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Abstract 

 

Expanding cache size is a common approach for reducing cache miss rates and increasing performance in 

processors. This approach, however, comes at a cost of increased static and dynamic power consumption 

by the cache. Static power scales with the number of transistors in the design, while dynamic power 

increases with the number of transistors being switched and the effective operating frequency of the cache. 

 

Cache compression is a technique that can increase the effective capacity of cache memory without 

experiencing the same gains in static and dynamic power consumption. Alternatively, this technique can 

reduce the physical size and therefore the static and dynamic energy usage of the cache while maintaining 

reasonable effective cache capacity. A drawback of compression is that a delay, or decompression latency, 

is experienced when accessing the compressed data, which affects the critical execution path of the 

processor. This latency can have a noticeable impact on processor performance, especially when 

implemented in first level caches. 

 

Cache prefetching techniques have been used to hide the latency of lower level memory accesses. This 

work aims to investigate the combination of current prefetching techniques and cache compression 

techniques to reduce the effect of decompression latency and therefore improve the feasibility of power 

reduction via compression in high level caches. 

 

We propose an architecture that combines L1 data cache compression with table-based prefetching to 

predict which cache lines will require decompression.  The architecture then performs decompression in 

parallel, moving the delay due to decompression off the critical path of the processor.  The architecture is 

verified using 90nm CMOS technology simulations in a new branch of SimpleScalar, using Wattch as a 

baseline, and cache model inputs from CACTI. Compression and decompression hardware are synthesized 

using the 90nm Cadence GPDK and verified at the register-transfer level. 

 

The results of our verifications demonstrate that using Base-Delta-Immediate (B∆I) compression, in 

combination with Last Outcome (LO), Stride (S), and Two-Level (2L) prefetch methods, or hybrid 

combinations of these methods (S/LO or 2L/S), provides performance improvement over Base-Delta-

Immediate (B∆I) compression alone in L1 data cache. On average, across the SPEC CPU 2000 benchmarks 

tested, Base-Delta-Immediate (B∆I) compression results in a slowdown of 3.6%.  Implementing a 1K-Set 

Last Outcome prefetch mechanism improves slowdown to 2.1% and reduces the energy consumption of 

the L1 Data Cache by 21% versus a baseline scheme with no compression. 
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Chapter 1  

 

Introduction 

 

 

In 2016, it has been estimated that the world creates 2.5 quintillion bytes of data per day [1].  At the time, 

that estimate suggested that 90% of the world’s data had been created in the previous two years alone.  In 

as early as 2013, it was approximated that Information and Communication Technologies were consuming 

nearly 10% of the world’s electricity generation [2].  With this rate of data growth, and the current impact 

computing has on the world’s energy consumption, there is a need to investigate ways to improve the way 

we store and process data.   

 

Linked with the growth of our data generation is the emergence of a rapidly growing mobile device market.  

This market relies heavily on low power, battery supplied devices.  Unavoidably, the best way to provide a 

longer battery life for these devices is for the devices themselves to consume less power.  While 

improvements can be made to the devices themselves (e.g. supply voltage and device size), in many 

applications, the best way to reduce power is to find efficiencies at the architectural level [3].  Redefining 

the architecture can result in orders of magnitude in reduction of power depending on the specific 

application. 

 

When we look at the data we are creating, it is clear that patterns exist that create inefficiencies in the way 

it is stored and processed [4].  Data patterns may consist of values that are repeated over-and-over again, 

values that are very close to each other, and even large sets of null data.  Some of the greatest sources of 

data in the world today are the cameras on our mobile devices.  Images are a great example of data that 

consists of patterns.  Pixel data contains sequences of values, which can be identical or very close in 

magnitude (when looking at color value, brightness, etc.).  Programs that manipulate this image data 

generally handle large data arrays.  These arrays are frequently initialized to some repeated value, often 

zero.  And frequently enough, the developers of those programs may over-provision data types to hold that 

data such that most of it goes unused (narrow data).  These inefficiencies in our data contribute to 

unnecessary storage and processing.    
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In computing architecture, we utilize a memory hierarchy to ensure that the data we use most frequently is 

closest to the CPU and therefore accessible as fast as possible.  The closest memory spaces, L1 and L2 

cache, take up large areas on-chip and consume large amounts of power.  Depending on the architecture, 

cache memory in a processor can account for upwards of 40% of the total power budget [5].  Because the 

cache must handle our data, which is full of inefficiencies, a significant portion of this energy consumption 

could be avoided via compression. 

 

Compression is possible by replacing the most inefficient patterns with a set of smaller representations, 

known as encoding.  Encoding can be done with a fixed dictionary or a compression scheme can 

dynamically and iteratively assign code words to patterns.  Most of our data is compressible to some extent, 

whether it is text, image, or audio data.  This is why, in main memory, it is common to store and transfer 

large files in a compressed format (e.g. ZIP, PNG, FLAC).   

 

Cache-level compression in a processor is a technique that can increase the effective capacity of the cache, 

and therefore improve performance of the processor, by compressing cache lines before they are stored in 

the cache.  Alternatively, this same method can be used to reduce the physical size of the cache and therefore 

reduce the power consumption.   

 

Typically, cache lines consist of several bytes of data.  In set-associative caches, multiple lines, or ways, 

may be stored at a given cache index.  Each of these ways store a complete uncompressed cache line.  If 

we can compress the size of these cache lines, we can store more data in each set.  Alternatively, we could 

reduce the physical size of the cache and store the same, or similar, amounts of data. 

 

The power of a cache depends on its size and the frequency of accesses.  By reducing the total size of the 

cache, we can significantly reduce the power consumption.  In addition, the size of the data lines we read 

from the cache are potentially reduced in size as well.  Therefore, we can model the savings in dynamic 

power consumption in the cache by considering the size ratio of compressed data vs an uncompressed cache 

line.  

 

In the past, researchers have avoided implementing compression in high-level caches such as L1 data cache 

because of the impact decompression latency has on the overall performance of the processor [4, 6, 7].  

Access times at this level are in the order of a few clock cycles.  To add even a few clock cycles to this 

access time will cause significant performance delays and defeat the intent of the high-level cache.  
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However, it is possible to implement additional techniques, such as prefetching, to remove the some of the 

burden of decompression from the processor’s critical path.  If this approach is successful, it could lead to 

improving the feasibility of implementing compression in high-level caches (specifically L1 data cache). 

  

Our work focusses on the combination of data cache compression and table-based prefetching to explore 

the feasibility of implementing compression in L1 data cache.  We evaluate this new architecture by 

examining what impact it has on the performance and power consumption of a CPU during the execution 

of standard benchmarks.  Specially, this work makes three key contributions: 

 

(1) An architecture is proposed that combines compression, specifically Base-Delta-Immediate 

compression, in L1 data cache with table-based prefetching methods, such as Last Outcome, Stride, and 

Two-Level, to predict which cache lines will require decompression.  The architecture then performs 

decompression in parallel, therefore moving the delay due to decompression off the critical path of the 

processor. 

  

(2) Modifications are made to Wattch [5], a branch of SimpleScalar [8] that is an open-source processor 

modelling tool for analyzing and optimizing power consumption at the architectural level.  This tool is 

extended to model Base-Delta-Immediate compression in combination with table-based prefetching to 

show the benefit of performing decompression as a parallel activity to execution and increase the feasibility 

of implementing compression in L1 caches.   

  

(3) 64-byte compressor and decompressor hardware is designed in 90nm CMOS and tested for 

implementation with Base-Delta compression.  Static and dynamic power analysis is performed on the new 

hardware, reinforcing its suitability for use in a power-reducing compressed cache scheme. 

  

The remainder of this thesis is organized into five chapters.  Chapter 2 provides an overview of cache 

compression and prefetching and recent research that has been done in these areas.  In Chapter 3, we define 

the proposed compression and prefetching architecture, discuss what changes are necessary to 

accommodate the new architecture in a conventional superscalar processor, and provide the details of the 

hardware design for the compressor and decompressor units.  Chapter 4 discusses the tools used and 

modified to model the compression and prefetching architecture. In Chapter 5, the results of simulation 

are provided and discussed.  Finally, Chapter 6 provides a summary of the work done, the significance of 

the results, and future work that could be done to advance this research. 
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Chapter 2  

 

Background and Related Work 

 

 

In this chapter, we review the concepts of memory hierarchy, compression, data value prediction, and 

prefetching.  We review existing work in the areas of cache compression, data value prediction, and 

prefetching and go into detail of the operation of one compression scheme, Base-Delta-Immediate, three 

prediction schemes: Last Outcome, Stride, and Two-Level as well as hybrid combinations of these schemes.  

Finally, the motivation behind this work is presented.  

 

2.1 Memory Hierarchy 

 

The speed in which a processor can read information from memory has a great impact on the performance 

of that processor. Fast memory, however, is expensive. For this reason, memory is organized into levels 

that exploit small amounts of fast memory close to the processor, and larger, slower levels of memory 

farther away. This organization is referred to as the Memory Hierarchy. In this hierarchy, between the 

central processing unit (CPU) and “main memory” are various levels of cache memory. 

 

 

Figure 2.1 – Memory Hierarchy 

 

When the data for a given address is stored in the high-level cache (i.e. L1 cache), then the processor has 

fast access to this information. If the data is not there, the processor must retrieve it from lower levels. This 

is referred to as a cache miss. Cache misses are classified by three types: compulsory misses, capacity 

misses, and conflict misses [9]. Compulsory misses occur during start-up, when no information exists in 
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the cache. Capacity misses occur if the cache is not large enough for all the blocks required during the 

execution of a program and blocks are discarded. If these discarded blocks must be read again, they must 

be fetched from lower levels. Conflict misses occur if the cache is not fully associative. In this case, blocks 

may be discarded even before the cache is full. 

 

Increasing the capacity of the cache can reduce the number of capacity and conflict misses and therefore 

increase performance.  This, however, comes at a cost of increased power consumption. 

 

2.2 Cache Compression 

 

Similar to data files in main memory, the data within cache memory consists of patterns that can be 

exploited by compression techniques to save space.  Cache compression is a method that can be used to 

increase the capacity of the cache without experiencing the same increase in power consumption.   

 

Because the intent of cache memory is to provide low latency access to data, compression and 

decompression must be performed at the hardware level in the processor rather than at the software level, 

as is commonly performed on files in main memory.  This same requirement for low latency cache access 

is why most of the previous work done on the topic of cache compression focusses on low-level cache (i.e.  

L2 cache and L3 cache).  Because L1 caches typically have access latencies in the order of a few clock 

cycles, adding a decompression latency on top of that can degrade performance beyond acceptable levels. 

 

The ideal compression scheme for implementation in L1 cache is one that is, of course, fast, but is also 

capable of encoding the most common patterns that exist within data stored in memory.  These most 

common patterns can be grouped into four main categories: zeros, repeated values, narrow values, and other 

patterns [4]. 

 

Zeros 

Zero values are widely used throughout programs, primarily in variable initializations, null pointers, false 

boolean values, and sparse matrices [4]. 

 

Repeated Values 

Similar to zero values, repeated values may appear in the form of variable initializations. Another cause for 

repeated values is image data.  Adjacent pixels tend to contain similar information such as colour data [4]. 
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Narrow Values 

It is common for developers to over-allocate space to variables to protect from overflow during execution 

of a program.  In some cases, these variables never come close to their maximum values.  A small value 

stored as a large data type is considered a narrow value [4]. 

 

Other Patterns 

This group is not meant to include all other patterns, but rather patterns that specifically have low dynamic 

range.  For example, an array of pointers that all point to the same region of memory [4].   

 

2.2.1 Related Work in Cache Compression 

 

Research has been done to evaluate hardware-based data compression in CPU caches [4, 6, 7, 10, 11, 12] 

as well as in GPGPU [13].  The following papers have explored which methods exploit the most 

opportunities in data patterns and at which levels in cache they are most beneficial.  A common 

understanding among this work is that decompression latency is a problem when implementing in fast 

caches and is cited as the reason for avoiding L1 compression in some works [4, 6, 7]. 

 

In [7], the authors present Frequent Pattern Compression (FPC), which compresses data that fits into one 

of seven patterns.  Each 32-bit word is evaluated separately so data is not compressed spanning multiple 

words.  The scheme is evaluated in L2 cache with L1 cache being left uncompressed.  The design is 

evaluated against the Wisconsin Commercial Workload Suite and six benchmarks from the SPEC CPU 

2000 suite.  The scheme provides compression ratios ranging from 1.0 to 2.4 over all their benchmarks.  

This scheme captures the main three groups of patterns that exist in data.  However, this scheme does not 

address the behaviour of low dynamic range that data exhibits. 

 

In [11], the authors exploit the common scenario of storing null data in caches by augmenting the 

uncompressed cache with an additional cache that is only required to store the addresses of zero-content 

cache lines.  The authors evaluate this zero-content augmented (ZCA) cache in every combination of cache 

level from L1 to L3.  They found that implementing ZCA in L3 alone was sufficient to experience most of 

the benefit and found up to a 22% speedup when run against SPEC CPU 2000 benchmarks.  Because this 

scheme only looks at zeros, decompression latency is not an issue, and the authors are able to explore this 

technique in all levels of cache without affecting the read latency.  This scheme, however, does not address 

most of the patterns that exist within cache data. 
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In [12], the authors compress the cache line by encoding 32-bit words that appear in a predefined list of 

“frequent values.”  The scheme requires that a cache line be compressible to 50% in size or less or it is not 

compressed at all.  Encoding bits are required for each word in the cache line.  The authors determine that 

their scheme can improve the miss rate for six integer benchmarks from SPEC CPU 95 as much as 36.4%.  

Due to the table-lookup nature of the scheme, it cannot capture all repeating values efficiently.  As well, it 

misses the important narrow values that occur within the data.   

 

In [4], the authors present a new compression scheme that this work builds upon, called Base-Delta-

Immediate.  In addition to null data and repeating values, this work exploits two trends in data called narrow 

values and low dynamic range. The scheme compresses cache lines that can be represented as a single base 

and an array of small deltas.  The authors evaluated their scheme against the SPEC CPU 2006 benchmark 

suite, among other benchmarks.  The authors achieve an average compression ratio of 1.53 across all 

benchmarks when compressing L2 cache.  Due to the impact decompression latency would have on L1 

cache, the authors focus on L2.  Because this scheme addresses all the patterns discussed in the other works, 

and more, it is the compression scheme we use.  We will address the issue of implementing this scheme in 

L1 cache by combining common prefetching techniques to mask the effect of the decompression latency. 

 

2.2.2 Base-Delta 

 

Back to [4], the authors first describe the foundation of their scheme, called Base-Delta.  Base-Delta is a 

cache compression scheme that stores a cache line as one large base value along with an array of smaller 

deltas.  The concept behind the scheme is that, for many cache lines, the data values have a low dynamic 

range (the difference between values is small).  For example, Figure 2.2 shows an example of how a 32-

byte cache line may be compressed using a Base 4 Delta 1 compression scheme. 
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Figure 2.2 – 32-Byte Cache Line Compressed with Base-Delta 

 

From the figure, you can see how this cache line benefits from low dynamic range.  In this example, the 

Base 4 Delta 1 scheme is used.  This means the chosen size of the base is 4 bytes, and the size of the deltas 

is 1 byte.   

 

In some cases, compression may benefit from having multiple bases. For example, the cache line in Figure 

2.3 clearly shows patterns with low dynamic range around two bases. 

 

 

Figure 2.3 – 32-Byte Cache Line Compressed with Base-Delta (2 Bases) 

 

Determining two optimized bases is a high latency task that is not feasible during execution.  The authors 

resolve this issue by implementing the immediate portion of their compression making Base-Delta-

Immediate [4]. 
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2.2.3 Base-Delta-Immediate 

 

Base-Delta-Immediate (B∆I) compression implements a 2-base Base-Delta scheme where one base is 

always zero.  This method sees much of the benefit of a 2-base system, without adding the need to store a 

second base.  To implement this immediate base, an array of flag bits called the immediate mask is 

included in the tag to identify which deltas refer to the base and which refer to zero.   

 

To change a conventional cache into a Base-Delta-Immediate cache, we double the number of tags.  This 

allows us to utilize the vacant space in the cache created during compression.  Next, we modify how the 

tags point to the data stored in the cache.  The data array is divided into 8-byte segments rather than 64-

byte blocks.  Rather than pointing to a constant 64-byte block, the tag now points to a variable-size 

compressed block.  The location of the compressed block at a given cache index is determined by summing 

the size of cache blocks stored in front of it.  Lastly, we add the encoding bits (and immediate mask, as 

mentioned above) to the tag.  This allows us to define the type of compression applied to the data for a 

given way.  These changes to the architecture are shown in Figure 2.4. 

 

 

Figure 2.4 – Changes to Tag and Data Architecture for B∆I Compression 
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These changes are implemented functionally in SimpleScalar and have their power and access time impact 

modeled using CACTI (see Chapter 4, Simulation Methodology).  The additional hardware required for 

compressing and decompressing the B∆I cache lines is discussed separately in Chapter 3. 

 

2.3 Data Prefetching and Data Value Prediction 

 

Prefetching is a method that can be used to reduce the miss rate of all three types of cache misses.  Data 

can be prefetched (read in parallel to execution, before it is requested), either directly into the next-level-

up cache or into a custom buffer that can be accessed faster than main memory [9]. While successful 

prefetches can reduce memory latency and improve overall processor performance, unused prefetches will 

have a negative impact on power consumption while having no positive impact on performance. 

 

Data value prediction is similar to prefetching such that it employs a table-based predictor to improve 

performance of the processor.  Unlike prefetching, data value predictor tables do not store the address in 

memory where the data exists.  Rather, it stores the data itself – specifically the result of single-register 

producing instructions.  The processor then continues execution using this predicted result.  If an incorrect 

prediction is made, the processor pipeline must be flushed of any instructions that depend on this data. 

 

The approach we take concerning prefetching is neither a direct application of prefetching nor of data value 

prediction.  Rather, our prefetcher predicts which address in the L1 data cache will be accessed based on 

the program counter of each load instruction.  Then, in parallel, the processor decompresses this data in the 

cache, if it is compressed, and inserts it into an external buffer.  

 

The key similarities between prefetching and data value prediction are the prediction table methods used.  

These methods have been explored extensively for both applications.  We look at this past research to 

determine which tables are best suited for our application. 

 

Reviewing the prediction schemes presented in literature, five types stand out as candidates for this work, 

as discussed in [14].  The simplest, Last Outcome, is evaluated first to determine how quickly we can 

recover the cost of decompression with the lowest possible complexity.  Next, Stride and the hybrid 

Stride/Last Outcome predictors are used and evaluated.  Lastly, the Two-Level and hybrid Two-

Level/Stride predictors are looked at to capture more complex patterns.  Global History Buffer is discussed 

as a potential extension by evaluating the benefit of predictor tables with a depth greater than one.   
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2.3.1 Related Work in Prefetching 

 

In [14], data value predictors are discussed using Last Outcome, Stride, 2-Level Pattern History methods, 

and two hybrids of these methods.  Data Value Prediction uses prediction tables in the same way as 

prefetching.  Data Value Predictors predict the data value rather than the address of the data in memory.  

Accuracy is critical for Data Value Predictors because if an incorrect prediction is made, any progressed 

instructions dependant on this value much be flushed out of the pipeline.  The authors found that the Last 

Outcome scheme was correct 28-62% of the time and incorrect up to 72% of the time.  Stride was correct 

35-77% and 3-6% incorrect.  Two-Level makes minor improvements in prediction accuracy over Last 

Outcome (1-3%).  However, the two-level table scheme greatly improves the misprediction rate to 1-13%.  

The first hybrid scheme implements Last Outcome when Stride is not in steady state. This results in a 

correct predictions rate of 49-80% and incorrect predictions 20-51%. The second hybrid predictor combines 

the 2-Level scheme with Stride. This scheme made correct predictions 50-82% of the time and 

mispredictions only 5-18% of the time.  This scheme is, however, the most complex to implement. 

 

An important takeaway from this research are the incorrect prediction rates.  In the Data Value Predictor 

method, if we make an incorrect prediction, we must flush the processor of any instructions that depend on 

the incorrect value.  In our compression-prefetching method, we do not have to purge any information.  

However, incorrect predictions will cause unnecessary cache accesses which will increase power and may 

evict useful data from the decompression buffer (depending on the depth of the buffer). 

 

In [6], the authors present a two-table prefetching scheme called Global History Buffer (GHB).  GHB itself, 

as with the above research on Data Value Predictors, explores multiple prediction schemes: Address 

Correlation, Distance Correlation and Constant Stride.  The key benefit of GHB is the two independently 

sized tables.  The first is the Index Table which only stores the tag and a pointer to the head of a list stored 

in the GHB Table.  The GHB acts as a circular buffer, keeping only the latest information.  The authors 

investigate different table configurations with a degree of four (values prefetched each access).  They found 

that GHB Distance prefetching resulted in a 20% speedup over conventional table Distance prefetching 

when indexed by the miss address and 6% when indexed by the program counter (PC).   

 

The key enabler of the Global History Buffer is to minimize space and hold the latest information about 

cache misses.  The same technique can be applied to our prediction table.  However, this approach will only 

be useful if tables with a depth greater than 1 prove to be valuable.  The Global History Buffer approach 
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will not be explored directly in this work, but this work can easily be extended to explore this possibility in 

a later study. 

 

2.3.2 Last Outcome 

 

For this thesis, prefetching techniques are used to predict which cache lines may require decompression 

from L1 data cache before the instruction is decoded using the PC of the instruction.  The intent is to load 

the data from a compressed cache, decompress it, and make it available to the CPU in parallel with other 

stages to remove the bottleneck that is decompression latency. 

 

The simplest scheme that will be implemented is Last Outcome.  Figure 2.5 shows the traditional 

implementation of this scheme.   

 

 

Figure 2.5 – Last Outcome Prefetching 

 

In the figure, you see that a table exists to store two values for each entry: tag and value.  Tag identifies the 

load instruction address and Value identifies the memory address loaded by that instruction.  The 

configuration of the table can be varied similar to that of cache memory: associativity, depth (multiple 

values per tag), etc.  Unlike the traditional architecture, in this work it is not necessary to verify if the 

prediction is correct in order to validate instructions with dependencies.  If it is incorrect, the processor will 

merely suffer the full latency of decompression. 
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2.3.3 Stride and Hybrid Stride / Last Outcome 

 

As mentioned earlier, the authors in [14] propose a hybrid prediction table that implements a Constant 

Stride prefetcher, and uses the Last Outcome result when the stride prefetcher is not in a steady state.  We 

have already reviewed the behaviour of the Last Outcome table.  So, let us review the functionality of a 

stride prefetcher. 

