

Mitigating the Impact of Decompression Latency in L1 Compressed

Data Caches via Prefetching

by

Sean Rea

A thesis

presented to Lakehead University

in partial fulfillment of the requirement for the degree of

Master of Science

In

Electrical and Computer Engineering

Thunder Bay, Ontario, Canada

September 1, 2017

Copyright 2017 Sean Rea

ii

Abstract

Expanding cache size is a common approach for reducing cache miss rates and increasing performance in

processors. This approach, however, comes at a cost of increased static and dynamic power consumption

by the cache. Static power scales with the number of transistors in the design, while dynamic power

increases with the number of transistors being switched and the effective operating frequency of the cache.

Cache compression is a technique that can increase the effective capacity of cache memory without

experiencing the same gains in static and dynamic power consumption. Alternatively, this technique can

reduce the physical size and therefore the static and dynamic energy usage of the cache while maintaining

reasonable effective cache capacity. A drawback of compression is that a delay, or decompression latency,

is experienced when accessing the compressed data, which affects the critical execution path of the

processor. This latency can have a noticeable impact on processor performance, especially when

implemented in first level caches.

Cache prefetching techniques have been used to hide the latency of lower level memory accesses. This

work aims to investigate the combination of current prefetching techniques and cache compression

techniques to reduce the effect of decompression latency and therefore improve the feasibility of power

reduction via compression in high level caches.

We propose an architecture that combines L1 data cache compression with table-based prefetching to

predict which cache lines will require decompression. The architecture then performs decompression in

parallel, moving the delay due to decompression off the critical path of the processor. The architecture is

verified using 90nm CMOS technology simulations in a new branch of SimpleScalar, using Wattch as a

baseline, and cache model inputs from CACTI. Compression and decompression hardware are synthesized

using the 90nm Cadence GPDK and verified at the register-transfer level.

The results of our verifications demonstrate that using Base-Delta-Immediate (B∆I) compression, in

combination with Last Outcome (LO), Stride (S), and Two-Level (2L) prefetch methods, or hybrid

combinations of these methods (S/LO or 2L/S), provides performance improvement over Base-Delta-

Immediate (B∆I) compression alone in L1 data cache. On average, across the SPEC CPU 2000 benchmarks

tested, Base-Delta-Immediate (B∆I) compression results in a slowdown of 3.6%. Implementing a 1K-Set

Last Outcome prefetch mechanism improves slowdown to 2.1% and reduces the energy consumption of

the L1 Data Cache by 21% versus a baseline scheme with no compression.

iii

Acknowledgements

For introducing me to computer architecture and providing me with an engaging topic to study while at

Lakehead, thank you Dr. Atoofian. I have learned a lot under your supervision.

Thank you to Dr. Mansour and Dr. Tayebi for endorsing my application for part-time studies back in 2012

and to Dr. Natarajan for keeping an eye on me for the first few years. Thank you Dr. Christoffersen for your

active role in enabling students at Lakehead to have access to Cadence tools.

Thank you to all my family who have given their support and made every accommodation possible for me

to pursue this degree. Most importantly, thank you Marcelle and Adam for supporting my decision to

continue with my studies.

Sean Rea

rea@ieee.org

iv

Contents

List of Figures .. vi

List of Tables ... viii

List of Symbols .. ix

List of Abbreviations .. x

Chapter 1 Introduction ... 1

Chapter 2 Background and Related Work ... 4

2.1 Memory Hierarchy .. 4

2.2 Cache Compression .. 5

2.2.1 Related Work in Cache Compression ... 6

2.2.2 Base-Delta ... 7

2.2.3 Base-Delta-Immediate .. 9

2.3 Data Prefetching and Data Value Prediction .. 10

2.3.1 Related Work in Prefetching ... 11

2.3.2 Last Outcome .. 12

2.3.3 Stride and Hybrid Stride / Last Outcome .. 13

2.3.4 Two-Level and Hybrid Two-Level / Stride .. 14

2.4 Thesis Motivation ... 15

Chapter 3 Cache Compression and Prefetching .. 16

3.1 Compression Architecture... 16

3.1.1 Power Considerations ... 17

3.2 Prefetching Architecture ... 18

3.2.1 FETCH .. 19

3.2.2 MEM ... 20

3.3 Hardware Design .. 21

3.3.1 Hierarchical Carry-Lookahead Adder ... 23

v

3.3.2 Implementation in Verilog .. 26

Chapter 4 Simulation Methodology ... 31

4.1 Methodology ... 31

4.1.1 Simpoint .. 32

4.1.2 CACTI ... 38

4.1.3 SimpleScalar ... 41

4.1.4 Environment .. 48

4.2 Synthesis and Static Power Analysis .. 48

4.3 Dynamic Power Analysis .. 52

4.4 Place and Route in Cadence Innovus .. 56

Chapter 5 Results ... 57

5.1 Compression ... 57

5.2 Prefetching .. 66

5.3 Compression and Prefetching ... 73

Chapter 6 Summary and Future Work ... 77

6.1 Contributions ... 77

6.2 Future Work .. 78

Bibliography ... 80

Appendix A Verilog Source ... 83

vi

List of Figures

Figure 2.1 – Memory Hierarchy ... 4

Figure 2.2 – 32-Byte Cache Line Compressed with Base-Delta .. 8

Figure 2.3 – 32-Byte Cache Line Compressed with Base-Delta (2 Bases) ... 8

Figure 2.4 – Changes to Tag and Data Architecture for B∆I Compression .. 9

Figure 2.5 – Last Outcome Prefetching .. 12

Figure 2.6 – Stride Prefetching ... 13

Figure 2.7 – Stride State Machine ... 14

Figure 2.8 – Two-Level Prefetch Table and Pattern History Table .. 15

Figure 3.1 – Prefetching Applied to Classic RISC Architecture .. 18

Figure 3.2 – Prefetch Table Structure ... 19

Figure 3.3 – Compressor Design .. 22

Figure 3.4 – Decompressor Design ... 22

Figure 3.5 – Truth Table for Full Adder ... 24

Figure 3.6 – Karnaugh Map for Full Adder .. 24

Figure 3.7 – Adder Design .. 26

Figure 3.8 – HDL Structure of Compressor .. 26

Figure 3.9 – Testbench Waveforms for Compressor in Xilinx ISE .. 29

Figure 3.10 – HDL Structure of Decompressor .. 29

Figure 4.1 – Simulation Flow Diagram .. 32

Figure 4.2 – CACTI Output .. 38

Figure 4.3 – Compression Model Verification Results ... 43

Figure 4.4 – Compressor VCD Header ... 45

Figure 4.5 – Compressor VCD ASCII Value ... 46

Figure 4.6 – Decompressor VCD Header Variables ... 46

Figure 4.7 – Decompressor VCD ASCII Value .. 46

Figure 4.8 – Genus Gates Report for Compressor (Condensed) ... 49

Figure 4.9 – Compressor Routing in Innovus ... 56

Figure 5.1 – Percentage of L1 Data Cache Lines Compressed by Each Scheme 57

Figure 5.2 – Compression Ratio of L1 Data Cache .. 58

Figure 5.3 – IPC of Baseline Scheme ... 60

Figure 5.4 – IPC of Compressed Scheme ... 60

Figure 5.5 – Speedup of Compressed Scheme vs Baseline .. 61

vii

Figure 5.6 – L1 Data Cache Static Energy (Baseline Scheme) ... 62

Figure 5.7 – L1 Data Cache Static Energy (Compressed Scheme) ... 63

Figure 5.8 – L1 Data Cache Static Energy Ratio – Compressed vs Baseline ... 63

Figure 5.9 – L1 Data Cache Dynamic Energy (Baseline Scheme) ... 64

Figure 5.10 – L1 Data Cache Dynamic Energy (Compressed Scheme) ... 65

Figure 5.11 – L1 Data Cache Dynamic Energy Ratio – Compressed vs Baseline...................................... 65

Figure 5.12 – Hit Percentage of Load Instructions by Prefetch Table (128 Set) .. 67

Figure 5.13 – Hit Percentage of Load Instructions by Prefetch Table (1K Set) ... 67

Figure 5.14 – Prediction Accuracy of 10 Prefetch Table Configurations ... 69

Figure 5.15 – Static Energy by Prefetch Table (128 Set) ... 70

Figure 5.16 – Static Energy by Prefetch Table (1K Set)... 71

Figure 5.17 – Dynamic Energy by Prefetch Table (128 Set) .. 72

Figure 5.18 – Dynamic Energy by Prefetch Table (1K Set) ... 72

Figure 5.19 – L1 Data Cache Energy vs Performance .. 73

Figure 5.20 – CPU Energy vs. Performance ... 74

Figure 5.21 – Speedup Due to Prefetching (128 Set, vs. Compressed Only) ... 75

Figure 5.22 – Speedup Due to Prefetching (1K Set, vs. Compressed Only) .. 75

Figure 5.23 – Energy-Delay Product (CPU) ... 76

viii

List of Tables

Table 3.1 – Compression Events .. 16

Table 3.2 – Power Events ... 18

Table 3.3 – Prefetch Table Power Events ... 19

Table 3.4 – Two-Level Table Power Events ... 20

Table 3.5 – Decompression Buffer Power Events .. 20

Table 3.6 – Compressor Test Cases .. 28

Table 4.1 – 164.gzip CPI Values by Simulation Point ... 33

Table 4.2 – Simpoint Error by Maximum Number of Clusters .. 34

Table 4.3 – SimPoint Error ... 35

Table 4.4 – 100M SimPoint Results ... 36

Table 4.5 – CACTI L1 Cache Configurations and Power Results ... 38

Table 4.6 – CACTI L2 Cache Timing .. 39

Table 4.7 – CACTI Prefetch Table Configurations and Power Results.. 39

Table 4.8 – CACTI Pattern History Table Power Results .. 40

Table 4.9 – CACTI Decompression Buffer Power Results .. 40

Table 4.10 – Delta Datatype and Overflow Information .. 42

Table 4.11 – Boundary Conditions for Compression.. 43

Table 4.12 – Initial Static Power Analysis of Decompressor by PDK ... 49

Table 4.13 – Compressor Static Power Determination ... 50

Table 4.14 – Decompressor Static Power Determination ... 51

Table 4.15 – 164.gzip Compressor Static Power Values by Simulation Point ... 52

Table 4.16 – Static Power for Compressor and Decompressor .. 52

Table 4.17 – 164.gzip Compressor Dynamic Power Values by Simulation Point 53

Table 4.18 – Compressor Dynamic Power Results from Cadence Genus .. 54

Table 4.19 – 164.gzip Decompressor Power Values by Simulation Point ... 54

Table 4.20 – Decompressor Power Results from Cadence Genus .. 55

ix

List of Symbols

ci carry-in

ci+1 carryout

E energy

gi generate function

Gi block generate function

M maximum number of SimPoint clusters

pi propagate function

Pi block propagate function

t time

tVCD, ps value change dump timestamp (in picoseconds)

