
          

White pine Pinus 
strobus      

24 15 318 9.17 .41 0 
    

White 
spruce 

Picea 
glauca 

29 3642 1369 .25 .02 31 25 281 2.65 .16 1 3 
   

Wild 
strawberry 

Fragaria 
vesca 

4 
 

187 
 

.02 6 
 

311 
 

.04 
     

Willow Salix spp. 15 269 4309 .14 .01 7 5 290 0.00 .02 1 4 
 

.59 
 

yarrow Achillea 
millefolium           

1 3 
 

1.69 
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Table 2-7 Mean concentrations, translocation factors and bioconcentration factors of molybdenum in  soils and plant species of 
mines in Northwestern Ontario (in mg kg-1 dry weight) Missing values are below detection limit. 

  Premier Steeprock Winston Lake 
  Shoot Root Soil TF BCF Shoot Root Soil TF BCF Shoot Root Soil TF BCF 

Balsam poplar Populus 
balsamifera 

0 7 105   0 0 61  0.00 0     
White birch Betula papyrifera 3 7  1.33  0 0   0.00 0     
Birdsfoot 
trefoil 

Lotus corniculatus 
     0 0   0.00 5     

Cedar Thuja occidentalis 0     0 0   0.00      
Goldenrod Solidago 

canadensis 
0     1     0     

False melic 
grass 

Schizachne 
purpurascens 

24 85  .28  0 9    0     
Horsetail Equisetum spp 4  105        0     
Mullien Verbascum 

thapsus      0          
Pearly 
everlasting 

Anaphalis 
margaritacea 

0  105        0     
Trembling 
aspen 

Populus 
tremuloides      0 0   0.00 0     

Evening 
primrose 

Oenothera 
glazioviana       2 8    0     

Wild carrot Daucus carota 
     0          

Red clover Trifolium pratense      0          
Red pine Pinus resinosa      0 0   0.00      
sedge Carex gynocrates                
  

https://www.google.ca/search?espv=2&biw=1366&bih=643&q=anaphalis+margaritacea&stick=H4sIAAAAAAAAAGOovnz8BQMDQwgHnxCnfq6-gXmlhVG8EheIaVQUnxJfpGWZnWyln5SZn5OfXqmfX5SemJdZnBufnJNYXJyZlpmcWJKZn2eVk1-eWqSAKlgcsTR5JxOLpEqEj2JiRsCu-bG3r8wEABJXSJpxAAAA&sa=X&ei=52SPU9_3MYbK8wG-m4CoAQ&ved=0CKEBEJsTKAIwFw
https://www.google.ca/search?espv=2&biw=1366&bih=643&q=anaphalis+margaritacea&stick=H4sIAAAAAAAAAGOovnz8BQMDQwgHnxCnfq6-gXmlhVG8EheIaVQUnxJfpGWZnWyln5SZn5OfXqmfX5SemJdZnBufnJNYXJyZlpmcWJKZn2eVk1-eWqSAKlgcsTR5JxOLpEqEj2JiRsCu-bG3r8wEABJXSJpxAAAA&sa=X&ei=52SPU9_3MYbK8wG-m4CoAQ&ved=0CKEBEJsTKAIwFw
http://en.wikipedia.org/wiki/Oenothera_glazioviana
http://en.wikipedia.org/wiki/Oenothera_glazioviana
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Table 2-6 Mean concentrations, translocation factors and bioconcentration factors of molybdenum in  soils and plant species of 
mines in Northwestern Ontario (in mg kg-1 dry weight) Missing values are below detection limit. Continued 

 
  Premier Steeprock Winston Lake 
 

 Shoot Root Soil TF BCF Shoot Root Soil TF BCF Shoot Root Soil TF BCF 
Sow thistle Sonchus oleraceus 1  105        0     
Sweet clover Melilotus 

officinalis 
0 7 105             

Tamarack Larix laricina      0 0   0.00      
White pine Pinus strobus 0  105             
White spruce Picea glauca      0     0     
Wild 
strawberry 

Fragaria vesca 0     1   0.00 0.00 0     
Willow Salix spp. 0     0          
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2.6.2. Soil Characterization 

 The  As and Sb levels at the Premier sites and at Steeprock are similar (Jana et 

al., 2012). These levels of As and Sb are quite elevated according to Canadian standards 

of soil quality of 12 mg As kg-1, and   (CCME, 2007) or worldwide values of 0.05 to 4 mg 

Sb kg-1 and 1.5 to 3.0 mg As kg-1 soils from igneous rocks and 1.7 to 400 mg As kg-1 from 

sedimentary rocks (Kataba-Pendias and Mukherjee,, 2007; Smith et al., 1998).  While As 

and Sb are immobile within the soil profile, the majority of their possible distribution 

into the surrounding environments would be due to anthropogenic sources or through 

uptake via plant metabolism.  Canadian soil quality standards have Mo at 5 mg Mo kg-1 

so Premier is the only location with average amounts of 7.74 mg Mo kg-1 while Steep 

Rock shows borderline levels just under the limit.    

 pH had a large influence on the metal and nutrient availability in these mine 

soils.  Acid soils can increase the solubility of metals such as As and Sb which then 

increases the bioavailibility of the metal to the plant (Marin et al., 1993). Molybdenum 

is the only nutrient required for plant growth that has higher bioavailability at higher 

pH levels (Goldberg and Forster, 1998). The high amounts of Ca, Mg, K, and Na at each 

site can negatively influence the plant metabolism especially in the higher pH 

conditions (Wong et al., 1998).  Solubility of these metals decreases with the increase 

in pH.  Interaction between these ions is also more complex at high pH conditions. 
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2.6.3. Metal Bioaccumulation in Plant Tissues 

 Hyperaccumulation and extraction definition can vary depending on the metal 

investigated (Vassilev,  2004).  Shoot metal concentrations can be quite variable 

considering the variability of the metal concentration in the soil as well as the metal 

concentration that is bioavailable. Plants that grow in normal soils typically accumulate 

less than 3 mg kg-1 of non-essential metals (Ruiz-Chancho et al., 2008; Kabatas-Pendias 

and Mukherjee, 2007). In our study, most of the plants at the Winston Lake mine follow 

this statistic, while plants at the other two mines accumulate higher concentrations 

while growing in As contaminated soil. Plants growing on uncontaminated soils 

accumulate 0.00001 to 0.2 mg Sb kg-1 (Bowen, 1979). Most plants in this study follow 

this pattern except horsetail with a level of 5 mg Sb kg-1.  Levels of Mo found in 

representative plant species is 1 to 2 mg Mo kg-1 (Kabatas-Pendias, 2010). False melic 

grass at the Premier mines was found to have 10 times this amount in this 

investigation, while the other plants are in or close to the normal range. 
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Table 2-8 Mean concentrations, translocation factors and bioconcentration factors of antimony in  soils and plant species of mines 
in Northwestern Ontario (in mg kg-1 dry weight) Missing values are below detection limit. 

  Premier Steeprock Winston Lake 
 

 Shoot Root Soil TF BCF Shoot Root Soil TF BCF Shoot Root Soil TF BCF 
Balsam 
poplar 

Populus 
balsamifera  13 1362   0 0 1031  0.00      

White birch Betula 
papyrifera  9 1761   0  324  0.00      

Birdsfoot 
trefoil 

Lotus 
corniculatus      0 0 327  0.00      

Cedar Thuja 
occidentalis   857   0 0 2215  0.00      

Goldenrod Solidago 
canadensis  10 1656    5 2575        

False melic 
grass 

Schizachne 
purpurascens  6 1376    6 3166        

Horsetail Equisetum 
spp 

5  1639  .01           
Pearly 
everlasting 

Anaphalis 
margaritacea        527        

Trembling 
aspen 

Populus 
tremuloides   1662             

Evening 
primrose 

Oenothera 
glazioviana       0 0 464  0.00      

Red clover Trifolium 
pratense        443       

 
 

  

https://www.google.ca/search?espv=2&biw=1366&bih=643&q=anaphalis+margaritacea&stick=H4sIAAAAAAAAAGOovnz8BQMDQwgHnxCnfq6-gXmlhVG8EheIaVQUnxJfpGWZnWyln5SZn5OfXqmfX5SemJdZnBufnJNYXJyZlpmcWJKZn2eVk1-eWqSAKlgcsTR5JxOLpEqEj2JiRsCu-bG3r8wEABJXSJpxAAAA&sa=X&ei=52SPU9_3MYbK8wG-m4CoAQ&ved=0CKEBEJsTKAIwFw
https://www.google.ca/search?espv=2&biw=1366&bih=643&q=anaphalis+margaritacea&stick=H4sIAAAAAAAAAGOovnz8BQMDQwgHnxCnfq6-gXmlhVG8EheIaVQUnxJfpGWZnWyln5SZn5OfXqmfX5SemJdZnBufnJNYXJyZlpmcWJKZn2eVk1-eWqSAKlgcsTR5JxOLpEqEj2JiRsCu-bG3r8wEABJXSJpxAAAA&sa=X&ei=52SPU9_3MYbK8wG-m4CoAQ&ved=0CKEBEJsTKAIwFw
http://en.wikipedia.org/wiki/Oenothera_glazioviana
http://en.wikipedia.org/wiki/Oenothera_glazioviana
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Table 2-7 Mean concentrations, translocation factors and bioconcentration factors of antimony in  soils and plant species of mines in 
Northwestern Ontario (in mg kg-1 dry weight) Continued 

 
 Premier Steeprock Winston Lake 

 
 Shoot Root Soil TF BCF Shoot Root Soil TF BCF Shoot Root Soil TF BCF 

Red pine Pinus 
resinosa        1696        

Sedge Carex 
gynocrates        347        

Sow thistle Sonchus 
oleraceus      0 0 206  0.00      

Sweet clover Melilotus 
officinalis  15 1471             

Tamarack Larix laricina 
     0 0 1135  0.00      

White 
spruce 

Picea glauca 
 9 836             

Wild 
strawberry 

Fragaria 
vesca        406        

Willow Salix spp. 
 12 1524   0  725 0.00 0.00      

Yarrow Achillea 
millefolium   3665     1312        
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None of the plants at the sites can be considered as hyperaccumulators of As, or Mo as 

the TF and BCF were not over 10 (Table 2-6 and Table 2-7). Since none of the plant 

species had any appreciable amounts of Sb, it will not be discussed here, as all plant 

species in this study could be classified as potential Sb phytostabilizers, baring more 

research into their growth on high Sb concentration soils. Other studies also show very 

little bioaccumulation of Sb at other mine sites (Hammel et al., 2000; Fu et al., 2010; Qi 

et al., 2011). Plants that can be classified as hypertolerant include yarrow, white 

spruce, tamarack and mullien for As and yarrow, sweet clover, red clover and alfalfa for 

Mo.  If the quantities of Mo accumulated  are above 5 mg kg -1   these plants are a 

concern if ruminant animals graze them (Blakley, 2014).  Species with TF values less 

than one are considered possible tolerant plants.  As tolerant plants are balsam 

trembling aspen, white birch, birdsfoot trefoil, cedar, goldenrod, false melic grass, 

pearly everlasting, trembling aspen, primrose, red clover, sow thistle and willow while 

for Mo the plants are white birch birdsfoot trefoil, golden rod, false melic grass, 

trembling aspen, white spruce and willow .  Phytostabilization candidates with TF 

values of less than 0.1 include red pine for both As and Mo, while sweet clover excludes 

As and cedars exclude Mo.  The species that fall in the tolerant and phytostabilization 

categories could be considered the best species for phytostabilization as they do not 

accumulate appreciable amounts of As and Mo that would promote harm to the food 

chain.  Pearly everlasting was only found at Winston Lake, a former zinc mining 

operation and showed to be a hyperaccumulator of Zn as did goldenrod.  
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2.6.4. Management Implications 

 Succession dictates that in the southern boreal forest the dominant species of 

conifers such as white pine and white spruce will follow the initial growth of deciduous 

species such as white birch and aspen (Bergeron, 2000).  In the case of these metal 

contaminated and disturbed areas, this succession does not happen if left with no 

assistance as the disturbance to the soil influences the natural seed bank and very few 

dominant conifers are disbursed from far distances providing the ideal circumstances 

for invasive species (Perkins et al., 2011).  This study showed that very few of the trees 

were evident at a size and quality that compare with the surrounding areas that are 

disturbed due to logging or fire (Table 2-2).  While the older site of Steeprock did have 

trees, there were some areas with little to no understory species.  Some transects had 

a monoculture of plants so as to outcompete and prevent the natural succession of 

trees from colonizing the degraded land.  

 Since differences exist between disturbed forest soils and man-made 

unweathered mine soils, difficulty arises when planting directly on mine soils. For 

better success at replanting mine soils with phytostabilization species, soil 

improvements could assist plant survival and growth. The addition of some topsoil or 

organic amendments improves soil moisture and nutrient availability (Helmisaari et al., 

2007).  These could include woodbark, composts or another local waste source (Brown 

and Naeth, 2014).  

 Rehabilitation of contaminated soils on closed mines will have to include a 

variety of species for the specific metal contamination so as to mimic the diversity of 

the surrounding boreal forest.  Some metallophytic species have a natural drought 
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tolerance so as to withstand the dry conditions of the mine soil. Perennial species, 

species with wide ranging root systems, and those adapted to cold winters, low 

nutrient, low organic matter and compacted soils can be included in closure replanting 

plans for mines in Northwestern Ontario.  Focus should be placed on pioneer plant 

species, rather than the climax coniferous species such as white spruce due to their 

poor health after planting on these mine sites. Minimal inputs could be used so as to 

reduce the future requirements for fertilizer and pesticides.  Insulating layers of subsoil 

including building rubble, refuse, or uncontaminated rock would help buffer the 

planted species from lower underground metal contamination and increase the success 

of the seedlings and cuttings (Zhang et al., 2001). Plantings should include a mix of 

grasses, herbs, shrubs and trees that will colonize the surrounding area, increase 

organic matter and improve fertility and soil characteristics like water retention, 

aeration and wildlife habitat.  Hyperaccumulator plants should be avoided for planting, 

actively eliminated from areas through weeding or only planted on areas scheduled for 

regular harvesting for metal removal so as to reduce the hazard for the future land 

uses.  If the plants are accumulating more than 5 mg Mo kg-1 , supplementation of the 

site could use 1-5% copper sulfate salts to prevent control negative impacts on 

ruminant animals (Blakley, 2014). Future research should include test plantings in 

various metal concentration and soil types for ease of use. as well as with various 

organic matter, fungal and bacterial amendments.   
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2.7. Conclusions 

 The mining areas of Steeprock, Premier and Winston Lake show a range of 

plants with varying tolerance to soil metal concentrations of As, Mo and Sb with a 

range of accumulations.  The main findings are i) a variety of plant species can be found 

at all three locations with few species specific to each mine, ii) the soil characteristics 

were quite different at each of the closed mines , and iii) there were species with the 

potential to be metal excluders including white birch, willow., trembling 

aspen, goldenrod, pearly everlasting and tamarack. 