 

Stride Prefetching 

Similar to Last Outcome, we will be indexing the Stride table by Program Counter (PC) of each load 

instruction.  When an entry is updated in the table, the value of the stride is calculated as the difference 

between the current and last memory addresses that are loaded.  The state of the prefetcher can be Init, 

Transient, or Steady.  Therefore, as shown in Figure 2.6, the table requires four columns: Tag, State, Value, 

and Stride. 

 

 

Figure 2.6 – Stride Prefetching 

 

When a line in the table is first entered, there is no previous data from which to calculate the stride.  The 

entry is in an initialized state.  After this line is updated at least once, a stride can be calculated and the 

entry is in the transient state.  The line will remain in this transient state until an update occurs that produces 

the same stride value as is currently stored in the table.  When this occurs, the table is updated to steady 

state and this value for the stride is used.  Figure 2.7 shows an overview of the state machine for this 

prefetcher. 
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Figure 2.7 – Stride State Machine 

 

2.3.4 Two-Level and Hybrid Two-Level / Stride 

 

In addition to a hybrid S/LO prefetch table, the authors in [14] propose a hybrid prediction table that 

implements a Two-Level prefetcher, and uses the Stride result when the Two-Level prefetcher does not 

make a prediction.  We have already reviewed the behaviour of the Stride table.  So, let us review the 

functionality of a two-level prefetcher. 

 

Two-Level Prefetching 

Similar to the previous methods, we index the two-level table by Program Counter (PC) of each load 

instruction.  When an entry is updated in the table, the LRU and pattern information are updated.  If the 

address does not already exist in the table at this location, then the least-recently-used address is replaced.  

As shown in Figure 2.8, the table requires four columns: Tag, LRU, Value History Pattern, and Data Values.  

The data values in our case are load addresses. 

 

A second table exists called the Pattern History Table.  This table is indexed by the value history pattern 

and ranks the addresses stored as values in the value history table.  During the FETCH stage, if we hit the 

prefetch table for a given load instruction PC, we index the PHT at the resultant pattern.  If there exists a 

rank greater than a pre-set threshold, then we predict that value from the prefetch table.  During the MEM 

stage, if a value in the table is the target of a load instruction, the rank is increased.  The other values in the 

table are decreased such that there is a net zero ranking.    

 

As with the other tables, we are not concerned if a misprediction is made as the result will simply be a full 

decompression latency seen by the MEM stage and an unused value eventually being evicted from the 

decompression buffer. 
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Figure 2.8 – Two-Level Prefetch Table and Pattern History Table 

 

2.4 Thesis Motivation 

 

Among all the works mentioned so far relating to cache compression, there exists two common gaps in the 

research.  First, due to the impact of the decompression latency, apart from ZCA compression in [11], 

previous work has not used compression in L1 cache.  We hope to address this issue by introducing 

prefetching of the decompressed information to side step this decompression latency in our architecture.   

 

Second, all the works on compression that were mentioned above have focussed on using their compression 

schemes to improve performance of the cache.  This work intends on reviewing the benefit of reducing the 

size of the cache to save power, and implementing prefetching as a means of maintaining performance. 
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Chapter 3  

 

Cache Compression and Prefetching 

 

 

In this chapter, we present a new architecture that combines cache compression with a prefetching 

mechanism to predict which memory addresses might require decompression based on the program counter 

of the instruction.  The design of the compressor and decompressor hardware are discussed including the 

selection of the hierarchical carry-lookahead adder and the theory behind it.   

 

3.1 Compression Architecture 

 

The compression architecture discussed in this work is a detailed implementation of the high-level design 

presented by the authors in [4].  To implement this architecture for L1 data cache, we must consider when 

data would be compressed and when it would be decompressed in a superscalar processor.  In this 

architecture, data compression takes place when data is written into the cache.  That is, on any write 

operation or a read miss.  Decompression takes place on a read hit.  These events are summarized in Table 

3.1 and represent the major insertion points for this new architecture in a superscalar processor. 

 

Table 3.1 – Compression Events 

L1 Data Cache Event Action 

Read Hit Decompress 

Read Miss Compress 

Write Hit Compress 

Write Miss Compress 

 

Decompression 

On a Read Hit, we check the encoding bits for the hit cache line.  If the line is encoded as compressed, we 

put this cache line to the decompression hardware.  After a number of cycles equal to the decompression 

latency, the uncompressed result is available at the output of the decompressor hardware.  If the line is not 
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compressed, the line is read as usual from the cache and is available in a number of cycles equivalent to the 

access time of the L1 data cache. 

 

The additional logic required to check the encoding bits to determine if the line is compressed or not is 

included in the design of the decompressor.  The CPU can read the result from the output of the 

decompressor regardless of compression.  If the data is uncompressed, the result will available significantly 

faster as it is merely passing the input data through a single multiplexer. 

 

Compression 

On a Read Miss or Write Miss, we check the compressibility of the data to be written into the cache line.  

Based on the best possible compression scheme that this data fits into, the size of the cache line is 

determined.  Then, we check the size of the cache set at the miss address.  If there is room for the new cache 

line, compressible or not, then it is written to the cache.  If there is not enough room, we evict data in the 

cache at that index in an LRU fashion until there is enough room. 

 

On a Write Hit, we treat compressibility in the same manner as any miss with one minor change.  When 

determining the space remaining in the set at the write address, we do not consider the space currently 

occupied by the hit address.  This space will be overwritten by the new write data.  This is critical as the 

new data may consume more space and may not even be compressible.  If this is the case, we can expect 

one or more segments to be thrown from the cache to accommodate the new data.  

 

Because updating the cache, and therefore compression, occurs off the critical execution path, this is not a 

time-critical task.  Therefore, each instance of writing data to the cache goes through the compressor 

hardware.  The compressor hardware itself, as you will see later in this chapter, checks the 64-byte data for 

compressibility, selects the optimum compression scheme (or no compression scheme), and outputs the 

encoding bits and data to be written (compressed or not).  This means that no additional logic is required to 

be added to the CPU to accommodate compression. 

 

3.1.1 Power Considerations 

 

When modelling the power consumption for this compression architecture, we can take into consideration 

that fact that we are reading and writing smaller sets of data from and to the cache.  Static power and tag 

dynamic power remain the same.  However, we can represent the data array dynamic energy calculation as: 
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 (3.1) 

 

Relating to the cache events mentioned previously in Table 3.1, we can model power with respect to these 

events as well.  The power impact is shown in Table 3.2. 

 

Table 3.2 – Power Events 

L1 Data Cache Event Power Impact 

Read Hit Tag Read, Data Read 

Read Miss Tag Read, Tag Write, Data Write 

Write Hit Tag Read, Tag Write, Data Write 

Write Miss Tag Read, Tag Write, Data Write 

 

3.2 Prefetching Architecture 

 

From the compression architecture described earlier, you can see that we add decompression clock cycles 

for a read hit if the data is compressed in the cache.  These additional cycles are necessary to allow the 

decompression hardware enough time to decompress the line.  The purpose of the prefetching architecture 

is to avoid having this decompression of L1 data cache lines on the critical path of the processor.  To 

accomplish this, we look for a way to perform decompression in parallel to other stages in the CPU.  

Consider the classic RISC architecture shown in Figure 3.1 [9]. 

 

 

Figure 3.1 – Prefetching Applied to Classic RISC Architecture 

 

In the Instruction Fetch (IF) stage, the program counter (PC) is used to access the next instruction from 

memory.  At this point, it is important to know if the next instruction is a load instruction, if the data to be 

loaded is currently compressed in L1 data cache, and most importantly, what is the address of this data in 

memory.  If we have this information, we can then read the compressed data from L1 data cache and 

decompress it in parallel with the Instruction Decode (ID) and Execution (EXE) stages. 

 

accessperdynamiccompresseddynamic E
linecacheeduncompressofsize

linecachecompressedofsize
E ,, 
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In the Memory Access (MEM) stage, data is read from memory at the address determined during the ID 

and EXE stages.  If we have a buffer containing cache lines that have been decompressed already, we will 

read from here rather than from the cache.  

 

We actually do not need to know much about the instruction to accomplish this.  Similar to [14] and [15], 

we index our prefetch table using only the PC of the instruction.  We do not populate the table every time 

we generate a single register result, as done in [14], nor do we populate the table on a cache miss.  Rather, 

in our architecture we add entries to our prefetch table each time we suffer the full decompression latency 

on a compressed cache hit.  This means that each entry represents a load instruction.  At a minimum, we 

store the address of the compressed cache line in the cache.  Depending on the prefetch table scheme, we 

store other information to aid in making a correct prediction of the next compressed address that is read by 

this load instruction. 

 

 

Figure 3.2 – Prefetch Table Structure 

 

This architecture requires updating the behavior of the CPU in two key areas: FETCH stage and MEM 

stage. 

 

3.2.1 FETCH 

 

After we fetch an instruction, we want to know if we should begin reading from the L1 data cache.  We 

check our prefetch table for an entry at the index of our program counter.  If we return an address prediction 

from the table, then we populate another table called the decompression buffer.  The power considerations 

for this table are shown in Table 3.3. 

 

Table 3.3 – Prefetch Table Power Events 

Prefetch Table Event Power Impact 

Read Hit Tag Read, Data Read, Decompression Buffer Tag / Data Write 

Read Miss Tag Read 
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If we are using one of the Two-Level prefetching schemes, we will require a second table access.  This 

table is referred to as the Pattern History Table (PHT).  In this case, if the request hits the prefetch table, a 

pattern is returned.  We then read the PHT at the pattern index, and return a reference to a value that is 

stored in the prefetch table. This value is the prediction address.  The power considerations for the prefetch 

table change as well, as we only read the table data if the PHT hits over the threshold. 

 

Table 3.4 – Two-Level Table Power Events 

Two-Level Table Event Power Impact 

Prefetch Read Hit Prefetch Tag Read 

Prefetch Read Miss Prefetch Tag Read 

PHT Read Hit PHT Read, Prefetch Data Read Decompression Buffer Tag / Data Write 

PHT Read Miss PHT Read 

 

The decompression buffer contains the complete decompressed 64-byte cache lines.  It is implemented as 

a FIFO cache.  This buffer should be large enough that data is not being evicted before it is required in the 

MEM stage.  However, as the table gets larger, the power consumption and access time rise.  Therefore, we 

need to determine the best value for this table experimentally.  

 

3.2.2 MEM 

 

In the MEM stage, for a load instruction, we will now know the actual address of the data to be read from 

the cache.  At this point in the new architecture, we read the decompression buffer to see if our data exists 

there, decompressed.  We will use the data if the PC and address of data in the buffer match the instruction 

that is now in the MEM stage.  If the data is there, we can read it as fast as the access time for the table.  

The access time and power of the table depend on the size of the table. 

 

Table 3.5 – Decompression Buffer Power Events 

Decompression Buffer Event Power Impact 

Read Hit Buffer Tag Read, Buffer Data Read 

Read Miss Buffer Tag Read 

 

If we are using a stride or two-level prefetcher, we use this opportunity to update the stride and stride state 

or the pattern history of the entry in the prefetch table. 
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If we must access the cache directly in the MEM stage, this is where we add entries into our prefetch table.  

However, we only do this if we are on the critical path.  For example, we do not update our prefetch table 

if we are decompressing into the decompression buffer. 

 

3.3 Hardware Design 

 

Because read latency is such an important aspect of cache memory, especially in L1 cache, this compression 

scheme must be implemented at the architectural level (rather than at the software / compiler level).  

Therefore, it requires additional hardware to implement compression / decompression.  In [4], the authors 

provide a high-level concept of the compression and decompression schemes.  However, no design is 

presented or evaluated.  It is important to verify that the new hardware required for this proposed 

architecture does not have power requirements that exceed the benefit of the architecture itself.  

Furthermore, it is important to define the delay requirements for decompression, as this has a direct impact 

on the performance of the CPU in the proposed architecture.  For these reasons, we designed 64-byte 

compressor and decompressor units in Verilog to confirm the power consumption penalty as well as the 

hardware delay. 

 

Compressor 

The compressor unit contains separate hardware to evaluate the cache line for each type of compression 

scheme in parallel.  This method prioritizes speed over resource usage.  Because much of the hardware 

required to evaluate the different compression schemes is the same (largely based on adders / subtractors), 

a more resource-optimized approach would be to evaluate each method serially using the same hardware.  

In the future, it would be interesting to evaluate this approach for compression, as this task does not fall on 

the critical execution path.  In the current design, we evaluate each compression scheme in parallel with the 

design shown in Figure 3.3.   

 

To perform compression, the 64-byte cache line is divided into 2, 4, or 8-byte segments.  The first segment 

is chosen as the base.  Then, this base is subtracted from each of the remaining segments.  The result of this 

subtraction is the array of deltas.  A delta is stored as either a 1, 2, or 4-byte value, depending on the 

compression scheme being used.  If all deltas can be stored without overflow, then the compression is valid.   
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Figure 3.3 – Compressor Design 

 

Decompressor 

The decompressor unit follows the same design, except the subtraction operation is replaced by simple 

addition.  Unlike the compressor, it is important that we prioritize speed over resource usage in the 

decompressor because our intent is to minimize the decompression latency.  Figure 3.4 shows the design.   

 

To perform decompression, the compressed cache line is divided into segments depending on the encoding 

of the data.  The first 2, 4, or 8 bytes is the base.  The base is carried to the decompressed line as-is.  The 

remaining bytes are divided into 1, 2, or 4-byte deltas.  These deltas are added to the base to create the 

decompressed segment.  As a redundancy, the first delta is always zero (representing the delta of the first 

segment which is the base). 

 

 

Figure 3.4 – Decompressor Design 

 

The basis of the compressor and decompressor designs used for this project are 64-bit, 32-bit, and 16-bit 

adders.  Compression requires a subtraction operation between 8, 4, and 2-byte blocks within a single cache 

line depending on the compression scheme.  Decompression works in the opposite manner.  Addition of 8, 

4, and 2-byte “bases” with 1, 2, and 4-byte “deltas” restores the data to an uncompressed state.  Large adders 

are discussed in depth in [16] and, as with the overall design approach, provide the opportunity to prioritize 
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speed over resource allocation.  Ultimately, we selected the hierarchical carry-lookahead adder as the basis 

of the design due to its balance between speed and resource usage. 

 

3.3.1 Hierarchical Carry-Lookahead Adder 

 

The primary goal of this work is to avoid the latency of decompression on the critical execution path by 

using prefetching to perform decompression in parallel.  However, when prefetching fails (i.e. compulsory 

misses during start-up, or when the predicted load address is incorrect), the processor will see the full 

penalty of decompression.  Therefore, it is important to minimize this delay as much as possible.  The delay 

of the decompressor depends on the design of the adders used in the new hardware. 

 

Simple adders implement a “full adder” block for each bit and propagate carry bits serially through the 

circuit.  While these circuits use a small number of gates, and therefore consume less power, they are very 

slow.  Each bit requires the previous bits to be evaluated first causing many gate delays. 

 

Alternatively, we can consider a full 64-bit carry lookahead adder.  Because none of the stages execute 

serially, this is one of the fastest adders we can implement here.  However, because each bit requires the 

same information as all previous bits, the complexity and size of this hardware would become excessive.  

 

Nesbit and Smith describe a hierarchical carry-lookahead adder that divides the carry-lookahead function 

into 8-bit blocks, which are each evaluated serially by propagating the carry bit through the circuit [15].  

This approach is a trade-off between good speed and moderate resource usage.  To describe this adder, we 

must look at the definition for the full adder.  The truth table of the full adder is shown in Figure 3.5 and 

Karnaugh map in Figure 3.6. 
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𝑐𝑖 𝑥𝑖 𝑦𝑖  𝑐𝑖+1 𝑠𝑖 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 

 

Figure 3.5 – Truth Table for Full Adder 

 

𝑥𝑖𝑦𝑖 
𝑐𝑖 00 01 11 10 

0   1  

1  1 1 1 

 

Figure 3.6 – Karnaugh Map for Full Adder 

 

From the truth table and k-map, one can see that the carryout bit for a given stage can be determined as: 

 

(3.2) 

 

And the sum bit is the XOR of the three input signals: 

 

(3.3) 

 

Factoring the carry-in provides: 

 

(3.4) 

 

From this equation, two important functions are defined, generate and propagate.  The generate function 

is defined as: 

 

(3.5) 

 

iiiiiii cycxyxc 1

  iiiiii cyxyxc 1

iii yxg 

iiiiiiiiiiiii cyxcyxcyxcyxs 
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The propagate function is defined as: 

(3.6) 

 

Leaving the relationship between the carryout and these functions as being: 

 

(3.7) 

 

So, let's look at the carryout of our first 8-bit block, 𝑐8: 

 

(3.8) 

 

Expanding this formula provides: 

 

 

(3.9) 

 

From this expanded view, we can define the generate and propagate signals for the entire block: 

 

 (3.10) 

 

And, 

 

(3.11) 

 

Which results in, 

 

(3.12) 

 

Later stages are calculated in the same way: 

 

 

(3.13) 

 

iii yxp 

iiii cpgc 1

7778 cpgc 

001234567012345671234567

2345673456745675676778

cppppppppgpppppppgpppppp

gpppppgppppgpppgppgpgc





012345671234567

2345673456745675676770

gpppppppgpppppp

gpppppgppppgpppgppgpgG





012345670 ppppppppP 

0008 cPGc 

001011

81116

cPPGPG

cPGc







 

26 

In the modules that handle 2-byte bases, 16-bit adder/subtractors are used.  In the modules that handle 4-

byte bases, 32-bit adder/subtractors are used.  Finally, in the modules that handle 8-byte bases, 64-bit 

adder/subtractors are used.  Figure 3.7 shows the generic design of a 16-bit adder using smaller 8-bit 

lookahead adders. 

 

 

Figure 3.7 – Adder Design 

 

3.3.2 Implementation in Verilog 

 

The above derivations are the basis of the compressor and decompressor designs in Verilog.  Source files 

for these designs are included in Appendix A. The general structures of the designs are highlighted here to 

show the modularity of the designs and the significance of the adders. 

 

Compressor 

The structure of the compressor design in Verilog, including the test bench used to verify the design, is as 

follows: 

 

testbench (compressor_testbench.v) 
  compressor (compressor.v) 
    bdi (bdi.v) 
      hadder8 (hadder8.v) 
    bdi32 (bdi32.v) 
      hadder8 (hadder8.v) 
    bdi16 (bdi16.v) 
      hadder8 (hadder8.v) 

Figure 3.8 – HDL Structure of Compressor 

 

The module hadder8, implements the 8-bit adder block from a hierarchical carry-lookahead adder.  That 

is, it outputs the block generate (𝐺𝑖) and block propagate (𝑃𝑖) functions rather than the carryout (𝑐𝑖+1) as 

does a typical ripple-carry adder.  
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The next module up implements as many of these 8-bit blocks as are necessary to perform the subtraction 

function.  These modules are also responsible for inverting the input to turn hadder8 into a subtractor. 

 

• bdi implements a 64-bit adder, so 8 instances of hadder8 for “base 8” compression 

• bdi32 implements a 32-bit adder, so 4 instances of hadder8 for “base 4” compression 

• bdi16 implements a 16-bit adder, so 2 instances of hadder8 for “base 2” compression 

 

These modules evaluate all delta sizes in parallel.  For example, bdi outputs three valid bits: one for base 8 

delta 4, one for base 8 delta 2, and one for base 8 delta 1. 

 

The top module, compressor, is responsible for instantiating blocks of bdi, bdi32, and bdi16 on the cache 

line to check for all three base sizes in parallel.   

 

• 8 instances of bdi for “base 8” compression on a 512-bit cache line 

• 16 instances of bdi32 for “base 4” compression on a 512-bit cache line 

• 32 instances of bdi16 for “base 2” compression on a 512-bit cache line 

 

Module compressor then takes all valid bits and determines which compression scheme will be used, if 

any. 

 

Testbench Strategy 

To test the functionality of the compressor, testing was performed using Xilinx ISE WebPACK [17].  Input 

stimulus to the compressor module is the 512-bit uncompressed cache line.  Test points were chosen as the 

boundary conditions for each of the six base/delta combinations as well as a simple zeros and repeating 

values lines.  A similar approach was taken to first test the Base-Delta-Immediate model in SimpleScalar. 

Test cases are shown in Table 3.6 and the compressor output is shown functioning in Figure 3.9. 
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Table 3.6 – Compressor Test Cases 

Test Case Base (S0=S3=…=Sn) Delta (S1=S2) Expected result 

Zeros  0 (0x0…0)  0 (0x0…0) Zeros pass. 

Repeating Values -1 (0xF…F) -1 (0xF…F) Repeating values pass. 

Base 8 Delta 1 Lower Fail  0 (0x0…0)    -129 (0xFFFFFFFFFFFFFF7F) B8D1 fail.  B8D2 pass. 

Base 8 Delta 1 Lower Pass  0 (0x0…0)    -128 (0xFFFFFFFFFFFFFF80) B8D1 pass. 

Base 8 Delta 1 Upper Fail  0 (0x0…0)     128 (0x0000000000000080) B8D1 fail.  B8D2 pass. 

Base 8 Delta 1 Upper Pass  0 (0x0…0)     127 (0x000000000000007F) B8D1 pass. 

Base 8 Delta 2 Lower Fail  0 (0x0…0) -32,769 (0xFFFFFFFFFFFF7FFF) B8D2 fail.  B8D4 pass. 

Base 8 Delta 2 Lower Pass  0 (0x0…0) -32,768 (0xFFFFFFFFFFFF8000) B8D2 pass. 

Base 8 Delta 2 Upper Fail  0 (0x0…0) 32,768 (0x0000000000008000) B8D2 fail.  B8D4 pass. 

Base 8 Delta 2 Upper Pass  0 (0x0…0) 32,767 (0x0000000000007FFF) B8D2 pass. 

Base 8 Delta 4 Lower Fail  0 (0x0…0) -2,147,483,649 (0xFFFFFFFF7FFFFFFF) Not compressible. 

Base 8 Delta 4 Lower Pass  0 (0x0…0) -2,147,483,648 (0xFFFFFFFF80000000) B8D4 pass. 

Base 8 Delta 4 Upper Fail  0 (0x0…0) 2,147,483,648 (0x0000000080000000) Not compressible. 

Base 8 Delta 4 Upper Pass  0 (0x0…0) 2,147,483,647 (0x000000007FFFFFFF) B8D4 pass. 

Base 4 Delta 1 Lower Fail  0 (0x0…0)    -129 (0xFFFFFF7F) B4D1 fail.  B4D2 pass. 

