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Abstract 

The rapidly growing need for clean energy on a global scale has led to the emergence of 

new fields of scientific research to facilitate the discovery and development of novel energy 

sources, such as fuel cells, which generate significantly lower environmentally harmful 

contaminants, in contrast to traditional fossil fuels. The direct methanol fuel cell (DMFC) is a 

promising future energy technology alternative due to its high energy conversion efficiency, 

minimal level of pollutant emissions, the attractive energy density of methanol fuel, and its ease 

of availability. To date. Platinum (Pt) has been the most effective catalyst in DMFCs, and has 

been utilized as anodic and cathodic catalysts in many other applications. In this M.Sc. thesis, 

Platinum-Mdium (Ptlr)-and Platinum-Ruthenium (PtRu)-based nanomaterials have been 

synthesized and investigated to demonstrate their application in DMFCs, as anodic and cathodic 

catalysts. Analyses of the surfaces of synthesized Pt, and Ptir-and PtRu-based nanomaterials 

were performed by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry 

(EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The 

electrochemical properties of the synthesized nanomaterials were elucidated via cyclic 

voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy 

(EIS). 

A nanostructured Ti02NT substrate was used for these investigations. The synthesis of 

Titanium dioxide nanotube materials (Ti02NT) was accomplished through the anodization of 

Ti02NTs possess a highly active surface area following their treatment with UV light. Pt and h* 

were subsequently deposited onto the Ti02NTs, and the resulting Ti02NT/PtIr electrodes were 

fabricated by chemical reduction method. Several Ti02NT/PtIr and Ti02NT/PtRu electrodes with 

different compositions were studied and compared with the Pt modified Ti02NT electrodes. The 

fabricated Pt and Ptir, and PtRu catalysts were characterized by SEM, EDX, whereas the 
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electrocatalytic activity toward methanol oxidation was investigated by CV, CA, and EIS. The 

results indicated that the PtIr/Ti02NT with a Pt:Ir ratio of 60:40 andPtRu/Ti02NT with a Pt:Ru 

composition of 60:40 composites possessed the highest methanol oxidation activity and stability. 

In addition, a series of reduced graphene oxide (rGO) and PtRu nanoparticle 

nanocomposites with different atomic ratios of Pt:Ru (100:0, 84:16, 69:31, 64:36, 42:58 and 

0:100) were deposited onto the Ti02NTs (as Ti02NT/rGO-PtRu) and tested for their impacts on 

the oxygen reduction reaction (ORR) in the DMFCs. Ti02NT/rGO-PtRu nanocomposites were 

fabricated using a electrochemical deposition technique, and then characterized by SEM, EDX, 

and XRD. The electrocatalytic activity was subsequently investigated by CV, CA, and EIS. The 

Pt:Ru with a ratio of 64:36 exhibited the highest stability and electrocatalytic activity toward 

ORR, which is promising for environmental and green energy applications. 

II 



Acknowledgments 

I would like to express my utmost gratitude and thanks to my supervisor Dr. Aicheng 

Chen for his knowledge and advice the course of my M. Sc. degree. This thesis would not have 

been possible without continued support throughout the research period. He has given me the 

tools and confidence required for a future in this field. I would also like to extend my greatest 

appreciation to my thesis conunittee. Dr. Wely Floriano and Dr. Craig Mackinnon for their 

guidelines and feedback on my thesis. 

An extended thank goes out to the entire Lakehead University Chemistry Department and 

Graduate Studies. Thank you to Dr. Guosheng Wu and Jiali Wen for their assistance in the 

Lakehead University Instrumentation Lab. Surface Interface Ontario/Chemical Engineering & 

Applied Chemistry at the University of Toronto for carring out the XPS analysis. I would like 

also to thank Saudi Cultural Bureau in Canada for their support especially King Abdullah 

scholarship program for their funding. As well as, I would like to thank Saudi Embassy in Ottawa 

for their help and advice during the time of my study. 

All my fellow lab members of Dr.Chen’s research group deserve acknowledgement. I 

especially want to thank Dr. Maduraiveeran Govindhan, Dr. Gousheng Wu, Dr. Sapanbir Thind, 

Jiali Wen, Xin Chang, Cassandra Ostrom, and Frank Boehm for all their support and 

encouragement. 

Lastly, I would also like to express my deep appreciation to my family especially my 

father Saleh and my mother Fahmiah for encouraging me. I am indebted to my brother Abdullah 

for his support during the hard time. I’m thankful to my friends for all the moral support they 

provide. 

m 



Table of contents 

Abstract i 

Acknowledgements iii 

Table of contents iv 

List of figures vi 

List of tables ix 

List of Abbreviations and S)mibols x 

Chapter 1: Introduction 

1.1 Introduction 1 

1.2 Fuel cell principals 2 

1.3 Types of fuel cells 3 

1.4 Anodic electrocatalysts for DMFCs 11 

1.5 Electrocatalyst for oxygen reduction reaction (ORR) in FCs 13 

1.6 Scope of this thesis 15 

References 15 

Chapter 2; Experimental Methods 

2.1 Introduction 22 

2.2 Chemicals and materials 22 

2.3 Fabrication of nanomaterials 22 

2.4 Surface analysis 24 

2.5 Electrochemical experiments 25 

2.6 Summary 25 

References 26 

Chapter 3: Synthesis and Electrochemical Study of Pt-Ir Nanoparticles Deposited 

on Ti02NTs for Methanol Oxidation 

3.1 Introduction 27 

3.2 Experimental methods 28 

IV 



29 3.3 Pt-L* Surface analysis and composition  

3.4 The electrochemical behaviours of the Ti02NT/PtIr nanostructures 30 

3.5 Conclusions 40 

References 41 

Chapter 4: Synthesis and electrochemical study of Pt-Ru nanoparticles deposited 

on Ti02NTs for methanol oxidation 

4.1 Introduction 44 

4.2 Experimental and methods 45 

4.3 Pt-Ru surface analysis and composition 46 

4.4 Electrochemical behavior of the Ti02NT/PtRu nanostructures 49 

4.5 Electrooxidation of methanol oxidation on the Ti02NT/Pt and 

Ti02NT/PtRu nanostructures 49 

4.6 Conclusions 55 

References 55 

Chapter 5: Modification of Ti02 nanotubes with PtRu/Graphene nanocomposites 

for enhanced oxygen reduction reaction 

5.1 Introduction 58 

5.2 Experimental and methods 60 

5.3 Surface morphology and compositions of Pt-Ru catalysts 62 

5.4 Electrochemistry behavior of the Ti02NT/rG0-PtRu nanostructures 67 

5.5 Conclusions 76 

References 77 

Chapter 6: Summary and future work 

6.1 PtL* nanoparticles deposited on Ti02NTs for DMFC 80 

6.2 PtRu nanoparticles deposited on Ti02NTs for DMFC 81 

6.3 Oxygen reduction reaction on the Ti02NT/rG0-PtRu electrodes 81 

6.4 Closing remarks and future work 82 

V 



List of Figures; 

Figure 3.1 SEM images of: (A) the formed Ti02NTs; and (B) the Ti02NT/PtIr electrode with the 

Pt:Ir ratio of 60:40. 

Figure 3.2 (A) EDX Spectrum of the Ti02NT/PtIr electrode with the Pt:Ir ratio of 60:40. (B) 

EDX elemental mapping of Pt; and (C) EDX elemental mapping of Ir of the same Ti02NT/PtIr 

electrode. 

Figure 3.3 (a) Cyclic voltammograms of the effect of different loadings of Ptir on Ti02 in 

O.5MH2SO4, under a scan rate of 20 mV/s in different potential ranges; short (a) and long (b), the 

CVs methanol oxidation of different PtIr loads on Ti02 in 0.5M of H2SO4 +0.1M CH3OH under a 

scan rate of 20 mV/s(c) . 

Figure 3.4 (a) Cyclic voltammograms of the effect of different Ptir compositions on Ti02 in 

O.5MH2SO4, under a scan rate of 20 mV/s in different potential ranges; short (a) and long (b), the 

CVs of methanol oxidation of different Ptir compositions on Ti02 in 0.5M of H2SO4 +0.1M 

CH3OH, under a scan rate of 20 mV/s(c) 

Figure 3.5 Chronoamperometric curves of CH3OH electrooxidation on Ti02/Ptlr catalysts in 0.1 

M CH3OH + 0.5 M H2SO4 at a potential of 350mV, and 650mV vs SCE shown in parts (A) and 

(B) in 0.1 M CH3OH + 0.5 M H2SO4. 

Figure 3.6 Nyquist plots of the Ti02NT/Pt, and Ti02NT/PtIr electrodes with Pt:Ir 70:30, 60:40 

compositions in the nanocomposites on the Ti02NT electrodes recorded in 0.5M H2SO4 + 0.1 M 

Figure 4.1 SEM images of the Ti02NTs (A), the Ti02NT electrode under high magnification (B), 

Ti02NT/PtRu nanoparticles under low-magnification (C), the PtRu nanoparticles on the Ti02NT 

(D). 

VI 



Figure 4.2 (A) EDS of the Ti02NT/PtRu electrodes with the Ti02NT/ PtRu (60:40) raio, 

Elemental mapping of the Ti (B), Pt (C) and Ru (D) obtained at the Pt-Ru (60:40) electrode. 

Figure 4.3 Cyclic voltammograms of the effects of different compositions of Pt-Ru on Ti02NTs 

in 0.5M H2SO4 at a scan rate of 20 mV/s and potential of -0.225V to 1.200V 

Figure 4.4 (a) The CVs of methanol oxidation at PtRu/ Ti02NTs and CVs with Ar Ti02NTs/ 

PtRu in 0.5M of H2SO4 +0.1 M CH3OH under a scan rate of 20 mV/s. (b) CVs of methanol 

oxidation of different Pt-Ru raio on Ti02 NTs in 0.5M of H2SO4 +0.1M CH3OH at a scan rate of 

20mVs-l. 

Figure 4.5 CVs of CO oxidation of different Pt-Ru compositions on Ti02 NTs in 0.5M H2SO4 at 

a scan rate of 20 mV/s. 

Figure 4.6 Chronoamperometric curves of CH3OH electrooxidation on the TiOaNT/PtRu 

catalysts in 0.1 M CH3OH + 0.5 M H2SO4 at a potential of bothO. 60 V and 0.65 V. 

Figure 5.1 SEM images of the Ti02NTs (A) and Ti02NT/rGO-PtRu (64:36) electrode (B). 

Figure 5.2 (A) EDS of the Ti02NT/rGO-PtRu electrodes with their composition of Pt:Ru 84:16 

(a), 69:31 (b), 64:36 (c) and 42:58 (d) in the nanocomposites on the Ti02NT (Peaks marked with 

asterisks are derived from Ti). Elemental mapping of the Pt (B), Ru (C) and C (D) obtained at the 

Ti02NT/rGO-PtRu (64:36) electrode. 

Figure 5.3 XRD of the Ti02NT/rGO-PtRu electrodes with their composition of Pt:Ru 84:16 (a), 

69:31 (b), 64:36 (c) and 42:58 (d) in the nanocomposites on the Ti02NT (Peaks marked with 

asterisks are derived from the anatase phase of Ti02). 

Figure 5.4 XPS spectra of the C Is and Ru 3d regions (A), Pt 4f region (B) and Ti 2p region (C) 

for the Ti02NT/rGO-PtRu nanocomposite. 
VII 



Figure 5.5 CVs of the Ti02NT (magenta), Ti02NT/rG0 (blue), Ti02NT/rGO-Pt (red), 

Ti02NT/rG0-Ru (black), Ti02NT/PtRu (cyan) and Ti02NT/rG0-PtRu (60:40) (green) electrodes 

recorded in 02-saturated 0.1 M KOH, scan rate of 20 mV/s. 

Figure 5.6 CVs of the Ti02NT/rG0-PtRu electrodes with their composition of Pt:Ru (84:16, 

black), (69:31, red), (64:36, green) and (42:58, blue) in the nanocomposites on the Ti02NT 

electrodes recorded in 02-saturated 0.1 M KOH, scan rate of 20 mV/s. 

Figure 5.7 Nyquist plots of the Ti02NT/rGO-PtRu electrodes with their composition of Pt:Ru 

84:16 (a), 69:31 (b), 64:36 (c) and 42:58 (d) in the nanocomposites on the Ti02NT electrodes 

recorded in 02-saturated 0.1 M KOH. The amplitude of modulation potential was 5 mV. The 

frequency was altered, from 100 kHz to 40 mHz with the applied potential of -0.25V. Inset: The 

corresponding equivalent electric circuit. 

Figure 5.8 Amperometric i-t response obtained for ORR at the Ti02NT/rGO-PtRu electrode with 

Eapp of -0.35 V in 02-saturated O.IM KOH. 

VIII 



List of Tables 

Table 1.1 Comparison of technical characteristics of fuel cell technologies. 

Table 3.1 Values of elements in an equivalent electric circuit fitted in the Nyquist plots of 

Figure.3.6 

Table 5.1 List of the ORR activities of the fabricated Ti02NT/rG0-PtRu electrodes. 

Table 5.2 Comparison of the onset potential values of different ORR catalysts. 

Table 5.3 EIS data of the Ti02NT/rG0-PtRu electrodes with different compositions of Pt:Ru 

obtained from the Nyquist plots of Figure 5.4. 