x

List of Abbreviations

2L two-level prefetcher

B∆I base-delta-immediate compression

BBV basic block vector

CMC Canadian Microelectronics Corporation

CMOS complementary metal-oxide-semiconductor

CPI cycles per instruction

CPU central processing unit

EDP energy-delay product

FIFO first-in, first-out

FLAC free lossless audio codec file format

FPC frequent pattern compression

GHB global history buffer

GPDK generic process design kit

IPC instructions per cycle

L1 level-1 cache

L2 level-2 cache

L3 level-3 cache

LO last outcome prefetcher

LRU least recently used

PC program counter

PDK process design kit

PNG portable network graphics file format

RISC reduced instruction set computer

simpoint simulation point

S stride prefetcher

S/LO hybrid stride/last outcome prefetcher

SPEC Standard Performance Evaluation Corporation

VCD value change dump

ZCA zero-content augmented cache

ZIP ZIP file format

 1

Chapter 1

Introduction

In 2016, it has been estimated that the world creates 2.5 quintillion bytes of data per day [1]. At the time,

that estimate suggested that 90% of the world’s data had been created in the previous two years alone. In

as early as 2013, it was approximated that Information and Communication Technologies were consuming

nearly 10% of the world’s electricity generation [2]. With this rate of data growth, and the current impact

computing has on the world’s energy consumption, there is a need to investigate ways to improve the way

we store and process data.

Linked with the growth of our data generation is the emergence of a rapidly growing mobile device market.

This market relies heavily on low power, battery supplied devices. Unavoidably, the best way to provide a

longer battery life for these devices is for the devices themselves to consume less power. While

improvements can be made to the devices themselves (e.g. supply voltage and device size), in many

applications, the best way to reduce power is to find efficiencies at the architectural level [3]. Redefining

the architecture can result in orders of magnitude in reduction of power depending on the specific

application.

When we look at the data we are creating, it is clear that patterns exist that create inefficiencies in the way

it is stored and processed [4]. Data patterns may consist of values that are repeated over-and-over again,

values that are very close to each other, and even large sets of null data. Some of the greatest sources of

data in the world today are the cameras on our mobile devices. Images are a great example of data that

consists of patterns. Pixel data contains sequences of values, which can be identical or very close in

magnitude (when looking at color value, brightness, etc.). Programs that manipulate this image data

generally handle large data arrays. These arrays are frequently initialized to some repeated value, often

zero. And frequently enough, the developers of those programs may over-provision data types to hold that

data such that most of it goes unused (narrow data). These inefficiencies in our data contribute to

unnecessary storage and processing.

2

In computing architecture, we utilize a memory hierarchy to ensure that the data we use most frequently is

closest to the CPU and therefore accessible as fast as possible. The closest memory spaces, L1 and L2

cache, take up large areas on-chip and consume large amounts of power. Depending on the architecture,

cache memory in a processor can account for upwards of 40% of the total power budget [5]. Because the

cache must handle our data, which is full of inefficiencies, a significant portion of this energy consumption

could be avoided via compression.

Compression is possible by replacing the most inefficient patterns with a set of smaller representations,

known as encoding. Encoding can be done with a fixed dictionary or a compression scheme can

dynamically and iteratively assign code words to patterns. Most of our data is compressible to some extent,

whether it is text, image, or audio data. This is why, in main memory, it is common to store and transfer

large files in a compressed format (e.g. ZIP, PNG, FLAC).

Cache-level compression in a processor is a technique that can increase the effective capacity of the cache,

and therefore improve performance of the processor, by compressing cache lines before they are stored in

the cache. Alternatively, this same method can be used to reduce the physical size of the cache and therefore

reduce the power consumption.

Typically, cache lines consist of several bytes of data. In set-associative caches, multiple lines, or ways,

may be stored at a given cache index. Each of these ways store a complete uncompressed cache line. If

we can compress the size of these cache lines, we can store more data in each set. Alternatively, we could

reduce the physical size of the cache and store the same, or similar, amounts of data.

The power of a cache depends on its size and the frequency of accesses. By reducing the total size of the

cache, we can significantly reduce the power consumption. In addition, the size of the data lines we read

from the cache are potentially reduced in size as well. Therefore, we can model the savings in dynamic

power consumption in the cache by considering the size ratio of compressed data vs an uncompressed cache

line.

In the past, researchers have avoided implementing compression in high-level caches such as L1 data cache

because of the impact decompression latency has on the overall performance of the processor [4, 6, 7].

Access times at this level are in the order of a few clock cycles. To add even a few clock cycles to this

access time will cause significant performance delays and defeat the intent of the high-level cache.

3

However, it is possible to implement additional techniques, such as prefetching, to remove the some of the

burden of decompression from the processor’s critical path. If this approach is successful, it could lead to

improving the feasibility of implementing compression in high-level caches (specifically L1 data cache).

Our work focusses on the combination of data cache compression and table-based prefetching to explore

the feasibility of implementing compression in L1 data cache. We evaluate this new architecture by

examining what impact it has on the performance and power consumption of a CPU during the execution

of standard benchmarks. Specially, this work makes three key contributions:

(1) An architecture is proposed that combines compression, specifically Base-Delta-Immediate

compression, in L1 data cache with table-based prefetching methods, such as Last Outcome, Stride, and

Two-Level, to predict which cache lines will require decompression. The architecture then performs

decompression in parallel, therefore moving the delay due to decompression off the critical path of the

processor.

(2) Modifications are made to Wattch [5], a branch of SimpleScalar [8] that is an open-source processor

modelling tool for analyzing and optimizing power consumption at the architectural level. This tool is

extended to model Base-Delta-Immediate compression in combination with table-based prefetching to

show the benefit of performing decompression as a parallel activity to execution and increase the feasibility

of implementing compression in L1 caches.

(3) 64-byte compressor and decompressor hardware is designed in 90nm CMOS and tested for

implementation with Base-Delta compression. Static and dynamic power analysis is performed on the new

hardware, reinforcing its suitability for use in a power-reducing compressed cache scheme.

The remainder of this thesis is organized into five chapters. Chapter 2 provides an overview of cache

compression and prefetching and recent research that has been done in these areas. In Chapter 3, we define

the proposed compression and prefetching architecture, discuss what changes are necessary to

accommodate the new architecture in a conventional superscalar processor, and provide the details of the

hardware design for the compressor and decompressor units. Chapter 4 discusses the tools used and

modified to model the compression and prefetching architecture. In Chapter 5, the results of simulation

are provided and discussed. Finally, Chapter 6 provides a summary of the work done, the significance of

the results, and future work that could be done to advance this research.

4

Chapter 2

Background and Related Work

In this chapter, we review the concepts of memory hierarchy, compression, data value prediction, and

prefetching. We review existing work in the areas of cache compression, data value prediction, and

prefetching and go into detail of the operation of one compression scheme, Base-Delta-Immediate, three

prediction schemes: Last Outcome, Stride, and Two-Level as well as hybrid combinations of these schemes.

Finally, the motivation behind this work is presented.

2.1 Memory Hierarchy

The speed in which a processor can read information from memory has a great impact on the performance

of that processor. Fast memory, however, is expensive. For this reason, memory is organized into levels

that exploit small amounts of fast memory close to the processor, and larger, slower levels of memory

farther away. This organization is referred to as the Memory Hierarchy. In this hierarchy, between the

central processing unit (CPU) and “main memory” are various levels of cache memory.

Figure 2.1 – Memory Hierarchy

When the data for a given address is stored in the high-level cache (i.e. L1 cache), then the processor has

fast access to this information. If the data is not there, the processor must retrieve it from lower levels. This

is referred to as a cache miss. Cache misses are classified by three types: compulsory misses, capacity

misses, and conflict misses [9]. Compulsory misses occur during start-up, when no information exists in

5

the cache. Capacity misses occur if the cache is not large enough for all the blocks required during the

execution of a program and blocks are discarded. If these discarded blocks must be read again, they must

be fetched from lower levels. Conflict misses occur if the cache is not fully associative. In this case, blocks

may be discarded even before the cache is full.

Increasing the capacity of the cache can reduce the number of capacity and conflict misses and therefore

increase performance. This, however, comes at a cost of increased power consumption.

2.2 Cache Compression

Similar to data files in main memory, the data within cache memory consists of patterns that can be

exploited by compression techniques to save space. Cache compression is a method that can be used to

increase the capacity of the cache without experiencing the same increase in power consumption.

Because the intent of cache memory is to provide low latency access to data, compression and

decompression must be performed at the hardware level in the processor rather than at the software level,

as is commonly performed on files in main memory. This same requirement for low latency cache access

is why most of the previous work done on the topic of cache compression focusses on low-level cache (i.e.

L2 cache and L3 cache). Because L1 caches typically have access latencies in the order of a few clock

cycles, adding a decompression latency on top of that can degrade performance beyond acceptable levels.

