Mitigating the Impact of Decompression Latency in L1 Compressed

Data Caches via Prefetching

by

Sean Rea

A thesis
presented to Lakehead University
in partial fulfillment of the requirement for the degree of
Master of Science
In

Electrical and Computer Engineering

Thunder Bay, Ontario, Canada

September 1, 2017

Copyright 2017 Sean Rea

Abstract

Expanding cache size is a common approach for reducing cache miss rates and increasing performance in
processors. This approach, however, comes at a cost of increased static and dynamic power consumption
by the cache. Static power scales with the number of transistors in the design, while dynamic power

increases with the number of transistors being switched and the effective operating frequency of the cache.

Cache compression is a technique that can increase the effective capacity of cache memory without
experiencing the same gains in static and dynamic power consumption. Alternatively, this technique can
reduce the physical size and therefore the static and dynamic energy usage of the cache while maintaining
reasonable effective cache capacity. A drawback of compression is that a delay, or decompression latency,
is experienced when accessing the compressed data, which affects the critical execution path of the
processor. This latency can have a noticeable impact on processor performance, especially when

implemented in first level caches.

Cache prefetching techniques have been used to hide the latency of lower level memory accesses. This
work aims to investigate the combination of current prefetching techniques and cache compression
techniques to reduce the effect of decompression latency and therefore improve the feasibility of power

reduction via compression in high level caches.

We propose an architecture that combines L1 data cache compression with table-based prefetching to
predict which cache lines will require decompression. The architecture then performs decompression in
parallel, moving the delay due to decompression off the critical path of the processor. The architecture is
verified using 90nm CMOS technology simulations in a new branch of SimpleScalar, using Wattch as a
baseline, and cache model inputs from CACTI. Compression and decompression hardware are synthesized

using the 90nm Cadence GPDK and verified at the register-transfer level.

The results of our verifications demonstrate that using Base-Delta-Immediate (BAI) compression, in
combination with Last Outcome (LO), Stride (S), and Two-Level (2L) prefetch methods, or hybrid
combinations of these methods (S/LO or 2L/S), provides performance improvement over Base-Delta-
Immediate (BAI) compression alone in L1 data cache. On average, across the SPEC CPU 2000 benchmarks
tested, Base-Delta-Immediate (BAI) compression results in a slowdown of 3.6%. Implementing a 1K-Set
Last Outcome prefetch mechanism improves slowdown to 2.1% and reduces the energy consumption of

the L1 Data Cache by 21% versus a baseline scheme with no compression.

il

Acknowledgements

For introducing me to computer architecture and providing me with an engaging topic to study while at

Lakehead, thank you Dr. Atoofian. | have learned a lot under your supervision.

Thank you to Dr. Mansour and Dr. Tayebi for endorsing my application for part-time studies back in 2012
and to Dr. Natarajan for keeping an eye on me for the first few years. Thank you Dr. Christoffersen for your

active role in enabling students at Lakehead to have access to Cadence tools.
Thank you to all my family who have given their support and made every accommodation possible for me
to pursue this degree. Most importantly, thank you Marcelle and Adam for supporting my decision to

continue with my studies.

Sean Rea

rea@ieee.org

il

Contents

LISt OF FIUIES . .veeutiiiiecieeiteiteite sttt ettt et e st e st e et e e st e e saessaessaeasseasseessaessaesssessseasseesseenseesssesssensseesenns vi
LSt OF TADLES ...ttt ettt e h ettt e s et e sb e et et e e st et e ebe e st e bt ene et e ebeeaneees viii
LISt OF SYMDOLSuviiiiiieiieiieitetest ettt ettt et e st e et e st e e saessaessaessseasseessaessaesssessseasseasseensassssessseesseenseens ix
LSt Of ADDIEVIALIONSeeutiiiiieiieeie ettt ettt et ettt e bt e s bt e sbtesateeateeteesbeesbeeeneesmeeeateenseebeennes X
Chapter 1 INtrOQUCIIONciiuiieciie et ettt ettt e et e et e et e e tbeeesbeeessbeeesbeeessseesssaeessseessseeenssaessseeanes 1
Chapter 2 Background and Related Workccooouiiiiiiiiii e 4
2.1 MeEMOTY HICTATCHYueieiiiiiieiieie ettt ettt et et e s et e eateeteesbeesaeesneeeas 4
N O To] Tl 0010 (1) (o) 1 NP OSSP 5
2.2.1 Related Work in Cache COmPIeSSIONcvivvieerieriieriieriieeieereereeseesseeseessseseseesseesseesseeens 6
222 BaSE-DILA. ...ttt ettt et b et teeaeen 7
223 Base-Delta-Immediateccoeiiiiiiiiieie et 9

2.3 Data Prefetching and Data Value Predictioncccceevieeiiniieiieiesiesee e 10
2.3.1 Related Work in PrefetChing..........ccoeiieiieiiiiieieeee ettt 11
2.3.2 LaSt OULCOIMEceoueiieiiieeiie ettt ettt ettt e et e et e e it e e s bt e e sabeesabbeesateesabeeesaseean 12
233 Stride and Hybrid Stride / Last OUtCOMEcc.eevviririiniiriiienienteieeeetesieee e 13
234 Two-Level and Hybrid Two-Level / Stride ..o 14

2.4 THESIS MOLIVATION ..eutiiiieiieeiie ettt ettt et et e st e st eeete e e e bt e bt esseesatesaseenseesaesseesanesnnenns 15
Chapter 3 Cache Compression and PrefetChingc..cccvevvieviiiiieriecie ettt 16
3.1 ComPIesSION ATCRILECTUIE.ecviervieriieiieireeteete et et e sttesreereeeseeseesseesssesssesssessseeseesseesssessseans 16
3.1.1 POWEr CONSIACTALIONSc.veeiieiieiieieitieiete ettt ettt ettt et e te et e e eeesee e eneenes 17

3.2 Prefetching ATCHITECTUIEccviiiieeiieieeieeciec ettt ere ettt st e s v e e beesbeesteestsestbeesbeesseeseesanessneans 18
3.2.1 FETCH ...ttt sttt s b e et b e et sb et e bt s ae e ebe e 19
322 IMEM ..ttt bttt h e ettt et b et e sttt he e 20

3.3 HAardWare DESIZNcceevuieeiieeiieeieeieeeeite sttt ettt ettt s e sttt e staesnteenteeseessaesaaeenneans 21
3.3.1 Hierarchical Carry-Lookahead Adder...........ccceeviiriiiiiiiiieiieciecieee e 23

v

3.3.2 Implementation iN VETIlOZccverieriiieiieiieieerese ettt e e e snneenne s 26

Chapter 4 Simulation MethOdOLOZY.......c.cecveiiiiiiiiiiie ettt ettt see e e esbeeseessaessaessneees 31
4.1 1Y) 114 T Ve [0 Lo ey 2RO PP 31
4.1.1 STMIPOINTeiiiiiiiiieeiee ettt ettt e e st e e e teeesebeesbeeetbeessbeeesseessseeassseessseesnsseessaeassesensees 32
4.1.2 CACTT ettt ettt et et e b e et e e st e se e st enseeseensensesstensenseensensenseensenseansas 38
4.1.3 SIMPLIESCALAL ...ecveviiiiieieeee ettt et e e e te e e e b e e etae e abeeearaeeenas 41
4.14 ENVITONMENT....coetiitiiiiieie ettt ettt et e sat e et e e et e bt e sbtesaeeeaeeeneean 48

4.2 Synthesis and Static POWET ANALYSISccciirieiieiiiiiieiieeseesee et ereeiee e sesesseessaesseessnessnenns 48
4.3 Dynamic POWET ANALYSIS......ceccuieriieriieiieiieereeiteesieestesttesseesseasseesseesseesssesssesssessseessesssessssessseans 52
4.4 Place and Route in Cadence INNOVUScccoruieiiiiiieiieeeece ettt 56
Chapter 5 ReESUILS...cciiiiiiiiicit ettt ettt e et e et e et e e s teestaesssessbeesseessaessaesssessseasseassaesseenseensseans 57
5.1 COMPIESSION ...vveevvrentiesereseresereesseeseesseesssessseasseasseesseesseesssessseasseesseessessssesssesssessseessesssesssessssessennss 57
5.2 PrefEtCRING c..eceeieee ettt ettt b e bt e st e et e e te e beesaeeeneeens 66
53 Compression and PrefetChingcoviiiiiiiiiiiieee e 73
Chapter 6 Summary and FUture WorK...........c.ooiiiiiiiiiiieeeeeee ettt 77
6.1 CONITIDULIONS. ..ttt ettt et et e st e st e et e e bt esteesaeeesteenbeeaseenseeseensaesstesnsesnseenseenseesseasnnens 77
0.2 FULUIE WOTK .ottt ettt ettt e et et e e e et et et e enteeeeneeneenneenean 78

L3 10) 1074 21 o) 1\ OO OSSR PP 80
APPENAIX A VETIIOZ SOUICE.......ueiiiiiiiiiiieeieeittestteste et ereeteeteesteestaessbeesbeeteessaesssesssessseasseesssesssesssessseensens 83

List of Figures

Figure 2.1 — MemOry HICTAICHYcccveviiiiiiiieiiciteseestese ettt ettt ettt e s ae et aestaesteessaesssesssaenseenseensns 4
Figure 2.2 — 32-Byte Cache Line Compressed with Base-Deltacccoveeiieiiniiiininienieeeeeeee 8
Figure 2.3 — 32-Byte Cache Line Compressed with Base-Delta (2 Bases)........ccccevereeienenceneneneeseeene 8
Figure 2.4 — Changes to Tag and Data Architecture for BAI Compression...........ceceveeierereenieneeneenenene 9
Figure 2.5 — Last Outcome PrefetChingcoooiiiiiiiiii e 12
Figure 2.6 — Stride PrefetChingco.oiiiiiiiieee ettt st 13
Figure 2.7 — Stride State MaCRhiNe.c.c.eiiuiiiiiiiieieee ettt ettt et e sbe e st saeeeneeas 14
Figure 2.8 — Two-Level Prefetch Table and Pattern History Table...........ccccoovieniiiiiniiiiiiiieieeeen 15
Figure 3.1 — Prefetching Applied to Classic RISC Architecturec.cceeveevienieniieeiieieeeseesee e 18
Figure 3.2 — Prefetch Table StruCtUrecociiiiiiiiii ettt s 19
Figure 3.3 — CompresSOr DESIZI «...covuiiiiiiiiiiieciieeie ettt ettt et ettt e et eateebe et e bt e saeesaeeeneeenneas 22
Figure 3.4 — DecomMPIeSSOr DESIZI......couiiiieiiieitieeiieeie ettt ettt ettt te et e et e st e eebe e bt e bt esbeesaeeenseenneas 22
Figure 3.5 — Truth Table for FUll Adder..........cooioiiiiieeee ettt 24
Figure 3.6 — Karnaugh Map for FUull Adder..........cccoeiiiiiiiieiecicceceee ettt s 24
Figure 3.7 — Adder DESIZIN....cuieuieiietieieiiee ettt sttt ettt et b et e st e s et et e ebeenee st eneenteeneeneas 26
Figure 3.8 — HDL Structure of COMPIESSOT........cecueiuieiertieieieseeeiesteettesteeteete et eeesteseeeeesteeneesseeneeneeseeeneas 26
Figure 3.9 — Testbench Waveforms for Compressor in Xilinx ISEcccoociiiiiiiiniiieeeee 29
Figure 3.10 — HDL Structure of DeCOmMPIESSOTcc.eeiiriirieieriieieeie ettt ee e eneas 29
Figure 4.1 — Simulation FIOW DIa@ramccccooiiiiiiiiiiiees e 32
Figure 4.2 — CACTT OULPUL ..ttt et es et e st et e et et eateseeensesseenee st eneenseaneeneas 38
Figure 4.3 — Compression Model Verification Results...........ccccoeieiirieiinieienieeeeeee e 43
Figure 4.4 — Compressor VCD Headercoueiuiiiiiiieeieee ettt 45
Figure 4.5 — Compressor VCD ASCII VALUEcc.ooiiiiriiiiiiiniiieiecteeeeeee ettt 46
Figure 4.6 — Decompressor VCD Header Variables.........c.cooeiiiieninieiinieiinieienicsceesceteie e 46
Figure 4.7 — Decompressor VCD ASCII ValUC.......c.coiiriiiiiiniiiiieiteeseeeeeteie et 46
Figure 4.8 — Genus Gates Report for Compressor (Condensed)...........cevveeeerieririeneneenienenienenceeeseeaen 49
Figure 4.9 — Compressor ROUting in INNOVUScoeiiiiriiiiiiiieeiteeeeeetee et 56
Figure 5.1 — Percentage of L1 Data Cache Lines Compressed by Each Schemecccccoceninininnne. 57
Figure 5.2 — Compression Ratio of L1 Data Cachec..coceiiiiriiniiiiiniiieeeeeeteeeeee e 58
Figure 5.3 — [PC of Baseline SCHEIMEccc.oouiiiiiiiiiiiieiiieec ettt 60
Figure 5.4 — IPC of Compressed SChemEcoouiiiiiiriiiiiiiieeeteeeee ettt 60
Figure 5.5 — Speedup of Compressed Scheme vs Baselineccoocoeieiieieiinieieneceeeceee e 61

Vi

Figure 5.6 — L1 Data Cache Static Energy (Baseline Scheme)...........cccooveviiivieniinciieciieiceeee e 62

Figure 5.7 — L1 Data Cache Static Energy (Compressed SCheme)..........cccevvververierieeieeniieneesee e sneenens 63
Figure 5.8 — L1 Data Cache Static Energy Ratio — Compressed vs Baseline...........cccocoveevvevveneencvennennnen, 63
Figure 5.9 — L1 Data Cache Dynamic Energy (Baseline Scheme)cccoovevievienciieciieciceeesee e 64
Figure 5.10 — L1 Data Cache Dynamic Energy (Compressed SCheme)ccceeeveevieciieciieneeneenienveenenn 65
Figure 5.11 — L1 Data Cache Dynamic Energy Ratio — Compressed vs Baseline.............ccccceviiniininnnnen. 65
Figure 5.12 — Hit Percentage of Load Instructions by Prefetch Table (128 Set)ccceeieviiiiiniinennen. 67
Figure 5.13 — Hit Percentage of Load Instructions by Prefetch Table (1K Set)ccccoeveeniiniinininnnen. 67
Figure 5.14 — Prediction Accuracy of 10 Prefetch Table Configurations..........cccceecueeieiiienenninniceeeen, 69
Figure 5.15 — Static Energy by Prefetch Table (128 Set)cooieviiiiiiiieiieeeseee et 70
Figure 5.16 — Static Energy by Prefetch Table (1K Set).......ccccoviiiiiiiiiiieieieeeee e 71
Figure 5.17 — Dynamic Energy by Prefetch Table (128 Set).......ccovoviviiriiinierieeeeeeeeeeeeee e 72
Figure 5.18 — Dynamic Energy by Prefetch Table (1K Set).......cccovouiiiiiiiinienieeieeeeeeeeeee e 72
Figure 5.19 — L1 Data Cache Energy vs Performance.............ccocceeviiiiiiiiinienieeieeeeeeeeeeee e 73
Figure 5.20 — CPU Energy vs. PErfOrmance...........ccoccviievieriieriierienieiieeieesieeseesaeseresreesseesseesseesenessnessnes 74
Figure 5.21 — Speedup Due to Prefetching (128 Set, vs. Compressed Only)cccccveeevveciieneeneenvenvennnens 75
Figure 5.22 — Speedup Due to Prefetching (1K Set, vs. Compressed Only)ccoeevveevieciiereenvenvenneennen, 75
Figure 5.23 — Energy-Delay Product (CPU)........ccccuveiiiiiiiieieriecee ettt ete ettt sveesve e sseeseaeseneenne s 76