DC 



List of Abbreviations and Symbols 

Abbreviation name 

A 

AFC 

CA 

CPE 

CV 

DEFC 

DFAFC 

DMFC 

E 

EDS 

EIS 

j 

NT 

MCFC 

PAFC 

PEMFC 

SCE 

Ampere 

Alkaline Fuel Cell 

Chronoamperometry 

Constant Phase Element 

Cyclic Voltammetry 

Direct Ethanol Fuel Cell 

Direct Formic Acid Fuel Cell 

Direct Methanol Fuel Cell 

Potential 

Energy Dispersive Spectroscopy 

Electrochemical Impedance Spectroscopy 

Current Density 

Nanotube 

Molten Carbonate Fuel Cell 

Phosphoric Acid Fuel Cell 

Proton Exchange Membrane Fuel Cell 

Saturated Calomel Microscopy 
X 



SEM 

SOFC 

XPS 

XRD 

Scanning Electron Microscopy 

Solid Oxide Fuel Cell 

X-ray Photoelectron Spectroscopy 

X-rayDiffraction 

XI 



Chapter 1. Electrocatalysis and Fuel cells 

1.1 Introduction 

It appears inevitable that the world will face an immense energy crisis in the near future. 

Moreover, the detrimental effects of environmental pollution that this planet is facing, not only 

raise concerns in regard to global warming and the manner in which we address it, but also opens 

new horizons for scientific research in the quest for novel energy sources.Hence, both 

precautions and remedial measures are required without delay. These concerns have also resulted 

in the search for alternative power generation sources that provide clean energy, while negating 

the release of potential environmentally degrading pollutants. ^ 

The challenge of developing sustainable and renewable energy sourcers in recent years 

has led to the technological development of devices for the harnessing of energy and its 

conversion, encompassing batteries, solar cells, and fuel cells (PCs). Fuel cells have emerged as 

a promising candidate in the energy field as an electrochemical device, which converts chemical 

energy contained within different types of fuels into electrical energy with the minimum 

emission of contaminants. Fuel cells are open thermodynamic systems that are a suitable 

alternative to conventional electricity generation methods for small-scale applications.^ For 

example, hydrogen and hydrocarbon fuels contain considerable chemical energy, compared to 

conventional battery materials; therefore, they are currently being widely developed for various 

energy applications. 

Fuel cell technologies are a promising alternative to fossil fuels for supplying energy to 

rural areas, where there is the lack of access to the public grid. They possess considerably higher 

cost-effectiveness in contrast with the cost of wiring and the transfer of electricty associated with 
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conventional power supplies.^ Additionally, applications that have fundamentally secure 

electrical energy requirements may use fuel cells as their primary source of energy. 

On the other hand, there exist a number of limitations to the use of fuel cells, which have 

yet to be overcome. For example, fuel cells are less durable and far less accessible than 

conventional batteries, and their life spans are directly affected and curtailed by pulse demands.^ 

They have relatively low power densities per unit volume, and gas impurities may have 

significant detrimental effects on the durability of a particular fuel cell. Though not many 

noteable breakthroughs have been realized to date, significant progress has been made. 

1.2 Fuel cell principles 

In principle, fuel cells operate in a similar fashion to a traditional batteries; however, fuel 

cells may supply electricity continuously, so long as fuel is provided, for instance, in the form of 

hydrogen or methanol.^ A fuel cell includes four primary components including an anode, 

cathode, electrolyte, and an external circuit. For example, in the proton exchange membrane fuel 

cells (PEMFCs), the oxidation of hydrogen takes place at the anode, whereas the reduction of 

oxygen occurs at the cathode. Hydrogen and oxygen flow over the electrodes and are converted 

into water, while generating electricity.^ The delivery of electricity is also dependant on the 

electrolyte solution that is being used. The electrolyte transports either protons or hydroxide ions, 

whereas the flow of electrons in the external circuit produces an electric current.^ Equation 1 

and 2 illustrate the reactions that occur at the anode and cathode, respectively:^ 

H2^2H'- + 2e' (1) 

O2 + 4H'' + 4e -> 2H2O (2) 
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All fuel cells operate under the same basic principles; however, two of the major differences 

among fuel cells are the chemical characteristics of the electrolyte and fuel. 

1.3 Types of Fuel Cells 

There are many types of fuel cells which may be categorized into different groups based 

on their operating temperature, efficiency, application, and cost.^° In this section, six main 

groups will be discussed based on their fuels and electrolytes: (1) phosphoric acid fuel cells 

(PAFCs); (2) alkaline fuel cells (AFCs); (3) molten carbonate fuel cells (MCFCs); (4) proton 

exchange membrane fuel cells (PEMFCs); (5) solid oxide fuel cells (SOFCs); and (6) direct 

methanol fuel cells (DMFCs).^^'^^ 

1.3.1 Phosphoric acid fuel cells (PAFC) 

PAFCs may employ carbon paper electrodes and a liquid phosphoric acid (H3PO4) 

electrolyte. The operating temperature of PAFCs ranges from 150°C to 220°C as they have low 

ionic conductivity at low temperatures.^ Hydrogen ions (H"^ or protons) function as the charge 

transfer species, water is produced at the cathode, and platinum is used as a catalyst to speed up 

the reactions 2 and 

The H3PO4 electrolyte has long-term stability and lower volatility. Currently, PAFC 

systems have capacities of up to 200 kW and systems with higher capacities (11 mW) are being 

tested. It is, however, expensive to fabricate this type of fuel cell due to the platinum catalyst, 

which is finely dispersed on the electrodes. The electrical efficiency of this type of fuel cells 

ranges from 40% to 50%, with a Combined Heat and Power (CHP) efficiency of about 85%.^^’^^ 

PAFC cells may be used for stationary on-site applications. 

1.3.2 Alkaline fuel cell (AFC) 
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The AFC creates electric power by employing an alkaline electrolyte, for example 

potassium hydroxide (KOH), in the following reactions: 

2H2 + 40H'-^ 4H20+4e' anode (3) 

O2 + 2H2O + 4e"-> 40H" cathode (4) 

Hydroxyl ions transit through the electrolyte, allowing electrical energy to be extracted. 

Recent tests show that AFCs may operate at low temperatures relative to other fuel cells 

(i.e., between 23°C and 70°C). AFCs also utilize low cost catalysts (i.e., nickel) in both the 

cathode and anode. Additionally, the electrical efficiency of AFCs is ~60% while the CHP 

efficiency exceeds 80%. ’ Due to their relatively low efficiency, AFCs are restricted to 

generating ~ 20 kW. 

NASA initially used AFCs to provide water and electrical power in the space shuttle, and 

currently AFCs are widely used in boats, forklifts, and transportation applications.^^ AFCs are 

considered the most efficient and cost-effective fuel cells in that they use nickel as the catalyst 

and potassium hydryoxide as the electrolyte, with a high efficiency of about 70%. Even though 

AFCs have many advantages they are still impacted by CO poisoning from the hydrogen source, 

and one major concern relates to finding a substitute for KOH. An additional disadvantage is that 

c O'J 

AFCs use purified air or pure oxygen, which may increase operational costs. ’ 

1.3.3 Molten carbonate fuel cells (MCFC) 

MCFCs are applied to many industrial applications. For example, MCFCs have the 

potential to replace natural gas and coal-based power plants in electrical utilities, and military 

applications. MCFCs are high-temperature fuel cells that operate between 600 and 700°C. Thus, 
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most of the characteristics of MCFCs are associated with high operating temperatures. Moreover, 

they require a long time to attain their operating temperature to generate power.^ 

In this fuel cell, the reaction occurs between hydrogen and carbonate ions to produce CO2, 

H2O, and electrons, as described in the following reactions: 

H2 + COs^' H2O + CO2 +2e” anode (5) 

CO + C03^' -► 2CO2 + 2e anode (6) 

(1/2) O2 + CO2 + 2e ^ C03^' cathode (7) 

The electrochemical reaction in this kind of fuel cell does not require noble metals or any 

infrastructure development for installation. A carbonate salt mixture is employed as the 

electrolyte, and the oxidation process occurs at the anode. The source CH4, and H2O are 

transformed to carbon monoxide (CO), carbon dioxide (CO2), and hydrogen (H2). At the cathode, 

the reaction generates carbonate ions from oxygen (O2) and CO2. These carbonate ions are 

transferred from the cathode to the anode by the electrolyte. Subsequently, the electric current of 

the cell can be controlled by adjusting the cell voltage.^’^"^ 

1.3.4 Proton exchange membrane fuel cell (PEMFC) 

The most suitable and commercial application of PEMFs is in transportation (e.g., vehicle 

engines) as they provide a continuous electrical energy supply at high levels of efficiency and 

power density.^ They can be cost effectively manufactured with longer lifetimes, in comparison 

to other classes of fuel cells. The current output cost for PEMFCs is estimated to be from $500 to 

$600 per 

In PEMFCs, a stream of hydrogen is delivered to the anode side of the membrane 

electrode assembly (MEA). At the anode side, the hydrogen is catalytically cleaved into protons 
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and electrons, which is represented by eq (1). This oxidation half-cell reaction or Hydrogen 

Oxidation Reaction (HOR) is represented by eq (2). 

The newly formed protons permeate through the polymer electrolyte membrane to the 

cathode side, whereas the electrons travel along an external load circuit to the cathode side of the 

MEA, thus creating the current output of the fuel cell. Meanwhile, an oxygen stream is delivered 

to the cathode side of the MEA, where oxygen molecules react with protons that permeate the 

polymer electrolyte membrane, and the electrons arriving through the external circuit form water 

molecules. This reduction half-cell reaction, or oxygen reduction reaction (ORR) is represented 

by eq. 2. 

PEMFCs operate within a temperature range between 60 to 100 °C. By increasing the 

temperature, the efficiency may be raised through an increase in the reaction rate. However, 

should the temperature be raised above 100 °C (boiling point), the water within the cell will 

evaporate, which decreases the conductivity of the membrane, thereby reducing the efficiency of 

the cell. At optimal temperatures, the electrical efficiency of PEMFC cells is between 40% and 

50%, with an output power of -250 

1.3.5 Solid oxide fuel cell (SOFC) 

SOFCs are high temperature fuel cells that contain an electrolyte of solid metallic oxide 

ceramic. SOFCs utilize a mixture of hydrogen and carbon monoxide, which is made by repairing 

hydrocarbon fuel and air as the oxidant in the fuel cell.^^ Yttria stabilized zirconia (YSZ) is 

typically used as an electrolyte due to its high chemical and thermal stability, and pure ionic 

conductivity.^At the cathode, oxygen is reduced at high temperature (e.g., 1000 °C).^ At the 

anode, fuel oxidation is described by the following reactions: 

(1/2)02 (g) + 2e- ^ O^- (S) (8) 
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O-^ (S) + H2(g)^H20+2e- (9) 

SOFCs are ideally suited for large scale distributed power generation systems that require 

a capacity of hundreds of MWs. SOFCs are reliable modular systems, with fuels that are flexible 

with low harmful (NOx and SOx) gas emissions.^ This systems operates without noise and has 

minimal maintenance costs; however, there are some limitations in using SOFCs, including 

extended start-up and cool down times as well as high operating temperatures. There is ongoing 

research to find possible solutions to these issues such that SOFCs may be more easily applied 

for energy production.^^ 

1.3.6 Direct methanol fuel cells (DMFCs) 

Methanol is considered to be the best fuel after hydrogen in terms of energy density and it 

exhibits several benefits over the use of hydrogen. For example, methanol, which is derived from 

wood alcohol, is cheap, plentiful, and renewable, and is in liquid form, hence it is easy to store, 

transport, and distribute. 

DMFCs are an advanced type of PEMFC that are considered to be one of the most promising 

power sources due to their low operating temperatures, extended longevity, and rapid refueling 

capabilities.^’^"^ Furthermore, they do not require recharging, and are a clean renewable energy 

source. For these reasons, the use of methanol as electrochemical fuel decreases the difficulty in 

constructing an energy conversion system, by reducing complexity and cost.^’^"^ 

The primary fuel source in DMFC systems is methanol, which is broken down into CO2, 

and e' at the anode, whereas water is formed at the cathode using oxygen that is available in 

ambient air.^ These reactions are described in eq. 10 and 11: 

CH3OH+ H2O ^ CO2+ 6H^ + 6e anode (10) 
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(3/2)02 + 6H-^ + 6e^ 3H2O cathode (11) 

DMFC systems are configured as active and passive^, where active DMFCs are high 

efficiency systems that include a methanol feed pump, CO2 separator, fuel cell stack, methanol 

sensor, circulation pump, as well as pump drivers and controllers. Active DMFCs are generally 

applied to control applications for quantities such as flow rate and temperature, whereas in 

passive DMFC systems, the methanol pumping devices and external process for blowing air into 

the cell are eliminated. Thus, ambient oxygen is defused by an air breathing feature of the cell 

into the cathode.^"^ Rather than actively pumping methanol, the passive system uses a 

concentration gradient to drive the diffusion of methanol within the cell.^"^ Finally, passive 

systems function better as they are cost effective, simply constructed, and are capable of 

sustained operation despite significant reductions in parasitic power loss and system volumes.^’^"^ 

In DMFCs, methanol is applied as either a vapour or liquid, albeit vapour is ideal due to 

its voltage and power density. Liquid methanol does not adapt for mass transfer and requires high 

localized cooling at the anode.^ Moreover, at the electrocatalyst surface, vapourized methanol 

crossover, from anode to cathode, confers higher performance in comparison to liquid methanol. 

