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Abstract 
Volatile organic compounds (VOCs) are one of the major concerns for indoor air quality. A new 

method for treating VOCs in the air is through an advance oxidation process (AOP) known as 

photocatalytic oxidation (PCO). This method uses Ultraviolet (UV) radiant power to activate the 

surface of a catalyst (e.g. Ti02). From the past experimental work that has been done, it can be 

concluded that PCO reactions follow the Langmuir-Hinshelwood (L-Fl) kinetic model. 

However, the complexity of the L-H kinetic model is difficult to simulate using existing 

Computation Fluid Dynamic (CFD) software. In this thesis, a new method for modeling the L-H 

surface reaction kinetics is proposed. The focus of this work is on the development of a novel 

approach to model the complex surface reaction rate expressions in order to define PCO reaction 

rates on the photocatalyst surfaces. 

A new approach is developed to adapt the overall experimental reaction rates, which are in terms 

of the total system volume. This adaptation will help in deriving the actual rate of reaction 

happening on the catalyst surface in terms of catalyst surface area. Two cases were studied in 

order to demonstrate how this new approach can be used to accurately model the complex 

reaction kinetics of PCO systems. In each case, an integrated CFD model was developed to 

accurately predict the rate of VOC decomposition based on the work conducted by Shiraishi et 

al., (2005b) and Brosillon et al., (2008). In the first case, the experimental kinetic model for 

formaldehyde decomposition was adapted in order to describe a surface reaction based on 

formaldehyde concentration on the catalyst surface using three different approaches. It was 

determined that a two part polynomial rate expression was the most accurate one, as it was able 

to account for the higher initial rate of reaction. However, the exponential model did give 

reasonable results as well. In the second case, the reaction rate model was able to predict the rate 

of decomposition for butyric acid in the air for a variety of initial concentrations and UV 

irradiance levels at the catalyst surface. The developed CFD model results also discredited the 

assumptions made in a number of published papers that UV irradiance levels are uniform across 



a catalyst surface. Finally, a simple case study was developed in order to demonstrate how the 

novel approach to reaction modeling could be used to predict PCO system performance treating 

air in a close system. In this case, the PCO system was capable of treating air contaminated with 

butyric acid, as well as quickly reducing the concentration below the odor threshold. 
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Chapter 1 - Introduction 
1.1 Introduction 

Volatile organic compounds (VOCs) are defined as any organic compound with a high vapor 

pressure at room temperature. This can include aldehydes, alkanes, aromatics, chlorinated 

organic compounds, acetyls, ketones, and ethers (Cooper & Alley, 2011). VOCs are listed as 

primary pollutants due to the fact that they are emitted from a wide range of sources and can 

have a major impact on indoor air quality (lAQ). 

VOCs are released from a variety of sources, such as building materials, pressed woods, paints, 

carpets, vinyl flooring, insulations, and adhesives, as well from household items, such as 

cleaning solvents, cosmetics, hair sprays, candles, tobacco smoke, and the human body (Cooper 

& Alley, 2011; Hodgson et al., 2002; Kagi et al., 2009). There have been a number of studies 

that tested the emission rates of various VOCs in different settings (Hodgson et al., 2002; Shin & 

Jo, 2012). Hodgson et al., (2002) looked at VOC emission rates from different building 

materials for new homes. They tested a wide range of wood products and found that plywood 

subfloors had the highest emission rates for VOCs of all the wood products tested. It was also 

found that softwood products have higher emission rates for VOCs (around 3 pg/m^- h) than 

hardwood products. Shin and Jo (2012) looked at VOC emission rates in new apartments at the 

preoccupancy stage in order to determine the overall emission rates for 40 common VOCs. They 

found that 7 VOCs had measurable emission rates, with toluene being the largest (138 pg/m"/h). 

The other VOCs (1-propanol, formaldehyde, and 2-butanone) all had emission rates below 20 

pg/m /h. Similar to Hodgson et al., (2002) they found that wood products (mainly wood panels) 

were the main source of VOC emissions within apartments. Other major sources of VOCs 

include vinyl and other flooring, wall coverings, adhesives, and paints. 

Overall, wood products appear to have the highest emission rates of VOCs within homes and 

office buildings compared to the other sources. This could be due to UV irradiation from 

sunlight reacting with the wood products to release VOCs, which was shown in a study by Kagi 

et al., (2009). Kagi et al., (2009) studied the effects of ozone and UV irradiation from sunlight 

on different building materials and found that wood flooring is a major source of VOC emissions 



for formaldehyde, acetaldehyde, cyclohexanone, and benzaldehyde which confirmed the results 

from Shin and Jo (2012). They also found that the wood flooring and the protective coating on 

the flooring were both sources of VOCs, which could be the reason the emission rates were 

much higher than other sources where the wood was not treated with a protective coating. 

For indoor air samples, individual VOC concentrations range from a few parts per billion (ppbv) 

to a few hundred ppbv with a total VOC concentration around Ipart per million (ppmv) 

(Queffeulou et al., 2010; Salonen et al., 2009). Even though these concentrations are very low 

they can build up to fairly high levels over time because today both homes and commercial 

buildings are being built to be as air tight as possible in order to be optimize their energy 

efficiency. This means that the contaminated air is re-circulated over and over again throughout 

the buildings, which results in a steady increase in contaminant levels. The main concern with 

VOCs is that they pose serious health problems. At elevated concentrations they can cause eye 

and skin irritation, and prolonged exposure to low concentrations can cause headaches, nausea, 

and respiratory problems (Sakamoto et al., 1999). VOCs are also the cause of many unpleasant 

odors in the air and are responsible for what has been labeled “sick building syndrome”. Kabir 

and Kim (2011) studied the emissions of VOCs from foods during different cooking methods to 

measure their odor intensities (OI). They found that toluene and acetaldehyde in some cases did 

exceed the OI ranges recommended by the World Health Organization (WHO). They also found 

that reduced sulfur compounds had the highest OIs followed by aldehydes and acidic 

compounds. Salonen et al.,(2009) studied 520 air samples from 176 office buildings to 

determine if there was a connection between elevated VOC levels and any adverse health effects. 

In 23 office buildings, elevated levels of formaldehyde were present, and in those 23 buildings 

reports of upper respiratory tract symptoms (a side effect of exposure to formaldehyde) were 

more frequent. Because the formaldehyde levels in the air were below the WHO recommended 

levels, the authors were not able to directly relate the respiratory symptoms with the presence of 

formaldehyde in the air, but the authors do suggest that it is most likely the prolonged exposure 

to the low levels of formaldehyde present in the air causing most of the “sick building” 

symptoms that the office workers are experiencing. 

Traditionally, VOCs are removed from the air by adsorption onto activate carbon using charcoal 

filter, scrubbing the gas using water, or by incineration (Cybulski & Moulijn, 2006; Zhong et al.. 



2010). Although these methods have been proven to be effective, they also pose their own 

problems. Both adsorption and scrubbing require secondary treatment processes to deal with the 

disposal of the charcoal and contaminated water since the VOCs are only transferred to another 

medium and not converted into inert chemicals (Lin et al., 2013). For incineration, the air is 

passed through a furnace where the VOCs are oxidized into various intermediate products before 

being converted into CO2 and H2O. However, in order to obtain complete combustion in the 

incinerator, it must run at a very high temperature for a sufficient residence time that is very 

energy intensive and can be expensive. Additionally, the incinerator requires precise 

temperature control for complete combustion that will vary based on the VOC being treated. If 

complete combustion is not achieved the produced by-products require further treatment (Cooper 

& Alley, 2011; Lin et al., 2013). Also, these treatment methods are not designed to operate 

effectively under the low contaminant concentrations that are present in indoor air sinee their 

main applications are for industrial processes, which contain higher VOC concentrations than 

those found in indoor air. As a result, they cannot easily be employed for home or commercial 

use. 

1.2 Advanced Oxidation Process (Photocatalytic Oxidation) 

A new method for treating VOCs in the air is photocatalytic oxidation (PCO). This method uses 

Ultraviolet (UV) light to activate a catalyst surface that reacts with water and oxygen molecules 

to produce highly reactive oxidizing radicals. These radicals will then oxidize the VOCs on the 

surface of the catalyst and convert them to carbon dioxide and water (Hodgson et al., 2007; 

Pichat, 2010; Zhao & Yang, 2003). The PCO process offers many advantages over traditional 

treatment methods. First, unlike scrubber columns or charcoal filters, the PCO process is 

ultimately able to break down the VOCs into carbon dioxide and water. Consequently, it does 

not require any secondary treatment processes. Second, the process takes place at room 

temperature and pressure, so it is much more energy efficient than incineration. Third, the 

titanium dioxide (Ti02) catalyst that is typically used for PCO systems also has the advantage of 

being safe to handle, so it will not pose additional health or safety risks. It is chemically inert 

(will not take part in the oxidation reaction) and will only become activated under UV exposure. 

Ti02 is also fairly inexpensive and the processes for coating the support material are very simple. 

Finally, the Ti02 catalyst also has a high photocatalytic efficiency and is able to oxidize a large 



range of VOCs, which has been shown in multiple studies (Alberici & Jardim, 1997; Destaillats 

et ah, 2012; Hodgson et ah, 2007; Obee & Brown, 1995). 

1.2.1 Surface Mechanism 

During the PCO process the VOCs undergo a series of mass transfer steps: (1) VOCs travel 

through the bulk air by convection, (2) VOCs diffuse through a water boundary layer to the 

surface of the catalyst, (3) VOCs adsorb onto the catalyst surface, (4) the VOCs undergo a 

surface reaction, (5) the reaction products desorb from the catalyst surface, (6) products diffuse 

back through the boundary layer, (7) products leave the PCO system with the bulk air 

(convection). The first water boundary layer is formed by water molecules in the air that bond to 

the catalyst surface (hydrogen bonds). Additional layers of water molecules will form by water 

molecules bonding together through hydrogen bonds. The thickness of the water boundary layer 

will depend on the relative humidity (RH) level of the air. 

Figure 1: Mass transfer steps of PCO system 

When the Ti02 photocatalyst is irradiated by UV light, valence electrons are excited to the point 

that they jump from the valence band to the conduction band leaving behind a hole in the valence 

band. 

Ti02 hy h'^' + e (1) 

This produces electron (e~) —hole (h^) pairs, where the holes (/?^) are now free to react with 

water molecules on the surface to form the highly reactive hydroxyl radicals.O//*. The electrons 



(e ) react with oxygen molecules that are present at the catalyst surface to produce superoxide 

radicals,0^. Both radicals are highly reactive and are able to oxidize a wide range of 

VOCs(Pichat, 2010). 

H2O OH~ + (2) 

h'^ + OH~ ^ OH* (3) 

O2 -\- e —>02 (4) 

VOC + O2 + OH* CO2 + H2O + Other Products (5) 

1.2.2 Catalyst Material 

Ti02 is the most commonly used photocatalyst because it has a very high photoactivity and is 

very stable (Mo et al., 2009). Mo et al., (2009b) compared the results from 12 different catalyst 

materials. The authors compared a pure Ti02 catalyst with Ti02 catalysts doped with different 

additives. Overall, the authors found that most additives did not improve the performance of the 

catalyst. The one exception was silicon dioxide, Si02, which did improve the performance of the 

catalyst slightly by increasing the surface area of the catalyst. 

How the catalyst is prepared and coated onto the support material affects the properties of the 

catalyst particles, most importantly the surface area of the catalyst. Shiraishi et al., (2009) used 

two thin film methods to coat the same Ti02 catalyst onto a glass tube. The first method 

converted amorphous Ti02 to anatase Ti02 through calcination at high temperatures, while the 

second method used slow drying of aqueous anatase Ti02 dispersion. They found that method 

one resulted in very smooth surface due to the Ti02 particles being much smaller than those 

resulted from the second method. The slow drying at a low temperature resulted in a very rough 

surface, which gave a much greater reacting surface area. For this reason the rate of 

formaldehyde decomposition was 53 times higher for method two than for method one. Again, it 

is shown that the size of the Ti02 particles plays a large role in the effectiveness of the catalyst 

by altering the surface area. 

There are other factors that should be considered when designing a new system. For example, the 

fouling on the surface of catalyst over time will be an issue. Some persistent VOCs may not 



completely decompose and produce intermediate products. These intermediate products can 

block the active sites on the catalyst surface, which is referred to fouling of the catalysts. 

Research has shown that the fouling of the catalyst by intermediates can be reversed by exposing 

the catalyst surface to air with a high humidity and high UV irradiation (Zhong et al., 2010). 

1.2.3 Reactor Configurations 

When designing a PCO reactor, the reactor should be able to handle a high volume throughput 

with a low pressure drop while maintaining sufficient contact between the photons, catalyst, and 

contaminants in order to oxidize the VOCs. There are 3 main types of reactors that show high 

VOC removal. Each type has advantages and challenges. First, the honeycomb monolith 

reactors, which have been studied for use in automobiles for controlling emission exhausts and in 

power plants for reducing NOx production (Cooper & Alley, 2011; Raupp et al., 2001). In this 

case, the catalyst is fixed on a monolith. Air passes through the holes and the UV lamps are 

mounted horizontally in front of the screens. This method has the potential to remove both VOC 

and particulate matter from the air depending on the support material (Raupp et al., 2001). 

However, the geometry of the catalyst support also makes it difficult to maintain a constant light 

intensity across the catalyst and this can cause shadowing on the surface, which will reduce the 

efficiency of the catalyst. This design could be used for applications in homes or commercial 

buildings where smaller air filters are already being used within the air systems. 

Figure 2: Monolith system (Raupp et al., 2001) 

The second is the fluidized-bed reactor which contains packing material (usually glass beads) 

that is coated with the catalyst (Zhao & Yang, 2003). This design can handle very high gas flow 

rates while maintaining a low pressure drop and improving contact between the catalyst and the 

contaminants due to the increased catalyst surface area. The UV lamp may be mounted either in 

the center or off-center of the reactor. Considering either installation, it can be difficult for the 

UV light to penetrate deeply into all of the fluid bed evenly (Zhao & Yang, 2003). The 



shadowing of UV light within this system reduces the overall performance dramatically. This 

setup would be best suited for applications where a very high flow rate of air must be treated and 

where either the VOCs might be corrosive to the monolith support mater or the PCO system 

cannot be fitted directly into the duct lines of the home or commercial building. 

Figure 3: Fluidized-bed reactor (Zhao & Yang, 2003) 

Finally, the annular reactors are made up of a glass cylinder with a UV lamp mounted in the 

center. In this case, the catalyst is coated onto the inside of the glass cylinder. This setup allows 

for an even light distribution across the catalyst surface and maintains a high flow rate with 

efficient contact between the catalyst and contaminants (Shie et ah, 2008). 
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Figure 4: Annular reactor (Keller et al., 2003) 

1.3 Reaction Kinetics 

In an experimental setup, it is not possible to measure the exact concentration of VOCs on the 

catalyst surface. So, for this reason, the VOC levels are being measured from the bulk of the 

system. This means that the rate expressions being derived from experimental data will be a 

combination of the reaction kinetics, mass transfer effects within the system. 



adsorption/desorption of VOCs from the catalyst surface, and diffusion effects of the VOCs 

through the boundary layer. 