vii

List of Tables

Table 3.1 — ComPIesSion EVENTSccciveiieciiiiieiieiie ettt ettt ste st et ssa e saestaesssessseesseessaessnessnenns 16
Table 3.2 — POWET EVENILS ...o..iiiiiiiiiieietietete ettt ettt sttt et b et b e e st et e s bt e eeneesaens 18
Table 3.3 — Prefetch Table POWET EVENEScoiiiiiiiiiiiiieiee et 19
Table 3.4 — Two-Level Table POWETr EVENES.......ccooiiiiiiiiiiiiiieeteee ettt 20
Table 3.5 — Decompression Buffer POWer EVENtScccviiiiiiiiiiiiiiccieecee et 20
Table 3.6 — COmMPIESSOT TESt CASES ...ccuviiiiiieeiiieitiieeieeeiteeeteeetee e teeetee e beestaeessseeesseeessseessseeesseessseeensses 28
Table 4.1 — 164.gzip CPI Values by Simulation Pointcoccoiiiiiiiiiiiii e 33
Table 4.2 — Simpoint Error by Maximum Number of CIUSLEIScocueeviiereerienieeieeieeieeeesiee e 34
Table 4.3 — SIMPOINE EITOToiiiiiiiiie ettt ettt e ettt et e bt e saeesaeeenteenteas 35
Table 4.4 — 1T00M SimPoint RESUILScccuiiiiiiiiiiiiie ettt st et as 36
Table 4.5 — CACTI L1 Cache Configurations and Power Resultsccccceevieriiiiiiniieiieceieieeeee, 38
Table 4.6 — CACTI L2 Cache TImMINGcceerieruienieeieeieesieeitesite ettt ettt e site et st e bt esbeesaeeseeesaeeenneas 39
Table 4.7 — CACTI Prefetch Table Configurations and Power Results.........cccccoeciveiiriieiiininiiiiceeee, 39
Table 4.8 — CACTI Pattern History Table PoOwer ResUILScccccveviiriiiciieiieiciccee e 40
Table 4.9 — CACTI Decompression Buffer Power Resultscccoccveviiiciieiiiniiiecieciece e 40
Table 4.10 — Delta Datatype and Overflow Informationcccceeveveriincrieciienienieree e e 42
Table 4.11 — Boundary Conditions for COMPIESSION.........ccveerrierirerreiieeieesieeseeseresreereeseesseesssessessesssens 43
Table 4.12 — Initial Static Power Analysis of Decompressor by PDKcccccoevvieciiiiiiiienieniecieeveenn 49
Table 4.13 — Compressor Static Power Determination...........cvevverveeieeiieeneesiesieereereereesseesseessessvessnens 50
Table 4.14 — Decompressor Static Power Determinationc.cccveevveevieeneenienieereereereeseeseesnesveenes 51
Table 4.15 — 164.gzip Compressor Static Power Values by Simulation Point.............c.cccceevvevvenvireneennen. 52
Table 4.16 — Static Power for Compressor and DECOMPIESSOTecveerveerieerienieereereereeseesseessesnesnens 52
Table 4.17 — 164.gzip Compressor Dynamic Power Values by Simulation Point...........ccccceceveninnenennee. 53
Table 4.18 — Compressor Dynamic Power Results from Cadence Genus..........cccoeeveevienencieneniencnennne. 54
Table 4.19 — 164.gzip Decompressor Power Values by Simulation Pointc..cooceveeveniniinninenennn. 54
Table 4.20 — Decompressor Power Results from Cadence GeNnus............cecuveceveriienienienieeiieerieeseeseesnens 55

viii

List of Symbols

Ci carry-in

Ci+l carryout

E energy

gi generate function

Gi block generate function

M maximum number of SimPoint clusters

pi propagate function

P; block propagate function

t time

tvep, ps value change dump timestamp (in picoseconds)

X

List of Abbreviations

2L
BAI
BBV
CMC
CMOS
CPI
CPU
EDP
FIFO
FLAC
FPC
GHB
GPDK
IPC
L1

L2

L3

LO
LRU
PC
PDK
PNG
RISC
simpoint
S
S/LO
SPEC
VCD
ZCA
ZIP

two-level prefetcher
base-delta-immediate compression
basic block vector

Canadian Microelectronics Corporation
complementary metal-oxide-semiconductor
cycles per instruction

central processing unit

energy-delay product

first-in, first-out

free lossless audio codec file format
frequent pattern compression

global history buffer

generic process design kit

instructions per cycle

level-1 cache

level-2 cache

level-3 cache

last outcome prefetcher

least recently used

program counter

process design kit

portable network graphics file format
reduced instruction set computer
simulation point

stride prefetcher

hybrid stride/last outcome prefetcher
Standard Performance Evaluation Corporation
value change dump

zero-content augmented cache

ZIP file format

Chapter 1

Introduction

In 2016, it has been estimated that the world creates 2.5 quintillion bytes of data per day [1]. At the time,
that estimate suggested that 90% of the world’s data had been created in the previous two years alone. In
as early as 2013, it was approximated that Information and Communication Technologies were consuming
nearly 10% of the world’s electricity generation [2]. With this rate of data growth, and the current impact
computing has on the world’s energy consumption, there is a need to investigate ways to improve the way

we store and process data.

Linked with the growth of our data generation is the emergence of a rapidly growing mobile device market.
This market relies heavily on low power, battery supplied devices. Unavoidably, the best way to provide a
longer battery life for these devices is for the devices themselves to consume less power. While
improvements can be made to the devices themselves (e.g. supply voltage and device size), in many
applications, the best way to reduce power is to find efficiencies at the architectural level [3]. Redefining
the architecture can result in orders of magnitude in reduction of power depending on the specific

application.

When we look at the data we are creating, it is clear that patterns exist that create inefficiencies in the way
it is stored and processed [4]. Data patterns may consist of values that are repeated over-and-over again,
values that are very close to each other, and even large sets of null data. Some of the greatest sources of
data in the world today are the cameras on our mobile devices. Images are a great example of data that
consists of patterns. Pixel data contains sequences of values, which can be identical or very close in
magnitude (when looking at color value, brightness, etc.). Programs that manipulate this image data
generally handle large data arrays. These arrays are frequently initialized to some repeated value, often
zero. And frequently enough, the developers of those programs may over-provision data types to hold that
data such that most of it goes unused (narrow data). These inefficiencies in our data contribute to

unnecessary storage and processing.

In computing architecture, we utilize a memory hierarchy to ensure that the data we use most frequently is
closest to the CPU and therefore accessible as fast as possible. The closest memory spaces, L1 and L2
cache, take up large areas on-chip and consume large amounts of power. Depending on the architecture,
cache memory in a processor can account for upwards of 40% of the total power budget [5]. Because the
cache must handle our data, which is full of inefficiencies, a significant portion of this energy consumption

could be avoided via compression.

Compression is possible by replacing the most inefficient patterns with a set of smaller representations,
known as encoding. Encoding can be done with a fixed dictionary or a compression scheme can
dynamically and iteratively assign code words to patterns. Most of our data is compressible to some extent,
whether it is text, image, or audio data. This is why, in main memory, it is common to store and transfer

large files in a compressed format (e.g. ZIP, PNG, FLAC).

Cache-level compression in a processor is a technique that can increase the effective capacity of the cache,
and therefore improve performance of the processor, by compressing cache lines before they are stored in
the cache. Alternatively, this same method can be used to reduce the physical size of the cache and therefore

reduce the power consumption.

Typically, cache lines consist of several bytes of data. In set-associative caches, multiple lines, or ways,
may be stored at a given cache index. Each of these ways store a complete uncompressed cache line. If
we can compress the size of these cache lines, we can store more data in each set. Alternatively, we could

reduce the physical size of the cache and store the same, or similar, amounts of data.

The power of a cache depends on its size and the frequency of accesses. By reducing the total size of the
cache, we can significantly reduce the power consumption. In addition, the size of the data lines we read
from the cache are potentially reduced in size as well. Therefore, we can model the savings in dynamic
power consumption in the cache by considering the size ratio of compressed data vs an uncompressed cache

line.

In the past, researchers have avoided implementing compression in high-level caches such as L1 data cache
because of the impact decompression latency has on the overall performance of the processor [4, 6, 7].
Access times at this level are in the order of a few clock cycles. To add even a few clock cycles to this

access time will cause significant performance delays and defeat the intent of the high-level cache.

However, it is possible to implement additional techniques, such as prefetching, to remove the some of the
burden of decompression from the processor’s critical path. If this approach is successful, it could lead to

improving the feasibility of implementing compression in high-level caches (specifically L1 data cache).

Our work focusses on the combination of data cache compression and table-based prefetching to explore
the feasibility of implementing compression in L1 data cache. We evaluate this new architecture by
examining what impact it has on the performance and power consumption of a CPU during the execution

of standard benchmarks. Specially, this work makes three key contributions:

(1) An architecture is proposed that combines compression, specifically Base-Delta-Immediate
compression, in L1 data cache with table-based prefetching methods, such as Last Outcome, Stride, and
Two-Level, to predict which cache lines will require decompression. The architecture then performs
decompression in parallel, therefore moving the delay due to decompression off the critical path of the

processor.

(2) Modifications are made to Wattch [5], a branch of SimpleScalar [8] that is an open-source processor
modelling tool for analyzing and optimizing power consumption at the architectural level. This tool is
extended to model Base-Delta-Immediate compression in combination with table-based prefetching to
show the benefit of performing decompression as a parallel activity to execution and increase the feasibility

of implementing compression in L1 caches.

(3) 64-byte compressor and decompressor hardware is designed in 90nm CMOS and tested for
implementation with Base-Delta compression. Static and dynamic power analysis is performed on the new

hardware, reinforcing its suitability for use in a power-reducing compressed cache scheme.

The remainder of this thesis is organized into five chapters. Chapter 2 provides an overview of cache
compression and prefetching and recent research that has been done in these areas. In Chapter 3, we define
the proposed compression and prefetching architecture, discuss what changes are necessary to
accommodate the new architecture in a conventional superscalar processor, and provide the details of the
hardware design for the compressor and decompressor units. Chapter 4 discusses the tools used and
modified to model the compression and prefetching architecture. In Chapter 5, the results of simulation
are provided and discussed. Finally, Chapter 6 provides a summary of the work done, the significance of

the results, and future work that could be done to advance this research.

Chapter 2

Background and Related Work

In this chapter, we review the concepts of memory hierarchy, compression, data value prediction, and
prefetching. We review existing work in the areas of cache compression, data value prediction, and
prefetching and go into detail of the operation of one compression scheme, Base-Delta-Immediate, three
prediction schemes: Last Outcome, Stride, and Two-Level as well as hybrid combinations of these schemes.

Finally, the motivation behind this work is presented.
2.1 Memory Hierarchy

The speed in which a processor can read information from memory has a great impact on the performance
of that processor. Fast memory, however, is expensive. For this reason, memory is organized into levels
that exploit small amounts of fast memory close to the processor, and larger, slower levels of memory
farther away. This organization is referred to as the Memory Hierarchy. In this hierarchy, between the

central processing unit (CPU) and “main memory” are various levels of cache memory.

L1 Cache [#» L2Cache [L3 Cache @ e

Faster <€ > Slower

Smaller <€ » Larger

Figure 2.1 — Memory Hierarchy

When the data for a given address is stored in the high-level cache (i.e. L1 cache), then the processor has
fast access to this information. If the data is not there, the processor must retrieve it from lower levels. This
is referred to as a cache miss. Cache misses are classified by three types: compulsory misses, capacity

misses, and conflict misses [9]. Compulsory misses occur during start-up, when no information exists in

the cache. Capacity misses occur if the cache is not large enough for all the blocks required during the
execution of a program and blocks are discarded. If these discarded blocks must be read again, they must
be fetched from lower levels. Conflict misses occur if the cache is not fully associative. In this case, blocks

may be discarded even before the cache is full.

Increasing the capacity of the cache can reduce the number of capacity and conflict misses and therefore

increase performance. This, however, comes at a cost of increased power consumption.

2.2 Cache Compression

Similar to data files in main memory, the data within cache memory consists of patterns that can be
exploited by compression techniques to save space. Cache compression is a method that can be used to

increase the capacity of the cache without experiencing the same increase in power consumption.

Because the intent of cache memory is to provide low latency access to data, compression and
decompression must be performed at the hardware level in the processor rather than at the software level,
as is commonly performed on files in main memory. This same requirement for low latency cache access
is why most of the previous work done on the topic of cache compression focusses on low-level cache (i.e.
L2 cache and L3 cache). Because L1 caches typically have access latencies in the order of a few clock

cycles, adding a decompression latency on top of that can degrade performance beyond acceptable levels.

The ideal compression scheme for implementation in L1 cache is one that is, of course, fast, but is also
capable of encoding the most common patterns that exist within data stored in memory. These most
common patterns can be grouped into four main categories: zeros, repeated values, narrow values, and other

patterns [4].

Zeros
Zero values are widely used throughout programs, primarily in variable initializations, null pointers, false

boolean values, and sparse matrices [4].

Repeated Values
Similar to zero values, repeated values may appear in the form of variable initializations. Another cause for

repeated values is image data. Adjacent pixels tend to contain similar information such as colour data [4].

Narrow Values
It is common for developers to over-allocate space to variables to protect from overflow during execution
of a program. In some cases, these variables never come close to their maximum values. A small value

stored as a large data type is considered a narrow value [4].

Other Patterns
This group is not meant to include all other patterns, but rather patterns that specifically have low dynamic

range. For example, an array of pointers that all point to the same region of memory [4].

2.2.1 Related Work in Cache Compression

Research has been done to evaluate hardware-based data compression in CPU caches [4, 6, 7, 10, 11, 12]
as well as in GPGPU [13]. The following papers have explored which methods exploit the most
opportunities in data patterns and at which levels in cache they are most beneficial. A common
understanding among this work is that decompression latency is a problem when implementing in fast

caches and is cited as the reason for avoiding L1 compression in some works [4, 6, 7].

In [7], the authors present Frequent Pattern Compression (FPC), which compresses data that fits into one
of seven patterns. Each 32-bit word is evaluated separately so data is not compressed spanning multiple
words. The scheme is evaluated in L2 cache with L1 cache being left uncompressed. The design is
evaluated against the Wisconsin Commercial Workload Suite and six benchmarks from the SPEC CPU
2000 suite. The scheme provides compression ratios ranging from 1.0 to 2.4 over all their benchmarks.
This scheme captures the main three groups of patterns that exist in data. However, this scheme does not

address the behaviour of low dynamic range that data exhibits.

In [11], the authors exploit the common scenario of storing null data in caches by augmenting the
uncompressed cache with an additional cache that is only required to store the addresses of zero-content
cache lines. The authors evaluate this zero-content augmented (ZCA) cache in every combination of cache
level from L1 to L3. They found that implementing ZCA in L3 alone was sufficient to experience most of
the benefit and found up to a 22% speedup when run against SPEC CPU 2000 benchmarks. Because this
scheme only looks at zeros, decompression latency is not an issue, and the authors are able to explore this
technique in all levels of cache without affecting the read latency. This scheme, however, does not address

most of the patterns that exist within cache data.

In [12], the authors compress the cache line by encoding 32-bit words that appear in a predefined list of
“frequent values.” The scheme requires that a cache line be compressible to 50% in size or less or it is not
compressed at all. Encoding bits are required for each word in the cache line. The authors determine that
their scheme can improve the miss rate for six integer benchmarks from SPEC CPU 95 as much as 36.4%.
Due to the table-lookup nature of the scheme, it cannot capture all repeating values efficiently. As well, it

misses the important narrow values that occur within the data.

In [4], the authors present a new compression scheme that this work builds upon, called Base-Delta-
Immediate. In addition to null data and repeating values, this work exploits two trends in data called narrow
values and low dynamic range. The scheme compresses cache lines that can be represented as a single base
and an array of small deltas. The authors evaluated their scheme against the SPEC CPU 2006 benchmark
suite, among other benchmarks. The authors achieve an average compression ratio of 1.53 across all
benchmarks when compressing L2 cache. Due to the impact decompression latency would have on L1
cache, the authors focus on L2. Because this scheme addresses all the patterns discussed in the other works,
and more, it is the compression scheme we use. We will address the issue of implementing this scheme in

L1 cache by combining common prefetching techniques to mask the effect of the decompression latency.

2.2.2 Base-Delta

Back to [4], the authors first describe the foundation of their scheme, called Base-Delta. Base-Delta is a
cache compression scheme that stores a cache line as one large base value along with an array of smaller
deltas. The concept behind the scheme is that, for many cache lines, the data values have a low dynamic
range (the difference between values is small). For example, Figure 2.2 shows an example of how a 32-

byte cache line may be compressed using a Base 4 Delta 1 compression scheme.

32-byte Uncompressed Cache Line

4 bytes 4 bytes
e

0x00000000 | 0x0000000B | 0x00000003 | 0x00000001 0x00000004 | 0x00000000 | 0x00000003 | 0x00000004

Nh

000000000 | 0x00 | 0x0B | 0x03 | 0x01 | 0x04 | 0x00 | 0x03 | 0x04 | Saved Space
44— - »
4 bytes 1 byte 1 byte 20 bytes

12-byte Compressed Cache Line

Figure 2.2 — 32-Byte Cache Line Compressed with Base-Delta

From the figure, you can see how this cache line benefits from low dynamic range. In this example, the

Base 4 Delta 1 scheme is used. This means the chosen size of the base is 4 bytes, and the size of the deltas

is 1 byte.

In some cases, compression may benefit from having multiple bases. For example, the cache line in Figure

2.3 clearly shows patterns with low dynamic range around two bases.