Base 4 Delta 1 Lower Pass  0 (0x0…0)    -128 (0xFFFFFF80) B4D1 pass. 

Base 4 Delta 1 Upper Fail  0 (0x0…0)     128 (0x00000080) B4D1 fail.  B4D2 pass. 

Base 4 Delta 1 Upper Pass  0 (0x0…0)     127 (0x0000007F) B4D1 pass. 

Base 4 Delta 2 Lower Fail  0 (0x0…0) -32,769 (0xFFFF7FFF) Not compressible. 

Base 4 Delta 2 Lower Pass  0 (0x0…0) -32,768 (0xFFFF8000) B4D2 pass. 

Base 4 Delta 2 Upper Fail  0 (0x0…0) 32,768 (0x00008000) Not compressible. 

Base 4 Delta 2 Upper Pass  0 (0x0…0) 32,767 (0x00007FFF) B4D2 pass. 

Base 2 Delta 1 Lower Fail  0 (0x0…0)    -129 (0xFF7F) Not compressible. 

Base 2 Delta 1 Lower Pass  0 (0x0…0)    -128 (0xFF80) B2D1 pass. 

Base 2 Delta 1 Upper Fail  0 (0x0…0)     128 (0x0080) Not compressible. 

Base 2 Delta 1 Upper Pass  0 (0x0…0)     127 (0x007F) B2D1 pass. 
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Figure 3.9 – Testbench Waveforms for Compressor in Xilinx ISE 

 

 

Decompressor 

The structure of the decompressor design in Verilog, including the test bench used to verify the design, is 

as follows:  

 

testbench (decompressor_testbench.v) 
  decompressor (decompressor.v) 
    hadd (hadd.v) 
      hadder8 (hadder8.v) 
    hadd32 (hadd32.v) 
      hadder8 (hadder8.v) 
    hadd16 (hadd16.v) 
      hadder8 (hadder8.v) 

Figure 3.10 – HDL Structure of Decompressor 

 

The hadder8 module is identical to that of the compressor.  The key differences between the decompressor 

and compressor are that the second level modules (hadd, hadd32, and hadd16) do not convert hadder8 

into a subtractor and they do not have to evaluate delta overflow.  These modules strictly build the 64-bit, 

32-bit, and 16-bit hierarchical carry-lookahead adders. 

 

• hadd implements a 64-bit adder, so 8 instances of hadder8 for “base 8” decompression 

• hadd32 implements a 32-bit adder, so 4 instances of hadder8 for “base 4” decompression 

• hadd16 implements a 16-bit adder, so 2 instances of hadder8 for “base 2” decompression 
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The top module, decompressor, has much more work to do than that of the compressor.  This module must 

instantiate adders for each compression scheme, not just for each base. 

 

• 8 instances of hadd for “base 8 delta 1” decompression on a 128-bit cache line 

• 8 instances of hadd for “base 8 delta 2” decompression on a 192-bit cache line 

• 8 instances of hadd for “base 8 delta 4” decompression on a 320-bit cache line 

• 16 instances of hadd32 for “base 4 delta 1” decompression on a 160-byte cache line 

• 16 instances of hadd32 for “base 4 delta 2” decompression on a 288-byte cache line 

• 32 instances of hadd16 for “base 2 delta 1” decompression on a 272-byte cache line 

 

With all these instances, module decompressor attempts decompress an input cache line using all 8 

methods at once and even outputs a 512-bit decompressed cache line for each.  Only the line with an 

associated valid bit contains the correct data.  Module decompressor sets this valid bit based on the input 

encoding bits. 
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Chapter 4  

 

Simulation Methodology 

 

 

In this chapter, we discuss the method for evaluating the performance of the new compression and 

prefetching architecture.  The tools required to perform this analysis are discussed as well as the 

environment used to perform testing.   

 

4.1 Methodology 

 

In this section, we describe four key tools used in performing this work: SimPoint, CACTI, SimpleScalar, 

and Wattch. 

 

SimPoint [18] is used to determine the intervals that can be executed to represent the full execution of a 

given program.  We use SimPoint as a means of reducing the simulation time and size of outputs from the 

simulator without sacrificing the behavior of the benchmarks used.  The decided simulation points are 

tabulated and the percent error of each is determined based on a comparison of CPI between the weighted 

simulation points and the full execution of the benchmark. 

 

CACTI [19] is used to generate the static and dynamic power models for the various cache configurations 

used for this thesis.  In addition, we use CACTI to model the prefetch tables and the new decompression 

buffer that is required for the proposed architecture.  Configurations and power results are presented as they 

are used as inputs into the simulator. 

 

SimpleScalar (specifically a branch called Wattch), and the changes introduced in this work, are used to 

model the behaviour of the cache compression and prefetching architectures. 

 

A summary of the simulation approach is shown in Figure 4.1 and discussed in detail in the following 

sections. 
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Figure 4.1 – Simulation Flow Diagram 

 

 

4.1.1 Simpoint 

 

For this thesis, parts of the SPEC CPU 2000 benchmark suite are used.  Full runs of these benchmarks can 

take days to run even in a simple performance simulator (e.g. sim-fast).  Running these in a detailed 

simulator such as sim-outorder, and especially in the modified version that we have developed, can take 

much longer.  Therefore, it was necessary to identify smaller intervals of these benchmarks that could be 

executed.  SimPoint is a tool that was created to choose simulation intervals that best represent the full 

program execution.  SimPoint does this in four steps: Basic Block Vector (BBV) Analysis, Random 

Projection, Phase Classification, and Simulation Point Selection [18]. 

 

BBV Analysis 

The Basic Block Vector (BBV) contains information about the behaviour of the program with respect to 

basic blocks.  A basic block is a section of the program with one entry point and one exit point that executes 

from start to finish.  The BBV itself is an array of elements representing the frequency each basic block is 

entered for a given execution interval (weighted by the number of instructions in that block).  

 

For this thesis, BBV information for the SPEC CPU 2000 benchmarks is created using the tool Sim-Fast 

BBV Tracker.  This tool is provided by the creators of SimPoint and is a modified version of SimpleScalar 

that generates the BBV files during execution of sim-fast. 
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Random Projection, Phase Classification, and Simulation Point Selection 

SimPoint analyses the BBV file generated by the previous step and chooses a representation of each phase 

by finding the interval closest to the centre of the phase.  Then, SimPoint determines the weight of that 

simulation point based on the number of intervals in that phase of the program's execution. 

 

SimPoint Results 

For this work, an interval of 100 million instructions is chosen for determining simulation points.  The 

selection of 100 million instruction intervals is a balance between 1 billion, which generates very large 

output data, and 10 million, which is too small to run without performing a “warmup” routine.  The authors 

state that 100 million is an appropriately sized interval to avoid the need to bring the simulations to a 

“warmup” state [16].   The maximum number of clusters in the k-means algorithm [20] executed in 

SimPoint was chosen based on the error produced by the resultant simulation points.   

 

Choosing a single cluster would result in the simplest implementation.  That is, no weighing or combination 

of results would be necessary.  This method, however, does not yield good results, as most programs will 

contain multiple phases.  The authors use the percent error in CPI between the full execution and the 

weighted simulation points as a means of evaluating the accuracy of the method.  Rather than arbitrarily 

choosing a maximum number of clusters, we use this same method to evaluate the error as the authors do 

in [21]. 

 

Given a set of simulation points and weights, the following is the correct method of calculating the weighted 

CPI [22], 

 

 (4.1) 

 

Using 164.gzip as an example, for M = 3: 

 

Table 4.1 – 164.gzip CPI Values by Simulation Point 

Simulation Point Weight CPI 

6 0.296296 0.5884 

15 0.222222 0.5289 

25 0.481481 0.5790 

 

nnCPIWeightCPIWeightCPIWeightCPI  ...2211
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 (4.2) 

 

Comparing this with the CPI result from the full execution, we can calculate the % error: 

 

 

 

 

(4.3) 

 

Table 4.2 contains this error calculation for 18 of the SPEC CPU 2000 benchmarks for maximum number 

of clusters (M) from 1 to 3. 

 

Table 4.2 – Simpoint Error by Maximum Number of Clusters 

Benchmark M=1 M=2 M=3 

164.gzip 0.68% 0.19% 0.37% 

168.wupwise 2.69% 2.79% 0.45% 

171.swim 49.28% 8.16% 0.02% 

172.mgrid 2.43% 0.57% 0.10% 

173.applu 7.71% 5.72% 0.93% 

175.vpr 2.84% 1.56% 3.07% 

176.gcc 3.56% 6.62% 2.53% 

177.mesa 0.29% 0.07% 0.03% 

179.art 1.65% 0.09% 0.05% 

181.mcf 23.20% 2.12% 4.39% 

183.equake 1.48% 0.14% 0.48% 

188.ammp 4.85% 0.00% 1.77% 

197.parser 6.84% 14.20% 5.14% 

253.perlbmk 0.15% 0.04% 0.29% 

255.vortex 5.69% 4.44% 1.48% 

256.bzip2 17.60% 13.80% 14.64% 

300.twolf 4.28% 0.69% 0.00% 

301.apsi 11.60% 11.64% 12.25% 

 

5707.0

)5790.0)(481481.0()5289.0)(222222.0()5884.0)(296296.0(



CPI

 

 

 

%37.0

100
5728.0

0021.0

100
5728.0

5707.05728.0

100%
int











Full

SimpoFull

CPI

CPICPI
Error



 

35 

As can be seen from the data, the amount of error is significant in the benchmarks 171.swim, 181.mcf, 

197.parser, 256.bzip2, and 301.apsi.  The authors of SimPoint evaluated the SPEC CPU 2000 benchmarks 

using a maximum number of clusters equal to 10 for intervals of 100 million instructions.  In their data, the 

maximum percent error was 5.47%.  So, we then evaluated the 18 benchmarks with these same parameters.  

The results are shown in Table 4.3. 

 

Table 4.3 – SimPoint Error 

Benchmark Instructions (Full) CPI (Full) CPI (Simpoint) % Error 

164.gzip 2702173004 0.5728 0.5744 0.27% 

168.wupwise 607580800644 0.6840 0.6831 0.13% 

171.swim 440458734007 1.0914 1.1025 1.02% 

172.mgrid 900584206345 0.5846 0.5849 0.06% 

173.applu 827051421403 0.6924 0.6929 0.07% 

175.vpr 86587310713 0.9186 0.9293 1.17% 

176.gcc 84506842637 0.5707 0.5719 0.20% 

177.mesa 304718816959 0.5779 0.5771 0.14% 

179.art 10917697312 1.4175 1.4189 0.10% 

181.mcf 49073257000 2.4408 2.5668 5.16% 

183.equake 175021725999 1.0339 1.0333 0.05% 

188.ammp 350015586932 0.9809 0.9834 0.25% 

197.parser 9628364671 1.0034 1.0550 5.14% 

253.perlbmk 1389497618 0.8167 0.8190 0.29% 

255.vortex 114074663283 0.5291 0.5313 0.41% 

256.bzip2 113183466499 0.5165 0.5208 0.84% 

300.twolf 1394388332 0.8594 0.8586 0.09% 

301.apsi 816009733414 0.6981 0.6820 2.31% 

 

The maximum percent error from this method is 5.16% which is less than that of the 5.47% in the author's 

results, but quite similar.  Therefore, for the purposes of this thesis, all benchmarks are executed for a 

maximum of 10 intervals of 100 million instructions as generated by SimPoint in the method discussed 

above.  The resulting simulation points and their weights are shown in Table 4.4. 
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Table 4.4 – 100M SimPoint Results 

Benchmark Simulation Point Weight  Benchmark Simulation Point Weight 

164.gzip 6 0.296296  173.applu 3690 0.0613059 

164.gzip 14 0.111111  173.applu 3833 0.0669891 

164.gzip 15 0.185185  173.applu 6512 0.273398 

164.gzip 23 0.407407  173.applu 6542 0.0322854 

168.wupwise 59 0.00510288  173.applu 7986 0.0401451 

168.wupwise 100 0.0454321  175.vpr 2 0.0254335 

168.wupwise 389 0.510288  175.vpr 354 0.439306 

168.wupwise 825 0.38963  175.vpr 456 0.323699 

168.wupwise 3487 0.0138272  175.vpr 582 0.211561 

168.wupwise 5418 0.0357202  176.gcc 3 0.392899 

171.swim 1201 0.0817439  176.gcc 22 0.0461538 

171.swim 1362 0.0610808  176.gcc 214 0.0485207 

171.swim 2397 0.157584  176.gcc 229 0.0639053 

171.swim 2729 0.0569936  176.gcc 305 0.127811 

171.swim 3008 0.156222  176.gcc 321 0.0556213 

171.swim 3083 0.136921  176.gcc 561 0.126627 

171.swim 3125 0.236149  176.gcc 694 0.138462 

171.swim 4016 0.0560854  177.mesa 252 0.0203479 

171.swim 4072 0.0572207  177.mesa 1271 0.13423 

172.mgrid 1093 0.0715158  177.mesa 1276 0.225796 

172.mgrid 2407 0.388895  177.mesa 1417 0.328848 

172.mgrid 4844 0.0599667  177.mesa 1845 0.0994421 

172.mgrid 6231 0.179789  177.mesa 2962 0.185756 

172.mgrid 6309 0.0896169  177.mesa 3034 0.00557926 

172.mgrid 6347 0.0579678  179.art 0 0.00917431 

172.mgrid 7271 0.118712  179.art 13 0.155963 

172.mgrid 8395 0.0335369  179.art 40 0.247706 

173.applu 139 0.272551  179.art 45 0.00917431 

173.applu 942 0.0962515  179.art 47 0.577982 

173.applu 1076 0.1052  181.mcf 17 0.0938776 

173.applu 1872 0.0518742  181.mcf 169 0.281633 
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Table 4.4 – 100M SimPoint Results (continued) 

Benchmark Simulation Point Weight  Benchmark Simulation Point Weight 

181.mcf 200 0.126531  255.vortex 159 0.0710526 

181.mcf 247 0.0836735  255.vortex 359 0.134211 

181.mcf 277 0.328571  255.vortex 387 0.148246 

181.mcf 350 0.044898  255.vortex 510 0.00877193 

181.mcf 378 0.0408163  255.vortex 526 0.0763158 

183.equake 15 0.0142857  255.vortex 710 0.455263 

183.equake 60 0.0782857  256.bzip2 9 0.10168 

183.equake 147 0.0794286  256.bzip2 52 0.102564 

183.equake 931 0.204571  256.bzip2 94 0.129973 

183.equake 961 0.202857  256.bzip2 212 0.116711 

183.equake 1210 0.217714  256.bzip2 254 0.161804 

183.equake 1551 0.202857  256.bzip2 272 0.0565871 

188.ammp 14 0.00942857  256.bzip2 486 0.0742706 

188.ammp 271 0.128571  256.bzip2 497 0.114943 

188.ammp 568 0.195143  256.bzip2 539 0.0884173 

188.ammp 661 0.132857  256.bzip2 587 0.0530504 

188.ammp 1822 0.0148571  300.twolf 0 0.0769231 

188.ammp 1896 0.130286  300.twolf 1 0.0769231 

188.ammp 1970 0.0865714  300.twolf 2 0.0769231 

188.ammp 2171 0.0611429  300.twolf 4 0.307692 

188.ammp 2251 0.0114286  300.twolf 10 0.461538 

188.ammp 2912 0.229714  301.apsi 167 0.101471 

197.parser 27 0.15625  301.apsi 653 0.603554 

197.parser 43 0.604167  301.apsi 2083 0.0463235 

197.parser 66 0.239583  301.apsi 2453 0.0253676 

253.perlbmk 0 0.0769231  301.apsi 2865 0.135294 

253.perlbmk 1 0.230769  301.apsi 2923 0.0205882 

253.perlbmk 10 0.692308  301.apsi 5422 0.0101716 

255.vortex 55 0.0464912  301.apsi 5428 0.0448529 

255.vortex 104 0.0596491  301.apsi 5986 0.0123775 
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4.1.2 CACTI 

 

CACTI is a cache and memory access time, cycle time, area, leakage power, and dynamic energy modelling 

tool [23].  For the purposes of this thesis, the access time, leakage power, and dynamic energy calculations 

performed by CACTI are the focus.  For specific cache configurations, the access time, leakage power, and 

dynamic energy parameters are determined and used as input into the simulator. 

 

CACTI 6.5 was built from source and used for this thesis.  One modification is made to CACTI to output 

the dynamic energy (tag, data, and total) for the write operation.  The details of this change, building, and 

using CACTI are not included in this report. 

 

CACTI Results 

From the output of CACTI, the following lines are particularly relevant for this thesis and are used as input 

into the simulator: 

 

Access time (ns): ... 

 

Data array: Total dynamic read energy/access (nJ): ... 

Data array: Total dynamic write energy/access (nJ): ... 

Total leakage read/write power of a bank (mW): ... 

 

Tag array:  Total dynamic read energy/access (nJ): ... 

Tag array:  Total dynamic write energy/access (nJ): ... 

Total leakage read/write power of a bank (mW): ... 

Figure 4.2 – CACTI Output 

 

Table 4.5 shows all the L1 cache configurations used for this thesis.  The first configuration in the table 

represents the baseline scheme with no compression.  The next two represents a compressed cache of half 

the size of the baseline. The tag and data banks for the compressed scheme are modelled in separate runs 

in CACTI. 

Table 4.5 – CACTI L1 Cache Configurations and Power Results 

Configuration Data 
(bytes) 

Assoc. Tag 
(bits) 

Data Read  
(nJ) 

Data Write  
(nJ) 

Data Static 
(mW) 

Tag Read  
(nJ) 

Tag Write  
(nJ) 

Tag Static 
(mW) 

Access 
Time (ns) 

Cycles 
@ 3GHz 

BASELINE 65536 2 17 0.254468 0.29159 25.0286 0.00642276 0.00698272 1.22089 1.65339 5  

(4.96017) 

COMPRESSED  
DATA 

32768 1 17 0.149461 0.164224 13.6143 - - - 1.24155 4  
(3.72465) 

COMPRESSED  

TAG 

65536 2 53 - - - 0.0113552 0.0261866 3.29114 1.80514 6  

(5.41542) 
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Table 4.5 shows all the L2 cache configurations used for this thesis. 

 

Table 4.6 – CACTI L2 Cache Timing 

Configuration Size 

(bytes) 

Assoc. Tag  

(bits) 

Access Time 

(ns) 

Cycles 

@ 3GHz 

BASELINE 1048576 4 default 3.4286 11 (10.2858) 

 

CACTI was also used to model the energy consumption of the prefetch tables.  Data size is assumed to be 

4 bytes per address in this model to store the target address of the load instruction.   

 

Table 4.7 – CACTI Prefetch Table Configurations and Power Results 

Configuration Size 
(bytes) 

Tag (bits) Data Read  
(nJ) 

Data Write  
(nJ) 

Data Static 
(mW) 

Tag Read  
(nJ) 

Tag Write  
(nJ) 

Tag Static 
(mW) 

Access 
Time (ns) 

Cycles 
@ 3GHz 

LO  

128 

512 25 0.00549938 0.00612263 0.229478 0.00219443 0.00273977 0.209592 0.932003 3  

(2.796009) 

LO  
1024 

4096 22 0.0146796 0.016525 1.89212 0.00687723 0.00530333 1.20125 1.1291 4  
(3.3873) 

LO  

2048 

8192 21 0.0196109 0.0182605 3.50766 0.00937441 0.00836156 2.70726 1.28211 4 

(3.84633) 

STRIDE  
128 

512 43  
(25+16+2) 

0.00558349 0.00620673 0.240491 0.00320262 0.00405959 0.320843 0.924437 3  
(2.773311) 

STRIDE  

1024 

4096 40  

(22+16+2) 

0.0146796 0.016525 1.89212 0.0083401 0.0106468 2.31192 1.25809 4  

(3.77427) 

STRIDE  
2048 

8192 39 
(21+16+2) 

0.0196109 0.0182605 3.50766 0.0136775 0.0125793 4.30645 1.29731 4 
(3.89193) 

HYBRID S/LO 

128 

512 43  

(25+16+2) 

0.00558349 0.00620673 0.240491 0.00320262 0.00405959 0.320843 0.924437 3  

(2.773311) 

HYBRID S/LO 
1024 

4096 40  
(22+16+2) 

0.0146796 0.016525 1.89212 0.0083401 0.0106468 2.31192 1.25809 4  
(3.77427) 

HYBRID S/LO 

2048 

8192 39 

(21+16+2) 

0.0196109 0.0182605 3.50766 0.0136775 0.0125793 4.30645 1.25809 4  

(3.77427) 

2LEVEL  
128 

1024 30  
(25+1+4) 

0.00702388 0.00677314 0.493251 0.00243052 0.00305377 0.234909 0.959845 3  
(2.879535) 

2LEVEL  

1024 

8192 27  

(22+1+4) 

0.0196109 0.0182605 3.50766 0.00751555 0.00650857 1.38357 1.14894 4  

(3.44682) 

2LEVEL  

2048 

16384 26 

(21+1+4) 

0.0322663 0.0309884 6.95555 0.0184487 0.0115735 6.12193 1.28954 4 

(3.86862) 

HYBRID 2L/S 

128 

1024 48  

(25+1+4+16+2) 

0.00720647 0.00695573 0.431373 0.0034364 0.00437127 0.345173 0.94776 3  

(2.84328) 

HYBRID 2L/S 
1024 

8192 45  
(22+1+4+16+2) 

0.0196109 0.0182605 3.50766 0.00968252 0.0124506 2.72231 1.27512 4  
(3.82536) 

HYBRID 2L/S 

2048 

16384 44 

(21+1+4+16+2) 

0.0322663 0.0309884 6.95555 0.0244858 0.0227288 9.34134 1.60081 5 

(4.80243) 
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For two-level prefetching, we require a second table called the Pattern History Table (PHT).  This table is 

indexed by the access pattern and stores an integer value for each of the data values stored in the prefetch 

table. 

 

Table 4.8 – CACTI Pattern History Table Power Results 

Configuration Size 
(bytes) 

Tag (bits) Data Read  
(nJ) 

Data Write  
(nJ) 

Data Static 
(mW) 

Tag Read  
(nJ) 

Tag Write  
(nJ) 

Tag Static 
(mW) 

Access 
Time (ns) 

Cycles 
@ 3GHz 

PHT 2D4P 64 4 0.0029709 0.00305794 0.0334625 0.00390386 0.000401266 0.0120452 0.575184 2 

(1.725552) 

 

Lastly, a decompression buffer is considered with 64-byte data and 1K sets.  In CACTI, this buffer is 

modeled as L1 cache. 