1.3.1 Kinetic Models 

With indoor air VOC concentrations in the range of several ppbv to a few hundred ppbv, the 

reaction kinetics are going to be different that those determined for higher VOC concentrations, 

which have been tested in the labs (in the range of tens of hundreds of ppmv). All PCO studies 

have found that the reaction rate of VOCs at the catalyst surface does not follow simple first 

order kinetics, but they tend to follow some variation of the Langmuir-Hinshelwood (L-H) 

kinetic model where the kinetic rate constants, k\ is a combination of both the reaction rate 

constant, k, and the adsorption rate constant, /fads (Alberici & Jardim, 1997; Assadi et ak, 2012; 

Brosillon et ak, 2008; Deveau, et ak, 2007; Lopes, et ak, 2012). 

^ ^ 1^, J<a<is£vOSi_ 

'^+f^ads(^VOC 

Where r is the reaction rate 

k' is the kinetic rate constant 

Kads is the adsorption rate constant 

and Cyoc is the target VOC concentration in the system 

The L-H kinetic model can describe most phenomena happening on the surface of the catalyst, 

such as adsorption, surface reaction, and desorption. As a result, the L-H correlation is the most 

appropriate kinetic model to describe the kinetics of PCO reactions. Experimentally, it is not 

possible to accurately monitor what is happening at the catalyst surface. So, when developing 

the L-H kinetic models it is common practice to use the bulk concentration for the target VOC to 

describe the rate of reaction happening at the catalyst surface. Alberici and Jardim (1997) 

studied the degradation of 17 different VOCs using a PCO system and found that all 17 of the 

VOCs followed an L-H kinetic model. The 17 VOCs covered a wide range of organics that 

included alkanes, aromatics, chlorinated compounds, acetyls, alcohols, ketones, and ethers. This 

study, along with numerous studies on individual VOCs covers the wide range of VOCs found in 



indoor air and shows that the L-H kinetic model can be used to describe the decomposition of all 

VOCs during the PCO process. 

1.3.2 Effects of Operating Parameters 

There have been many experimental studies on PCO treatment of VOCs in air, which have 

looked at the effects of temperature (Obee & Brown, 1995; Shiraishi et ah, 2005a; Zhong et ak, 

2010), relative humidity (RH) (Pichat, 2010; Zhao & Yang, 2003), flow rate (Lee, et ah, 2012; 

Shiraishi et ah, 2005b), VOC concentration (Brosillon et ah, 2008; Hodgson et ak, 2007), and 

UV light intensity (Brosillon et ak, 2008; Queffeulou et ak, 2010; Shie et ak, 2008) on the 

degradation rates of various VOCs. 

1.3.2.1 Temperature 

When evaluating the effects of temperature on a PCO process, there are two phenomena that 

must be considered. First, the rate of reaction is related to temperature by the Arrhenius 

equation. As a result, the rate of reaction increases as the temperature of the catalyst is increased. 

The second factor that must be considered is the effect of temperature on the rate of 

adsorption/desorption, of the VOC onto the catalyst surface. When the surface temperature is 

increased there is a drop in the rate of adsorption/desorption, which was observed by Zhong et 

ak, (2010) and Obee and Brown (1995). It can be concluded that there is an optimal temperature 

range for each PCO system where a balance between reaction kinetics and adsorption effects is 

achieved. Shiraishi et ak,(2005a) looked at the effects of air temperature on the rate of 

formaldehyde decomposition for air temperatures between 45''C and 90^^C. They found that as 

they increased the air temperature beyond 45"C the removal efficiency decreased. The same 

trend was also recorded by Obee and Brown (1995). It may be concluded that PCO reactions do 

not favor high temperatures and the process should be carried out at room temperature. It also 

may imply that temperature has a greater effect on adsorption/desorption effects rather than the 

reaction kinetics. 

1.3.2.2 Relative Humidity (RH) 

Similar to temperature, when evaluating the role of RH two effects must be considered since the 

water molecules in the air play two different roles in the oxidation process. First, they act as a 

source for OH radicals that will oxidize the VOCs in the air. It is expected that the rate of 



reaction will increase with increasing relative humidity since this would allow for more 

oxidizing radicals to be produced at the catalyst surface. On the other hand, an increase in the 

RH will also cause an increase in the boundary layer thickness which would hinder the mass 

transfer of the VOCs to the catalyst surface. An excess of water vapor on the catalyst surface 

will reduce the amount of active sites available for the organics and decrease the rate of 

adsorption, which in turn reduces the effectiveness of the catalyst. Again, there is an optimal RH 

that provides a balance between producing sufficient oxidizing radicals and minimizing the mass 

transfer effects due to the boundary layer thickness. Assadi et al., (2012) found this balance 

when studying the decomposition of isovaleraldehyde and trimethylamine. For both 

contaminants initially there was an increase in the rate of decomposition as more oxidizing 

radicals were being produced. This was followed by a drop in the rate of decomposition as the 

mass transfer effects began to dominate the reaction. For isovaleraldehyde the optimal range 

was 35-45% RH and for trimethylamine a range of 20-30% RH was optimal. For indoor 

environments, it is recommended that a RH between 30% and 60% be maintained (Canadian 

Lung Association, 2012). So, it can be seen that for most VOCs the optimal RH range will be 

within the recommended indoor air levels. This means that no additional humidification or 

dehumidification should be required. 

1.3.2.3 Flow Rate 

The flow rate of the air will impact the mass transfer of the VOCs. In order to maintain 

sufficient contact between the catalyst and the VOCs, the flow rate must be large enough to 

ensure that the reaction is not mass transfer limited (turbulent vs. laminar mass transfer). As the 

velocity is increased the residence time of the VOCs is shortened, which reduces the chance that 

the VOCs will make contact with the surface of the catalyst. Determining the optimal flow rate 

for the chosen reactor configuration is important in order to avoid mass transfer limitations on 

the decomposition of the VOCs. This factor is even more pronounced at low air velocities 

(laminar flow conditions) where the flowing air can produce a second boundary layer on top of 

the water layer. These effects were seen by Charles et al., (2011) and Lopes et ah, (2012) where 

the low flow rates resulted in additional mass transfer effects within their systems. Lee et al., 

(2012) also observed both of these effects when they determined removal efficiency of dimethyl 

sulfur (DMS) by changing the flow rate of the air and the residence time in the reactor. They 



used different reactor inlets to alter the stream length of the contaminated air so that they could 

evaluate the effects of both linear velocity and residence time to optimize the PCO reactor 

design. As the residence time was increased, increasing the length of the streamline, the system 

was able to achieve a higher conversion of the target VOC for the same linear velocity. The 

authors also found that for all of the four reactor setups they all reached an optimal linear 

velocity around 0.255 m/s which gave a balance between minimizing mass transfer effects and 

providing sufficient residence time. 

1.3.2.4 VOC concentrations and Mixture 

Overall, it is expected that the rate of VOC decomposition is increased as the initial VOC 

concentration is increased since the rate of reaction is directly related to the VOC concentration. 

The typical VOC concentrations in indoor air are in the ppbv range. At such low levels, an 

increase in the initial VOC concentration will increase their chance of adsorbing onto the catalyst 

surface. This trend is consistent with other studies, which looked at individual VOCs (Brosillon 

et ah, 2008; Charles et ah, 2011; Lopes et ah, 2012; Ohko et al., 1998). A large number of PCO 

studies focused on decomposition of one or two VOCs in the air, but in reality there could be 

hundreds of VOCs present in an indoor air sample. When more than one VOC presents, the 

individual VOCs must compete with one another, along with water and oxygen molecules, for 

the active sites on the catalyst surface. There are a few studies of PCO processes using mixtures 

of VOCs in air (Alberici & Jardim, 1997; Assadi et al., 2012; Hodgson et al., 2007) and it would 

appear that the rate of oxidation is proportional to the size of the molecules. Larger VOCs tend 

to have higher oxidation rates than VOCs with smaller molecular weights. This could be due to 

the fact that larger VOCs will break down to smaller VOCs before being completely decomposed 

to CO2 and H2O. However, this was only seen when VOCs were present at levels higher than the 

ppbv range found in indoor air. Assadi et ah, (2012) performed the same set of experiments for 

the decomposition of isovaleraldehyde and trimethylamine (both complex VOCs) and found that 

there were measurable levels of by-products produced when the initial VOC concentrations were 

in the ppmv range. When the initial VOC levels were decreased to the ppbv range there were no 

detectable levels of byproducts found which would imply that the VOCs were being completely 

mineralized at the lower levels. This would imply that when VOCs are present in the ppbv range 

the VOCs are completely decomposed on the catalyst surface and no intermediate products are 



produced. Hodgson et al., (2007) studied the decomposition a complex VOC mixture made up 

of 27 VOCs found in office and building and cleaning solvents. They found that not all VOCs 

will react simultaneously and the larger or more complex VOCs tend to decompose first, 

followed by the smaller and less complex VOCs. Overall the order of oxidation was as follows; 

alcohols, glycol ethers > aldehydes, ketones, terpenes > aromatics, alkanes > halogenated 

aliphatic hydrocarbons. 

1.3.2.5 UV Source and Intensities 

The light intensity, or photon flux, emitted from the UV lamp determines the activity of the 

catalyst surface. When the light intensity (/) is around 1 -2 mW/cm at the catalyst surface the 

rate of oxidation will increase with the light intensity by a factor of/^^. When light intensity 

drops below 1 mW/cm the rate of oxidation will increase linearly with the intensity (Obee & 

Brown, 1995). In order to activate the surface, UV lamps with wavelengths between 300 and 

365 nm are required, which can be done using both UVA and UVC lamps and even UV-LED 

lamps have been explored. Shie et ah, (2008) studied the decomposition of VOCs under UVA, 

UVC, and UV-LED light sources and found that all three have similar removal efficiencies and 

were effective UV sources. They did note that the UVLED system was much more energy 

efficient than the UVA or UVC sources. These results were consistent with other studies on the 

use of different light sources (Alberici & Jardim. 1997; Destaillats, et ah, 2012). Although all 

three light sources have been found effective for PCO processes, UV-A and UV-C lamps are the 

best option since they are a much more cost effective option than UV-LEDs which are very 

expensive. Additionally, many UV-LEDs would be required to cover the same area as one UV-A 

or UV-C lamp covers. If UVC lamps are being used extra precautions should be taken to ensure 

that all UVC light is contained within the PCO system to eliminate any human contact. 

1.4 Summary of Experimental Work 

There are many advantages of using photocatalytic oxidation for VOC removal. This process 

does not require any secondary treatment since the organics are completely broken down into 

CO2 and H2O. It also does not require any additional oxidizing agents to be added to the process 

since the water and oxygen molecules in the air are easily converted into strong oxidizing agents 

on their own. The Ti02 catalyst is also fairly inexpensive and is very stable and safe to handle. 

It is also a very efficient photo catalyst and can operate at room temperature and pressure. There 



are a few facts that must be considered using a PCO system. First, the catalyst can become 

deactivated after a period of time. It will either need to undergo a reactivation process or it will 

have to be replaced. Second, reaction residue can be generated by intermediate products which 

occupy active sites, or particulate matter in the air can block the pores and cause fouling of the 

catalyst surface. Although a method to regenerate the catalyst has been proposed it has not yet 

been found to be efficient or cost effective (Zhong et ah, 2010). Third, the UV lamps will 

experience fluctuations in their light intensities at the beginning and the end of their life spans. 

These variations can have significant impacts on the activity of the photo catalyst which will 

alter the rate of decomposition of the organics. 

There are several issues faced by laboratory studies of VOC removal. The very low 

concentrations of contaminants can make it difficult to accurately measure the contaminant 

levels in the effluent. It is also not possible to study the effect of multiple operating parameters 

at once without knowing their interactions with each other. In a lab setting it is also not possible 

to efficiently monitor the profile of contaminant concentration over the length of the reactor. As 

a result, just the overall effects are reported. 

Overall a PCO system appears to be a very feasible and cost effective method for treating VOCs 

in the air in an indoor environment for very low concentration of contaminants. The PCO 

process seems to be optimized around ambient conditions (temperature and relative humidity), 

inexpensive materials (Ti02 catalyst, UVA or UVC lamps), and the reactor setup is a fairly 

simple design (monolith or annular reactor). Both reactor setups could also easily be retrofitted 

into an existing air system within a home or office building, which again lends to the PCO 

process being a cost effective option. 

1.5 Computation Fluid Dynamic Modeling 

Fluid processes can be simulated using Computational Fluid Dynamics (CFD) by simultaneously 

solving different transport equations. For PCO processes, three sets of transport equations must 

be solved: hydrodynamics, radiation, and species transport. CFD models can provide a better 

understanding of how reacting species behave throughout the different parts of the system 

because the concentration of contaminants can be monitored through the system under different 

operating conditions. In a lab setting, it is only possible to study overall reaction kinetics, 

measuring the concentration of the contaminants at the inlet and outlet. Practically, it is not 



possible to measure the coneentration profile along the reactor or on a specific surface with no 

interferences. Being able to better understand the interactions between competing parameters 

will allow us to optimize the reactor design for VOC removal for a variety of operating 

conditions and applications (Huang et ah, 2011). CFD modeling can also be more cost effective 

because it does not require different reactor setups to determine the most efficient geometry. The 

bulk section of the reactor can be modified to optimize the hydrodynamics of the system without 

altering the catalyst structure (or the rate of reaction at the catalyst surface). For these reasons 

CFD is quickly becoming a key factor in the design and optimization of PCO systems and other 

engineering applications (Duran et al., 2010; Wang et al., 2012). 

1.5.1 Hydrodynamic modeling 

The first model that must be solved is the hydrodynamic model, which has been well developed 

for both laminar and turbulent flow conditions, based on the Navier-Stokes equation. In order to 

solve the hydrodynamic model two conservation equations are solved simultaneously: 

Conservation of mass: ^ + V(pi;) = 0 (7) 

Conservation of momentum; + \/pvv = —S/p + VT + pg + (8) 

Where p is the density of the air 

t is time 

V is the velocity 

and T is the stress tensor. 

1.5.2 Radiation field modeling 

Using CFD, the radiation field can be calculated on throughout the reactor and on the surface of 

catalyst using the radiative transport equation: 

d/(r,5) (7s)l{r,s') = an^ — r^/(r, 5)0(5,5) d/2' (9) 
dS 7T 471*^0 

where r is the position vector 

5 is the direction vector 



a is the absorption coefficient 

a^is the scattering coefficient 

n is the refractive index 

T is the temperature of the air 

and n' is the solid angle. 