32-byte Uncompressed Cache Line

4 bytes 4 bytes
-«

0x00000000 | 0x09A40178 | 0x0000000B | 0x00000001 | O0x09A4A838 | 0xO000000A | 0xO000000B | 0xOSA4C2FO

Base 1 Base 2
0x00000000 | 0x09A40178 | 0x00 | 0x0000 | 0x0B | 0x01 [oxABCO[0x0A | 0x0B [oxC178 Saved Space
4Pt —> -+
4 bytes 4 bytes 1 byte 2 bytes 13 bytes

19-byte Compressed Cache Line

Figure 2.3 — 32-Byte Cache Line Compressed with Base-Delta (2 Bases)

Determining two optimized bases is a high latency task that is not feasible during execution. The authors
resolve this issue by implementing the immediate portion of their compression making Base-Delta-

Immediate [4].

2.2.3 Base-Delta-Immediate

Base-Delta-Immediate (BAI) compression implements a 2-base Base-Delta scheme where one base is
always zero. This method sees much of the benefit of a 2-base system, without adding the need to store a
second base. To implement this immediate base, an array of flag bits called the immediate mask is

included in the tag to identify which deltas refer to the base and which refer to zero.

To change a conventional cache into a Base-Delta-Immediate cache, we double the number of tags. This
allows us to utilize the vacant space in the cache created during compression. Next, we modify how the
tags point to the data stored in the cache. The data array is divided into 8-byte segments rather than 64-
byte blocks. Rather than pointing to a constant 64-byte block, the tag now points to a variable-size
compressed block. The location of the compressed block at a given cache index is determined by summing
the size of cache blocks stored in front of it. Lastly, we add the encoding bits (and immediate mask, as
mentioned above) to the tag. This allows us to define the type of compression applied to the data for a

given way. These changes to the architecture are shown in Figure 2.4.

Conventional 2-way cache with 32-byte lines
Tag Storage Data Storage
Way 0 Way 1 Way 0 Way 1
Set0 | - Set 0
Set1| Tagy | Tag Se Datay v Datay
SetN| o | o \—w"/
-
32 bytes
BAl cache: 4-way tag storage, 8-byte segmented data
Tag Storage Data Storage
Way 0 Way 1 Wayzw
Set 0 // /’ﬂ “\,\\
Set1| Tage | Tagy | Tag: | Tam Se S % S5 | 5 A §V 5 | 5
\\‘.. \‘-—-___—-"’/ =
SetN| o | - [T - SetN| «oo | s e oo | e | e |
I /I
|_G_| Encoding bits 8 bytes

Figure 2.4 — Changes to Tag and Data Architecture for BAI Compression

These changes are implemented functionally in SimpleScalar and have their power and access time impact
modeled using CACTI (see Chapter 4, Simulation Methodology). The additional hardware required for

compressing and decompressing the BAI cache lines is discussed separately in Chapter 3.

2.3 Data Prefetching and Data Value Prediction

Prefetching is a method that can be used to reduce the miss rate of all three types of cache misses. Data
can be prefetched (read in parallel to execution, before it is requested), either directly into the next-level-
up cache or into a custom buffer that can be accessed faster than main memory [9]. While successful
prefetches can reduce memory latency and improve overall processor performance, unused prefetches will

have a negative impact on power consumption while having no positive impact on performance.

Data value prediction is similar to prefetching such that it employs a table-based predictor to improve
performance of the processor. Unlike prefetching, data value predictor tables do not store the address in
memory where the data exists. Rather, it stores the data itself — specifically the result of single-register
producing instructions. The processor then continues execution using this predicted result. If an incorrect

prediction is made, the processor pipeline must be flushed of any instructions that depend on this data.

The approach we take concerning prefetching is neither a direct application of prefetching nor of data value
prediction. Rather, our prefetcher predicts which address in the L1 data cache will be accessed based on
the program counter of each load instruction. Then, in parallel, the processor decompresses this data in the

cache, if it is compressed, and inserts it into an external buffer.

The key similarities between prefetching and data value prediction are the prediction table methods used.
These methods have been explored extensively for both applications. We look at this past research to

determine which tables are best suited for our application.

Reviewing the prediction schemes presented in literature, five types stand out as candidates for this work,
as discussed in [14]. The simplest, Last Outcome, is evaluated first to determine how quickly we can
recover the cost of decompression with the lowest possible complexity. Next, Stride and the hybrid
Stride/Last Outcome predictors are used and evaluated. Lastly, the Two-Level and hybrid Two-
Level/Stride predictors are looked at to capture more complex patterns. Global History Buffer is discussed

as a potential extension by evaluating the benefit of predictor tables with a depth greater than one.

10

2.3.1 Related Work in Prefetching

In [14], data value predictors are discussed using Last Outcome, Stride, 2-Level Pattern History methods,
and two hybrids of these methods. Data Value Prediction uses prediction tables in the same way as
prefetching. Data Value Predictors predict the data value rather than the address of the data in memory.
Accuracy is critical for Data Value Predictors because if an incorrect prediction is made, any progressed
instructions dependant on this value much be flushed out of the pipeline. The authors found that the Last
Outcome scheme was correct 28-62% of the time and incorrect up to 72% of the time. Stride was correct
35-77% and 3-6% incorrect. Two-Level makes minor improvements in prediction accuracy over Last
Outcome (1-3%). However, the two-level table scheme greatly improves the misprediction rate to 1-13%.
The first hybrid scheme implements Last Outcome when Stride is not in steady state. This results in a
correct predictions rate of 49-80% and incorrect predictions 20-51%. The second hybrid predictor combines
the 2-Level scheme with Stride. This scheme made correct predictions 50-82% of the time and

mispredictions only 5-18% of the time. This scheme is, however, the most complex to implement.

An important takeaway from this research are the incorrect prediction rates. In the Data Value Predictor
method, if we make an incorrect prediction, we must flush the processor of any instructions that depend on
the incorrect value. In our compression-prefetching method, we do not have to purge any information.
However, incorrect predictions will cause unnecessary cache accesses which will increase power and may

evict useful data from the decompression buffer (depending on the depth of the buffer).

In [6], the authors present a two-table prefetching scheme called Global History Buffer (GHB). GHB itself,
as with the above research on Data Value Predictors, explores multiple prediction schemes: Address
Correlation, Distance Correlation and Constant Stride. The key benefit of GHB is the two independently
sized tables. The first is the Index Table which only stores the tag and a pointer to the head of a list stored
in the GHB Table. The GHB acts as a circular buffer, keeping only the latest information. The authors
investigate different table configurations with a degree of four (values prefetched each access). They found
that GHB Distance prefetching resulted in a 20% speedup over conventional table Distance prefetching

when indexed by the miss address and 6% when indexed by the program counter (PC).
The key enabler of the Global History Buffer is to minimize space and hold the latest information about

cache misses. The same technique can be applied to our prediction table. However, this approach will only

be useful if tables with a depth greater than 1 prove to be valuable. The Global History Buffer approach

11

will not be explored directly in this work, but this work can easily be extended to explore this possibility in

a later study.

2.3.2 Last Qutcome

For this thesis, prefetching techniques are used to predict which cache lines may require decompression
from L1 data cache before the instruction is decoded using the PC of the instruction. The intent is to load
the data from a compressed cache, decompress it, and make it available to the CPU in parallel with other

stages to remove the bottleneck that is decompression latency.

The simplest scheme that will be implemented is Last Outcome. Figure 2.5 shows the traditional

implementation of this scheme.

Value History Table (VHT)

Tag Value

] _E;))
D
Instruction E

Addreis Hash

Function ©
D
E
R

S

| Eredictinn Data Value

Prediction Valid

Figure 2.5 — Last Outcome Prefetching

In the figure, you see that a table exists to store two values for each entry: tag and value. Tag identifies the
load instruction address and Value identifies the memory address loaded by that instruction. The
configuration of the table can be varied similar to that of cache memory: associativity, depth (multiple
values per tag), etc. Unlike the traditional architecture, in this work it is not necessary to verify if the
prediction is correct in order to validate instructions with dependencies. Ifit is incorrect, the processor will

merely suffer the full latency of decompression.

12

2.3.3 Stride and Hybrid Stride / Last Qutcome

As mentioned earlier, the authors in [14] propose a hybrid prediction table that implements a Constant
Stride prefetcher, and uses the Last Outcome result when the stride prefetcher is not in a steady state. We
have already reviewed the behaviour of the Last Outcome table. So, let us review the functionality of a

stride prefetcher.

Stride Prefetching

Similar to Last Outcome, we will be indexing the Stride table by Program Counter (PC) of each load
instruction. When an entry is updated in the table, the value of the stride is calculated as the difference
between the current and last memory addresses that are loaded. The state of the prefetcher can be Init,
Transient, or Steady. Therefore, as shown in Figure 2.6, the table requires four columns: Tag, State, Value,

and Stride.

Value History Table (VHT)

Tag State Value Stide

\

Instruction

Address Hash
=5>- = 2

Function

DITmooOomo

/
v

~ “ Prediciion Data Value

Prediction Valid
Lal

Figure 2.6 — Stride Prefetching

When a line in the table is first entered, there is no previous data from which to calculate the stride. The
entry is in an initialized state. After this line is updated at least once, a stride can be calculated and the
entry is in the transient state. The line will remain in this transient state until an update occurs that produces
the same stride value as is currently stored in the table. When this occurs, the table is updated to steady
state and this value for the stride is used. Figure 2.7 shows an overview of the state machine for this

prefetcher.

13

Any stride / Same stride /
update Value and Stride update Value

VHT miss /
update Value

Same stride /
update Value

Transient
(Don't Predict)

Init
(Don't Predict)

Steady
(Predict)

Different stride /
Different stride / update Value and Stride
update Value and Stride

Figure 2.7 — Stride State Machine

2.3.4 Two-Level and Hybrid Two-Level / Stride

In addition to a hybrid S/LO prefetch table, the authors in [14] propose a hybrid prediction table that
implements a Two-Level prefetcher, and uses the Stride result when the Two-Level prefetcher does not
make a prediction. We have already reviewed the behaviour of the Stride table. So, let us review the

functionality of a two-level prefetcher.

Two-Level Prefetching

Similar to the previous methods, we index the two-level table by Program Counter (PC) of each load
instruction. When an entry is updated in the table, the LRU and pattern information are updated. If the
address does not already exist in the table at this location, then the least-recently-used address is replaced.
As shown in Figure 2.8, the table requires four columns: Tag, LRU, Value History Pattern, and Data Values.

The data values in our case are load addresses.

A second table exists called the Pattern History Table. This table is indexed by the value history pattern
and ranks the addresses stored as values in the value history table. During the FETCH stage, if we hit the
prefetch table for a given load instruction PC, we index the PHT at the resultant pattern. If there exists a
rank greater than a pre-set threshold, then we predict that value from the prefetch table. During the MEM
stage, if a value in the table is the target of a load instruction, the rank is increased. The other values in the

table are decreased such that there is a net zero ranking.
As with the other tables, we are not concerned if a misprediction is made as the result will simply be a full
decompression latency seen by the MEM stage and an unused value eventually being evicted from the

decompression buffer.

14

Value Histery Table (VHT)

Pattcrn Hislary
T LA it Vialues Fattom

\
\

o D

Instruction E E
Acdregs | Hash G c
=L " H 0 s}
Function D b

E E

R R

> ~

Frediction Data Value

Frediglion Valid

Figure 2.8 — Two-Level Prefetch Table and Pattern History Table

2.4 Thesis Motivation

Among all the works mentioned so far relating to cache compression, there exists two common gaps in the
research. First, due to the impact of the decompression latency, apart from ZCA compression in [11],
previous work has not used compression in L1 cache. We hope to address this issue by introducing

prefetching of the decompressed information to side step this decompression latency in our architecture.
Second, all the works on compression that were mentioned above have focussed on using their compression

schemes to improve performance of the cache. This work intends on reviewing the benefit of reducing the

size of the cache to save power, and implementing prefetching as a means of maintaining performance.

15

Chapter 3

Cache Compression and Prefetching

In this chapter, we present a new architecture that combines cache compression with a prefetching
mechanism to predict which memory addresses might require decompression based on the program counter
of the instruction. The design of the compressor and decompressor hardware are discussed including the

selection of the hierarchical carry-lookahead adder and the theory behind it.
3.1 Compression Architecture

The compression architecture discussed in this work is a detailed implementation of the high-level design
presented by the authors in [4]. To implement this architecture for L1 data cache, we must consider when
data would be compressed and when it would be decompressed in a superscalar processor. In this
architecture, data compression takes place when data is written into the cache. That is, on any write
operation or a read miss. Decompression takes place on a read hit. These events are summarized in Table

3.1 and represent the major insertion points for this new architecture in a superscalar processor.

Table 3.1 — Compression Events

L1 Data Cache Event Action
Read Hit Decompress
Read Miss Compress
Write Hit Compress
Write Miss Compress

Decompression
On a Read Hit, we check the encoding bits for the hit cache line. If the line is encoded as compressed, we
put this cache line to the decompression hardware. After a number of cycles equal to the decompression

latency, the uncompressed result is available at the output of the decompressor hardware. If the line is not

16

compressed, the line is read as usual from the cache and is available in a number of cycles equivalent to the

access time of the L1 data cache.

The additional logic required to check the encoding bits to determine if the line is compressed or not is
included in the design of the decompressor. The CPU can read the result from the output of the
decompressor regardless of compression. If the data is uncompressed, the result will available significantly

faster as it is merely passing the input data through a single multiplexer.

Compression

On a Read Miss or Write Miss, we check the compressibility of the data to be written into the cache line.
Based on the best possible compression scheme that this data fits into, the size of the cache line is
determined. Then, we check the size of the cache set at the miss address. If there is room for the new cache
line, compressible or not, then it is written to the cache. If there is not enough room, we evict data in the

cache at that index in an LRU fashion until there is enough room.

On a Write Hit, we treat compressibility in the same manner as any miss with one minor change. When
determining the space remaining in the set at the write address, we do not consider the space currently
occupied by the hit address. This space will be overwritten by the new write data. This is critical as the
new data may consume more space and may not even be compressible. If this is the case, we can expect

one or more segments to be thrown from the cache to accommodate the new data.

Because updating the cache, and therefore compression, occurs off the critical execution path, this is not a
time-critical task. Therefore, each instance of writing data to the cache goes through the compressor
hardware. The compressor hardware itself, as you will see later in this chapter, checks the 64-byte data for
compressibility, selects the optimum compression scheme (or no compression scheme), and outputs the
encoding bits and data to be written (compressed or not). This means that no additional logic is required to

be added to the CPU to accommodate compression.

3.1.1 Power Considerations

When modelling the power consumption for this compression architecture, we can take into consideration
that fact that we are reading and writing smaller sets of data from and to the cache. Static power and tag

dynamic power remain the same. However, we can represent the data array dynamic energy calculation as:

17

size of compressed cache line (3.1)

dynamic,compressed —

dynamic, per access

size of uncompressed cache line

Relating to the cache events mentioned previously in Table 3.1, we can model power with respect to these

events as well. The power impact is shown in Table 3.2.

Table 3.2 — Power Events

L1 Data Cache Event Power Impact

Read Hit Tag Read, Data Read

Read Miss Tag Read, Tag Write, Data Write
Write Hit Tag Read, Tag Write, Data Write
Write Miss Tag Read, Tag Write, Data Write

3.2 Prefetching Architecture

From the compression architecture described earlier, you can see that we add decompression clock cycles
for a read hit if the data is compressed in the cache. These additional cycles are necessary to allow the
decompression hardware enough time to decompress the line. The purpose of the prefetching architecture
is to avoid having this decompression of L1 data cache lines on the critical path of the processor. To
accomplish this, we look for a way to perform decompression in parallel to other stages in the CPU.

Consider the classic RISC architecture shown in Figure 3.1 [9].

IF ID EXE MEM WB

ISLDIN DECOMPRESS AND __ IS ADDRIN

PREFETCH =—
TABLE? STORE IN BUFFER BUFFER?

Figure 3.1 — Prefetching Applied to Classic RISC Architecture

In the Instruction Fetch (IF) stage, the program counter (PC) is used to access the next instruction from
memory. At this point, it is important to know if the next instruction is a load instruction, if the data to be
loaded is currently compressed in L1 data cache, and most importantly, what is the address of this data in
memory. If we have this information, we can then read the compressed data from L1 data cache and

decompress it in parallel with the Instruction Decode (ID) and Execution (EXE) stages.

18

In the Memory Access (MEM) stage, data is read from memory at the address determined during the ID
and EXE stages. If we have a buffer containing cache lines that have been decompressed already, we will

read from here rather than from the cache.

We actually do not need to know much about the instruction to accomplish this. Similar to [14] and [15],
we index our prefetch table using only the PC of the instruction. We do not populate the table every time
we generate a single register result, as done in [14], nor do we populate the table on a cache miss. Rather,
in our architecture we add entries to our prefetch table each time we suffer the full decompression latency
on a compressed cache hit. This means that each entry represents a load instruction. At a minimum, we
store the address of the compressed cache line in the cache. Depending on the prefetch table scheme, we
store other information to aid in making a correct prediction of the next compressed address that is read by

this load instruction.