 Results of the study can provide insight into the land reclamation practices 

following mining operations in the boreal forest regions in Northwestern Ontario.  

Recreating an environment that mimics the surrounding, untouched areas can be a 

challenge but there are plant species candidates for reclamation purposes including 

phytostabilizers.  Vegetation from these mine regions can be integrated into closure 

plans to create a self-sustainable environment with plant species that are tolerant to 

low levels of fertilization and elevated metal concentration.  By incorporating species 

such as white birch, willow, trembling aspen, goldenrod, pearly everlasting, 

and tamarack with good rooting habits and diverse growth habits, plants can be used 

to manage soil contamination and mimics the untouched forest surrounding the mines. 

While the species might not be performing at their top health potential as seen in the 

chlorophyll content, these phytostabilizer species are improving the areas by 

preventing erosion and improving the soil conditions, while providing a safe habitat for 

wildlife to eat and inhabit.   
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3. Planting  of Native Trees on a Former Gold Mine in 
Northwestern Ontario Using Mycorrhizae and 
Woodbark 

 

3.1. Abstract 

The David Bell Mine Marathon, Ontario ceased production on May 16, 2014 leaving 

areas of land that require replanting.  Plant site pads that were constructed with mine 

rock may cause possible issues in the revegetation due to metal uptake.  Buildings are 

being demolished, stockpiled topsoil replaced, and seeding with various grasses as well 

as transplanting trees are being done to the site.  All of these actions should encourage 

colonization of volunteer species of plants from the surrounding area.  In order to make 

the revegetation of Barrick's former gold mine a success, we investigated the seeded 

and natural vegetation on the site for metal accumulation as well as studied the 

establishment of 5 different tree and shrub species (trembling aspen (Populus 

tremuloides), willow (Salix sp.), white spruce  (Picea glauca), common ninebark 

(Physocarpus opulifolius), and dogwood (Cornus  sericea) ) planted  in fall or spring into 

overburden mixed with 4 levels of woodbark (0, 6, 12, and 25%) and with the addition 

of the mycorrhizal fungus, dog turd fungus (Pisolithus tinctorius).  While the levels of 

As, Mo and Sb exceeded the values for industrial soil in the Canadian Soil Quality 

Guidelines, many of the plants growing on the site did not phytoaccumulate these 

elements into their aboveground tissues.  A negative concern is the plants in the family 

Fabaceae which could phytoextract Mo and impact ruminant grazing species.  The 

addition of woodbark improved soil nutrition and bulk density. Each of the species 

planted had a survival of over 70% except for the spring planted Salix sp.  Pisolithus 
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tinctorius did not appear to improve the growth of any of the tree species.  The 

addition of the woodbark did improve the initial growth of the trees. Little difference in 

planting times shows that planting could be done in spring or fall.  Volunteer species of 

plants have also been successful at colonizing the experimental site with uniform 

coverage over the entire area. 

3.2. Keywords 
Arsenic, Molybdenum, Metals, Phytostabilization, Rhizosphere, Mining, Pisolithus 
tinctorius, Bioavailability 
 

3.3. Introduction 
 In Canada, the majority of gold deposits are found in the Canadian Shield with 

much of the production from open pit and hard rock underground mines.  Most of this 

area is covered with the Boreal forest and areas should be revegetated following 

mining operations, preferably with plants native to the region (Ontario, 2012). 

Dispersal of other metal contaminants to the surrounding area can occur through 

mining processes.  Mine tailings, effluent and mined rock can contain elevated 

concentrations of metals (Wang and Mulligan 2006). Buildings must be demolished and 

leveled and overburden removed during the opening of the mine should be leveled 

over the impacted areas.  Stockpiled overburden can be misplaced on the site, 

dispersed through rocky terrain, or damaged with little organic matter and low 

bioactivity (Harris, 2003).  Trees and seeding mixes are planted in the graded areas.  

Many of the replantings focus on coniferous trees as these are widely used for 

replanting forests in these regions  and are typical climax species in these forests 

(Peters, 1984; Peters, 1988).   



71 
 

 Soils play a large role in the life of many organisms. They influence plant 

growth, contain resources for humans, mediate atmospheric regulation, create a living 

habitat for many life forms and contribute to water purification (Binkley and Giardina, 

1998). Soil and plant health systems are a combination of drainage, compaction, pH, 

fertility, competition/weeds, residue, plant rotation/biodiversity, and cover (Menard, 

2014). Some species grow well on metaliferous soils but the concern is the impact of 

the elevated metal content of the plants on the surrounding wildlife ecology.  If plants 

uptake an elevated amount of metals, potential negative effects could occur higher in 

the food chain.   Metallophytes that amass metals in the aerial tissues above normal 

conditions can be classified as phytoextraction species also known as accumulators or 

hyperaccumulators (Peer et al., 2006).  Phytostabilization or excluder plant species 

restrict uptake of metals or prevent the transport into the aboveground portions of the 

plant body (Raskin, 2000). 

  Seed and cuttings from tree and shrub species are inexpensive methods 

used to propagate and replant large tracts of land in the region. Several tree species 

show promise for replanting mines. White Spruce (Picea glauca ) is a conifer frequently 

used to replant areas following forest fire and logging as it is found throughout 

northern temperate and boreal forest in mixed stands (Freedman, 1995) and is 

propagated by seed.  

3.3.2. Plant species investigated 

 Trembling Aspen (Populus tremuloides), a deciduous tree species, is also 

widespread in NWO, frequently in stands with white spruce. It grows on burnt areas, 
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recently disturbed ground and on a variety of soil types and site conditions (Lillies et al., 

2010; Nevel et al., 2011; Pinno et al., 2012).  

 Red Osier Dogwood (Cornus  sericea) is a shrub with ornamental winter stems, 

found throughout NWO on many areas that are recently disturbed soils on a range of 

habitats from dry to wet (Renault et al., 2001; Renault et al., 2004).   

 Willows (Salix sp.) are a family of shrubs found in many forest habitats, usually 

mixed with coniferous stand on drier soil types and are frequently used to control 

erosion (Pulford et al., 2002; Pulford and Watson, 2003; Mickovski, 2008).   

 Common ninebark (Physocarpus opulifolius) are a species of shrub with 

ornamental fall foliage found on rocky and disturbed areas in eastern North America, 

used in control for erosion but rarely found west past the 90o meridian (Dirr, 1997). 

3.3.3. Soil amendment  

 Composted woodbark is the leftover bark, sawdust and wood chips from 

sawmill production. As a soil amendment, woodbark is valuable because it decays very 

slowly, causes higher survival rates for tree transplants and encourages root growth 

(Helmisaari et al., 2007; Brown and Naeth, 2014). There is potential for the antifungal 

chemicals in pine bark that reduce rot and diseases of plants when incorporated into 

the soil (Alfredsen et al., 2008).  These pine bark exudates have high water permeability 

and low to medium water retention, which are beneficial to fine soils, prevent weeds, 

and moderate soil temperature (Robinson 1988, Hoitink and Boehm 1999).  On the 

other hand, mulches can tie up the microbial activity in the soil causing nitrogen 

deficiencies in plants, and also induce nutrient cycling in soils similar to natural 
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ecosystems (Tukey and Schoff, 1963; Roe, 1998; Tiquia et al., 2002).  The pH of the 

softwoodbark tends to be the same as peat (Gartner et al., 1973). Papermill sludge can 

benefit plant growth on neutral/alkaline mine soils by potentially improving soil 

structure (Green and Renault, 2008). 

 Microbes can be an important component of bioremediation through 

immobilization, remediation and detoxification (Gadd, 2010). Arbuscular mycorrhizal 

fungi have the ability to create a mutual symbiosis with various species providing direct 

links between the soil and roots (Khade and Adholeya, 2007). The mycorrhizal fungus 

Pisolithus tinctorius was found at Steep Rock Mine in Atikokan, Ontario (Mol, 2013).  

This fungus is used to promote growth of several tree species to increase plant health 

and earlier establishment success.  This symbiosis helps to better tolerate soil 

conditions such as extreme pH, metal contents, low fertility, low organic matter and 

drought (Marx, 1977; Colpaert, 2011).  While it is known to withstand elevated 

amounts of Al, Fe, Cu, and Zn, little is known about Pisolithus tinctorius impact on soils 

with elevated concentrations of As, Mo and Sb (Tam, 1995).   The bioremediation 

techniques using fungi rely on the correct matching of plant species, metal 

contamination and fungal species (Turnau et al., 2012). 

3.3.4. Objectives and Hypothesis 

 Objectives of this research are aimed at identifying phytoremediation plant 

species that can be used to plant mining sites and the methods used to increase 

planting success. This study was carried out at the former Golden Giant mine in Hemlo, 

ON near Lake Superior.  First  an investigation of the plants growing at the mine site 
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was performed to determine the accumulation of metals from the soil to classify these 

as phytostabilizer, accumulator or hyperaccumulator species.  Then a planting of five 

different species Populus tremuloides, Salix sp., Picea glauca, Physocarpus opulifolius, 

and Cornus  sericea was established on a section of the property with freshly applied 

topsoil and woodbark.  Time of planting, addition of fungus, and the amount of 

woodbark in the topsoil were assessed in the replanting process. Measures of success 

included survival, tree height, and chlorophyll content.  The deciduous trees will have a 

higher survival, height and health compared to the white spruce.  Soil health will be 

improved with the addition of a lower content of woodbark. 

3.4. Materials and Methods 

3.4.1. Study Area 

 Currently known as a part of Barrick Gold Hemlo, the former Golden Giant mine 

is a closed gold mine located in the Hemlo mining camp on the north shore of Lake 

Superior, near the town of Marathon, Ontario (Figure 3-1). As one of three gold mines 

established on the Hemlo deposit, 6 million ounces of gold were removed over the 

lifespan of the mine from 1985 to 2006 (Dawson, 2004). The other operations on the 

site, include the Williams and David Bell mines. Williams Mine is still in operation and 

has milling, processing and tailings facilities where ores are fed to a standard grind, 

leach and carbon-in-pulp extraction mill.  Mined rock from the operations were spread 

over the site to smooth the previous landscape.  Elevated amounts of As, Mo and Sb 

can be found in the soils on the mine property (personal communication, Shane Hayes, 

Barrick Hemlo, 2012). 
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Figure 3-1 Map of the location of the study site, Barrick Hemlo Gold Mine 

3.4.2. Plant and Soil Collection for Phytoremediation 
Classification 

 Random soil and vegetation sampling was done throughout the vegetated areas 

that were previously impacted on mine site at the former Golden Giant Mine.  Focus 

was placed on plant species with significant root systems and substantial aboveground 

biomass.  Plant samples were identified, collected, separated into above and 

belowground parts, air dried and ground to be used for laboratory analysis.  Soil 

samples were obtained from the 0-30 cm part of the soil profile, sieved to remove large 

debris and air dried for laboratory analysis. 

3.4.3. Site Preparation for Tree Planting 

 The site of this experiment was located on a level area measuring 25 m by 50 m. 

A split plot design was used for the tree experiment (Figure 3-2). Site preparation used 

a backhoe to place 0.5 m of soil cover on the area. Stockpiled topsoil was mixed the 
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softwood woodbark sourced from a nearby sawmill White River Forest Products in 

White River, ON in four blends: 

  

Figure 3-2 Split plot design with blocks of soil treatments (0, 6, 12, 25% woodbark) 
and planting dates (fall or spring) 

100% topsoil, 94% topsoil and 6% woodbark, 88% topsoil and 12% woodbark, and 75% 

topsoil and 25% woodbark. Tree species were chosen from species found in the near 

vicinity of the mine: Trembling aspen (Populus tremuloides), Willow (Salix sp.), White 

Spruce (Picea glauca), Ninebark (Physocarpus opulifolius), and Red Osier Dogwood 

(Cornus  sericea).  Bare-rooted plants were used for all experiments. Trembling aspen, 

willow, and dogwood were all rooted cuttings while the white spruce and ninebark 
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were grown in 60 cell plugblock trays from Beaver Plastics.  Trees were planted at 2 m 

spacing (equivalent of 2500 seedlings per hectare), with the plot surrounded by a 

buffer of non-experimental seedlings planted at the same density.  Half of the trees 

were inoculated with Pisolithus tinctorius and half of the trees were planted without 

any added fungus.  Half of the trees were planted in Fall of 2012 and the other half 

were planted in the Spring of 2013. Weed control was not attempted and volunteer 

plant species were allowed to grow on the site. 

3.4.4. Data Collection from the Planted Site 

  Five soil samples were taken randomly throughout each of the four soil 

mixtures to a depth of 15 cm prior to planting the trees.  Each sample was sieved to 

remove rocks and a representative sample was placed in a plastic bag for laboratory 

analysis. Tree height (from the base of the tree to the uppermost bud) and survival 

(binary measurement of alive versus dead) was measured at planting and in the Spring 

and Fall each year following.  In order to quantify plant stress, chlorophyll content was 

chosen as a way to measure a response to stress of the plants between the treatments 

(Walters 2005). Chlorophyll was measured using a CCM-300 Chlorophyll Content Meter 

from Opti-Sciences in the spring following leaf opening and fall just prior to leaf colour 

change of 2014 (Gitelson et al., 1999). Leaf area of volunteer plant species on each soil 

treatment was analyzed using 10 photos and Assess 2.0  (Lamari, 2008).  Assess 2.0 is a 

computer program that performs a rapid measurement of leaf area, percent disease, 

root length, lesion count, and percent ground cover with imported photographs. 
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3.4.5. Laboratory Analysis 

 Analyses were done at the Lakehead University Environmental Laboratory 

(LUEL) according to the LUEL (2012) Quality Assurance/Quality Control (QA/QC) 

protocols. A blank sample was run at the beginning of each tested parameter, then a 

QA/QC sample, and followed by a repeat of the next field sample.  This was repeated 

for every ten field samples. 