The ideal compression scheme for implementation in L1 cache is one that is, of course, fast, but is also

capable of encoding the most common patterns that exist within data stored in memory. These most

common patterns can be grouped into four main categories: zeros, repeated values, narrow values, and other

patterns [4].

Zeros

Zero values are widely used throughout programs, primarily in variable initializations, null pointers, false

boolean values, and sparse matrices [4].

Repeated Values

Similar to zero values, repeated values may appear in the form of variable initializations. Another cause for

repeated values is image data. Adjacent pixels tend to contain similar information such as colour data [4].

6

Narrow Values

It is common for developers to over-allocate space to variables to protect from overflow during execution

of a program. In some cases, these variables never come close to their maximum values. A small value

stored as a large data type is considered a narrow value [4].

Other Patterns

This group is not meant to include all other patterns, but rather patterns that specifically have low dynamic

range. For example, an array of pointers that all point to the same region of memory [4].

2.2.1 Related Work in Cache Compression

Research has been done to evaluate hardware-based data compression in CPU caches [4, 6, 7, 10, 11, 12]

as well as in GPGPU [13]. The following papers have explored which methods exploit the most

opportunities in data patterns and at which levels in cache they are most beneficial. A common

understanding among this work is that decompression latency is a problem when implementing in fast

caches and is cited as the reason for avoiding L1 compression in some works [4, 6, 7].

In [7], the authors present Frequent Pattern Compression (FPC), which compresses data that fits into one

of seven patterns. Each 32-bit word is evaluated separately so data is not compressed spanning multiple

words. The scheme is evaluated in L2 cache with L1 cache being left uncompressed. The design is

evaluated against the Wisconsin Commercial Workload Suite and six benchmarks from the SPEC CPU

2000 suite. The scheme provides compression ratios ranging from 1.0 to 2.4 over all their benchmarks.

This scheme captures the main three groups of patterns that exist in data. However, this scheme does not

address the behaviour of low dynamic range that data exhibits.

In [11], the authors exploit the common scenario of storing null data in caches by augmenting the

uncompressed cache with an additional cache that is only required to store the addresses of zero-content

cache lines. The authors evaluate this zero-content augmented (ZCA) cache in every combination of cache

level from L1 to L3. They found that implementing ZCA in L3 alone was sufficient to experience most of

the benefit and found up to a 22% speedup when run against SPEC CPU 2000 benchmarks. Because this

scheme only looks at zeros, decompression latency is not an issue, and the authors are able to explore this

technique in all levels of cache without affecting the read latency. This scheme, however, does not address

most of the patterns that exist within cache data.

7

In [12], the authors compress the cache line by encoding 32-bit words that appear in a predefined list of

“frequent values.” The scheme requires that a cache line be compressible to 50% in size or less or it is not

compressed at all. Encoding bits are required for each word in the cache line. The authors determine that

their scheme can improve the miss rate for six integer benchmarks from SPEC CPU 95 as much as 36.4%.

Due to the table-lookup nature of the scheme, it cannot capture all repeating values efficiently. As well, it

misses the important narrow values that occur within the data.

In [4], the authors present a new compression scheme that this work builds upon, called Base-Delta-

Immediate. In addition to null data and repeating values, this work exploits two trends in data called narrow

values and low dynamic range. The scheme compresses cache lines that can be represented as a single base

and an array of small deltas. The authors evaluated their scheme against the SPEC CPU 2006 benchmark

suite, among other benchmarks. The authors achieve an average compression ratio of 1.53 across all

benchmarks when compressing L2 cache. Due to the impact decompression latency would have on L1

cache, the authors focus on L2. Because this scheme addresses all the patterns discussed in the other works,

and more, it is the compression scheme we use. We will address the issue of implementing this scheme in

L1 cache by combining common prefetching techniques to mask the effect of the decompression latency.

2.2.2 Base-Delta

Back to [4], the authors first describe the foundation of their scheme, called Base-Delta. Base-Delta is a

cache compression scheme that stores a cache line as one large base value along with an array of smaller

deltas. The concept behind the scheme is that, for many cache lines, the data values have a low dynamic

range (the difference between values is small). For example, Figure 2.2 shows an example of how a 32-

byte cache line may be compressed using a Base 4 Delta 1 compression scheme.

8

Figure 2.2 – 32-Byte Cache Line Compressed with Base-Delta

From the figure, you can see how this cache line benefits from low dynamic range. In this example, the

Base 4 Delta 1 scheme is used. This means the chosen size of the base is 4 bytes, and the size of the deltas

is 1 byte.

In some cases, compression may benefit from having multiple bases. For example, the cache line in Figure

2.3 clearly shows patterns with low dynamic range around two bases.

Figure 2.3 – 32-Byte Cache Line Compressed with Base-Delta (2 Bases)

Determining two optimized bases is a high latency task that is not feasible during execution. The authors

resolve this issue by implementing the immediate portion of their compression making Base-Delta-

Immediate [4].

9

2.2.3 Base-Delta-Immediate

Base-Delta-Immediate (B∆I) compression implements a 2-base Base-Delta scheme where one base is

always zero. This method sees much of the benefit of a 2-base system, without adding the need to store a

second base. To implement this immediate base, an array of flag bits called the immediate mask is

included in the tag to identify which deltas refer to the base and which refer to zero.

To change a conventional cache into a Base-Delta-Immediate cache, we double the number of tags. This

allows us to utilize the vacant space in the cache created during compression. Next, we modify how the

tags point to the data stored in the cache. The data array is divided into 8-byte segments rather than 64-

byte blocks. Rather than pointing to a constant 64-byte block, the tag now points to a variable-size

compressed block. The location of the compressed block at a given cache index is determined by summing

the size of cache blocks stored in front of it. Lastly, we add the encoding bits (and immediate mask, as

mentioned above) to the tag. This allows us to define the type of compression applied to the data for a

given way. These changes to the architecture are shown in Figure 2.4.

Figure 2.4 – Changes to Tag and Data Architecture for B∆I Compression

10

These changes are implemented functionally in SimpleScalar and have their power and access time impact

modeled using CACTI (see Chapter 4, Simulation Methodology). The additional hardware required for

compressing and decompressing the B∆I cache lines is discussed separately in Chapter 3.

2.3 Data Prefetching and Data Value Prediction

Prefetching is a method that can be used to reduce the miss rate of all three types of cache misses. Data

can be prefetched (read in parallel to execution, before it is requested), either directly into the next-level-

up cache or into a custom buffer that can be accessed faster than main memory [9]. While successful

prefetches can reduce memory latency and improve overall processor performance, unused prefetches will

have a negative impact on power consumption while having no positive impact on performance.

Data value prediction is similar to prefetching such that it employs a table-based predictor to improve

performance of the processor. Unlike prefetching, data value predictor tables do not store the address in

memory where the data exists. Rather, it stores the data itself – specifically the result of single-register

producing instructions. The processor then continues execution using this predicted result. If an incorrect

prediction is made, the processor pipeline must be flushed of any instructions that depend on this data.

The approach we take concerning prefetching is neither a direct application of prefetching nor of data value

prediction. Rather, our prefetcher predicts which address in the L1 data cache will be accessed based on

the program counter of each load instruction. Then, in parallel, the processor decompresses this data in the

cache, if it is compressed, and inserts it into an external buffer.

The key similarities between prefetching and data value prediction are the prediction table methods used.

These methods have been explored extensively for both applications. We look at this past research to

determine which tables are best suited for our application.

Reviewing the prediction schemes presented in literature, five types stand out as candidates for this work,

as discussed in [14]. The simplest, Last Outcome, is evaluated first to determine how quickly we can

recover the cost of decompression with the lowest possible complexity. Next, Stride and the hybrid

Stride/Last Outcome predictors are used and evaluated. Lastly, the Two-Level and hybrid Two-

Level/Stride predictors are looked at to capture more complex patterns. Global History Buffer is discussed

as a potential extension by evaluating the benefit of predictor tables with a depth greater than one.

11

2.3.1 Related Work in Prefetching

In [14], data value predictors are discussed using Last Outcome, Stride, 2-Level Pattern History methods,

and two hybrids of these methods. Data Value Prediction uses prediction tables in the same way as

prefetching. Data Value Predictors predict the data value rather than the address of the data in memory.

Accuracy is critical for Data Value Predictors because if an incorrect prediction is made, any progressed

instructions dependant on this value much be flushed out of the pipeline. The authors found that the Last

Outcome scheme was correct 28-62% of the time and incorrect up to 72% of the time. Stride was correct

35-77% and 3-6% incorrect. Two-Level makes minor improvements in prediction accuracy over Last

Outcome (1-3%). However, the two-level table scheme greatly improves the misprediction rate to 1-13%.

The first hybrid scheme implements Last Outcome when Stride is not in steady state. This results in a

correct predictions rate of 49-80% and incorrect predictions 20-51%. The second hybrid predictor combines

the 2-Level scheme with Stride. This scheme made correct predictions 50-82% of the time and

mispredictions only 5-18% of the time. This scheme is, however, the most complex to implement.

An important takeaway from this research are the incorrect prediction rates. In the Data Value Predictor

method, if we make an incorrect prediction, we must flush the processor of any instructions that depend on

the incorrect value. In our compression-prefetching method, we do not have to purge any information.

However, incorrect predictions will cause unnecessary cache accesses which will increase power and may

evict useful data from the decompression buffer (depending on the depth of the buffer).

In [6], the authors present a two-table prefetching scheme called Global History Buffer (GHB). GHB itself,

as with the above research on Data Value Predictors, explores multiple prediction schemes: Address

Correlation, Distance Correlation and Constant Stride. The key benefit of GHB is the two independently

sized tables. The first is the Index Table which only stores the tag and a pointer to the head of a list stored

in the GHB Table. The GHB acts as a circular buffer, keeping only the latest information. The authors

investigate different table configurations with a degree of four (values prefetched each access). They found

that GHB Distance prefetching resulted in a 20% speedup over conventional table Distance prefetching

when indexed by the miss address and 6% when indexed by the program counter (PC).