Index Tag Data (Prediction Address)

_— > 0
PC of instruction

n

Figure 3.2 — Prefetch Table Structure

This architecture requires updating the behavior of the CPU in two key areas: FETCH stage and MEM

stage.

3.2.1 FETCH

After we fetch an instruction, we want to know if we should begin reading from the L1 data cache. We
check our prefetch table for an entry at the index of our program counter. If we return an address prediction
from the table, then we populate another table called the decompression buffer. The power considerations

for this table are shown in Table 3.3.

Table 3.3 — Prefetch Table Power Events

Prefetch Table Event Power Impact
Read Hit Tag Read, Data Read, Decompression Buffer Tag / Data Write
Read Miss Tag Read

19

If we are using one of the Two-Level prefetching schemes, we will require a second table access. This
table is referred to as the Pattern History Table (PHT). In this case, if the request hits the prefetch table, a
pattern is returned. We then read the PHT at the pattern index, and return a reference to a value that is
stored in the prefetch table. This value is the prediction address. The power considerations for the prefetch

table change as well, as we only read the table data if the PHT hits over the threshold.

Table 3.4 — Two-Level Table Power Events

Two-Level Table Event Power Impact

Prefetch Read Hit Prefetch Tag Read

Prefetch Read Miss Prefetch Tag Read

PHT Read Hit PHT Read, Prefetch Data Read Decompression Buffer Tag / Data Write
PHT Read Miss PHT Read

The decompression buffer contains the complete decompressed 64-byte cache lines. It is implemented as
a FIFO cache. This buffer should be large enough that data is not being evicted before it is required in the
MEM stage. However, as the table gets larger, the power consumption and access time rise. Therefore, we

need to determine the best value for this table experimentally.

3.22 MEM

In the MEM stage, for a load instruction, we will now know the actual address of the data to be read from
the cache. At this point in the new architecture, we read the decompression buffer to see if our data exists
there, decompressed. We will use the data if the PC and address of data in the buffer match the instruction
that is now in the MEM stage. If the data is there, we can read it as fast as the access time for the table.

The access time and power of the table depend on the size of the table.

Table 3.5 — Decompression Buffer Power Events

Decompression Buffer Event | Power Impact

Read Hit Buffer Tag Read, Buffer Data Read

Read Miss Buffer Tag Read

If we are using a stride or two-level prefetcher, we use this opportunity to update the stride and stride state

or the pattern history of the entry in the prefetch table.

20

If we must access the cache directly in the MEM stage, this is where we add entries into our prefetch table.
However, we only do this if we are on the critical path. For example, we do not update our prefetch table

if we are decompressing into the decompression buffer.

3.3 Hardware Design

Because read latency is such an important aspect of cache memory, especially in L1 cache, this compression
scheme must be implemented at the architectural level (rather than at the software / compiler level).
Therefore, it requires additional hardware to implement compression / decompression. In [4], the authors
provide a high-level concept of the compression and decompression schemes. However, no design is
presented or evaluated. It is important to verify that the new hardware required for this proposed
architecture does not have power requirements that exceed the benefit of the architecture itself.
Furthermore, it is important to define the delay requirements for decompression, as this has a direct impact
on the performance of the CPU in the proposed architecture. For these reasons, we designed 64-byte
compressor and decompressor units in Verilog to confirm the power consumption penalty as well as the

hardware delay.

Compressor

The compressor unit contains separate hardware to evaluate the cache line for each type of compression
scheme in parallel. This method prioritizes speed over resource usage. Because much of the hardware
required to evaluate the different compression schemes is the same (largely based on adders / subtractors),
a more resource-optimized approach would be to evaluate each method serially using the same hardware.
In the future, it would be interesting to evaluate this approach for compression, as this task does not fall on
the critical execution path. In the current design, we evaluate each compression scheme in parallel with the

design shown in Figure 3.3.

To perform compression, the 64-byte cache line is divided into 2, 4, or 8-byte segments. The first segment
is chosen as the base. Then, this base is subtracted from each of the remaining segments. The result of this
subtraction is the array of deltas. A delta is stored as either a 1, 2, or 4-byte value, depending on the

compression scheme being used. If all deltas can be stored without overflow, then the compression is valid.

21

G4-byte uncompressed cache line
511 0

Variable-sized compressed cache line

Figure 3.3 — Compressor Design

Decompressor
The decompressor unit follows the same design, except the subtraction operation is replaced by simple
addition. Unlike the compressor, it is important that we prioritize speed over resource usage in the

decompressor because our intent is to minimize the decompression latency. Figure 3.4 shows the design.

To perform decompression, the compressed cache line is divided into segments depending on the encoding
of the data. The first 2, 4, or 8 bytes is the base. The base is carried to the decompressed line as-is. The
remaining bytes are divided into 1, 2, or 4-byte deltas. These deltas are added to the base to create the
decompressed segment. As a redundancy, the first delta is always zero (representing the delta of the first

segment which is the base).

Variable-sized compressed cache line

R
¥ +J
-
Q9 |,
] | |

G4-byte uncompressed cache line

Figure 3.4 — Decompressor Design

The basis of the compressor and decompressor designs used for this project are 64-bit, 32-bit, and 16-bit
adders. Compression requires a subtraction operation between 8, 4, and 2-byte blocks within a single cache
line depending on the compression scheme. Decompression works in the opposite manner. Addition of &,
4, and 2-byte “bases” with 1, 2, and 4-byte “deltas” restores the data to an uncompressed state. Large adders

are discussed in depth in [16] and, as with the overall design approach, provide the opportunity to prioritize

22

speed over resource allocation. Ultimately, we selected the hierarchical carry-lookahead adder as the basis

of the design due to its balance between speed and resource usage.

3.3.1 Hierarchical Carry-Lookahead Adder

The primary goal of this work is to avoid the latency of decompression on the critical execution path by
using prefetching to perform decompression in parallel. However, when prefetching fails (i.e. compulsory
misses during start-up, or when the predicted load address is incorrect), the processor will see the full
penalty of decompression. Therefore, it is important to minimize this delay as much as possible. The delay

of the decompressor depends on the design of the adders used in the new hardware.

Simple adders implement a “full adder” block for each bit and propagate carry bits serially through the
circuit. While these circuits use a small number of gates, and therefore consume less power, they are very

slow. Each bit requires the previous bits to be evaluated first causing many gate delays.

Alternatively, we can consider a full 64-bit carry lookahead adder. Because none of the stages execute
serially, this is one of the fastest adders we can implement here. However, because each bit requires the

same information as all previous bits, the complexity and size of this hardware would become excessive.

Nesbit and Smith describe a hierarchical carry-lookahead adder that divides the carry-lookahead function
into 8-bit blocks, which are each evaluated serially by propagating the carry bit through the circuit [15].
This approach is a trade-off between good speed and moderate resource usage. To describe this adder, we
must look at the definition for the full adder. The truth table of the full adder is shown in Figure 3.5 and
Karnaugh map in Figure 3.6.

23

G Xi Vi |Ci+1]| Si

0 0 O0]0|O0
0 0 11|01
0 1 0] 0|1
0 1 1 1 0
1 0 0|01
1 0 1 1

Figure 3.5 — Truth Table for Full Adder

Figure 3.6 — Karnaugh Map for Full Adder

From the truth table and k-map, one can see that the carryout bit for a given stage can be determined as:
Ciy =Xy, +Xx,c,+ Yy, 3.2)
And the sum bit is the XOR of the three input signals:
S, =X,Y,C;, +X,y,C, +X,y,c, +X,y,C, (3.3)
Factoring the carry-in provides:
Cin =X + (xi T)Ci G4

From this equation, two important functions are defined, generate and propagate. The generate function

is defined as:

& =X, (3.5)

24

The propagate function is defined as:

P =Xty (3.6)

Leaving the relationship between the carryout and these functions as being:

Cin =8 TP (3.7)

So, let's look at the carryout of our first 8-bit block, cg:

Cy =87 T P16y (-8)

Expanding this formula provides:

Cy =87+ P86 T P1P68s T P1PsPs84 T P7PsPsP183 + P1PsPsPsP38>
+ D7D PsPsP3 P28 + P7P6PsPsD3P2P1&0 + P7D6Ps P4 D3 P2 Py PoCo (3.9)

From this expanded view, we can define the generate and propagate signals for the entire block:

Gy = g7+ D186 + P1Ps8s + P1PsPs&4 + P1PsPsP4&3 + D1 Ps PsPaP3€> (3.10)
+ P1P6PsPaP3 P28+ PP PsPaP3 P2 P18

And,

By = P1P6PsPaD3 P2 P\ Po (.11)
Which results in,
¢, =G, + Fc, (3.12)
Later stages are calculated in the same way:
¢ =G, + By

=G, + FG, + FFc, (3.13)

25

In the modules that handle 2-byte bases, 16-bit adder/subtractors are used. In the modules that handle 4-
byte bases, 32-bit adder/subtractors are used. Finally, in the modules that handle 8-byte bases, 64-bit

adder/subtractors are used. Figure 3.7 shows the generic design of a 16-bit adder using smaller 8-bit
lookahead adders.

¥l Y158 ¥7.0 Y70

v

8-bit adder [8-bit adder [s—Cp
SR Go|Po| |
-1 |F158 57-0
——
—T—
P~ N (N
L 4 Y !Fl v L 4
Second-level Second-level -
lookahead ‘—‘ Cg | lookahead

Figure 3.7 — Adder Design

3.3.2 Implementation in Verilog

The above derivations are the basis of the compressor and decompressor designs in Verilog. Source files
for these designs are included in Appendix A. The general structures of the designs are highlighted here to
show the modularity of the designs and the significance of the adders.

Compressor

The structure of the compressor design in Verilog, including the test bench used to verify the design, is as

follows:

testbench (compressor_testbench.v)
compressor (compressor.v)

bdi (bdi.v)
hadder8 (hadders8.v)

bdi32 (bdi32.v)
hadder8 (hadders8.v)

bdilé (bdil6.v)
hadder8 (hadders8.v)

Figure 3.8 — HDL Structure of Compressor

The module hadder8, implements the 8-bit adder block from a hierarchical carry-lookahead adder. That
is, it outputs the block generate (G;) and block propagate (P;) functions rather than the carryout (c;41) as
does a typical ripple-carry adder.

26

The next module up implements as many of these 8-bit blocks as are necessary to perform the subtraction

function. These modules are also responsible for inverting the input to turn hadder8 into a subtractor.

e bdi implements a 64-bit adder, so 8 instances of hadder8 for “base 8” compression
e bdi32 implements a 32-bit adder, so 4 instances of hadder8 for “base 4 compression

e bdil6 implements a 16-bit adder, so 2 instances of hadder8 for “base 2”” compression

These modules evaluate all delta sizes in parallel. For example, bdi outputs three valid bits: one for base 8

delta 4, one for base 8 delta 2, and one for base &8 delta 1.

The top module, compressor, is responsible for instantiating blocks of bdi, bdi32, and bdil6 on the cache

line to check for all three base sizes in parallel.

e 8 instances of bdi for “base 8” compression on a 512-bit cache line
o 16 instances of bdi32 for “base 4” compression on a 512-bit cache line

e 32 instances of bdil6 for “base 2”” compression on a 512-bit cache line

Module compressor then takes all valid bits and determines which compression scheme will be used, if

any.

Testbench Strategy

To test the functionality of the compressor, testing was performed using Xilinx ISE WebPACK [17]. Input
stimulus to the compressor module is the 512-bit uncompressed cache line. Test points were chosen as the
boundary conditions for each of the six base/delta combinations as well as a simple zeros and repeating
values lines. A similar approach was taken to first test the Base-Delta-Immediate model in SimpleScalar.

Test cases are shown in Table 3.6 and the compressor output is shown functioning in Figure 3.9.

27

Table 3.6 — Compressor Test Cases

Test Case Base (Se=S3=..=Sn) Delta (Si=S:) Expected result
Zeros 0 (0x0..9) 0 (0x0..0) Zeros pass.
Repeating Values -1 (OxF..F) -1 (OxF..F) | Repeating values pass.
Base 8 Delta 1 Lower Fail 0 (0x0..9) -129 (OXFFFFFFFFFFFFFF7F) | B8D1 fail. B8D2 pass.
Base 8 Delta 1 Lower Pass 0 (0x0..9) -128 (OXFFFFFFFFFFFFFF80) B8D1 pass.
Base 8 Delta 1 Upper Fail 0 (0x0..9) 128 (0x0000000000000080) | B8D1 fail. B8D2 pass.
Base 8 Delta 1 Upper Pass 0 (0x0..9) 127 (Ox000000000000007F) B8D1 pass.
Base 8 Delta 2 Lower Fail 0 (0x0..9) -32,769 (OXFFFFFFFFFFFF7FFF) | B8D2 fail. B8D4 pass.
Base 8 Delta 2 Lower Pass 0 (0x0..9) -32,768 (OXFFFFFFFFFFFF8000) B8D2 pass.
Base 8 Delta 2 Upper Fail 0 (0x0..9) 32,768 (0x0000000000008000) | B8D2 fail. B8D4 pass.
Base 8 Delta 2 Upper Pass 0 (0x0..9) 32,767 (Ox0000000000007FFF) B8D2 pass.
Base 8 Delta 4 Lower Fail 0 (0x0.0) | -2,147,483,649 (OXFFFFFFFF7FFFFFFF) Not compressible.
Base 8 Delta 4 Lower Pass 0 (0x0.0) | -2,147,483,648 (OxFFFFFFFF80000000) B8D4 pass.
Base 8 Delta 4 Upper Fail 0 (0x0.0) | 2,147,483,648 (0x0000000080000000) Not compressible.
Base 8 Delta 4 Upper Pass 0 (0x0..9) 2,147,483,647 (0x000000007FFFFFFF) B8D4 pass.
Base 4 Delta 1 Lower Fail 0 (0x0..9) -129 (OXFFFFFF7F) | B4D1 fail. B4D2 pass.
Base 4 Delta 1 Lower Pass 0 (0x0..9) -128 (OXFFFFFF80) B4D1 pass.
Base 4 Delta 1 Upper Fail 0 (0x0..9) 128 (0x00000080) | B4D1 fail. B4D2 pass.
Base 4 Delta 1 Upper Pass 0 (0x0..9) 127 (0x0000007F) B4D1 pass.
Base 4 Delta 2 Lower Fail 0 (0x0..9) -32,769 (OXFFFF7FFF) Not compressible.
Base 4 Delta 2 Lower Pass 0 (0x0..9) -32,768 (OxFFFF8000) B4D2 pass.
Base 4 Delta 2 Upper Fail 0 (0x0..9) 32,768 (0x00008000) Not compressible.
Base 4 Delta 2 Upper Pass 0 (0x0..9) 32,767 (Ox000O7FFF) B4D2 pass.
Base 2 Delta 1 Lower Fail 0 (0x0..9) -129 (OXFF7F) Not compressible.
Base 2 Delta 1 Lower Pass 0 (0x0..9) -128 (OxFF80) B2D1 pass.
Base 2 Delta 1 Upper Fail 0 (0x0..9) 128 (0x0080) Not compressible.
Base 2 Delta 1 Upper Pass 0 (0x0..9) 127 (Ox007F) B2D1 pass.