  Soil and plant samples were dried in a drying oven at 70o C prior to analysis for 

total metals. Both soil and plant samples were homogenized to pass through a 2 mm 

mesh.  A 0.2 g aliquot for soil and a 0.25 g aliquot for plant tissue were allowed to 

predigest in teflon express microwave digestion tubes overnight in a 3:1 ratio of 

concentrated HNO3:HCL acids. The samples were then digested in a MARS 5 microwave 

digestion oven for 45 minutes at 175o C. Samples were removed and diluted to 25 ml 

with distilled deionized water (DDW) and concentrations  of Al, As, Ba, Be, Ca, Cd, Co, 

Cr, Cu, Fe, K, Mg, Mo, Na, Ni, P, Pb,Sb, Sr, Ti,  Va, and Zn were determined by the 

VarianPro Inductively Coupled Argon Plasma Spectrometer (ICP-OES).  Replicate, QC , 

and lab blank samples were measured during each batch of samples. pH and 

conductivity of soil were measured in a 1:1 ratio of dry sample to DDW on a Mettler 

Model  Seven Multi equipped with a conductivity cell and a pH probe. The moisture 

content of soil was determined by gravimetry on a separate aliquot of sample.  A 2.0 g 

aliquot of soil was weighed and then dried in a drying oven at 100o C overnight and the 

dry weight determined. Percent moisture was the oven dried weight divided by wet 

weight. Loss on ignition was used as an estimate of organic matter for soil by placing 
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2.0 g of soil into a crucible and then ashing it overnight at 550o C. Organic matter was 

calculated as ash weight – dry weight divided by dry weight. 

3.4.6. Data Analysis 

 
 Data analysis proceeded in the following steps using SPSS version 23 (IBM Corp, 

2015): 

i. Metal concentration by dry weight of the soil and plant material were used to 

calculate Translocation Factor (TF) and Bioconcentration Factor (BCF).  TF is the 

metal in the aboveground biomass/metal in the root biomass while the BCF is 

the metal in the aboveground tissue/the metal content of the soil.  A TF value 

higher than 1 is considered an accumulator of metals (Deng et al., 2004; Juarez-

Santillan et al., 2010), while a hyperaccumulator is a plant with a TF value above 

10 (Ashraf, 2011). BCF is the representation of the metal accumulation 

efficiency and can show the bioaccumulation of the metal in the food chain.  If 

the value of BCF is higher than 1, the plant can be classified as a phytoextraction 

species (Zhang et al., 2002; Juarez-Santillan et al., 2010; Dowdy and McKone, 

1997). 

ii. Soils chemical variation among the topsoil/woodbark treatments were 

investigated for homogeneity and distribution.  No transformation was needed 

before it was analyzed using one-way analysis of variance with a posthoc test of 

least significant difference (LSD).  Statistical significance was defined as P < 0.05.   

iii. General tree health rating (1 as poor to 5 as healthy based on vigour, leaf 

colour, insect infestation, amount of leaves and branches and height) and 
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survival was analyzed using univariate ANOVA with LSD as a posthoc test to see 

if the treatments differed from each other in terms of a) timing of planting in 

spring or fall,  b) presence or absence of added Pisolithus tinctorius and c) four 

levels (0, 6. 12. 25%) of woodbark added to topsoil. Statistical significance was 

defined as P < 0.05.  The univariate equation can be shown like Figure 3-3.  

 

Figure 3-3 Univariate Analysis of Variance (ANOVA) 

The columns correspond to the responses to g different treatments or 

from g different populations. And, the rows correspond to the subjects in each 

of these treatments or populations.  

 Yij = Observation from subject j in group i 

 ni = Number of subjects in group i 

 N = n1 + n2 + ... + ng = Total sample size (Anderson 2001). 
 

iv. Tree Height (cm) and chlorophyll content (mg m-2) data  were log transformed 

and tested using repeated measures ANOVA with  LSD to see if tree growth in 

the treatments differed from each other in terms of a) timing of planting in 

spring or fall, b) presence or absence of added Pisolithus tinctorius and c)four 

levels (0, 6. 12. 25%) of woodbark added to topsoil.  Statistical significance was 
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defined as P < 0.05.  The model can be shown for this method (also known as 

split plot ANOVA) as: 

Yijk=μ+αi+βj(i)+τk+(aτ)ik+ϵijkYijk=μ+αi+βj(i)+τk+(aτ)ik+ϵijk 

Using this linear model we assume that the data for treatment i for tree  j at 

time k is equal to an overall mean μ plus the treatment effect αi, the effect of the 

tree within that treatment βj(i), the effect of time τk, the effect of the interaction 

between time and treatment (ατ)ik, and the error εijk. 

Such that: 

 μ = overall mean 
 αi = effect of treatment i 
 βj(i) = random effect of tree j receiving treatment i 
 τk = effect of time k 
 (ατ)ik = treatment by time interaction 
 εijk = experimental error (Weinfurt 2000) 

 

3.5. Results 

3.5.1. Characteristics of the existing soil on the former Golden 
Giant Mine 

 
 The soil metal contents in the former mine site are summarized in Table 3-1. 

Existing soils of the former Golden Giant mine surface generally had a neutral pH with 

some areas with extreme acidity (pH< 4.5).   Soil conductivity was low and not 

considered saline or sodic.  There were high amounts of Ca 1.6%, K 1849 mg kg-1, Na 

204 mg kg-1  and P 548 mg kg-1  as compared to normal levels of agricultural soils in 

Ontario (Legg 2012). Soils over the mine mined rock exceed the Canadian Soil Quality 

Guidelines for As, Sb and Mo.  As averaged 23 mg kg-1 but some samples reached 101 
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mg kg-1.  The concentration of Sb in the soil was also elevated with some samples 

reaching   86 mg kg-1.  The average Mo in the soil was 76 mg kg-1 with values going as 

elevated as 406 mg kg-1.  Other metals of concern on closed mines such as Cr, Cu, Pb, 

and Zn were low with averages of 24 mg kg-1 , 23 mg kg-1, 10 mg kg-1 , and 69 mg kg-1, 

respectively.   
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Table 3-1 Soil Chemistry of the existing soil of the former gold mine compared to 
Canadian Soil Quality Guidelines and the typical agricultural Soils in Ontario. Units for 
metals are in mg kg-1 unless stated (Legg, 2012; CCME 2014) 

 Mean Standard 
Deviation 

Canadian 
Soil Quality 
Guidelines 

Ontario 
Agricultural 
Topsoil Range 

Aluminum 7250 645   
Arsenic 23 7 12  
Barium 504 120   
Calcium (%) 1.67 0.34  0.10-0.40 
Cobalt 1  300  
Chromium 24 2 87  
Copper 23 8 91  
Iron (%) 1.72 0.19   
Potassium 1849 275  80 to 250 
Magnesium 7834 92   
Manganese 185 19   
Molybdenum 76 30 40  
Sodium 204 28  less than 200 
Nickel 15 2 50  
Phosphorus 548 35  10 to 60 
Lead 10 2 600  
Antimony 13 6 40  
Strontium 33 3   
Titanium 856 59   
Vanadium 42 10 130  
Zinc 69 24 360  
pH  7 1 6 to 8  
Conductivity 
(us/cm) 

199.2 126.2 0 to 450  

 

3.5.2. Metal concentration in plants collected on the former 
Golden Giant Mine 

 Sampling of the former Golden Giant mine yielded 13 plant species. Some 

plants exhibited obvious deformities. For example,  Picea glauca showed loss of 

needles and vibrant red and yellow colouring occured in the Medicago sativa leaves 

(Figure 3-4).  Larix laricina and Betula papyrifera showed no visual signs of stress. The 
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concentrations of As, Mo and Sb in the plants found on the site are presented in Table 

3-2. No hyperaccumulators were found in the plants sampled on the mine as the TF 

values of the plant species was below 10. None of the plants moved any Sb from the 

soil into the aboveground parts of the plant. Higher levels of Mo were found in Lotus 

corniculatus (70 mg kg-1) , and Meliolotus officinalis (98 mg kg-1). Medicago sativa, 

Anaphalis margaritacea, and Achillea millefolium have Mo TF values above 1 which 

indicates they are accumulators of Mo. 

 

Figure 3-4 Unknown Visual Toxicity/Deficiency Symptoms in Medicago sativa and 
Picea glauca 
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Table 3-2 Translocation Factor (TF), Bioaccumulation Factor (BCF) and Mean Levels of Arsenic, Molybdenum and Antimony in 
plant shoots, roots and soils on the former gold mine (mg kg-1) 

 Plant Species As Mo  Sb 
   Shoots Roots Soil TF BCF Shoots Roots Soil TF BCF Shoots Roots Soil TF BCF 
Alfalfa Medicago 

sativa 
0 3 18 0 0 8 27 31 .45 2.42 0 0 11 0 0 

White birch Betula 
papyrifera 

1 5 24 .18 .03 4 16 73 .53 .39 0 3 13 0 0 

Birdsfoot 
trefoil 

Lotus 
corniculatus 

0 10 25 0 0 37 76 52 .35 .86 0 0 15 0 0 

Goldrod Solidago 
canadensis 

0 13 41 0 0 1 25 186 .49 .08 0 7 30 0 0 

Horsetail Equisetum 
spp 

0 0 58 0 0 9 0 78 0 .11 0 0 43 0 0 

Pearly 
everlasting 

Anaphalis 
margaritacea  

0 0 60 0 0 12 10 239 1.33 .12 0 0 48 0 0 

Trembling 
aspen 

Populus 
tremuloides 

0 1 27 .37 .10 1 6 93 .31 .22 0 1 18 0 0 

Sweet clover Melilotus 
officinalis 

0 2 35 0 .01 33 21 89 1.97 1.32 0 0 24 0 0 

Tamarack Larix laricina 3 0 30 0 .23 2 0 72 0 .09 0 0 13 0 0 
White spruce Picea glauca 1 3 36 .38 .08 2 18 90 .33 .05 0 2 24 0 0 
Wild 
strawberry 

Fragaria 
vesca 

0 0 30 0 0 0 0 77 0 0 0 0 14 0 0 

Willow Salix spp. 0 9 34 .15 .02 1 24 115 .09 .05 0 4 23 0 0 
Yarrow Achillea 

millefolium 
 0 0  52  0 0  9 10 204 1.20 .04  0  0 43  0  0 

  

https://www.google.ca/search?espv=2&biw=1366&bih=643&q=anaphalis+margaritacea&stick=H4sIAAAAAAAAAGOovnz8BQMDQwgHnxCnfq6-gXmlhVG8EheIaVQUnxJfpGWZnWyln5SZn5OfXqmfX5SemJdZnBufnJNYXJyZlpmcWJKZn2eVk1-eWqSAKlgcsTR5JxOLpEqEj2JiRsCu-bG3r8wEABJXSJpxAAAA&sa=X&ei=52SPU9_3MYbK8wG-m4CoAQ&ved=0CKEBEJsTKAIwFw
https://www.google.ca/search?espv=2&biw=1366&bih=643&q=anaphalis+margaritacea&stick=H4sIAAAAAAAAAGOovnz8BQMDQwgHnxCnfq6-gXmlhVG8EheIaVQUnxJfpGWZnWyln5SZn5OfXqmfX5SemJdZnBufnJNYXJyZlpmcWJKZn2eVk1-eWqSAKlgcsTR5JxOLpEqEj2JiRsCu-bG3r8wEABJXSJpxAAAA&sa=X&ei=52SPU9_3MYbK8wG-m4CoAQ&ved=0CKEBEJsTKAIwFw
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3.5.3. Soil characteristics of topsoil/woodbark treatments 

 Soil samples were analyzed for metal contents, bulk density and pH.  The 

summary of the soil metal concentrations is shown in Table 3-3. pH values were 

neutral. These soils are not considered saline or sodic and had low conductivity.  All of 

the metals fall within the normal range for soils according to the Canadian Soil Quality 

Guidelines for industrial soils. As the quantity of woodbark increased in the topsoil 

treatments,  there was a significant increase (P < 0.05) in % moisture, C/N ratio, and 

organic matter, significantly.  Otherwise the addition of the woodbark diluted the other 

metal components of the topsoil with Pb and Sn having a statistically significant 

decrease (P < 0.05).  There was also a significant decrease (P < 0.05) in pH, and bulk 

density as the level of woodbark added to the topsoil increased.  
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Table 3-3 Total concentration of metals, % moisture, conductivity, C/N ratio, loss on ignition and bulk density of the topsoil and 
woodbark treatments on the former gold mine*.  