The uniformity of the radiation field depends on the strength of the irradiance at the surface of 

the catalyst and the geometry of the reactor. In PCO studies, it is common practice to assume 

that a uniform intensity is being produced across the entire catalyst surface. However, this 

assumption is not generally the case as the radiation field will vary along the length of the reactor 

and along the length of the UV lamp itself. 

1.5.3 Species Transport 

The changes in species concentrations due to convection, diffusion, and the surface reaction are 

modeled by the species transport equation, which must be solved for each of the reacting species: 

Y^{pYd + V-{pvYd = -V-]i+Si (10) 

Where Yi is the mass fraction of species / 

p is the density of the air 

Si is source or sink term of species / 

and Ji is the effective flux of species i. 

1.6 PCO Modeling Work 

Compared to the number of experimental studies, CFD studies for PCO air systems are very 

limited. Individual studies focused on validating the individual model components for 

hydrodynamics have been conducted (Kumar & Bansal, 2012; Zhang et al., 2012), UV radiation 

(Imoberdork et al., 2008), and species transport (Liu & Peng, 2005; Queffeulou et al., 2010a) but 

only a handful of studies have tried to combine all three models into a single study (Chong et al., 

2011; Hossain et al., 1999; Wang et al., 2012). 

Kumar & Bansal (2012) performed an in depth CFD study in order to validate the use of CFD 

modeling to predict hydrodynamics and species distribution within an annular reactor. The 



authors looked at three parameters to compare the CFD predictions against theoretical and 

empirical formulas: velocity distribution, average velocity, and average mass transfer coefficient. 

They looked at the case of laminar flow conditions for water containing Rhodamine B, an 

organic dye. Using the conservation of mass, momentum, and species equations, the authors 

were able to match the expected trends for laminar flow conditions. They found that all three 

parameters estimated using CFD were within 2.1 - 10% of the theoretical values for fully 

developed laminar flow. 

Wang et ah, (2012) used CFD to model the radiation field of a UV LED array system for a 

UVLED PCO reactor. The LED array system contained 27 UV LEDs arranged in a 3x9 array 

structure. The authors developed their own radiation model in order to describe the irradiance 

distribution on the catalyst surface. Their model calculated the relative irradiance distribution on 

the catalyst surface in terms of position relative to the LED. Assuming each LED lamp has 

identical properties, the incident irradiance at a particular point on the catalyst surface was 

determined to be the sum of the values from each of the 27 LED. Using their radiation model 

they were able to map the irradiance levels within the system and compared the results with 

levels that were measured experimentally. The CFD model predictions were in agreements with 

the experimental values. The authors were also able to optimize the system by changing the 

distanee between the lamp array and the catalyst surface in order to obtain a uniform irradiance 

field across the catalyst surface. 

1.7 Scope of Research 

The focus of this research was to develop a new approach to modeling surface reactions for the 

treatment of air using the PCO process. An integrated CFD model was developed to consider 

hydrodynamics, species transport, including reaction kinetics, and radiation based on 

experimental PCO systems. In order to validate the CFD work, published data was used to build 

the CFD model of a PCO process and the final CFD results were compared to those that were 

published previously. An integrated model provides the opportunity to fully understand the 

interactions between different operating eonditions and to see how the contaminants are moving 

through the reactor, which would not be possible to see in the lab. 

The work described in this thesis was completed in three stages. The first stage involved 

developing a new approach to modeling complex surface reactions for a PCO reactor system. 
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This new approach allowed for the experimental reaction rates and a combination of both 

reaction kinetics and mass transfer effects, to be adapted in order to describe only the reaction 

kinetics on the surface of catalyst. In this first case, the work of Shiraishi et al., (2005b) was 

modeled where formaldehyde is decomposed using an annular PCO reactor in a closed system. 

Three different approaches to defining the reaction rate model were tested. Since Shiraishi et al., 

(2005a) did not consider changing UV intensities on the catalyst surface, this first case does not 

require solving the radiation model. The complete CFD model required solving the 

hydrodynamic model and the species transport models. In this case the reaction rate model was a 

function of formaldehyde concentration at the catalyst surface. The final model results were then 

compared with the published results by Shiraishi et al., (2005b) in order to validate the integrated 

CFD model, excluding the radiation model. 

The second stage of this work involved using the new approach for reaction modeling of a 

complex PCO system that was developed in the first stage. In the second stage, the work of 

Brosillon et al., (2008) was modeled where air contaminated with butyric acid was treated using 

a coaxial monolith PCO reactor. In this case the rate of reaction was a function of both the 

butyric acid concentration and the UV light intensity at the catalyst surface. The reactor setup 

was also more complex and contained two reacting surfaces. The CFD model in this case 

required solving the hydrodynamic, radiation, and species transport models. Once the complete 

model was obtained, the results were compared with those published by Brosillon et al., (2008) 

to validate the model results. From this case, the versatility of this new approach to reactor 

modeling was demonstrated. 

In the final stage of the work, the new protocol was used to demonstrate the potential 

applications of this research. Butyric acid is a carboxylic acid that is naturally secreted by the 

human body so using the results from the second stage of this work; a CFD model was 

developed to virtually study a PCO system within the air duet system of a closed room. The 

PCO system was tasked with treating air already contaminated with butyric acid as well as being 

exposed to a point source for butyric acid present within the closed room. The point source 

represented a person in the room that is giving off butyric acid. The final part of this thesis 

discusses other potential applications of this research. 
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Chapter 2 - Developing a New Method of 

Reaction Modeling 
2.1 Introduction 

Considering the experimental research performed for photocatalytic reactions, for continuous 

open systems (no air recirculation) samples of the air are taken at the entrance and the outlet of 

the system. For closed systems, the samples of air are taken before turning on the UV lamps and 

then periodically from the bulk of the system. As a result, the reaction rate expressions provided 

by the experimental work are volumetric reaction rates in terms of the total reactor volume. In 

these cases, the VOC concentrations will be an average across the entire system, which results in 

the reaction rates being a combination of reaction kinetics and mass transfer effects. This gives 

an overall apparent photochemical kinetic rate expression that may be lower than the actual rate 

of reaction at the catalyst surface. Particularly for a laminar system, the overall reaction rate 

expression will be much lower than the actual rate of reaction happening on the catalyst surface 

since the concentration of VOCs in the bulk of the system is higher than the concentration of 

VOCs at the catalyst surface. For this reason the experimental reaction rates eannot be used 

directly to define the rate of reaction at the catalyst surface. The species conservation equation 

takes into account velocity profile (convection term for mass transfer) and molecular diffusion 

within the system. As a result, the reaction rate model must reflect the actual rate of reaction at 

the catalyst surface. This chapter introduees the new approach to modeling complex surface 

reactions, which uses the volumetric experimental data to define a surface reaction. 

2.2 Theory 

2.2.1 A Novel Approach to Defining Reaction Rate Model 

The CFD software (Ansys Fluent version 14.0) used for this research project does have built in 

reaction models; however, these models are not capable of modeling the complex surface 

reaction rates of PCO systems. For this reason, a novel approach was developed to 

accommodate the complex surface reactions. This new approach focuses solely on the surface 

reaction, including absorption and desorption on/from the catalyst surface. As a result, the mass 

transfer effects within the bulk of the system are separated from the reaction rate expression. 



Considering the species conservation equation (Equation 10), it can be noted that the source 

term, Si, describes the net addition (or removal) of a species from the system. It should be noted 

that this term is volumetric base. This can be equated to the production (or consumption) of a 

species due to a chemical reaction. 

^(py,) + V-(pvKi) = -V-A+5i (10) 

where Tj is the mass fraction of species / 

p is the density of the air 

Si is source or sink term of species / 

and ]i is the diffusional flux of species i 

In a PCO system, the reaction actually takes place in a single layer along the surface of the 

catalyst material just below the water boundary layer. Computationally, this cannot be 

implemented in the CFD model because the infinitesimally small thickness of the layer (a few 

angstroms) cannot be modeled from a practical standpoint. So, the source term is considered as 

the reaction rate term along a very small single layer of cells adjacent to the surface of the 

catalyst and with the units of kg/m^-s. In other words, a thin layer above catalyst surface 

behaves as a volumetric reactor. As a result. Equation 10 is used to model the concentration of 

species on the surface of the reactor. The source term is zero for the other locations. 

Water Boundary Layer 

Radical . Radical VaC Radical Radical VOC Radical WX-„ 

Catalyst Layer 

Figure 5: Surface Reaction Diagram 

It has been shown through the extensive experimental work that PCO reactions follow the L-H 

kinetic model, which was described in Chapter 1. The rate expressions are derived using the 

average concentration of the target VOC from the bulk of the system. These concentrations 



reflect the concentration of the VOC across the entire system volume, which results in an overall 

volumetric reaction rate expression; 

(11) 

Considering the experimental data, it is assumed that the reaction is taking place across the entire 

system volume giving a rate of reacting per unit volume of the entire system. For a surface 

reaction, a similar assumption can be made that the reaction is taking place across the entire 

reactive surface, giving a rate of reaction on a per unit surface area basis. So, in order to adjust 

the experimental volumetric reaction rate expression so it can be used as the surface reaction in 

terms of total reactive surface area, the following correlation is derived: 

Where rate surface is the rate of reaction in terms of catalyst surface area 

is the rate of reaction in terms of system volume 

S A catalyst is the total catalyst surface area 

and Vsystem^^ Ihe total system volume 

Numerically solving the conservation equations, the system is divided into a finite number of 

elements (cells). Using Equation 12, the rate of reaction per unit of total catalyst surface area can 

also be used to define the rate of reaction in terms of the surface area of each cell. The rate of 

reaction on the catalyst surface is then transformed into a volumetric rate of reaction in terms of 

the individual cell volume for the entire layer of cells adjacent to the eatalyst surface by the ratio 

of cell volume to the cell surface area: 

(12) 

/ SAcell\ 

V Vcell / 
(13) 

With the reacting volume being the layer of cells just above the catalyst surface, the rate of 

reaction will now be dependent on the concentration of the VOC within that volume, which will 

be the same as the concentration of the VOC on the catalyst surface. 



The reaction rate model is then introduced into the CFD model along the catalyst surface as the 

Si term in the species transport model for each of the reacting species. The reaction rate model is 

developed in terms of the complete decomposition of the target VOC. For the other reacting 

species, the rate of decomposition or production will be adjusted using stoichiometric ratios (a, b, 

c, or d) for complete decomposition. 

CLVOC + b02 CCO2 T dH20 (Id-) 

2.2.2 Hydrodynamic Model 

The flow of air through the system is modeled by solving the conservation of mass and the 

conservation of momentum equations, which have been well developed for both laminar and 

turbulent flow conditions based on the Navier-Stokes equation. In order to solve the 

hydrodynamic model, the two conservation equations should be solved simultaneously; 

Conservation of mass: ^ + V(pi;) = 0 (15) 

Conservation of momentum; + Vpw = —Vp + VT + + 5^ (16) 

Where p is the density of the air 

t is time 

V is the velocity vector 

T is the stress tensor 

g is the gravitational constant 

and is the momentum source term 

Under laminar flow conditions, the velocity profile is uniform with the fluid traveling in a linear 

direction. Figure 6. This can result in a secondary boundary layer being produced by the air 

along the catalyst surface, which creates an additional mass transfer barrier for the reaction to 

overcome. This is not ideal for reacting systems with surface reactions. Under turbulent flow 

conditions, the air moves in a disorganized manner that results in mixing of the air along the 

reacting surface, which helps to improve the mass transfer effects at the surface. 



Figure 6; Flow profile comparison 

2.2.3 Turbulence Model (k-epsilon) 

For turbulent flow conditions, there is no linear flow profile, so a time average velocity across 

each cell must be estimated. The most common approach to solving this is by using the 

Reynold-averaged form of the conservation equations, which generates new variables as Reynold 

stresses or turbulent stresses. To solve the new unknowns, two more conservation equations are 

introduced. The most common model used is the standard k — e model due to its simplicity 

along with its accuracy across a wide range of turbulent flow conditions (Launder & Spalding, 

1974). The standard k — e model solves for the turbulence kinetic energy,/c, and the dissipation 

rate, 6, using the following two equations: 

^ 1^] + " p"" “ 

i (PO + - 4 [(p + it] + f (18) 

Where /r^is the turbulent viscosity 

T/vf is the effect of compressibility 

and cTg are the turbulent Prandtl numbers for k and e 

Gfc is the generation of turbulence kinetic energy due to the mean velocity gradient 

Gij is the generation of turbulence kinetic energy due to the buoyancy respectively 

and Qg, C3£, and C2s are constants which have predetermined values already set within 
the standard k — e model. Table 1 

The constant values have been rigorously tested using the standard k — e model and have been 

found to work for a wide variety of flows. 



Table 1: Values of constants for the k-epsilon model 

In the case of turbulent flow, the diffusional flux term, Ju from the species conservation equation 

will be affected. For laminar flow conditions, the diffusion of the species is controlled solely by 

molecular diffusion. For turbulent flow conditions, the species experience a second form of 

diffusion, turbulent diffusion. The effect of the diffusion due to turbulence is determined by the 

turbulent Schmidt number, Sc^. 

Sct 
pDt 

(19) 

Where Sc^ is the turbulent Schmidt number 

Df is the diffusion coefficient due to turbulence 

For turbulent flow conditions the diffusional flux term is defined using the following equation: 

h = -{pDi,,n+j~jVYi-Dr,iy (20) 

Where — accounts for the effects of diffusion due to turbulence 
Sct 

2.3 First Case Study 

2.3.1 Geometry Model and Mesh Structure 

Considering the first case, the reactor configuration was based on the closed system set up used 

by Shiraishi et al., (2005b). Their system used an array of 9 identical reactors placed in a closed 

box with a total system volume of 1 m^ under standard room conditions and 1 atm). Each 

reactor was comprised of a Ti02 coated glass tube (28 mm in diameter and 210 mm long) with a 

UV lamp (15 mm in diameter, 295 mm in length) mounted in the center of each glass tube. All 9 

reactors were identical with the same physical and photocatalytic properties. Therefore, only one 

reactor was modeled with the system volume reduced to 1/9 of the total system volume reported. 

The reactor also had two symmetric planes and was further divided radially into 4 quadrants. As 



a result, only one quarter of a single reactor was modeled. This strategy reduced the 

computational time dramatically. 