However, there are some downsides inherent to vapour feed cells. For example, vapourized 

methonal dehydrates membranes, has a shorter lifetime, and higher temperatures are required for 

or 

fuel vaporization. As a result, they require more complex and costly designs. In addition, they 

are not appropriate for portable applications. 

A core component in DMFCs is a proton exchange membrane (PEM), which can extend 

low penetrability and high proton conductivity. It may also provide chemical stability, and high 

thermal tolemace toward the development of ideal DMFCs. Hydrophobic ion exchange polymers 

are required as the performance of PEM may be negatively impacted by water and methanol. 
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which adsorbs to the acidic membranes.^^’^^ Moreover, the sulfonation of the composite PEM via 

the incorporation of inorganic-ceramic materials can help to overcome water and methonal 

adsorption.^^’^^ 

In summary, fuel cells have many applications due to their wide range of power, from 1 to 

10 mW.^ They may be flexibly integrated into compact devices such as mobile phones, and larger 

systems such as vehicles. Fuel cells are also commonly used in distributed power systems and 

grid-quality AC. Table 1.1 summarizes various fuel cell features and applications.^ 
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1.4 Anodic electrocatalysts for DMFCs 

Catalyst loading plays a significant role in the fabrication of DMFCs for optimum 

performance. There are some catalyst loading processes that have employed sputtering, screen 

printing, spraying, decaling, and electrodeposition."^^ Noble metals are commonly used as anodic 

catalysts. For example, the high stability of Pt in acidic electrolytes provides some advantages in 

fuel cell applications."^^ However, Pt is expensive and easily poisoned by oxidation intermediates, 

namely COads that are generated by cell reaction processes."^^’"^^ The poisoning of Pt by CO 

reduces the efficiency of the oxidation process and blocks the adsorption of methanol on 

electrode sites. Possible solutions to improve using Pt as catalyst include reducing the loading 

amount while saving the same level of activity by applying appropriate synthetic strategies."^® In 

addition, new catalyst formulations should have the capacity to promote the complete combustion 

to 

1.4.1 Pt catalysts based nanostructured materiales for DMFCs 

Active metail are distributed supports to increase the active metal area and population of 

active sites on the surface. It is recognized that the surface properties of supported metallic 

systems are affected by the morphologies and dimensions of the supported metals, as well as the 

nature of the supports."^®’"^^ When support metals shrink to the nanoscale, dimensional variabilities 

may be exploited for charge transfer processes."^® For example, the use of nanoparticles may be 

limited due to their potential for aggregation; the effective electrochemical surface area (ECSA) 

can be reduced; and the large number of nanoparticle/nanoparticle interfaces may hinder mass 

diffusion and efficient charge transfer."^’"^^ It has been observed that catalysts with one- 

dimensional nanostructures (e.g., nanowires (NWs) or nanotubes (NTs)) are more efficient than 

three-dimensional nanoparticles. Hence, all limitations may be avoided through the provision of a 
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high catalytic surface area that does not require a large surface area support/'^ '^^ For example, 

when the tobacco mosaic virus (TMV) is employed as a Pt NT template, it provides an 

electrochemically active surface area that is four to eight fold more extensive than similarly sized 

Pt NPs.^^’"^^ However, as Pt is readily poisoned by CO, the combination of Pt with metals such as 

Fe, Cr, Sn, Os, Mo, Ti, Re, Ru, and Ta, has the potential to reduce poisoning and expand the 

reactivity of Pt in the oxidation of methanol. 

1.4.2 Pt-Ru catalysts for DMFCs 

Bimetallic (Pt/Ru) systems present a potential solution for overcoming the CO poisoning 

of active sites. The anti-poisoning capacity of Pt/Ru results from OH groups that are created on 

Ru sites."^ Ru(Pt)2COH is one of the species that has been proposed by the sequential 

dehydrogenation of methanol. The electrochemical study of CO has produced evidence that PtRu 

domain sites are responsible for providing the higher activity of the system.^^’^^ Surface oxidic 

species on Ru might be an additional feature that accounts for the higher activity.'^^ '*^ 

1.4.3 Pt-Sn catalysts for DMFCs 

Pt-Sn catalysts can exhibit good and poor activity."^°’^^’^^ It is likely that Sn adsorbed on Pt 

provides good activity for methanol oxidation; however, Pt-Sn as an alloy may exhibit poor 

activity.^^ Indeed, surface concentrations of Sn participates with influencing activity, and this 

activity is related to the electrical potential.'^^’^^’^'^ 

1.4.4 Catalysts based on metal oxide supports (effect of RuOi) 

The effect of Ru02 on the oxidation of methanol on Pt surfaces has been studied over the 

past few decades."^^’^^'^^ Crystalline Ru02 substantially improves the oxidation of methanol by Pt 

nanoparticles. The higher activity of the crystalline RUO2 phase is responsible for the 
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improvement to a higher degree than metallic Ru toward the oxidation of CO through the 

formation of Ru-OH on the surface."^®’^^ Moreover, hydrous RUO2 can provide the need of 

hydroxide species to facilitate CO oxidation on Pt sites, and thus enhance catalytic properties. 

Rolison et al. found that a commercial Pt-Ru catalyst that contained Pt and Ru oxides could 

control the chemical state of Ru to favour RuOxHy over metallic Ru.^^’^^ 

1.4.5 Effect of TiOi 

Ti02 has the capacity to substantially enhance methanol oxidation on both Pt and Pt-Ru 

nanoparticle surfaces.^Ti02 may be prepared from the hydrolysis of organic Ti, or an 

organic Ti salt, and is also stable in acidic solutions. If Ti02 is incorporated into electrodes as a 

base for Pt, it will alter the electronic properties of the Pt surface due to strong interactions 

between Ti02 and Pt, resulting in weak chemical adsorption on the surface of electrode."^^ 

1.4.6 Effect of IrOi 

Ir02 has been studied as a support for Pt-Ru nanoparticles in catalysts to enhance 

methanol oxidation."^’^"^ The advantage of Ru in catalysts is that it can decrease the oxidation 

potential of COads, which improves methanol oxidation activity. Using Ir-Ir02 as a catalyst 

support enhances activity more than conmiercial Pt-Ru catalysts due to the ease of formation of 

hydroxyl groups on Ir02 at lower potentials.'^^’^^ 

1.5 Electrocatalyst for oxygen reduction reaction (ORR) in FCs. 

Fuel cells are clean and highly efficient, hence they are recognized as an environmentally 

friendly power source.^^'^^ The oxygen reduction reaction (ORR) at the cathode is considered as 

the primary factor in scrutinizing the performance of a fuel cell. The commercial catalyst used in 

ORR is Pt, which can effectively simplify the reaction.^^ Pt-based electrocatalysts present 
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significant cathodic current densities and low overpotentials. However, the extensive application 

of Pt as an electrocatalyst toward ORR is hindered by its high cost and sluggish kinetics.^^ 

Unfortunately, Pt is unstable as an electrocatalyst in ORR due to electrochemically active surface 

area loss subsequent to long use.^^'^^ This loss of Pt electrocatalytic surface area decreases the 

activity of ORR, such that it impacts the overall performance of the fuel cell.^^'^^ Not only can Pt 

affect the activity of ORR, it is also an expensive metal. In order to enhance ORR activity and 

reduce the cost of catalysts, the preparation of Pt with other noble or transition metals has been 

studied, for example: Au, Pd, rGO, Fe, 

1.5.1 Au toward ORR 

Platinum has been used as a cathodic catalyst in PEMFCs with a phosphoric acid 

electrolyte and (PA)-dopedpolybenzimidazole (PBI) membrane,^^ which gave rise to large 

cathodic current densities and low overpotentials. However, in this reaction, as cathodic 

electrochatalyst, Pt has faced problems.The significant degradation of the PA-impregnated 

membrane through the strong adsorption of phosphate on the Pt surface, acts to block 

catalytically active sites.Thus, including a material, such as Au, that is inert in the bulk state 

and has high catalytic activity at the nanoscale has been explored to attenuate the degradation the 

PA-impregnated membrane. 

Phosphate species such as H3PO4, H2P04~, HP04^“, and P04^"ions adsorb to Pt surfaces, where 

H2PO4” ions comprise the strongest adsorbate on the Pt surface.^^ In contrast, there are a various 

adsorptive phosphate species behaviors on Au surfaces. Indeed Habib et al. carried out a Fourier- 

transform infrared (FTIR) study of the adsorption from aqueous solutions of phosphoric acid onto 

Pt and Au surfaces, under a variety of concentrations and potentials.^^’^^ The result showed that 

molecular H3PO4 was more highly adsorbed on the Au surface than on the Pt surface in acidic 
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solutions.Pt-Au can resolve the problem of Pt initiated catalyst poisoning by CO-like 

species through changing the electronic band structure of Pt by modifying the surface adsorption 

strength, and increasing the electrochemically active surface area of Pt, which is a major factor 

toward the improvement of the catalytic performance and efficiency of Pt catalysts. Pt-Au has 

been considered as an attractive material for improving the activity and stability of Pt catalysts 

for the oxygen reduction reaction.^^’^^ 

1.5.2 Pd toward ORR 

Since Pt electrocatalysts suffer from poor reaction kinetics and poisoning, Pt-Pd have 

wide applications in electrocatalytic reactions.^^ Of all the atomic metals, Pd is considered the 

best candidate for the formation of bimetallic nanocrystals with Pt, due to the properties that both 

metals share, such as identical face-centered-cubic (fee) structures and almost identical lattice 

constants. Additionally, Pd is less expensive than Pt, and device cost can be reduced even further 

by applying Pd as the base metal. The introduction of Pd may save the electrocatalysts from 

degradation to some degree. The stability of the Pt-Pd electrocatalyst is significantly improved as 

adding Pd to Pt shifts the dissolution potential of Pt.^^ The integration of Pd and Pt promotes their 

catalytic performance and even extends their potential applications. 

1.6 Scope of this thesis 

The primary intent of this M.S.c thesis was to synthesize L*-, Ru- and Pt-based 

nanomaterials, and to study their electrochemical properties for fuel cell applications. The first 

objective of this research was to decrease the cost and the amount of the electro-catalysts, 

required in the current application by applying an alternative metal with a lower price. One goal 

of this research included the development of new synthesis techniques that generated a high 

catalytic surface area for both methanol oxidation applications, and oxygen reduction reactions. 
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By increasing the ratio or volume for the alternate catalyst, it can greatly increase the active 

surface area, which will lead to a decrease in the material cost. The second goal of this thesis was 

to address the use of Pt as an electrocatalyst, which has an issue that requires solving; namely 

poisoning species. The scope of this thesis to investigate the effect of Ir or Ru on Pt based 

nanomaterial catalysts with high electrocatalytic activity toward the oxidation of methanol and 

oxygen reduction reactions. Modification techniques for both catalysts and supports were 

investigated in order to develop efficient Ptir, and PtRu based nanomaterials. 

In the following chapter, experimental methods will be provided as relates to the 

fabrication of nanostructured materials, as well as the techniques that were employed to analyze 

their structures. Chapter 3 details the results of the electrochemical study of Pt-Ir nanoparticles 

deposited on Ti02NTs for methanol oxidation. Chapter 4 presents the electrocatalytic properties 

of Pt-Ru nanoparticles deposited on Ti02NTs toward methanol oxidation. The modification of 

Ti02NT with PtRu/GO nanocomposites for improved oxygen reduction reactions is discussed in 

Chapter 5. Finally, Chapter 6 will provide a sunmiary of results and anticipated future work. 
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Chapter 2 Experimental Methods 

2.1 Introduction 

The objectives for the study of Ptir, PtRu, and PtRu-rGO based nanomaterials as 

electrocatalysts, which may be applied in methanol based fuel cells, were described in the 

previous chapter, as well as a discussion of the challenges that must be overcome toward their 

commercial application. In this chapter, the primary experimental methodologies and techniques 

employed in this M.Sc. project will be introduced. Details related to the experimental procedures 

and equipment, which pertain to each specific study, are presented in Chapters 3-5. 

2.2 Chemicals and Materials 

The chemicals used in this research included sulfuric acid (99.999%); hydrochloric acid 

(37.5%); sodium borohydride (>98%); potassium hydroxide (>85%); dimethyl sulfoxide 

(DMSO) (99.99%); hydrofluoric acid (50%); and methanol, which were purchased from Sigma- 

Aldrich. Titanium wire (99.7%, 2mm dimeter); titanium plates (99.2%) (cut into 1.25cmx0.8cm 

rectangles with a thickness of 0.5cm); Pt wire (99.9%, 0.5mm diameter); H2PtCl6.6H20 (99.9%); 

RuCls XH2O (99.9%); and IrCls (99.9%), were purchased from Alfa-Aesar. 

The gases utilized for this thesis project were argon (PPAXAIR, UHP 99.99%); carbon 

monoxide (PRAXAIR, Grade 2.5, 99.5%); and oxygen. 

Pure water (18.2 MQ cm), obtained from a NANOpure® Diamond™ UV ultrapure water 

purification system, was used for cleaning purposes and in the preparation of all solutions and 

electrolytes. 