 75% Topsoil 25% 
Woodbark 

88% Topsoil 12% 
Woodbark 

94% Topsoil 6% 
Woodbark 

100% Topsoil 0% 
Woodbark 

  Mean Standard 
Deviation 

Mean Standard 
Deviation 

Mean Standard 
Deviation 

Mean Standard 
Deviation 

% Moisture 20.29a 2.22 16.73b 1.39 15.76b .68 14.24b 1.18 

Conductivity 
(us/cm)  

118.8a 37.5 137.2a 34.9 157.0a 18.3 156.4a 27.7 

Bulk Density 
(g/cm3) 

.59a .05 .71b .07 .75b,c .02 .80c .02 

Aluminum 
(%) 

0.78a 0.06 0.90a 0.09 0.83a 0.026 0.91a 1.2 

Arsenic 3.21a 2.19 4.07a 1.61 4.17a 2.71 2.64a 4.20 
Barium 137.05a 49.42 119.84a 37.76 126.67a 24.87 111.90a 17.86 
Beryllium .21a .02 .22a .03 .21a .01 .22a .02 
Calcium (%) 0.50a 0.11 0.50a 0.098 0.54a 0.10 0.44a 0.078 
Cadmium .28a .16 .19a .18 .23a .21 .07a .15 
Cobalt 8.17a 2.98 8.95a 1.40 8.43a 1.28 8.61a 1.16 
Chromium 15.88a 1.86 17.19a .95 16.72a .56 18.06a 2.26 

Copper 11.87a .59 12.47a .94 12.58a .50 13.27a 1.50 
Iron (%) 1.28a 0.15 1.45a 0.11 1.37a 0.082 1.52a 0.19 
Potassium 
(%) 

0.12a 0.025 0.14a 0.034 0.13a 0.017 0.15a 0.069 
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Table 3-3 Total concentration of metals, % moisture, conductivity, C/N ratio, loss on ignition and bulk density of the topsoil and 
woodbark treatments on the former gold mine*.  Continued 

 75% Topsoil 25% 
Woodbark 

88% Topsoil 12% 
Woodbark 

94% Topsoil 6% 
Woodbark 

100% Topsoil 0% 
Woodbark 

 Mean Standard 
Deviation 

Mean Standard 
Deviation 

Mean Standard 
Deviation 

Mean Standard 
Deviation 

Magnesium 
(%) 

0.66a 0.052 0.74a 0.061 0.72a 0.032 0.77a 0.15 

Manganese 242.75a 47.99 279.33a 44.17 284.63a 61.02 351.27a 161.05 

Sodium 217.96a 42.42 226.74a 53.82 244.34a 61.52 244.79a 36.13 
Nickel 11.55a 1.31 12.81a 1.21 12.17a 1.25 13.11a 1.22 
Phosphorus 315.46a 12.84 338.30a 16.32 342.23a 26.99 352.84a 44.01 

Lead 3.12a .93 3.62a,b .77 4.27a,b 1.10 5.20b 1.42 
Sulphur 571.61a 160.91 740.38a 229.67 612.23a 90.87 583.17a 228.49 
Silicon 146.85a 41.90 143.71a 33.05 168.82a 25.96 171.39a 15.57 
Tin .00a 0.00 11.91b 7.13 18.29b 2.72 15.65b 9.09 
Strontium 12.90a 2.01 12.19a 2.13 12.71a 1.63 10.82a 1.53 
Titanium 841.53a 124.00 945.85a 80.95 856.50a 46.45 954.16a 165.78 
Vanadium 26.67a 3.24 30.14a 2.35 27.93a 1.77 32.09a 5.87 
Zinc 32.47a 3.49 30.13a 2.15 28.62a 1.59 28.50a 3.04 
Loss on 
Ignition 

9.6a 2.1 5.7b 1.7 4.8b .6 4.1b 1.0 

C/N Ratio 23.26 a 2.43 16.82 b 2.75 15.07 b 1.57 14.39 b 0.84 

*Total concentrations of metals  without units are expressed in units of mg kg-1.  Units for other parameters as shown. Values  within 
rows with the same letters (a,b,c) are not significantly different at P < 0.05. 
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3.5.4. Tree survival and early growth of tree planting trial 

 Averaged across all the treatments, the survival for the trees can be seen in  

Figure 3-5 Table 3-4, with the majority of trees having higher than 70% survival except 

for the spring planted willows with a survival of 42%.  Spring planted ninebark had 

100% survival.  Fall planted dogwood and ninebark, as well as spring planted white 

spruce and trembling aspen all had a survival of 92%.  Presence of Pisolithus tinctorius 

significantly aided the survival of Picea glauca and it had a significant negative impact 

on Cornus  sericea.  No significant impact of the fungus was seen on the other plant 

species.  Survival significantly increased with the addition of some woodbark in 

comparison with the treatment that was 100% topsoil but tended to show a decline in 

survival at the higher proportion of woodbark to topsoil especially in the Salix spp. 

Table 3-4  Survival (%) of trees grown in year three at four levels (0, 6. 12. 25%) of 
woodbark added to topsoil, planting in either fall or spring and planted with or 
without Pisolithus tinctorius 

Plant Species Cornus  
sericea  

 Populus 
tremuloides  

Physocarpus 
opulifolius  

Picea 
glauca  

Salix sp.  Treatment 
Mean 

Woodbark 
(%) 

0 66.7 83.3 83.3 58.3 41.7 66.7x 

6 91.7 100.0 91.7 100.0 66.7 90.0y 

12 91.7 83.3 100.0 100.0 66.7 88.3y 

25 83.3 83.3 100.0 100.0 58.3 85.0y 
Timing Fall 87.5 79.2 87.5 87.5 83.3 85.0x 

Sprin
g 79.2 95.8 100.0 91.7 33.3 80.0x 

Pisolithus 
tinctorius  

no  91.7 91.7 95.8 87.5 58.3 85.0x 
yes 75.0 83.3 91.7 91.7 58.3 80.0x 

Species mean 83.3a 87.5a 93.8a 89.6a 58.3b 82.5 

Values  within rows with the same letters (a,b) are not significantly different at P < 0.05. For each 
treatment, values within columns with the same letters (x, y) are not significantly different at P < 0.05. 
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Figure 3-5 Mean survival of Cornus  sericea, Physocarpus opulifolius, Populus 
tremuloides, Picea glauca, and Salix sp. at fall or spring planting times. Values with 
the same letters (x, y) are not significantly different at P < 0.05. 
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Table 3-5 Height (cm) of trees grown in year three at four levels (0, 6. 12. 25%) of 
woodbark added to topsoil, planting in either fall or spring and planted with or 
without Pisolithus tinctorius 

Plant Species Cornus  
sericea  

 Populus 
tremuloides  

Physocarpus 
opulifolius  

Picea 
glauca  

Salix sp.  Treatment 
Mean 

Woodbark 
(%) 

0 36 84 62 16 29 46x 

6 
36 109 59 28 42 55x 

12 39 74 66 26 45 50x 

25 
32 86 68 28 32 49x 

Timing Fall 44 96 53 24 54 54x 

Spring 28 80 74 25 20 45y 

Pisolithus 
tinctorius  

no  42 89 66 24 38 52x 

yes 30 87 61 24 36 48x 

Species mean 36a 88b 64c 24d 37a 50 

Values  within rows with the same letters (a,b,c,d) are not significantly different at P < 0.05. For each 
treatment, values within columns with the same letters (x, y) are not significantly different at P < 0.05. 

 
 In general the addition of the mychorrizal fungus, Pisolithus tinctorius, did not 

show a benefit to any of the height of the trees (F= 0.248, P=0.604) (Table 3-5) or 

chlorophyll content (F= 1.398, P=0.240) (Table 3-6).  There was no visual evidence of 

the fungus around the tree roots where it was inoculated.  Time of planting did have a 

significant impact on height (F= 14.031, P<0.050) and chlorophyll content ((F= 6.631, 

P<0.050) of the trees  with Cornus  sericea, Populus tremuloides, and Salix sp showing a 

greater height and decreased chlorophyll content with fall planting and Physocarpus 

opulifolius had a higher height and lower chlorophyll content in the spring.  No impact 

of planting time was seen on Picea glauca.  The different combinations of topsoil and 

woodbark showed no significant impact on tree growth (F=0.845, P=0.604) or 

chlorophyll content (F= 1.248, P=0.261). 
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Table 3-6 Chlorophyll Content (mg m-2) of trees grown in year three at four levels (0, 
6. 12. 25%) of woodbark added to topsoil, planting in either fall or spring and planted 
with or without Pisolithus tinctorius 

Plant 
Species 

  Cornus  
sericea  

 Populus 
tremuloides  

Physocarpus 
opulifolius  

Picea 
glauca  

Salix sp.  Treatment 
Mean 

Woodbark 0 395 415 421 245 362 376x 

6 495 364 489 201 465 395x 

12 356 406 549 214 428 388x 

25 415 474 442 259 499 408x 

Time of 
Planting 

Fall 416 342 411 210 427 361x 

Spring 418 471 535 246 488 426y 

Pisolithus 
tinctorius 

no 388 432 465 223 512 398x 

yes 452 391 490 233 377 387x 

Species Mean 417a 413a 477b 228c 445d 392 

Values  within rows with the same letters (a,b,c,d) are not significantly different at P < 0.05. For each 
treatment, values within columns with the same letters (x, y,z) are not significantly different at P < 
0.05. 

  

 Health ratings of the trees (Table 3-7) showed a significant impact with time of 

planting (F= 6.007, P<0.05), and woodbark content (F= 2.640, P<0.05) but no significant 

impact of the Pisolithus tinctorius (F= 0.619, P=0.649). Fall planted trees for all species 

except Physocarpus opulifolius and Picea glauca had a better visual appearance. Picea 

glauca showed no difference between fall and spring planting while Physocarpus 

opulifolius had a better appearance with spring planting. All tree species showed a 

visual benefit with the addition of some woodbark to the topsoil in comparison with 

the control. No evidence of mammal browsing was noted in the plots, but there was 

much evidence of insect damage evident by galls and eaten leaves which was also 

common in trees surrounding the mine.  
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Table 3-7 Health rating of trees grown in year three at four levels (0, 6. 12. 25%) of 
woodbark added to topsoil, planting in either fall or spring and planted with or 
without Pisolithus tinctorius 

Plant 
Species 

  Cornus  
sericea  

 Populus 
tremuloides  

Physocarpus 
opulifolius  

Picea 
glauca  

Salix sp.  Treatment 
Mean 

Woodbark 0 2 3 3 1 1 2x 

6 3 3 3 3 2 3y 

12 3 2 4 3 2 3y 

25 2 3 4 4 2 3y 

Time of 
Planting 

Fall 3 3 3 3 3 3x 

Spring 2 2 4 3 1 2y 

Pisolithus 
tinctorius 

no 3 3 4 3 2 3y 

yes 2 3 3 3 2 3y 

Species Mean 3a 3a 4b 3a 2c 3 

Values  within rows with the same letters (a,b,c,d) are not significantly different at P < 0.05. For each 
treatment, values within columns with the same letters (x, y) are not significantly different at P < 0.05. 

  

 A natural reseeding of vegetation on the experimental area occurred during the 

course of this project with a wide variety of species growing in an uniform manner over 

the entire plot.  These plants do not appear to be inhibiting the growth of the planted 

trees. The ground cover of the naturally regenerating plants growing on the 

topsoil/woodbark treatments varied significantly (F= 5.668, P<0.05) as seen in Figure 

3-6.  
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Figure 3-6 The amount of natural ground cover regenerating on four levels of 
woodbark (0, 6, 12, 25%) mixed in topsoil. 

3.6. Discussion 

3.6.1. Characteristics of the existing soil on the former Golden 
Giant Mine  

 Soil characteristics on the former Golden Giant property present a challenge for 

replanting the site to emulate the surrounding area.  These anthropogenic soils are not 

developed and layered with natural processes as in the boreal forest but are man-

made, created through mining processes which can vary depending on technology 

available and ore type and quality. Poor soil nutrition can contribute to the lack of soil 

stability, poor soil exploration by roots, nutrient cycling, and degraded soil ecosystems 

(Mummey et al., 2001; Ma et al., 2003; Wong et al., 2003; Freitas et al., 2004).  The 

availability of As in the soil matrix is dependent on several factors including Fe/P, salts, 

pH, clay content, and soil moisture (Vega et al., 2006, and Moreno-Jimenez et al., 
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2012).  Lower pH increases the availability of As in the soil, while the pressence of Fe/P, 

organic matter and clay can decrease the availability. Mo interactions with the soil 

matrix rely on pH, the presence of reducing and complexing agents, and soil moisture 

(Vega et al., 2006).  Wet soil increases the availability of Mo (Kubota et al., 1963). Sb 

has low solubility rates and low mobility in the soil due to low pH, and the presence of 

Cd and Zn interfering in uptake(Hammel et al., 2000). For soils with elevated 

concentrations of metals such as As, Mo and Sb, toxicity could impede the growth of 

the plants, except for the phytoremediation candidates.  However the presence of 

these metals does not mean that they are in a bioavailable form, readily toxic to plants.  

Other factors such as soil microbes, temperature, metal speciation, and nutrient status 

will impact the way that plants respond to the mine soil.  The pH at this site (Table 3-3) 

is within the range that provides maximum nutrient availability (Harris et al., 1996).  

Mo becomes more phytoavailable as the pH increases with the highest availability 

between pH 7.8-8 which could be influencing the amount of Mo in the plants at this 

site (Gupta and Lipsett, 1982). As seen in Table 3-3, the levels of P, K, and Ca are all 

higher than typical agricultural soils in Ontario so more fertilizer is not recommended 

to improve the fertility of the soil for plant growth (Reid, 2006).    Soil N was not 

measured as it is soluble in water and highly mobile in the soil. Further testing on plant 

tissue N would help with understanding the nutrient levels of N at this location. With 

the ample soil content of essential macronutirents, symptoms seen in some of the 

plant species on the mine site is due to elevated metal concentrations or other soil 

characteristics. 
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3.6.2. Metal concentration in plants collected on the former 
Golden Giant Mine 

 Some topsoil areas of the mine showed elevated levels of metals, others 

showed low levels and all areas with poor soil conditions so the identification of an 

array of healthy looking native phytostabilizing plants is key to establishing vegetation. 

According to Schwitzguebel et al. (2009), plants act as "green livers" to clean the 

environment, remediate damage caused by industrial practices and to prevent further 

degradation of the soil and water.  Thirteen species in this study were analyzed for 

metal content in the aboveground and belowground tissue (Table 3-2).  The plants 

evaluated were common to the site and collected from a completely resurfaced area 

during mine construction. While there were higher than above recommended levels of 

the As and Sb in the soil, none of the plants showed high levels of these metals in their 

aboveground plant tissues. Sb did not register any measured amounts in the shoots but 

accumulated up to 7 mg Sb kg-1 in the roots of Solidago canadensis.  Solidago 

canadensis also accumulated the highest content of As in the roots with a level of 13 

mg As kg-1.  Species growing in the highest levels of As were also going in the highest 

levels of Sb with no recorded accumulation in the roots or their shoots are Equisetum 

spp, Anaphalis margaritacea and Achillea millefolium. 