Figure 7 shows the cross section of one of the symmetric planes of the reactor model used for the 

CFD simulation. The reactor section was surrounded by a second glass cylinder (diameter 41 

cm), which gave a total system volume of 0.111 m\ The model of the reactor is identical to the 

reactor used by Shiraishi et ah,(2005b) with the same ratio of catalyst surface area to system 

volume (0.167 m /m ). A virtual fan was placed at the entrance to the reactor in order to produce 

the axial flow through the system, which is similar to the flow rate used in the experiments 

(Shiraishi et al., 2005b). Once the geometry model was obtained, the mesh structure was 

established. After using several different mesh densities, the solution reached mesh independent 

results (the results did not change when the number of cells were increased) for a total number of 

32 623 cells. 

Figure 7: Reactor setup for first case study 

2.3.2 Operating and Boundary Conditions 

For this study, Ansys Fluent 14.0 was used to model the PCO reactor array developed by 

Shiraishi et al., (2005b). The k — e model was selected for modeling turbulent flow. In 

addition, the species transport equations (one for each reacting species) were modeled 

simultaneously with the momentum equation. Considering the effect of turbulence on the species 

mass conservation equation, the default turbulent Schmidt number of 0.7 was initially selected 

(the Fluent manual states that the default Sct value of 0.7 is sufficient for most turbulent 

systems). The rate of reaction on the surface of the catalyst was developed (see Theory section) 

using external codes (macros) and integrated into the mass conservation equations for all 



reacting species. The reaction rate expressions were implemented into the CFD model as source 

terms (Si from Equation 10) using user defined functions (UDFs). 

The interior boundary of the fan was set as “FAN”. The pressure drop was adjusted to 175 Pa 

across the fan in order to give the required flow rate of 11.38 m/s (velocity used by Shiraishi et 

ah, (2005b)). The fan direction was selected to pull the air through the reactor section and match 

the flow direction used in the laboratory experiments. 

The simulation was performed for unsteady state condition. Considering the initial conditions, 

the concentrations of each species were set to match those used by Shiraishi et ah, (2005b) and 

were set as constant concentrations in the bulk of the system: CH2O 1.23 mg/m', O2 0.205 kg/kg, 

CO2 340 ppmv and H2O RH 30 %. The multicomponent mass diffusivity was selected and the 

values for each of the species combinations were calculated using standard equations for 

molecular diffusion for a gas - gas system (Treybal, 1980). 

2.3.3 Solution Setup 

The SIMPLE discretization scheme was selected using the pressure based solver. The default 

discretization methods were used for solving all conservation equations. A solution residual of 

lO"'^ was selected for all equations except the energy equation, which had a solution residual of 

10'^ 

In order to establish the velocity profile and initial species distribution, the model was first ran 

under steady- state conditions with the source term in the species mass conservation equation set 

to zero. Once the velocity profile was established, the system was switched from steady-state to 

transient and the source terms in the species transport equation was switched on for all chemical 

species. 

Since the concentration of CH2O was so low, it was assumed that the density and viscosity of the 

air were not changing significantly over time. As a result, the velocity profile was not changed, 

then, the conservation equation for momentum was not solved any more in order to reduce the 

computation time. A time step of 1 s was chosen, requiring a total of 10,800 time steps to model 

the 3 hour reaction time used by Shiraishi et ah,(2005b). The time step of 1 s was determined 

through trial and error over a 30 minute reaction time. For larger time steps (5 s, 30 s and 60 s) 

the results were not consistent and the model results changed as the time step was altered. For 



time steps smaller than 1 s there was no significant improvement in the model results. Therefore, 

in order to minimize the number of time steps required, a time step of 1 s was ultimately 

selected. 

2.3.4 Reaction Rate Model 

Defining the kinetic model, three different approaches were tested and compared with 

experimental results obtained by Shiraishi et al., (2005b). For each kinetic model the 

concentration of CH2O was estimated using an integrated CFD model. 

2.3.4.1 First Approach 

The first approach used the reaction rate mode proposed by Shiraishi et ah, (2005b) using the 

bulk formaldehyde concentration: 

ri = 0.00093C^ (21) 

Where is the rate of reaction 

and C^is the concentration of formaldehyde in the bulk of the system. 

It should be noted that the rate constant suggested by Shirashi et al.,(2005b) had time units of 

min'* so the rate constant was adjusted to give the time unit of s ' that was required by Ansys 

Fluent 14.0. 

2.3.4.2 Second Approach 

The second approach was an exponential model derived from the experimental results of 

Shiraishi et al., (2005b). For the purpose of reactor design, a closed system can be considered as 

a batch reactor. For batch processes where the VOCs have low initial concentrations (ppbv) the 

reaction rate should follow apparent first order kinetics with the reaction rate kinetic constant of 

the PCO reactor following the L-H kinetic model: 

^2 ^app^b 

k — 
l + fcl/fc2 

(22) 

(23) 

Where T2 is the rate of reaction 

kapp is the apparent first order reaction rate kinetic constant 



ki is the adsorption/desorption kinetic constant 

and k2 is the surface reaction kinetic constant 

At low concentrations the drop in concentration over time can usually be described by an 

exponential expression in the form of: 

Cij = ae^ (24) 

Where a is a constant 

and t is the time elapsed 

After fitting the experimental data into Equation 22, the rate of formaldehyde decomposition 

becomes: 

V2 = 0.001995Cb (25) 

2.3.4.3 Third Approach 

Finally, the third kinetic model was a two part polynomial reaction rate. A polynomial rate 

expression was obtained by plotting the change in formaldehyde concentration (in the bulk of the 

system) over time (dC/dt) versus concentration of CH2O. The initial rate of formaldehyde 

decomposition was much higher than the rate of decomposition after 30 minutes. When one 

polynomial function was applied to the whole data set, the trend did not fit the data very well, in 

particular at lower CE120 concentrations. In order to match the experimental results, a two part 

polynomial rate was used in order to obtain more accurate results. 

Equations 26 and 27 represent the decomposition rate of formaldehyde when the concentration is 

above and below 0.76 mg/m3 (or 7.65x10'^ kg/kg), respectively. 

r^a = -779Ci + 0.00187C^ - 7.05x10-^^ (26) 

r^t = -2.56X1022C^5 - 4.05xl0^°C^ + 122000^ - 0.0012C^ + 5.63x10“^^ (27) 

2.4 Results and Discussion 

Using each of the three approaches, the drop in formaldehyde concentration over time was 

initially tested in Excel before the reaction rates were implemented in the CFD model. For each 

of the three approaches, the drop in formaldehyde concentration over time was estimated in 



Excel by using the appropriate Equation (21, 25, 26, and 27). Starting at time zero, the drop in 

formaldehyde concentration after 1 s was calculated. A time step of 1 s was selected since the 

rate of reaction was developed to give the change in formaldehyde concentration for a per second 

of time basis. Then the new concentration at time t = 1 s was calculated by using the following 

equation: 

Cf2 = Qi “ (rate)time (28) 

Equation 28 is a first order algebraic equation (difference form) of the differential equation for a 

batch reactor, = F(C^). Then, using the new concentration at time t = 1 s the rate of 

formaldehyde decomposition was recalculated, again for a time step of 1 s to give the 

concentration at t = 2 s. This procedure was repeated for a total time of 3 hours (or 10800 

seconds). The final results were then compared to the experimental results of Shiraishi et ah, 

(2005b). The results of the Excel tests are shown in Figure 8. 

Figure 8: Comparison of various mathematically predicted kinetic model results 

By first using Excel to mathematically predict the drop in formaldehyde concentration, it was 

possible to determine which of the three approaches were the best option when modeling the 

process using CFD and which approaches were not accurate and could be eliminated. It was 

apparent that the first approach (using the experimental kinetic model) was the least accurate of 

the three and did not accurately define the rate of formaldehyde decomposition. By first using 



Excel to mathematically predict the drop in formaldehyde concentration the first approaches 

could have been eliminated as an option when modeling the PCO system using CFD. For this 

research, all three approaches have been modeled using CFD in order to demonstrate the point 

that (1) Excel can be used to eliminate inaccurate reaction rate models and (2) that the 

experimental reaction rate models cannot accurately predict the rate of reaction at the catalyst 

surface. Both approaehes 2 and 3 (the exponential and polynomial kinetic models) predieted 

formaldehyde concentrations that were in agreement with the experimental results reported by 

Shiraishi et ah, (2005b) with the third approach being the most accurate of the two. 

Excel cannot be used alone to determine if the reaction rate model is accurate because it cannot 

reveal if there are any interferences. In this ease, mass transfer limitations might also be present 

within the system since kinetics are only one part of the solution. The entire system must still be 

considered to obtain an accurate solution since both kinetics and hydrodynamics would affect the 

overall drop in formaldehyde decomposition. Excel cannot account for any mass transfer 

limitations due to the flow of air through the bulk of the reactor, which would be affected by the 

fan, turbulence, as well as the system geometry. For that reason, an integrated CFD model was 

still required to obtain a complete solution that eonsiders all faetors affecting the overall rate of 

formaldehyde decomposition. 

2.4.1 General CFD Model Results 

Figure 9 shows the path of the air through the bulk of the system. It shows that there was good 

movement of the air through the bulk of the system and there does not appear to be any zones of 

low mixing, which would have introduced mass transfer problems. These results indieate that 

there were no mass transfer limitations present in the bulk of the system and so the CFD model 

results should be in good agreement with the Excel results. This is not surprising since the 

system in this case was acting as a batch reactor where the hydrodynamics of the system are very 

well established. In a batch reactor, it is generally assumed that the fluid is perfectly mixed, 

meaning that the concentration profile should be fairly uniform throughout the entire system. It 

also means that there are no hydrodynamie issues throughout the system, sueh as zones of low 

mixing. 



Figure 9: Flow path of the air through the system 

The concentration profile of formaldehyde throughout the system can be seen in Figure 10. The 

air in the bulk of the system had a higher concentration of formaldehyde than the treated air 

leaving the reactor and so the air on the right hand side of the system, closest to the reactor 

outlet, had a slightly lower concentration of formaldehyde than the air on the left hand side of the 

system, closest to the reactor inlet. As the treated air exited the reactor on the right, it was 

recirculated back into the bulk of the system where it was mixed with the air in the bulk of the 

system. 
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Figure 10: Concentration profile for formaldehyde throughout system after 3 hours 

This effect is better demonstrated in Figure 11 which overlays the streamline path of the air onto 

the formaldehyde concentration profile for the bulk of the system. This shows how good mixing 

in the bulk of the system results in a fairly uniform concentration of formaldehyde throughout 
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the bulk of the system, again indicating that this system did not show any signs of mass transfer 

limitations throughout the bulk of the system that would affect the overall rate of formaldehyde 

decomposition. 

Figure 11: Streamline path and concentration profile through the bulk of the system 

The drop in formaldehyde concentration across the catalyst surface can be seen in Figure 12. As 

the air travels to the right, along the catalyst surface, the concentration of formaldehyde at the 

surface decreases. Readings taken from the modeling software give concentration variations of 

formaldehyde across the catalyst of 1.918x10'^ kg/kg at the inlet and 1.913x10'^ kg/kg at the 

outlet. Using CFD, it is possible to see exactly how much of the contaminant is being removed 

with each pass through the reactor. This is important since in real life, the PCO reactor would 

not necessarily be within a closed system. In a home there would be multiple rooms connected 

onto the same air duct line transporting air from one room to the next. 
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Figure 12: Concentration profile for formaldehyde along the reactive surface 



2.4.2 CFD Modeling Using the First Approach 

Comparing Figures 8 and 13 the results from both the Excel tests and the CFD models were very 

similar. This is mainly due to the fact that this system behaves as an ideal batch reactor with no 

mass transfer limitations. The behavior of a perfectly mixed batch reactor is well known and so 

it is easily modeled using CFD software. In this case, the PCO system is behaving as a perfectly 

mixed batch reactor, which was demonstrated in Figure 11. The CFD model results showed very 

similar results to those predicted using Excel (within 10%). In this case the hydrodynamics 

within the system were very well known and the rate of reaction only contained one variable, 

formaldehyde concentration. So, it appears that the initial conclusion from the flow path, that 

there does not appear to be any mass transfer limitations present in the system, was correct. This 

would have also been due to having sufficient turbulence in the system, ensuring that the rate of 

reaction was not mass transfer limited. However, this will not always be the case, and so it 

should not be assumed that Excel results will exactly match those obtained using CFD models. 

As expected, the results from the first approach, using the experimental apparent reaction rate 

presented by Shiraishi et al., (2005b) were much lower than the actual rate of reaction on the 

catalyst surface. This was due to the fact that the experimental reaction rate was a combination 

of reaction kinetics and mass transfer effects, so, the CFD model was considering the mass 

transfer effects twice. This verifies the initial assumption that experimental reaction rates carmot 

be used to accurately describe the actual rate of reaction on the catalyst surface. 

Figure 13: Comparison of the CFD results using three different approaches. 



To prove that the reaction was not mass transfer limited the turbulent Schmidt number, Sct, was 

increased in order to increase the turbulence, and the mixing, in the system. This would have 

reduced any mass transfer limitation present throughout the system and along the surface of the 

catalyst. After increasing the Sct value several times the results showed no significant effect on 

the rate of reaction. Figure 14. This would indicate that the new approach resulted in a rate of 

reaction that was in fact independent of the mass transfer effects and that the default Sct value of 

0.7 was sufficient in this case. 

Figure 14: CFD model results using different Sc values 

2.4.3 CFD Modeling Using Second Approach 

Using the second approach of an exponential kinetic model, the CFD model results were more 

consistent with the experimental results reported by Shiraishi et al.,(2005b). Similar to the 

experimental results, the concentration of formaldehyde dropped at a fairly constant rate for the 

first 30 min, after which the rate of formaldehyde decomposition began to decrease. It can also 

be seen in Figure 13 that the model results show slightly higher concentrations than the reported 

results within the time frame of 15 - 40 min. It appears that the experimental results show a 

much sharper shift in the rate of decomposition after the initial reaction period, while the 

exponential rate function produces a more uniform shift in the rate of reaction after the initial 

reaction period. These results do verify that for a closed system (behaving as a batch reactor), an 

exponential kinetic model could be used to predict PCO kinetics in a CFD model over a long 



period of time, but it is not as accurate at predicting the initial drop in the formaldehyde 

concentration. 

2.4.4 CFD Modeling Using Third Approach 

Using the third approach of a polynomial reaction kinetic model the CFD model results did 

match the reported experimental results as can be seen in Figure 13. This third method was able 

to accurately predict the initial drop in formaldehyde concentration and the drop in concentration 

over time. When all three approaches were compared together with the experimental results, the 

third approach gave the best results for predicting the drop in formaldehyde concentration over 

time. This was due to the separation of the initial rate of reaction. By recognizing that the initial 

rate of reaction will be greater than the rate of reaetion after the initial period a more precise 

reaction model was developed for the initial period. Unlike the exponential model, with a two 

part rate model each of the two parts can be individually adjusted in order to best match the 

experimental results. For example, if the initial rate is too low it can be increased by a factor till 

it matches with the experimental results. 