28

_ ohs 500 ns 1,000 ns 1,500 ns 2,000 ns 2.50
64-Byte Cache Line 0 S 0 0 II
mg ~(511:0] (o (R (RO (O (0 (o oy (g
Compressed Cache Lines
"ﬁ zeros[7:0] o0
M@ repeats[63:0] KO] Wi 0000000000000000 G (O I (IO G (i (I (T (T (O
P b8d1[127:0] KO 0. (0. 00000, 0. %0, 00000, . 00000... 00000 0. ¥ #0.. %0 {0 #0. 0. 50 %0 W0 W0 0.3
M4 badL(159:0] e o o o o (O0000-__(0-— 000040 (0T YO KO
mé b8d2(191:0] 5 (0 O (S (S (0 (I LU I, (I (LTI (I (I, (O (O (0 (0, (0 (00 (L (o (O, 6
mé b2d1(271:0] /(e -
mé bad2(267:0] O (0 (D D Y I (I (O (I (I (O (I (I (L LI, (OB (- o, 6
M4 becs(319:0] e o o LY (I 0 (U (0 O 0, I (O (o o
Valid Bits
1 zeros_valid 11
1 repeats_valid NN
1 p8d1_valid =1 7
1 b4d1_valid . T
1 b8d2_valid L L
1 b2d1_valid 1
1 badz_valid . [|
1 beds _vaiia Ll [e

Figure 3.9 — Testbench Waveforms for Compressor in Xilinx ISE
Decompressor

The structure of the decompressor design in Verilog, including the test bench used to verify the design, is

as follows:

testbench (decompressor_testbench.v)
decompressor (decompressor.v)

hadd (hadd.v)
hadder8 (hadders8.v)

hadd32 (hadd32.v)
hadder8 (hadders8.v)

hadd16 (hadd16.v)
hadder8 (hadders8.v)

Figure 3.10 — HDL Structure of Decompressor

The hadder8 module is identical to that of the compressor. The key differences between the decompressor
and compressor are that the second level modules (hadd, hadd32, and hadd16) do not convert hadder8
into a subtractor and they do not have to evaluate delta overflow. These modules strictly build the 64-bit,

32-bit, and 16-bit hierarchical carry-lookahead adders.
e hadd implements a 64-bit adder, so 8 instances of hadder8 for “base 8 decompression

e hadd32 implements a 32-bit adder, so 4 instances of hadder8 for “base 4” decompression

e hadd16 implements a 16-bit adder, so 2 instances of hadder8 for “base 2” decompression

29

The top module, decompressor, has much more work to do than that of the compressor. This module must

instantiate adders for each compression scheme, not just for each base.

o 8 instances of hadd for “base 8 delta 1”” decompression on a 128-bit cache line
e 8 instances of hadd for “base 8 delta 2 decompression on a 192-bit cache line
o 8 instances of hadd for “base 8 delta 4” decompression on a 320-bit cache line
e 16 instances of hadd32 for “base 4 delta 1” decompression on a 160-byte cache line
e 16 instances of hadd32 for “base 4 delta 2”” decompression on a 288-byte cache line

e 32 instances of hadd16 for “base 2 delta 1” decompression on a 272-byte cache line

With all these instances, module decompressor attempts decompress an input cache line using all 8
methods at once and even outputs a 512-bit decompressed cache line for each. Only the line with an
associated valid bit contains the correct data. Module decompressor sets this valid bit based on the input

encoding bits.

30

Chapter 4

Simulation Methodology

In this chapter, we discuss the method for evaluating the performance of the new compression and
prefetching architecture. The tools required to perform this analysis are discussed as well as the

environment used to perform testing.
4.1 Methodology

In this section, we describe four key tools used in performing this work: SimPoint, CACTI, SimpleScalar,

and Wattch.

SimPoint [18] is used to determine the intervals that can be executed to represent the full execution of a
given program. We use SimPoint as a means of reducing the simulation time and size of outputs from the
simulator without sacrificing the behavior of the benchmarks used. The decided simulation points are
tabulated and the percent error of each is determined based on a comparison of CPI between the weighted

simulation points and the full execution of the benchmark.

CACTI [19] is used to generate the static and dynamic power models for the various cache configurations
used for this thesis. In addition, we use CACTI to model the prefetch tables and the new decompression
buffer that is required for the proposed architecture. Configurations and power results are presented as they

are used as inputs into the simulator.

SimpleScalar (specifically a branch called Wattch), and the changes introduced in this work, are used to

model the behaviour of the cache compression and prefetching architectures.

A summary of the simulation approach is shown in Figure 4.1 and discussed in detail in the following

sections.

31

SPEC CPU 2000 @
PISA Binaries and Inputs . CALCT! Cache and

v Mods
Full benchmark Each SimFaint Tamel -
Sim-Fast BBV Tracker @ Mew branch of Simple Scalar / Wattch
. SimpleScalar | _ § ‘Compressor and
BBY Generation sim-fast v sim-outorder VGO Genearation Decomp T RTL
Each Diesign
lE-E\" Results SimFaint Results l‘."tl:- ¢
v
SimPaint SimpieScatar Cadence Genus
sim-fast
L .
! E"’!"-tlam" Weighted atic and Dynamic
'pints. cihte er Arnalee
Reszults ower Analysis
| and Weights. ==y !
1 k J
é) Compare CP|
Check Error

Figure 4.1 — Simulation Flow Diagram

4.1.1 Simpoint

For this thesis, parts of the SPEC CPU 2000 benchmark suite are used. Full runs of these benchmarks can
take days to run even in a simple performance simulator (e.g. sim-fast). Running these in a detailed
simulator such as sim-outorder, and especially in the modified version that we have developed, can take
much longer. Therefore, it was necessary to identify smaller intervals of these benchmarks that could be
executed. SimPoint is a tool that was created to choose simulation intervals that best represent the full
program execution. SimPoint does this in four steps: Basic Block Vector (BBV) Analysis, Random

Projection, Phase Classification, and Simulation Point Selection [18].

BBYV Analysis

The Basic Block Vector (BBV) contains information about the behaviour of the program with respect to
basic blocks. A basic block is a section of the program with one entry point and one exit point that executes
from start to finish. The BBV itself is an array of elements representing the frequency each basic block is

entered for a given execution interval (weighted by the number of instructions in that block).
For this thesis, BBV information for the SPEC CPU 2000 benchmarks is created using the tool Sim-Fast

BBYV Tracker. This tool is provided by the creators of SimPoint and is a modified version of SimpleScalar

that generates the BBV files during execution of sim-fast.

32

Random Projection, Phase Classification, and Simulation Point Selection
SimPoint analyses the BBV file generated by the previous step and chooses a representation of each phase
by finding the interval closest to the centre of the phase. Then, SimPoint determines the weight of that

simulation point based on the number of intervals in that phase of the program's execution.

SimPoint Results

For this work, an interval of 100 million instructions is chosen for determining simulation points. The
selection of 100 million instruction intervals is a balance between 1 billion, which generates very large
output data, and 10 million, which is too small to run without performing a “warmup” routine. The authors
state that 100 million is an appropriately sized interval to avoid the need to bring the simulations to a
“warmup” state [16]. The maximum number of clusters in the k-means algorithm [20] executed in

SimPoint was chosen based on the error produced by the resultant simulation points.

Choosing a single cluster would result in the simplest implementation. That is, no weighing or combination
of results would be necessary. This method, however, does not yield good results, as most programs will
contain multiple phases. The authors use the percent error in CPI between the full execution and the
weighted simulation points as a means of evaluating the accuracy of the method. Rather than arbitrarily
choosing a maximum number of clusters, we use this same method to evaluate the error as the authors do

in [21].

Given a set of simulation points and weights, the following is the correct method of calculating the weighted

CPI [22],

CPI =Weight CPI, + Weight ,CPI , + ...+ Weight, CPI (4.1)

Using 164.gzip as an example, for M = 3:

Table 4.1 — 164.gzip CPI Values by Simulation Point
Simulation Point | Weight | CPI

6 0.296296 | 0.5884
15 0.222222 1 0.5289
25 0.481481 | 0.5790

33

CPI = (0.296296)(0.5884) + (0.222222)(0.5289) + (0.48 148 1)(0.5790)
=0.5707

Comparing this with the CPI result from the full execution, we can calculate the % error:

‘CP Iy —CPI Simpoint
CPIFull
~10.5728-0.5707]

0.5728
_ 0.0021 (l OO)
0.5728

% Error = (100)

(100)

=0.37%

(4.2)

(4.3)

Table 4.2 contains this error calculation for 18 of the SPEC CPU 2000 benchmarks for maximum number

of clusters (M) from 1 to 3.

Table 4.2 — Simpoint Error by Maximum Number of Clusters
Benchmark M=1 M=2 M=3

164.gzip 0.68% | 0.19% 0.37%
168.wupwise | 2.69% | 2.79% 0.45%
171.swim 49.28% | 8.16% 0.02%
172.mgrid 243% | 0.57% 0.10%
173.applu 771% | 5.72% 0.93%

175.vpr 2.84% | 1.56% 3.07%
176.gcc 3.56% | 6.62% 2.53%
177.mesa 0.29% | 0.07% 0.03%
179.art 1.65% | 0.09% 0.05%

181.mcf 23.20% | 2.12% 4.39%
183.equake 1.48% | 0.14% 0.48%
188.ammp 4.85% | 0.00% 1.77%
197 .parser 6.84% | 14.20% 5.14%
253.perlbmk | 0.15% | 0.04% 0.29%
255.vortex 5.69% | 4.44% 1.48%
256.bzip2 17.60% | 13.80% | 14.64%
300.twolf 4.28% | 0.69% 0.00%
301.apsi 11.60% | 11.64% | 12.25%

34

As can be seen from the data, the amount of error is significant in the benchmarks 171.swim, 181.mcf,
197 .parser, 256.bzip2, and 301.apsi. The authors of SimPoint evaluated the SPEC CPU 2000 benchmarks
using a maximum number of clusters equal to 10 for intervals of 100 million instructions. In their data, the
maximum percent error was 5.47%. So, we then evaluated the 18 benchmarks with these same parameters.

The results are shown in Table 4.3.

Table 4.3 — SimPoint Error

Benchmark | Instructions (Full) | CPI (Full) | CPI (Simpoint) | % Error
164.gzip 2702173004 0.5728 0.5744 | 0.27%
168.wupwise 607580800644 0.6840 0.6831| 0.13%
171.swim 440458734007 1.0914 1.1025 | 1.02%
172.mgrid 900584206345 0.5846 0.5849 | 0.06%
173.applu 827051421403 0.6924 0.6929 | 0.07%
175.vpr 86587310713 0.9186 0.9293 | 1.17%
176.gcc 84506842637 0.5707 0.5719| 0.20%
177.mesa 304718816959 0.5779 0.5771| 0.14%
179.art 10917697312 1.4175 1.4189 | 0.10%
181.mef 49073257000 2.4408 2.5668 | 5.16%
183.equake 175021725999 1.0339 1.0333 | 0.05%
188.ammp 350015586932 0.9809 0.9834| 0.25%
197.parser 9628364671 1.0034 1.0550 | 5.14%
253.perlbmk 1389497618 0.8167 0.8190| 0.29%
255.vortex 114074663283 0.5291 0.5313| 0.41%
256.bzip2 113183466499 0.5165 0.5208 | 0.84%
300.twolf 1394388332 0.8594 0.8586| 0.09%
301.apsi 816009733414 0.6981 0.6820 | 2.31%

The maximum percent error from this method is 5.16% which is less than that of the 5.47% in the author's
results, but quite similar. Therefore, for the purposes of this thesis, all benchmarks are executed for a
maximum of 10 intervals of 100 million instructions as generated by SimPoint in the method discussed

above. The resulting simulation points and their weights are shown in Table 4.4.

35

Table 4.4 — 100M SimPoint Results

Benchmark | Simulation Point | Weight Benchmark | Simulation Point | Weight
164.gzip 6 0.296296 173.applu | 3690 0.0613059
164.gzip 14 0.111111 173.applu | 3833 0.0669891
164.gzip 15 0.185185 173.applu | 6512 0.273398
164.gzip 23 0.407407 173.applu | 6542 0.0322854
168.wupwise | 59 0.00510288 173.applu | 7986 0.0401451
168.wupwise | 100 0.0454321 175.vpr 2 0.0254335
168.wupwise | 389 0.510288 175.vpr 354 0.439306
168.wupwise | 825 0.38963 175.vpr 456 0.323699
168.wupwise | 3487 0.0138272 175.vpr 582 0.211561
168.wupwise | 5418 0.0357202 176.gcc 3 0.392899
171.swim 1201 0.0817439 176.gcc 22 0.0461538
171.swim 1362 0.0610808 176.gcc 214 0.0485207
171.swim 2397 0.157584 176.gcc 229 0.0639053
171.swim 2729 0.0569936 176.gcc 305 0.127811
171.swim 3008 0.156222 176.gcc 321 0.0556213
171.swim 3083 0.136921 176.gcc 561 0.126627
171.swim 3125 0.236149 176.gcc 694 0.138462
171.swim 4016 0.0560854 177.mesa | 252 0.0203479
171.swim 4072 0.0572207 177.mesa | 1271 0.13423
172.mgrid 1093 0.0715158 177.mesa | 1276 0.225796
172.mgrid 2407 0.388895 177.mesa | 1417 0.328848
172.mgrid 4844 0.0599667 177.mesa | 1845 0.0994421
172.mgrid 6231 0.179789 177.mesa | 2962 0.185756
172.mgrid 6309 0.0896169 177.mesa | 3034 0.00557926
172.mgrid 6347 0.0579678 179.art 0 0.00917431
172.mgrid 7271 0.118712 179.art 13 0.155963
172.mgrid 8395 0.0335369 179.art 40 0.247706
173.applu 139 0.272551 179.art 45 0.00917431
173.applu 942 0.0962515 179.art 47 0.577982
173.applu 1076 0.1052 181.mcf 17 0.0938776
173.applu 1872 0.0518742 181.mcf 169 0.281633

36

Table 4.4 — 100M SimPoint Results (continued)

Benchmark | Simulation Point | Weight Benchmark | Simulation Point | Weight
181.mef 200 0.126531 255.vortex | 159 0.0710526
181.mef 247 0.0836735 255.vortex | 359 0.134211
181.mef 277 0.328571 255.vortex | 387 0.148246
181.mef 350 0.044898 255.vortex | 510 0.00877193
181.mef 378 0.0408163 255.vortex | 526 0.0763158
183.equake |15 0.0142857 255.vortex | 710 0.455263
183.equake |60 0.0782857 256.bzip2 |9 0.10168
183.equake | 147 0.0794286 256.bzip2 |52 0.102564
183.equake | 931 0.204571 256.bzip2 |94 0.129973
183.equake | 961 0.202857 256.bzip2 | 212 0.116711
183.equake | 1210 0.217714 256.bzip2 | 254 0.161804
183.equake | 1551 0.202857 256.bzip2 | 272 0.0565871
188.ammp |14 0.00942857 256.bzip2 | 486 0.0742706
188.ammp |271 0.128571 256.bzip2 | 497 0.114943
188.ammp | 568 0.195143 256.bzip2 | 539 0.0884173
188.ammp | 661 0.132857 256.bzip2 | 587 0.0530504
188.ammp | 1822 0.0148571 300.twolf |0 0.0769231
188.ammp | 1896 0.130286 300.twolf |1 0.0769231
188.ammp | 1970 0.0865714 300.twolf |2 0.0769231
188.ammp |2171 0.0611429 300.twolf |4 0.307692
188.ammp | 2251 0.0114286 300.twolf |10 0.461538
188.ammp | 2912 0.229714 301.apsi 167 0.101471
197.parser |27 0.15625 301.apsi 653 0.603554
197.parser |43 0.604167 301.apsi 2083 0.0463235
197.parser | 66 0.239583 301.apsi 2453 0.0253676
253.perlbmk | 0 0.0769231 301.apsi 2865 0.135294
253.perlbmk | 1 0.230769 301.apsi 2923 0.0205882
253.perlbmk | 10 0.692308 301.apsi 5422 0.0101716
255.vortex |55 0.0464912 301.apsi 5428 0.0448529
255.vortex | 104 0.0596491 301.apsi 5986 0.0123775

37

4.12 CACTI

CACTI s a cache and memory access time, cycle time, area, leakage power, and dynamic energy modelling
tool [23]. For the purposes of this thesis, the access time, leakage power, and dynamic energy calculations
performed by CACTTI are the focus. For specific cache configurations, the access time, leakage power, and

dynamic energy parameters are determined and used as input into the simulator.

CACTI 6.5 was built from source and used for this thesis. One modification is made to CACTI to output
the dynamic energy (tag, data, and total) for the write operation. The details of this change, building, and
using CACTI are not included in this report.

CACTI Results
From the output of CACT]I, the following lines are particularly relevant for this thesis and are used as input

into the simulator:

Access time (ns): ...

Data array: Total dynamic read energy/access (nJ): ...
Data array: Total dynamic write energy/access (nJ): ...
Total leakage read/write power of a bank (mW): ...

Tag array: Total dynamic read energy/access (nJ): ...
Tag array: Total dynamic write energy/access (nJ): ...
Total leakage read/write power of a bank (mW): ...

Figure 4.2 — CACTI Output

Table 4.5 shows all the L1 cache configurations used for this thesis. The first configuration in the table
represents the baseline scheme with no compression. The next two represents a compressed cache of half
the size of the baseline. The tag and data banks for the compressed scheme are modelled in separate runs
in CACTI.

Table 4.5 — CACTI L1 Cache Configurations and Power Results

Configuration Data | Assoc. | Tag Data Read | Data Write | Data Static Tag Read | Tag Write | Tag Static Access Cycles
(bytes) (bits) (nJ) (nJ) (mW) (nJ) (nJ) (mW) | Time (ns) | @ 3GHz

BASELINE 65536 2 17 0.254468 0.29159 25.0286 | 0.00642276 | 0.00698272 1.22089 | 1.65339 5
(4.96017)

COMPRESSED | 32768 1 17 0.149461 0.164224 13.6143 - - - | 1.24155 4
DATA (3.72465)
COMPRESSED | 65536 2 53 - - - | 0.0113552 | 0.0261866 329114 | 1.80514 6
TAG (5.41542)

38

Table 4.5 shows all the L2 cache configurations used for this thesis.