2.3 Fabrication of nanomaterials 
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2.3.1 Ti-etched electrode. 

The nanostructures that were used as electrodes in the Direct Methanol Fuel Cell studies 

(Chapter 3,4,5,6) were grown directly onto Ti plates using an electrochemical reduction method. 

Ti strips (99.2%, 1.25cmx 0.80 cm x 0.5nmi) were cleaned via sonication in acetone followed by 

rinsing with pure water (ISMQcm).^ The Ti substrates were etched in an 18 wt % HCl solution at 

85 °C for 30 min., and then finally rinsed with pure water. 

2.3.2 Xi02 nanotube supported nanoparticles 

Ti02NTs were fabricated in a two-electrode electrochemical cell^ using an etched Ti plate 

as the working electrode, which was rinsed with pure water. A Pt wire coil (5.0 cm ), which was 

cleaned prior to each experiment via flame-annealing, was applied as counter electrode. The 

anodization took place in a solution that contained dimethyl sulfoxide (DMSO) with 2% (wt) HF 

and 2% (wt) H2O under 40 V for eight hours. Finally, the sample was rinsed with pure water and 

then heated to 450 °C for three hours to generate the anatase structured Ti02 NTs. 

Ti02 supported nanoparticles were used for direct methanol fuel cells (DMFC) (Chapters 

3 - 5). An ultraviolet light irradiation method was applied to enhance the activity of the Ti02NT 

supports.^ To activate the sample with UV pretreatment methods, a Ti02 sample was placed in a 

quartz tube that contained 50% methanol-H20 (v/v). Ti02 was then bubbled with Ar for 20 

minnutes; after which the quartz tube was capped and irradiated under the intense UV light for 

one hour. 

All of the Ti02NT supported samples were prepared using a facile room temperature 

impregnation method with different reduction techniques: chemical reduction by NaBH4 (Chapter 

3 & 4), and electrochemical reduction through the application of potential (Chapter 5). Firstly, for 
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chemical reduction (Chapters 3-4), all treated TiOi was prepared at room temperature with 

NaBH4 as the reducing agent. The appropriate volumes of metal and water were combined and 

sonicated for 20 minutes. The Ptir, and PtRu- containing coating solution (20 pL) was applied 

directly to the surfaces of the Ti02NT electrode. Following this, IM NaBH4 was added to the 

surface solution and allowed to sit for 10 minutes. When the electrodes are completed, they were 

rinsed with pure water, and then dried. This method was repeated three times to obtain the 

desired coating amount. 

Secondly, for electrochemical reduction (Chapter 5), PtRu nanoparticles with GO were 

electrochemically deposited on treated Ti02NTs. The appropriate metal precursors were prepared 

and sonicated for 20 minutes. The PtRu-rGO solution (100 pL) and 0.5M H2SO4 (20ml) were 

combined in a beaker and sonicated for 20 minutes, and then introduced into the cell. The 

electrochemical reduction was carried out by applying a potential of -l.OV (vs Ag/AgCl) over 

1000 seconds. . The completed electrodes were then rinsed with ultrapure water and allowed to 

dry. This procedure was applied for different electrode compositions. 

2.4 Surface Analysis 

The surface morphologies of different nanocompositions, which were supported by 

Ti02NT, were characterized by a scanning electron microscope (SEM) using a Hitachi Su-70 

Schotty Field Emission SEM, and X-ray energy dispersive spectrometry (EDX), which recorded 

the elemental mapping with the application of 15 kV. 

The synthesized nanomaterials were analyzed via X-ray diffraction (XRD) and X-ray 

photoelectron spectroscopy (XPS). XRD patterns were recorded using a Philips PW 1050-3710 

diffractometer with a CU Ka(X;= 1.5405) radiation source, while the XPS was addressed using a 

Thermo Scientific K-Alpha XPS spectrometer. Samples were run at a take-off angle (relative to 
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the surface) of 90°. A monochromatic A1 Ka X-ray source worked with a spot area of 40[Am. The 

position of energy scale was modified to place the main C Is feature (C-C) at 284.6 eV. XPSpeak 

software was employed to process all data. 

2.5 Electrochemical experiments 

Two electrochemical workstations, VoltaLab PGZ301 and CHI 660B, were utilized in this 

research, and a three-electrode cell system was employed. The reference electrode was comprised 

of a silver-silver chloride (Ag/AgCl) 1.0 M KCl electrode. The counter electrode was a Pt wire 

coil, which was cleaned prior to each experiment by flame annealing, and then rinsed with pure 

distilled water. The working electrode consisted of nanoparticle materials, which were prepared 

on either Ti02NTs or Ti substrate. For several of the experiments, prior to conducting the 

electrochemical studies, the passage of ultrapure argon gas continued through the electrolyte 

solution (H2SO4, H2SO4+CH3OH, KOH) for approximately 15 minutes to remove all dissolved 

oxygen. In other experiments, O2 gas was purged from, or introduced into the solution to obtain 

an 02-saturated solution^, which also ran continuously above the solution during the 

electrochemical studies. All experiments were conducted at room temperature (20 ± 2°C ), and 

data acquisition and analysis were performed using VoltaMaster 4 software. 

2.6 Summary 

This chapter served to introduce the materials that were employed in the research for this 

M.Sc thesis project. The experimental methods and equipment employed for the sjmthesis and 

characterization of Ptir, PtRu, and PtRu-rGO based nanomaterials were outlined. More 

experimental details as well as the characterization and electrocatalytic activity of prepared PtIr, 

PtRu and PtRu-rGO nanomaterials will be presented in the following three chapters. 
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Chapter 3 Synthesis and electrochemical study of Pt-Ir nanoparticles 

deposited on Ti02NTs for methanol oxidation 

3.1 Introduction 

Direct methanol fuel cell (DMFC) comprises a promising future energy technology 

alternative to conventional energy generating devices due to its negligable pollutant emissions, 

highly efficient energy conversion, ease of distribution, abundant availability of methanol fuel, 

and its high energy density.^ Though Pt is traditionally employed as an active catalyst in DMFC, 

it is an expensive metal, and the performance of pure Pt electrodes is diminished by partial 

oxidation products (ie. CO) in the methanol oxidation reaction. Increasing the efficacy of fuel 

cells is one of the significant challenges that electrochemistry has undertaken. These efforts have 

initiated research into bimetallic catalysts, incorporating elements such as Ru, Ir, Sn, W, Mo. 

Iridium has been selected as the precious metal of choice for this research due to its positive 

attributes, which encompass excellent corrosion resistance in acidic media, good electrical 

conductivity, and high electrocatalytic activity.^'^ Ti02 is chosen as a support for noble metal 

nanomaterials in this study due to its high stability, chemical inertness, low cost, non-toxicity and 

high surface area. However, Ti02NT is a semiconductor, and has low conductivity.^ In the 

present research, we modified Ti02NTs with Ptir nanoparticles. By incorporating Ir, it is expected 

the electrocatalytic activity and CO tolerance of Pt would be improved, which might be explained 

via bifunctional or ligand effect mechanisms.^'^ In this Chapter, we report on the electrocatalytic 

activity of Pt-Ir nanoparticles and investigate the effects of the substrate and the composition of 

nanoparticles on the oxidation of methanol.Pt-Ir nanoparticles were deposited directly onto 

Ti02NTs by using chemical reduction method,^ Scanning electron microscopy (SEM) and 

energy- dispersive X-ray spectroscopy (EDX) were employed to characterize the fabricated Pt-Ir 
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electrocatalysts. In this study, Pt-L* nanoparticles with different compositions were successfully 

deposited, and our electrochemical studies have shown that the desposition of Pt-Ir nanoparticles 

on the Ti02NTs exhibited much higher activity for methanol oxidation than the Pt nanoparticles 

alone. 

3.2 Exprimental Methods 

A series of Pt-Ir nanoparticles having various compositions were synthesized and directly 

deposited onto Ti02NT substrates via chemical reduction method, which are described in Chapter 

2. The metal precursors were prepared as follows: 0.0819 g of H2Pt6Cl dissolved in 2 ml of 

ultrapure water, and 0.0048 g of IrCls dissolved in 2 ml of ultrapure water. Sodium borohydride 

was used as the reducing agent. The mixed Pt and Ir precursor solutions with different ratios of 

Pt:Ir (80:20, 70:30, 60:40, 40:60) were prepared. Aliquots (0.5M NaOH) were added to the Pt-Ir 

precursor solutions to stabilize the pH to between 9.5 and 10.0. The mixed solutions were then 

sonicated for 20 min. The following procedure was used to prepare the Ti02NT/PtIr electrodes: 

each treated Ti02NT electrode was coated with 15 pL of the mixture, followed by adding 15 pL 

of 1 M NaBH4 for the chemical reduction. The electrodes were held for 15 min and then rinsed 

with ultrapure water and dried at 20 ± 2°C. The aforementioned coating process was repeated to 

investigate the effect of the coating loads on the electrocatalytic behaviors of the formed 

Ti02NT/PtIr electrodes. In addition to the Pt-Ir mixtures, a pure Pt electrode was prepared in the 

same fashion as the Pt-Ir electrodes, for comparison. The surface morphology of all prepared 

Ti02NTs was characterized using a Hitachi SU-70 Schotty Field Emission SEM. Also, the 

surface composition of the 60:40 mixture was investigated and recorded via EDX with the 

application of 15 kV. 
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The electrochemical performance of all electrodes was studied using a three-electrode 

electrochemical system at room temperature as described in Chapter 2. The reference electrode 

consisted of Ag/AgCl (IM KCl) connected to the cell through a salt bridge composed of KCl, and 

the fabricated Ti02NT/PtIr and Ti02NT/Pt electrodes were used as the working electrode. A 0.5 

M H2SO4 electrolyte was utilized to examine the hydrogen adsorption/desorption as well as the 

oxide formation/reduction behaviors of the electrodes, whereas the O.IM CH3OH +0.5 M H2SO4 

electrolyte employed to investigate the methanol oxidation activity of the electrodes. Prior to the 

electrochemical measurements, ultrapure Ar gas (99.999%) was infused continuously into the 

electrol)^e solution for 15 min. During the electrochemical experiments, Ar gas was also 

constantly passed above the solutions. 

The electrochemical methods employed in this research included cyclic voltammetry 

(CV), chronoamperotory (CA), and electrochemical impedance spectroscopy (EIS). The scan rate 

applied for CV was 20 mV/s. CA was carried out by initially holding the potential at 0.0 mV for 

30 s and then stepping to 350 mV or 650 mV for 300 s. In the EIS measurements, the electrode 

potential was held at 350 mV, the amplitude of modulation potentials was 10 mV, and the 

frequency was changed from 40kHz to 40mHz. 

3.3 Pt’Ir surface analysis and composition 

The surface morphology of the formed Ti02NTs and the Ptir nanoparticles deposited on 

the Ti02NTs was characterized using SEM. Figure 3.1 A reveals the formation of the well- 

compacted Ti02NTs that were directly grown on the titanium substrate via the electrochemical 

anodic oxidation technique as described in Chapter2. These NTs possessed diameters that ranged 

from 90 to 120 nm, with wall thicknesses that ranghed from 90 to 100 nm. As illustrated in 
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Figures. 1 B, Ptlr nanoparticles were uniformly distributed on the Ti02NTs with the particle size 

ranged from 10 to 18 nm. 

Figure 3.1 SEM images of: (A) the formed Ti02NTs; and (B) the Ti02NT/PtIr electrode with 

thePt:Ir ratio of 60:40. 
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Figure 3.2A presents a typical EDX spectrum of the Ti02NT/PtIr electrode, exhibiting 

strong Ti, O, Pt and Ir peaks. Quanitative analysis revealed that the ratio of Pt:Ir was very close to 

60:40, which is consistent with the mixed precursor solution used for the preparation of this 

electrode. Figure 3.2 B - C display the EDX mapping of Pt and Ir, further confirming that the Ptir 

nanoparticles were uniformly deposited on the Ti02NT electrode. 

Figure 3.2 (A) EDX Spectrum of the Ti02NT/PtIr electrode with the Pt:Ir ratio of 60:40. (B) 

EDX elemental mapping of Pt; and (C) EDX elemental mapping of Ir of the same Ti02NT/PtIr 

electrode. 
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3.4 The electrochemical behaviours of the TiOiNT/Ptlr nanostructures 

Cyclic voltammetry was applied to study the effects of different catalyst loads with the 

Pt:Ir ratio of 60:40 on the Ti02NT electrode fabricated using the chemical reduction method as 

described in Chapter 2. Figures 3.3 A and B present the short potential range and long potential 

range CVs of the Ti02NT/PtIr electrodes with three, six and nine depositions, respectively, 

recorded in a 0.5 H2SO4 solution at a scan rate 20 mV/s. As seen in Figure 3.3 A, the hydrogen 

adsorption and desorption peaks increased with the increase of the number of deposition from 

three coats to nine coats. The current density of the double layer was also increased, showing the 

increase of the electrochemical active surface area. As shown in Figure 3.3B, when the up-limit 

electrode potential was extended from 0.6 to 1.35V, oxide formation occurred with a broad peak 

centred at 0.8 V when the electrode potential was scanned from 0.6 to 1.35V; and the formed 

oxide was reduced with a strong peak at ~0.45V when the electrode potential was swepted from 

1.35 to 0.2 As the load of the Pt-Ir catalyst mixture was increased, both oxide formation 

and reduction peaks increased, indicating that a higher electroactive surface area was obtained by 

increasing the catalyst loads. 