2.5 Conclusions 

Using the new approach discussed in this section, the experimental kinetic model for 

formaldehyde decomposition was adapted to reflect surface reactions based on VOC levels on 

the catalyst surface. By considering the reacting volume as only a thin layer of cells just above 

the catalyst surface, the reaction rate expressions became dependent solely on the concentration 

of formaldehyde at the surface, as opposed to the bulk eoncentrations. This meant that the 

change in concentration that was being calculated using the UDF codes was only affected by the 

reaction kinetics, unlike the experimental reaction rates that were based on the bulk 

concentrations, which were dependent on both reaction kinetics and mass transfer effects. 

A complete CFD model was developed for the system considering hydrodynamics, species 

transport, and reaction kinetics, and the results were in agreement with the experimental data that 

was reported by the author. It was determined that a two part polynomial rate expression was the 

most accurate as it was able to account for the higher initial rate of reaction. However, the 

exponential model did give reasonable results as well due to the closed system behaving like a 

batch reactor. 



The complete CFD model showed how engineers can use CFD to optimize system design by 

analyzing the flow path of the air through the system. The CFD model also showed that the 

closed system did behave as a batch reactor with perfect mixing and a fairly uniform 

concentration of formaldehyde throughout the bulk of the system. 



Chapter 3 - Versatility of Method of 

Reaction Modeling 
The versatility of the proposed new method for reaction modeling is demonstrated by using the 

same approach from the previous section to develop a reaction rate model where the rate 

expression was controlled by two variables: the VOC concentration and the UV irradiance level 

at the catalyst surface. In order to describe the complete surface mechanism happening on the 

catalyst surface the reaction rate should be able to account for variations in the UV irradiance 

levels. The UV irradiance rate is the main governing factor in the photocatalytic reaction rate. 

Additionally, irradiance levels can vary dramatically across a surface due to the effects of 

shadowing on the catalyst surface, or in the case of multiple lamps overlapping of the radiation 

fields. As a result the surface reaction is dependent on the rate of UV irradiance at each point 

along the reacting surface. 

The work of Brosillon et ah, (2008), which studied the decomposition of butyric acid in air using 

a PCO system, was modeled. Using the method developed in the first case, the experimental 

reaction rate was adapted to reflect the true rate of reaction at the catalyst surface which is 

dependent on both butyric acid concentration and the UV irradiance level on the catalyst surface. 

3.1 Theory 

3.1.1 Radiation Model 

Radiant distribution energy can be calculated using the radiative transport equation: 

+ (a + s) = ari^ f (u s)0(s * s') dQ' (28) 

Where r is the position vector 

is the direction vector 

s' is the scattering position vector 

a is the absorption coefficient 

(Ts is the scattering coefficient 

n is the refractive index 



T is the temperature of the air 

and Q ’ is the solid angle 

The lamp location with respect to the catalyst surface is a crucial step in the design of the PCO 

system in order to achieve a uniform irradiance level across the catalyst. Calculating radiation 

fields for different reactor configuration and lamp types showed that the general assumption 

made in lab experiments of having a uniform radiation field across the catalyst is not generally 

correct. 

3.1.2 Discrete Ordinates (DO) Method 

There are several different models that can be used to solve the radiative transport equation. In 

this case the DO method was used to model the UV radiation. The DO method has the 

advantage of being the most versatile of the radiation models. It is not restricted by the optical 

thickness and can be used to solve a wide range of radiation problems. The DO method solves 

the radiative transport equation by dividing each cell into a finite number of discrete solid angles, 

s (Figure 15). 

X 

Figure 15: Solid angle division for DO method 

Similarly to how the conservation equations are solved for a finite number of cells, the DO 

method solves the radiative transport equation for each discrete solid angle transforming 

equation (28) into: 

V(/(r, 5)5) + (a T as)I{r, s') = an^ -I- — s) 0(5 * s')d£l' 
Tl 47T 

(29) 



3.1.3 Reaction Rate Model 

Brosillon et al., (2008) proposed a reaction model, which describes the interdependence of UV 

photon flux and the butyric acid concentration. It is this reaction rate model that was used to 

describe the rate of butyric acid decomposition in the CFD model. They chose to look only at 

the initial rate of reaction because it is closest to the intrinsic reaction rate as it is only the butyric 

acid reacting and there is no concern of by-products competing for active sites and hindering the 

rate of reaction. 

pi 
l-tyJ+xCg CB (30) 

Where is the rate of reaction 

/ is the UV irradiance at the catalyst surface 

CQ is the butyric acid concentration in the bulk of the system 

and p, y, and x are rate constants. 

The experimental data was evaluated using nonlinear regression to solve for p, y, and x in Excel 

and the following expression was obtained where Q is the concentration of butyric acid at the 

catalyst surface: 

9.44314e -11, 

l+0.31818*/ + 0.004160567*Cc 
Cc (31) 

3.1.4 Hydrodynamic and Turbulence Models 

For a detailed description of the theory for the turbulence and hydrodynamic models see section 

2.2.2 and 2.2.3. 

3.2 Second Case Study 

3.2.1 Geometry Model and Mesh Structure 

The reactor setup was based on the reactor system described by Brosillon et al., (2008). The 

PCO system is made up of an annular reactor (p = 14.25 cm) shown in Figure 16. The 

photocatalytic material (non-woven paper coated in Ti02/Si02) covers the inside walls of the 

reactor (SA = 0.3043 m ) as well as a pierced cylinder in the center of the reactor (SA = 0.0567 

m^). There were also 12 UV lamps (^niax = 365 nm) mounted between the two catalyst surfaces. 



The fluid passage inside the reactor was divided into 667,544 infinitesimal cells (mesh) to 

establish a mesh independent solution. The reactor configuration is symmetrical, so, in order to 

reduce the computation time one quarter of the reactor system was modeled. 

inlet 

Figure 16: Reactor Setup for the second case 

3.2.2 Operation and Boundary Conditions 

Ansys Fluent 14.0 was used to model the reactor system. Brosillon et al.,(2008) stated that they 

had verified through experimental analysis that their system was under turbulent flow conditions, 

so, the k — € method was used to model the turbulent flow within the system. To model the flow 

through the inner catalyst filter the interior of the filter media was set as a “porous jump”. The 

“porous jump” boundary condition is a ID simplification of the porous media model which is 

used to model pressure drops through screens and filters. The “porous jump” condition produces 

more accurate results for the simpler media since these do not experience a high enough pressure 

drop to drive the flow. The filter was modeled using data from (Taranto et al., 2009) for the 

pressure drop across a near identical filter (permeability 0.00022 m , pressure-jump coefficient 

0.013714 m’’) for a variety of flow rates under similar flow conditions. 

The inlet species concentrations were set as boundary conditions. Since the initial concentration 

of butyric acid is so low (192 - 576 mg/m^) the physical properties of the contaminated air 

remain constant as the reaction progresses. The properties of the contaminated air mixture were 

set to those of air at 25‘^C and average indoor air concentrations for O2 (20 % by volume), H2O 

(RH 30%), and CO2 (340 ppmv) were used. The multicomponent mass diffusivity was selected 



and the values for each of the species combinations were calculated for a gas-gas 

system(Treybal, 1980). 

The rate of reaction on the surface of the catalyst was developed (see Theory section 3.1.3) using 

external codes (macros) and integrated into the mass conservation equations for each reacting 

species. The reaction rate expressions were introduced to the model as source terms (Si from 

Equation 10) using user defined functions (UDFs). 

The radiation field was modeled using the DO method. The lamp faces were set to semi- 

transparent and the diffused radiation levels were initially set to give an area weighted average 

irradiance level on the outer catalyst wall of 7 W/m , which was the lowest irradiance level 

tested by Brosillon et al., (2008). The irradiance level was later increased to give an area 

weighted average irradiance level of 8.77, 10.5, 12.2, and 14 W/m on the outer catalyst wall, 

which were the other irradiance levels tested by Brosillon et al., (2008). The authors stated that 

they measured the irradiance level at various locations across the catalyst wall and used the 

average value to establish the reaction rate model. It was assumed that the absorbance and 

scattering effects were negligible and that the radiation field is unchanged throughout the 

reaction. 

3.2.3 Solution Setup 

The SIMPLE discretization scheme was selected using the pressure based solver for steady-state 

conditions. The default discretization methods were used for solving the conservation equations. 

The solution residuals were set to 1 e' for hydrodynamic elements, 1 e' for species mass 

fractions, and le'^ for the DO calculations. In this case it was determined that a higher residual 

was required for the species mass fractions in order to obtain accurate results. 

The system was set up for standard room conditions (25°C and 1 atm). The initial system 

conditions were established before the source terms were introduced. The inlets were set as a 

“velocity inlet” and the outlet was set as “outflow”. The inlet velocity was adjusted to give an 

outlet velocity of 0.189 m/s which matched the flow rate used by Brosillon (2008). To establish 

the species distribution the inlet mass fractions for butyric acid, O2, CO2, and EI2O were set as 

boundary conditions. Once the initial conditions were established the source terms were 

introduced to the catalyst surfaces for each of the reacting species. 



It is important to note that the radiation model is designed based on thermal radiation. In order 

to eliminate any interference of thermal radiation on the UV radiation the temperature was set to 

1 K in all cell zones within the system when solving the radiation model. If this step is not done, 

then all irradiance levels measured will be a combination of both thermal and UV radiation. 

3.3 Results and Discussion 

Microsoft Excel software was used to calculate the rate constants y, and % for equation 31 

using the nonlinear regression solver. The values of the rate constant were optimized in order to 

minimize the % error between the calculated reaction rate and the experimental reaction rate with 

the final constant values found in table 2. Looking at the denominator in equation 31 it appears 

that the UV irradiance level is in fact the dominating factor over the butyric acid concentration 

since yl » xCs- This is in line with the PCO kinetic theory which states that the UV irradiance 

is the governing factor in PCO reactions. 

Table 2: Constant values for equation 31 

(3 Y X 

9.44314 X 10 TT 0.31818 0.004160567 

The final results of the nonlinear regression can be seen in Figure 17. The final solution results 

gave calculated reaction rates within ± 8 % of the reported experimental reaction rates, with the 

exception of the case of the initial butyric acid concentration of 576 mg/m (± 24%). An initial 

concentration of 576 mg/m^ is well outside the range of butyric acid levels that would be found 

in indoor air. This level (576 mg/m^ or 609 ppbv) is also well above the odor threshold for 

butyric acid (240 ppbv). Since butyric acid gives off a very strong and unpleasant odor anything 

above the recommended threshold would not be tolerable. For this reason the case of Co = 576 

mg/m was not considered in the CFD model tests. 
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Figure 17: Linear regression results 

Using equation 31 the initial rate decomposition for different initial butyric acid concentrations 

over a range of UV intensities was first tested in Excel as shown in Figure 18. For the first three 

butyric acid concentrations the results were within 5% of the experimental results. For the final 

butyric acid concentration of 576 mg/m'^ the results were within 10-24% of the experimental 

results. Since a butyric acid concentration of 576 mg/m is well outside the range that would be 

found in indoor air this concentration was not considered when running the CFD models and so 

these results were acceptable. These results indicated that equation 31 should be able to predict 

the initial rate of reaction for different initial butyric acid concentrations and irradiance levels 

when implemented in the CFD model. 
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UV irraidance on the surface, I (W/m-) 

Figure 18: ro vs I experimental data (o) and predicted values using Excel ( ) 

Again, as outlined in the first case this \vas done in order to determine if the new reaction rate 

model would predict the rate of butyric acid decomposition comparable to the experimental 

results. Using Excel it was determined that the reaction rate model results are in good agreement 

with the experimental results. Again, it should be noted that Excel alone cannot determine if the 

reaction rate expression is accurate. In this case, Excel could not account for fluctuations in the 

UV irradiance level along the catalyst surfaces or determine if there are any mass transfer effects 

within the bulk of the system. A complete CFD model was still required in order to account for 

all parameters that may impact the overall decomposition of butyric acid since that is what was 

compared with the experimental results. 

3.3.1 CFD Model Results 

As the air entered the reactor above the outer catalyst wall, it flowed along the wall and through 

the internal catalyst filter where it finally exited through the outlet on the right side as shown in 

Figure 19. The streamline path indicates that there could be a zone of low mixing at the left end 

of the catalyst filter since most of the air is passing through the bottom half of the filter. A zone 

of low flow could cause some issues if this reactor configuration were tested at full scale. The 

problem area could cause mass transfer limitations through the bulk of the system and the air 

could become stagnant in this section of the reactor. Also, over time it could cause early fouling 



of the catalyst filter which would result in a shorter life span for the catalyst filter if the system is 

treating higher molecular weight or more complex contaminants which produce intermediates. 

The production of reaction intermediates that are not easily decomposed is the leading cause of 

catalyst fouling, and if these intermediates are not removed from the catalyst at a sufficient rate 

they will build up on the surface of the catalyst which would dramatically reduce the 

effectiveness of the catalyst and the overall performance of the PCO system. 

Figure 19: Streamline path of air through reactor 

Examining the species distribution along the catalyst surfaces, Figure 20, the drop in butyric acid 

across the catalyst surfaces can be seen. As would be expected the butyric acid levels dropped 

from left to right across the catalyst surfaces following the flow path of the air. Overall, there 

was a larger drop in the butyric acid concentration along the outer catalyst wall which would be 

expected since, as seen with the streamlines, the air passes more time over the outer catalyst wall 

than along the inner catalyst filter. Also, the air traveling through the filter had already been 

partially treated along the outer catalyst wall which could also account for the smaller variation 

in butyric acid levels along the inner catalyst filter. 
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Figure 20: Specie distribution of butyric acid along the activated catalyst surfaces 

The initial rate of decomposition of butyric acid was predicted for initial concentrations of 192, 

288, and 384 mg/m^ at UV irradiance levels of 7, 8.77, 10.5, 12.2 and 14 W/m^, Figure 21. For 

all three initial butyric acid concentrations the rate of decomposition was over estimated (20 - 

49 %) for the various UV irradiance levels and it appears that the rate of reaction has already 

reached steady state. In this case steady state refers to the effect of UV irradiance levels on the 

rate of reaction. For all three concentrations there was no increase in the rate of butyric acid 

decomposition as the UV irradiance level was increased from 7 W/m up to 14 W/m . In real life 

this would indicate that the catalyst surface is saturated with radiation energy (producing enough 

electron-hole pairs) at 7 W/m . Above the point of saturation the system becomes inefficient in 

terms of energy usage since the catalyst is either producing excessive electron-hole pairs or not 

absorbing the energy at all. However, the experimental results show that the rate of reaction 

should still be increasing with UV irradiance levels and so the catalyst surface is not saturated. 
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Figure 21; Comparison of CFD model results (—) with experimental data 

This could be due to the general assumption that the UV irradiance is uniform across the catalyst 

surface. However, from examining the radiation field of the CFD model it was noted that the 

radiation field across the catalyst surface was not entirely uniform. The levels were most 

concentrated across the center of the reactor and then dropped towards the two ends of the 

reactor. Figure 22. By assuming that the UV irradiance levels would be uniform across the 

catalyst surface the rate of reaction was initially over estimated in Excel since the rate of 

decomposition at the ends of the reactor would have been lower than across the center of the 

reactor. This demonstrates why Excel alone is not a good indicator of whether the rate 

expression is accurate. 