 

Table 4.9 – CACTI Decompression Buffer Power Results 

Configuration Size 
(bytes) 

Tag (bits) Data Read  
(nJ) 

Data Write  
(nJ) 

Data Static 
(mW) 

Tag Read  
(nJ) 

Tag Write  
(nJ) 

Tag Static 
(mW) 

Access 
Time (ns) 

Cycles 
@ 3GHz 

BUFFER 1K 1024 64 

(32 + 32) 

0.00702388 0.00677314 0.493251 0.00186356 0.00203764 0.0708125 0.835837 3  

(2.507511) 
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4.1.3 SimpleScalar  

 

To be able to measure the benefit of implementing cache compression with a prefetching mechanism, we 

use SimpleScalar to model the performance of the CPU.   

 

SimpleScalar is an open-source processor modelling tool that is meant to be built upon for specific 

applications such as this work.  SimpleScalar is written in C.   The tool can emulate different instruction 

sets, including Alpha, ARM, x86, but most importantly PISA [24].  The binaries for the SPEC CPU 2000 

benchmarks used for this work are compiled to PISA. 

 

Wattch is a specific branch of SimpleScalar for analyzing and optimizing power consumption in the 

architecture of a CPU [5].  Wattch provides us with a mechanism to compare our power consumption in 

the cache and new hardware with the overall power consumption of the CPU. 

 

4.1.3.1 Compression 

 

To confirm the feasibility of this work, we check how many cache lines within the 18 benchmarks are 

compressible using the Base-Delta-Immediate compression scheme.  To do this, we model Base-Delta-

Immediate in SimpleScalar. 

 

In this compression scheme, cache lines are compressed before they are written to the cache.  Cache lines 

are written when they miss the cache or on a write hit.  Therefore, we must add functionality to the simulator 

when we these events occur, as mentioned previously in Table 3.1.   

 

Zeros 

The check for zeros compressibility is straightforward.  We iterate through all elements of the cache line 

array and flag zeros compressibility as not possible if any element does not equal zero. 

 

Repeating Values 

In the scheme proposed by the authors in [4], repeating 8-byte values are considered.  Therefore, we check 

compressibility for this while checking for other “base 8” schemes.  Starting at element zero, we concatenate 

the values of the next seven bytes to the current byte, then iterate through the cache line array by a stride of 

8.  At each iteration through the array, we check if the new 8-byte value equals the 8-byte value at element 

0.  If any element does not equal element zero, we flag repeating values compressibility as not possible. 
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Base-Delta-Immediate 

Separate arrays and separate loops handle the compressibility check for each size of base.  Base 8 behaves 

as described above.  Base 4 iterates though the array in stride of 4, Base 2 in strides of 2. 

 

To verify the compressibility of a Base-Delta-Immediate scheme, we check that each delta does not 

overflow its datatype referenced either from the base or from zero (immediate).  If the second option is 

taken (immediate), then the immediate flag is set for that iteration.  Table 4.10 shows the overflow 

parameters of each delta. 

 

Table 4.10 – Delta Datatype and Overflow Information 

Delta Data Type Floor Ceiling 

1 signed char -128 127 

2 signed short -32768 32767 

4 sighed int -2147483648 2147483647 

 

Validation of the Compression Model 

To confirm that we have correctly modeled Base-Delta-Immediate compression in SimpleScalar, we write 

a program to exercise the boundary condition of each of the compression schemes, cross-compile that 

program to the PISA instruction set, and run this program through our model and verify the results. 

 

This program consists of 26 arrays containing 64 1-byte elements.  Those arrays contain the cache line 

values that exercise the boundaries of the model. Table 4.11 shows these values.   

 

 

 

 

 

 

 

 

 

 

 



 

43 

Table 4.11 – Boundary Conditions for Compression 
array description significant value  

char z[64] Zeros  0 (0x0…0) 

char r[64] Repeating Values -1 (0xF…F) 

char b8d1lf[64] Base 8 Delta 1 Lower Fail    -129 (0xFFFFFFFFFFFFFF7F) 

char b8d1lp[64] Base 8 Delta 1 Lower Pass    -128 (0xFFFFFFFFFFFFFF80) 

char b8d1uf[64] Base 8 Delta 1 Upper Fail     128 (0x0000000000000080) 

char b8d1up[64] Base 8 Delta 1 Upper Pass     127 (0x000000000000007F) 

char b8d2lf[64] Base 8 Delta 2 Lower Fail -32,769 (0xFFFFFFFFFFFF7FFF) 

char b8d2lp[64] Base 8 Delta 2 Lower Pass -32,768 (0xFFFFFFFFFFFF8000) 

char b8d2uf[64] Base 8 Delta 2 Upper Fail 32,768 (0x0000000000008000) 

char b8d2up[64] Base 8 Delta 2 Upper Pass 32,767 (0x0000000000007FFF) 

char b8d4lf[64] Base 8 Delta 4 Lower Fail -2,147,483,649 (0xFFFFFFFF7FFFFFFF) 

char b8d4lp[64] Base 8 Delta 4 Lower Pass -2,147,483,648 (0xFFFFFFFF80000000) 

char b8d4uf[64] Base 8 Delta 4 Upper Fail 2,147,483,648 (0x0000000080000000) 

char b8d4up[64] Base 8 Delta 4 Upper Pass 2,147,483,647 (0x000000007FFFFFFF) 

char b4d1lf[64] Base 4 Delta 1 Lower Fail    -129 (0xFFFFFF7F) 

char b4d1lp[64] Base 4 Delta 1 Lower Pass    -128 (0xFFFFFF80) 

char b4d1uf[64] Base 4 Delta 1 Upper Fail     128 (0x00000080) 

char b4d1up[64] Base 4 Delta 1 Upper Pass     127 (0x0000007F) 

char b4d2lf[64] Base 4 Delta 2 Lower Fail -32,769 (0xFFFF7FFF) 

char b4d2lp[64] Base 4 Delta 2 Lower Pass -32,768 (0xFFFF8000) 

char b4d2uf[64] Base 4 Delta 2 Upper Fail 32,768 (0x00008000) 

char b4d2up[64] Base 4 Delta 2 Upper Pass 32,767 (0x00007FFF) 

char b2d1lf[64] Base 2 Delta 1 Lower Fail    -129 (0xFF7F) 

char b2d1lp[64] Base 2 Delta 1 Lower Pass    -128 (0xFF80) 

char b2d1uf[64] Base 2 Delta 1 Upper Fail     128 (0x0080) 

char b2d1up[64] Base 2 Delta 1 Upper Pass     127 (0x007F) 

 

Running our benchmark through our compression model in SimpleScalar, we get the following result, 

which matches the expected behaviour of the compressor hardware.  

 

sim_num_byte_reads      187 # total number of byte reads 
sim_num_zero_blocks       1 # total number of zero block reads 
sim_num_repeats_blocks    1 # total number of repeats block reads 
sim_num_del81_blocks      2 # total number of base 8 delta 1 reads 
sim_num_del41_blocks      2 # total number of base 4 delta 1 reads 
sim_num_del82_blocks      4 # total number of base 8 delta 2 reads 
sim_num_del21_blocks      2 # total number of base 2 delta 1 reads 
sim_num_del42_blocks      4 # total number of base 4 delta 2 reads 
sim_num_del84_blocks      4 # total number of base 8 delta 4 reads 
sim_num_uncompr_blocks  167 # total number of uncompressed reads 

Figure 4.3 – Compression Model Verification Results 
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4.1.3.2 Compression with Prefetching Model 

 

To implement the compression and prefetching model, we implement two key behaviours to the simulator:  

 

(1) Read the prefetch table during fetch of a load instruction and, if we hit the table and return a 

prediction address, add the address to the decompression buffer along with a ready time equal to 

the current cycle plus all delays that block that data.  Specifically affecting the decompression 

buffer are the prefetch table access time, the L1 data cache access time, and the decompression 

latency. 

 

 (2) Read decompression buffer before accessing L1 data cache to confirm if the correct address 

was there.  Before running the cache_access() function for L1 data cache, we check if we have a 

correct PC and address in the decompression buffer.  If we do, then our prefetch function will have 

correctly predicted the load address.  If the PC and address are not correct in the decompression 

buffer, then we experience the full decompression latency and update our prefetch table 

information. 

 

4.1.3.3 Stage Delays 

 

Baseline SimpleScalar and Wattch implement single cycle pipeline stages.  This is not a realistic model for 

many processors.  Therefore, we implement a mechanism to include options for additional delays in each 

stage.  The delays used in this work are based on [25].  To implement this, a new queue is added to store 

instructions delayed in the pipeline. This queue is monitored at the end of each stage and submits operations 

each cycle as they are ready. 

 

4.1.3.4 VCD Output 

 

A critical part of the power analysis in this work is to compare the power consumption of the new hardware 

to that of the processor and the cache.  For this, we use Cadence Genus.  To achieve an accurate dynamic 

power model in Cadence Genus, we need to set the actual input characteristics of the cache.  To do this, we 

generate what is called a Value Change Dump (VCD) stimulus for the hardware for each of the simulation 

points run in the simulator. The header information of the compressor VCD file is shown in Figure 4.4. 
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$date 
2017-05-31 19:06:21 EDT 
$end 
 
$version 
VCD version 0.1 
$end 
 
$timescale 
1 ps 
$end 
 
$scope 
module compressor 
$end 
 
$var  
wire 512 ! x  
$end 
 
$upscope $end 
$enddefinitions $end 
 
#0 
 
$dumpvars 
b0 ! 
$end 

Figure 4.4 – Compressor VCD Header 

 

Then, following the header, for each instance of compression (each L1 data cache miss or write hit), a 

timestamped update is written into the VCD file.  The timestamp is calculated using the frequency option 

for the CPU and the number of cycles: 

 

(4.4) 

 

The timestamp is written to the VCD file followed by the value of the compressor input as a 512-character 

ASCII string.  Figure 4.5 shows an example of this. 

 

cyclesim
f

t
GHz

psVCD _
1000

, 
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#34632 
b0000000000000000000000000000000000000000000000000000000000000000000000000000000                                     
00000000000000000000000000000000000000000000001010000000000000000000000000001000                                     
00000000000000000000001000100000100000000000000000000000000000000000000000000000                                     
00010100011000001000000000000000000000000000000000000000000000000000000000000000                                     
00000000000000000000000000000000000000000000000000000000000000001000000000000000                                     
00000000000000000000000000000000000000000000000000100000001001010100000000000000                                     
000000000000000000000000000000000 ! 

Figure 4.5 – Compressor VCD ASCII Value 

 

For the decompressor, a carry bit is initialized to zero and the encoding bits are updated every time.  The 

decompressor header must declare different variables as shown in Figure 4.6.  An example of a timestamped 

update to the decompressor VCD file is shown in Figure 4.7. 

 

$var wire 512 ! x $end 
$var wire 1 # carry $end 
$var wire 4 $ encoding $end 

Figure 4.6 – Decompressor VCD Header Variables 

 

#864801 
b0000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000101000010101000010100000101100001010000110010000101000011101000010100001010
10000101000011101000010010001101100001001001001000000100110000100000010011000001
00000100110011110000010011001011100001000101100000000100011010000000010001101110
000000111000000000000000010011101 ! 
b0111 $ 

Figure 4.7 – Decompressor VCD ASCII Value 

 

4.1.3.5 SimPoint Implementation 

 

Baseline SimpleScalar and Wattch allow for fast forwarding through a benchmark and running a certain 

block of instructions.  This is implemented through the runtime options -fastfwd and -max:inst.  The first 

is implemented as a signed integer and the second as an unsigned integer.  This means, the deepest interval 

that can be run for any program is from instruction 2,147,483,648 to 6,442,450,942.  Looking back at the 

results of our SimPoint analysis in Table 4.4, we see that our largest simpoint is 8395 for benchmark 

172.mgrid.  This means we are required to execute from instruction 839,500,000,001 to 839,600,000,000. 
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To accommodate this, we implement two new options at runtime -interval and -simpoint.  The first is 

simply a renaming of -max:inst.  The second, simpoint, is the multiple of interval that fastfwd should be 

set to.  By declaring fastfwd as a 64-bit unsigned integer, we can accommodate all of our simpoints. 

 

4.1.3.6 Technology Scaling 

 

Out-of-the-box Wattch is based on 180nm technology parameters provided in an early technical report for 

CACTI.  In power.h, Wattch is set up to allow for configuration and scalability of the CMOS feature size, 

as well as the CPU frequency used for calculations.  To accommodate our chosen frequency of 3 GHz and 

the 90nm CMOS used to create the hardware for this thesis, the following updates were made to power.h: 

 

Macro TECH_POINT10 contains scaling definitions to bring the 180nm parameters down to a 100nm 

equivalent.  Scaling exists for wire capacitance, wire resistance, feature length, feature area, voltage, 

threshold voltage, sense voltage, and overall power scaling.   

 

Macro FUDGEFACTOR is used to scale results, further beyond that of the chosen tech point, from the CACTI 

function calculate_time that is built into Wattch.  FUDGEFACTOR is given by dividing the defined technology 

size by the desired value: 

 

 

 

(4.5) 

 

Macro Mhz is used to define the frequency used throughout the power calculations. 
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4.1.4 Environment 

 

Across the 18 benchmarks used, with a maximum SimPoint cluster size of 10, there are 122 total simulation 

points to be executed per configuration.  With 12 configurations, there are 1464 instances of the simulator 

to be executed per simulation batch.   

 

Benchmarking is performed on Lakehead University’s 240 core Linux Cluster, Wesley [26].  Jobs are 

queued to the cluster using Torque.  The output of the batch on Wesley are 1464 simulation result reports 

and 2928 Value Change Dump (VCD) files.  

 

These 4392 files are moved from Wesley to Lakehead University’s CMC server.  Executed via scripting in 

Tcl, the hardware is synthesized and mapped for the compressor in Cadence Genus, then the compressor 

VCD file for each simulation point is input into Genus and the associated report file is appended with the 

dynamic power analysis results.  This process is then repeated for the decompressor. 

 

4.2 Synthesis and Static Power Analysis 

 

In this section, the synthesis of this design using Cadence Genus is discussed as well as timing and power 

results and the selection of the 90nm Cadence Generic PDK.  Place and route is presented for this design 

using Cadence Innovus. 

 

Initial Analysis and PDK Selection 

To evaluate the speed and power consumption of the hardware, the Verilog design files are synthesized 

using Cadence Genus Synthesis Solution.   

 

Two process design kits were considered for this thesis, Cadence Generic 90nm PDK and FreePDK 45nm.  

Although power consumption is the focus of this work, the selection of the PDK was based on the delay 

for the decompressor, which lies on the critical execution path.  Table 4.12 shows the results of this initial 

analysis. 
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Table 4.12 – Initial Static Power Analysis of Decompressor by PDK 

Library Delay (ps) Static Power (nW) 

Cadence 90nm Generic PDK v3.3 (fast.lib) 655 900,979.421 

Cadence 90nm Generic PDK v3.3 (typical.lib) 1026 408,689.271 

Cadence 90nm Generic PDK v3.3 (slow.lib) 2463 408,202.239 

Cadence 90nm Generic PDK v3.3 (ss.0v75.lib) 3339 225,913.359 

Cadence 90nm Generic PDK v3.3 (ss.0v67.lib) 4086 162,813.881 

FreePDK 45nm v1.4 (gscl45nm.lib) 971 425,171.716 

 

As can be seen from the results, the fast library from the Cadence 90nm GPDK is the fastest.  At 655ps, 

even with any overhead that has not been accounted for, it is reasonable to assume that this hardware can 

provide decompression within 4 cycles at 3GHz.  This assumption carries into the simulator discussed in 

the following section of this report. 

 

Static Power 

Static Power Analysis in Cadence Genus is straightforward.  The Liberty Timing File (.lib) from the Process 

Design Kit (PDK) defines a parameter, cell_leakage_power, which is static power on a per-cell basis.  

After synthesizing the design, we can run the gates report to determine how many instances of each cell is 

used in the synthesized design. 

 

Gate       Instances       Area    Library 
---------------------------------------- 
AND2X1           631   2865.623    fast 
 
...  
 
XNOR2X1          139   1157.300    fast  
---------------------------------------- 
total          16366  67124.920 

Figure 4.8 – Genus Gates Report for Compressor (Condensed) 

 

From this, we can validate Genus’ static power calculation.  Table 4.13 shows this validation for the 

compressor, Table 4.14 for the decompressor. 
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Table 4.13 – Compressor Static Power Determination 
gate cell_leakage_power  instances total static power (nW) 

AND2X1 44.6239 631 28157.6809 

AND4X1 42.646 138 5885.148 

AND4XL 40.714 2 81.428 

AO21X1 84.9143 72 6113.8296 

AO22X1 71.7681 75 5382.6075 

AOI211XL 44.7636 81 3625.8516 

AOI21XL 35.0591 553 19387.6823 

AOI221XL 43.561 65 2831.465 

AOI22XL 34.6297 160 5540.752 

AOI2BB1XL 56.1234 57 3199.0338 

AOI31XL 34.8351 80 2786.808 

AOI32XL 34.4304 19 654.1776 

AOI33XL 33.8609 75 2539.5675 

CLKINVX1 29.4952 1148 33860.4896 

CLKXOR2X1 128.734 167 21498.578 

INVXL 20.9723 1496 31374.5608 

MX2X1 86.8591 5 434.2955 

MXI2XL 55.5867 408 22679.3736 

NAND2BXL 59.9008 207 12399.4656 

NAND2XL 20.9738 3363 70534.8894 

NAND3BXL 58.5736 51 2987.2536 

NAND3XL 21.0253 83 1745.0999 

NAND4BXL 57.8584 173 10009.5032 

NAND4XL 21.0281 162 3406.5522 

NOR2BXL 35.5704 353 12556.3512 

NOR2XL 35.3175 1349 47643.3075 

NOR3BXL 45.2739 13 588.5607 

NOR3XL 45.0716 193 8698.8188 

NOR4BXL 51.7506 253 13092.9018 

NOR4XL 51.5363 105 5411.3115 

OA21X1 57.6361 150 8645.415 

OAI211XL 20.8698 191 3986.1318 

OAI21XL 20.8533 3030 63185.499 

OAI221XL 20.7042 4 82.8168 

OAI22XL 34.8023 11 382.8253 

OAI2BB1XL 29.114 486 14149.404 

OAI31XL 22.019 14 308.266 

OR2X1 85.4618 653 55806.5554 

OR2XL 76.9368 54 4154.5872 

OR3X1 113.269 7 792.883 

OR4X1 140.922 16 2254.752 

OR4XL 132.377 74 9795.898 

XNOR2X1 142.706 139 19836.134 

Total Compressor Static Power 568488.51 nW 
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Table 4.14 – Decompressor Static Power Determination 
gate cell_leakage_power  instances total static power (nW) 

ADDHXL 156.633 8 1253.064 

AND2X1 44.6239 731 32620.0709 

AND4X1 42.646 94 4008.724 

AO21X1 84.9143 294 24964.8042 

AO22X1 71.7681 97 6961.5057 

AOI211XL 44.7636 305 13652.898 

AOI21XL 35.0591 932 32675.0812 

AOI221XL 43.561 85 3702.685 

AOI222XL 42.6974 8 341.5792 

AOI22XL 34.6297 129 4467.2313 

AOI2BB1XL 56.1234 63 3535.7742 

AOI31XL 34.8351 74 2577.7974 

AOI32XL 34.4304 98 3374.1792 

CLKINVX1 29.4952 2393 70582.0136 

CLKXOR2X1 128.734 118 15190.612 

INVXL 20.9723 175 3670.1525 

MXI2XL 55.5867 1812 100723.1004 

NAND2BX1 72.5604 74 5369.4696 

NAND2BXL 59.9008 561 33604.3488 

NAND2XL 20.9738 4576 95976.1088 

NAND3BX1 70.7386 74 5234.6564 

NAND3BXL 58.5736 193 11304.7048 

NAND3XL 21.0253 387 8136.7911 

NAND4BBXL 113.985 17 1937.745 

NAND4BXL 57.8584 97 5612.2648 

NAND4XL 21.0281 140 2943.934 

NOR2BX1 49.8456 193 9620.2008 

NOR2BXL 35.5704 474 16860.3696 

NOR2XL 35.3175 1849 65302.0575 

NOR3BXL 45.2739 55 2490.0645 

NOR3XL 45.0716 225 10141.11 

NOR4BXL 51.7506 296 15318.1776 

NOR4XL 51.5363 191 9843.4333 

OA21X1 57.6361 280 16138.108 

OAI211XL 20.8698 573 11958.3954 

OAI21XL 20.8533 4210 87792.393 

OAI221XL 20.7042 148 3064.2216 

OAI22XL 34.8023 15 522.0345 

OAI2BB1XL 29.114 929 27046.906 

OR2X1 85.4618 819 69993.2142 

OR4X1 140.922 88 12401.136 

TLATXL 188.149 8 1505.192 

XNOR2X1 142.706 62 8847.772 

XNOR2XL 126.045 88 11091.96 

XOR2XL 127.375 209 26621.375 

Total Decompressor Static Power 900979.42 nW 
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We can then compare these calculated values to Genus’ results for the simulation runs in SimpleScalar, 

described in detail later in this report.  Using 164.gzip as an example, we can observe the output behaviour 

of Cadence Genus with regards to static power consumption of the compressor hardware.  The results are 

shown in Table 4.15. 

 

Table 4.15 – 164.gzip Compressor Static Power Values by Simulation Point 

Simulation Point Weight 𝑃𝑆𝑡𝑎𝑡𝑖𝑐  (nW) 

6 0.296296 568488.514 

14 0.111111 568488.514 

15 0.185185 568488.514 

23 0.407407 568488.514 

 

Notice from the results that that static power analysis is not affected when changing the input, which is an 

expected behaviour.  Therefore, the following values are considered constant and valid and will be used 

throughout the remainder of this thesis: 

 

Table 4.16 – Static Power for Compressor and Decompressor 

Device 𝑃𝑆𝑡𝑎𝑡𝑖𝑐  (nW) 

Compressor 568488.514 

Decompressor 900979.421 

 

4.3 Dynamic Power Analysis 

 

Dynamic power consists of three components: switching power, short-circuit power, and glitching power 

[27].  Genus groups these components into net power and internal power.  Dynamic power is generally 

calculated as the following [27, 16]: 

 

(4.6) 

 

Net Power 

Net power is the power consumption in a gate when charging the output load voltage from low to high.  

Therefore, Genus calculates net power as the following: 

 

2

DDD fCVP 
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(4.7) 

 

where 𝑓𝑡𝑜𝑔𝑔𝑙𝑒 is the toggle rate calculated by Genus and 𝐶𝐿 is the sum of load capacitances connected to 

the net. 