The catalytic activity of the Pt-Ir nanostructures towards the electrochemical oxidation of 

methanol was investigated. Figure 3.3 C presents the CVs of the Ti02NT/PtIr electrodes recorded 

in 0.5 M H2SO4 + 0.1 M CH3OH under a potential range between -0.225 and 1.35 V at a scan rate 

of 20 mV/s. As mentioned above, the sample electrodes carried different catalyst loads, with 

successive loads consisting of an additional 15 mg of the catalyst. Greater catalyst loads 

increased the oxidation peak to the maximum current density at a potential of 0.70 V. Thus, 

catalyst loads may play a role in terms of the electrocatalytic activity of electrodes. There is a 

positive relationship between increasing the catalyst load and enhancing catalytic activity. 
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Despite the observation that increasing the number of catalyst loads served to continually 

increase the electrocatal)^ic methanol oxidation activity, three loads were sufficient to provide 

the improvements necessary for the purposes of this study. Considering that these metals are 

quite expensive, the increases in electrolcatalytic activity obtained by four or more loads may not 

provide attractive enough benefits to offset the cost of additionally incorporated materials. 

A general electrochemical characterization of the different Ti02NT/PtIr electrodes with 

the different Pt:Ir ratios of 100:0, 70:30, 60:40 and 50:50, but with the same amount of the 

catalyst, was carried out. Figures 3.4 A and B present the short potential range and the long 

potential range CVs of the Ti02NT/Pt and the Ti02NT/PtIr electrodes recorded in 0.5 M H2SO4 at 

a scan rate 20 mV/s. As depicted in Figure 3.4A, the CVs in the hydrogen region with a potential 

ranging from -0.225 to 0.60 V vs SCE, illustrated that additional volumes of L* served to increase 

the active surface area. The Ti02NT/PtIr (60:40) electrode exhibited the largest electroactive 

area. Similarly, Figure 3.4B illustrates that the typical hydrogen adsorption and desorption peaks 

as well as oxide formation and reduction peaks appeared in the potential range from -0.225 to 

1.350 V vs SCE. The reduction peaks, which were distinguished at 1.20 V, confirmed the 

presence of Ir. Additionally, the peaks at 0.40 V for the mixed Pt-Ir electrodes verified the 

existence of Pt, where the Pt-Ir electrodes had a lower potential in comparison to the pure Pt 

electrodes. While the reduction current of the formed Ir oxide was decreased, the reduction 

current of the formed Pt oxide was elevated as the Pt volume increased. The impact of increasing 

the volume of Ir within the nanoparticles on both the reduction current density and oxidation 

peaks at 0.40 V and 1.20V, confirming the existence of Ir in alloys. 
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E/V vs Ag/AgCI 

E/V vs Ag/AgCI 

E/V vs Ag/AgCI 

Figure 3.3 (A) Cyclic voltammograms of the effect of different loadings of Ptir on Ti02 in 

O.5MH2SO4, under a scan rate of 20mVs-l in different potential ranges; short (A) and long (B), 

the CVs methanol oxidation of different PtIr loads on Ti02 in 0.5M of H2SO4 +0.1 M CH3OH 

under a scan rate of 20mV/s (C) . 
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The catalytic activities of the Ti02NT/Pt and Ti02NT/PtIr electrodes towards the 

electrochemical oxidation of methanol were further investigated. Figure 3.4C displays the CVs 

recorded at a scan rate of 20 mV/s in a 0.1 M CH3OH + 0.5 M H2SO4 solution. Methanol 

oxidation via Pt electrodes may easily produce CO with other species that block Pt surface 

resident sites, and suppress the oxidation of methanol at potentials of lower than 0.4 As 

seen in Figure 3.4C, the onset potential for methanol oxidation was decreased from 0.4 to 0.2 V, 

indicating that the addition of Ir greatly promoted the electrochemical oxidation of CO along with 

other chemisorbed species. 

Moreover, the current intensity of the peak centered at -0.65 was significantly increased 

with the increase of Ir from 0.0% to 40%. However, further increase of the Ir from 40% to 50% 

resulted in the decrease of the peak current, showing that 60% Pt and 40% Ir was the optiminum 

composition. 

We further investigated the electrochemical activity and stability of the Ti02NT/Pt and 

Ti02NT/PtIr electrodes using chronoamperometry. Figures 3.5 A and B present the 

chronoamperometric curves measured at 0.35 and 0.65 V, respectively. There was a sharp initial 

current drop in all curves of the samples followed by a slow decay. This slow decay might be 

attributed to the poisoning and structural changes of the Pt-h* nanoparticles, which are the result 

of potential perturbation during the reaction resulting from the presence of the intermediate 

produced during the oxidation of methanol as well as mass transfer. It was apparent that the 

steady-state current density of the TiO2NT/PtIr(60:40) at both 0.35 and 0.60 Vover the periods of 

300s attained 5 mA/cm and 45 mA/cm , respectively. 
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Figure.3.4 (A) Cyclic voltammograms of the effect of different Ptir compositions on Ti02 in 

O.5MH2SO4, under a scan rate of 20mVs-1 in different potential ranges; short (A) and long (B), 

the CVs of methanol oxidation of different PtIr compositions on Ti02 in 0.5M of H2SO4 +0.1 M 

CH3OH, under a scan rate of 20mV/s (C) 
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These values significantly exceeded the current density of the Ti02NT/Pt electrode, which 

was 3 mA/cm^ at 0.35 and 0 mA/cm^ at 0.65 V, indicating the high tolerance of Pt-Ir electrodes 

to CO-like intermediates, and a high catalytic stability. The above results show that adding a 

specific composition of Ir to Pt may induce a significant enhancement of the performance of 

catalysts . 

Electrochemical impedance spectroscopy was employed to examine the charge transfer 

ectrochemical reaction resistance of methanol oxidation. Figure 3.8 presents three Nyquist plots 

of the Ti02NT/Pt and the Ti02NT/PtIr electrodes recorded at the electrode potential of 0.35 V in 

a 0.1 M CH3OH + 0.5 M H2SO4 solution, where Zr and Zi represented the real and imaginary 

impedance components. The equivalent circuit shown in the inset was used to fit the experimental 

data. Rs represents the uncompensated solution resistance, whereas Rp symbolizes the 

polarization resistance. The capacitor defined as C, which is the double-layer capacitance. Table 

1 displays the corresponding data for all the elements. It was noticeable that Rs was in the range 

of ca.0.872 - 1.057 Q cm^ at different potentials due to the same supporting electrolyte. The small 

errors indicated that the proposed electrical model effectively fitted the EIS data. The 

TiO2NT/PtIr(60:40) exhibited the lowest charge transfer resistance at about 11.88 Qcm^, which 

was lower than 18.75 Q cm^ for Pt. These results are consistent with the aforementioned CV and 

CA measurments, further demonstrating that the TiO2NT/PtIr(60:40) possessed the optiminum 

composition and exhibiting the highest electrocatalytic activity. 
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Figure 3.5 Chronoamperometric curves of CH3OH electrooxidation on Ti02/Ptlr catalysts in 0.1 

M CH3OH + 0.5 M H2SO4 at a potential of 350mV, and 650mV vs SCE shown in parts (A) and 

(B) in 0.1 M CH3OH + 0.5 M H2SO4 
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Figure 3.6 Nyquist plots of the Ti02NT/Pt, and Ti02NT/PtIr electrodes with Pt:Ir 70:30, 60:40 

compositions in the nanocomposites on the Ti02NT electrodes recorded in 0.5M H2SO4 + 0.1 M 

CH3OH. The frequency was altered, from 100 kHz to 40 mHz, with an applied potential of 

0.350V and Inset: The corresponding equivalent electric circuit. 

3.5 Conclusions 

Ptir nanoparticles with different compositions were successfully deposited onto Ti02NTs 

using a facile sodium borohydride reduction method at room temperature. The Ti02NTs were 

directly grown on the Ti substrate using an electrochemical anodization method. The catalytic 

activity of the Pt-Ir nanoparticles depends, to a significant degree, on their composition. The 

successful reduction of a Pt-Ir noble metal load was achieved at an optimal percentage of 60% Pt 

and 40% Ir, exhibiting an increased current density for the oxidation of methanol. In the EIS 

study, the TiO2NTs/PtIr(60:40) electrode demonstrated the lowest charge transfer resistance and 

highest electrocatalytic activity for the oxidation of methanol, prominsing for the DMFC 

applications. 
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Table.3.1 Values of elements in an equivalent electric circuit fitted in the Nyquist plots of 

Figure.3.8 

Electrodes 

Rs (O cm^) Rp (O cm^) Capacitance (C) 

(mF.cm'^) 

Ti02/Ptlr(60:40) 1.057 0.596 11.88 1.743 0.025 1.18 

Ti02/Ptlr(70:30) 0.544 0.969 16.77 0.484 0.022 1.458 

TiOi/ Pt 0.872 0.849 18.75 3.004 0.023 1.451 
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Chapter 4 Synthesis and electrochemical study of Pt-Ru nanoparticles 

deposited on TiOiNTs for methanol oxidation 

4.1 Introduction 

To date, the most commonly utilized catal)^ic electrodes in fuel cells incorporate Pt. For 

example, in DMFCs, anodes are comprised of either platinum or platinum-based electrode 

materials. As methanol oxidation occurs at the anode surface, Pt is employed in DMFC due to its 

attractive activity in methanol activation, namely the cleaving of C-H bonds, which leads to the 

formation of carbon monoxide (CO) at the anode surface.^ Unfortunately, the formed CO poisons 

the electrode, thereby reducing its efficiency. Hence, in order to improve the electrode and avoid 

the deleterious poisoning of platinum, the CO should be removed from the surface via oxidation 

to C02.^ Since the oxidation of CO via a pure Pt catalyst is slow, the addition of transition metals 

(e.g., Ir, Sn, W, Mo, Ru) to the electrode may serve to decrease the presence of CO, due to the 

desirable activity of transition metals in promoting the oxidation CO to CO2. ’ Ruthenium (Ru) 

is such a transition metal that may enhance the catalyst by promoting the activation of water and 

to facilitate the concomitant transfer of oxygen to CO as it transforms to C02.^'^ This 

enhancement can be explained through a hifunctional and ligand mechanism.^ In this chapter, the 

potential of Ru to augment the performance of DMFC was tested using Ti02 nanotubes 

(Ti02NTs) as the supporting electrodes. Ti02 was employed due to its high stability, chemical 

inertness, low cost, and non-toxic properties.^'^ Additionally, the electrocatalytic activity of PtRu 

nanoparticles was investigated, as were the effects of the substrate and nanoparticle compositions 

on the oxidation of methanol. 

In this work, Pt-Ru nanoparticles with different compositions were deposited on Ti02NTs 

using a chemical reduction method. The fabricated Ti02NT/Pt-Ru electrocatalysts were 
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characterized with SEM, EDX and electrochemical techniques. Our studies have shown that the 

Ti02NT/Pt-Ru nanoaprticles exhibited more robust activity for methanol oxidation in comparison 

to Pt nanoparticles deposited on the Ti02NTs. 

4.2 Exprimental and Methods 

A set of Pt-Ru nanoparticles having various compositions were synthesized and directly 

deposited onto Ti02NT substrates using a chemical reduction method, where sodium borohydride 

was employed as the reducing agent. For the chemical reduction method, metal precursors were 

prepared as follows: 0.0819 g of H2PtCl6 was dissolved in 2 mL of ultrapure water, and 0.0414 g 

of RuCls was dissolved in 2 mL of ultrapure water. The desired compositions of Pt-Ru (70:30, 

60:40, 50:50) were obtained by mixing the appropriate Pt and Ru precursors. Aliquots (0.5M 

NaOH) were added to the mixed Pt and Ru precursor solutions to stabilize the pH to between 9.5 

and 10. The solutions were then sonicated for 20 min. The following procedure was used to 

prepare the Ti02NT/PtRu electrodes: each treated Ti02NT electrode was coated with 15 pL of 

the mixture, followed by adding 15 pL of 1 M NaBH4 for the chemical reduction.^ The electrodes 

were held for 15 min and then rinsed with ultrapure water and dried at 20 ± 2°C. The 

aforementioned coating process was repeated to investigate the for comparison between different 

raio of the metal on the electrocatalytic behaviors of the formed Ti02NT/PtRu electrodes. The 

surface morphology of all prepared Ti02NTs was characterized using a Hitachi SU-70 Schotty 

Field Emission SEM. Also, the surface composition of the 60:40 mixture was investigated and 

recorded via EDX with the application of 15 kV. 

The electrochemical performance of all electrodes was accomplished using a three- 

electrode electrochemical system at the room temperature as described in Chapter 2. The 

reference electrode consisted of Ag/AgCl (IM KCl) connected to the cell through a salt bridge 
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composed of KCl, and the fabricated Ti02NT/PtRu and Ti02NT/Pt electrodes were used as the 

working electrode. A 0.5 M H2SO4 electrolyte was utilized to examine the hydrogen 

adsorption/desorption as well as the oxide formation/reduction behaviors of the electrodes, 

whereas the O.IM CH3OH +0.5 M H2SO4 electrolyte wase employed to investigate the methanol 

oxidation activity of the electrodes. Prior to the electrochemical measurements, ultrapure Ar gas 

(99.999%) was infused continuously into the electrolyte solution for 15 min. During the 

electrochemical experiments, Ar gas was also constantly passed above the solutions. 