 Molybenum seems to be the most phytoavailable metal in these soils (Table 

3-2). Of concern are the levels of Mo in Lotus corniculatus , Meliolotus officinalis, 

Medicago sativa, Anaphalis margaritacea and Achillea millefolium as they are higher 

than the 5 mg kg-1 recommended for ruminant feeding and could have negative impact 

on the health of the grazing wildlife in the region (Blakley, 2013).  Even though there 
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were elevated metal concentrations, only the Meliolotus officinalis and Medicago 

sativa showed a BCF above 1 so concentration of Mo in the aboveground plant tissue 

was higher than the level of Mo found in the soil.    

 Compared to other regions, the former Golden Giant Mine exhibits lower levels 

of As, Mo and Sb in the soil (Chapter 2).  It is believed that the concentration of As and 

Sb in the soil are independent of the As and Sb concentrations in the plants (Qi et al., 

2011; Zandsalmi et al., 2011; Madejon et al., 2002; Bech et al., 1997; de Koe, 1994).  

According to Meharg and Hartley-Whitaker (2002), arsenates can substitute for 

phosphates in plant metabolism.  This impacts the plant ability to create ATP and carry 

out normal metabolism (Finnegan and Chen, 2012). Craw et al. (2007) states that 

typically Sb content of plants is one thousandth of the As content.  Mo behaves in a 

different manner as it is considered the least required element for plant growth (Kaiser 

et al., 2005). Mo bioavailability to plants is somewhat related to the solubility of the 

chemical species of Mo but soil characteristics also influence the uptake (McGrath et 

al., 2010).  Soil testing alone cannot predict the growth habits of the plant species on a 

contaminated site and individual plant species react to these elements with various 

processes for exclusion.  

3.6.3. Soil characteristics of topsoil/woodbark treatments 

 In general, results showed that the application of woodbark with the top soil did 

not increase the metals in the topsoil (Table 3-3).   Quality of the woodbark is variable 

depending on the source and the age of the bark and can have a high C/N ratio which 

binds the available N and prevents availability for plant growth. Well aged and 
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decomposed woodbark have organic contaminants that disappear but trace metals 

could remain (Gomez, 1998).  Lead and tin significantly decreased with increased 

addition of woodbark.   Replaced topsoil is better for establishment and as a growth 

medium for trees due to physical and chemical properties compared to mined rock 

from the mine (Schoenholtz et al., 1992; Larson et al., 1995; Kost et al., 1998; 

Casselman, 2006). Grant and Koch (2007) found that replacing the topsoil was the most 

important step in providing a functional habitat that mimics the surrounding area. With 

the addition of the woodbark in the topsoil treatments, the organic matter increased 

(Table 3-3).  The level was over double in the 25% woodbark/75% topsoil treatment as 

it was in the 100% topsoil. As stated by Hudson (1994), as the organic matter increases 

by 1-6%, so does the available water capacity up to 25%.  For mineral soil, the addition 

of organic matter will enable a better establishment of the planted trees and a higher 

ability to handle stress.  Soil organic matter also decreases the mobility and 

bioavailability of elements by sorption, chelation and sequestration but their impacts 

are transient and highly variable (Impellitteri and Allen, 2007).  Soils that increase 

water holding capacity and nutrient availability improve success of the trees planted on 

the site (Casselman, 2006). An increase in 1% of organic matter can also increase the 

nutrient content in the soil, providing a fertilizer source for plants, such as 11208 kg C 

ha-1,1120 kg N ha-1, 112 kg P ha-1, 112 kg K ha-1 and 112 kg S ha-1 (Hoorman, 2010). For 

periods of hot dry weather such as in the summer months, this increased moisture 

holding capacity could aid in the water available to the trees and maintain a more even 

growth pattern. With no evidence of metal concentrations of an excessive nature in the 
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soil in the area of the topsoil treatments (Table 3-3), no sampling of the plant tissues 

was done to determine metal content and their phytostabilization potential. 

3.6.4. Tree survival  and early growth of tree planting trial 

 Early success seems to be the key to establishment of trees on a reclaimed 

mine. Survival was above 60% for all of the tree species and treatments except for the 

willow especially those planted in the spring and in the highest level of woodbark 

(Figure 12 and Table 3-4).  Pisolithus tinctorius is beneficial to use with Picea glauca but 

seemed to have either no impact or a negative effect on height in the four other 

species in this experiment (Table 3-5). Ectomycorrhizal fungi depend strongly on soil 

nutrition and can have a negative growth effect depending on the nutrient status of 

other saprophitic microbes (Koide and Kabir, 2001). Nursery grown plugs of Picea 

glauca are slower growing in comparison to the surrounding bush (Stiell, 1976). No 

trees were lost following the first year of growth.  Younger seedlings are more 

susceptible to stresses of soil conditions compared to trees of 10 months (Ma et al., 

2003).  

 Competition from other volunteer herbs caused a dense cover in treatments 

when lower amounts of woodbark was added to the topsoil (Figure 3-6).  Helmisaari et 

al. (2007) found that mulching enhanced the growth of native trees such as Pinus 

sylvestris, Betula sp., and Salix sp. but it also increased the population volunteering 

herbs.  Mulches such as the woodbark can contribute to fertility and moisture 

retention of the soil, bind the metals in the organic matter matrix and provide a cover 

to prevent establishment of blown in seed of volunteer plant species. No effects of the 
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woodbark can be seen on the growth of the trees but other studies showing 

differences in height on mulched vs unmulched sites were analysed after a minimum 

ten year period of growth (Angel et al., 2006; Helmisaari et al., 2007).   

3.6.5. Potential Management Practices 

 A number of actions can be taken to replant these mines and this variety could 

be the key to the success of the revegetation.  The species planted and colonized on 

the experimental sites should mimic the native vegetation surrounding the mine and 

provide diversity for wildlife habitat and forage, as well as seed bank establishment.  As 

there was excellent survival and growth of the various species planted in this 

experiment, different timings in planting could spread out the labour needs and could 

also spread the risk of drought, flooding, frost and other hard growing conditions. The 

species of trees used could also be changed depending on supply and cost as long as 

the species chosen are found in the area.  If mulch is costly and in limited supply, the 

woodbark could be restricted to the area around each planted tree to allow for 

fertilization and prevention of competition while allowing other areas to be vegetated 

by blown in seed from the areas surrounding the mine.  These plants would be 

acclimated to the climate and have a potential tolerance for possible elevated metal 

contents of the mine soil. 

 Further areas to investigate include alternate species of plants and fungi. 

Potential future research should investigate more local trees and shrubs, especially 

white birch, Betula papryfiera.  As we sourced the Pisolithus tinctorius from a 

commercial source in United States, conceivably it would be better to cultivate a strain 
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from a northern location, with a closer climatic condition to this mine.  Also, as this was 

a short term investigation, this site could be revisited in the future to see if the 

continued success changes with time.   

3.7. Conclusion 

 
 Native metallophyte communities growing on metal contaminated soils are a 

beneficial resource for creating strategies for phytotechnologies (such as 

phytostabilization or phytoextraction) and determining a process for replanting the 

former Golden Giant Mine.  The soils on the existing mine site have a neutral pH with 

higher amounts of As, Mo and Sb.  While the plants species growing on the site are not 

extracting appreciable amounts of As or Sb, several species including Lotus 

corniculatus, Meliolotus officinalis , Medicago sativa, Anaphalis margaritacea, and 

Achillea millefolium are removing Mo from the soil. 

 The results of my planting experiment show impacts of the timing of planting, 

the effect of adding Pisolithus tinctorius and the results of adding woodbark.  

Conclusions that can be drawn from this experiment is that: 

 Timing of planting is less important to tree survival and early growth. This could 

provide more opportunities to spread out the timeline for scheduling 

replanting. 

 Pisolithus tinctorius assists the survival of Picea glauca but not the deciduous 

species.  As Picea glauca is a slower growing species compared to the others 

tested, assistance for survival and early growth should improve long term 

success. 
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 Woodbark acts as a mulch to prevent competition from volunteer plant species 

and could assist in the continued success of the trees planted through moisture 

availability, increased organic matter and improved bulk density. 

 Successful reforestation of a closed mine relies on understanding soil 

conditions, ameliorating identified soil concerns and planting trees in the least stressful 

manner. Plantings for mine closure should include a mix of deciduous and coniferous 

tree species with different timings of plantings as well as a the minimal addition of a 

source of locally found organic matter.  Benefits of this type of plan include a spread of 

the workload, increase planting success, lessen impacts from weather conditions 

(drought, frost and excess rainfall), increase stress tolerance, and diversify plant life for 

wildlife habitat and esthetics. Plantings could also be done as seeding, cuttings or 

seedlings so as to decrease plant costs as well as labour costs of planting and 

maintenance. 
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4. A greenhouse experiment to determine the growth and 
phytostabilization potential of agronomic plant species 
used for remediation 

 

4.1. Abstract 

Phytostabilization species that moderate the release of heavy metals into the 

surrounding environment while having excellent plant growth creates great planting 

options for mine reclamation. A controlled greenhouse study was performed to 

investigate plant growth and the uptake of As, Sb and Mo by plant species commonly 

used in replanting open soils of roadsides and mines in Ontario.  Playground sand was 

used as a growth medium to simulate the mine mined rock soils with 0, 0.1, 0.2, 0.4, 

0.8 and 1.6 g L-1  of As, Mo and Sb, separately.  Five species were grown in the 

experiment: white birch (Betula papryrifera), red clover (Trifolium pratense), white 

clover (Trifolium repens), alfalfa (Medicago sativa), and creeping red fescue (Festuca 

Rubra). Parameters measured were root and shoot length, root and shoot weight, leaf 

area, chlorophyll content, and metal content.  As was excluded from all the plant 

species at most concentrations with a low translocation factor into the shoots.  Mo 

showed a higher translocation factor in the legumes and red fescue and should be 

monitored for impacts to the ecosystem.  Plant species can uptake Sb at the higher 

levels tested.  White birches showed the least impact from the metal content of the soil 

on all growth parameters for all the metals tested and accumulated the least metals in 

their aboveground growth. 
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4.2. Keywords 

plant uptake, mine tailings, ground cover, metals, arsenic, molybdenum, antimony 

4.3. Introduction 

 Plants used to replant a closed mine can impact the ecosystem in the area for 

many years.  Ideal species candidates should be low cost and focused on both long 

term and short term impacts to the soil and wildlife in the region (Bradshaw, 1997).  

Areas need to be planted to prevent air and water erosion, to improve soil conditions 

by increasing organic matter and increase the available N, for wildlife habitat and 

beautification purposes (Wong, 2003). In the past few years, many of the plants for 

reclamation purposes, stabilization and green cover have been agronomic species 

(Tordoff,, 2000). While these species can be used for nitrogen fixation, and are 

inexpensive and readily available, they can require irrigation, harvesting, fertilizing and 

reduce colonizing success of native plant populations (CLRA, 2015).  Also herbaceous 

species can prevent other tree species from naturally regenerating in the area planted 

and compete with other species such as hand planted trees or naturally regenerating 

native species especially when there were large disturbances to the ecosystem 

(Wagner, 2000; Haeussler et al., 2004). Native species are already adapted to the area 

and to provide wildlife habitat and nutrition. These species are adapted to the climate 

but can be harder to source as seeds or cuttings in addition to being costly compared to 

the agronomic plants (personal communication, Derek Rodgers, Pickseed Canada 

2015). 

 Phytoremediation approaches to the treatment of mine soils can be classified as 

phytostabilization and phytoextraction. Classification is based on the metal content of 
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the plant tissue and the soil. Translocation factor (TF) and bioconcentration factor (BCF) 

are calculated using the total metal concentrations (dry weight) in the aboveground 

biomass, belowground biomass and the soil.  TF is the metal in the aboveground 

biomass/metal in the root biomass while the BCF is the metal in the aboveground 

tissue/the metal content of the soil.  Phytostabilization species are classified as having 

a BCF and TF less than 1 (Mendez and Maier, 2008). A TF value higher than 1 is 

considered an accumulator of metals (Deng et al., 2004; Juarez-Santillan et al., 2010), 

while a hyperaccumulator is a plant with a TF value above 10 (Ashraf, 2011). BCF is the 

representation of the metal accumulation efficiency and can show the bioaccumulation 

of the metal in the food chain.  If the value of BCF is higher than 1, the plant can be 

classified as a phytoextraction species (Zhang et al., 2002; Santillan et al., 2010; Dowdy 

and McKone, 1997). 

 For a plant species to be successful at phytostabilization, the root systems 

should be able to restrict and contain a high amount of available metals and prevent 

their movement into the aboveground tissues of the plant and into the surrounding 

soil.  They should also be an actively growing, perennial, have a vast root system and 

tolerant to climate stresses.  Much of their  success of bioremediation depends on 

several factors including bioavailabilty of metals via pH levels and soil organic matter 

content. (Towers and Paterson, 1997; McBride et al., 1997). 

 Naturalized agronomic species have many benefits for the degraded soils and 

could have potential for phytostabilization.  Legume species such as Trifolium pratense, 

Trifolium repens, and Medicago sativa, have nitrogen fixing properties, and extensive 
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rooting habits to prevent erosion and increase soil stability. Legumes have the ability to 

withstand a variety of drought and high moisture conditions, and provide a palatable 

feed for wildlife.  Perennial grass species such as Festuca Rubra, is considered a soil 

stabilizer that can handle most soil types and has a dense fibrous rooting system.  Also 

tolerant to a range of pH and salinity in soils, this long lasting perennial grass performs 

better in soils with adequate moisture, especially in the spring. 

 Native species are well adapted to the climate and conditions in these closed 

mine areas. Paperbark white birch, Betula papryrifera, is frequently found as the main 

tree species in many early succession forests and on closed mines in Northern Ontario.  