In order to get an accurate average of the UV irradiance on the catalyst surface the levels should 

be measured across the entire surface at even intervals with as many readings as possible. If 

Brosillon et ah,(2008) did not take sufficient UV readings at the ends of the reactor then the 

levels being reported would have been slightly higher than the actual UV irradiance. 

Looking at Figure 22, it can be seen that the irradiance levels at (a) the two ends of the catalyst 

wall were around 4.2 W/m^ while in the center of the catalyst wall the irradiance levels were 

around 8.27 W/m^and (b) at the two ends of the catalyst filter the UV irradiance levels were 

around 11 W/m^ while at the center of the catalyst filter the irradiance level were around 23 

W/m^. This indicates that the irradiance levels at the two ends of the catalyst surface were only 



half of that found in the center of the catalyst. This was not consistent with the assumption that 

the irradiance would be uniform across the catalyst. This can be explained by the fact that the 

UV radiation will diffuse away from the lamp uniformly in all directions, however, at the ends of 

the catalyst it is only the UV light from the ends of the lamp that will reach the catalyst. In the 

center of the catalyst UV radiation from the entire length of the lamp is able to reach the catalyst 

and so it will be receiving a higher UV dose of UV radiation which results in higher irradiance 

values. Since Brosillon et al.,(2008) did not state where the irradiance levels were measured we 

were left to assume that their readings were overestimating the irradianee levels across the 

catalyst by not taking sufficient readings at the ends of the catalyst. 
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Figure 22: Irradiance (a) across the outer catalyst wall, and (b) throughout the system 



3.3.2 CFD Results Using Adjusted Rate of Reaction 

For the second set of runs the rate of reaction was reduced by a factor of 0.5 to account for large 

variations in the UV irradiation levels across the catalyst surface. Using the reduced reaction 

rate model the CFD model results were much closer to the experimental results as can be seen in 

Figure 23. In this case the model results were within 2 - 15 % of the experimental results which 

is a good agreement. Due to lack of information regarding the experimental setup for this case, 

several assumptions were made that may not fully compare with experimental conditions. This 

can explain the observed deviation between CFD model and experimental results. It also shows 

that the rate of decomposition of butyric acid does not immediately reach steady state. 

l.OE-07 

E 8.0E-08 
O 

cf 

6.0E-08 
fU 
cu 
k. 

S 4.0E-08 
03 

"TO 
•| 2.0E-08 

O.OE+00 

Figure 23: Model results (—), experimental data (*) 
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3.4 Conclusions 

As seen in the previous case, the experimental reaction rates cannot be directly implemented into 

the CFD model for modeling the complex surface reactions. In this second case, using this novel 

approach the reaction rate model was able to predict the rate of decomposition for butyric acid in 

the air for a variety of initial concentrations and UV irradiance levels at the catalyst surface. The 

initial CFD model results were off by 20 - 50% due to overestimation of the initial reaetion rate 

due to the variations in UV irradiance levels across the reacting surface. The variations in the 

UV irradiance also demonstrated why Excel is not a good indicator the overall rate of butyric 



acid decomposition since it cannot account for any mass transfer limitations or variations in the 

radiation levels that would impact the rate of decomposition. 

The CFD model results also disproved the general assumption that the UV irradiance levels are 

uniform across the catalyst surface. The UV irradiance levels can vary greatly across the length 

of the catalyst surface and so sufficient readings must be taken across the entire catalyst surface 

in order to obtain an accurate average of the UV irradiance. If not the resulting rate of reaction 

would be overestimated (or underestimated) as seen in this case. 

After examining the streamline paths for the air through the reactor system, it became apparent 

that there would be a zone of low mixing at one end of the catalyst filter due to most of air 

passing through the bottom half of the filter. This could result in a drop in reactor performance 

and possibly a shorter life span of the catalyst if this reactor configuration was run at full scale. 



Chapter 4 — Applications 
4.1 Optimize PCO System Design 

Using the new approach to modeling surface reactions that has been outlined in this work, 

researchers can obtain a better understanding of how VOC levels are actually changing on the 

surface of the catalyst. As demonstrated in the first case, this new approach provides more 

accurate reaction rate expression than the reaction rates obtained from experimental work. By 

defining the reaction rate expressions solely by what is happening at the catalyst surface, 

researches can compare the performance of different systems more accurately by comparing the 

PCO reactor performance as opposed to the overall performance of the entire system. 

One area of study that this research could help to enhance is the research into different catalyst 

materials, as well as different catalyst support materials, since different reactor types or support 

material can experience different mass transfer and mixing effects through the bulk of each 

system which would affect experimental reaction rate expressions. It is difficult to accurately 

compare two systems, which will experience different mass transfer effects, to determine which 

of the two systems is more effective at removing the VOCs. Mass transfer effects within the 

bulk of the system can be adjusted to minimize any mass transfer limitations. So by using this 

CFD modeling approach, researchers can model the two systems and compare the results of what 

is happening on the catalyst surfaces to determine which system is truly more effective at 

treating the VOCs in the air. 

Obtaining an accurate rate of reaction at the catalyst surface also allows for better optimization 

of the PCO system design. By converting the rate of reaction so that it describes only the 

interactions at the catalyst surface the rate of reaction is now independent of what of happening 

in the bulk of the system. Using the CFD model results to evaluate the mass transfer effects in 

the bulk of the system researchers can address any mass transfer concerns in order to improve the 

overall system performance. The performance of a system can be evaluated for changing 

internal geometry (mixing effect), flow rate, flow obstructions (such as support material), 

obstructions in the radiation field, etc. 



Using this new approach to develop an integrated CFD model also offers the opportunity to 

predict how the PCO system would perform at full scale inside a home or office building. With 

experimental setups at full scale, there are many potential sources of error, mainly that VOC 

levels can be so low that it is difficult to obtain an accurate measurement. In order to achieve 

accurate measurements at full scale the initial VOC levels would need to be increased in order to 

obtain accurate measurements which would pose potential health risks for any individual present 

in the space. Using CFD to model the full scale setup, researchers can determine if the PCO 

system is capable of treating the contaminated air on a larger scale and also how much the 

system could handle. The same system could also be tested for several different applications 

(home, office building, library, kitchen, etc.) to determine which applications the system is best 

suited for. A simple case study was performed to show how the proposed new approach to 

reaction modeling developed in the thesis work could be used to estimate the performance of a 

PCO system in a room within a home. 

4.2 Case Study 

A case study was performed in order to demonstrate how this research could be used to predict 

the performance of a PCO in treating butyric acid within a closed room. The PCO system was 

enclosed within the air duct system in a closed room, as it would be in real life. The PCO system 

was tasked with treating air contaminated with butyric acid at typical levels found in indoor air to 

see how the system would perform when treating the contaminated air on a larger scale. The 

reaction rate expression obtained in the second case for butyric acid was used in this case study 

to model the rate of reaction at the catalyst surface. This case study also looked at the 

introduction of a constant point source of butyric acid. In this case, that point source represented 

one or two people emitting butyric acid at a constant rate. 

4.2.1 Geometry Model and Mesh Structure 

The system was modeled in 2D in order to simplify the design and reduce the computation time 

required. The closed room (2m high x 2m wide) with a cycling air duct system (0.295m x 0.2 

m), as shown in Figure 24, was modeled. The dimensions of the air duct were selected to be 

within the size range for rectangular air ducts in a home (see Appendix F for common duct sizing 

for air ventilation systems). The air duct system contained a PCO system based on the design 

used in the second case. By containing the PCO system within the air duct there would be no 



risk of UV exposure to skin. The PCO system consisted of 3 UV lamps (diameter 28 mm) 

mounted horizontally in front of a catalyst filter (thickness 2 mm). Inside the closed room was a 

chair which acted as the constant source of butyric acid, representing one or two people inside 

the room. A virtual fan was placed at the end of the air duct in order to produce the axial flow 

through the duct system. After using several different mesh numbers, the solution reached mesh 

independent results with a final mesh number of 157,753. 

UV Lamps 

Figure 24: Case study system geometry 

4.2.2 Operating and Boundary Conditions 

Ansys Fluent 14.0 was used to model the reactor system. In order to achieve adequate flow 

through the air duct the air should be experiencing turbulent flow conditions (Re 3657 which is 

transitional flow) so the k — e method was used to model the turbulent flow within the system. 

To model the flow through the inner catalyst filter the interior of the filter medium was set as a 

“porous jump”. The filter was modeled using data from Taranto et al., (2009) for pressure drop 

across a near identical filter (permeability 2.2 e’^^m^, pressure-jump coefficient 0.013714 m"') for 

a variety of flow rates under similar flow conditions. 

The inlet species concentrations were set as boundary conditions. The initial concentration of 

butyric acid in the room was so low (1 ppmv, above the upper limit of the odor threshold for 

butyric acid) the physical properties of the contaminated air would remain constant as the 



reaction progresses. The properties of the contaminated air mixture were set to those of air at 

25°C and average indoor air concentrations for O2 (20 % by volume), H2O (RH 30%), and CO2 

(340 ppmv) were used. The multicomponent mass diffusivity was selected and the values for 

each of the species combinations were calculated for a gas-gas system (Treybal, 1980). 

The radiation field was modeled using the DO model. The lamp faces were set to semi- 

transparent and the diffused radiation levels were set to give an area weighted average irradiance 

level on the catalyst filter of 7 w/m . It was assumed that the absorbance and scattering effects 

were negligible and that the radiation field was unchanged throughout the reaction. 

4.2.3 Solution Setup 

The SIMPLE discretization scheme was selected using the pressure based solver. The default 

discretization methods were used for solving the conservation equations. The solution residuals 

were set to le' for hydrodynamic elements, le' for species mass fractions, and le‘ for the DO 

calculations. 

The system was set up for standard room conditions (25°C and 1 atm). To establish the initial 

system conditions the model was run under steady-state conditions. The interior boundary of the 

fan was set as “FAN”. By trial and error, the pressure drop was adjusted to 230 Pa across the fan 

in order to give an average velocity of 0.24 m/s across the catalyst filter and an average velocity 

of 2 m/s across the duct system, which falls within the range of acceptable air velocity for an air 

vent in a home (The Engineering Toolbox, 2014). To establish the species distribution the initial 

mass fractions for butyric acid, O2, CO2, and H2O in the bulk of the system were set as boundary 

conditions. 

It is important to note that the radiation model is designed for thermal radiation. In order to 

eliminate any interference of thermal radiation from UV radiation the temperature was set to 1 K 

in all cell zones within the system when solving the radiation model. However, all physical 

properties are used at ambient temperature. This technique does not result in interference with 

the conservation of mass and momentum and resolves the problem for the radiant energy 

conservation equation. 

Once the initial conditions were established, the system was switched from steady-state 

conditions to transient and the reaction model was introduced to the catalyst surfaces for each of 



the reacting species. The rate of reaction on the surface of the catalyst that was developed in the 

second case using external codes (macros) was used in this case study and was integrated into the 

mass conservation equations for all species. The reaction rate expressions were introduced to the 

model as source terms from Equation 10) using user defined functions (UDFs). 

After determining how long the PCO system required to treat the contaminated air and reach 

steady-state the model was reset to the initial conditions and a constant source of butyric acid 

was introduced. This point source represented a person in a closed room while emitting butyric 

acid at a constant rate (1.9 mg/h/person is the average rate butyric acid is emitted from the 

human body (Cooper & Alley, 2011)). 

4.3 Results and Discussion 

4.3.1 PCO System with No Point Source 

The initial test run of the CFD model was performed prior to introducing the constant source of 

butyric acid. This was to determine how long it would take the PCO system to reach steady state 

and at what concentration it would reach a steady state. 

Figure 25 shows the concentration profile of butyric acid throughout the system. As the 

contaminated air entered the air duct on the left it passed by the UV lamps and through the 

catalyst filter where it was treated. The treated air then traveled down the air duct and exited on 

the right where it re-entered the room and was mixed back in with the contaminated air. 
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Figure 25: Concentration profile of butyric acid throughout the closed room after 4.5 hours 

Similar to the first case, it appears that the closed system is behaving as a batch reactor. That 

means that the hydrodynamics of the air through the room should be well known and easily 

modeled with CFD software. 
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Figure 26: Streamline path of air through system 



A major concern when running the PCO system within a home would be human exposure to the 

UV radiation. As shown in Figure 27, in this case study all of the UV radiation is contained 

within the air duct system and is not entering the room. This setup would be ideal for any 

applications where there is the potential for human contact since it eliminates any potential 

exposure to the harmful UV radiation. By using a full scale CFD model we can determine if 

there are not only hydrodynamic or mass transfer issues that need to be addressed, but also if 

there are any issues with the radiation field. Looking at Figure 27, it appears that the UV 

irradiance level across the catalyst filter might not be uniform. The UV irradiance level will be 

higher at the center of the filter than at the two ends, similar to the second case. This could be 

fixed by adjusting the location of the UV lamps with respect to the catalyst filter. 

Figure 27: Radiation field throughout system 

From Figure 28 it is seen that with an initial butyric acid concentration of around 1 ppmv the 

system took approximately 4 hours to reach a steady state at a final butyric acid concentration of 

11.3 ppbv, which is below the odor threshold for butyric acid 240 ppbv(Lefflngwell & 

Associates, 2008). Since butyric acid has a very rancid smell anything above the odor threshold 

would be uncomfortable. With a final butyric acid concentration well below the odor threshold 

the system was capable of returning the room to a comfortable level. 
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Figure 28: Model results without butyric acid source 

4.3.2 PCO System with Point Source 

When the constant butyric acid source was introduced the overall removal rate of butyric acid 

did decreased, which can be expected. After 4 hours the butyric acid concentration dropped to 

23.6 ppbv, which is again below the odor threshold for butyric acid. This demonstrates that in 

this case the PCO system was capable of treating the contaminated air as well as handling the 

constant emission of butyric acid. In fact, after about an hour and a half (88 min) the butyric 

acid in the room had already dropped to just below the odor threshold. 