The key enabler of the Global History Buffer is to minimize space and hold the latest information about

cache misses. The same technique can be applied to our prediction table. However, this approach will only

be useful if tables with a depth greater than 1 prove to be valuable. The Global History Buffer approach

12

will not be explored directly in this work, but this work can easily be extended to explore this possibility in

a later study.

2.3.2 Last Outcome

For this thesis, prefetching techniques are used to predict which cache lines may require decompression

from L1 data cache before the instruction is decoded using the PC of the instruction. The intent is to load

the data from a compressed cache, decompress it, and make it available to the CPU in parallel with other

stages to remove the bottleneck that is decompression latency.

The simplest scheme that will be implemented is Last Outcome. Figure 2.5 shows the traditional

implementation of this scheme.

Figure 2.5 – Last Outcome Prefetching

In the figure, you see that a table exists to store two values for each entry: tag and value. Tag identifies the

load instruction address and Value identifies the memory address loaded by that instruction. The

configuration of the table can be varied similar to that of cache memory: associativity, depth (multiple

values per tag), etc. Unlike the traditional architecture, in this work it is not necessary to verify if the

prediction is correct in order to validate instructions with dependencies. If it is incorrect, the processor will

merely suffer the full latency of decompression.

13

2.3.3 Stride and Hybrid Stride / Last Outcome

As mentioned earlier, the authors in [14] propose a hybrid prediction table that implements a Constant

Stride prefetcher, and uses the Last Outcome result when the stride prefetcher is not in a steady state. We

have already reviewed the behaviour of the Last Outcome table. So, let us review the functionality of a

stride prefetcher.

Stride Prefetching

Similar to Last Outcome, we will be indexing the Stride table by Program Counter (PC) of each load

instruction. When an entry is updated in the table, the value of the stride is calculated as the difference

between the current and last memory addresses that are loaded. The state of the prefetcher can be Init,

Transient, or Steady. Therefore, as shown in Figure 2.6, the table requires four columns: Tag, State, Value,

and Stride.

Figure 2.6 – Stride Prefetching

When a line in the table is first entered, there is no previous data from which to calculate the stride. The

entry is in an initialized state. After this line is updated at least once, a stride can be calculated and the

entry is in the transient state. The line will remain in this transient state until an update occurs that produces

the same stride value as is currently stored in the table. When this occurs, the table is updated to steady

state and this value for the stride is used. Figure 2.7 shows an overview of the state machine for this

prefetcher.

14

Figure 2.7 – Stride State Machine

2.3.4 Two-Level and Hybrid Two-Level / Stride

In addition to a hybrid S/LO prefetch table, the authors in [14] propose a hybrid prediction table that

implements a Two-Level prefetcher, and uses the Stride result when the Two-Level prefetcher does not

make a prediction. We have already reviewed the behaviour of the Stride table. So, let us review the

functionality of a two-level prefetcher.

Two-Level Prefetching

Similar to the previous methods, we index the two-level table by Program Counter (PC) of each load

instruction. When an entry is updated in the table, the LRU and pattern information are updated. If the

address does not already exist in the table at this location, then the least-recently-used address is replaced.

As shown in Figure 2.8, the table requires four columns: Tag, LRU, Value History Pattern, and Data Values.

The data values in our case are load addresses.

A second table exists called the Pattern History Table. This table is indexed by the value history pattern

and ranks the addresses stored as values in the value history table. During the FETCH stage, if we hit the

prefetch table for a given load instruction PC, we index the PHT at the resultant pattern. If there exists a

rank greater than a pre-set threshold, then we predict that value from the prefetch table. During the MEM

stage, if a value in the table is the target of a load instruction, the rank is increased. The other values in the

table are decreased such that there is a net zero ranking.

As with the other tables, we are not concerned if a misprediction is made as the result will simply be a full

decompression latency seen by the MEM stage and an unused value eventually being evicted from the

decompression buffer.

15

Figure 2.8 – Two-Level Prefetch Table and Pattern History Table

2.4 Thesis Motivation

Among all the works mentioned so far relating to cache compression, there exists two common gaps in the

research. First, due to the impact of the decompression latency, apart from ZCA compression in [11],

previous work has not used compression in L1 cache. We hope to address this issue by introducing

prefetching of the decompressed information to side step this decompression latency in our architecture.

Second, all the works on compression that were mentioned above have focussed on using their compression

schemes to improve performance of the cache. This work intends on reviewing the benefit of reducing the

size of the cache to save power, and implementing prefetching as a means of maintaining performance.

16

Chapter 3

Cache Compression and Prefetching

In this chapter, we present a new architecture that combines cache compression with a prefetching

mechanism to predict which memory addresses might require decompression based on the program counter

of the instruction. The design of the compressor and decompressor hardware are discussed including the

selection of the hierarchical carry-lookahead adder and the theory behind it.

3.1 Compression Architecture

The compression architecture discussed in this work is a detailed implementation of the high-level design

presented by the authors in [4]. To implement this architecture for L1 data cache, we must consider when

data would be compressed and when it would be decompressed in a superscalar processor. In this

architecture, data compression takes place when data is written into the cache. That is, on any write

operation or a read miss. Decompression takes place on a read hit. These events are summarized in Table

3.1 and represent the major insertion points for this new architecture in a superscalar processor.

Table 3.1 – Compression Events

L1 Data Cache Event Action

Read Hit Decompress

Read Miss Compress

Write Hit Compress

Write Miss Compress

Decompression

On a Read Hit, we check the encoding bits for the hit cache line. If the line is encoded as compressed, we

put this cache line to the decompression hardware. After a number of cycles equal to the decompression

latency, the uncompressed result is available at the output of the decompressor hardware. If the line is not

17

compressed, the line is read as usual from the cache and is available in a number of cycles equivalent to the

access time of the L1 data cache.

The additional logic required to check the encoding bits to determine if the line is compressed or not is

included in the design of the decompressor. The CPU can read the result from the output of the

decompressor regardless of compression. If the data is uncompressed, the result will available significantly

faster as it is merely passing the input data through a single multiplexer.

Compression

On a Read Miss or Write Miss, we check the compressibility of the data to be written into the cache line.

Based on the best possible compression scheme that this data fits into, the size of the cache line is

determined. Then, we check the size of the cache set at the miss address. If there is room for the new cache

line, compressible or not, then it is written to the cache. If there is not enough room, we evict data in the

cache at that index in an LRU fashion until there is enough room.

On a Write Hit, we treat compressibility in the same manner as any miss with one minor change. When

determining the space remaining in the set at the write address, we do not consider the space currently

occupied by the hit address. This space will be overwritten by the new write data. This is critical as the

new data may consume more space and may not even be compressible. If this is the case, we can expect

one or more segments to be thrown from the cache to accommodate the new data.

Because updating the cache, and therefore compression, occurs off the critical execution path, this is not a

time-critical task. Therefore, each instance of writing data to the cache goes through the compressor

hardware. The compressor hardware itself, as you will see later in this chapter, checks the 64-byte data for

compressibility, selects the optimum compression scheme (or no compression scheme), and outputs the

encoding bits and data to be written (compressed or not). This means that no additional logic is required to

be added to the CPU to accommodate compression.

3.1.1 Power Considerations

When modelling the power consumption for this compression architecture, we can take into consideration

that fact that we are reading and writing smaller sets of data from and to the cache. Static power and tag

dynamic power remain the same. However, we can represent the data array dynamic energy calculation as:

18

 (3.1)

Relating to the cache events mentioned previously in Table 3.1, we can model power with respect to these

events as well. The power impact is shown in Table 3.2.

Table 3.2 – Power Events

L1 Data Cache Event Power Impact

Read Hit Tag Read, Data Read

Read Miss Tag Read, Tag Write, Data Write

Write Hit Tag Read, Tag Write, Data Write

Write Miss Tag Read, Tag Write, Data Write

3.2 Prefetching Architecture

From the compression architecture described earlier, you can see that we add decompression clock cycles

for a read hit if the data is compressed in the cache. These additional cycles are necessary to allow the

decompression hardware enough time to decompress the line. The purpose of the prefetching architecture

is to avoid having this decompression of L1 data cache lines on the critical path of the processor. To

accomplish this, we look for a way to perform decompression in parallel to other stages in the CPU.

Consider the classic RISC architecture shown in Figure 3.1 [9].

Figure 3.1 – Prefetching Applied to Classic RISC Architecture

In the Instruction Fetch (IF) stage, the program counter (PC) is used to access the next instruction from

memory. At this point, it is important to know if the next instruction is a load instruction, if the data to be

loaded is currently compressed in L1 data cache, and most importantly, what is the address of this data in

memory. If we have this information, we can then read the compressed data from L1 data cache and

decompress it in parallel with the Instruction Decode (ID) and Execution (EXE) stages.

accessperdynamiccompresseddynamic E
linecacheeduncompressofsize

linecachecompressedofsize
E ,, 

19

In the Memory Access (MEM) stage, data is read from memory at the address determined during the ID

and EXE stages. If we have a buffer containing cache lines that have been decompressed already, we will

read from here rather than from the cache.

We actually do not need to know much about the instruction to accomplish this. Similar to [14] and [15],

we index our prefetch table using only the PC of the instruction. We do not populate the table every time

we generate a single register result, as done in [14], nor do we populate the table on a cache miss. Rather,

in our architecture we add entries to our prefetch table each time we suffer the full decompression latency

on a compressed cache hit. This means that each entry represents a load instruction. At a minimum, we

store the address of the compressed cache line in the cache. Depending on the prefetch table scheme, we

store other information to aid in making a correct prediction of the next compressed address that is read by

this load instruction.