B. papyrifera is a perennial which tends to grow in areas of full sun and plentiful 

moisture, prefers highly drained soil, can withstand a variety of pH conditions and 

grows rapidly (Jones and Hutchenson, 1986; Safford, 1990).  Their roots fan out in a 

shallow dense mat with the majority of the roots in the top 60 cm of the soil; no deep 

or taproot formation is evident (Safford, 1990).  Seedlings of white birch are known to 

be more tolerant to concentrations of other metals such as Zn and Cu and the effect 

increases with the pressence of mycorrhizas (Denny and Wilkins, 1987; Colpaert and 

Van Assche, 1993; Utraianen et al., 1997). 

 Some problem metals in closed northwestern Ontario mines include, As, Mo 

and Sb. There are naturally occurring in the ore deposits in Northwestern Ontario.  As 

they are not readily mobile in the soil via water, much of their spread occurs through 

erosion, uptake by plant species and movement of the soil mechanically. In Chapter 1, I 

investigated potential phytostabilization plant species found on three mining areas.  All 
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plant species had a large variation in metal content of the plant tissues in comparison 

with their soil metal content. Betula papryrifera accumulated up to 27 mg As kg-1 in 

soils containing 14031 mg As kg-1, while Schizachne purpurascens, a grass species, had 

180 mg As kg-1 in soils with 1869 mg As kg-1. The leguminous species of Medicago 

sativa, Trifolium repens and Melilotus albus found on the mines accumulate 15 to 191 

mg Mo kg-1 in soils containing 78 to 406 mg Mo kg-1 .  None of the species found 

naturally on mine soils accumulate an appreciable amount of Sb in soils containing 11 

to 3819 mg Sb kg-1. 

 Remediation of mine soils with elevated metal content could be performed 

using phytoremediation species. There is little research on commonly used plant 

species for replanting to determine their type of phytoremediation. Species chosen for 

this investigation are commonly found or planted on closed or abandoned mines.  

4.3.1. Objectives and Hypothesis 

The objectives of this research was i) to evaluate plant growth of Betula papryrifera, 

Festuca Rubra, Trifolium pratense, Trifolium repens, and Medicago sativa in sand spiked 

with As, Mo or Sb at low to moderate levels. and ii) to evaluate the metal content of 

the roots and aboveground portions of these plants as well as classify their 

performance as phytostabilization or phytoextraction species. Each of these species 

should be excellent candidates for phytostabilization. 
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4.4. Materials and Methods  

4.4.1. Greenhouse Study 

 A randomized complete block design greenhouse experiment was performed 

with 6 treatments and 5 replications for As, Mo and Sb using five species: Betula 

papryrifera , Trifolium pratense, Trifolium repens, Medicago sativa,  and Festuca Rubra .  

Seeds for Betula papryrifera  originated in Timmins, ON as provided from Dr Han Chen 

(Lakehead University Natural Resources Department) and grown for transplanting as 

seedlings into the contaminated soils.  Seeds for the Trifolium pratense, Trifolium 

repens, and Medicago sativa (Thunder Bay Coop and Farm Supplies) and Festuca Rubra 

var. rubra  seed (Boles Feeds, Thunder Bay, Ontario) were germination tested and 

showed above 95% viability.  Seedlings of white birch and seeds of the other four 

species were planted in 1L polypropylene containers containing 500 mL of Quikrete 

playsand. Pots were not perforated to prevent loss of added nutrients and metals. 

Fertilization was added as McCown Woody plant medium from Sigma Aldrich at  1.5 g 

L-1.  Sodium arsenate heptahydrate (Na2HAsO4 · 7H2O) was used as the As source while 

ammonium molybdate ((NH4)2MoO4) was the Mo species and antimony potassium 

tartrate (C8H4K2O12Sb2) was the Sb species. Metals were added at 0, 0.1, 0.2, 0.4, 0.8 

and 1.6 g L-1 . Plants were watered as needed when less than 1 cm of water was seen in 

the bottom of the pot using distilled and deionized water to maintain an even water 

supply. Distilled and deionized water was used to reduce the influence of metals in the 

typical urban water supply.  There was no further fertilizer added over the growth 

period.  The pots were grown in greenhouse conditions from July to August for 32 days 

where temperature ranged from 15 C night to 30 C day, air humidity was 50 to 75% and 
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the light/dark cycle was 16h/8h.  After 32 days, pots were photographed for leaf area, 

plants were removed from the pot, and aboveground biomass was separated from 

belowground biomass to be weighed after air drying at room temperature of 20oC.  Soil 

from each pot was also collected for metal analysis after being thoroughly mixed. 

4.4.2. Measurements 

 Lengths of roots and shoots of the potted plants in the greenhouse were 

recorded at the end of the trial.  Chlorophyll content can be a sign of a plants response 

to environmental conditions (Walters 2005). Chlorophyll was recorded on a weekly 

basis for the white birch and at the end of the trial for the other four species using a 

CCM-300 Chlorophyll Content Meter (Gitelson et al., 1999).  Leaf area was calculated 

for each experimental pot using Assess 2.0. Dry weight of each pots root and shoot 

biomass were recorded.  Since there was limited biomass produced, plants were 

combined for each treatment for total metal analysis. 

4.4.3. Analysis of Soil and Plant Samples 

 Analyses were done at the Lakehead University Environmental Laboratory 

(LUEL) according to the LUEL (2012) Quality Assurance/Quality Control (QA/QC) 

protocols. A blank sample was run at the beginning of each tested parameter, then a 

QA/QC sample, and followed by a repeat of the next sample.  This was repeated for 

every ten field samples. 

 After separation into shoots and roots, plant samples were dried in a drying 

oven at 100oC  and homogenized to pass through a 2 mm mesh prior to analysis for Sb, 

As and Mo. Initial analyses indicated that a larger weight of plant sample than normally 
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used (0.25 g) was required to reach the detection limit of the analytical method. 

However, this required the bulking of the shoot and roots for the plants in each 

treatment. A 0.5  g aliquot of plant tissue were allowed to predigest in teflon express 

microwave digestion tubes overnight in a 3:1 ratio of concentrated HNO3:HCL acids. 

The samples were then digested in a MARS 5 microwave digestion oven for 45 minutes 

at 175o C. Samples were removed and diluted to 25 ml with distilled deionized water 

(DDW) and concentrations  of Sb, As, and Mo were determined by the VarianPro 

Inductively Coupled Argon Plasma Spectrometer (ICP-OES).  Replicate, QC , and lab 

blank samples were measured during each batch of samples.  

4.4.4. Statistical Analysis 

 All statistical analysis was performed using SPSS 22 package for Windows. First 

the data was explored to determine its distribution and variance.  Since the distribution 

was normal and there was a homogeneity of variances, no further transformation was 

performed.  Next, all variables were analyzed using ANOVA. LSD was performed as a 

post hoc test.  Significance was set at p<0.05.  Translocation factor (TF) and 

bioaccumulation factor (BCF) were calculated for each plant species at each metal 

concentration level in the soil.  TF is the metal content in the aboveground biomass to 

the metal content in the root biomass.  BCF is the metal concentration in the 

aboveground biomass to the metal content in the soil. 
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4.5. Results 

4.5.1. Plant Growth 

 During the growth period, there were no visual leaf symptoms in any of the 

plant species for any of the metals tested (Figure 4-2, Figure 4-3, and Figure 4-4).  Each 

of the plant species looked consistantly healthy. Table 4-1, Table 4-2, and Table 4-3 

show the growth parameters of the plants including heights and weights of the roots 

and shoots of each of the plants.  The healthy looking plants among treatments can be 

seen in Figure 4-2, Figure 4-3, and Figure 4-4 where the plants in the control are hard to 

differentiate from the highest level of metal added. 

 As showed some minor growth reduction to some species studied (Table 4-1). 

White birch and red fescue had no significant differences between the levels of As 

concentrations.  Both alfalfa  and white clover showed a significant decline in their 

growth parameters as the concentration of As increased, except for root weight in 

alfalfa and chlorophyll content in white clover.  As had a significant impact on the roots 

of red clover with a reduction in length and weight as the concentration increased. 

There was an increase in root weight with a small addition of As but the highest 

concentration of As has similar root characteristics as the control. 

 Mo impacted all the plant species in a similar manner (Table 4-2).  White clover 

had the most growth parameters with a significant decrease except for chlorophyll 

content. Alfalfa, and red clover showed higher plant growth at lower concentrations of 

Mo but were not significantly different from the control values.  For the alfalfa only the 

root length had a significant decrease as the Mo increased.   White birches showed 

very little significant difference in growth among the Mo concentrations but for the 
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increase in leaf area at middle concentrations of Mo.  Red fescue grew significantly 

taller and greener as the concentration of Mo increased. 

 Small amounts of Sb aided plant growth but started to show some decrease in 

growth characteristics as the highest concentration(Table 4-3).  In white birches, Sb 

made no significant difference in growth except for the weight of the roots decreased 

as the Sb concentration increased.  Alfalfa, red clover and white clover acted in a 

similar manner to the Mo as well with a significant increase in growth at lower 

concentrations of S. Controls for the legumes were not significantly different from the
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Table 4-1 Growth characteristics of alfalfa, white birch, red clover, red fescue and white clover exposed to 6 levels of As  

Species 
  Concentration (mg L-1) 

Control As 10 mg L-1 As 20 mg L-1 As 40 mg L-1 As 80 mg L-1 As 160 mg L-1 
alfalfa *Shoot Weight (g) .1874a,b .2706a,b .1628a,b .3714a .2188a,b .0366b 

Root Weight(g) .664  1.154  .684  .991  .956  .349  
*Shoot Length (cm) 4.9a,b 5.1a,b 5.0a,b 5.6a 4.7b 4.2b,c 
*Root Length (cm) 12a,b 13a 12a,b 10b 10b,c 10a,b 
*Chlorophyll 
Content (mg m2) 

379a 341a,b 366a,b 270b 301a,b 386a 

*% Leaf Area 5.89a,b 8.98a,b 6.01a,b 11.85a 6.93a,b 3.12b 
white birch Shoot Weight (g) .4994  .7374  .7964  .5360  .6280  .4674  

Root Weight(g) 1.071  .858  .748  .912  .567  .325  
Shoot Length (cm) 4.7  7.2  6.2  4.5  7.2  8.4  
Root Length (cm) 9  8  8  8  7  5  
Chlorophyll 
Content (mg m2) 

289  292  325  342  252  304  

% Leaf Area 3.28  4.21  3.68  3.25  3.21  3.05  
red clover Shoot Weight (g) .1746  .1238  .1706  .1454  .0986  .1050  

*Root Weight(g) .187a,b .450a .281a,b .178a,b .025b .211a,b 
Shoot Length (cm) 3.8  4.1  4.0  4.0  3.3  3.7  
*Root Length (cm) 7a,b 8a 8a 6b 6b,c 7a,b 
Chlorophyll 
Content (mg m2) 

285  272  260  316  357  319  

% Leaf Area 3.74  3.47  4.01  3.42  1.24 1.35 
red fescue Shoot Weight (g) .0842  .0776  .0878  .0772  .0860  .0866  

Root Weight(g) .301  .753  .874  1.047  .977  1.132  
Shoot Length (cm) 8.7  10.2  11.4  11.8  10.4  10.3  
Root Length (cm) 8  9  7  7  7  9  
Chlorophyll 
Content (mg m2) 

316  259  299  365  327  372  

% Leaf Area 2.13a 2.85a 3.92a 3.27a 4.25a 3.76a 
white clover *Shoot Weight (g) .0594a,b .0736a,b .0638a,b .1278a .0472b .0172b,c 

*Root Weight(g) .504a .135b .194a,b .487a,b .181a,b .231a,b 
*Shoot Length (cm) 3.0a,b 3.0a,b,c 3.3a 3.3a 2.6b,c 2.3c 
*Root Length (cm) 9a 6b,e 8a,c 8c 7b,c,d 6e 
Chlorophyll 
Content (mg m2) 

316  259  299  365  327  372  

*% Leaf Area 3.32a,b 3.21a,b 4.36a 4.30a 1.24b 1.79a,b 
 * Values  within rows with the same letters (a,b,c,d,e) are not significantly different at P < 0.05. 
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Table 4-2 Growth characteristics of alfalfa, white birch, red clover, red fescue and white clover exposed to 6 levels of Mo 

Species  Concentration (mg/L) 
  Control Mo 10 mg L-1 Mo 20 mg L-1 Mo 40 mg L-1 Mo 80 mg L-1 Mo 160 mg L-1 

alfalfa Shoot Weight (g) .13  .09  .035  .06  .19  .19  
Root Weight(g) .41  .28  .16  .17  .45  .45  
Shoot Length (cm) 4.02  4.02  3.04  3.68  4.08  3.49  
*Root Length (cm) 13.74a,b,c 16.57a 15.88a 15.51a,b 11.15b,c 10.65c 
Chlorophyll Content (mg 
m2) 

408  423  378  352  370  350  

% Leaf Area 5.09  4.73  2.53  3.13  8.55  7.62  
white birch Shoot Weight (g) .68  .57  .76  .64  .76  .55  

Root Weight(g) .58  .66  .62  .98  .82  .70  
Shoot Length (cm) 9.99  9.72  9.37  9.72  11.64  7.68  
Root Length (cm) 14.77  15.13  15.30  12.58  12.90  14.35  
Chlorophyll Content (mg 
m2) 

316  359  375  341  404  362  

*% Leaf Area 8.99a,b 17.88a 13.10a,b 12.94a,b 10.38a,b 7.36b 
red clover *Shoot Weight (g) .17a,b .23a .17a,b .077b .15a,b .18a,b 

Root Weight(g) .43  .56  .44  .29  .46  .48  
Shoot Length (cm) 3.84  3.81  3.67  3.24  3.80  3.80  
Root Length (cm) 10.27  12.54  11.54  11.21  10.61  10.25  
Chlorophyll Content (mg 
m2) 

383  307  389  330  281  351  

*% Leaf Area 5.96a,b 9.39a 5.87a,b 4.12b 5.61a,b 7.00a,b 
red fescue Shoot Weight (g) .084  .050  .047  .057  .043  .059  

Root Weight(g) .30  .041  .050  .051  .057  .11  
*Shoot Length (cm) 8.66a 9.93a,b 10.02a,b 12.66b 10.62a,b 12.13b,c 
Root Length (cm) 7.75  8.17  8.54  8.24  10.23  9.19  
*Chlorophyll Content 
(mg m2) 

372a 502a,b 581b 661b,c 584b,d 633b,e 

% Leaf Area 2.13  3.06  3.02  3.83  2.49  3.61  
white clover *Shoot Weight (g) .17a .15a,b .053a,b .035b .10a,b .094a,b 

*Root Weight(g) .42a,b .75a .18b .14b,c .39a,b .35a,b 
*Shoot Length (cm) 3.63a 2.785a,b 2.77a,b 2.10b 2.65b,c 2.30b,d 
*Root Length (cm) 9.87a,c 10.26a 9.63a,c 6.97b 9.47a,c 8.26b,c 
Chlorophyll Content (mg 
m2) 

245  248  241  252  257  191  

% Leaf Area 4.49  4.54  2.57  2.00  3.90  4.19  
* Values  within rows with the same letters (a,b,c,d,e) are not significantly different at P < 0.05. 
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highest concentrations.  Red fescue  had significantly greener leaves and longer roots 

with the addition of some Sb. 