Table 4.6 — CACTI L2 Cache Timing

Configuration Size Assoc. | Tag | Access Time Cycles
(bytes) (bits) (ns) @ 3GHz
BASELINE 1048576 4 default 3.4286 11(10.2858)

CACTI was also used to model the energy consumption of the prefetch tables. Data size is assumed to be

4 bytes per address in this model to store the target address of the load instruction.

Table 4.7 — CACTI Prefetch Table Configurations and Power Results

Configuration Size Tag (bits) Data Read | Data Write | Data Static Tag Read | Tag Write | Tag Static Access Cycles

(bytes) (n]) (nJ) (mW) (n]) (n]) (mW) | Time (ns) @ 3GHz
LO 512 25 0.00549938 | 0.00612263 0.229478 | 0.00219443 | 0.00273977 0.209592 | 0.932003 3
128 (2.796009)
LO 4096 22 0.0146796 0.016525 1.89212 | 0.00687723 | 0.00530333 1.20125 1.1291 4
1024 (3.3873)
LO 8192 21 0.0196109 | 0.0182605 3.50766 | 0.00937441 | 0.00836156 270726 | 1.28211 4
2048 (3.84633)
STRIDE 512 43 0.00558349 | 0.00620673 0.240491 | 0.00320262 | 0.00405959 0.320843 | 0.924437 3
128 (25+16+2) (2.773311)
STRIDE 4096 40 0.0146796 0.016525 1.89212 | 0.0083401 | 0.0106468 231192 | 1.25809 4
1024 (22+16+2) (3.77427)
STRIDE 8192 39 0.0196109 | 0.0182605 3.50766 | 0.0136775 | 0.0125793 430645 | 1.29731 4
2048 (21+16+2) (3.89193)
HYBRID S/LO 512 43 0.00558349 | 0.00620673 0.240491 | 0.00320262 | 0.00405959 0.320843 | 0.924437 3
128 (25+16+2) (2.773311)
HYBRID S/LO | 4096 40 0.0146796 0.016525 1.89212 | 0.0083401 | 0.0106468 231192 | 1.25809 4
1024 (22+16+2) (3.77427)
HYBRID S/LO | 8192 39 0.0196109 | 0.0182605 3.50766 | 0.0136775 | 0.0125793 430645 | 1.25809 4
2048 (21+16+2) (3.77427)
2LEVEL 1024 30 0.00702388 | 0.00677314 0.493251 | 0.00243052 | 0.00305377 0.234909 | 0.959845 3
128 (25+1+4) (2.879535)
2LEVEL 8192 27 0.0196109 | 0.0182605 3.50766 | 0.00751555 | 0.00650857 1.38357 | 1.14894 4
1024 (22+1+4) (3.44682)
2LEVEL 16384 26 0.0322663 | 0.0309884 6.95555 | 0.0184487 | 0.0115735 6.12193 | 1.28954 4
2048 (21+1+4) (3.86862)
HYBRID 2L/S 1024 48 0.00720647 | 0.00695573 0.431373 | 0.0034364 | 0.00437127 0.345173 | 0.94776 3
128 (25+1+4+16+2) (2.84328)
HYBRID 2L/S 8192 45 0.0196109 | 0.0182605 3.50766 | 0.00968252 | 0.0124506 2.72231 | 1.27512 4
1024 (22+1+4+16+2) (3.82536)
HYBRID 2L/S | 16384 44 0.0322663 | 0.0309884 6.95555 | 0.0244858 | 0.0227288 9.34134 | 1.60081 5
2048 (21+1+4+16+2) (4.80243)

39

For two-level prefetching, we require a second table called the Pattern History Table (PHT). This table is

indexed by the access pattern and stores an integer value for each of the data values stored in the prefetch

table.
Table 4.8 — CACTI Pattern History Table Power Results
Configuration Size | Tag (bits) Data Read | Data Write | Data Static Tag Read Tag Write Tag Static Access Cycles
(bytes) (n]) (nJ) (mW) (n]) (nJ) (mW) | Time (ns) @ 3GHz
PHT 2D4P 64 4 0.0029709 | 0.00305794 0.0334625 | 0.00390386 | 0.000401266 0.0120452 | 0.575184 2
(1.725552)

Lastly, a decompression buffer is considered with 64-byte data and 1K sets. In CACTI, this buffer is

modeled as L1 cache.

Table 4.9 — CACTI Decompression Buffer Power Results

Configuration Size | Tag (bits) Data Read | Data Write | Data Static Tag Read Tag Write Tag Static Access Cycles
(bytes) (nJ) (nJ) (mW) (nJ) (nJ) (mW) | Time (ns) @ 3GHz

BUFFER 1K 1024 64 0.00702388 | 0.00677314 0.493251 | 0.00186356 | 0.00203764 0.0708125 | 0.835837 3
(32 +32) (2.507511)

40

4.1.3 SimpleScalar

To be able to measure the benefit of implementing cache compression with a prefetching mechanism, we

use SimpleScalar to model the performance of the CPU.

SimpleScalar is an open-source processor modelling tool that is meant to be built upon for specific
applications such as this work. SimpleScalar is written in C. The tool can emulate different instruction
sets, including Alpha, ARM, x86, but most importantly PISA [24]. The binaries for the SPEC CPU 2000

benchmarks used for this work are compiled to PISA.

Wattch is a specific branch of SimpleScalar for analyzing and optimizing power consumption in the
architecture of a CPU [5]. Wattch provides us with a mechanism to compare our power consumption in

the cache and new hardware with the overall power consumption of the CPU.

4.1.3.1 Compression

To confirm the feasibility of this work, we check how many cache lines within the 18 benchmarks are
compressible using the Base-Delta-Immediate compression scheme. To do this, we model Base-Delta-

Immediate in SimpleScalar.

In this compression scheme, cache lines are compressed before they are written to the cache. Cache lines
are written when they miss the cache or on a write hit. Therefore, we must add functionality to the simulator

when we these events occur, as mentioned previously in Table 3.1.

Zeros
The check for zeros compressibility is straightforward. We iterate through all elements of the cache line

array and flag zeros compressibility as not possible if any element does not equal zero.

Repeating Values

In the scheme proposed by the authors in [4], repeating 8-byte values are considered. Therefore, we check
compressibility for this while checking for other “base 8” schemes. Starting at element zero, we concatenate
the values of the next seven bytes to the current byte, then iterate through the cache line array by a stride of
8. At each iteration through the array, we check if the new 8-byte value equals the 8-byte value at element

0. If any element does not equal element zero, we flag repeating values compressibility as not possible.

41

Base-Delta-Immediate
Separate arrays and separate loops handle the compressibility check for each size of base. Base 8 behaves

as described above. Base 4 iterates though the array in stride of 4, Base 2 in strides of 2.

To verify the compressibility of a Base-Delta-Immediate scheme, we check that each delta does not
overflow its datatype referenced either from the base or from zero (immediate). If the second option is
taken (immediate), then the immediate flag is set for that iteration. Table 4.10 shows the overflow

parameters of each delta.

Table 4.10 — Delta Datatype and Overflow Information

Delta | Data Type | Floor Ceiling

1 signed char |-128 127

2 signed short | -32768 32767

4 sighed int | -2147483648 | 2147483647

Validation of the Compression Model
To confirm that we have correctly modeled Base-Delta-Immediate compression in SimpleScalar, we write
a program to exercise the boundary condition of each of the compression schemes, cross-compile that

program to the PISA instruction set, and run this program through our model and verify the results.

This program consists of 26 arrays containing 64 1-byte elements. Those arrays contain the cache line

values that exercise the boundaries of the model. Table 4.11 shows these values.

42

Table 4.11 — Boundary Conditions for Compression

array description significant value
char z[64] Zeros 0 (0x0..9)
char r[64] Repeating Values -1 (oxF..F)
char b8d11f[64] | Base 8 Delta 1 Lower Fail -129 (OXFFFFFFFFFFFFFF7F)
char b8d1lp[64] | Base 8 Delta 1 Lower Pass -128 (OXFFFFFFFFFFFFFF80)
char b8dluf[64] | Base 8 Delta 1 Upper Fail 128 (Ox0000000000000080)
char b8dlup[64] | Base 8 Delta 1 Upper Pass 127 (Ox000000000000007F)
char b8d21f[64] | Base 8 Delta 2 Lower Fail -32,769 (OXFFFFFFFFFFFF7FFF)
char b8d21p[64] | Base 8 Delta 2 Lower Pass -32,768 (OXFFFFFFFFFFFF8000)
char b8d2uf[64] | Base 8 Delta 2 Upper Fail 32,768 (0x0000000000008000)
char b8d2up[64] | Base 8 Delta 2 Upper Pass 32,767 (Ox0000000000007FFF)
char b8d41f[64] | Base 8 Delta 4 Lower Fail | -2,147,483,649 (OxFFFFFFFF7FFFFFFF)
char b8d41p[64] | Base 8 Delta 4 Lower Pass |-2,147,483,648 (OxFFFFFFFF80000000)
char b8d4uf[64] | Base 8 Delta 4 Upper Fail | 2,147,483,648 (0x0000000080000000)
char b8d4up[64] | Base 8 Delta 4 Upper Pass | 2,147,483,647 (Ox000000007FFFFFFF)
char b4d11f[64] | Base 4 Delta 1 Lower Fail -129 (OXFFFFFF7F)
char b4dllp[64] | Base 4 Delta 1 Lower Pass -128 (OXFFFFFF80)
char b4dluf[64] | Base 4 Delta 1 Upper Fail 128 (0x00000080)
char b4dlup[64] | Base 4 Delta 1 Upper Pass 127 (Ox0000007F)
char b4d21f[64] | Base 4 Delta 2 Lower Fail -32,769 (OXFFFF7FFF)
char b4d21p[64] | Base 4 Delta 2 Lower Pass -32,768 (OxFFFF8000)
char b4d2uf[64] | Base 4 Delta 2 Upper Fail 32,768 (0©x00008000)
char b4d2up[64] | Base 4 Delta 2 Upper Pass 32,767 (Ox000O7FFF)
char b2d11f[64] | Base 2 Delta 1 Lower Fail -129 (OxFF7F)
char b2d11lp[64] | Base 2 Delta 1 Lower Pass -128 (OxFF80)
char b2dluf[64] | Base 2 Delta 1 Upper Fail 128 (0x0080)
char b2dlup[64] | Base 2 Delta 1 Upper Pass 127 (Ox007F)

Running our benchmark through our compression model in SimpleScalar, we get the following result,

which matches the expected behaviour of the compressor hardware.

sim_num_byte_reads 187 # total number of byte reads
sim_num_zero_blocks 1 # total number of zero block reads
sim_num_repeats_blocks 1 # total number of repeats block reads
sim_num_del81 blocks 2 # total number of base 8 delta 1 reads
sim_num_del41 blocks 2 # total number of base 4 delta 1 reads
sim_num_del82 blocks 4 # total number of base 8 delta 2 reads
sim_num_del21 blocks 2 # total number of base 2 delta 1 reads
sim_num_del42 blocks 4 # total number of base 4 delta 2 reads
sim_num_del84 blocks 4 # total number of base 8 delta 4 reads
#

sim_num_uncompr_blocks 167 # total number of uncompressed reads

Figure 4.3 — Compression Model Verification Results

43

4.1.3.2 Compression with Prefetching Model

To implement the compression and prefetching model, we implement two key behaviours to the simulator:

(1) Read the prefetch table during fetch of a load instruction and, if we hit the table and return a
prediction address, add the address to the decompression buffer along with a ready time equal to
the current cycle plus all delays that block that data. Specifically affecting the decompression
buffer are the prefetch table access time, the L1 data cache access time, and the decompression

latency.

(2) Read decompression buffer before accessing L1 data cache to confirm if the correct address
was there. Before running the cache_access() function for L1 data cache, we check if we have a
correct PC and address in the decompression buffer. If we do, then our prefetch function will have
correctly predicted the load address. If the PC and address are not correct in the decompression
buffer, then we experience the full decompression latency and update our prefetch table

information.

4.1.3.3 Stage Delays

Baseline SimpleScalar and Wattch implement single cycle pipeline stages. This is not a realistic model for
many processors. Therefore, we implement a mechanism to include options for additional delays in each
stage. The delays used in this work are based on [25]. To implement this, a new queue is added to store
instructions delayed in the pipeline. This queue is monitored at the end of each stage and submits operations

each cycle as they are ready.

4.1.3.4 VCD Output

A critical part of the power analysis in this work is to compare the power consumption of the new hardware
to that of the processor and the cache. For this, we use Cadence Genus. To achieve an accurate dynamic
power model in Cadence Genus, we need to set the actual input characteristics of the cache. To do this, we
generate what is called a Value Change Dump (VCD) stimulus for the hardware for each of the simulation

points run in the simulator. The header information of the compressor VCD file is shown in Figure 4.4.

44

$date
2017-05-31 19:06:21 EDT
$end

$version
VCD version 0.1
$end

$timescale
1 ps
$end

$scope
module compressor
$end

$var
wire 512 ! x
$end

$upscope $end
$enddefinitions $end

#0
$dumpvars

bo !
$end

Figure 4.4 — Compressor VCD Header

Then, following the header, for each instance of compression (each L1 data cache miss or write hit), a

timestamped update is written into the VCD file. The timestamp is calculated using the frequency option

for the CPU and the number of cycles:

1000

byep.ps =———sim_cycle
GHz

The timestamp is written to the VCD file followed by the value of the compressor input as a 512-character

ASCII string. Figure 4.5 shows an example of this.

45

#34632
b000000000000000000000000000000000000VVBRVVRVVRAVBRVVBAVVRAVBRVBAVRAVBRVD
0000000000000000000000000000000000000BBBRRRV01010000000000000000000VVVVVVBO10060
0000000000000000000000100010000010000000000000000000000VVVVVVVVVVVLLLLLVYLBBBBBA
00010100011000001000000000000VVVVVBOBBBBRRRRRARRCAVVVVVVVVVVVVYYLLLLLLLLBBBBBA
0000000000000000000000000000VVVVVLVVBBBBBBRRRRRRCRRRRVVVVVVVVVVVA1000VLLLVLBBBBBA
0000000000000000000000000000000000000BBBBRRRVV0000100000001001010100000000000000
000000000000000000000000000000000 !

Figure 4.5 — Compressor VCD ASCII Value

For the decompressor, a carry bit is initialized to zero and the encoding bits are updated every time. The
decompressor header must declare different variables as shown in Figure 4.6. An example of a timestamped

update to the decompressor VCD file is shown in Figure 4.7.

$var wire 512 ! x $end
$var wire 1 # carry $end
$var wire 4 $ encoding $end

Figure 4.6 — Decompressor VCD Header Variables

#864801
b00VVAVBVVBAVLAVARB0
000VVV0V0RCLVVYVVBBRBLVD
000VV000C0VVYVVVBRCLYVYVVBBRBLVD
00000101000010101000010100000101100001010000110010000101000011101000010100001010
10000101000011101000010010001101100001001001001000000100110000100000010011000001
00000100110011110000010011001011100001000101100000000100011010000000010001101110
000000111000000000000000010011101 !

bo111 $

Figure 4.7 — Decompressor VCD ASCII Value

4.1.3.5 SimPoint Implementation

Baseline SimpleScalar and Wattch allow for fast forwarding through a benchmark and running a certain
block of instructions. This is implemented through the runtime options -fastfwd and -max:inst. The first
is implemented as a signed integer and the second as an unsigned integer. This means, the deepest interval
that can be run for any program is from instruction 2,147,483,648 to 6,442,450,942. Looking back at the
results of our SimPoint analysis in Table 4.4, we see that our largest simpoint is 8395 for benchmark

172.mgrid. This means we are required to execute from instruction 839,500,000,001 to 839,600,000,000.

46

To accommodate this, we implement two new options at runtime -interval and -simpoint. The first is
simply a renaming of -max:inst. The second, simpoint, is the multiple of interval that fastfwd should be

set to. By declaring fastfwd as a 64-bit unsigned integer, we can accommodate all of our simpoints.

4.1.3.6 Technology Scaling

Out-of-the-box Wattch is based on 180nm technology parameters provided in an early technical report for
CACTIL In power.h, Wattch is set up to allow for configuration and scalability of the CMOS feature size,
as well as the CPU frequency used for calculations. To accommodate our chosen frequency of 3 GHz and

the 90nm CMOS used to create the hardware for this thesis, the following updates were made to power.h:

Macro TECH_POINT1@ contains scaling definitions to bring the 180nm parameters down to a 100nm
equivalent. Scaling exists for wire capacitance, wire resistance, feature length, feature area, voltage,

threshold voltage, sense voltage, and overall power scaling.