Figure 3.2 – Prefetch Table Structure

This architecture requires updating the behavior of the CPU in two key areas: FETCH stage and MEM

stage.

3.2.1 FETCH

After we fetch an instruction, we want to know if we should begin reading from the L1 data cache. We

check our prefetch table for an entry at the index of our program counter. If we return an address prediction

from the table, then we populate another table called the decompression buffer. The power considerations

for this table are shown in Table 3.3.

Table 3.3 – Prefetch Table Power Events

Prefetch Table Event Power Impact

Read Hit Tag Read, Data Read, Decompression Buffer Tag / Data Write

Read Miss Tag Read

20

If we are using one of the Two-Level prefetching schemes, we will require a second table access. This

table is referred to as the Pattern History Table (PHT). In this case, if the request hits the prefetch table, a

pattern is returned. We then read the PHT at the pattern index, and return a reference to a value that is

stored in the prefetch table. This value is the prediction address. The power considerations for the prefetch

table change as well, as we only read the table data if the PHT hits over the threshold.

Table 3.4 – Two-Level Table Power Events

Two-Level Table Event Power Impact

Prefetch Read Hit Prefetch Tag Read

Prefetch Read Miss Prefetch Tag Read

PHT Read Hit PHT Read, Prefetch Data Read Decompression Buffer Tag / Data Write

PHT Read Miss PHT Read

The decompression buffer contains the complete decompressed 64-byte cache lines. It is implemented as

a FIFO cache. This buffer should be large enough that data is not being evicted before it is required in the

MEM stage. However, as the table gets larger, the power consumption and access time rise. Therefore, we

need to determine the best value for this table experimentally.

3.2.2 MEM

In the MEM stage, for a load instruction, we will now know the actual address of the data to be read from

the cache. At this point in the new architecture, we read the decompression buffer to see if our data exists

there, decompressed. We will use the data if the PC and address of data in the buffer match the instruction

that is now in the MEM stage. If the data is there, we can read it as fast as the access time for the table.

The access time and power of the table depend on the size of the table.

Table 3.5 – Decompression Buffer Power Events

Decompression Buffer Event Power Impact

Read Hit Buffer Tag Read, Buffer Data Read

Read Miss Buffer Tag Read

If we are using a stride or two-level prefetcher, we use this opportunity to update the stride and stride state

or the pattern history of the entry in the prefetch table.

21

If we must access the cache directly in the MEM stage, this is where we add entries into our prefetch table.

However, we only do this if we are on the critical path. For example, we do not update our prefetch table

if we are decompressing into the decompression buffer.

3.3 Hardware Design

Because read latency is such an important aspect of cache memory, especially in L1 cache, this compression

scheme must be implemented at the architectural level (rather than at the software / compiler level).

Therefore, it requires additional hardware to implement compression / decompression. In [4], the authors

provide a high-level concept of the compression and decompression schemes. However, no design is

presented or evaluated. It is important to verify that the new hardware required for this proposed

architecture does not have power requirements that exceed the benefit of the architecture itself.

Furthermore, it is important to define the delay requirements for decompression, as this has a direct impact

on the performance of the CPU in the proposed architecture. For these reasons, we designed 64-byte

compressor and decompressor units in Verilog to confirm the power consumption penalty as well as the

hardware delay.

Compressor

The compressor unit contains separate hardware to evaluate the cache line for each type of compression

scheme in parallel. This method prioritizes speed over resource usage. Because much of the hardware

required to evaluate the different compression schemes is the same (largely based on adders / subtractors),

a more resource-optimized approach would be to evaluate each method serially using the same hardware.

In the future, it would be interesting to evaluate this approach for compression, as this task does not fall on

the critical execution path. In the current design, we evaluate each compression scheme in parallel with the

design shown in Figure 3.3.

To perform compression, the 64-byte cache line is divided into 2, 4, or 8-byte segments. The first segment

is chosen as the base. Then, this base is subtracted from each of the remaining segments. The result of this

subtraction is the array of deltas. A delta is stored as either a 1, 2, or 4-byte value, depending on the

compression scheme being used. If all deltas can be stored without overflow, then the compression is valid.

22

Figure 3.3 – Compressor Design

Decompressor

The decompressor unit follows the same design, except the subtraction operation is replaced by simple

addition. Unlike the compressor, it is important that we prioritize speed over resource usage in the

decompressor because our intent is to minimize the decompression latency. Figure 3.4 shows the design.

To perform decompression, the compressed cache line is divided into segments depending on the encoding

of the data. The first 2, 4, or 8 bytes is the base. The base is carried to the decompressed line as-is. The

remaining bytes are divided into 1, 2, or 4-byte deltas. These deltas are added to the base to create the

decompressed segment. As a redundancy, the first delta is always zero (representing the delta of the first

segment which is the base).

Figure 3.4 – Decompressor Design

The basis of the compressor and decompressor designs used for this project are 64-bit, 32-bit, and 16-bit

adders. Compression requires a subtraction operation between 8, 4, and 2-byte blocks within a single cache

line depending on the compression scheme. Decompression works in the opposite manner. Addition of 8,

4, and 2-byte “bases” with 1, 2, and 4-byte “deltas” restores the data to an uncompressed state. Large adders

are discussed in depth in [16] and, as with the overall design approach, provide the opportunity to prioritize

23

speed over resource allocation. Ultimately, we selected the hierarchical carry-lookahead adder as the basis

of the design due to its balance between speed and resource usage.

3.3.1 Hierarchical Carry-Lookahead Adder

The primary goal of this work is to avoid the latency of decompression on the critical execution path by

using prefetching to perform decompression in parallel. However, when prefetching fails (i.e. compulsory

misses during start-up, or when the predicted load address is incorrect), the processor will see the full

penalty of decompression. Therefore, it is important to minimize this delay as much as possible. The delay

of the decompressor depends on the design of the adders used in the new hardware.

Simple adders implement a “full adder” block for each bit and propagate carry bits serially through the

circuit. While these circuits use a small number of gates, and therefore consume less power, they are very

slow. Each bit requires the previous bits to be evaluated first causing many gate delays.

Alternatively, we can consider a full 64-bit carry lookahead adder. Because none of the stages execute

serially, this is one of the fastest adders we can implement here. However, because each bit requires the

same information as all previous bits, the complexity and size of this hardware would become excessive.

Nesbit and Smith describe a hierarchical carry-lookahead adder that divides the carry-lookahead function

into 8-bit blocks, which are each evaluated serially by propagating the carry bit through the circuit [15].

This approach is a trade-off between good speed and moderate resource usage. To describe this adder, we

must look at the definition for the full adder. The truth table of the full adder is shown in Figure 3.5 and

Karnaugh map in Figure 3.6.

24

𝑐𝑖 𝑥𝑖 𝑦𝑖 𝑐𝑖+1 𝑠𝑖

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Figure 3.5 – Truth Table for Full Adder

𝑥𝑖𝑦𝑖
𝑐𝑖 00 01 11 10

0 1

1 1 1 1

Figure 3.6 – Karnaugh Map for Full Adder

From the truth table and k-map, one can see that the carryout bit for a given stage can be determined as:

(3.2)

And the sum bit is the XOR of the three input signals:

(3.3)

Factoring the carry-in provides:

(3.4)

From this equation, two important functions are defined, generate and propagate. The generate function

is defined as:

(3.5)

iiiiiii cycxyxc 1

  iiiiii cyxyxc 1

iii yxg 

iiiiiiiiiiiii cyxcyxcyxcyxs 

25

The propagate function is defined as:

(3.6)

Leaving the relationship between the carryout and these functions as being:

(3.7)

So, let's look at the carryout of our first 8-bit block, 𝑐8:

(3.8)

Expanding this formula provides:

(3.9)

From this expanded view, we can define the generate and propagate signals for the entire block:

 (3.10)

And,

(3.11)

Which results in,

(3.12)

Later stages are calculated in the same way:

(3.13)

iii yxp 

iiii cpgc 1

7778 cpgc 

001234567012345671234567

2345673456745675676778

cppppppppgpppppppgpppppp

gpppppgppppgpppgppgpgc





012345671234567

2345673456745675676770

gpppppppgpppppp

gpppppgppppgpppgppgpgG





012345670 ppppppppP 

0008 cPGc 

001011

81116

cPPGPG

cPGc





26

In the modules that handle 2-byte bases, 16-bit adder/subtractors are used. In the modules that handle 4-

byte bases, 32-bit adder/subtractors are used. Finally, in the modules that handle 8-byte bases, 64-bit

adder/subtractors are used. Figure 3.7 shows the generic design of a 16-bit adder using smaller 8-bit

lookahead adders.

Figure 3.7 – Adder Design

3.3.2 Implementation in Verilog

The above derivations are the basis of the compressor and decompressor designs in Verilog. Source files

for these designs are included in Appendix A. The general structures of the designs are highlighted here to

show the modularity of the designs and the significance of the adders.

Compressor

The structure of the compressor design in Verilog, including the test bench used to verify the design, is as

follows:

testbench (compressor_testbench.v)
 compressor (compressor.v)
 bdi (bdi.v)
 hadder8 (hadder8.v)
 bdi32 (bdi32.v)
 hadder8 (hadder8.v)
 bdi16 (bdi16.v)
 hadder8 (hadder8.v)

Figure 3.8 – HDL Structure of Compressor

The module hadder8, implements the 8-bit adder block from a hierarchical carry-lookahead adder. That

is, it outputs the block generate (𝐺𝑖) and block propagate (𝑃𝑖) functions rather than the carryout (𝑐𝑖+1) as

does a typical ripple-carry adder.

27

The next module up implements as many of these 8-bit blocks as are necessary to perform the subtraction

function. These modules are also responsible for inverting the input to turn hadder8 into a subtractor.