When the model ran a third time, this time in the case of two people standing in the room, the 

same trend was seen. After 4 hours the concentration of butyric acid in the room had dropped to 

32.1 ppbv. Again the system was capable of treating the contaminated air and handling the 

constant emission of butyric acid. In the case of two people in the closed room the system 

required a little over an hour and a half (94 min) to reduce the butyric acid concentration below 

the odor threshold. 
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Figure 29: Model results with a constant source of butyric acid 

4.3.3 Evaluating System Performance 

From these results, the performance of the PCO system could be optimized by evaluating the UV 

irradiance levels on the catalyst surface as well as the hydrodynamics within the system. Using 

CFD, different distances between the UV lamps and the catalyst surface could be modeled in 

order to determine the optimal distance for this configuration. Also, different UV irradiance 

levels could be tested to determine the most energy efficient UV irradiance level for this system. 

This step was not taken due to time constraints, but this simple case model could be used as the 

basis for a new thesis project using CFD to model full scale PCO treatment systems for various 

applications. 

In order to simplify this case study, only one room with a closed duct system was modeled. 

However, CFD could also be used to model an entire home or office building with multiple 

rooms and duct lines in 3D at full scale. A full scale model of a home or office building can also 

be used to determine how the PCO system will perform under varying air flow rates since the 

flow rate of air throughout an air duct system will vary at different points along the duct line. 

The flow rate will also vary as heating and air conditioning systems are turned on and off. This 

full scale model would allow the user to obtain a more accurate portrayal of how VOC levels 

would be changing within the different rooms of a home or office building as the air is 

recirculated throughout the entire structure. 



4.4 Conclusions 

This case study demonstrates how the new proposed approach to reaction modeling developed in 

this thesis could be used to predict PCO system performance treating air in a home. In this case, 

the PCO system was capable of treating air contaminated with butyric acid and was able to 

quickly reduce the concentration below the odor threshold. The system was capable of treating 

the air when constant sources of butyric acid were present. 

By developing a rate of reaction that describes only what is happening at the catalyst surface, the 

rate of reaction is no longer dependent on the overall system geometry and operating conditions. 

By using CFD to model the PCO system within a home or office building researchers can 

determine if the system is capable of treating the contaminants present and to what degree it can 

remove the VOCs without having to install and monitor a system. 



Chapter 5 - Conclusions and Future Work 
A new approach was developed to adjust experimental reaction rate expressions for PCO 

systems in order to reflect the actual rate of reaction happening on a catalyst surface. This 

approach considered the reacting volume as happening only within a thin layer of cells just 

above the reactive catalyst surface. Through a series of steps, the reaction rate expressions 

became dependent solely on the concentration of air contaminants, e.g. formaldehyde, at the 

surface, as opposed to the bulk concentrations. This meant that the change in concentration that 

is being calculated using on the surface of the catalyst, unlike the experimental reaction rates, 

which are based on the bulk concentrations that are dependent on both reaction kinetics and mass 

transfer effects. Two case studies were used to demonstrate how this new approach can be 

employed to adapt the experimental reaction rates in order to reflect the actual rate of reaction on 

the catalyst surface. 

In the first case, the experimental kinetic model for formaldehyde decomposition (simple case) 

was adapted to reflect surface reactions based on VOC levels on the catalyst surface. Using the 

developed approach to adapt the experimental reaction rates a new reaction rate model was 

developed that was able to accurately predict the rate of formaldehyde decomposition over time. 

The results from this first case study showed that the new reaction rate model was independent of 

mass transfer effects within the system. A complete CFD model was developed for the system 

considering hydrodynamics, species transport, and reaction kinetics, and it was in agreement 

with the experimental data that was reported by the author. The complete CFD model showed 

how CFD can be used to optimize system design by calculating the flow path of the air through 

the system and the concentration profile of the target VOC within the system. In this case the 

complete CFD model showed that the closed system was behaving like a perfect mixed batch 

reactor and a uniform concentration profile throughout the bulk of the system. 

Prior to introducing the reaction rates into the CFD model the reaction rate expressions were 

tested in Microsoft Excel software in order to determine if the rate expressions would predict 

concentrations within an acceptable range of the experimental results when considering kinetics 

alone. As seen in the second case, complete CFD models were still required in order to account 

for any other influencing factors, such as mass transfer limitations and variations in the UV 



irradiance levels that would impact the overall rate of decomposition of the target VOC. In the 

second case, after examining the complete CFD model it became apparent that there were 

hydrodynamic issues within the reactor that would cause mass transfer limitation within the 

system. In real life, these limitations could result in a drop in reactor performance and a shorter 

life span of the catalyst if this reactor configuration was run at full scale. At the end, the rate 

model was able to predict the rate of decomposition for butyric acid in the air for a variety of 

initial concentrations and UV irradiance levels at the catalyst surface. In this case, the CFD 

model results also disproved the general assumption that UV irradiance levels are uniform across 

the catalyst surface. After examining the UV irradiance levels across the catalyst surface, it was 

determined that the irradiance level drops significantly across the catalyst surface from the center 

to the outside edges. 

A simple case study was also developed in order to demonstrate how the proposed approach to 

reaction modeling could be used to predict PCO system performance treating air in a home. In 

this case, the PCO system was tasked with treating air contaminated with butyric acid and was 

able to quickly reduce the concentration below the odor threshold. This simple case study proves 

the strong capability of CFD modeling to model full scale applications of a PCO when integrated 

into an existing air duct system. In this case, only a single study room with a closed air duct 

system was modeled. However, it demonstrates how CFD can also be used to predict the 

performance of the PCO system in treating contaminated air throughout an entire home. 

Future Work 

Due to time limitations, the case study performed in this research was very basic in order to 

demonstrate the potential applications of this research. The next step in this research would be to 

perform a full scale case study to determine how the PCO system would perform under different 

operating conditions for treating VOCs within a home. The full scale case study should 

consider: 

1. A full-scale home with multiple rooms (each of which could contain different levels of 

VOCs or different target pollutants) and a complete HVAC system; 

2. Varying hydrodynamics due different HVAC conditions for heating, cooling, and 

circulation; 



3. The home as both a batch reactor (closed system with no fresh air entering the home or 

exhaust air leaving the home) and a CSTR reaetor (open system with some fresh air being 

supplied to the home from outside and some air being exhausted from the home); 

4. Optimization of the PCO reactor within the air duct (reactor location, lamp location, UV 

intensity); 

5. The maximum load the PCO system could handle with different VOC sources throughout 

the home. 
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Appendix A: UDF Sources Codes - First Case 
First Approach 

Custom surface reaction rate UDF 

#include "udfh" 

#include "mem.h" 

#defme K1 0.001995 

DEFINE_INIT(RESET,d) 

{ 

Thread *t; 

cell t c; 

face t f; 

real A[ND_ND], area, t_ID, vol; 

// Loop over all threads in the domain and reset the memory to zero 

thread_loop_c(t,d) 

{ 

begin_c_loop(c,t) 

{ 
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C_UDMI(c,t,0)=0; 

} 

end_c_loop(c,t) 

} 

// Loop over face on specified wall to reset the UDM of adjacent cell to Volume of Cell/ 

Area of Face 

thread_loop_f(t,d) 

{ 

t_ID=THREAD_ID(t); 

//For this case the reaction is happening on the surface with ID=7 

if(t_ID==9) 

{ 

begin_f_loop (f,t) 

{ 

// Calculate the area of the face 

F_AREA(A,f,t); 

area=NV_MAG(A); 

// Calculate the volume of adjacent cell 

vol=C_VOLUME(F_CO(f,t),THREAD_TO(t)); 

C_UDMI(F_C0(f,t),THREAD_T0(t),0)=area/vol; 

} 
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end_f_loop(f,t) 

} 

} 

printf("all memories are reset to zero, cell on the specified wall isreset to %f\n", 

vol/area); 

} 

DEFINE_SOURCE(CH20_source, c, t, dS, eqn) 

{ 

real source, C_ch2o, ratel; 

C_ch2o=C_YI(c,t,0); 

ratel^Kl *C_ch2o*C_R(c,t)/30; 

C_UDMI(c,t,l)=ratel; 

return C_UDMI(c,t,0)*C_UDMI(c,t, 1 )*(-30); 

//return source; 

} 

DEFrNE_SOURCE(02_source, c, t, dS, eqn) 

{ 

real source; 

return C_UDMI(c,t,0)*C_UDMI(c,t,l)*(-32); 
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//return source; 

} 

DEFINE_SOURCE(C02_source, c, t, dS, eqn) 

{ 

real source; 

return C_UDMI(c,t,0)*C_UDMI(c,t,l)*44; 

//return source; 

} 

DEFINE_SOURCE(H20_source, c, t, dS, eqn) 

{ 

real source; 

return C_UDMI(c,t,0)* C_UDMI(c,t, 1 )* 18; 

//return source; 

} 
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Second Approach 

Custom surface reaction rate UDF 

#include "udf.h” 

#include "mem.h" 

#defmeKl 0.001007 

#defmeK2 0.012171166 

DEFINE_INIT(RESET,d) 

{ 

Thread *t; 

cell t c; 

face t f; 

real A[ND_ND], area, t_ID, vol; 

// Loop over all threads in the domain and reset the memory to zero 

thread_loop_c(t,d) 

{ 

begin_c_loop(c,t) 

{ 
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C_UDMI(c,t,0)=0; 

} 

end_c_loop(c,t) 

} 

// Loop over face on specified wall to reset the UDM of adjacent cell to Volume of Cell/ 

Area of Face 

thread_loop_f(t,d) 

{ 

t_ID=THREAD_ID(t); 

//For this case the reaction is happening on the surface with ID=7 

if(t_ID==9) 

{ 

begin f loop (f,t) 

{ 

// Calculate the area of the faceO.OO 

F_AREA(A,f,t); 

area=NV_MAG(A); 

// Calculate the volume of adjacent cell 

vol=C_VOLUME(F_CO(f,t),THREAD_TO(t)); 

C_UDMI(F_C0(f,t),THREAD_T0(t),0)=area/vol; 



end_f_loop(f,t) 

} 

} 

printf(''all memories are reset to zero, cell on the specified wall isreset to %f\n", 

vol/area); 

} 

DEFINE_SOURCE(CH20_source, c, t, dS, eqn) 

{ 

real source, C_ch2o, ratel; 

C_ch2o=C_YI(c,t,0); 

ratel=Kl/(l+Kl/K2)/30*C_R(c,t)*C_ch2o; 

C_UDMI(c,t,l)=ratel; 

source=-C_UDMI(c,t,0)* 3 0*rate 1; 

return source; 

} 

DEFrNE_SOURCE(02_source, c, t, dS, eqn) 

{ 

real source; 

//C_ch2o=C_YI(c,t,0); 
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//rate 1 =C_ch2o*Kl /(I +K2); 

source=C_UDMI(c,t,0)*-C_UDMI(c,t,l)*32; 

return source; 

} 

DEFINE_SOURCE(C02_source, c, t, dS, eqn) 

{ 

real source; 

//C_ch2o=C_YI(c,t,0); 

//ratel=C_R(c,t)*C_ch2o*29/30*Kl/(l+K2); 

source=C_UDMI(c,t,0)*C_UDMI(c,t, 1 )*44; 

return source; 

} 

DEFINE_SOURCE(H20_source, c, t, dS, eqn) 

{ 

real source; 

//C_ch2o=C_YI(c,t,0); 

//ratel=C_R(c,t)*C_ch2o*29/30*Kl/(l+K2); 

source=C_UDMI(c,t,0)*C_UDMI(c,t, 1 )* 18; 

return source; 



} 
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Thirst Approach 

Custom surface reaction rate UDF 

#include "udf.h" 

#include ’’meni.h" 

DEFINE_INIT(RESET,d) 

{ 

Thread *t; 

cellt c; 

face t f; 

real A[ND_ND], area, t_ID, vol; 

//Loop over all threads in the domain and reset the memory to zero 

thread_loop_c(t,d) 

{ 

begin_c_loop(c,t) 

{ 

C_UDMI(c,t,0)=0; 

} 

end_c_loop(c,t) 



} 

// Loop over face on specified wall to reset the UDM of adjacent cell to Volume of Cell/ 

Area of Face 

thread_loop_f(t,d) 

{ 

t_ID=THREAD_ID(t); 

//For this case the reaction is happening on the surface with ID=7 

if(t_ID==9) 

{ 

begin_f_loop (f,t) 

{ 

// Calculate the area of the faceO.OO 

F_AREA(A,f,t); 

area=NV_MAG(A); 

// Calculate the volume of adjacent cell 

vol=C_VOLUME(F_CO(f,t),THREAD_TO(t)); 

C_UDMI(F_C0(f,t),THREAD_T0(t),0)=l; 

} 

end_f_loop(f,t) 

} 

} 
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printf("all memories are reset to zero, cell on the specified wall isreset to %f\n", 1/vol); 

} 

DEFINE_SOURCE(CH20_source, c, t, dS, eqn) 

{ 

real source,C_ch2o, ratel; 

//C_ch2o = kg/m3 ch2o 

C_ch2o=C_YI(c,t,0)*C_R(c,t); 

// rate = kg/m3/s 

if (C_ch2o>=0.000000765432) 

{ 

ratel=((-E932e3)*pow(C_ch2o,2.)+(3.677e-3)*C^ch2o-(1.59e-9))*1100; 

} 

else if (C_ch2o<0.000000765432) 

{ 

ratel=((3.685e23)*pow(C_ch2o,5.)- 

(9.897e 17)*pow(C_ch2o,4.)+( 1.044e 12)*pow(C_ch2o,3 .)- 

(5.413e5)*pow(C_ch2o,2.)+(0.1383)*C_ch2o-(E393e-8)); 

} 

C_UDMI(c,t,l)=ratel*3806; 

source=C_UDMI(c,t,0)*(-ratel); 



//source=ratel; 

return source; 

} 

DEFINE_S0URCE(02 source, c, t, dS, eqn) 

{ 

real source; 

//C^ch2o=C_YI(c,t,0); 

//ratel=C_ch2o*Kl/(l+K2); 

source=C^UDMI(c,t,0)*C_UDMI(c,t,l)*(-32/30); 

return source; 

} 

DEFINE_SOURCE(C02_source, c, t, dS, eqn) 

{ 

real source; 

//C_ch2o=C_YI(c,t,0); 

//ratel=C_R(c,t)*C_ch2o*29/30*Kl/(l+K2); 

source=C_UDMI(c,t,0)*C_UDMI(c,t,l)*(44/30); 

return source; 

} 
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DEFINE_SOURCE(H20_source, c, t, dS, eqn) 

{ 

real source; 

//C_ch2o=C_YI(c,t,0); 

//ratel=C_R(c,t)*C_ch2o*29/30*Kl/(l+K2); 

source=C_UDMI(c,t,0)*C_UDMI(c,t, 1 )*(18/30); 

return source; 

} 
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Appendix B: UDF Sources Codes - Second 

Case 

Custom surface reaction rate UDF 

#include "udf.h'' 

#include "mem.h" 

#include ''sg disco.h" 

#define a 9.44314e-ll/ /rate constants based on Co 195 and 384 mg/m3 with Io=() 