Macro FUDGEFACTOR is used to scale results, further beyond that of the chosen tech point, from the CACTI
function calculate_time that is built into Wattch. FUDGEFACTOR is given by dividing the defined technology

size by the desired value:

FUDGEFACTR = LEHorrnen

CHDESIRED
_ 100nm (4.5)
90nm

=1.1111

Macro Mhz is used to define the frequency used throughout the power calculations.

47

4.1.4 Environment

Across the 18 benchmarks used, with a maximum SimPoint cluster size of 10, there are 122 total simulation
points to be executed per configuration. With 12 configurations, there are 1464 instances of the simulator

to be executed per simulation batch.

Benchmarking is performed on Lakehead University’s 240 core Linux Cluster, Wesley [26]. Jobs are
queued to the cluster using Torque. The output of the batch on Wesley are 1464 simulation result reports

and 2928 Value Change Dump (VCD) files.

These 4392 files are moved from Wesley to Lakehead University’s CMC server. Executed via scripting in
Tcl, the hardware is synthesized and mapped for the compressor in Cadence Genus, then the compressor
VCD file for each simulation point is input into Genus and the associated report file is appended with the

dynamic power analysis results. This process is then repeated for the decompressor.

4.2 Synthesis and Static Power Analysis

In this section, the synthesis of this design using Cadence Genus is discussed as well as timing and power
results and the selection of the 90nm Cadence Generic PDK. Place and route is presented for this design

using Cadence Innovus.

Initial Analysis and PDK Selection
To evaluate the speed and power consumption of the hardware, the Verilog design files are synthesized

using Cadence Genus Synthesis Solution.

Two process design kits were considered for this thesis, Cadence Generic 90nm PDK and FreePDK 45nm.
Although power consumption is the focus of this work, the selection of the PDK was based on the delay
for the decompressor, which lies on the critical execution path. Table 4.12 shows the results of this initial

analysis.

48

Table 4.12 — Initial Static Power Analysis of Decompressor by PDK

Library Delay (ps) | Static Power (nW)
Cadence 90nm Generic PDK v3.3 (fast.lib) 655 900,979.421
Cadence 90nm Generic PDK v3.3 (typical.lib) 1026 408,689.271
Cadence 90nm Generic PDK v3.3 (slow.lib) 2463 408,202.239
Cadence 90nm Generic PDK v3.3 (ss.0v75.1ib) 3339 225,913.359
Cadence 90nm Generic PDK v3.3 (ss.0v67.1ib) 4086 162,813.881
FreePDK 45nm v1.4 (gscl45nm.lib) 971 425,171.716

As can be seen from the results, the fast library from the Cadence 90nm GPDK is the fastest. At 655ps,
even with any overhead that has not been accounted for, it is reasonable to assume that this hardware can
provide decompression within 4 cycles at 3GHz. This assumption carries into the simulator discussed in

the following section of this report.

Static Power

Static Power Analysis in Cadence Genus is straightforward. The Liberty Timing File (.1ib) from the Process
Design Kit (PDK) defines a parameter, cell leakage power, which is static power on a per-cell basis.
After synthesizing the design, we can run the gates report to determine how many instances of each cell is

used in the synthesized design.

Gate Instances Area Library
AND2X1 631 2865.623 fast
XNOR2X1 139 1157.300 fast
total 16366 67124.920

Figure 4.8 — Genus Gates Report for Compressor (Condensed)

From this, we can validate Genus’ static power calculation. Table 4.13 shows this validation for the

compressor, Table 4.14 for the decompressor.

49

Table 4.13 — Compressor Static Power Determination

gate cell_leakage_power | instances | total static power (nW)
AND2X1 44.6239 631 28157.6809
AND4X1 42.646 138 5885.148
AND4XL 40.714 2 81.428
AO21X1 84.9143 72 6113.8296
AO22X1 71.7681 75 5382.6075
AOI211XL 44.7636 81 3625.8516
AOI21XL 35.0591 553 19387.6823
AOI221XL 43.561 65 2831.465
AOI22XL 34.6297 160 5540.752
AOI2BB1XL |56.1234 57 3199.0338
AOI31XL 34.8351 80 2786.808
AOI32XL 34.4304 19 654.1776
AOI33XL 33.8609 75 2539.5675
CLKINVX1 29.4952 1148 33860.4896
CLKXOR2X1 | 128.734 167 21498.578
INVXL 20.9723 1496 31374.5608
MX2X1 86.8591 5 434.2955
MXI2XL 55.5867 408 22679.3736
NAND2BXL | 59.9008 207 12399.4656
NAND2XL 20.9738 3363 70534.8894
NAND3BXL |58.5736 51 2987.2536
NAND3XL 21.0253 83 1745.0999
NAND4BXL | 57.8584 173 10009.5032
NAND4XL 21.0281 162 3406.5522
NOR2BXL 35.5704 353 12556.3512
NOR2XL 35.3175 1349 47643.3075
NOR3BXL 45.2739 13 588.5607
NOR3XL 45.0716 193 8698.8188
NOR4BXL 51.7506 253 13092.9018
NOR4XL 51.5363 105 5411.3115
OA21X1 57.6361 150 8645.415
OAI211XL 20.8698 191 3986.1318
OAI21XL 20.8533 3030 63185.499
OAI221XL 20.7042 4 82.8168
OAI22XL 34.8023 11 382.8253
OAIZBB1XL |29.114 486 14149.404
OAI31XL 22.019 14 308.266
OR2X1 85.4618 653 55806.5554
OR2XL 76.9368 54 4154.5872
OR3X1 113.269 7 792.883
OR4X1 140.922 16 2254.752
OR4XL 132.377 74 9795.898
XNOR2X1 142.706 139 19836.134

Total Compressor Static Power

568488.51 nW

50

Table 4.14 — Decompressor Static Power Determination

gate cell leakage power | instances | total static power (nW)
ADDHXL 156.633 8 1253.064
AND2X1 44.6239 731 32620.0709
AND4X1 42.646 94 4008.724
AO21X1 84.9143 294 24964.8042
AO22X1 71.7681 97 6961.5057
AOI211XL 44.7636 305 13652.898
AOI21XL 35.0591 932 32675.0812
AOI221XL 43.561 85 3702.685
AOI222XL 42.6974 8 341.5792
AOI22XL 34.6297 129 4467.2313
AOI2BB1XL |56.1234 63 3535.7742
AOI31XL 34.8351 74 2577.7974
AOI32XL 34.4304 98 3374.1792
CLKINVX1 29.4952 2393 70582.0136
CLKXOR2X1 | 128.734 118 15190.612
INVXL 20.9723 175 3670.1525
MXI2XL 55.5867 1812 100723.1004
NAND2BX1 | 72.5604 74 5369.4696
NAND2BXL | 59.9008 561 33604.3488
NAND2XL 20.9738 4576 95976.1088
NAND3BX1 | 70.7386 74 5234.6564
NAND3BXL | 58.5736 193 11304.7048
NAND3XL 21.0253 387 8136.7911
NAND4BBXL | 113.985 17 1937.745
NAND4BXL | 57.8584 97 5612.2648
NAND4XL 21.0281 140 2943.934
NOR2BX1 49.8456 193 9620.2008
NOR2BXL 35.5704 474 16860.3696
NOR2XL 35.3175 1849 65302.0575
NOR3BXL 45.2739 55 2490.0645
NOR3XL 45.0716 225 10141.11
NOR4BXL 51.7506 296 15318.1776
NOR4XL 51.5363 191 9843.4333
OA21X1 57.6361 280 16138.108
OAI211XL 20.8698 573 11958.3954
OAI21XL 20.8533 4210 87792.393
OAI221XL 20.7042 148 3064.2216
OAI22XL 34.8023 15 522.0345
OAI2ZBB1XL |29.114 929 27046.906
OR2X1 85.4618 819 69993.2142
OR4X1 140.922 88 12401.136
TLATXL 188.149 8 1505.192
XNOR2X1 142.706 62 8847.772
XNOR2XL 126.045 88 11091.96
XOR2XL 127.375 209 26621.375
Total Decompressor Static Power | 900979.42 nW

51

We can then compare these calculated values to Genus’ results for the simulation runs in SimpleScalar,
described in detail later in this report. Using 164.gzip as an example, we can observe the output behaviour

of Cadence Genus with regards to static power consumption of the compressor hardware. The results are
shown in Table 4.15.

Table 4.15 — 164.gzip Compressor Static Power Values by Simulation Point

Simulation Point | Weight | Ps;qsic (MW)
6 0.296296 | 568488.514
14 0.111111 | 568488.514
15 0.185185 | 568488.514
23 0.407407 | 568488.514

Notice from the results that that static power analysis is not affected when changing the input, which is an
expected behaviour. Therefore, the following values are considered constant and valid and will be used

throughout the remainder of this thesis:

Table 4.16 — Static Power for Compressor and Decompressor
Device Psiatic (W)

Compressor 568488.514

Decompressor | 900979.421

4.3 Dynamic Power Analysis

Dynamic power consists of three components: switching power, short-circuit power, and glitching power
[27]. Genus groups these components into net power and internal power. Dynamic power is generally

calculated as the following [27, 16]:

P, = .fCVDzD (4.6)

Net Power

Net power is the power consumption in a gate when charging the output load voltage from low to high.

Therefore, Genus calculates net power as the following:

52

PNet = O'Sf;oggleCLVDzD (47)
where fi441e 18 the toggle rate calculated by Genus and C;, is the sum of load capacitances connected to

the net.

Internal Power

Internal power is the product of frequency and "arc" energy for each input/output arc. Genus calculates

internal power as the following:

P

Internal — aA%Y

E, ,+a, E, ,+..+a, ,E (4.8)

n—>Y ~n->Y

where o¢4_,y is the arc activity calculated by Genus between input A and output Y and E,_,y is the energy

of the arc determined by Genus, based on the Liberty Timing File (.lib) for the chosen PDK.

Because dynamic power depends on the input stimulus to the compressor and decompressor modules, the
most accurate way of modelling the dynamic power of these units is to use actual cache lines from the
chosen benchmarks. Each time the compressor and decompressor must be accessed in the simulator, data

is written to a file in Value Change Dump (VCD) format. This data is then input into Cadence Genus.
Table 4.17 through Table 4.20 provide an overview of the dynamic power results for the compressed
configuration. The weighed dynamic power calculation for the compressor, using 164.gzip as an example,

1s shown in Table 4.17.

Table 4.17 — 164.gzip Compressor Dynamic Power Values by Simulation Point

Simulation Point | Weight | Prpiernas (€W) Pyer (0W) | Ppynamic (W)
6 0.296296 | 2,502,382.963 | 1,509,486.713 | 4,011,869.676
14 0.111111 | 2,376,079.125 | 1,425,466.881 | 3,801,546.007
15 0.185185 | 1,958,550.388 | 1,191,461.730 | 3,150,012.118
23 0.407407 | 2,642,784.746 | 1,573,089.284 | 4,215,874.030

Py e = (0.296296)(4011869.676)+(0.111111)(3801546.007)

+(0.185185)3150012.118)+(0.407407)(4215874.030)
=3,912,006.101 nW

53

(4.9)

The dynamic power results for the compressor, for each benchmark, are shown in Table 4.18.

The weighed dynamic power calculation for the decompressor, using 164.gzip as an example, is shown

below.

Table 4.18 — Compressor Dynamic Power Results from Cadence Genus

Benchmark | Pstaric (0W) | Prnternar (€W) Pret (0W) | Ppynamic (nW)
164.gzip 568488.514 | 2444837.749 | 1467168.352 | 3912006.101
168.wupwise | 568488.514 | 4733924.790 | 2825887.865 | 7559812.655
171.swim 568488.514 | 3406421.546 |2142197.331 | 5548618.877
172.mgrid 568488.514| 1503686.844 | 880473.875| 2384160.718
173.applu 568488.514 | 2842913.555 | 1755334.081 | 4598247.636
175.vpr 568488.514| 2687651.314 | 1589116.052 | 4276767.367
176.gcc 568488.514 | 1157472.704 | 654253.529 | 1811726.233
177.mesa 568488.514 | 2551430.640 | 1473686.003 | 4025116.642
179.art 568488.514 | 4479839.925 |2742657.118 | 7222497.044
181.mef 568488.514 | 3014341.404 | 1781392.370 | 4795733.774
183.equake | 568488.514 | 2723545966 | 1692572.412| 4416118.377
188.ammp 568488.514 | 4531733.291 | 2794457.831 | 7326191.122
197.parser 568488.514 | 2125239.397 | 1209725.263 | 3334964.660
253.perlbmk | 568488.514 | 2276058.199 | 1311922.307 | 3587980.505
255.vortex 568488.514 | 4255223.279 | 2478268.604 | 6733491.883
256.bzip2 568488.514| 2000817.191 | 1158199.131 | 3159016.322
300.twolf 568488.514 | 1742468.002 | 979882.525| 2722350.527
301.apsi 568488.514 | 4034095.505 | 2489728.965 | 6523824.469

Table 4.19 — 164.

zip Decompressor Power Values by Simulation Point

Simulation Point | Weight | Pipternai (@MW) | Pyer (0W) | Ppynamic (nW)
6 0.296296 | 512,909.725 | 328,296.277 | 841,206.002
14 0.111111| 391,509.553 | 247,945915| 639,455.468
15 0.185185 | 265,728.129 | 137,641.278 | 403,369.407
23 0.407407 | 530,895.121 | 341,427.060 | 872,322.180

54

P

Dynamic

= (0.296296)(841206.002)+(0.111111)(639455.468)

+(0.185185)403369.407)+(0.407407)(872322.180)
= 750,384.636 nW

The dynamic power results for the decompressor, for each benchmark, are shown in Table 4.20.

Table 4.20 — Decompressor Power Results from Cadence Genus

Benchmark | Psioric (W) | Pryternar (nW) Pyer MW) | P, Dynamic (nW)
164.gzip 900979.421 460973.370 | 289411.266 750384.636
168.wupwise | 900979.421 60397.361 | 33253.897 93651.257
171.swim 900979.421 | 1209495.482 | 749667.496 | 1959162.977
172.mgrid 900979.421 125365.641 | 55615.549 180981.190
173.applu 900979.421 16764.489 6941.406 23705.895
175.vpr 900979.421 202578.101 | 98126.196 300704.297
176.gcc 900979.421 484593.456 | 302914.825 787508.281
177.mesa 900979.421 567175771 | 364661.884 931837.654
179.art 900979.421 241533.166 | 109215.950 350749.116
181.mef 900979.421 217916.366 | 106922.446 324838.811
183.equake | 900979.421 | 2549559.613 | 1590259.751 | 4139819.364
188.ammp 900979.421 238724.030 | 120220.861 358944.890
197 .parser 900979.421 312999.100 | 152302.691 465301.791
253.perlbmk | 900979.421 987344.724 | 635322.774| 1622667.498
255.vortex 900979.421 369097.837 | 224798.216 593896.054
256.bzip2 900979.421 492697.294 | 304721.316 797418.610
300.twolf 900979.421 426706.339 | 274554.711 701261.051
301.apsi 900979.421 251257.052 | 129447.883 380704.935

55

(4.10)

4.4 Place and Route in Cadence Innovus

To confirm that the complexity of the hardware is not beyond implementation, Cadence Innovus is used to
automatically place and route the design to chip. Figure 4.9 shows the final routing of the compressor in a

Imm by Imm die.

Innovus(TM) Implementation System 15.23 - fhome/sdrea/compressor - compressor (cmc.lakeheadu.ca) -+ x

=

ile wiew Edit Fartition Floorplan Fowsr Flace ECO Clock Route Timing Werify F¥S Tools Mindows Flows Help Q online help caden(e

Loyout €3

AAMA.TITMTW \Il

| | i \l IW

H
\] A e
I ‘

' i
| 'n‘l‘
4 i

i

YV VAT & VIO APV Rl VYIRS ¥ ASSSTON L | WUTYAY ¥ YV

-
-
E
=
-
-
£
-
-
il.
L}
-
-
-
5
|
-
!:1
i
-
E i
B
| =
E
o
-

‘FT\‘"AIU’IWMHl lHHHH A

||I:11‘ck to select single object. Shift+Click to de/select multiple objects. '] I|a [11A2.133, 796.77¢ [Routed

Figure 4.9 — Compressor Routing in Innovus

56

Chapter 5

Results

In this chapter, we look at the results of performance simulation. We start by reviewing the performance
of the compression architecture, followed by the performance of the prefetch tables. Finally, we look at the

overall performance of the new combined architecture.
5.1 Compression

As part of the compressibility check discussed in Chapter 4, we output in SimpleScalar a count of cache
lines that are compressed by each of the schemes. Figure 5.1 shows the percentage of L1 data cache lines

compressed by each compression scheme.