4.3.2. Metal Content of Plants 

 Figure 4-1 displays the heights and metal content of the roots and shoots.   As 

the soil concentrations of As, Mo and Sb increases, visual examination of the plants do 

not translate in the metal concentration of the plant tissues.  

 Low concentrations of As were found in the roots and shoots of the five plant 

species (Table 4-4).  Many of the species had a consistent level of As at all 

concentrations tested. For all plants, the amount of As found in the shoots ranged from 

0.85 mg As kg-1 to 3.91 mg As kg-1.  The roots contained 1.49 mg As kg-1 to 7.47 mg As 

kg-1.  No pattern was seen in levels in comparison to the As content of the soil.  White 

clover did not have enough biomass for a sample at the 160 mg As L-1 concentration. 

 The effect of Mo was similar for each plant species (Table 4-5).  As the 

concentration of Mo increased in the soil, it increased in the roots as well as the shoots.  

But the concentration of Mo found in the aboveground portions of the plants differs 

considering the species.  At the highest concentrations the white clover had 70.26 mg 

Mo kg-1 in the shoots at 80 mg Mo L-1 and not enough biomass available for a sample at 

the 160 mg Mo L-1.  The next highest levels was found in red fescue 30.83 mg Mo kg-1 in 

the shoots.  Least was found in white birch at 15.6 mg Mo kg-1. Alfalfa shoots contained 

24.13 mg Mo kg-1 and red clover shoots contained 17.84 mg Mo kg-1. 

 Sb did not start registering in the plant tissues until a concentration in the soil of 

40 mg Sb L-1 (Table 4-6).  No Sb was detected in the roots or shoots of the red fescue 
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plants. White birches started showing 0.45 mg Sb kg-1 in the roots at the 40 mg Sb L-1 

soil concentration, alfalfa showed 0.46  mg Sb kg-1 in the roots. At the 80 mg Sb L-1 soil 

concentration, red clover registered 0.65 mg Sb kg-1 in the shoots and 0.64 mg Sb kg-1 in 

the roots.  White clover had  Sb in the roots 0.68 mg Sb kg-1 and in the shoots 1.5 mg Sb 

kg-1 at the soil concentration of 80 mg Sb L-1.  There was not enough biomass for a 

sample at the 160 mg Sb L-1 for red clover, red fescue and white clover.  

Table 4-3 Growth characteristics of alfalfa, white birch, red clover, red fescue and 

white clover exposed to 6 levels of Sb 

 Species Concentration (mg/L) 
Control Sb 10 mg L-1 Sb 20 mg L-1 Sb 40 mg L-1 Sb 80 mg L-1 Sb 160 mg L-1 

alfalfa *Shoot Weight (g) .065a .32b .21a,b .19a,b .40b .22a,b 
*Root Weight(g) .36a 1.09b .65a,b .51a .91a,b .44246a 
Shoot Length 
(cm) 

3.52  4.87  3.64  3.30  4.53  4.35  

*Root Length 
(cm) 

13.87a,b 15.66a 14.97a,b 9.56b 13.85a,b 12.50a,b 

Chlorophyll 
Content (mg m2) 

246  298  295  231  319  273  

% Leaf Area 5.08  11.37  8.16  8.17  10.14  7.67  
white 
birch 

Shoot Weight (g) .55  .56  0.61 .46  .53  .44  
Root Weight(g) .71  .61  .66  .48  .54  .40  
Shoot Length 
(cm) 

10.99  11.41  9.83  8.99  9.68  9.30  

Root Length (cm) 10.27  14.48  14.07  11.43  12.16  11.01  
Chlorophyll 
Content (mg m2) 

420  366  430  360  413  384  

% Leaf Area 26.62  36.63  24.43  28.67  27.90  23.42  
red 
clover 

Shoot Weight (g) .16  .064  .17  .27  .38  .068  
*Root Weight(g) .27a,b .54a .53a .44a,b .45a,b .11b 
Shoot Length 
(cm) 

4.16  4.23  3.44  3.46  3.40  2.66  

Root Length (cm) 11.57  11.73  12.04  10.29  9.76  9.20  
Chlorophyll 
Content (mg m2) 

257  205  241  239  224  244  

% Leaf Area 4.38  8.68  6.70  8.54  9.56  1.70  
red 
fescue 

Shoot Weight (g) .084  .038  .024  .201  .036  .022  
Root Weight(g) 0.3 .19  .12  .11  .076  .16  
Shoot Length 
(cm) 

8.66  10.12  9.44  9.42  10.72  10.28  

*Root Length 
(cm) 

7.75a 12.15b 12.12b 9.98a,b 10.73a,b 12.20b 

*Chlorophyll 
Content (mg m2) 

372a 615b 590b 583b 612b 538a,b 

% Leaf Area 2.13  1.84  1.08  1.11  .81  .96  
white 
clover 

*Shoot Weight (g) .054a .21b .21b .13a,b .072a .082a,b 
*Root Weight(g) .11a .47a .45a .49a .34a .23a 
*Shoot Length 
(cm) 

2.54a 3.95b 3.23a,b 3.31a,b 2.65a 2.84a 
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*Root Length 
(cm) 

8.08a 10.44b 10.60b 10.48b 9.79b 10.10b 

*Chlorophyll 
Content (mg m2) 

276a 191a,b 128b 138b,c 153a,b 145a,b 

% Leaf Area 1.51  4.54  4.53  5.16  4.57  3.73  

* Values  within rows with the same letters (a,b,c) are not significantly different at P < 0.05. 
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4.5.2. Bioaccumulation 

 None of the five plant species is in the hyperaccumulator range with a TF above 

10.    White clover plants are in the hypertolerant range (TF values 1 to 10)  at the 

higher As soil concentration levels with TF values of 1.15 and 2.03.   All of the other 

plants in the As treatments were tolerant with a TF below 1 or excluders with a TF 

below 0.1 (Table 4-4). Plants in the Mo treatments are considered hypertolerant with 

TF between 1 and 10 with the exception of white birch which can be classified as 

tolerant with TF falling below 1 (Table 4-5).  In the Sb treatments, red fescue was an 

excluder with no registerable TF. Alfalfa, white birch, and red clover are considered 

tolerant of Sb and white clover is Sb hypertolerant (Table 4-6).  None of these plant 

species bioconcentrated the metals in the aboveground plant from the soil, with the 

highest BCF value of 0.84 in white clover. 
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Table 4-4 As concentration (mg kg -1) and translocation factor (TF) in alfalfa, white 
birch, red clover, red fescue and white clover at 6 different treatments of As 

Species Variable Control As 10 
mg L-1 

As 20 
mg L-1 

As 40 
mg L-1 

As 80 
mg L-1 

As 160 
mg L-1 

alfalfa Root As 2.55 2.71 2.09 3.01 2.74 2.69 
 Shoot As 1.13 0.91 0.85 1.28 1.30 2.00 
 TF 0.44 0.34 0.41 0.43 0.47 0.74 

white 
birch 

Root As 1.56 1.87 1.98 1.69 2.74 2.80 

 Shoot As  0.93   1.68 2.61 
 TF  0.50   0.61 0.93 

red clover Root As 2.55 7.47 2.80 3.69 4.63 2.58 
 Shoot As 0.84 0.93 1.61 1.42  1.43 
 TF 0.33 0.12 0.58 0.38  0.55 

red fescue Root As 6.99 4.00 5.33 3.15 5.30 6.38 
 Shoot As 3.50 2.77 3.04 3.34 2.94 3.91 
 TF 0.50 0.69 0.57 1.06 0.55 0.61 

white 
clover 

Root As 1.49 2.04 2.37 1.97 1.87 2.52 

 Shoot As 2.10 1.53 2.07 2.28 3.80  
 TF 1.41 0.75 0.87 1.16 2.03  
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Table 4-5 Mo concentration (mg kg -1) and translocation factor (TF)  in alfalfa, white 
birch, red clover, red fescue and white clover at 6 different treatments of Mo 

species Variable Control Mo 10 
mg L-1 

Mo 20 
mg L-1 

Mo 40 
mg L-1 

Mo 80 
mg L-1 

Mo 160 
mg L-1 

alfalfa Root Mo 1.03 1.61 2.1 3.34 7.34 12.01 
 Shoot Mo 1.56 3.73 8.26 7.97 14.58 24.13 
 TF 1.51 2.32 3.93 2.39 1.99 2.01 

white 
birch 

Root Mo 0.95 1.82 3.18 4.22 10.85 17.22 

 Shoot Mo 1.56 3.67 4.29 5.63 4.77 15.6 
 TF 1.64 2.02 1.35 1.33 0.44 0.91 

red clover Root Mo 1.43 2.18 2.39 4.56 7.4 12.61 
 Shoot Mo 3.99 6.83 8.00 15.71 17.89 17.84 
 TF 2.79 3.13 3.35 3.45 2.42 1.41 

red fescue Root Mo   4.51 7.01 8.03 15.55 
 Shoot Mo  7.42 8.13 12.92 18.45 30.83 
 TF   1.80 1.84 2.30 1.98 

white 
clover 

Root Mo 1.33 1.71 5.57 7.75 15.52 29.08 

 Shoot Mo 6.04 8.42 12.89 24.35 29.77 70.26 
 TF 4.543 4.92 2.31 3.14 1.92 2.42 

4.6. Discussion 

4.6.1. Plant Growth 

 With low As, Mo and Sb soil contamination, each of the species grown had good 

growth characteristics and are candidates for reclamation with very little visual 

differences seen in this experiment (Figure 4-2, Figure 4-3, and Figure 4-4).  

Classification of these plants as a certain type of phytoremediation candidates by sight 

is difficult due to no visual symptoms of toxicity, so plant tissue analysis must be done 

to determine type of phytoremediation classification. Each of these species does 

appear to maintain a continuous green cover but further testing is needed to ensure no 

metal uptake from the soil (Mendez and Maier, 2008). Chlorophyll data supports the 

idea that the plants have a high tolerance at various levels of As, Mo and Sb.  Plant 

growth might be inhibited by the soil properties in this sand growth medium rather 
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than the metal content of the soil (Friezl et al., 2003). Sb stress can be seen with the 

lower chlorophyll content of the leaves (Table 4-3)(Craw et al., 2007).  White clover can 

tolerate these soils with As, Mo and Sb but has a smaller growth habit and may be less 

desirable as a candidate species for phytostabilization in comparison to the other 

legumes, red clover and alfalfa.  Plants with a fibrous root system such as white birch or 

red fescue could help with preventing erosion while tap rooted systems of legumes like 

clovers and alfalfa could be used to add nutrients to the degraded soils through 

nitrogen-fixation (Alexander, 2000). 

4.6.2. Metal Content of Plants 

 Although a species could be classified as a good reclamation species, it is the 

metal content of the plant that classify as a certain type of phytoremediation.  Each of 

the species grown in this experiment performed well in all the concentrations of As, Mo 

and Sb so all could be used for phytoremediation (Table 4-1, Table 4-2, and Table 4-3). 

Red fescue, alfalfa, and white clover were consistent in the uptake of As in both the 

roots and the shoots at all As concentrations tested (Table 4-4).  The type of root 

system does not translate to the amount of metal can be removed from the soil.  There 

is  variation in both fibrous roots systems such as red fescue and the tap rooted 

systems of the legumes (Alexander, 2000). While the red fescue in this study had the 

highest As root and shoot concentrations compared to the four other species tested, 

Antosiewicz et al. (2008) found that another grass species, Calamagrostis arundinaca, 

removed 40% of the As in the soil.  Craw et al. (2007) determined that 1/1000 of Sb/As 

relationship occured in plant metal uptake, although poor soil nutrition has a greater 
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impact on the potential for accumulation as the metals can replace the less available P.  

In this experiment, Sb was only found at the higher concentrations tested (Table 4-6).  

Sb uptake in shoots of plants typically leveled out at 2.2 mg kg -1 so our results fall in 

line with Hammel et al. (2000). Mo content in the plant tissues in all species increased 

as the concentration of Mo in the soil increases across all five species investigated 

(Table 4-5).   

Table 4-6 Sb concentration (mg kg -1 ) and translocation factor (TF)  in alfalfa, white 
birch, red clover, red fescue and white clover at 6 different treatments of Sb 

Species Variable Control Sb 10 
mg L-1 

Sb 20 
mg L-1 

Sb 40 
mg L-1 

Sb 80 
mg L-1 

Sb 160 
mg L-1 

alfalfa Root Sb     0.46 0.90 
 Shoot Sb      0.74 
 TF      0.82 

        

white 
birch 

Root Sb    0.45 0.64 2.09 

 Shoot Sb     0.33 1.10 
 TF     0.52 0.53 

        

red clover Root Sb     0.65  
 Shoot Sb     0.64  
 TF     0.98  

        

red fescue Root Sb       

 Shoot Sb       

 TF       

        

white 
clover 

Root Sb      0.68 

 Shoot Sb      1.50 
 TF      2.21 
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Figure 4-1 Heights (cm) and Metal Content (mg kg -1) of Shoots and Roots of As, Mo and Sb 
at all soil/metal concentrations in the pot study.  ANOVA results for heights can be seen in 
Tables 1-3.  No ANOVA was performed for metal content. 
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4.6.3. Bioaccumulation 

 Although bioaccumulated metals are not necessarily lethal, they can produce 

sublethal impacts on the region (Luoma and Rainbow, 2005). This study (Table 4-4) 

tends to show an increase in the TF as the soil concentration of As increased for some 

species tested, but some of the species did have TF values that went up and down. 