The electrochemical methods employed in this work included cyclic voltammetry (CV), 

and chronoamperometry (CA). The scan rate applied for CV was 20 mV/s. CA was carried out 

by initially holding the potential at 0.0 mV for 30 s and then stepping to 600 mV or 650 mV for 

300 s. 

4.3 Pt-Ru surface analysis and composition 

Scanning electron microscopy was used to characterized the surface morphology of the 

fabricated catalyst dispersed onto the Ti02NT samples. Figure 4.1 A reveals the formation of the 

well-compacted Ti02NTs that were directly grown on the titanium substrate via the 

electrochemical anodic oxidation technique as described in Chapter2. Figure 4.IB shows the 

formed NTs with diameters that ranged from 90 to 120 nm, with wall thicknesses that ranghed 

from 90 to 100 nm. As shown in Figure 4.1 C and D, the nanoparticles with a diameters that 

ranged from 8nm tol5nm were uniformly deposited onto the Ti02NT support. 
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Figure 4. 1 SEM images of the Ti02NTs (A), the Ti02NT electrode under high magnification 

(B), Ti02NT/PtRu nanoparticles under low-magnification (C), the PtRu nanoparticles on the 

Ti02NT (D). 
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Figure 4.2A presents a typical EDX spectrum of the Ti02NT/PtRu electrode, exhibiting strong 

Ti, O, Pt and Ru peaks. Quanitative analysis revealed that the ratio of Pt:Ru was very close to 

60:40, which is consistent with the mixed precursor solution used for the preparation of this 

electrode. Figure 4.2 B - D display the EDX mapping of Ti, Pt and Ru, respectively, further 

confirming that the PtRu nanoparticles were uniformly deposited on the Ti02NT electrode. 

Figure 4.2 (A) EDS of the PtRu/Ti02NT electrodes with the PtRu/Ti02NT 60:40 composition, 

Elemental mapping of the Ti (B), Pt (C) and Ru (D) obtained at the Pt-Ru 60:40 electrode. 
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4.4 Electrochemical behaviour of the Ti02NT/PtRu nanostructures 

The electrochemical characterization of the fabricated Ti02NT/PtRu electrodes with the 

different Pt:Ru ratios of 100:0, 70:30, 60:40 and 50:50, but with the same amount of the catalyst, 

was carried out. Figure 4.3 presents the CVs of the Ti02NT/Pt and the Ti02NT/PtRu electrodes 

recorded in a 0.5 M H2SO4 solution in the electrode potential range from -0.225 to 1.250 V at a 

scan rate of 20 mV/s. As depicted in Figure 4. 3, the CVs in the hydrogen region with a potential 

ranging from -0.225 V to 100 mV vs SCE, illustrated that additional volumes of Ru served to 

increase the hydrogen adsorption and desorption as well as the electrochemical active surface 

area. The TiO2NT/PtRu(60:40) electrode exhibited the largest electroactive area. Oxide formation 

and reduction were observed in the electrode potential range from 0.150 to 1.250 V. The addition 

of Ru resulted in a negative shift of the onset potential of the oxide formation. The strong 

reduction peak, which was distinguished at -0.400 V, confirmed the presence of Ru. 

Additionally, the peaks at 0.400 V for the mixed Pt-Ru electrodes verified the existence of Pt, 

where the Pt-Ru electrodes had a lower potential in comparison to the pure Pt electrodes. 

4.5 Electrooxidation of methanol oxidation on the Ti02NT/Pt and Ti02NT/PtRu 

nanostructures 

Figure 4.4 presents the CVs of the various Ti02NT/Pt and Ti02NT/PtRu (100:00, 70:30, 

60:40, 50:50) electrodes recorded in a solution of 0.1 M CH3OH and 0.5 M H2SO4 at a scan rate 

20mV/s in the potential ranged from -0.200 to 1.250 mV vs SCE. It was noted that the peak at 

0.500 V in the forward scan was reflective of methanol electrooxidation at the Ti02NT/PtRu 

(60:40) electrode the oxidation peak for the TiO2NT/PtRu(70:30) and TiO2NT/PtRu(60:40) 

electrodes was doubled and transitioned to a lower potential, in comparison to the Ti02NT/Pt 

electrode. 
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Figure 4.3 Cyclic voltammograms of the effects of different raio of Pt-Ru on Ti02NTs in 

O.5MH2SO4 at a scan rate of 20mVs-l and potential of -0.225V to 1.200V 

Figure 4.4 Cyclic voltammograms of methanol oxidation of different Pt-Ru raio on Ti02 in 0.5M 

of H2SO4 -hO. IM CH3OH at a scan rate of 20mV/s. 
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The reason behind the enhancing feature of Ru on the Ti02NT/PtRu electrode may be explained 

by its methanol oxidation mechanism. It is recognized that steady-state methanol oxidation 

includes CO on the Pt phase of the catalyst in the reaction. CO must be oxidatively removed 

from the surface in order to release the surface sites required to sustain the reaction, which 

remains the steady-state current, or the continuous catalytic oxidation process. The oxidation 

process at the Ti02NT/Pt electrode indicated in Fig. 4.4 was relatively slow. It can be noticed that 

the addition of Ru to the Pt catalyst enhances CO removal from the surface, since Ru promotes 

CO oxidation to CO2 via a bifunctional mechanism. 

Pt + CH3OH ^ Pt-CO + 4H^ + 4e (1) 

Pt-CO + Ru-OH ^Fi + Ru + CO2 + + e (2) 

where the OH symbolizes the oxygen-containing species, and k is the reaction rate constant. 

Although the ligand effects were realized, they were less evident than the bifunctional effects due 

to the dissociative character of the decomposition of methanol. There is the requirement for an 

ensemble, which comprises a specific number of Pt sites where methanol decomposes into 

fragments.In this study, as the surface consisted of Pt-Ru supported by Ti02NTs, disregarding 

the Ru oxides that were possibly present on the surface, there was an ample surface density of 

large Pt aggregates to sufficiently decompose the methanol. In the 60:40 raio it was likely that 

only Pt-Ru pairs were present on the surface. The static/dynamic distribution of Pt-Ru 

nanoparticle sizes allowed for the greater availability of reaction sites.To secure the most 

effective CO removal pathway associated with the relative composition of PtRu, there was a 

requirement to maximize the Pt sites for reaction 1 and the Ru edge site population for reaction 2. 

Increasing the Pt:Ru ratio above 60:40 caused a reduction in the efficiency of the steady-state 

methanol oxidant, confirming the importance of the relative compositions of Pt-Ru. 
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Since CO is the principal poisoning species involved in the oxidation of methanol over Pt 

catalysts, an optimized catalyst should exhibit a high catalytic activity toward the oxidation of 

CO. The catalytic activities of CO oxidation of the prepared Pt-based catalysts, TiOiNT/Pt and 

Ti02NT/PtRu (70:30, 60:40, 50:50) electrodes, are shown in Figure 4.5. For CO adsorption on 

the Ti02NT/Pt and Ti02NT/PtRu electrodes, a 0.5M H2SO4 soltion was purgued with CO for six 

minutes and followed by Ar purguing for four minutes, while the electrode potential was held at - 

0.100 V. The the electrode potential was scanned in the range from -0.225 to 0.900 V vs SCE at a 

scan rate of lOmV/s. 

Figure 4.5 Cyclic voltammograms of CO oxidation of different Pt-Ru raio on Ti02 NTs in 0.5M 
H2SO4 at a scan rate of 20 mV/s. 
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The catalysts produced a broad peak during the first scanning cycle as a result of the oxidation of 

previously adsorbed CO at the electrode; whereas in the second cycle, the peak disappeared, 

indicating that CO was completely oxidized during the first potential scan.^^’^^ The addition of Ru 

significantly lower the electrode potential for the CO oxidization, thus greatly improving the 

catalytic activity towards methanol oxidation. The Ti02NT/PtRu (60:40) electrode demonstrated 

the highest current density as well as the lowest onset potential and peak potential for CO 

oxidation, further confirming the beneficial effect of the addition of Ru towards the CO and 

methanol oxidation.^ 

Chronoamperometry was utilized to investigate the activity and stability of the electrodes. 

The potential was held at 0.600 (Figure 4.6A) and 0.650 V (Figure 4.6B) for 300 s. In all curves 

of the samples, there were sharp initial current drops followed by sluggish decays. These slow 

decays might be attributed to PtRu nanoparticle poisoning and structural changes, which were the 

result of potential perturbations during the reaction, arising from the presence of intermediates 

generated during the oxidation of methanol.^’^^ The current density of the Ti02NT/PtRu (60:40) 

electrodeat both potentials (i.e.,0. 600 and 0.650 V) during the 300 s holding time attained 3.5 

and 2.2 mA/cm^, which was much greater than 0.7 and 0.4 mA/cm^ of the Ti02NT/Pt electrode 

under the same conditions. This indicated that the PtRu/Ti02NT electrodes had a high tolerance 

to CO-like intermediates and a robust catalytic stability. Therefore, the addition of particular 

compositions of Ru to Pt might promote the enhancement of the catalyst performance. 
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Figure 4. 6 Chronoamperometric curves of CH3OH electrooxidation on the Ti02NT/PtRu 
catalysts in 0.1 M CH3OH + 0.5 M H2SO4 at a potential of both 0.600V and 0.650V. 
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4.6 Conclusions 

In summary, the Pt-Ru nanoparticles were uniformaly dispersed onto the surface of Ti02 

nanotubes using a facile sodium borohydride reduction method at room temperature. This method 

effectively mediated the compositions of the formed Pt-Ru catalysts on the electrodes. In 

comparison to the Ti02NT/Pt the enhancement of the oxidation of methanol was demonstrated by 

incorporating Ru. Further, the catalytic activity of the Pt-Ru nanoparticles was strongly 

dependant on their composition. The optimized composition of the Pt-Ru nanoparticles was 

determined to be 60% Pt and 40% Ru with the highest catalytic activity towards methanol 

oxidation. The Ti02NT/PtRu (60:40)electrode demonstrated the highest current during 

chronoamprometry stability tests. 
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Chapter 5 Modification of Ti02 Nanotubes with PtRu/Graphene 

Nanocomposites for Enhanced Oxygen Reduction Reaction 

5.1 Introduction 

Owing to their environmental compatibility and high efficiency, fuel cells comprise a 

1 
promising future alternative energy technology to conventional power generating devices. ' 

Within a hydrogen fuel cell, oxygen is reduced at the cathode surface, while hydrogen is oxidized 

at the anode. The oxygen reduction reaction (ORR) is the key issue and the rate determining step 

among these two processes, in which oxygen molecules are slow to split and react at the 

cathode/electrolyte interface (e.g., kinetic sluggishness).Platinum (Pt) is one of the best ORR 

catalysts, among other precious metals; however, its activity is still quite low. In addition, Pt 

dissolves under fuel cell operating conditions,^ although Pt catalysts possess some advantages for 

cathode functionality under very severe conditions, such as low pH, high temperature, oxygen 

8 1 n 
atmosphere, and high humidity, at highly positive potentials, apart from several disadvantages. ' 

To further improve their catalytic efficiency and tolerance while decreasing cost, many 

researchers have tried to develop new techniques for the production of multi-component Pt 

incorporated catalysts.^Catalytic ORR performance has been much improved as a result of 

the preparation of multi-metallic electrocatalysts with less active precious metals, non-precious 

catalysts, or enzymatic catalysts, etc.^ A further alternative method might be to utilize less 

expensive noble metals such as ruthenium (Ru) (a stable transition metal), which also possesses 

appropriate strain and electronic factor effects. Ru has been recognized as an additional 

electrocatalyst that may be used in ORR.^^ The interactions between Ru and Pt nanoparticles in 

the form of an alloy, in conjunction with an underlying substrate, enable the tuning of catalytic 

ORR properties. 
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To avoid the aggregation, dissolution, and sintering of metal catalysts during ORR, a 

potential solution might be to anchor/disperse catalysts on specific supports while reducing or 

even negating the use of capping agents.Graphene comprises a robust two-dimensional (2D) 

sheet of sp^-hybridized carbon, which has emerged as a most auspicious substrate. It comprises 

an ideal platform for the growth or anchoring of functional nanomaterials, such as metallic and 

semiconducting nanoparticles, by providing a blend of its high surface area, enhanced mobility of 

charge carriers, and good stability. Moreover, graphene creates exceptional catalytic activity 

through increased charge transfer from resident metallic nanoparticles to the substrate. The 

synthesis of nanostructured metallic particles on stable and inexpensive substrates has attracted 

much attention in recent research studies.^^ For example, Ti02 substrates provide several 

adveuitages due to their low cost, easy fabrication and high stability. In particular, Ti02 

nanotubes have become of primary interest due to their relevant photocatalytic and 

electrocatalytic applications as an excellent substrate.^^'^"^ The control of the composition and 

morphology of nanostructured metallic particles on supported conductive substrates through 

electrochemical deposition has garnered much interest for the fabrication of basic nanostructures 

to practical devices, as it has been found to constitute a simple, low-cost, and time-saving 

25-27 process. 