• bdi implements a 64-bit adder, so 8 instances of hadder8 for “base 8” compression

• bdi32 implements a 32-bit adder, so 4 instances of hadder8 for “base 4” compression

• bdi16 implements a 16-bit adder, so 2 instances of hadder8 for “base 2” compression

These modules evaluate all delta sizes in parallel. For example, bdi outputs three valid bits: one for base 8

delta 4, one for base 8 delta 2, and one for base 8 delta 1.

The top module, compressor, is responsible for instantiating blocks of bdi, bdi32, and bdi16 on the cache

line to check for all three base sizes in parallel.

• 8 instances of bdi for “base 8” compression on a 512-bit cache line

• 16 instances of bdi32 for “base 4” compression on a 512-bit cache line

• 32 instances of bdi16 for “base 2” compression on a 512-bit cache line

Module compressor then takes all valid bits and determines which compression scheme will be used, if

any.

Testbench Strategy

To test the functionality of the compressor, testing was performed using Xilinx ISE WebPACK [17]. Input

stimulus to the compressor module is the 512-bit uncompressed cache line. Test points were chosen as the

boundary conditions for each of the six base/delta combinations as well as a simple zeros and repeating

values lines. A similar approach was taken to first test the Base-Delta-Immediate model in SimpleScalar.

Test cases are shown in Table 3.6 and the compressor output is shown functioning in Figure 3.9.

28

Table 3.6 – Compressor Test Cases

Test Case Base (S0=S3=…=Sn) Delta (S1=S2) Expected result

Zeros 0 (0x0…0) 0 (0x0…0) Zeros pass.

Repeating Values -1 (0xF…F) -1 (0xF…F) Repeating values pass.

Base 8 Delta 1 Lower Fail 0 (0x0…0) -129 (0xFFFFFFFFFFFFFF7F) B8D1 fail. B8D2 pass.

Base 8 Delta 1 Lower Pass 0 (0x0…0) -128 (0xFFFFFFFFFFFFFF80) B8D1 pass.

Base 8 Delta 1 Upper Fail 0 (0x0…0) 128 (0x0000000000000080) B8D1 fail. B8D2 pass.

Base 8 Delta 1 Upper Pass 0 (0x0…0) 127 (0x000000000000007F) B8D1 pass.

Base 8 Delta 2 Lower Fail 0 (0x0…0) -32,769 (0xFFFFFFFFFFFF7FFF) B8D2 fail. B8D4 pass.

Base 8 Delta 2 Lower Pass 0 (0x0…0) -32,768 (0xFFFFFFFFFFFF8000) B8D2 pass.

Base 8 Delta 2 Upper Fail 0 (0x0…0) 32,768 (0x0000000000008000) B8D2 fail. B8D4 pass.

Base 8 Delta 2 Upper Pass 0 (0x0…0) 32,767 (0x0000000000007FFF) B8D2 pass.

Base 8 Delta 4 Lower Fail 0 (0x0…0) -2,147,483,649 (0xFFFFFFFF7FFFFFFF) Not compressible.

Base 8 Delta 4 Lower Pass 0 (0x0…0) -2,147,483,648 (0xFFFFFFFF80000000) B8D4 pass.

Base 8 Delta 4 Upper Fail 0 (0x0…0) 2,147,483,648 (0x0000000080000000) Not compressible.

Base 8 Delta 4 Upper Pass 0 (0x0…0) 2,147,483,647 (0x000000007FFFFFFF) B8D4 pass.

Base 4 Delta 1 Lower Fail 0 (0x0…0) -129 (0xFFFFFF7F) B4D1 fail. B4D2 pass.

Base 4 Delta 1 Lower Pass 0 (0x0…0) -128 (0xFFFFFF80) B4D1 pass.

Base 4 Delta 1 Upper Fail 0 (0x0…0) 128 (0x00000080) B4D1 fail. B4D2 pass.

Base 4 Delta 1 Upper Pass 0 (0x0…0) 127 (0x0000007F) B4D1 pass.

Base 4 Delta 2 Lower Fail 0 (0x0…0) -32,769 (0xFFFF7FFF) Not compressible.

Base 4 Delta 2 Lower Pass 0 (0x0…0) -32,768 (0xFFFF8000) B4D2 pass.

Base 4 Delta 2 Upper Fail 0 (0x0…0) 32,768 (0x00008000) Not compressible.

Base 4 Delta 2 Upper Pass 0 (0x0…0) 32,767 (0x00007FFF) B4D2 pass.

Base 2 Delta 1 Lower Fail 0 (0x0…0) -129 (0xFF7F) Not compressible.

Base 2 Delta 1 Lower Pass 0 (0x0…0) -128 (0xFF80) B2D1 pass.

Base 2 Delta 1 Upper Fail 0 (0x0…0) 128 (0x0080) Not compressible.

Base 2 Delta 1 Upper Pass 0 (0x0…0) 127 (0x007F) B2D1 pass.

29

Figure 3.9 – Testbench Waveforms for Compressor in Xilinx ISE

Decompressor

The structure of the decompressor design in Verilog, including the test bench used to verify the design, is

as follows:

testbench (decompressor_testbench.v)
 decompressor (decompressor.v)
 hadd (hadd.v)
 hadder8 (hadder8.v)
 hadd32 (hadd32.v)
 hadder8 (hadder8.v)
 hadd16 (hadd16.v)
 hadder8 (hadder8.v)

Figure 3.10 – HDL Structure of Decompressor

The hadder8 module is identical to that of the compressor. The key differences between the decompressor

and compressor are that the second level modules (hadd, hadd32, and hadd16) do not convert hadder8

into a subtractor and they do not have to evaluate delta overflow. These modules strictly build the 64-bit,

32-bit, and 16-bit hierarchical carry-lookahead adders.

• hadd implements a 64-bit adder, so 8 instances of hadder8 for “base 8” decompression

• hadd32 implements a 32-bit adder, so 4 instances of hadder8 for “base 4” decompression

• hadd16 implements a 16-bit adder, so 2 instances of hadder8 for “base 2” decompression

30

The top module, decompressor, has much more work to do than that of the compressor. This module must

instantiate adders for each compression scheme, not just for each base.

• 8 instances of hadd for “base 8 delta 1” decompression on a 128-bit cache line

• 8 instances of hadd for “base 8 delta 2” decompression on a 192-bit cache line

• 8 instances of hadd for “base 8 delta 4” decompression on a 320-bit cache line

• 16 instances of hadd32 for “base 4 delta 1” decompression on a 160-byte cache line

• 16 instances of hadd32 for “base 4 delta 2” decompression on a 288-byte cache line

• 32 instances of hadd16 for “base 2 delta 1” decompression on a 272-byte cache line

With all these instances, module decompressor attempts decompress an input cache line using all 8

methods at once and even outputs a 512-bit decompressed cache line for each. Only the line with an

associated valid bit contains the correct data. Module decompressor sets this valid bit based on the input

encoding bits.

31

Chapter 4

Simulation Methodology

In this chapter, we discuss the method for evaluating the performance of the new compression and

prefetching architecture. The tools required to perform this analysis are discussed as well as the

environment used to perform testing.

4.1 Methodology

In this section, we describe four key tools used in performing this work: SimPoint, CACTI, SimpleScalar,

and Wattch.

SimPoint [18] is used to determine the intervals that can be executed to represent the full execution of a

given program. We use SimPoint as a means of reducing the simulation time and size of outputs from the

simulator without sacrificing the behavior of the benchmarks used. The decided simulation points are

tabulated and the percent error of each is determined based on a comparison of CPI between the weighted

simulation points and the full execution of the benchmark.

CACTI [19] is used to generate the static and dynamic power models for the various cache configurations

used for this thesis. In addition, we use CACTI to model the prefetch tables and the new decompression

buffer that is required for the proposed architecture. Configurations and power results are presented as they

are used as inputs into the simulator.

SimpleScalar (specifically a branch called Wattch), and the changes introduced in this work, are used to

model the behaviour of the cache compression and prefetching architectures.

A summary of the simulation approach is shown in Figure 4.1 and discussed in detail in the following

sections.

32

Figure 4.1 – Simulation Flow Diagram

4.1.1 Simpoint

For this thesis, parts of the SPEC CPU 2000 benchmark suite are used. Full runs of these benchmarks can

take days to run even in a simple performance simulator (e.g. sim-fast). Running these in a detailed

simulator such as sim-outorder, and especially in the modified version that we have developed, can take

much longer. Therefore, it was necessary to identify smaller intervals of these benchmarks that could be

executed. SimPoint is a tool that was created to choose simulation intervals that best represent the full

program execution. SimPoint does this in four steps: Basic Block Vector (BBV) Analysis, Random

Projection, Phase Classification, and Simulation Point Selection [18].

BBV Analysis

The Basic Block Vector (BBV) contains information about the behaviour of the program with respect to

basic blocks. A basic block is a section of the program with one entry point and one exit point that executes

from start to finish. The BBV itself is an array of elements representing the frequency each basic block is

entered for a given execution interval (weighted by the number of instructions in that block).

For this thesis, BBV information for the SPEC CPU 2000 benchmarks is created using the tool Sim-Fast

BBV Tracker. This tool is provided by the creators of SimPoint and is a modified version of SimpleScalar

that generates the BBV files during execution of sim-fast.

33

Random Projection, Phase Classification, and Simulation Point Selection

SimPoint analyses the BBV file generated by the previous step and chooses a representation of each phase

by finding the interval closest to the centre of the phase. Then, SimPoint determines the weight of that

simulation point based on the number of intervals in that phase of the program's execution.

SimPoint Results

For this work, an interval of 100 million instructions is chosen for determining simulation points. The

selection of 100 million instruction intervals is a balance between 1 billion, which generates very large

output data, and 10 million, which is too small to run without performing a “warmup” routine. The authors

state that 100 million is an appropriately sized interval to avoid the need to bring the simulations to a

“warmup” state [16]. The maximum number of clusters in the k-means algorithm [20] executed in

SimPoint was chosen based on the error produced by the resultant simulation points.