 

Internal Power 

Internal power is the product of frequency and "arc" energy for each input/output arc. Genus calculates 

internal power as the following: 

 

(4.8) 

 

where ∝𝐴→𝑌 is the arc activity calculated by Genus between input A and output Y and 𝐸𝐴→𝑌 is the energy 

of the arc determined by Genus, based on the Liberty Timing File (.lib) for the chosen PDK. 

 

Because dynamic power depends on the input stimulus to the compressor and decompressor modules, the 

most accurate way of modelling the dynamic power of these units is to use actual cache lines from the 

chosen benchmarks.  Each time the compressor and decompressor must be accessed in the simulator, data 

is written to a file in Value Change Dump (VCD) format.  This data is then input into Cadence Genus.    

 

Table 4.17 through Table 4.20 provide an overview of the dynamic power results for the compressed 

configuration.  The weighed dynamic power calculation for the compressor, using 164.gzip as an example, 

is shown in Table 4.17. 

 

Table 4.17 – 164.gzip Compressor Dynamic Power Values by Simulation Point 

Simulation Point Weight 𝑃𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙  (nW) 𝑃𝑁𝑒𝑡  (nW) 𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 (nW) 

6 0.296296 2,502,382.963 1,509,486.713 4,011,869.676 

14 0.111111 2,376,079.125 1,425,466.881 3,801,546.007 

15 0.185185 1,958,550.388 1,191,461.730 3,150,012.118 

23 0.407407 2,642,784.746 1,573,089.284 4,215,874.030 

 

 

 (4.9) 
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The dynamic power results for the compressor, for each benchmark, are shown in Table 4.18. 

 

Table 4.18 – Compressor Dynamic Power Results from Cadence Genus 

Benchmark 𝑃𝑆𝑡𝑎𝑡𝑖𝑐  (nW) 𝑃𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙  (nW) 𝑃𝑁𝑒𝑡  (nW) 𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 (nW) 

164.gzip 568488.514 2444837.749 1467168.352 3912006.101 

168.wupwise 568488.514 4733924.790 2825887.865 7559812.655 

171.swim 568488.514 3406421.546 2142197.331 5548618.877 

172.mgrid 568488.514 1503686.844 880473.875 2384160.718 

173.applu 568488.514 2842913.555 1755334.081 4598247.636 

175.vpr 568488.514 2687651.314 1589116.052 4276767.367 

176.gcc 568488.514 1157472.704 654253.529 1811726.233 

177.mesa 568488.514 2551430.640 1473686.003 4025116.642 

179.art 568488.514 4479839.925 2742657.118 7222497.044 

181.mcf 568488.514 3014341.404 1781392.370 4795733.774 

183.equake 568488.514 2723545.966 1692572.412 4416118.377 

188.ammp 568488.514 4531733.291 2794457.831 7326191.122 

197.parser 568488.514 2125239.397 1209725.263 3334964.660 

253.perlbmk 568488.514 2276058.199 1311922.307 3587980.505 

255.vortex 568488.514 4255223.279 2478268.604 6733491.883 

256.bzip2 568488.514 2000817.191 1158199.131 3159016.322 

300.twolf 568488.514 1742468.002 979882.525 2722350.527 

301.apsi 568488.514 4034095.505 2489728.965 6523824.469 

 

The weighed dynamic power calculation for the decompressor, using 164.gzip as an example, is shown 

below. 

 

Table 4.19 – 164.gzip Decompressor Power Values by Simulation Point 

Simulation Point Weight 𝑃𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙  (nW) 𝑃𝑁𝑒𝑡  (nW) 𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 (nW) 

6 0.296296 512,909.725 328,296.277 841,206.002 

14 0.111111 391,509.553 247,945.915 639,455.468 

15 0.185185 265,728.129 137,641.278 403,369.407 

23 0.407407 530,895.121 341,427.060 872,322.180 
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(4.10)  

 

 

The dynamic power results for the decompressor, for each benchmark, are shown in Table 4.20. 

 

Table 4.20 – Decompressor Power Results from Cadence Genus 

Benchmark 𝑃𝑆𝑡𝑎𝑡𝑖𝑐  (nW) 𝑃𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙  (nW) 𝑃𝑁𝑒𝑡  (nW) 𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 (nW) 

164.gzip 900979.421 460973.370 289411.266 750384.636 

168.wupwise 900979.421 60397.361 33253.897 93651.257 

171.swim 900979.421 1209495.482 749667.496 1959162.977 

172.mgrid 900979.421 125365.641 55615.549 180981.190 

173.applu 900979.421 16764.489 6941.406 23705.895 

175.vpr 900979.421 202578.101 98126.196 300704.297 

176.gcc 900979.421 484593.456 302914.825 787508.281 

177.mesa 900979.421 567175.771 364661.884 931837.654 

179.art 900979.421 241533.166 109215.950 350749.116 

181.mcf 900979.421 217916.366 106922.446 324838.811 

183.equake 900979.421 2549559.613 1590259.751 4139819.364 

188.ammp 900979.421 238724.030 120220.861 358944.890 

197.parser 900979.421 312999.100 152302.691 465301.791 

253.perlbmk 900979.421 987344.724 635322.774 1622667.498 

255.vortex 900979.421 369097.837 224798.216 593896.054 

256.bzip2 900979.421 492697.294 304721.316 797418.610 

300.twolf 900979.421 426706.339 274554.711 701261.051 

301.apsi 900979.421 251257.052 129447.883 380704.935 

 

  

     

     
nW

PDynamic

636.384,750

180.872322407407.0407.403369185185.0

468.639455111111.0002.841206296296.0






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4.4 Place and Route in Cadence Innovus 

 

To confirm that the complexity of the hardware is not beyond implementation, Cadence Innovus is used to 

automatically place and route the design to chip.  Figure 4.9 shows the final routing of the compressor in a 

1mm by 1mm die. 

 

 

Figure 4.9 – Compressor Routing in Innovus 
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Chapter 5  

 

Results 

 

 

In this chapter, we look at the results of performance simulation.  We start by reviewing the performance 

of the compression architecture, followed by the performance of the prefetch tables.  Finally, we look at the 

overall performance of the new combined architecture. 

 

5.1 Compression 

 

As part of the compressibility check discussed in Chapter 4, we output in SimpleScalar a count of cache 

lines that are compressed by each of the schemes.  Figure 5.1 shows the percentage of L1 data cache lines 

compressed by each compression scheme.   

 

 

Figure 5.1 – Percentage of L1 Data Cache Lines Compressed by Each Scheme 
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As can be seen from the data, and as a verification of the results presented in [4], there is significant 

opportunity to apply Base-Delta-Immediate compression in L1 data cache.  The best compression is 

achieved through zeros compression (64 bytes down to 8 bytes), so from Figure 5.1 we would expect a high 

compression ratio from 176.gcc because more than 40% of the cache lines are compressible using zeros 

compression.  We also see that each of the compression schemes are well represented within the 

benchmarks.  300.twolf, for example, implements a nice balance of each of the Base-Delta-Immediate 

schemes.   

 

Compression Ratio 

We want to know what kind of impact this compression would have on the amount of data we are able to 

store in the cache.  To do this, we can look at the compression ratio of each of the benchmarks.  The 

compression ratio achieved by running each of the benchmarks through the simluator is shown in Figure 

5.2.  To calculate compression ratio, we compare the compressed size of the data with the uncompressed 

size: 

 

 

(5.1) 

 

 

Figure 5.2 – Compression Ratio of L1 Data Cache 
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eduncompress

size

size
rationcompressio 
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As expected from the compression rates shown previsouly in Figure 5.1, 176.gcc achieves the best 

compression mostly due to the 40% zeros compression.  This is because zeros compression has the highest 

compression ratio among the schemes at a rate of 64/8.  If we consider only this 40% zeros compression, 

and no other compressed cache lines, we would see the following compression ratio: 

 

 

(5.2) 

 

176.gcc does not achieve much more than this, with a ratio of 1.62. A compression ratio of 1.62 means that, 

on average, a 64-byte cache line is taking up 40 bytes of space.  This is significant because it means, on 

average, each cache index holding 128 bytes now has room for 3 cache lines instead of 2. 

 

Slowdown 

We know, due to the decompression latency, that we will suffer a performance deterioration when we 

implement Base-Delta-Immediate compression – especially in L1 cache.  To determine the slowdown, we 

compare the IPC of the compressed scheme versus the baseline scheme for each of the runs.  The calculation 

for speedup and slowdown are shown below. 

 

 

 (5.3) 

 

Figure 5.3 shows the IPC of each of the benchmarks for the baseline configuration.  Figure 5.4 shows the 

compressed scheme.  The resultant speedup is shown in Figure 5.5. 

speedup

IPC

IPC
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compressed





1slowdown

speedup
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Figure 5.3 – IPC of Baseline Scheme 

 

 

Figure 5.4 – IPC of Compressed Scheme 
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Figure 5.5 – Speedup of Compressed Scheme vs Baseline 

 

What is siginificant here is that 183.equake has the most slowdown due to compression, yet 176.gcc has 

the highest compression ratio.  This would likely be due to 183.equake experiencing more compressed 

cache hits and therefore experiencing more of the impact of the decompression latency.   
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Static Power 

The primary intent of implementing compression in L1 data cache is to reduce the size and therefore the 

power consumption of the cache.  The amount of power savings here is important because this savings 

should outweigh any penalties introduced in the prefetching architecture or in the slowdown of 

performance. 

 

Figure 5.6 shows the static energy consumption of the L1 data cache for the baseline scheme. Figure 5.7 

shows the static energy for the compressed scheme, including the compression and decompression 

hardware energy. Figure 5.8 shows the ratio of compressed to baseline to highlight the reduction. 

 

 

Figure 5.6 – L1 Data Cache Static Energy (Baseline Scheme) 
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Figure 5.7 – L1 Data Cache Static Energy (Compressed Scheme) 

 

 

Figure 5.8 – L1 Data Cache Static Energy Ratio – Compressed vs Baseline 

 

We see a significant static energy reduction in the cache itself due to its decrease in size.  Looking at the 

static power from the CACTI model in Table 4.5, we would expect to see a reduction equal to: 
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(5.4) 

 

However, 0.64 is not achieved due to the CPU slowdown caused by introducing compression and the power 

overhead of the compression and decompression hardware.  In fact, you can correlate the balance of static 

power to the percent slowdown of the CPU due to compression.  Comparing Figure 5.8 with the slowdown 

in Figure 5.5, you see that they complement eachother in this regard.  

 

Dynamic Power 

Because we change the cache performance as discussed above, the switching characteristics will change.  

In addition, the overall reduction in cache area will impact the configuration of the cache and therefore the 

energy required to read and write the cache. 

  

Figure 5.9 shows the dynamic energy consumption of the L1 data cache for the baseline scheme. Figure 

5.10 shows the dynamic energy for the compressed scheme, including the energy consumed in the 

compressor and decompressor. Figure 5.11 ashows the ratio of compressed to baseline to highlight the 

reduction. 

 

 

Figure 5.9 – L1 Data Cache Dynamic Energy (Baseline Scheme) 
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Figure 5.10 – L1 Data Cache Dynamic Energy (Compressed Scheme) 

 

 

Figure 5.11 – L1 Data Cache Dynamic Energy Ratio – Compressed vs Baseline 

 

We cannot compare the dynamic behaviour as we did with static and the slowdown.  However, we do know 

that the compressed data size impacts the dynamic energy consumption of the cache.  Therefore, we can 

determine how much of this energy reduction is due to the reduced data size by looking at the compression 
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ratio.  For example, 176.gcc has a compression ratio of 1.62.  This represents an average data size reduction 

of: 

 

(5.5) 

 

The remaining energy reduction or gains in the CPU are due to the change in energy per access as well as 

the overall change in performance of the CPU. 

 

5.2 Prefetching 

 

We first look at the overall performance of all of the prefetching configurations used.  To evaluate the 

performance of the prefetch tables, we consider two key elements.  First, we look at what the hit percentage 

is for the table during the instruction fetch stage in the processor.  That is, what percentage of load 

instructions successfully acquire a prediction address from the prefetch table based on the program counter 

only.  Second, we look at how accurate those predictions are.  By reviewing the state of decompressed lines 

in the decompression buffer when they are evicted, we can better understand how the prefetch tables are 

affecting the performance of the new architecture.  In addition, this metric sheds some light on where 

improvements can be made to this architecture, as we will see in the data to follow.   

 

Hit Percentage 

A 128-Set and 1K-Set table were simulated for each of the prefetch table types (Last Outcome, Stride, 

Hybrid S/LO, Two-Level, and Hybrid 2L/S). To understand this selection, consider the static energy 

savings of compression presented in Figure 5.8. On average, we see a savings ratio of 0.27, which represents 

0.79mJ in static energy, or 7.12mW in static power across the executed benchmarks.  Reviewing the CACTI 

results in Table 4.7, the only 2K-Set table that keeps its static power within this range is the Last Outcome 

table.  Therefore, we did not exceed 1K table sizes as we did not want to consume our static power savings 

entirely within the prefetch table. 

 

For each of the 10 configurations, Figure 5.12 shows the percentage of load instructions that successfully 

receive a prediction address from the 128-Set prefetch tables.  Figure 5.13 shows the percentage of 

instructions that hit the 1K prefetch tables. 

 

62.0
62.1

1
reductiondataavg
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Figure 5.12 – Hit Percentage of Load Instructions by Prefetch Table (128 Set) 

 

 

Figure 5.13 – Hit Percentage of Load Instructions by Prefetch Table (1K Set) 
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Figure 5.13 shows that the 1K-Set variation of each table out performs the 128-Set variant of the table.  This 

is due to the reduction of conflict misses in the table.  We also notice that overall, the prefetch table hit 

percentage is quite low, averaging 10% to 15% for 128-Set and 16% to 24% for 1K-Set. 

 

Prediction Accuracy 

When a prediction is made, data is decompressed from the cache and then entered into the decompression 

buffer.  There are five possible results for entries in this buffer.  If the buffer is not large enough, entries are 

evicted before they can be used.  Used entries can be correct or incorrect. In addition, entries may be tossed 

out due to cache replacement or branch misprediction.  Figure 5.14 show the results for the 10 prefetch 

configurations. 
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Figure 5.14 – Prediction Accuracy of 10 Prefetch Table Configurations 
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Some major factors stand out here.  First, we notice that Stride prefetching is easily the most accurate.  

Second, we see that Last Outcome results in a large number of incorrect predictions.  While these 

mispredictions do not directly impact the performance of the CPU, they do require an additional cache 

access which consumes unnecessary energy.   

 

In addition, we notice that benchmarks 172.mgrid and 179.art are dumping many of the decompressed 

results from the decompression buffer before ever using them.  This means that the normal number of load 

instructions between the instruction fetch stage and the mem stage is larger than our 1K buffer design which 

has 16 entries. 

 

Static Power 

The static energy consumption of all of the combined prefetch tables is shown in Figure 5.15 for 128-Set, 

Figure 5.16 for 1K-Set.  This data includes the prefetch table, decompression buffer, and pattern history 

table in the case of two-level prefetching.   

 

 

Figure 5.15 – Static Energy by Prefetch Table (128 Set) 
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Figure 5.16 – Static Energy by Prefetch Table (1K Set) 

 

Dynamic Power 

The dynamic energy consumption of all of the combined prefetch tables is shown in Figure 5.17 for 128-

Set, Figure 5.18 for 1K-Set.  This data includes the prefetch table, decompression buffer, and pattern history 

table in the case of two-level prefetching.   
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Figure 5.17 – Dynamic Energy by Prefetch Table (128 Set) 

 

 

Figure 5.18 – Dynamic Energy by Prefetch Table (1K Set) 
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5.3 Compression and Prefetching 

 

In this section, we look at the overall results of combining prefetching with cache compression and compare 

those results with the compression-only configuration. 

 

Cache Energy vs. Performance 

Figure 5.19 shows the slowdown versus the power consumed in L1 data cache.  This figure identifies two 

important table configurations: Stride (128) and Hybrid Stride / Last Outcome (1K).   

 

• Stride (128) provides the best speedup-to-dl1 energy relationship.   

 

• Hybrid Stride / Last Outcome (1K) provides the best overall speedup, which we will see is the 

most important in the data to come. 

 

 

Figure 5.19 – L1 Data Cache Energy vs Performance 
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CPU Power vs. Performance 

Figure 5.20 shows the overall energy savings in the CPU versus slowdown compared with the baseline 

configuration.  Stride (128) and Hybrid Stride / Last Outcome (128) stand out here as well because they 

actually consume less energy than the compressed architecture alone.  This is because the performance 

benefit of the prefetching actually results in a reduction in power. 

 

 

Figure 5.20 – CPU Energy vs. Performance 

 

Speedup due to Prefetching 

It is clear from the previous figure that performance plays an important role in the overall energy 

consumption of the CPU.  In Figure 5.21, we compare the speedup of the different prefetching methods for 

each of the benchmarks for 128-Set tables, in Figure 5.22 for 1K-Set tables.   
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Figure 5.21 – Speedup Due to Prefetching (128 Set, vs. Compressed Only) 

 

 

Figure 5.22 – Speedup Due to Prefetching (1K Set, vs. Compressed Only) 
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Energy-Delay Product 

To determine which prefetching method stands out as the best, we need to consider both the overall 

performance of the CPU as well as the energy consumption.  To do this, we use the product of the two 

metrics as follows: 

 

 (5.6) 

 

Where E is the total energy consumed by the CPU (in Joules) and t is the runtime of the program (in 

seconds).  Figure 5.23 shows the energy-delay product, using values normalized to the baseline scheme, for 

each of the prefetch table configurations.   

  

 

Figure 5.23 – Energy-Delay Product (CPU) 

 

Figure 5.23 shows that all evaluated prefetch tables in combination with Base-Delta-Immediate (B∆I) 

compression outperform compression alone in L1 data cache.  Based on the energy-delay product, the 1K 

Stride/Last Outcome table has the best overall performance for the SPEC CPU 2000 benchmarks used.  

EtEDP
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Chapter 6  

 

Summary and Future Work 

 

 

As hardware designers shift their priority to power-efficient architectures, compression research provides 

an opportunity to explore ways to handle smaller data in a processor.  As we handle smaller data, dynamic 

energy reduces because we reduce the number of transistors that are being switched.  As long as we can 

maintain the performance of the processor within reasonable slowdown constraints, we should be able to 

achieve better energy-delay configurations as we continue to research compression and prefetching 

architectures. 

 

6.1 Contributions 

 

Our work evaluates the potential for implementing compression in L1 data cache as a means of improving 

power efficiency.  The proposed architecture combines prefetching with compression to move the 

decompression latency off the critical execution path.  From the data provided by this work, we see that 

most prefetching tables implemented in this architecture provide an improvement over compression in L1 

data cache alone.  That is, the energy-delay product is improved by implementing prefetching versus no 

prefetching.  In addition to having some residual slowdown which is impacting the energy-delay product, 

the slowdown itself causes an increase in static power that further amplifies the energy-delay product. 

 

Also, as part of this research, we have developed a new branch of SimpleScalar specifically geared towards 

compression and prefetching.  Even without further modification, this tool can be used in combination with 

CACTI to evaluate a wider range of cache configurations or prefetch table configurations.  We have 

successfully implemented an interface between the tool and Cadence Genus for dynamic power analysis in 

the form of the Value Change Dump (VCD) output.  
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Lastly, we have successfully developed 64-byte compressor and decompressor units in 90nm CMOS that 

fall within acceptable power and timing constraints.  This hardware is designed to work specifically with 

Base-Delta compression.  

 

6.2 Future Work 

 

Moving forward, there are opportunities to improve the configuration of prefetching tables within the 

proposed architecture.  As can been seen from Figure 5.12 in the previous section, our prefetch tables suffer 

from a very low hit rate.  In this data, a hit is considered when the table successfully makes a prediction 

(i.e. transient stride state counts as a miss).  Even looking at 1K Last Outcome prefetching, which makes a 

prediction as long as the PC is indexed in the table, our average hit rate is less than 25%.  Future work 

should look at improving the hit rate of the prefetch tables by experimenting with different table 

configurations, including deeper tables.   

 

The decompression hardware produced during this work allows for the ability to decompress (in full or in 

part) multiple compressed cache lines during the Instruction Decode and Execution stages of processing.  

There is also opportunity to make predictions when the load instruction PC misses the prefetch table.  The 

only penalties for making an incorrect prediction are an extra cache access and experiencing the full 

decompression latency.  So, there may be opportunity to exchange some power savings for an improved 

energy-delay product. 

 

In our branch of SimpleScalar, we have a number of areas to be worked on in the future.  First and foremost, 

we need to address the gap caused by different versions of CACTI cache models being used.  Wattch uses 

a cache model from an early release of CACTI.  This creates a disconnect between the CPU power model 

and the compressed cache and prefetching table models developed in CACTI 6.5 for this thesis.  There is 

an opportunity to revise the parts of Wattch used in our simulator to match the latest release of CACTI.  In 

addition, rather than allowing for static and dynamic power input to the simulator, it would be ideal to 

instead input the cache configuration and use the CACTI functions directly in our simulator to extract the 

timing and power models automatically.  

 

The Value Change Dump (VCD) output of the simulator is a nice feature when we want a detailed dynamic 

power model for specific hardware we have designed and synthesized to a PDK.  Currently, the VCD output 

is quite large and requires compression separately from our simulator.  Ideally, our simulator would 
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implement the zlib compression library in C and output the compressed VCD file for processing in Genus.  

This is ideal because Genus is already capable of reading in compressed VCD files. 

 

Finally, in our compression and decompression hardware, more research could be done to determine faster 

and smaller designs that are compatible with this architecture.  As mentioned previously, we implement the 

hierarchical carry-lookahead adder as a compromise between speed and resource utilization.  In the case of 

the decompressor, certainly we must prioritize the speed of the hardware.  However, for the compressor, 

we have taken the assumption that, because compression does not take place on the critical path of CPU 

execution, compressor delay is not necessarily a priority.  Therefore, we may be able to develop a resource-

optimized compressor to improve our power consumption.   