Herein, we have demonstrated a single-step electrochemical synthesis of rGO-PtRu 

nanocomposites on a Ti02NT substrate, where the composition and structure of the Pt and Ru 

nanoparticles within the rGO nanocomposites were organized by controlling the concentrations 

of the precursors and the duration of the applied potential. The developed electrochemical 

synthesis of rGO-PtRu nanocomposites on Ti02NT has intrinsic advantages. Our electrochemical 
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studies have shown that the fabricated Ti02NT/rG0-PtRu (64:36) nanocomposite electrode 

exhibited an excellent electrocatalytic activity for ORR. 

5.2 Experimental and Methods 

Ti (99.2%) plates (1.25 cm x 0.80 cm x 0.5 mm) were cleaned via sonication in acetone, 

followed by pure water (18.2 MQ cm), and then etched in an 18% HCl solution at 85°C for 15 

min, and finally rinsed with pure water. The Ti02NTs were prepared in a dual-electrode 

electrochemical cell, where an etched Ti plate was used as the working electrode and a Pt plate 

was used as the counter electrode. The Pt plate was cleaned prior to each experiment by flame- 

annealing. The anodization took place in a solution that consisted of dimethyl sulfoxide (DMSO) 

with 2% (wt) HF at 40 V for 8 h. The sample was annealed at 450 °C for 3 h to form an anatase 

structured Ti02NT followed by UV pretreatment using a quartz tube, within which was placed a 

Ti02 sample with 5 mL of 50% methanol-H20 (v/v). Ar was purged for 5 min and irradiated 

under UV light for 60 min. A series of PtRu nanoparticles with various compositions were 

electrochemically prepared with GO onto Ti02NT substrates. Four different compositions of 

rGO-PtRu nanocomposites were synthesized from H2PtCl6 and RuCls with encompassing the 

Pt:Ru ratio of 84:16, 69:31, 64:36, and 42:58 based on the EDX analysis, respectively. Each 

composition was combined with 0.05 mg/mL of GO in the precursor solutions and reserved as 

constants for the preparation of the nanocomposites. The electrochemical deposition was carried 

out at an applied potential of -l.OV (vs Ag/AgCl) for 1000 s in 0.5 M H2SO4. The electrode was 

subsequently removed from the solution, rinsed with ultrapure water, and dried in an oven at 40 

°C. 
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Figure 5.1. SEM images of the Ti02NTs (A) and Ti02NT/rG0-PtRu (64:36) electrode (B). 
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5.3 Surface morphology and compositions of Pt-Ru catalysts 

The surface morphology and composition of the Ti02NT/rG0-PtRu nanocomposite 

electrodes were examined using SEM and EDS techniques. Figure 5.1 A and B depict the SEM 

images of the Ti02NTs and the Ti02NT/ rGO-Pt:Ru(64:36) nanocomposite, respectively. 

Uniform Ti02NTs were grown onto the Ti substrate employing the electrochemical anodic 

oxidation. The median dimension of the PtRu nanoparticles was estimated to be ~40 nm in 

diameter, which were well dispersed on the as-prepared Ti02NTs. The diameter of these 

nanotubes was estimated to be -145 nm with wall thicknesses of -20 nm. The EDS spectra are 

displayed in Figure 5.2A, where the atomic ratios of Pt to Ru, calculated from the EDS 

measurements, were, 84:16 (curve a), 69:31 (curve b), 64:36 (curve c) and 42:58 (curve d), 

respectively, for the four Ti02NT/rG0-PtRu electrodes. Figure 2B - D depict the elemental 

mapping of Pt, Ru, and C on the Ti02NT substrate, respectively, revealing that the PtRu 

nanoparticles were homogeneously dispersed and that the composition of the rGO-PtRu 

nanocomposite formed on the Ti02NTs was successfully controlled by the facile electrochemical 

deposition method employed in the present study. 

The crystalline nature of the Ti02NT/rG0-PtRu nanocomposites was characterized by the XRD 

technique. Figure 5.3 shows the XRD patterns of the rGO-PtRu nanocomposite with different 

ratios of Pt:Ru (84:16, curve a; 69:31, curve b; 64:36, curve c; and 42:58, curve d) deposited on 

the Ti02NTs, where the peaks marked with asterisks were derived from the Ti of the anatase 

Ti02NTs. The PtRu nanoparticles exhibited diffraction peaks at 46.6, 67.7, and 82.6°, 

corresponding to the characteristic (200), (220), and (311) plane reflections of a Pt face-centered 

cubic (fee) structure (JCPDS file no. 4-0802).^^ The XRD patterns of the nanocomposites 
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displayed in Figure 5.3 show that no distinct Pt and Ru peaks were obtained, indicating the 

formation of PtRu alloys without crystalline Pt and Ru metal phase separation. 

Figure 5.2. (A) EDS of the Ti02NT/rG0-PtRu electrodes with their composition of Pt:Ru 84:16 

(a), 69:31 (b), 64:36 (c) and 42:58 (d) in the nanocomposites on the Ti02NT (Peaks marked with 

asterisks are derived from Ti). Elemental mapping of the Pt (B), Ru (C) and C (D) obtained at the 

Ti02NT/rG0-PtRu (64:36) electrode. 
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Figure 5.3. XRD of the Ti02NT/rG0-PtRu electrodes with their composition of Pt:Ru 84:16 (a), 

69:31 (b), 64:36 (c) and 42:58 (d) in the nanocomposites on the Ti02NT (Peaks marked with 

asterisks are derived from the anatase phase of Ti02). 
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Figure 5.4. XPS spectra of the C Is and Ru 3d regions (A), Pt 4f region (B) and Ti 2p region (C) 

for the Ti02NT/rG0-PtRu nanocomposite. 
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XPS was employed to further characterize the chemical states of the elements in the 

Ti02NT/rGO-PtRu nanocomposites. Figure 5.4 shows the curve fitting and deconvolution of 

Ru3d, Cls, Pt4f, and Ti2p peaks of the XPS spectra of the as-prepared TiOaNT/rGO-PtRu 

(64:36) nanocomposite electrode. It is known that Ru 3d peaks overlap with the Cls peaks. As 

shown in Figure 5.4A, the Cls-Ru3d core level spectrum exhibits several peaks that are centered 

at binding energies of 284.90 and 280.00 eV. The binding energies of the C Is core level are 

highly dependent on the position of the related atoms within the chemical structure. The Cls 

peaks at 284.90, 285.74, 286.94, 288.31 and 289.29 eV were obtained for sp^ C, C-OH, C-O, 

C=0 and HO-C=0, respectively. As shown in Figure 4A, the decrease of the oxygen containing 

functional groups of the C-O, C=0 and HO-C=0 peaks at 286.94, 288.31 and 289.29 eV in 

comparison with GO indicated the effective electrochemical deposition of graphene on the 

Ti02NT surface. The slight shift of C Is peaks to the higher binding energy, in contrast to 

previous reports, indicated that the metals were dispersed on the rGO surfacerGO.^^’^^ The Ru 3d 

peaks at 279.93, 280.73, 281.48, and 282.68 eV were observed for the binding energy that was 

associated with Ru 3d5/2 electrons, whereas the other peaks, at 284.10, 284.90, 285.65, and 

286.85 eV, corresponded to the binding energy associated with Ru 3ds/2 electrons. The Ru 3d 

peaks at 279.93 and 280.73 eV for Ru 3d5/2 and at 284.10 and 284.90 eV for Ru3d3/2 respectively, 

were associated with metallic Ru. The other peaks at 281.48 and 282.68 eV for Ru 3ds/2, and 

285.65 and 286.85 eV for Ru 3d3/2, respectively, corresponded to the Ru oxide.^^ The percentages 

of the metallic and oxide states of Ru were estimated on the basis of the integration of their 

individual metallic/oxide components, as well as the total components. It was estimated to be 

65.35% and 34.65% of metallic Ru and Ru oxide, respectively, indicating that Ru was partially 

within the localized Ti02 and graphene environments. As displayed in Figure 5.4B, Pt 4f signal 

contained intense doublet peaks, at 71.09 and 74.42 eV, for 4fs/2 and 4f7/2 electrons, respectively, 
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with an asymmetric nature, corresponding to metallic Pt. In addition, less intense peaks, at 72.43 

and 75.75 eV for 4fs/2 and 4f7/2 electrons, respectively, were observed with a doublet peak energy 

separation of about 3.32 eV, suggesting the presence of a small Pt(II) fraction. The Pt peaks of 

the Ti02NT/rG0-PtRu nanocomposite electrode displayed a shift of Pt 4f binding energy to the 

high energy direction by 0.9 eV, in comparison to previous reports.^^ The shift in these peaks 

indicated a strong metal-support interaction between the Pt and Ti02NTs/rGO.^^ The percentages 

of the metallic Pt and Pt oxides were calculated via the integration of their individual metallic 

components and total components. It was found that there were 75.07% of metallic Pt and 

24.93% of Pt oxide, suggesting that Pt was also partially oxidized. The actual atomic composition 

of Pt and Ru was calculated based on the integrated area under the peaks, to be 61:39% Pt:Ru, 

which is close to the ratio estimated from the EDS analysis. Figure 5.4C presents the XPS fitting 

curve for the Ti 2p peak, showing two Gaussians, centered at 459.19 and 464.87 eV, which were 

associated with pure anatase Ti02- A high binding energy shift of about 1.6 eV was observed for 

Ti 2p, which indicated the interaction of PtRu nanoparticles with anatase Ti02.^^ 

5.4. Electrochemistry behaviour of the Ti02NT/rG0-PtRu nanostructures 

The electrocatalytic activity of the Ti02NT/rG0-PtRu (64:36) nanocomposite was 

investigated via the electrocatalytic reduction of oxygen in an alkaline media at room 

temperature. Figure 5.5 shows the cyclic voltammograms (CVs) of the Ti02NTs (magenta line), 

Ti02NT/rGO (blue line), Ti02NT/rG0-Ru (red line), Ti02NT/rGO-Pt (black line), Ti02NT/PtRu 

(cyan line), and Ti02NT/rGO-PtRu (64:36) modified electrodes recorded in the range between 

0.2 V and -0.4V in 02-saturated 0.1 M KOH at a scan rate of 20 mVs ^ There was almost no 

response observed at the Ti02NT (magenta) and Ti02NT/rGO (blue) electrodes. The small 

reduction waves with onset potentials of -0.17V and -0.15V and the current densities of 0.4 
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mAcm'^ and O.SmAcm'^, at the reduction potential of -0.4V, were obtained for the Ti02NT/rGO- 

Pt and Ti02NT/rG0-Ru electrodes, respectively, toward ORR in 0.1 M KOH. The well-defined 

cathodic reduction waves observed for the Ti02NTs/PtRu nanoparticles (cyan) and for the 

Ti02NT/rG0-PtRu nanocomposite (green), respectively, with an onset potential of -0.02V for 

both electrodes. Current densities of 0.8 mAcm' and 1.6 mAcm' were attained at the 

Ti02NT/PtRu nanoparticle electrode (cyan), and the Ti02NT/rGO-PtRu nanocomposite 

electrode (dark green), respectively, as seen in Figure 5. It was clear that the ORR activity 

observed for the Ti02NT/rGO-PtRu (64:36) nanocomposite electrode was approximately double 

that of the Ti02NT/PtRu (64:36) electrode, as displayed in Figure 5.5. It is interesting to 

understand the reaction mechanism of the ORR process at the electrocatalyst and the resulting 

effects for use in fuel cell systems. The ORR in the alkaline medium primarily favored the four- 

electron pathway at the PtRu electrocatalyst, and the possible reaction pathways have been 

previously reported.^"^ The initial rate determining step involved the 2e' reduction of O2 and the 

consumption of H2O to form the intermediate reaction products, HO2' and OH'. In the second 

step, the peroxide radical (HO2 ) could be further reduced, via an additional 2e', to form OH', 

with the overall reaction: 

02 + 2H20-H4e ^40H' 

The optimization of the Ti02NT/rGO-PtRu nanocomposite was carried out by monitoring 

the ORR activity in 0.1 M KOH, shown in Figure 5.6. The CVs were recorded for the different 

Pt:Ru compositions (84:16, 69:31, 64:36, 42:58), respectively, on the Ti02NT/rGO electrodes in 

02-saturated 0.1 M KOH at a scan rate of 20 mV/s. The ORR activity depended on the 

composition of the PtRu nanoparticles. The highest cathodic current density was attained at 

approximately -1.7 mA cm'^ at -0.4V for the Ti02NT/rGO-PtRu (64:36) nanocomposite. 
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Figure 5.5. CVs of the Ti02NT (magenta), Ti02NT/rG0 (blue), Ti02NT/rG0-Pt (red), 

Ti02NT/rG0-Ru (black), Ti02NT/PtRu (cyan) and Ti02NT/rG0-PtRu (60:40) (green) electrodes 

recorded in 02-saturated 0.1 M KOH, scan rate of 20 mV/s. 
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On a further increase in the amount of Ru in the PtRu (42:58) composition, the ORR activity was 

slightly decreased when compared to other composite electrodes in the present investigation, as 

shown in Figure 6. Table 1 presents the ORR catalytic activity of the prepared Ti02NT/rG0-PtRu 

electrodes, indicating that Ti02NT/rG0-PtRu (64:36) electrode exhibited the highest catalytic 

activity toward ORR in alkaline medium when compared to the other electrodes that were 

prepared in this study. The high-performance catalytic ORR activity of the Ti02NT/rGO-PtRu 

(64:36) electrode was obtained by modifying the electronic properties of Pt through the Pt-Ru 

orbital overlap within the graphene composite. The Ti02NT/rGO-PtRu (64:36) electrode 

demonstrated an enhanced ORR electrocatalytic activity in decreasing the overpotential and 

augmenting the current density compared to other electrodes, as displayed in Table 5.1. These 

electrocatalytic results indicated that the present Ti02NT/rGO-PtRu (64:36) electrode exhibited 

superior ORR activity in terms of decreasing overpotential over the electrocatalysts reported in 

the literature, including Pt/C, demonstrating that the electrocatalytic activity for ORR in O.IM 

KOH was associated with a more positive ORR onset, as shown in Table 5.2.^^’^^ '^^ The excellent 

ORR catalytic activity of the Ti02NT/rG0-PtRu (64:36) electrode that was attained in the present 

study might be associated to the uniformly dispersed PtRu nanoparticles on the surface of the 

Ti02NT, as well as the combination of the graphene sheets, providing a synergistic coupling 

effect toward outstanding ORR activity. 
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Figure 5.6. CVs of the Ti02NT/rG0-PtRu electrodes with their composition of Pt:Ru (84:16, 

black), (69:31, red), (64:36, green) and (42:58, blue) in the nanocomposites on the Ti02NT 

electrodes recorded in 02-saturated 0.1 M KOH, scan rate of 20 mV/s. 