#define b 0.31818 

#defmee 0.004160567 

#define C_DO(c,t)C_STORAGE_R_XV(c,t,SV_DO_IRRAD,0) 

DEFINE_lNIT(RESET,d) 

{ 

Thread *t; 

cell t c; 

face t f; 

real A[ND_ND], area, t_ID, vol; 



// Loop over all threads in the domain and reset the memory to zero 

thread_loop_c(t,d) 

{ 

begin_c_loop(c,t) 

{ 

C_UDMI(c,t,0)=0; 

} 

end_c_loop(c,t) 

} 

// Loop over face on specified wall to reset the UDM of adjacent cell to Volume of Cell/ 

Area of Face 

thread_loop_f(t,d) 

{ 

t_ID=THREAD_ID(t); 

if (t_ID=23) //catalyst wall ID. Must use a new if statement for each thread ID 

{ 

begin f loop (f,t) 

{ 

// Calculate the area of the faceO.OO 

F_AREA(A,f,t); 



area=NV_MAG(A); 

} 

// Calculate the volume of adjacent cell 

vol=C_VOLUME(F_CO(f,t),THREAD_TO(t)); 

C_UDMI(F_C0(f,t),THREAD_T0(t),0)-area/vol; 

} 

end_f_loop(f,t) 

} 

else if (t_ID==30) //filter surface ID 

{ 

begin f loop (f,t); 

{ 

// Calculate the area of the faceO.OO 

F_AREA(A,f,t); 

area=NV_MAG(A); 

// Calculate the volume of adjacent cell 

vol=C_VOLUME(F_CO(f,t),THREAD_TO(t)); 

C_UDMI(F_C0(f,t),THREAD_T0(t),0)=area/vol; 

} 

end_f_loop(f,t) 
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printf("all memories are reset to zero, cell on the specified wall isreset to %f\n", 

VO 1/area); 

} 

DEFINE_SOURCE(BUTYRIC_source, c, t, dS, eqn) 

{ 

real source; 

real C butyric, ratel, Irrad; 

C_butyric=C_YI(c,t,0)*C_R(c,t)*10e6; /7C in mg/ra3 

Irrad=C_DO(c,t); //I in W/m2 (Adjusting as I on catalyst surface changes) 

ratel=(a*Irrad/(l+b*Irrad+e*C_butyric)*C_butyric); //rate in kmol/m3~systera/s 

C_UDMI(c,t,l)=(0.0216/0.361)*C_UDMI(c,t,0)*ratel*0.5; //rate in kmo!/m3-cell/s 

C_UDMI(c,t,2)=Irrad; 

source=-C_UDMI(c,t,l)*88.11 ; //source in kg/ni3/s 

//source=C_ch2o * (-rate 1); 

return source; 

} 

DEFINE_SOURCE(02_source, c, t, dS, eqn) 

{ 

real source; 

//C_ch2o=C_YI(c,t,0); 
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//ratel=C_ch2o*Kl/(l+K2); 

source=C_UDMI(c,t, 1 )* 32* -5; 

return source; 

} 

DEFINE_SOURCE(C02_source, c, t, dS, eqn) 

{ 

real source; 

//C_ch2o=C_YI(c,t,0); 

//ratel=C_R(c,t)*C_ch2o*29/30*Kl/(l+K2); 

source=4*C_UDMI(c,t,l)*44; 

return source; 

} 

DEFrNE_SOURCE(H20_source, c, t, dS, eqn) 

{ 

real source; 

//C_ch2o=C_YI(c,t,0); 

//ratel=C_R(c,t)*C_ch2o*29/30*Kl/(l+K2); 

source=4*C_UDMI(c,t,l)* 18; 

return source; 



DEFINE_PROPERTY(Absorption_coefficient,c,t) 

{ 

real abs coeff; 

abs_coeff=41.77*C_YI(c,t,0)+3e-17; 

} 
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Appendix C: UDF Sources Codes - Case 

Study 

Custom surface reaction rate UDF 

#include *’udfJi" 

^include "mem.h” 

#include ”sg_disco.h” 

#defme a 9.44314e-11//rate constants based on Co 195 and 384 mg/m3 with Io=0 

#define b 0.31818 

#defmee 0.004160567 

#define C DO(c,t)C_STORAGE_R_XV(c,t,SV_DO_lRRAD,0) 

DEFINE INIT(RESET,d) 

{ 

Thread *t; 

cell t c; 

face t f; 

real A[ND_ND], area, t_ID, vol; 



// Loop over all threads in the domain and reset the memory to zero 

thread_loop_c(t,d) 

{ 

begin_c_loop(c,t) 

{ 

C_UDMI(c,t,0)=0; 

} 

end_c_loop(c,t) 

} 

// Loop over face on specified wall to reset the UDM of adjacent cell to Volume of Cell/ 

Area of Face 

thread_loop_f(t,d) 

{ 

t_ID=THREAD_ID(t); 

if (t_ID==13) //catalyst wall ID. Must use a new if statement for each thread ID 

{ 

begin f loop (f,t) 

{ 

// Calculate the area of the faceO.OO 

F_AREA(A,f,t); 



area=NV_MAG(A); 

// Calculate the volume of adjacent cell 

vol=C_VOLUME(F_CO(f,t),THREAD_TO(t)); 

C_UDMI(F_C0(f,t),THREAD_T0(t),0)=area/vol; 

} 

end_f_loop(f,t) 

} 

/* else if (t_ID==30) //filter surface ID 

{ 

begin f loop (f,t); 

{ 

// Calculate the area of the faceO.OO 

F_AREA(A,f,t); 

area=NV_MAG(A); 

// Calculate the volume of adjacent cell 

vol=C_VOLUME(F_CO(f,t),THREAD_TO(t)); 

C_UDMI(F_C0(f,t),THREAD_T0(t),0)=area/vol; 

} 

end_f_loop(f,t) 



printf("all memories are reset to zero, cell on the specified wall isreset to %f\n", 

VO 1/area); 

} 

DEFINE_SOURCE(BUTYRIC_source, c, t, dS, eqn) 

{ 

real source; 

real C butyric, ratel, Irrad; 

C_butyric=C_YI(c,t,0)*C_R(c,t)*10e6; //C in mg/m3 

Irrad=C_DO(c,t); //I in W/m2 (Adjusting as I on catalyst surface changes) 

ratel=(a*Irrad/(l+b*Irrad+e*C_butyric)*C_butyric); //rate in kmol/m3-system/s 

C_UDMI(c,t,l)=(0.0216/0.361)*C_UDMI(c,t,0)*ratel*0.5; //rate in kmol/m3-cell/s 

C_UDMI(c,t,2)=Irrad; 

source=-C_UDMI(c,t,l)*88.11 ; //source in kg/ni3/s 

//source=C_ch2o*(-ratel); 

return source; 

} 

DEFINE_SOURCE(02_source, c, t, dS, eqn) 

{ 

real source; 

//C_ch2o=C_YI(c,t,0); 
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//rate 1 -C_ch2o*K 1 /(1+K2); 

source=C_UDMI(c,t, l)*32*-5; 

return source; 

} 

DEFINE_SOURCE(C02_source, c, t, dS, eqn) 

{ 

real source; 

//C_ch2o=C_YI(c,t,0); 

//ratel=C_R(c,t)*C_ch2o*29/30*Kl/(l+K2); 

source=4* C_UDMI(c,t, 1 )*44; 

return source; 

} 

DEFINE_SOURCE(H20_source, c, t, dS, eqn) 

{ 

real source; 

//C_ch2o=C_YI(c,t,0); 

//ratel=C_R(c,t)*C_ch2o*29/30*Kl/(l+K2); 

source=4*C_UDMI(c,t, 1 )* 18; 

return source; 



} 

DEFINE_PROPERTY(Absorption_coefficient,c,t) 

{ 

real abs coeff; 

abs_coefP=41.77*C_YI(c,t,0)+3e-l 7; 

} 
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Appendix D: UV Absorption Test 
A sample of air saturated with butyric acid was tested to determine if the absorption coefficient 

of air changes as the concentration of butyric acid decreases. 

Figure 30: Vapor pressure of butyric acid vs Temperature 

Figure 30 was used to determine the vapor pressure of butyric acid at room temperature (25^C). 

From the vapor pressure it was determined that the mass fraction of butyric acid in the air was 

0.001245 kg/kg. 

Using a UV-vis spectrophotometer the absorbance of the saturated air sample was measured 

every hour in order to obtain an average. For X = 365 nm the average absorbance is 0.0158. 

Table 3: UV absorbance test data 

Time (h) Absorbance (% transmittance) X (nm) 

0.005527 365.0189 

0.014665 365.0306 

0.015072 365.0029 

0.015157 365.0003 

0.015844 365.0152 

0.0158193 365.0078 

0.015935 365.0109 



Using the equation for absorbance the absorption coefficient for air saturated with butyric acid 

was calculated: 

A = aLPx (32) 

where A is the absorbance, a is the absorption coefficient (atm/cm), L is the path length (10 cm), 

and Pxis the partial pressure (atm). Fluent requires that rrhave the unit m'\ so, the equation can 

be rearranged with concentration written in terms of mass fraction; 

a = — (33) 

According to equation 33 the absorption coefficient would be changing linearly with 

concentration so a linear curve was created to estimate the absorption coefficient for air 

containing butyric acid (see Figure 31). 
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Figure 31: Absorption coefficient vs mass fraction 



Appendix E: Overview of Langmuir — 

Hinshelwood Kinetic Model 
Mo, et al (2009) provides a detailed overview of the PCO kinetic theory and the experimental 

work done. They provided the following approach to describing the surface chemistry of the 

PCO mechanism: 

For a general reactant, R, degrades to produce products A and B has the following stoichiometry: 

riC>2 ,hv 
R-\- O2 > A-\-B (34) 

The rate of change of each of the species can be written as: 

^ _ _d[0A _ 

dt dt dt dt ^ 

Reaction rates are commonly expressed using the power law, where n is 0: 

r = -^ = fc[/J]" (36) 

The PCO reaction involves the adsorption of the reactants prior to undergoing the surface 

reaction and so the adsorption isotherms will play a key role in the reported kinetic models. The 

Langmuir-Hinshelwood (L-H) mechanism is the most commonly used method. This mechanism 

includes the reaction occurring between both the reactant, R, and the oxidizing agent at their 

adsorption equilibrium. 

^ (37) 

Where k is the reaction constant which is dependent on temperature and UV intensity, 0/? is the 

fractional coverage of R adsorbed onto the catalyst surface, and Ro2ads fraction of oxygen 

adsorbed onto the catalyst surface. 

The L-H model uses the following equation to define 6p^: 

Q = -L — ^ = ^I'^l 
^ £75 T^max l + /r[/?J 

(38) 



where q is the total number of adsorption sites per unit volume of catalyst and q is the number of 

adsorption sites occupied by R per unit volume of catalyst, m is the amount of R adsorbed per 

unit volume of catalyst, mmax is the maximum amount of R adsorbed per unit catalyst, and K is 

the adsorption equilibrium coefficient. 

A similar equation can also be written for where the variables are in terms of the adsorbed 

oxygen instead of R. However, with the concentration of oxygen in the air being so high in 

comparison to the concentration of the R, ^ds approximately equal to 1. So, the reaction 

rate can be reduced to: 

r = kOpi 
K[R] 

1+K[R] ) (39) 

Table 4 is a summary of the results from the studies Mo (2009) reviewed which used the L-H 

kinetic model to derive the reaction kinetics. 

Table 4: Kinetic parameters of unimolecular L — H model of various pollutants 

tants Photocatalyst VOC cone, 

(ppm) 

PW(nm)/ 

I (mW/cm^) 

T("C)/ 

RH (%) 

Kinetic parameters Ref 

latdehyde 

ildehyde 

;ne 

ne 

ionic acid 

ric acid 

STS-21 sol 

P25 

STS-21 sol 

TiOs/SiOj 

Pt-TiO./SiOj 

P25 

TiOz/ZrOj 

Ti02/Sr2CeC), 

P25 

P25 

P25 

P25 

P25 

P25 

P25 

TiOj Millenium PC500 

TiOi Millenium PC500 

30-2000 365/1.0 20/40 0.19 pmol/min 0.5lpmol/L 

1.8 254/0.083 24/47 1.48 pmol/m"-s 0.94 ppmv’ 

30 -2000 365/1.0 20/40 0.16 pmol/min 0.21 pmol/L 

3000- 300-400/- 67/- 3.89x10-* L/g-min 21.9L/mol 

6200 300-400/- 67/- 5.97x10-* L/g-min 36.9 L/mol 

3000 - 6200 

590 - 365/- 50/23 14.68 g/m’-min 0,35 mVg 

143 - 1652 365/2.3-3.1 30/0 0.097 Minol/L«ttri„g,-s 0.51 L/pmol 

117-308 254/ - 39-60/- 0.0064 mg/L 9.2078 T/mg 

0.56- 1.3 254/0.56 25-27/40 1.56 mol/nr’-s 0.77 mVmg 

5.2-26 254/- 20/45-50 13.388 mg/mA 0.0049 mVmg 

L2 - 7.2 254/0.56 25-27/40 6.77 mol/m'-s 0.24 mVmg 

50mTorr 356/5.3 20.8/2.69 lOlp/mTs 0.022 m/Torr 

538 365/- 50/23 28.05 g/m*-min 0.21 m Vg 

3.7- 18.5 254/- 20/45-50 729.254 mg/m*-s 0.0017 mVmg 

8.7- 41.4 254/- 20/45-50 27.461 mg/m^-s 0.0199 mVmg 

- 365/4 30/50 2.02 - 2.10 mmol/m’-s 0.41-0.32 mVmmol 

- 365/4 30/50 1.98-2,25 mmol/m\s 0,39-0.24 m^/mmol 

Noguchi and Fujishima, 1998 

Yang et at, 2007 

Noguchi and Fujishima, 1998 

Obuchi et at, 1999 

Obuchi et at, 1999 

Albcrici and Jardim, 1997 

Zom et at., 1999 

/hong el at, 2007 

Zhang cl at, 2007 

Bouzaza et al., 2006 

Zhang et at, 2007 

Jacoby et at, 1995 

Alberici and Jardim, 1997 

Bouzaza et at, 2006 

Bouzaza et at, 2006 

Biard et at. 2007 

Biard et al., 2007 



Appendix F: Rectangular Duct Sizing 
Common rectangular duct sizes used for air handling ventilation systems (The Engineering 

Toolbox, 2014): 

Preferred, Acceptable, Not common 



A
ir 
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el
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ity

 (
rrV

s)
 

Figure 32 is used to select an appropriate air velocity through a rectangular duct based on the 

dimensions (The Engineering Toolbox, 2014). 

Figure 32: Diagram of recommended air velocities for rectangular air ducts 