 

This work has demonstrated that we can combine cache compression with prefetching to improve the 

performance of the CPU over implementing compression alone in L1 data caches.  Future work in this area 

may identify better prefetching tables or more efficient decompression hardware that improves the 

feasibility of implementing compression in high-level caches.  
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Appendix A 

 

Verilog Source 

 

 

module compressor( 
 input wire [511:0] x,  
 output wire [127:0] b8d1, 
 output wire [191:0] b8d2, 
 output wire [319:0] b8d4, 
 output wire [159:0] b4d1, 
 output wire [287:0] b4d2, 
 output wire [271:0] b2d1, 
 output wire [63:0] repeats, 
 output wire [7:0] zeros, 
 output wire b8d1_valid, 
 output wire b8d2_valid, 
 output wire b8d4_valid, 
 output wire b4d1_valid, 
 output wire b4d2_valid, 
 output wire b2d1_valid, 
 output wire repeats_valid, 
 output wire zeros_valid  

); 
 

wire [63:0] eightbyte0; 
wire [63:0] eightbyte1; 
wire [63:0] eightbyte2; 
wire [63:0] eightbyte3; 
wire [63:0] eightbyte4; 
wire [63:0] eightbyte5; 
wire [63:0] eightbyte6; 
wire [63:0] eightbyte7; 
wire [7:0] eightoverflow; 
wire [7:0] eightd1_valid; 
wire [7:0] eightd2_valid; 
wire [7:0] eightd4_valid; 

 
bdi inst00( 

  .x(x[63:0]), 
  .y(x[63:0]), 
  .s(eightbyte0[63:0]), 
  .overflow(eightoverflow[0]), 
  .d1_valid(eightd1_valid[0]), 
  .d2_valid(eightd2_valid[0]), 
  .d4_valid(eightd4_valid[0]) 

); 
 

bdi inst01( 
  .x(x[63:0]), 
  .y(x[127:64]), 
  .s(eightbyte1[63:0]), 
  .overflow(eightoverflow[1]), 
  .d1_valid(eightd1_valid[1]), 
  .d2_valid(eightd2_valid[1]), 
  .d4_valid(eightd4_valid[1]) 

); 
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bdi inst02( 
  .x(x[63:0]), 
  .y(x[191:128]), 
  .s(eightbyte2[63:0]), 
  .overflow(eightoverflow[2]), 
  .d1_valid(eightd1_valid[2]), 
  .d2_valid(eightd2_valid[2]), 
  .d4_valid(eightd4_valid[2]) 

); 
 

bdi inst03( 
  .x(x[63:0]), 
  .y(x[255:192]), 
  .s(eightbyte3[63:0]), 
  .overflow(eightoverflow[3]), 
  .d1_valid(eightd1_valid[3]), 
  .d2_valid(eightd2_valid[3]), 
  .d4_valid(eightd4_valid[3]) 

); 
 

bdi inst04( 
  .x(x[63:0]), 
  .y(x[319:256]), 
  .s(eightbyte4[63:0]), 
  .overflow(eightoverflow[4]), 
  .d1_valid(eightd1_valid[4]), 
  .d2_valid(eightd2_valid[4]), 
  .d4_valid(eightd4_valid[4]) 

); 
 

bdi inst05( 
  .x(x[63:0]), 
  .y(x[383:320]), 
  .s(eightbyte5[63:0]), 
  .overflow(eightoverflow[5]), 
  .d1_valid(eightd1_valid[5]), 
  .d2_valid(eightd2_valid[5]), 
  .d4_valid(eightd4_valid[5]) 

); 
 

bdi inst06( 
  .x(x[63:0]), 
  .y(x[447:384]), 
  .s(eightbyte6[63:0]), 
  .overflow(eightoverflow[6]), 
  .d1_valid(eightd1_valid[6]), 
  .d2_valid(eightd2_valid[6]), 
  .d4_valid(eightd4_valid[6]) 

); 
 

bdi inst07( 
  .x(x[63:0]), 
  .y(x[511:448]), 
  .s(eightbyte7[63:0]), 
  .overflow(eightoverflow[7]), 
  .d1_valid(eightd1_valid[7]), 
  .d2_valid(eightd2_valid[7]), 
  .d4_valid(eightd4_valid[7]) 

); 
 

assign b8d1_valid = (&eightd1_valid) & (&(~eightoverflow)); 
assign b8d2_valid = (&eightd2_valid) & (&(~eightoverflow)); 
assign b8d4_valid = (&eightd4_valid) & (&(~eightoverflow)); 

 
assign b8d1[63:0] = x[63:0]; 
assign b8d1[71:64] = eightbyte0[7:0]; 
assign b8d1[79:72] = eightbyte1[7:0]; 
assign b8d1[87:80] = eightbyte2[7:0]; 
assign b8d1[95:88] = eightbyte3[7:0];  
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assign b8d1[103:96] = eightbyte4[7:0]; 
assign b8d1[111:104] = eightbyte5[7:0]; 
assign b8d1[119:112] = eightbyte6[7:0]; 
assign b8d1[127:120] = eightbyte7[7:0]; 
 
assign b8d2[63:0] = x[63:0]; 
assign b8d2[79:64] = eightbyte0[15:0]; 
assign b8d2[95:80] = eightbyte1[15:0]; 
assign b8d2[111:96] = eightbyte2[15:0]; 
assign b8d2[127:112] = eightbyte3[15:0]; 
assign b8d2[143:128] = eightbyte4[15:0]; 
assign b8d2[159:144] = eightbyte5[15:0]; 
assign b8d2[175:160] = eightbyte6[15:0]; 
assign b8d2[191:176] = eightbyte7[15:0]; 
 
assign b8d4[63:0] = x[63:0]; 
assign b8d4[95:64] = eightbyte0[31:0]; 
assign b8d4[127:96] = eightbyte1[31:0]; 
assign b8d4[159:128] = eightbyte2[31:0]; 
assign b8d4[191:160] = eightbyte3[31:0]; 
assign b8d4[223:192] = eightbyte4[31:0]; 
assign b8d4[255:224] = eightbyte5[31:0]; 
assign b8d4[287:256] = eightbyte6[31:0]; 
assign b8d4[319:288] = eightbyte7[31:0]; 
 
wire [31:0] fourbyte0; 
wire [31:0] fourbyte1; 
wire [31:0] fourbyte2; 
wire [31:0] fourbyte3; 
wire [31:0] fourbyte4; 
wire [31:0] fourbyte5; 
wire [31:0] fourbyte6; 
wire [31:0] fourbyte7; 
wire [31:0] fourbyte8; 
wire [31:0] fourbyte9; 
wire [31:0] fourbyte10; 
wire [31:0] fourbyte11; 
wire [31:0] fourbyte12; 
wire [31:0] fourbyte13; 
wire [31:0] fourbyte14; 
wire [31:0] fourbyte15; 
  
wire [15:0] fouroverflow; 
wire [15:0] fourd1_valid; 
wire [15:0] fourd2_valid; 
wire [15:0] fourd4_valid; 
 
bdi32 inst10( 
 .x(x[31:0]), 
 .y(x[31:0]), 
 .s(fourbyte0[31:0]), 
 .overflow(fouroverflow[0]), 
 .d1_valid(fourd1_valid[0]), 
 .d2_valid(fourd2_valid[0]), 
 .d4_valid(fourd4_valid[0]) 
); 
 
bdi32 inst11( 
 .x(x[31:0]), 
 .y(x[63:32]), 
 .s(fourbyte1[31:0]), 
 .overflow(fouroverflow[1]), 
 .d1_valid(fourd1_valid[1]), 
 .d2_valid(fourd2_valid[1]), 
 .d4_valid(fourd4_valid[1]) 
); 
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bdi32 inst12( 
 .x(x[31:0]), 
 .y(x[95:64]), 
 .s(fourbyte2[31:0]), 
 .overflow(fouroverflow[2]), 
 .d1_valid(fourd1_valid[2]), 
 .d2_valid(fourd2_valid[2]), 
 .d4_valid(fourd4_valid[2]) 
); 
 
bdi32 inst13( 
 .x(x[31:0]), 
 .y(x[127:96]), 
 .s(fourbyte3[31:0]), 
 .overflow(fouroverflow[3]), 
 .d1_valid(fourd1_valid[3]), 
 .d2_valid(fourd2_valid[3]), 
 .d4_valid(fourd4_valid[3]) 
); 

 
bdi32 inst14( 
 .x(x[31:0]), 
 .y(x[159:128]), 
 .s(fourbyte4[31:0]), 
 .overflow(fouroverflow[4]), 
 .d1_valid(fourd1_valid[4]), 
 .d2_valid(fourd2_valid[4]), 
 .d4_valid(fourd4_valid[4]) 
); 
 
bdi32 inst15( 
 .x(x[31:0]), 
 .y(x[191:160]), 
 .s(fourbyte5[31:0]), 
 .overflow(fouroverflow[5]), 
 .d1_valid(fourd1_valid[5]), 
 .d2_valid(fourd2_valid[5]), 
 .d4_valid(fourd4_valid[5]) 
); 
 
bdi32 inst16( 
 .x(x[31:0]), 
 .y(x[223:192]), 
 .s(fourbyte6[31:0]), 
 .overflow(fouroverflow[6]), 
 .d1_valid(fourd1_valid[6]), 
 .d2_valid(fourd2_valid[6]), 
 .d4_valid(fourd4_valid[6]) 
); 
 
bdi32 inst17( 
 .x(x[31:0]), 
 .y(x[255:224]), 
 .s(fourbyte7[31:0]), 
 .overflow(fouroverflow[7]), 
 .d1_valid(fourd1_valid[7]), 
 .d2_valid(fourd2_valid[7]), 
 .d4_valid(fourd4_valid[7]) 
); 
 
bdi32 inst18( 
 .x(x[31:0]), 
 .y(x[287:256]), 
 .s(fourbyte8[31:0]), 
 .overflow(fouroverflow[8]), 
 .d1_valid(fourd1_valid[8]), 
 .d2_valid(fourd2_valid[8]), 
 .d4_valid(fourd4_valid[8]) 
); 
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bdi32 inst19( 
 .x(x[31:0]), 
 .y(x[319:288]), 
 .s(fourbyte9[31:0]), 
 .overflow(fouroverflow[9]), 
 .d1_valid(fourd1_valid[9]), 
 .d2_valid(fourd2_valid[9]), 
 .d4_valid(fourd4_valid[9]) 
); 
 
bdi32 inst110( 
 .x(x[31:0]), 
 .y(x[351:320]), 
 .s(fourbyte10[31:0]), 
 .overflow(fouroverflow[10]), 
 .d1_valid(fourd1_valid[10]), 
 .d2_valid(fourd2_valid[10]), 
 .d4_valid(fourd4_valid[10]) 
); 
 
bdi32 inst111( 
 .x(x[31:0]), 
 .y(x[383:352]), 
 .s(fourbyte11[31:0]), 
 .overflow(fouroverflow[11]), 
 .d1_valid(fourd1_valid[11]), 
 .d2_valid(fourd2_valid[11]), 
 .d4_valid(fourd4_valid[11]) 
); 
 
bdi32 inst112( 
 .x(x[31:0]), 
 .y(x[415:384]), 
 .s(fourbyte12[31:0]), 
 .overflow(fouroverflow[12]), 
 .d1_valid(fourd1_valid[12]), 
 .d2_valid(fourd2_valid[12]), 
 .d4_valid(fourd4_valid[12]) 
); 
 
bdi32 inst113( 
 .x(x[31:0]), 
 .y(x[447:416]), 
 .s(fourbyte13[31:0]), 
 .overflow(fouroverflow[13]), 
 .d1_valid(fourd1_valid[13]), 
 .d2_valid(fourd2_valid[13]), 
 .d4_valid(fourd4_valid[13]) 
); 
 
bdi32 inst114( 
 .x(x[31:0]), 
 .y(x[479:448]), 
 .s(fourbyte14[31:0]), 
 .overflow(fouroverflow[14]), 
 .d1_valid(fourd1_valid[14]), 
 .d2_valid(fourd2_valid[14]), 
 .d4_valid(fourd4_valid[14]) 
); 
 
bdi32 inst115( 
 .x(x[31:0]), 
 .y(x[511:480]), 
 .s(fourbyte15[31:0]), 
 .overflow(fouroverflow[15]), 
 .d1_valid(fourd1_valid[15]), 
 .d2_valid(fourd2_valid[15]), 
 .d4_valid(fourd4_valid[15]) 
); 
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assign b4d1_valid = (&fourd1_valid) & (&(~fouroverflow)); 
assign b4d2_valid = (&fourd2_valid) & (&(~fouroverflow)); 
 
 
assign b4d1[31:0] = x[31:0]; 
assign b4d1[39:32] = fourbyte0[7:0]; 
assign b4d1[47:40] = fourbyte1[7:0]; 
assign b4d1[55:48] = fourbyte2[7:0]; 
assign b4d1[63:56] = fourbyte3[7:0]; 
assign b4d1[71:64] = fourbyte4[7:0]; 
assign b4d1[79:72] = fourbyte5[7:0]; 
assign b4d1[87:80] = fourbyte6[7:0]; 
assign b4d1[95:88] = fourbyte7[7:0];  
assign b4d1[103:96] = fourbyte8[7:0]; 
assign b4d1[111:104] = fourbyte9[7:0]; 
assign b4d1[119:112] = fourbyte10[7:0]; 
assign b4d1[127:120] = fourbyte11[7:0]; 
assign b4d1[135:128] = fourbyte12[7:0]; 
assign b4d1[143:136] = fourbyte13[7:0]; 
assign b4d1[151:144] = fourbyte14[7:0]; 
assign b4d1[159:152] = fourbyte15[7:0]; 
 
assign b4d2[31:0] = x[31:0]; 
assign b4d2[47:32] = fourbyte0[15:0]; 
assign b4d2[63:48] = fourbyte1[15:0]; 
assign b4d2[79:64] = fourbyte2[15:0]; 
assign b4d2[95:80] = fourbyte3[15:0]; 
assign b4d2[111:96] = fourbyte4[15:0]; 
assign b4d2[127:112] = fourbyte5[15:0]; 
assign b4d2[143:128] = fourbyte6[15:0]; 
assign b4d2[159:144] = fourbyte7[15:0]; 
assign b4d2[175:160] = fourbyte8[15:0]; 
assign b4d2[191:176] = fourbyte9[15:0]; 
assign b4d2[207:192] = fourbyte10[15:0]; 
assign b4d2[223:208] = fourbyte11[15:0]; 
assign b4d2[239:224] = fourbyte12[15:0]; 
assign b4d2[255:240] = fourbyte13[15:0]; 
assign b4d2[271:256] = fourbyte14[15:0]; 
assign b4d2[287:272] = fourbyte15[15:0]; 
 
wire [15:0] twobyte0; 
wire [15:0] twobyte1; 
wire [15:0] twobyte2; 
wire [15:0] twobyte3; 
wire [15:0] twobyte4; 
wire [15:0] twobyte5; 
wire [15:0] twobyte6; 
wire [15:0] twobyte7; 
wire [15:0] twobyte8; 
wire [15:0] twobyte9; 
wire [15:0] twobyte10; 
wire [15:0] twobyte11; 
wire [15:0] twobyte12; 
wire [15:0] twobyte13; 
wire [15:0] twobyte14; 
wire [15:0] twobyte15; 
wire [15:0] twobyte16; 
wire [15:0] twobyte17; 
wire [15:0] twobyte18; 
wire [15:0] twobyte19; 
wire [15:0] twobyte20; 
wire [15:0] twobyte21; 
wire [15:0] twobyte22; 
wire [15:0] twobyte23; 
wire [15:0] twobyte24; 
wire [15:0] twobyte25; 
wire [15:0] twobyte26; 
wire [15:0] twobyte27; 
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wire [15:0] twobyte28; 
wire [15:0] twobyte29; 
wire [15:0] twobyte30; 
wire [15:0] twobyte31; 
 
wire [31:0] twooverflow; 
wire [31:0] twod1_valid; 
wire [31:0] twod2_valid; 
wire [31:0] twod4_valid; 
 
bdi16 inst20( 
 .x(x[15:0]), 
 .y(x[15:0]), 
 .s(twobyte0[15:0]), 
 .overflow(twooverflow[0]), 
 .d1_valid(twod1_valid[0]), 
 .d2_valid(twod2_valid[0]), 
 .d4_valid(twod4_valid[0]) 
); 
 
bdi16 inst21( 
        .x(x[15:0]), 
        .y(x[31:16]), 
        .s(twobyte1[15:0]), 
        .overflow(twooverflow[1]), 
        .d1_valid(twod1_valid[1]), 
        .d2_valid(twod2_valid[1]), 
        .d4_valid(twod4_valid[1]) 
); 
 
bdi16 inst22( 
        .x(x[15:0]), 
        .y(x[47:32]), 
        .s(twobyte2[15:0]), 
        .overflow(twooverflow[2]), 
        .d1_valid(twod1_valid[2]), 
        .d2_valid(twod2_valid[2]), 
        .d4_valid(twod4_valid[2]) 
); 
 
bdi16 inst23( 
        .x(x[15:0]), 
        .y(x[63:48]), 
        .s(twobyte3[15:0]), 
        .overflow(twooverflow[3]), 
        .d1_valid(twod1_valid[3]), 
        .d2_valid(twod2_valid[3]), 
        .d4_valid(twod4_valid[3]) 
); 
 
bdi16 inst24( 
        .x(x[15:0]), 
        .y(x[79:64]), 
        .s(twobyte4[15:0]), 
        .overflow(twooverflow[4]), 
        .d1_valid(twod1_valid[4]), 
        .d2_valid(twod2_valid[4]), 
        .d4_valid(twod4_valid[4]) 
); 
 
bdi16 inst25( 
        .x(x[15:0]), 
        .y(x[95:80]), 
        .s(twobyte5[15:0]), 
        .overflow(twooverflow[5]), 
        .d1_valid(twod1_valid[5]), 
        .d2_valid(twod2_valid[5]), 
        .d4_valid(twod4_valid[5]) 
); 
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bdi16 inst26( 
        .x(x[15:0]), 
        .y(x[111:96]), 
        .s(twobyte6[15:0]), 
        .overflow(twooverflow[6]), 
        .d1_valid(twod1_valid[6]), 
        .d2_valid(twod2_valid[6]), 
        .d4_valid(twod4_valid[6]) 
); 
 
bdi16 inst27( 
        .x(x[15:0]), 
        .y(x[127:112]), 
        .s(twobyte7[15:0]), 
        .overflow(twooverflow[7]), 
        .d1_valid(twod1_valid[7]), 
        .d2_valid(twod2_valid[7]), 
        .d4_valid(twod4_valid[7]) 
); 
 
bdi16 inst28( 
        .x(x[15:0]), 
        .y(x[143:128]), 
        .s(twobyte8[15:0]), 
        .overflow(twooverflow[8]), 
        .d1_valid(twod1_valid[8]), 
        .d2_valid(twod2_valid[8]), 
        .d4_valid(twod4_valid[8]) 
); 
 
bdi16 inst29( 
        .x(x[15:0]), 
        .y(x[159:144]), 
        .s(twobyte9[15:0]), 
        .overflow(twooverflow[9]), 
        .d1_valid(twod1_valid[9]), 
        .d2_valid(twod2_valid[9]), 
        .d4_valid(twod4_valid[9]) 
); 
 
bdi16 inst210( 
        .x(x[15:0]), 
        .y(x[175:160]), 
        .s(twobyte10[15:0]), 
        .overflow(twooverflow[10]), 
        .d1_valid(twod1_valid[10]), 
        .d2_valid(twod2_valid[10]), 
        .d4_valid(twod4_valid[10]) 
); 
 
bdi16 inst211( 
        .x(x[15:0]), 
        .y(x[191:176]), 
        .s(twobyte11[15:0]), 
        .overflow(twooverflow[11]), 
        .d1_valid(twod1_valid[11]), 
        .d2_valid(twod2_valid[11]), 
        .d4_valid(twod4_valid[11]) 
); 
 
bdi16 inst212( 
        .x(x[15:0]), 
        .y(x[207:192]), 
        .s(twobyte12[15:0]), 
        .overflow(twooverflow[12]), 
        .d1_valid(twod1_valid[12]), 
        .d2_valid(twod2_valid[12]), 
        .d4_valid(twod4_valid[12]) 
); 
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bdi16 inst213( 
        .x(x[15:0]), 
        .y(x[223:208]), 
        .s(twobyte13[15:0]), 
        .overflow(twooverflow[13]), 
        .d1_valid(twod1_valid[13]), 
        .d2_valid(twod2_valid[13]), 
        .d4_valid(twod4_valid[13]) 
); 
 
bdi16 inst214( 
        .x(x[15:0]), 
        .y(x[239:224]), 
        .s(twobyte14[15:0]), 
        .overflow(twooverflow[14]), 
        .d1_valid(twod1_valid[14]), 
        .d2_valid(twod2_valid[14]), 
        .d4_valid(twod4_valid[14]) 
); 
 
bdi16 inst215( 
        .x(x[15:0]), 
        .y(x[255:240]), 
        .s(twobyte15[15:0]), 
        .overflow(twooverflow[15]), 
        .d1_valid(twod1_valid[15]), 
        .d2_valid(twod2_valid[15]), 
        .d4_valid(twod4_valid[15]) 
); 
 
bdi16 inst216( 
        .x(x[15:0]), 
        .y(x[271:256]), 
        .s(twobyte16[15:0]), 
        .overflow(twooverflow[16]), 
        .d1_valid(twod1_valid[16]), 
        .d2_valid(twod2_valid[16]), 
        .d4_valid(twod4_valid[16]) 
); 
  
bdi16 inst217( 
        .x(x[15:0]), 
        .y(x[287:272]), 
        .s(twobyte17[15:0]), 
        .overflow(twooverflow[17]), 
        .d1_valid(twod1_valid[17]), 
        .d2_valid(twod2_valid[17]), 
        .d4_valid(twod4_valid[17]) 
); 
 
bdi16 inst218( 
        .x(x[15:0]), 
        .y(x[303:288]), 
        .s(twobyte18[15:0]), 
        .overflow(twooverflow[18]), 
        .d1_valid(twod1_valid[18]), 
        .d2_valid(twod2_valid[18]), 
        .d4_valid(twod4_valid[18]) 
); 
 
bdi16 inst219( 
        .x(x[15:0]), 
        .y(x[319:304]), 
        .s(twobyte19[15:0]), 
        .overflow(twooverflow[19]), 
        .d1_valid(twod1_valid[19]), 
        .d2_valid(twod2_valid[19]), 
        .d4_valid(twod4_valid[19]) 
); 
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bdi16 inst220( 
        .x(x[15:0]), 
        .y(x[335:320]), 
        .s(twobyte20[15:0]), 
        .overflow(twooverflow[20]), 
        .d1_valid(twod1_valid[20]), 
        .d2_valid(twod2_valid[20]), 
        .d4_valid(twod4_valid[20]) 
); 
 
bdi16 inst221( 
        .x(x[15:0]), 
        .y(x[351:336]), 
        .s(twobyte21[15:0]), 
        .overflow(twooverflow[21]), 
        .d1_valid(twod1_valid[21]), 
        .d2_valid(twod2_valid[21]), 
        .d4_valid(twod4_valid[21]) 
); 
 