Ti02NT/rG0-PtRu(84:16) 

Ti02NT/rG0-PtRu(69:31) 

Ti02NT/rG0-PtRu(64:36) 

Ti02NT/rG0-PtRu(42:58) 

-0.039 

-0.002 

0.007 

-0.058 

-0.254 

-0.325 

-0.334 

-0.293 

-1.386 

-1.436 

-1.617 

-1.280 
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Table 5.2. Comparison of the onset potential values of different ORR catalysts. 

MnFe204 

Pt/C 

HU-Graphene 

BCN graphene 

Ag/MWCNT 

Au/Sn02 

N-Graphene 

AgNps 

Ni3C 

Au/rGO 

Ti02NT/rG0-PtRu(64:36) 

-0.18 

-0.13 

-0.14 

-0.13 

-0.16 

-0.16 

-0.13 

-0.17 

-0.30 

-0.03 

0.01 

0.1 MKOH 

0.1 MKOH 

O.IM KOH 

O.IM KOH 

O.IM KOH 

0.02M NaOH 

O.IM KOH 

O.IM NaC104 

O.IMH2SO4 

O.IM KOH 

O.IM KOH 

35 

36 

37 

38 

39 

40 

41 

42 

43 

18 

Present Work 
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To further investigate the activity of the Ti02NT/rGO-PtRu electrodes with different 

Pt:Ru compositions in the nanocomposites, electrochemical impedance spectroscopy (EIS) was 

used for ORR in 0.1 M KOH. Figure 5.7 displays the EIS of the Ti02NT/rGO-PtRu electrodes 

with the composition of Pt:Ru 84:16 (curve a), 69:31 (curve b), 64:36 (curve c), and 42:58 (curve 

d) in the nanocomposites, which was recorded for ORR in 0.1 M KOH at the applied potential of 

-0.25V. These impedance results were fitted as solid lines with an equivalent electric circuit. The 

equivalent electric circuit that was used to fit with the experimental data is shown in the inset of 

Figure 5.7. Rg denotes solution resistance, Rp represents the parallel combination of the charge- 

transfer resistance, and CPE characterizes the constant ORR phase element. The CPE is defined 

by CPE-T and CPE-P, and the CPE is considered to be a capacitor (Cdi) if CPE-P is equal to 1. 

Table 5.3 depicts the values of all the parameters of Rg, Rp, CPE-T, CPE-P and their associated 

percentage errors determined by the fitting of the experimental EIS data. All of the associated 

errors listed in Table 5.3 are within 5%, suggesting that the electric equivalent circuit used 

(shown in Figure 5.7) may effectively fit the experimental data. The CPE-P values for the 

nanocomposite electrodes was ~ 0.9, indicating that the CPE-T values obtained in this study are 

close to Cdi, as can be seen in Table 5.3. The Rg values for all of the nanocomposite electrodes 

were in the range of 7.5 to 8.9 Q, and the Rp values were varied with different electrode 

compositions. The Rp values were decreased from 627.2 Q to 208.8 Q by increasing the amount 

of Ru in the PtRu nanoparticles from 16% to 36%; However, the Rp value was increased to about 

220.9 at the Ti02NT/rGO-PtRu (42:58) electrode. The CPE-T values were 3.4, 3.9, 4.2 and 3.2 

mF cm'^ for the rGO-PtRu (84:16), rGO-PtRu (69:31), rGO-PtRu (64:36) and rGO-PtRu (42:58) 

compositions on the Ti02NT electrodes. The Ti02NT/rGO-PtRu (64:36) electrode exhibited the 

smallest Rp value and the largest CPE-T value among all the fabricated nanocomposites in the 
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present study, as shown in Table 5.3, which are consistent with the results of observed in Figure 

5.5 and Figure 5.6. 

Figure 5.7. Nyquist plots of the Ti02NT/rG0-PtRu electrodes with their composition of Pt:Ru 

84:16 (a), 69:31 (b), 64:36 (c) and 42:58 (d) in the nanocomposites on the Ti02NT electrodes 

recorded in 02-saturated 0.1 M KOH. The amplitude of modulation potential was 5 mV. The 

frequency was altered, from 100 kHz to 40 mHz with the applied potential of -0.25V. Inset: The 

corresponding equivalent electric circuit. 
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Table 5.3. EIS data of the Ti02NT/rG0-PtRu electrodes with different compositions of Pt:Ru 

obtained from the Nyquist plots of Figure 5.4. 

TiOzNT/rGO- 7.5 1.9 627. 
PtRu(84:16) 2 

TiOzNT/rGO- 8.9 0.9 384. 
PtRu(69:31) 9 

TiOzNT/rGO- 8.1 0.5 208. 
PtRu(64:36) 8 

TiOzNT/rGO- 7.6 1.2 220. 
PtRu(42:58) 9 

4.6 3.4 3.5 0.8 1.6 

2.6 3.9 2.3 0.9 1.0 

1.1 4.2 1.3 0.9 0.5 

2.1 3.2 2.0 0.9 1.1 

The durability of the Ti02NT/rG0-PtRu (64:36) nanocomposite electrode was further 

tested for ORR in alkaline media. The amperometric i-t curve was recorded to monitor the 

stability of the present composite electrode by applying -0.35 V in 02-saturated 0.1 M KOH for 

50,000 s, which is displayed in Figure 5.8 as the relative current density in the percentage scale. It 

is interesting to note that the current density at the Ti02NT/rGO-PtRu (64:36) electrode revealed 

a slow decay during the ORR. Subsequent to the testing of the nanocomposite electrode over 

50,000 s, a loss in the cathodic current density of ~ 9% occurred, as shown in Figure 8, showing 

that the Ti02NT/rGO-PtRu (64:36) nanocomposite electrode possessed high stability as a novel 

ORR electrocatalyst. 
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Figure 5.8. Amperometric i-t response obtained for ORR at the Ti02NT/rGO-PtRu electrode with 

Eapp of -0.35V in 02-saturated O.IM KOH. 

5.5. Conclusions 

In conclusion, we have successfully fabricated novel Ti02NT/rGO-PtRu nanocomposites 

through a single-step electrochemical deposition method. The prepared Ti02NT/rGO-PtRu 

(64:36) nanocomposite electrode exhibited a high ORR activity in 0.1 M KOH solution. The 

superior electrocatalytic performance of the Ti02NT/rGO-PtRu (64:36) nanocomposite electrode 

was primarily attributed to the intrinsic catalytic activity of the PtRu nanoparticles, with potent 

rGO and Ti02NT interactions via improved charge transport through the rGO sheets, thus leading 

to a high ORR performance. The Ti02NT/rGO-PtRu (64:36) electrocatalyst developed in the 

present study also possessed long-term durability. Moreover, the facile approach reported here 

may serve as a forerunner for the design of variety of advanced hybrid Ti02NT/graphene-metal 

nanoparticle catalysts, which may enable a broad range of environmental and energy 

applications. 
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Chapter 6 Summary and future work 

The unique catalytic activity of Pth* and PtRu nanoparticles investigated in this thesis are 

considered to be the most effective catalysts for enhancement of fuel cells. Essentially, Pt-, Ir-, 

and Ru based nanomaterials have the potential for being used to develop more efficient catalysts 

in DMFCs. There are two different methods employed in the synthesis of the Ptir and PtRu 

nanomaterials in this work: (1) chemical reduction, and (2) electrochemical deposition/reduction. 

All synthesized nanomaterials were characterized using surface analysis techniques and 

electrochemical methods. 

6.1 PtIr nanoparticles deposited on TiOiNTs for DMFC 

DMFCs represent a potiential alternative to conventional energy generating devices. 

Methanol as a fuel source for DMFCs has several advantages over other fuels, such as high 

availability, high energy conversion efficiency, and high energy density. Moroever, DMFCs 

themselves allow for easier distribution in comparison to other energy generating devices. 

Pt is commonly used as an electrocatalyst in DMFCs; however, there are limitations, as it is very 

expensive and readily poisoned by partial oxidation products (i.e., CO) in the methanol oxidation 

reaction. Thus, there is interest in doping Pt with other metals to reduce costs and CO poisoning. 

In Chapter 3, the synthesis of Ptir nanoparticles on TiOiNT was acheived using the chemical 

reduction technique. SEM results indicated that the chemical reduction method, which used a 

sodium borohydride as the reduction agent at room temperature, effectively controlled the 

distribution of Pth* nanoparticles. Pth* nanoparticles were uniformly distributed with a small 

particle sizes of ~ 10 to 18 nm. Moroever, EDX results confirmed the Pt and Ir composition. The 

electrochemical results presented in Chapter 3 demonstrated that increasing the relative 
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composition of Ir in the PtL* mixture increased oxidation peaks. The 60:40 composition of Ptir 

showed the highest methanol oxidation activity. 

6.2 PtRu nanoparticles deposited on Ti02NTs for DMFC 

In Chapter 4, a series of PtRu nanoparticles with different compositions were synthesized 

and successfully deposited onto Ti02NT substrates via the chemical reduction method. Ti02 

nanotubes were easily synthesized using the electrochemical anodic oxidation method. The 

formed Ti02NTs had a very large surface area with high stability. Ru was employed to enhance 

the methanol oxidation activity of Pt catalyst. The use of Ru effectively promoted the activation 

of water and facilitated the concomitant transfer of oxygen to CO to produce CO2. The 60:40 

PtRu nanoparticles deposited on the Ti02NTs had the highest surface area and activity of 

methanol oxidations when compared with other Ti02NT/Pt and Ti02NT/PtRu electrodes. 

6.3 Oxygen reduction reaction on the TiOiNT/rGO-PtRu electrodes 

The oxygen reduction reaction at the cathode was studied in Chapter 5. Electrochemical 

deposition was employed to successfully synthesize the Ti02NT/rG0-PtRu nanocomposite. 

SEM images and EDX mapping revealed that the rGO-PtRu nanomaterials with the Pt:Ru ratio of 

64:36 were uniformally deposited onto the Ti02NTs. The Ti02NT/rG0-PtRu (64:36) electrode 

provided the best ORR enhancement. This unique performance was attributed to the behaviour of 

the PtRu nanoparticles and the strong interactions between rGO and Ti02NT, which improved 

charge transport through the rGO. The Ti02NT/rG0-PtRu electrode exhibited reduced charge 

transfer resistance and a much higher ORR activity. The high-performance of the Ti02NT/rGO- 

PtRu nanocomposite suggests that it is promising for the enhancement of ORR and fuel cell 

applications. 
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6.4 Closing remarks and future work 

The detrimental effects of environmental pollution are clear and promote the quest for 

alternate power generation sources that provide clean energy. The development of anodic 

catalysts for methanol oxidation and cathodic catalysts for oxygen reduction was the primary 

objective of this thesis. It was found that Ptir based nanomaterials are promising for methanol 

oxidation applications, which could be potentially incorporated into small vehicles and portable 

electronics. Certain atomic compositions of Pt with other metals, such as Ru and Ir are critical for 

anode material enhancement. The inclusion of Ru and Ir altered the number of available active 

sites on the Ti02NT/Pt electrode, providing enhanced stabilization. Future work should focus on: 

(i) optimization of the experimental conditions for the growth of Ti02 nanotubes; (ii) 

optimization of PtIr and PtRu based alloy geometries, composition and structure to further 

promote their catalytic activity and stability; (ii) investigation of the rGO-PtRu nanocomposites 

towards methanol oxidation; (iii) study of the rGO-PtIr nanocomposites for both methanol 

oxidation and oxygen reduction; and (iv) understanding of the mechanisms of the enhancement of 

the methanol oxidation as well as the oxygen reduction. 
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