Species in the family Fabaceae, which includes alfalfa, white clover and red clover, have 

been known accumulators of As and it concentrates in the edible portions of the plant 

(Ramirez-Andreotta et a,l 2013). Low amounts of As can actually stimulate growth but 

is not considered to be an essential element required for growth (Liebig et al., 1959; 

Lepp, 1981; Carbonell et al., 1998; Fitz and Wentzel, 2002). As does appear to have the 

ability to biomagnify in higher trophic levels (Huq et al., 2001; Barwick and Maher, 

2003). However, other cases do not seem to show this As magnification effect 

(Wagemann et al., 1978; Kubota et al., 2000). The TF values in the Mo experiment did 

Figure 4-2 Alfalfa grown with no added Sb (M) and with 160 mg Sb/L (R) 
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not show the same increase with soil concentration like the As samples (Table 4-5).  Mo 

is considered to have higher uptake in pea plants in comparison to other heavy metals 

of Pb, Cd and Ni but has the least toxic effects (Kevresan et al., 2001). As there were so 

few results detected from the Sb samples tested in this study, it is difficult to comment 

on the trend of TF values in relation to soil concentrations (Table 4-6). This could mean 

that the plants do not accumulate Sb or that the cells of the plant are being impacted 

by the Sb and preventing Sb accumulation.  Sb toxicty from plants is very rare even 

when grown in soil with elevated concentrations of the metal  (Tschan et al., 2009; 

Pratas et al., 2005).  He and Yang (1999) commented that the form of Sb should be 

considered over the total concentration in the soil;  antimony potassium tartrate used 

in this study is one of the forms of concern and would show a worst case scenario. 

4.6.4. Management Implications 

 Management decisions need to occur on a case by case basis with an analysis of 

the metals and plant species present. Testing of the soil and plants growing in the 

contaminated soils need to be done to create a plan for reclamation. Species that are 

known to accumulate toxic levels of these metals could be harvested and disposed in a 

safe manner or herbicides could be used to control their growth. Grazing done by 

ruminant species such as deer which prefer species such as small legumes and grasses 

can have Mo toxicity symptoms if ingested in quantities larger than 10 ppm but can be 

blocked with modest Cu supplementation on a 10 to 1 ratio Cu:Mo (Raisbeck et al. , 

2006).  Copper salt blocks could be distributed in areas that have the potential to 

impact the ruminants. Gymnosperms can show a high accumulation in their 
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aboveground plant tissues as such current preferred replanting species of conifers has 

the potential to accumulate large quantities of  As in comparison to angiosperm trees 

such as white birch (Bergqvist and Greger, 2012).   

  While this research investigated the impact of low levels of As, Mo, and Sb on 

Betula papryrifera, Trifolium pratense, Trifolium repens, Medicago sativa, and Festuca 

Rubra, there are other research questions that should be answered. Other plants 

commonly found in the reclamation seed mixes should be tested including other 

grasses to see if their growth habit is the same as Festuca Rubra.  

  

Figure 4-3 White birch trees grown in 6 concentrations of Molybdenum.  From left to 
right 0, 10, 20, 40, 80, 160 mg Mo/L 
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Figure 4-4 Red Fescue grown with no added As (left) and with 160 mg As/L (right) 

  

 Overall, each of these commonly used mine rehabilitation species has a 

tolerance for these metals at  low to medium levels of As, Mo and Sb. While each of 

these agronomic species can have phytostabilization potential, their impact on the 

long-term ecology of the region should be investigated. Investigation of these species 

with varying amounts of organic amendments, lower water requirements, and seeding 

rates could enhance the understanding of the plants under difference stress levels.  

Also the impact of other biotic characteristics could improve the ability of these plants 

to retain these metals, such as bacterial and fungal colonies in these soils. 
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4.7. Conclusions 

 All plants performed well and would be good candidates for phytostabilization.  

Evidence points to signs of stress at the highest concentrations such is seen in the As 

impact on white clover. As was excluded from most plants as each species tended to 

have a low translocation factor and little uptake into the aboveground portions by any 

species. Legumes uptake Mo even at very low levels as does red fescue as it is a 

required element.  It should be monitored for biomagnification impacts to the 

ecosystem.  White birch accumulated the least Mo.  Sb uptake can happen at levels of 

starting at 80 or 160 mg L-1  depending on the species planted.  The use of 

phytostabilization plants seems to be an ideal method to provide a stable plant cover 

for light metal contaminated areas. Higher concentrations of As, Mo and Sb should be 

used to see more visual effects and to provide the higher limits of their tolerance to 

these metals. Addition of organic matter and other amendments need to be evaluated 

to see if it buffers effects of elevated metal content soils.  Competition between metals 

can also impact plant growth, metabolism and uptake so these results may not 

translate into actual processes in field conditions with different types of soils. 
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5. Conclusions and Recommendations 

5.1. Conclusions 

 With the increasing concerns on the environmental impacts of mining, mine 

closure should incorporate phytoremediation into their plans, particularly 

phytostabilization.  Phytostabilization plant species are a resource in mine closure and 

reclamation of mine soils with high metal contents.  Their effects will depend on the 

type of metal contamination and the metal's solubility and mobility within the 

environment.  For elements such as As, Mo and Sb which are immobile within soils, 

phytostabilization is an option for containing the metals within a known contaminated 

location. A summary of findings can be found in Table 5-1. 

 The first study in chapter 2 investigated three closed mines in Northwestern 

Ontario for native plant species with phytostabilization potential for As, Mo and Sb in 

soils with different contamination levels.  Plant species found naturally growing on the 

mine were tabulated and tested for their metal content in the above and belowground 

portions of the plant. Several species showed good phytostabilization potential for one 

or more metal contaminants including white birch Betula papyrifea, willow Salix 

spp., trembling aspen Populus tremuloides, goldenrod Solidago canadensis, pearly 

everlasting Anapahlis margaritacea and tamarack Larix laricina. The most common tree 

found on these sites was white birch Betula papyrifea which was sometimes growing 

symbiotically with the fungus, Pisolithus tinctorius, a known metal accumulator at 

Steeprock Mine.  None of the species could be classified as hyperaccumulators of As, 

Mo and Sb. 
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 Chapter 3 examined the plants growing at Barrick Hemlo and their 

phytostabilization potential.  The current soils and plants growing on the mine location 

were collected and analysed for metal content.  A field trial was planted  in spring and 

fall with 5 species of trees/shrubs (Populus tremuloides, Salix sp., Picea glauca, 

Physocarpus opulifolius, and Cornus  sericea), in four different topsoil/woodbark 

treatments and in the presence of a mychorrhizal fungus, Pisolithus tinctorius.   Some 

of the plant species had concerning amounts of Mo in their leaf and stem tissues, while 

the majority of plant species did not accumulate excess metals in their aboveground 

tissues.  The addition of woodbark improve some soil qualities including bulk density, 

organic matter and diluted some of the metals as well as had a mulching effect to 

prevent  volunteer species.  Each of the species planted in the field trial had a rate of 

survival above 70% with the exception of Salix sp.  The addition of Pisolithus tinctorius 

did not seem to impact plant growth in the first few years of the trial.   

 A greenhouse study of five potential phytostabilization species of As, Mo and Sb 

was conducted for Chapter 4.  Betula papryrifera, Trifolium pratense, Trifolium repens, 

Medicago sativa, and Festuca Rubra  were grown in low concentrations of As, Mo and 

Sb and growth parameters and metal content were measured. Each of the elements 

was translocated into the plants but not hyperaccumulated.  White birches 

accumulated the least of these three metals. White clover was impacted the most by 

the metals. Mo could biomagnify in the legume species if the soil conditions are 

alkaline.  
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Table 5-1 A summary of findings in mine rehabilitation in boreal forest regions 

 Chapter 2 Chapter 3 Chapter 4 

Approach Exploration of plants 
and soils at three 
types  of closed mines 
to  investigate 
metallophillic species 

Examination of 
possible 
phytoremediation 
plants on a gold mine 
with a trial planting 
of 5 species with 
woodbark and 
mycorrhizal fungus 

Greenhouse 
experiment of 5 
species to 
investigate impacts 
of As, Mo and Sb 

Key findings  a variety of plants 
were the same at 
each type of mine 

 soil characteristics 
varied completely 

 potential 
phytostabilization 
candidates were 
identified 

 Pt Fungus assisted 
the growth of white 
pine 

 timing of planting is 
less important 

 woodbark acts as a 
mulch,organic 
matter source, 
nutrient source and 
dilutor of metals 

 little visual 
differences 
between the 
treatments 

 Plants can take up 
Sb at higher Sb soil 
concentrations 

 White clover was 
impacted the most 
compared to the 
other species 
tested 

Possible 
Phytostabilization 
candidates 

As, Mo and Sb - white 
birch, willow, 
trembling aspen, 
goldenrod, pearly 
everlasting, 
and tamarack 

As, Mo and Sb - 
tamarak and birch 

As, Mo and Sb - birch 

Possible 
Phytoextraction 
candidates 

Zn - Pearly everlasting 
and goldenrod 

Mo - Sweet clover, 
alfalfa 

Mo - red fescue, red 
clover, white clover 
and alfalfa 

Recommendations  soil conditions need 
some help prior to 
planting - pH, 
organic matter, 
drainage, 
compaction, etc 

 a variety of plants 
can be planted to 
create 
microclimates and 
support other life 

 minimal 
maintenance should 
be required after 
initial planting 

 addition of 6% 
woodbark helps 
with plant 
competition 

 planting can be 
spread to either 
spring or fall 

 Pt fungus could be 
used with white 
spruce but not the 
other species 

 

 test at higher 
concentrations of 
As, Mo and Sb to 
determine upper 
limits 

 addition of organic 
matter to the soil 
could aid in plant 
growth 
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5.2. Recommendations 

 Due to the variability of metal uptake and the plant response to metals, there is 

no one solution that can be implemented for phytoremediation purposes.  There  

needs to be flexible guidelines that coincide with a variety of soil conditions, native 

plant species, and end use possibilities.  Different metal speciation, pH, organic matter 

content and water holding capacity of the soil can change the way these metals are 

available via water, plants or soil movement.  Closure plans need to incorporate a 

combination of plant species, with a focus on succession species rather than the climax 

conifer species so as to mimic the natural ecosystems in the boreal forest.   

 Another part of this equation is to improve soil health.  The addition of 

woodbark improved the soil qualities of bulk density and organic matter while 

decreasing the competition of volunteer herbs.  Organic matter can also bind the 

available metals so as to decrease the toxic symptoms of the plants, while adding 

nutrients for plant growth.  Mining communities could create organic bark collection 

systems so as to accumulate a close supply of compost for closure activities.  These 

could include yard waste, wood ash, food waste and other common household wastes, 

but more research should be done to determine their success as a soil amendment. 

5.3. Future Research 

 Other mining operations should investigate plants growing on the elevated 

metal soils that occur due to mining processes.  With more plant species investigated, 

more metals can be investigated and less metals can bioaccumulate in the food chain 
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and watersheds. Further work needs to be done to understand the effects of multiple 

metal contaminations on plants and the impact of soil amendments to plant growth 

and uptake.  More commonly used plants for mine replanting should also be tested to 

determine their style of phytoremediation: phytoextraction or phytostabilization.   

 Another area of investigation would be to look at the microbial community 

associated with these plants. Microbes, including bacteria and fungi, are a crucial part 

of the soil ecosystem providing transformation of the redox states, chemical structure, 

solubility and bioavailability of metals.  They also interact with plants in the rhizosphere 

to adsorb metals, increase water availability, increase nutrient absorption, and improve 

soil structure.  These communities should be explored so as to improve bioremediation 

processes and identify potential species for use in bioremediation. 
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7. Appendix: Google Maps of the Mine Sites 
 

 
Figure 7-1 Barrick Hemlo 

 

 
Figure 7-2Steep Rock Mine 

 



151 
 

 

Figure 7-3 Winston Lake Mine 

 

Figure 7-4 Premier - Empire Lake Mine Area 
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Figure 7-5 Premier - Leitch Mine 
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8. Appendix: Pictures of Transects in Chapter 2 

 
Figure 8-1 Transect WL1 

 
Figure 8-2 Transect WL2 

 
Figure 8-3 Transect WL3 

 
Figure 8-4 Transect S1 

 
Figure 8-5 Transect S2 

 
Figure 8-6 Transect S3 

 
Figure 8-7 Transect S4 
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Figure 8-8 Transect S5 

 
Figure 8-9 Transect S6 

 
Figure 8-10 Transect P1 

 
Figure 8-11 Transect P2 

 
Figure 8-12 Transect P3 

 

Figure 8-13 Transect P4 
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Figure 8-14 Transect P5 
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9. Appendix: Progressive Pictures of the Trees Planted for 
Chapter 3 

 

9-1 Prior to Planting at Barrick Hemlo, ON Summer of 2013 

 

9-2 Cuttings planted at Barrick Hemlo, ON September 2013 



157 
 

 

9-3 Cuttings planted at Barrick Hemlo, ON June 2014 

 

9-4 Site planted with cuttings at Barrick Hemlo, ON September 2014 
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9-5 Cuttings planted at Barrick Hemlo, ON June 2015 

  

 

9-6 Cuttings planted at Barrick Hemlo, ON September 2015 
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10. Appendix:  Bioconcentration factor  
 

 
Figure 10-1 As in plant tissue and soil as a visual representation of the bioconcentration factor 

 
Figure 10-2 Mo in plant tissue and soil as a visual representation of bioconcentration factor 