bdi16 inst222( 
        .x(x[15:0]), 
        .y(x[367:352]), 
        .s(twobyte22[15:0]), 
        .overflow(twooverflow[22]), 
        .d1_valid(twod1_valid[22]), 
        .d2_valid(twod2_valid[22]), 
        .d4_valid(twod4_valid[22]) 
); 
 
bdi16 inst223( 
        .x(x[15:0]), 
        .y(x[383:368]), 
        .s(twobyte23[15:0]), 
        .overflow(twooverflow[23]), 
        .d1_valid(twod1_valid[23]), 
        .d2_valid(twod2_valid[23]), 
        .d4_valid(twod4_valid[23]) 
); 
 
bdi16 inst224( 
        .x(x[15:0]), 
        .y(x[399:384]), 
        .s(twobyte24[15:0]), 
        .overflow(twooverflow[24]), 
        .d1_valid(twod1_valid[24]), 
        .d2_valid(twod2_valid[24]), 
        .d4_valid(twod4_valid[24]) 
); 
 
bdi16 inst225( 
        .x(x[15:0]), 
        .y(x[415:400]), 
        .s(twobyte25[15:0]), 
        .overflow(twooverflow[25]), 
        .d1_valid(twod1_valid[25]), 
        .d2_valid(twod2_valid[25]), 
        .d4_valid(twod4_valid[25]) 
); 
 
bdi16 inst226( 
        .x(x[15:0]), 
        .y(x[431:416]), 
        .s(twobyte26[15:0]), 
        .overflow(twooverflow[26]), 
        .d1_valid(twod1_valid[26]), 
        .d2_valid(twod2_valid[26]), 
        .d4_valid(twod4_valid[26]) 
); 
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bdi16 inst227( 
        .x(x[15:0]), 
        .y(x[447:432]), 
        .s(twobyte27[15:0]), 
        .overflow(twooverflow[27]), 
        .d1_valid(twod1_valid[27]), 
        .d2_valid(twod2_valid[27]), 
        .d4_valid(twod4_valid[27]) 
); 
 
bdi16 inst228( 
        .x(x[15:0]), 
        .y(x[463:448]), 
        .s(twobyte28[15:0]), 
        .overflow(twooverflow[28]), 
        .d1_valid(twod1_valid[28]), 
        .d2_valid(twod2_valid[28]), 
        .d4_valid(twod4_valid[28]) 
); 
 
bdi16 inst229( 
        .x(x[15:0]), 
        .y(x[479:464]), 
        .s(twobyte29[15:0]), 
        .overflow(twooverflow[29]), 
        .d1_valid(twod1_valid[29]), 
        .d2_valid(twod2_valid[29]), 
        .d4_valid(twod4_valid[29]) 
); 
 
bdi16 inst230( 
        .x(x[15:0]), 
        .y(x[495:480]), 
        .s(twobyte30[15:0]), 
        .overflow(twooverflow[30]), 
        .d1_valid(twod1_valid[30]), 
        .d2_valid(twod2_valid[30]), 
        .d4_valid(twod4_valid[30]) 
); 
 
bdi16 inst231( 
        .x(x[15:0]), 
        .y(x[511:496]), 
        .s(twobyte31[15:0]), 
        .overflow(twooverflow[31]), 
        .d1_valid(twod1_valid[31]), 
        .d2_valid(twod2_valid[31]), 
        .d4_valid(twod4_valid[31]) 
); 
 
assign b2d1_valid = (&twod1_valid) & (&(~twooverflow)); 
 
assign b2d1[15:0] = x[15:0]; 
assign b2d1[23:16] = twobyte0[7:0]; 
assign b2d1[31:24] = twobyte1[7:0]; 
assign b2d1[39:32] = twobyte2[7:0]; 
assign b2d1[47:40] = twobyte3[7:0]; 
assign b2d1[55:48] = twobyte4[7:0]; 
assign b2d1[63:56] = twobyte5[7:0]; 
assign b2d1[71:64] = twobyte6[7:0]; 
assign b2d1[79:72] = twobyte7[7:0]; 
assign b2d1[87:80] = twobyte8[7:0]; 
assign b2d1[95:88] = twobyte9[7:0];  
assign b2d1[103:96] = twobyte10[7:0]; 
assign b2d1[111:104] = twobyte11[7:0]; 
assign b2d1[119:112] = twobyte12[7:0]; 
assign b2d1[127:120] = twobyte13[7:0]; 
assign b2d1[135:128] = twobyte14[7:0]; 
assign b2d1[143:136] = twobyte15[7:0]; 
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assign b2d1[151:144] = twobyte16[7:0]; 
assign b2d1[159:152] = twobyte17[7:0]; 
assign b2d1[167:160] = twobyte18[7:0]; 
assign b2d1[175:168] = twobyte19[7:0]; 
assign b2d1[183:176] = twobyte20[7:0]; 
assign b2d1[191:184] = twobyte21[7:0]; 
assign b2d1[199:192] = twobyte22[7:0]; 
assign b2d1[207:200] = twobyte23[7:0]; 
assign b2d1[215:208] = twobyte24[7:0]; 
assign b2d1[223:216] = twobyte25[7:0]; 
assign b2d1[231:224] = twobyte26[7:0]; 
assign b2d1[239:232] = twobyte27[7:0]; 
assign b2d1[247:240] = twobyte28[7:0]; 
assign b2d1[255:248] = twobyte29[7:0]; 
assign b2d1[263:256] = twobyte30[7:0]; 
assign b2d1[271:264] = twobyte31[7:0]; 
 
assign repeats[63:0] = x[63:0]; 
assign repeats_valid = & ((x[63:0] ^~ x[127:64]) & (x[63:0] ^~ x[191:128]) & (x[63:0] ^~ 
x[255:192]) & (x[63:0] ^~ x[319:256]) & (x[63:0] ^~ x[383:320]) & (x[63:0] ^~ x[447:384]) & 
(x[63:0] ^~ x[511:448])); 
 
assign zeros = 0; 
assign zeros_valid = &(~x); 

 
endmodule 
 
module bdi( 
 input wire [63:0] x, 
 input wire [63:0] y, 
 output wire [63:0] s, 
 output wire overflow, 
 output wire d1_valid, 
 output wire d2_valid, 
 output wire d4_valid  

); 
  
 wire c8, c16, c24, c32, c40, c48, c56; 
 wire i00, i01, i02, i03, i04, i05, i06, i07, i08, i09; 
 wire i10, i11, i12, i13, i14, i15, i16, i17, i18, i19; 
 wire i20, i21, i22, i23, i24, i25, i26, i27, i28, i29; 
 wire i30, i31, i32, i33, i34; 
 wire g[7:0]; 
 wire p[7:0]; 
 wire [63:0] xnot; 
  
 //subtractor 
 assign xnot = ~x; 
 assign c0 = 1;  
  
 wire c64; 
  
 and prim00 (i00, p[0], c0); 
 or prim01 (c8, g[0], i00); 
 
 and prim02 (i01, p[1], g[0]); 
 and prim03 (i02, p[1], p[0], c0); 
 or prim04 (c16, g[1], i01, i02); 
 
 and prim05 (i03, p[2], g[1]); 
 and prim06 (i04, p[2], p[1], g[0]); 
 and prim07 (i05, p[2], p[1], p[0], c0); 
 or prim08 (c24, g[2], i03, i04, i05); 
 
 and prim09 (i06, p[3], g[2]); 
 and prim10 (i07, p[3], p[2], g[1]); 
 and prim11 (i08, p[3], p[2], p[1], g[0]); 
 and prim12 (i09, p[3], p[2], p[1], p[0], c0); 
 or prim13 (c32, g[3], i06, i07, i08, i09); 
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 and prim14 (i10, p[4], g[3]); 
 and prim15 (i11, p[4], p[3], g[2]); 
 and prim16 (i12, p[4], p[3], p[2], g[1]); 
 and prim17 (i13, p[4], p[3], p[2], p[1], g[0]); 
 and prim18 (i14, p[4], p[3], p[2], p[1], p[0], c0); 
 or prim19 (c40, g[4], i10, i11, i12, i13, i14); 
 
 and prim20 (i15, p[5], g[4]); 
 and prim21 (i16, p[5], p[4], g[3]); 
 and prim22 (i17, p[5], p[4], p[3], g[2]); 
 and prim23 (i18, p[5], p[4], p[3], p[2], g[1]); 
 and prim24 (i19, p[5], p[4], p[3], p[2], p[1], g[0]); 
 and prim25 (i20, p[5], p[4], p[3], p[2], p[1], p[0], c0); 
 or prim26 (c48, g[5], i15, i16, i17, i18, i19, i20); 
 
 and prim27 (i21, p[6], g[5]); 
 and prim28 (i22, p[6], p[5], g[4]); 
 and prim29 (i23, p[6], p[5], p[4], g[3]); 
 and prim30 (i24, p[6], p[5], p[4], p[3], g[2]); 
 and prim31 (i25, p[6], p[5], p[4], p[3], p[2], g[1]); 
 and prim32 (i26, p[6], p[5], p[4], p[3], p[2], p[1], g[0]); 
 and prim33 (i27, p[6], p[5], p[4], p[3], p[2], p[1], p[0], c0); 
 or prim34 (c56, g[6], i21, i22, i23, i24, i25, i26, i27); 
 
 and prim35 (i28, p[7], g[6]); 
 and prim36 (i29, p[7], p[6], g[5]); 
 and prim37 (i30, p[7], p[6], p[5], g[4]); 
 and prim38 (i31, p[7], p[6], p[5], p[4], g[3]); 
 and prim39 (i32, p[7], p[6], p[5], p[4], p[3], g[2]); 
 and prim40 (i33, p[7], p[6], p[5], p[4], p[3], p[2], g[1]); 
 and prim41 (i34, p[7], p[6], p[5], p[4], p[3], p[2], p[1], g[0]); 
 and prim42 (i35, p[7], p[6], p[5], p[4], p[3], p[2], p[1], p[0], c0); 
 or prim43 (c64, g[7], i28, i29, i30, i31, i32, i33, i34, i35); 
  
 xor prim44 (overflow, c64, xnot[63], y[63], s[63]); 
 assign d1_valid = (&(s[63:7])) | (&(~s[63:7])); 
 assign d2_valid = (&(s[63:15])) | (&(~s[63:15])); 
 assign d4_valid = (&(s[63:31])) | (&(~s[63:31])); 
 
 hadder8 block0( 
  .c0(c0),  
  .x(xnot[7:0]),  
  .y(y[7:0]),  
  .s(s[7:0]),  
  .G(g[0]), 
  .P(p[0]) 
 ); 
  
 hadder8 block1( 
  .c0(c8),  
  .x(xnot[15:8]),  
  .y(y[15:8]),  
  .s(s[15:8]),  
  .G(g[1]), 
  .P(p[1]) 
 ); 
  
 hadder8 block2( 
  .c0(c16),  
  .x(xnot[23:16]),  
  .y(y[23:16]),  
  .s(s[23:16]),  
  .G(g[2]), 
  .P(p[2]) 
 ); 
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 hadder8 block3( 
  .c0(c24),  
  .x(xnot[31:24]),  
  .y(y[31:24]),  
  .s(s[31:24]),  
  .G(g[3]), 
  .P(p[3]) 
 ); 
  
 hadder8 block4( 
  .c0(c32),  
  .x(xnot[39:32]),  
  .y(y[39:32]),  
  .s(s[39:32]),  
  .G(g[4]), 
  .P(p[4]) 
 ); 
  
 hadder8 block5( 
  .c0(c40),  
  .x(xnot[47:40]),  
  .y(y[47:40]),  
  .s(s[47:40]),  
  .G(g[5]), 
  .P(p[5]) 
 ); 
  
 hadder8 block6( 
  .c0(c48),  
  .x(xnot[55:48]),  
  .y(y[55:48]),  
  .s(s[55:48]),  
  .G(g[6]), 
  .P(p[6]) 
 ); 
  
 hadder8 block7( 
  .c0(c56),  
  .x(xnot[63:56]),  
  .y(y[63:56]),  
  .s(s[63:56]),  
  .G(g[7]), 
  .P(p[7]) 
 ); 
   
endmodule 
 
module bdi32( 
 input wire [31:0] x, 
 input wire [31:0] y, 
 output wire [31:0] s, 
 output wire overflow, 
 output wire d1_valid, 
 output wire d2_valid, 
 output wire d4_valid 

); 
  
 wire c8, c16, c24, c32; 
 wire i00, i01, i02, i03, i04, i05, i06, i07, i08, i09; 
 wire g[3:0]; 
 wire p[3:0]; 
 wire [31:0] xnot; 
  
 //subtractor 
 assign xnot = ~x; 
 assign c0 = 1;  
  
 and prim00 (i00, p[0], c0); 
 or prim01 (c8, g[0], i00); 
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 and prim02 (i01, p[1], g[0]); 
 and prim03 (i02, p[1], p[0], c0); 
 or prim04 (c16, g[1], i01, i02); 
 
 and prim05 (i03, p[2], g[1]); 
 and prim06 (i04, p[2], p[1], g[0]); 
 and prim07 (i05, p[2], p[1], p[0], c0); 
 or prim08 (c24, g[2], i03, i04, i05); 
 
 and prim09 (i06, p[3], g[2]); 
 and prim10 (i07, p[3], p[2], g[1]); 
 and prim11 (i08, p[3], p[2], p[1], g[0]); 
 and prim12 (i09, p[3], p[2], p[1], p[0], c0); 
 or prim13 (c32, g[3], i06, i07, i08, i09); 
  

xor prim44 (overflow, c32, xnot[31], y[31], s[31]); 
  
 assign d1_valid = (&(s[31:7])) | (&(~s[31:7])); 
 assign d2_valid = (&(s[31:15])) | (&(~s[31:15])); 
 assign d4_valid = 0; 
 
 hadder8 block0( 
  .c0(c0),  
  .x(xnot[7:0]),  
  .y(y[7:0]),  
  .s(s[7:0]),  
  .G(g[0]), 
  .P(p[0]) 
 ); 
  
 hadder8 block1( 
  .c0(c8),  
  .x(xnot[15:8]),  
  .y(y[15:8]),  
  .s(s[15:8]),  
  .G(g[1]), 
  .P(p[1]) 
 ); 
  
 hadder8 block2( 
  .c0(c16),  
  .x(xnot[23:16]),  
  .y(y[23:16]),  
  .s(s[23:16]),  
  .G(g[2]), 
  .P(p[2]) 
 ); 
  
 hadder8 block3( 
  .c0(c24),  
  .x(xnot[31:24]),  
  .y(y[31:24]),  
  .s(s[31:24]),  
  .G(g[3]), 
  .P(p[3]) 
 ); 
   
endmodule 
 
module bdi16( 
 input wire [15:0] x, 
 input wire [15:0] y, 
 output wire [15:0] s, 
 output wire overflow, 
 output wire d1_valid, 
 output wire d2_valid, 
 output wire d4_valid 

); 
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 wire c8, c16; 
 wire i00, i01, i02; 
 wire g[1:0]; 
 wire p[1:0]; 
 wire [15:0] xnot; 
  
 //subtractor 
 assign xnot = ~x; 
 assign c0 = 1;  
  
 and prim00 (i00, p[0], c0); 
 or prim01 (c8, g[0], i00); 
 
 and prim02 (i01, p[1], g[0]); 
 and prim03 (i02, p[1], p[0], c0); 
 or prim04 (c16, g[1], i01, i02); 
 
 xor prim44 (overflow, c16, xnot[15], y[15], s[15]); 
  
 assign d1_valid = (&(s[15:7])) | (&(~s[15:7])); 
 assign d2_valid = 0; 
 assign d4_valid = 0; 
 
 hadder8 block0( 
  .c0(c0),  
  .x(xnot[7:0]),  
  .y(y[7:0]),  
  .s(s[7:0]),  
  .G(g[0]), 
  .P(p[0]) 
 ); 
  
 hadder8 block1( 
  .c0(c8),  
  .x(xnot[15:8]),  
  .y(y[15:8]),  
  .s(s[15:8]),  
  .G(g[1]), 
  .P(p[1]) 
 ); 
   
endmodule 
 
module decompressor( 
 input wire carry, 
 input wire [3:0] encoding, 
 input wire [511:0] x, 
 output wire [511:0] b8d1, 
 output wire [511:0] b8d2, 
 output wire [511:0] b8d4, 
 output wire [511:0] b4d1, 
 output wire [511:0] b4d2, 
 output wire [511:0] b2d1, 
 output wire [511:0] repeats, 
 output wire [511:0] zeros, 
 output wire [511:0] uncompressed, 
 output wire b8d1_valid, 
 output wire b8d2_valid, 
 output wire b8d4_valid, 
 output wire b4d1_valid, 
 output wire b4d2_valid, 
 output wire b2d1_valid, 
 output wire repeats_valid, 
 output wire zeros_valid 

); 
 

reg [7:0] valids; 
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 assign zeros_valid = valids[7]; 
 assign repeats_valid = valids[6]; 
 assign b8d1_valid = valids[5]; 
 assign b8d2_valid = valids[4]; 
 assign b8d4_valid = valids[3]; 
 assign b4d1_valid = valids[2]; 
 assign b4d2_valid = valids[1]; 
 assign b2d1_valid = valids[0]; 
 
 //uncomp 
 assign uncompressed = x; 
  
 //zeros 
 assign zeros = 0; 
  
 //repeats 
  
 assign repeats[63:0] = x[63:0]; 
 assign repeats[127:64] = x[63:0]; 
 assign repeats[191:128] = x[63:0]; 
 assign repeats[255:192] = x[63:0]; 
 assign repeats[319:256] = x[63:0]; 
 assign repeats[383:320] = x[63:0]; 
 assign repeats[447:384] = x[63:0]; 
 assign repeats[511:448] = x[63:0]; 
 
 //b8d1 
 
 hadd modb8d1b0( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{56{x[71]}} , x[71:64]}),  
  .s(b8d1[63:0]) 
 ); 
  
 hadd modb8d1b1( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{56{x[79]}} , x[79:72]}),  
  .s(b8d1[127:64]) 
 ); 
  
 hadd modb8d1b2( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{56{x[87]}} , x[87:80]}),  
  .s(b8d1[191:128]) 
 ); 
  
 hadd modb8d1b3( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{56{x[95]}} , x[95:88]}),  
  .s(b8d1[255:192]) 
 ); 
  
 hadd modb8d1b4( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{56{x[103]}} , x[103:96]}),  
  .s(b8d1[319:256]) 
 ); 
  
 hadd modb8d1b5( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{56{x[111]}} , x[111:104]}),  
  .s(b8d1[383:320]) 
 ); 
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 hadd modb8d1b6( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{56{x[119]}} , x[119:112]}),  
  .s(b8d1[447:384]) 
 ); 
  
 hadd modb8d1b7( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{56{x[127]}} , x[127:120]}),  
  .s(b8d1[511:448]) 
 ); 
 //b8d2 
 hadd modb8d2b0( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{48{x[79]}} , x[79:64]}),  
  .s(b8d2[63:0]) 
 ); 
  
 hadd modb8d2b1( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{48{x[95]}} , x[95:80]}),  
  .s(b8d2[127:64]) 
 ); 
  
 hadd modb8d2b2( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{48{x[111]}} , x[111:96]}),  
  .s(b8d2[191:128]) 
 ); 
  
 hadd modb8d2b3( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{48{x[127]}} , x[127:112]}),  
  .s(b8d2[255:192]) 
 ); 
  
 hadd modb8d2b4( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{48{x[143]}} , x[143:128]}),  
  .s(b8d2[319:256]) 
 ); 
  
 hadd modb8d2b5( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{48{x[159]}} , x[159:144]}),  
  .s(b8d2[383:320]) 
 ); 
  
 hadd modb8d2b6( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{48{x[175]}} , x[175:160]}),  
  .s(b8d2[447:384]) 
 ); 
  
 hadd modb8d2b7( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{48{x[191]}} , x[191:176]}),  
  .s(b8d2[511:448]) 
 ); 
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 //b8d4 
 
 hadd modb8d4b0( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{32{x[95]}} , x[95:64]}),  
  .s(b8d4[63:0]) 
 ); 
  
 hadd modb8d4b1( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{32{x[127]}} , x[127:96]}),  
  .s(b8d4[127:64]) 
 ); 
  
 hadd modb8d4b2( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{32{x[159]}} , x[159:128]}),  
  .s(b8d4[191:128]) 
 ); 
  
 hadd modb8d4b3( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{32{x[191]}} , x[191:160]}),  
  .s(b8d4[255:192]) 
 ); 
  
 hadd modb8d4b4( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{32{x[223]}} , x[223:192]}),  
  .s(b8d4[319:256]) 
 ); 
  
 hadd modb8d4b5( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{32{x[255]}} , x[255:224]}),  
  .s(b8d4[383:320]) 
 ); 
  
 hadd modb8d4b6( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{32{x[287]}} , x[287:256]}),  
  .s(b8d4[447:384]) 
 ); 
  
 hadd modb8d4b7( 
  .c0(carry), 
  .x(x[63:0]),  
  .y({{32{x[319]}} , x[319:288]}),  
  .s(b8d4[511:448]) 
 ); 
 
 //b4d1 
 
 hadd32 modb4d1b0( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{24{x[39]}} , x[39:32]}),  
  .s(b4d1[31:0]) 
 ); 
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 hadd32 modb4d1b1( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{24{x[47]}} , x[47:40]}),  
  .s(b4d1[63:32]) 
 ); 
  
 hadd32 modb4d1b2( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{24{x[55]}} , x[55:48]}),  
  .s(b4d1[95:64]) 
 ); 
  
 hadd32 modb4d1b3( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{24{x[63]}} , x[63:56]}),  
  .s(b4d1[127:96]) 
 ); 
  
 hadd32 modb4d1b4( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{24{x[71]}} , x[71:64]}),  
  .s(b4d1[159:128]) 
 ); 
  
 hadd32 modb4d1b5( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{24{x[79]}} , x[79:72]}),  
  .s(b4d1[191:160]) 
 ); 
  
 hadd32 modb4d1b6( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{24{x[87]}} , x[87:80]}),  
  .s(b4d1[223:192]) 
 ); 
  
 hadd32 modb4d1b7( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{24{x[95]}} , x[95:88]}),  
  .s(b4d1[255:224]) 
 ); 
  
 hadd32 modb4d1b8( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{24{x[103]}} , x[103:96]}),  
  .s(b4d1[287:256]) 
 ); 
  
 hadd32 modb4d1b9( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{24{x[111]}} , x[111:104]}),  
  .s(b4d1[319:288]) 
 ); 
  
 hadd32 modb4d1b10( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{24{x[119]}} , x[119:112]}),  
  .s(b4d1[351:320]) 
 ); 