Percentage of cache lines compressed

B zeros [repeats Mgsn 1 M gsA 2 DBSA4DB4A 100Baa 2008241

Figure 5.1 — Percentage of L1 Data Cache Lines Compressed by Each Scheme

57

As can be seen from the data, and as a verification of the results presented in [4], there is significant
opportunity to apply Base-Delta-Immediate compression in L1 data cache. The best compression is
achieved through zeros compression (64 bytes down to 8 bytes), so from Figure 5.1 we would expect a high
compression ratio from 176.gcc because more than 40% of the cache lines are compressible using zeros
compression. We also see that each of the compression schemes are well represented within the
benchmarks. 300.twolf, for example, implements a nice balance of each of the Base-Delta-Immediate

schemes.

Compression Ratio

We want to know what kind of impact this compression would have on the amount of data we are able to
store in the cache. To do this, we can look at the compression ratio of each of the benchmarks. The
compression ratio achieved by running each of the benchmarks through the simluator is shown in Figure
5.2. To calculate compression ratio, we compare the compressed size of the data with the uncompressed

size:

S lzeuncom pressed

compression ratio = —

Slzecomprcsscd (5 1)
1.62
1.6 -
2 14 1.39
o
c
k=)
wv
wv
g
3
s 1.2 1.16
v 1.12 1 1.12
| o8 111! 1.1 1.00 1.10 .
1.07 1.05
1.01 1.001.00 1.01 1.001-01
| H HH H HH
I] I I I] I I I] I I]] I I k‘]
S R S 2 g K & & P S A
W SR T O T SN <
RN A G QN P LE R N o PSP
S ~ ~ PN NG &)

Figure 5.2 — Compression Ratio of L1 Data Cache

58

As expected from the compression rates shown previsouly in Figure 5.1, 176.gcc achieves the best
compression mostly due to the 40% zeros compression. This is because zeros compression has the highest
compression ratio among the schemes at a rate of 64/8. If we consider only this 40% zeros compression,
and no other compressed cache lines, we would see the following compression ratio:

s1ze uncompressed _ 64

= =1.54
compressed 4(8) + 6(64) (5 2)

compression ratio = —
size

176.gcc does not achieve much more than this, with a ratio of 1.62. A compression ratio of 1.62 means that,
on average, a 64-byte cache line is taking up 40 bytes of space. This is significant because it means, on

average, each cache index holding 128 bytes now has room for 3 cache lines instead of 2.

Slowdown

We know, due to the decompression latency, that we will suffer a performance deterioration when we
implement Base-Delta-Immediate compression — especially in L1 cache. To determine the slowdown, we
compare the IPC of the compressed scheme versus the baseline scheme for each of the runs. The calculation

for speedup and slowdown are shown below.

IPC

compressed

IPC

baseline

speedup= (53)

slowdown=1-speedup

Figure 5.3 shows the IPC of each of the benchmarks for the baseline configuration. Figure 5.4 shows the

compressed scheme. The resultant speedup is shown in Figure 5.5.

59

0.40

0.33
0.320.32

03] 030

IPC

0.2

0.4 — 0.38

0.310.31

—0.29

IPC

0.2

0.1
0

R & & PP e R & & d P e o
bw& & & S0 /\‘og @é,.\’\q'b %,\gi‘ & F & &;o"> o8 2 <
I AR 2 RSP

\bq,ﬁ‘ QAR N RIS S

Figure 5.4 — IPC of Compressed Scheme

60

0.99 0.99

0.98 |~

0.97
0.960.97

0.96 0.96

Percent Speedup

) $ & @ R & & &0 s S
R F PR S N J & Q¥ O 3
& \}Q‘:\\ ,\G“‘\ & @QQ\»\‘T ,\’og & 0 %'v@ 09"’ ,b@@ Q'és e¢$°@ 40'5' b*p'p @?‘\ 0\'° &
A N M TSR (R R LR S

§ Q7NN ﬂt;’) o

K

Figure 5.5 — Speedup of Compressed Scheme vs Baseline

What is siginificant here is that 183.equake has the most slowdown due to compression, yet 176.gcc has
the highest compression ratio. This would likely be due to 183.equake experiencing more compressed

cache hits and therefore experiencing more of the impact of the decompression latency.

61

Static Power

The primary intent of implementing compression in L1 data cache is to reduce the size and therefore the
power consumption of the cache. The amount of power savings here is important because this savings
should outweigh any penalties introduced in the prefetching architecture or in the slowdown of

performance.

Figure 5.6 shows the static energy consumption of the L1 data cache for the baseline scheme. Figure 5.7
shows the static energy for the compressed scheme, including the compression and decompression

hardware energy. Figure 5.8 shows the ratio of compressed to baseline to highlight the reduction.

4.50
4 —
3 83)
3.27 3.27

= | 2.94 2.99 .89
£ 31 2.762.77 2.78 e T
> T, _2.55] |2.53] —
> 2.48
5 2.42 T 2.37 2.33 oy
c 2.20 — o
wl -
g 2|
o
&
(]

1

0 I I I [[I [I I I I I I I [[I [I

Q. . 3 O & L & 3 + A X oA o
.&'\QQ“\\(’ q§§®0} @QQ\ /\‘;‘Q/\bgg @7’5 /\c”"bk \(Q(J & & $°(° S oS ° \?‘Q% 6‘??
O N N7 AN oy AV Y AR > £ L0
N bcbv‘\ NN N N PN (;59 ")(" '1(,")

Figure 5.6 — L1 Data Cache Static Energy (Baseline Scheme)

62

3.20

2.12

1.981.98

1.81

1.74

Static Energy (mJ)

0
Q @& & X W & Lo &S e QoA 4 AN s o
‘1> & 4_\@&&\ & C),.\Q bgc & q?,\ & \S'\’l‘ &@ @‘L’e ROG 0\,@ 4R ° R 6@:0
.\bb‘ o ,\‘\(-" R ,\n,ib ORI 2 oF AR & oY @b? » ,,,b\
PN N RN (;,Q oA

N V-

0.76

0.73

0.730.73

Ratio

0.7

- L 5 5 &
R iR ¢ & ‘,éé‘@go @Q("\\i\‘ﬁq,\b o o & o & R & o%& 6‘6& 'a‘f'e} o & oéd-\ooq"' c‘&o\\’ch,\ &e"’“
R T8 T VAT AT A e 4 & Y o0 T Y
N A NP LT T o] SR
\b‘b:“ QTR Q N & F 9 ,{,;,-Q oA

Figure 5.8 — L1 Data Cache Static Energy Ratio — Compressed vs Baseline

We see a significant static energy reduction in the cache itself due to its decrease in size. Looking at the

static power from the CACTI model in Table 4.5, we would expect to see a reduction equal to:

63

B npressea 13.6143+3.29114 0.64 (5.4)
P 25.0286+1.22089

baseline

However, 0.64 is not achieved due to the CPU slowdown caused by introducing compression and the power
overhead of the compression and decompression hardware. In fact, you can correlate the balance of static
power to the percent slowdown of the CPU due to compression. Comparing Figure 5.8 with the slowdown

in Figure 5.5, you see that they complement eachother in this regard.

Dynamic Power
Because we change the cache performance as discussed above, the switching characteristics will change.

In addition, the overall reduction in cache area will impact the configuration of the cache and therefore the

energy required to read and write the cache.

Figure 5.9 shows the dynamic energy consumption of the L1 data cache for the baseline scheme. Figure
5.10 shows the dynamic energy for the compressed scheme, including the energy consumed in the

compressor and decompressor. Figure 5.11 ashows the ratio of compressed to baseline to highlight the

reduction.
14.96
15 |- el
14.08 13.99
12.80
12.08
11.81 2.0
11.6511.59__ 11.34

= 10.81 10.51 10.81
2 0.5
= 10 | 9.65
1 e s.0a| . o,
] 8.03 —
S 221 17.62
o — 7.04
£
©
c
>
()] 5|

Oll\b\l\\\lkl\\lll\‘\\\\

R O Y ¢ o &0 @ RS S S N
bb(p'}) Q“s{’ é\\é\ ((\q‘ @QQ /\‘a\"Q,\fog ({\Qj: /\0)@ %\So 0\\}@* %((\@ Qéc,?a 30& “0(@ ,1}QQ 0\@(3 <&
N A b ~N b N S < T A0
R N Vel G e S

Figure 5.9 — L1 Data Cache Dynamic Energy (Baseline Scheme)

64

10.31 10.44

Dynamic Energy (mJ)

0.81

Ratio

Figure 5.11 — L1 Data Cache Dynamic Energy Ratio — Compressed vs Baseline

We cannot compare the dynamic behaviour as we did with static and the slowdown. However, we do know
that the compressed data size impacts the dynamic energy consumption of the cache. Therefore, we can

determine how much of this energy reduction is due to the reduced data size by looking at the compression

65

ratio. For example, 176.gcc has a compression ratio of 1.62. This represents an average data size reduction

of:

5.5
avg data reduction = é =0.62 (5-3)

The remaining energy reduction or gains in the CPU are due to the change in energy per access as well as

the overall change in performance of the CPU.

5.2 Prefetching

We first look at the overall performance of all of the prefetching configurations used. To evaluate the
performance of the prefetch tables, we consider two key elements. First, we look at what the hit percentage
is for the table during the instruction fetch stage in the processor. That is, what percentage of load
instructions successfully acquire a prediction address from the prefetch table based on the program counter
only. Second, we look at how accurate those predictions are. By reviewing the state of decompressed lines
in the decompression buffer when they are evicted, we can better understand how the prefetch tables are
affecting the performance of the new architecture. In addition, this metric sheds some light on where

improvements can be made to this architecture, as we will see in the data to follow.

Hit Percentage

A 128-Set and 1K-Set table were simulated for each of the prefetch table types (Last Outcome, Stride,
Hybrid S/LO, Two-Level, and Hybrid 2L/S). To understand this selection, consider the static energy
savings of compression presented in Figure 5.8. On average, we see a savings ratio of 0.27, which represents
0.79m]J in static energy, or 7.12mW in static power across the executed benchmarks. Reviewing the CACTI
results in Table 4.7, the only 2K-Set table that keeps its static power within this range is the Last Outcome
table. Therefore, we did not exceed 1K table sizes as we did not want to consume our static power savings

entirely within the prefetch table.
For each of the 10 configurations, Figure 5.12 shows the percentage of load instructions that successfully

receive a prediction address from the 128-Set prefetch tables. Figure 5.13 shows the percentage of

instructions that hit the 1K prefetch tables.

66

% Hit in Prefetch Table

% Hit in Prefetch Table

0.4
W [ast Outcome

M Stride
O Hybrid Stride/Last Outcome
B Two-Level
0.3 O Hybrid Two-Level/Stride
0.2 Il
0.1
D L | | Al L | | I—

Q . I T S Y SRV S G e A T o
Q'L\ Qﬁ\(’ 4;\6\ S ,DQQ r\")T‘Q,\bQ’L (C\Q‘c’ ,\o}fp Q;\,;(\ 0\?’3‘. (Q‘@ Q'b&% SO@ \\0\‘@ \Q""Q Q‘Q"\O \'.DQ (Q‘Q:O
o O NS T NN AY NS & ° ¢ e 07 P L0
IN ¢
& SR N RS & K R

Figure 5.12 — Hit Percentage of Load Instructions by Prefetch Table (128 Set)

B Last Outcome

0.5 f M Stride

0 Hybrid Stride/Last Outcome
B Two-Level

O Hybrid Two-Level/Stride

Figure 5.13 — Hit Percentage of Load Instructions by Prefetch Table (1K Set)

67

Figure 5.13 shows that the 1K-Set variation of each table out performs the 128-Set variant of the table. This
is due to the reduction of conflict misses in the table. We also notice that overall, the prefetch table hit

percentage is quite low, averaging 10% to 15% for 128-Set and 16% to 24% for 1K-Set.

Prediction Accuracy

When a prediction is made, data is decompressed from the cache and then entered into the decompression
buffer. There are five possible results for entries in this buffer. If the buffer is not large enough, entries are
evicted before they can be used. Used entries can be correct or incorrect. In addition, entries may be tossed
out due to cache replacement or branch misprediction. Figure 5.14 show the results for the 10 prefetch

configurations.

68

Last Outcome, 128 Set

bl | Ll

L

Last Outcome. 1K Set

bl | L1

Hil

Stride, 128 Set

| i._-_ﬂiHHQ!iH_ I
Stride, 1K Set
Hybrid Stride / Last Outcome, 128 Set

=]

If

kLl

iLLL

Hybrid Stride / Last Outcome.

1K Set

]

L

il

Two-Level, 1

28 Set

il |

AHERNRL

T

TWO Level, 1

K Set

bl |

"

Hybrid Two-Level / Stride, 1

28 Set

il bkl s

1Ll

Hvbrld Two-Level / Stride, 1K S

.Hii

1T M M M M

‘90(0/

O
e

&

B unread [l Good Prediction | Misprediction H conflict miss [Squashed

Figure 5.14 — Prediction Accuracy of 10 Prefetch Table Configurations

69

Some major factors stand out here. First, we notice that Stride prefetching is easily the most accurate.
Second, we see that Last Outcome results in a large number of incorrect predictions. While these
mispredictions do not directly impact the performance of the CPU, they do require an additional cache

access which consumes unnecessary energy.

In addition, we notice that benchmarks 172.mgrid and 179.art are dumping many of the decompressed
results from the decompression buffer before ever using them. This means that the normal number of load
instructions between the instruction fetch stage and the mem stage is larger than our 1K buffer design which

has 16 entries.

Static Power
The static energy consumption of all of the combined prefetch tables is shown in Figure 5.15 for 128-Set,
Figure 5.16 for 1K-Set. This data includes the prefetch table, decompression buffer, and pattern history

table in the case of two-level prefetching.

B Last Outcome
0.25 |~ B Stride
O Hybrid Stride/Last Outcome
B Two-Level
O Hybrid Two-Level/Stride
. 0.20 |~
£
>
o
o
c
w 0,15 [~
=
©
&
0.10 [~
0.05 —
Qe e O W & & > & e S S S PR SN S
b‘,‘sﬁ\QQ&b e L /\"J"AQ,\bQ’(J IR & o Ft R
& N : N N B P SR ¥ o T a0
N\ (bgé A \,\’L \,\'5 N _\,\'\ N Q;J?‘ @ \q’\ R ,{,)6 I
$ < k

Figure 5.15 — Static Energy by Prefetch Table (128 Set)

70

M Last OQutcome

B Stride
1.20 O Hybrid Stride/Last Qutcome
B Two-Level
O Hybrid Two-Level/Stride
1.00 —
=
E
>
@
5 0.80— . _
@ -
w -
u . .
= o 7 -
i
v 0.60 —
0.40 [~
0.20 Ll J — | amm ! ! J —
. 8¢
QL L & & RS ’b("c‘.\‘_@Qd‘*é\‘-q’O\%\ =
DPI}’) L?T\\ & ’DQ o 9 & ’\O”D &P 6‘@ & & & ‘é\’\Q .\T\ \"DQ &
O AN e QT Q N O P o Y SR S
& ~ N '\(b"" 79 (1039 ,\f:) oY i)
N v

Figure 5.16 — Static Energy by Prefetch Table (1K Set)

Dynamic Power
The dynamic energy consumption of all of the combined prefetch tables is shown in Figure 5.17 for 128-
Set, Figure 5.18 for 1K-Set. This data includes the prefetch table, decompression buffer, and pattern history

table in the case of two-level prefetching.

71

Dynamic Energy (mJ)

Dynamic Energy (m)J)

0.8

B | ast Outcome
B Stride
O Hybrid Stride/Last Outcome
06l B Two-Level
' O Hybrid Two-Level/Stride
0.4 -
0.2
D Al Al Al Al Al
R ; L & e Q8 & & 4 0 F o o
& & <—?‘A§6“ R o A® & ”\0’% s& & %‘(’z ° o(& ~01>Q < '\?'Q <°é°
RS &‘ﬁ AN A N A D& oF 4% Q?} o o NS
Q- ~ Q;’?' \% :\Oﬁ 6’) r{’) Vv)
K "»
Figure 5.17 — Dynamic Energy by Prefetch Table (128 Set)
M Last Outcome
B Stride
1.5 U Hybrid Stride/Last Outcome
B Two-Level
O Hybrid Two-Level/Stride
e .
0.5—
0 | R | 1 1 |
Qe . R L C X N 4 A X oo o
L \T\\"’ \r\\é\ & QQ\ cj‘_,Q hd—a & o}'-ok <€ \@\gz ({\@Q & \o@ & RO R 6‘??
&R ,\\t-’ A A2 07 Q0 ST &? ,\.be & %%0 ° H S
PR N RS A A
K

Figure 5.18 — Dynamic Energy by Prefetch Table (1K Set)

72

5.3 Compression and Prefetching

In this section, we look at the overall results of combining prefetching with cache compression and compare

those results with the compression-only configuration.

Cache Energy vs. Performance
Figure 5.19 shows the slowdown versus the power consumed in L1 data cache. This figure identifies two

import