Choosing a single cluster would result in the simplest implementation. That is, no weighing or combination

of results would be necessary. This method, however, does not yield good results, as most programs will

contain multiple phases. The authors use the percent error in CPI between the full execution and the

weighted simulation points as a means of evaluating the accuracy of the method. Rather than arbitrarily

choosing a maximum number of clusters, we use this same method to evaluate the error as the authors do

in [21].

Given a set of simulation points and weights, the following is the correct method of calculating the weighted

CPI [22],

 (4.1)

Using 164.gzip as an example, for M = 3:

Table 4.1 – 164.gzip CPI Values by Simulation Point

Simulation Point Weight CPI

6 0.296296 0.5884

15 0.222222 0.5289

25 0.481481 0.5790

nnCPIWeightCPIWeightCPIWeightCPI  ...2211

34

 (4.2)

Comparing this with the CPI result from the full execution, we can calculate the % error:

(4.3)

Table 4.2 contains this error calculation for 18 of the SPEC CPU 2000 benchmarks for maximum number

of clusters (M) from 1 to 3.

Table 4.2 – Simpoint Error by Maximum Number of Clusters

Benchmark M=1 M=2 M=3

164.gzip 0.68% 0.19% 0.37%

168.wupwise 2.69% 2.79% 0.45%

171.swim 49.28% 8.16% 0.02%

172.mgrid 2.43% 0.57% 0.10%

173.applu 7.71% 5.72% 0.93%

175.vpr 2.84% 1.56% 3.07%

176.gcc 3.56% 6.62% 2.53%

177.mesa 0.29% 0.07% 0.03%

179.art 1.65% 0.09% 0.05%

181.mcf 23.20% 2.12% 4.39%

183.equake 1.48% 0.14% 0.48%

188.ammp 4.85% 0.00% 1.77%

197.parser 6.84% 14.20% 5.14%

253.perlbmk 0.15% 0.04% 0.29%

255.vortex 5.69% 4.44% 1.48%

256.bzip2 17.60% 13.80% 14.64%

300.twolf 4.28% 0.69% 0.00%

301.apsi 11.60% 11.64% 12.25%

5707.0

)5790.0)(481481.0()5289.0)(222222.0()5884.0)(296296.0(



CPI

 

 

 

%37.0

100
5728.0

0021.0

100
5728.0

5707.05728.0

100%
int











Full

SimpoFull

CPI

CPICPI
Error

35

As can be seen from the data, the amount of error is significant in the benchmarks 171.swim, 181.mcf,

197.parser, 256.bzip2, and 301.apsi. The authors of SimPoint evaluated the SPEC CPU 2000 benchmarks

using a maximum number of clusters equal to 10 for intervals of 100 million instructions. In their data, the

maximum percent error was 5.47%. So, we then evaluated the 18 benchmarks with these same parameters.

The results are shown in Table 4.3.

Table 4.3 – SimPoint Error

Benchmark Instructions (Full) CPI (Full) CPI (Simpoint) % Error

164.gzip 2702173004 0.5728 0.5744 0.27%

168.wupwise 607580800644 0.6840 0.6831 0.13%

171.swim 440458734007 1.0914 1.1025 1.02%

172.mgrid 900584206345 0.5846 0.5849 0.06%

173.applu 827051421403 0.6924 0.6929 0.07%

175.vpr 86587310713 0.9186 0.9293 1.17%

176.gcc 84506842637 0.5707 0.5719 0.20%

177.mesa 304718816959 0.5779 0.5771 0.14%

179.art 10917697312 1.4175 1.4189 0.10%

181.mcf 49073257000 2.4408 2.5668 5.16%

183.equake 175021725999 1.0339 1.0333 0.05%

188.ammp 350015586932 0.9809 0.9834 0.25%

197.parser 9628364671 1.0034 1.0550 5.14%

253.perlbmk 1389497618 0.8167 0.8190 0.29%

255.vortex 114074663283 0.5291 0.5313 0.41%

256.bzip2 113183466499 0.5165 0.5208 0.84%

300.twolf 1394388332 0.8594 0.8586 0.09%

301.apsi 816009733414 0.6981 0.6820 2.31%

The maximum percent error from this method is 5.16% which is less than that of the 5.47% in the author's

results, but quite similar. Therefore, for the purposes of this thesis, all benchmarks are executed for a

maximum of 10 intervals of 100 million instructions as generated by SimPoint in the method discussed

above. The resulting simulation points and their weights are shown in Table 4.4.

36

Table 4.4 – 100M SimPoint Results

Benchmark Simulation Point Weight Benchmark Simulation Point Weight

164.gzip 6 0.296296 173.applu 3690 0.0613059

164.gzip 14 0.111111 173.applu 3833 0.0669891

164.gzip 15 0.185185 173.applu 6512 0.273398

164.gzip 23 0.407407 173.applu 6542 0.0322854

168.wupwise 59 0.00510288 173.applu 7986 0.0401451

168.wupwise 100 0.0454321 175.vpr 2 0.0254335

168.wupwise 389 0.510288 175.vpr 354 0.439306

168.wupwise 825 0.38963 175.vpr 456 0.323699

168.wupwise 3487 0.0138272 175.vpr 582 0.211561

168.wupwise 5418 0.0357202 176.gcc 3 0.392899

171.swim 1201 0.0817439 176.gcc 22 0.0461538

171.swim 1362 0.0610808 176.gcc 214 0.0485207

171.swim 2397 0.157584 176.gcc 229 0.0639053

171.swim 2729 0.0569936 176.gcc 305 0.127811

171.swim 3008 0.156222 176.gcc 321 0.0556213

171.swim 3083 0.136921 176.gcc 561 0.126627

171.swim 3125 0.236149 176.gcc 694 0.138462

171.swim 4016 0.0560854 177.mesa 252 0.0203479

171.swim 4072 0.0572207 177.mesa 1271 0.13423

172.mgrid 1093 0.0715158 177.mesa 1276 0.225796

172.mgrid 2407 0.388895 177.mesa 1417 0.328848

172.mgrid 4844 0.0599667 177.mesa 1845 0.0994421

172.mgrid 6231 0.179789 177.mesa 2962 0.185756

172.mgrid 6309 0.0896169 177.mesa 3034 0.00557926

172.mgrid 6347 0.0579678 179.art 0 0.00917431

172.mgrid 7271 0.118712 179.art 13 0.155963

172.mgrid 8395 0.0335369 179.art 40 0.247706

173.applu 139 0.272551 179.art 45 0.00917431

173.applu 942 0.0962515 179.art 47 0.577982

173.applu 1076 0.1052 181.mcf 17 0.0938776

173.applu 1872 0.0518742 181.mcf 169 0.281633

37

Table 4.4 – 100M SimPoint Results (continued)

Benchmark Simulation Point Weight Benchmark Simulation Point Weight

181.mcf 200 0.126531 255.vortex 159 0.0710526

181.mcf 247 0.0836735 255.vortex 359 0.134211

181.mcf 277 0.328571 255.vortex 387 0.148246

181.mcf 350 0.044898 255.vortex 510 0.00877193

181.mcf 378 0.0408163 255.vortex 526 0.0763158

183.equake 15 0.0142857 255.vortex 710 0.455263

183.equake 60 0.0782857 256.bzip2 9 0.10168

183.equake 147 0.0794286 256.bzip2 52 0.102564

183.equake 931 0.204571 256.bzip2 94 0.129973

183.equake 961 0.202857 256.bzip2 212 0.116711

183.equake 1210 0.217714 256.bzip2 254 0.161804

183.equake 1551 0.202857 256.bzip2 272 0.0565871

188.ammp 14 0.00942857 256.bzip2 486 0.0742706

188.ammp 271 0.128571 256.bzip2 497 0.114943

188.ammp 568 0.195143 256.bzip2 539 0.0884173

188.ammp 661 0.132857 256.bzip2 587 0.0530504

188.ammp 1822 0.0148571 300.twolf 0 0.0769231

188.ammp 1896 0.130286 300.twolf 1 0.0769231

188.ammp 1970 0.0865714 300.twolf 2 0.0769231

188.ammp 2171 0.0611429 300.twolf 4 0.307692

188.ammp 2251 0.0114286 300.twolf 10 0.461538

188.ammp 2912 0.229714 301.apsi 167 0.101471

197.parser 27 0.15625 301.apsi 653 0.603554

197.parser 43 0.604167 301.apsi 2083 0.0463235

197.parser 66 0.239583 301.apsi 2453 0.0253676

253.perlbmk 0 0.0769231 301.apsi 2865 0.135294

253.perlbmk 1 0.230769 301.apsi 2923 0.0205882

253.perlbmk 10 0.692308 301.apsi 5422 0.0101716

255.vortex 55 0.0464912 301.apsi 5428 0.0448529

255.vortex 104 0.0596491 301.apsi 5986 0.0123775

38

4.1.2 CACTI

CACTI is a cache and memory access time, cycle time, area, leakage power, and dynamic energy modelling

tool [23]. For the purposes of this thesis, the access time, leakage power, and dynamic energy calculations

performed by CACTI are the focus. For specific cache configurations, the access time, leakage power, and

dynamic energy parameters are determined and used as input into the simulator.

CACTI 6.5 was built from source and used for this thesis. One modification is made to CACTI to output

the dynamic energy (tag, data, and total) for the write operation. The details of this change, building, and

using CACTI are not included in this report.

CACTI Results

From the output of CACTI, the following lines are particularly relevant for this thesis and are used as input

into the simulator:

Access time (ns): ...

Data array: Total dynamic read energy/access (nJ): ...

Data array: Total dynamic write energy/access (nJ): ...

Total leakage read/write power of a bank (mW): ...

Tag array: Total dynamic read energy/access (nJ): ...

Tag array: Total dynamic write energy/access (nJ): ...

Total leakage read/write power of a bank (mW): ...