 

103 

  
 hadd32 modb4d1b11( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{24{x[127]}} , x[127:120]}),  
  .s(b4d1[383:352]) 
 ); 
  
 hadd32 modb4d1b12( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{24{x[135]}} , x[135:128]}),  
  .s(b4d1[415:384]) 
 ); 
  
 hadd32 modb4d1b13( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{24{x[143]}} , x[143:136]}),  
  .s(b4d1[447:416]) 
 ); 
  
 hadd32 modb4d1b14( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{24{x[151]}} , x[151:144]}),  
  .s(b4d1[479:448]) 
 ); 
  
 hadd32 modb4d1b15( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{24{x[159]}} , x[159:152]}),  
  .s(b4d1[511:480]) 
 ); 
  
 //b4d2 
  
 hadd32 modb4d2b0( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{16{x[47]}} , x[47:32]}),  
  .s(b4d2[31:0]) 
 ); 
  
 hadd32 modb4d2b1( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{16{x[63]}} , x[63:48]}),  
  .s(b4d2[63:32]) 
 ); 
  
 hadd32 modb4d2b2( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{16{x[79]}} , x[79:64]}),  
  .s(b4d2[95:64]) 
 ); 
  
 hadd32 modb4d2b3( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{16{x[95]}} , x[95:80]}),  
  .s(b4d2[127:96]) 
 ); 
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 hadd32 modb4d2b4( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{16{x[111]}} , x[111:96]}),  
  .s(b4d2[159:128]) 
 ); 
  
 hadd32 modb4d2b5( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{16{x[127]}} , x[127:112]}),  
  .s(b4d2[191:160]) 
 ); 
  
 hadd32 modb4d2b6( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{16{x[143]}} , x[143:128]}),  
  .s(b4d2[223:192]) 
 ); 
  
 hadd32 modb4d2b7( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{16{x[159]}} , x[159:144]}),  
  .s(b4d2[255:224]) 
 ); 
  
 hadd32 modb4d2b8( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{16{x[175]}} , x[175:160]}),  
  .s(b4d2[287:256]) 
 ); 
  
 hadd32 modb4d2b9( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{16{x[191]}} , x[191:176]}),  
  .s(b4d2[319:288]) 
 ); 
  
 hadd32 modb4d2b10( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{16{x[207]}} , x[207:192]}),  
  .s(b4d2[351:320]) 
 ); 
  
 hadd32 modb4d2b11( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{16{x[223]}} , x[223:208]}),  
  .s(b4d2[383:352]) 
 ); 
  
 hadd32 modb4d2b12( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{16{x[239]}} , x[239:224]}),  
  .s(b4d2[415:384]) 
 ); 
  
 hadd32 modb4d2b13( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{16{x[255]}} , x[255:240]}),  
  .s(b4d2[447:416]) 
 ); 
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 hadd32 modb4d2b14( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{16{x[271]}} , x[271:256]}),  
  .s(b4d2[479:448]) 
 ); 
  
 hadd32 modb4d2b15( 
  .c0(carry), 
  .x(x[31:0]),  
  .y({{16{x[287]}} , x[287:272]}),  
  .s(b4d2[511:480]) 
 ); 
  
 //b2d1 
  
 hadd16 modb2d1b0( 
  .c0(carry), 
  .x(x[15:0]),  
  .y({{8{x[23]}} , x[23:16]}),  
  .s(b2d1[15:0]) 
 ); 
 
 hadd16 modb2d1b1( 
  .c0(carry), 
  .x(x[15:0]),  
  .y({{8{x[31]}} , x[31:24]}),  
  .s(b2d1[31:16]) 
 ); 
  
 hadd16 modb2d1b2( 
  .c0(carry), 
  .x(x[15:0]),  
  .y({{8{x[39]}} , x[39:32]}),  
  .s(b2d1[47:32]) 
 ); 
 

hadd16 modb2d1b3( 
 .c0(carry), 
        .x(x[15:0]),  

                .y({{8{x[47]}} , x[47:40]}),  
                .s(b2d1[63:48]) 

); 
 
hadd16 modb2d1b4( 
 .c0(carry), 

.x(x[15:0]),  

.y({{8{x[55]}} , x[55:48]}),  

.s(b2d1[79:64]) 
); 
 
hadd16 modb2d1b5( 

.c0(carry), 

.x(x[15:0]),  

.y({{8{x[63]}} , x[63:56]}),  

.s(b2d1[95:80]) 
); 
 
hadd16 modb2d1b6( 

.c0(carry), 

.x(x[15:0]),  

.y({{8{x[71]}} , x[71:64]}),  

.s(b2d1[111:96]) 
); 
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hadd16 modb2d1b7( 
.c0(carry), 
.x(x[15:0]),  

         .y({{8{x[79]}} , x[79:72]}),  
         .s(b2d1[127:112]) 
); 
 
hadd16 modb2d1b8( 

  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[87]}} , x[87:80]}),  
                .s(b2d1[143:128]) 
        ); 
 

hadd16 modb2d1b9( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[95]}} , x[95:88]}),  
                .s(b2d1[159:144]) 
        ); 
 

hadd16 modb2d1b10( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[103]}} , x[103:96]}),  
                .s(b2d1[175:160]) 
        ); 
 

hadd16 modb2d1b11( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[111]}} , x[111:104]}),  
                .s(b2d1[191:176]) 
        ); 
 

hadd16 modb2d1b12( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[119]}} , x[119:112]}),  
                .s(b2d1[207:192]) 
        ); 
 

hadd16 modb2d1b13( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[127]}} , x[127:120]}),  
                .s(b2d1[223:208]) 
        ); 
 

hadd16 modb2d1b14( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[135]}} , x[135:128]}),  
                .s(b2d1[239:224]) 
        ); 
 

hadd16 modb2d1b15( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[143]}} , x[143:136]}),  
                .s(b2d1[255:240]) 
        ); 
 

hadd16 modb2d1b16( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[151]}} , x[151:144]}),  
                .s(b2d1[271:256]) 
        ); 
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hadd16 modb2d1b17( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[159]}} , x[159:152]}),  
                .s(b2d1[287:272]) 
        ); 
 

hadd16 modb2d1b18( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[167]}} , x[167:160]}),  
                .s(b2d1[303:288]) 
        ); 
 

hadd16 modb2d1b19( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[175]}} , x[175:168]}),  
                .s(b2d1[319:304]) 
        ); 
 

hadd16 modb2d1b20( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[183]}} , x[183:176]}),  
                .s(b2d1[335:320]) 
        ); 
 

hadd16 modb2d1b21( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[191]}} , x[191:184]}),  
                .s(b2d1[351:336]) 
        ); 
 

hadd16 modb2d1b22( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[199]}} , x[199:192]}),  
                .s(b2d1[367:352]) 
        ); 
 

hadd16 modb2d1b23( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[207]}} , x[207:200]}),  
                .s(b2d1[383:368]) 
        ); 
 

hadd16 modb2d1b24( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[215]}} , x[215:208]}),  
                .s(b2d1[399:384]) 
        ); 
 

hadd16 modb2d1b25( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[223]}} , x[223:216]}),  
                .s(b2d1[415:400]) 
        ); 
 

hadd16 modb2d1b26( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[231]}} , x[231:224]}),  
                .s(b2d1[431:416]) 
        ); 
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hadd16 modb2d1b27( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[239]}} , x[239:232]}),  
                .s(b2d1[447:432]) 
        ); 
 

hadd16 modb2d1b28( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[247]}} , x[247:240]}),  
                .s(b2d1[463:448]) 
        ); 
 

hadd16 modb2d1b29( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[255]}} , x[255:248]}),  
                .s(b2d1[479:464]) 
        ); 
 

hadd16 modb2d1b30( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[263]}} , x[263:256]}),  
                .s(b2d1[495:480]) 
        ); 
 

hadd16 modb2d1b31( 
  .c0(carry), 
                .x(x[15:0]),  
                .y({{8{x[271]}} , x[271:264]}),  
                .s(b2d1[511:496]) 
        ); 
 

always @(*) begin 
  case (encoding) 
  4'b0000 :  
    valids = 8'b10000000; 
   
  4'b0001 :  
    valids = 8'b01000000; 
   
  4'b0010 :  
    valids = 8'b00100000; 
   
  4'b0011 :  
    valids = 8'b00010000; 
   
  4'b0100 :  
    valids = 8'b00001000; 
   
  4'b0101 :  
    valids = 8'b00000100; 
   
  4'b0110 :  
    valids = 8'b00000010; 
   
  4'b0111 :  
    valids = 8'b00000001; 
   
  4'b1111 :  
    valids = 8'b00000000; 
   
  endcase 
  end 

   
endmodule 
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module hadd( 
 input wire c0, 
 input wire [63:0] x, 
 input wire [63:0] y, 
 output wire [63:0] s, 
 output wire c64 

); 
  
 wire c8, c16, c24, c32, c40, c48, c56; 
 wire i00, i01, i02, i03, i04, i05, i06, i07, i08, i09; 
 wire i10, i11, i12, i13, i14, i15, i16, i17, i18, i19; 
 wire i20, i21, i22, i23, i24, i25, i26, i27, i28, i29; 
 wire i30, i31, i32, i33, i34; 
 wire g[7:0]; 
 wire p[7:0]; 
 
 //assign c0 = 0; 
  
 and prim00 (i00, p[0], c0); 
 or prim01 (c8, g[0], i00); 
 
 and prim02 (i01, p[1], g[0]); 
 and prim03 (i02, p[1], p[0], c0); 
 or prim04 (c16, g[1], i01, i02); 
 
 and prim05 (i03, p[2], g[1]); 
 and prim06 (i04, p[2], p[1], g[0]); 
 and prim07 (i05, p[2], p[1], p[0], c0); 
 or prim08 (c24, g[2], i03, i04, i05); 
 
 and prim09 (i06, p[3], g[2]); 
 and prim10 (i07, p[3], p[2], g[1]); 
 and prim11 (i08, p[3], p[2], p[1], g[0]); 
 and prim12 (i09, p[3], p[2], p[1], p[0], c0); 
 or prim13 (c32, g[3], i06, i07, i08, i09); 
 
 and prim14 (i10, p[4], g[3]); 
 and prim15 (i11, p[4], p[3], g[2]); 
 and prim16 (i12, p[4], p[3], p[2], g[1]); 
 and prim17 (i13, p[4], p[3], p[2], p[1], g[0]); 
 and prim18 (i14, p[4], p[3], p[2], p[1], p[0], c0); 
 or prim19 (c40, g[4], i10, i11, i12, i13, i14); 
 
 and prim20 (i15, p[5], g[4]); 
 and prim21 (i16, p[5], p[4], g[3]); 
 and prim22 (i17, p[5], p[4], p[3], g[2]); 
 and prim23 (i18, p[5], p[4], p[3], p[2], g[1]); 
 and prim24 (i19, p[5], p[4], p[3], p[2], p[1], g[0]); 
 and prim25 (i20, p[5], p[4], p[3], p[2], p[1], p[0], c0); 
 or prim26 (c48, g[5], i15, i16, i17, i18, i19, i20); 
 
 and prim27 (i21, p[6], g[5]); 
 and prim28 (i22, p[6], p[5], g[4]); 
 and prim29 (i23, p[6], p[5], p[4], g[3]); 
 and prim30 (i24, p[6], p[5], p[4], p[3], g[2]); 
 and prim31 (i25, p[6], p[5], p[4], p[3], p[2], g[1]); 
 and prim32 (i26, p[6], p[5], p[4], p[3], p[2], p[1], g[0]); 
 and prim33 (i27, p[6], p[5], p[4], p[3], p[2], p[1], p[0], c0); 
 or prim34 (c56, g[6], i21, i22, i23, i24, i25, i26, i27); 
 
 and prim35 (i28, p[7], g[6]); 
 and prim36 (i29, p[7], p[6], g[5]); 
 and prim37 (i30, p[7], p[6], p[5], g[4]); 
 and prim38 (i31, p[7], p[6], p[5], p[4], g[3]); 
 and prim39 (i32, p[7], p[6], p[5], p[4], p[3], g[2]); 
 and prim40 (i33, p[7], p[6], p[5], p[4], p[3], p[2], g[1]); 
 and prim41 (i34, p[7], p[6], p[5], p[4], p[3], p[2], p[1], g[0]); 
 and prim42 (i35, p[7], p[6], p[5], p[4], p[3], p[2], p[1], p[0], c0); 
 or prim43 (c64, g[7], i28, i29, i30, i31, i32, i33, i34, i35); 
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 hadder8 block0( 
  .c0(c0),  
  .x(x[7:0]),  
  .y(y[7:0]),  
  .s(s[7:0]),  
  .G(g[0]), 
  .P(p[0]) 
 ); 
  
 hadder8 block1( 
  .c0(c8),  
  .x(x[15:8]),  
  .y(y[15:8]),  
  .s(s[15:8]),  
  .G(g[1]), 
  .P(p[1]) 
 ); 
  
 hadder8 block2( 
  .c0(c16),  
  .x(x[23:16]),  
  .y(y[23:16]),  
  .s(s[23:16]),  
  .G(g[2]), 
  .P(p[2]) 
 ); 
  
 hadder8 block3( 
  .c0(c24),  
  .x(x[31:24]),  
  .y(y[31:24]),  
  .s(s[31:24]),  
  .G(g[3]), 
  .P(p[3]) 
 ); 
  
 hadder8 block4( 
  .c0(c32),  
  .x(x[39:32]),  
  .y(y[39:32]),  
  .s(s[39:32]),  
  .G(g[4]), 
  .P(p[4]) 
 ); 
  
 hadder8 block5( 
  .c0(c40),  
  .x(x[47:40]),  
  .y(y[47:40]),  
  .s(s[47:40]),  
  .G(g[5]), 
  .P(p[5]) 
 ); 
  
 hadder8 block6( 
  .c0(c48),  
  .x(x[55:48]),  
  .y(y[55:48]),  
  .s(s[55:48]),  
  .G(g[6]), 
  .P(p[6]) 
 ); 
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 hadder8 block7( 
  .c0(c56),  
  .x(x[63:56]),  
  .y(y[63:56]),  
  .s(s[63:56]),  
  .G(g[7]), 
  .P(p[7]) 
 ); 
   
endmodule 
 
module hadd32( 
 input wire c0, 
 input wire [31:0] x, 
 input wire [31:0] y, 
 output wire [31:0] s 

); 
  
 wire c8, c16, c24, c32; 
 wire i00, i01, i02, i03, i04, i05, i06, i07, i08, i09; 
 wire g[3:0]; 
 wire p[3:0]; 
  
 and prim00 (i00, p[0], c0); 
 or prim01 (c8, g[0], i00); 
 
 and prim02 (i01, p[1], g[0]); 
 and prim03 (i02, p[1], p[0], c0); 
 or prim04 (c16, g[1], i01, i02); 
 
 and prim05 (i03, p[2], g[1]); 
 and prim06 (i04, p[2], p[1], g[0]); 
 and prim07 (i05, p[2], p[1], p[0], c0); 
 or prim08 (c24, g[2], i03, i04, i05); 
 
 and prim09 (i06, p[3], g[2]); 
 and prim10 (i07, p[3], p[2], g[1]); 
 and prim11 (i08, p[3], p[2], p[1], g[0]); 
 and prim12 (i09, p[3], p[2], p[1], p[0], c0); 
 or prim13 (c32, g[3], i06, i07, i08, i09); 
 
  
 hadder8 block0( 
  .c0(c0),  
  .x(x[7:0]),  
  .y(y[7:0]),  
  .s(s[7:0]),  
  .G(g[0]), 
  .P(p[0]) 
 ); 
  
 hadder8 block1( 
  .c0(c8),  
  .x(x[15:8]),  
  .y(y[15:8]),  
  .s(s[15:8]),  
  .G(g[1]), 
  .P(p[1]) 
 ); 
  
 hadder8 block2( 
  .c0(c16),  
  .x(x[23:16]),  
  .y(y[23:16]),  
  .s(s[23:16]),  
  .G(g[2]), 
  .P(p[2]) 
 ); 
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 hadder8 block3( 
  .c0(c24),  
  .x(x[31:24]),  
  .y(y[31:24]),  
  .s(s[31:24]),  
  .G(g[3]), 
  .P(p[3]) 
 ); 
   
endmodule 
 
module hadd16( 
 input c0, 
 input wire [15:0] x, 
 input wire [15:0] y, 
 output wire [15:0] s 
 ); 
  
 wire c8, c16; 
 wire i00, i01, i02; 
 wire g[1:0]; 
 wire p[1:0]; 
   
 and prim00 (i00, p[0], c0); 
 or prim01 (c8, g[0], i00); 
 
 and prim02 (i01, p[1], g[0]); 
 and prim03 (i02, p[1], p[0], c0); 
 or prim04 (c16, g[1], i01, i02); 
 
 
 hadder8 block0( 
  .c0(c0),  
  .x(x[7:0]),  
  .y(y[7:0]),  
  .s(s[7:0]),  
  .G(g[0]), 
  .P(p[0]) 
 ); 
  
 hadder8 block1( 
  .c0(c8),  
  .x(x[15:8]),  
  .y(y[15:8]),  
  .s(s[15:8]),  
  .G(g[1]), 
  .P(p[1]) 
 ); 
   
endmodule 
 
module hadder8( 
 input wire c0,  
 input wire [7:0] x,  
 input wire [7:0] y,  
 output wire [7:0] s, 
 output wire G, 

output wire P  
); 
 

 wire [7:0] g, p; 
 wire [8:1] c; 
 wire i00, i01, i02, i03, i04, i05, i06, i07, i08, i09; 
 wire i10, i11, i12, i13, i14, i15, i16, i17, i18, i19; 
 wire i20, i21, i22, i23, i24, i25, i26, i27, i28, i29; 
 wire i30, i31, i32, i33, i34; 
 
 xor prim00 (s[0], c0, x[0], y[0]); 
 and prim01 (g[0], x[0], y[0]); 
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 or prim02 (p[0], x[0], y[0]); 
  
 and prim03 (i00, p[0], c0); 
 or prim04 (c[1], g[0], i00); 
  
 xor prim05 (s[1], c[1], x[1], y[1]); 
 and prim06 (g[1], x[1], y[1]); 
 or prim07 (p[1], x[1], y[1]); 
 
 and prim08 (i01, p[1], g[0]); 
 and prim09 (i02, p[1], p[0], c0); 
 or prim10 (c[2], g[1], i01, i02); 
 
 xor prim11 (s[2], c[2], x[2], y[2]); 
 and prim12 (g[2], x[2], y[2]); 
 or prim13 (p[2], x[2], y[2]); 
  
 and prim14 (i03, p[2], g[1]); 
 and prim15 (i04, p[2], p[1], g[0]); 
 and prim16 (i05, p[2], p[1], p[0], c0); 
 or prim17 (c[3], g[2], i03, i04, i05); 
  
 xor prim18 (s[3], c[3], x[3], y[3]); 
 and prim19 (g[3], x[3], y[3]); 
 or prim20 (p[3], x[3], y[3]); 
  
 and prim21 (i06, p[3], g[2]); 
 and prim22 (i07, p[3], p[2], g[1]); 
 and prim23 (i08, p[3], p[2], p[1], g[0]); 
 and prim24 (i09, p[3], p[2], p[1], p[0], c0); 
 or prim25 (c[4], g[3], i06, i07, i08, i09); 
  
 xor prim26 (s[4], c[4], x[4], y[4]); 
 and prim27 (g[4], x[4], y[4]); 
 or prim28 (p[4], x[4], y[4]); 
  
 and prim29 (i10, p[4], g[3]); 
 and prim30 (i11, p[4], p[3], g[2]); 
 and prim31 (i12, p[4], p[3], p[2], g[1]); 
 and prim32 (i13, p[4], p[3], p[2], p[1], g[0]); 
 and prim33 (i14, p[4], p[3], p[2], p[1], p[0], c0); 
 or prim34 (c[5], g[4], i10, i11, i12, i13, i14); 
   
 xor prim35 (s[5], c[5], x[5], y[5]); 
 and prim36 (g[5], x[5], y[5]); 
 or prim37 (p[5], x[5], y[5]); 
  
 and prim38 (i15, p[5], g[4]); 
 and prim39 (i16, p[5], p[4], g[3]); 
 and prim40 (i17, p[5], p[4], p[3], g[2]); 
 and prim41 (i18, p[5], p[4], p[3], p[2], g[1]); 
 and prim42 (i19, p[5], p[4], p[3], p[2], p[1], g[0]); 
 and prim43 (i20, p[5], p[4], p[3], p[2], p[1], p[0], c0); 
 or prim44 (c[6], g[5], i15, i16, i17, i18, i19, i20); 
 
 xor prim45 (s[6], c[6], x[6], y[6]); 
 and prim46 (g[6], x[6], y[6]); 
 or prim47 (p[6], x[6], y[6]); 
  
 and prim48 (i21, p[6], g[5]); 
 and prim49 (i22, p[6], p[5], g[4]); 
 and prim50 (i23, p[6], p[5], p[4], g[3]); 
 and prim51 (i24, p[6], p[5], p[4], p[3], g[2]); 
 and prim52 (i25, p[6], p[5], p[4], p[3], p[2], g[1]); 
 and prim53 (i26, p[6], p[5], p[4], p[3], p[2], p[1], g[0]); 
 and prim54 (i27, p[6], p[5], p[4], p[3], p[2], p[1], p[0], c0); 
 or prim55 (c[7], g[6], i21, i22, i23, i24, i25, i26, i27); 
  
 xor prim56 (s[7], c[7], x[7], y[7]); 
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 and prim57 (g[7], x[7], y[7]); 
 or prim58 (p[7], x[7], y[7]); 
  
 and prim59 (i28, p[7], g[6]); 
 and prim60 (i29, p[7], p[6], g[5]); 
 and prim61 (i30, p[7], p[6], p[5], g[4]); 
 and prim62 (i31, p[7], p[6], p[5], p[4], g[3]); 
 and prim63 (i32, p[7], p[6], p[5], p[4], p[3], g[2]); 
 and prim64 (i33, p[7], p[6], p[5], p[4], p[3], p[2], g[1]); 
 and prim65 (i34, p[7], p[6], p[5], p[4], p[3], p[2], p[1], g[0]); 
  
 and prim66 (P, p[7], p[6], p[5], p[4], p[3], p[2], p[1], p[0]); 
 or prim67 (G, g[7], i28, i29, i30, i31, i32, i33, i34); 
  
endmodule 