Figure 4.2 – CACTI Output

Table 4.5 shows all the L1 cache configurations used for this thesis. The first configuration in the table

represents the baseline scheme with no compression. The next two represents a compressed cache of half

the size of the baseline. The tag and data banks for the compressed scheme are modelled in separate runs

in CACTI.

Table 4.5 – CACTI L1 Cache Configurations and Power Results

Configuration Data
(bytes)

Assoc. Tag
(bits)

Data Read
(nJ)

Data Write
(nJ)

Data Static
(mW)

Tag Read
(nJ)

Tag Write
(nJ)

Tag Static
(mW)

Access
Time (ns)

Cycles
@ 3GHz

BASELINE 65536 2 17 0.254468 0.29159 25.0286 0.00642276 0.00698272 1.22089 1.65339 5

(4.96017)

COMPRESSED
DATA

32768 1 17 0.149461 0.164224 13.6143 - - - 1.24155 4
(3.72465)

COMPRESSED

TAG

65536 2 53 - - - 0.0113552 0.0261866 3.29114 1.80514 6

(5.41542)

39

Table 4.5 shows all the L2 cache configurations used for this thesis.

Table 4.6 – CACTI L2 Cache Timing

Configuration Size

(bytes)

Assoc. Tag

(bits)

Access Time

(ns)

Cycles

@ 3GHz

BASELINE 1048576 4 default 3.4286 11 (10.2858)

CACTI was also used to model the energy consumption of the prefetch tables. Data size is assumed to be

4 bytes per address in this model to store the target address of the load instruction.

Table 4.7 – CACTI Prefetch Table Configurations and Power Results

Configuration Size
(bytes)

Tag (bits) Data Read
(nJ)

Data Write
(nJ)

Data Static
(mW)

Tag Read
(nJ)

Tag Write
(nJ)

Tag Static
(mW)

Access
Time (ns)

Cycles
@ 3GHz

LO

128

512 25 0.00549938 0.00612263 0.229478 0.00219443 0.00273977 0.209592 0.932003 3

(2.796009)

LO
1024

4096 22 0.0146796 0.016525 1.89212 0.00687723 0.00530333 1.20125 1.1291 4
(3.3873)

LO

2048

8192 21 0.0196109 0.0182605 3.50766 0.00937441 0.00836156 2.70726 1.28211 4

(3.84633)

STRIDE
128

512 43
(25+16+2)

0.00558349 0.00620673 0.240491 0.00320262 0.00405959 0.320843 0.924437 3
(2.773311)

STRIDE

1024

4096 40

(22+16+2)

0.0146796 0.016525 1.89212 0.0083401 0.0106468 2.31192 1.25809 4

(3.77427)

STRIDE
2048

8192 39
(21+16+2)

0.0196109 0.0182605 3.50766 0.0136775 0.0125793 4.30645 1.29731 4
(3.89193)

HYBRID S/LO

128

512 43

(25+16+2)

0.00558349 0.00620673 0.240491 0.00320262 0.00405959 0.320843 0.924437 3

(2.773311)

HYBRID S/LO
1024

4096 40
(22+16+2)

0.0146796 0.016525 1.89212 0.0083401 0.0106468 2.31192 1.25809 4
(3.77427)

HYBRID S/LO

2048

8192 39

(21+16+2)

0.0196109 0.0182605 3.50766 0.0136775 0.0125793 4.30645 1.25809 4

(3.77427)

2LEVEL
128

1024 30
(25+1+4)

0.00702388 0.00677314 0.493251 0.00243052 0.00305377 0.234909 0.959845 3
(2.879535)

2LEVEL

1024

8192 27

(22+1+4)

0.0196109 0.0182605 3.50766 0.00751555 0.00650857 1.38357 1.14894 4

(3.44682)

2LEVEL

2048

16384 26

(21+1+4)

0.0322663 0.0309884 6.95555 0.0184487 0.0115735 6.12193 1.28954 4

(3.86862)

HYBRID 2L/S

128

1024 48

(25+1+4+16+2)

0.00720647 0.00695573 0.431373 0.0034364 0.00437127 0.345173 0.94776 3

(2.84328)

HYBRID 2L/S
1024

8192 45
(22+1+4+16+2)

0.0196109 0.0182605 3.50766 0.00968252 0.0124506 2.72231 1.27512 4
(3.82536)

HYBRID 2L/S

2048

16384 44

(21+1+4+16+2)

0.0322663 0.0309884 6.95555 0.0244858 0.0227288 9.34134 1.60081 5

(4.80243)

40

For two-level prefetching, we require a second table called the Pattern History Table (PHT). This table is

indexed by the access pattern and stores an integer value for each of the data values stored in the prefetch

table.

Table 4.8 – CACTI Pattern History Table Power Results

Configuration Size
(bytes)

Tag (bits) Data Read
(nJ)

Data Write
(nJ)

Data Static
(mW)

Tag Read
(nJ)

Tag Write
(nJ)

Tag Static
(mW)

Access
Time (ns)

Cycles
@ 3GHz

PHT 2D4P 64 4 0.0029709 0.00305794 0.0334625 0.00390386 0.000401266 0.0120452 0.575184 2

(1.725552)

Lastly, a decompression buffer is considered with 64-byte data and 1K sets. In CACTI, this buffer is

modeled as L1 cache.

Table 4.9 – CACTI Decompression Buffer Power Results

Configuration Size
(bytes)

Tag (bits) Data Read
(nJ)

Data Write
(nJ)

Data Static
(mW)

Tag Read
(nJ)

Tag Write
(nJ)

Tag Static
(mW)

Access
Time (ns)

Cycles
@ 3GHz

BUFFER 1K 1024 64

(32 + 32)

0.00702388 0.00677314 0.493251 0.00186356 0.00203764 0.0708125 0.835837 3

(2.507511)

41

4.1.3 SimpleScalar

To be able to measure the benefit of implementing cache compression with a prefetching mechanism, we

use SimpleScalar to model the performance of the CPU.

SimpleScalar is an open-source processor modelling tool that is meant to be built upon for specific

applications such as this work. SimpleScalar is written in C. The tool can emulate different instruction

sets, including Alpha, ARM, x86, but most importantly PISA [24]. The binaries for the SPEC CPU 2000

benchmarks used for this work are compiled to PISA.

Wattch is a specific branch of SimpleScalar for analyzing and optimizing power consumption in the

architecture of a CPU [5]. Wattch provides us with a mechanism to compare our power consumption in

the cache and new hardware with the overall power consumption of the CPU.

4.1.3.1 Compression

To confirm the feasibility of this work, we check how many cache lines within the 18 benchmarks are

compressible using the Base-Delta-Immediate compression scheme. To do this, we model Base-Delta-

Immediate in SimpleScalar.

In this compression scheme, cache lines are compressed before they are written to the cache. Cache lines

are written when they miss the cache or on a write hit. Therefore, we must add functionality to the simulator

when we these events occur, as mentioned previously in Table 3.1.

Zeros

The check for zeros compressibility is straightforward. We iterate through all elements of the cache line

array and flag zeros compressibility as not possible if any element does not equal zero.

Repeating Values

In the scheme proposed by the authors in [4], repeating 8-byte values are considered. Therefore, we check

compressibility for this while checking for other “base 8” schemes. Starting at element zero, we concatenate

the values of the next seven bytes to the current byte, then iterate through the cache line array by a stride of

8. At each iteration through the array, we check if the new 8-byte value equals the 8-byte value at element

0. If any element does not equal element zero, we flag repeating values compressibility as not possible.

42

Base-Delta-Immediate

Separate arrays and separate loops handle the compressibility check for each size of base. Base 8 behaves

as described above. Base 4 iterates though the array in stride of 4, Base 2 in strides of 2.

To verify the compressibility of a Base-Delta-Immediate scheme, we check that each delta does not

overflow its datatype referenced either from the base or from zero (immediate). If the second option is

taken (immediate), then the immediate flag is set for that iteration. Table 4.10 shows the overflow

parameters of each delta.

Table 4.10 – Delta Datatype and Overflow Information

Delta Data Type Floor Ceiling

1 signed char -128 127

2 signed short -32768 32767

4 sighed int -2147483648 2147483647

Validation of the Compression Model

To confirm that we have correctly modeled Base-Delta-Immediate compression in SimpleScalar, we write

a program to exercise the boundary condition of each of the compression schemes, cross-compile that

program to the PISA instruction set, and run this program through our model and verify the results.

This program consists of 26 arrays containing 64 1-byte elements. Those arrays contain the cache line

values that exercise the boundaries of the model. Table 4.11 shows these values.

43

Table 4.11 – Boundary Conditions for Compression
array description significant value

char z[64] Zeros 0 (0x0…0)

char r[64] Repeating Values -1 (0xF…F)

char b8d1lf[64] Base 8 Delta 1 Lower Fail -129 (0xFFFFFFFFFFFFFF7F)

char b8d1lp[64] Base 8 Delta 1 Lower Pass -128 (0xFFFFFFFFFFFFFF80)

char b8d1uf[64] Base 8 Delta 1 Upper Fail 128 (0x0000000000000080)

char b8d1up[64] Base 8 Delta 1 Upper Pass 127 (0x000000000000007F)

char b8d2lf[64] Base 8 Delta 2 Lower Fail -32,769 (0xFFFFFFFFFFFF7FFF)

char b8d2lp[64] Base 8 Delta 2 Lower Pass -32,768 (0xFFFFFFFFFFFF8000)

char b8d2uf[64] Base 8 Delta 2 Upper Fail 32,768 (0x0000000000008000)

char b8d2up[64] Base 8 Delta 2 Upper Pass 32,767 (0x0000000000007FFF)

char b8d4lf[64] Base 8 Delta 4 Lower Fail -2,147,483,649 (0xFFFFFFFF7FFFFFFF)

char b8d4lp[64] Base 8 Delta 4 Lower Pass -2,147,483,648 (0xFFFFFFFF80000000)

char b8d4uf[64] Base 8 Delta 4 Upper Fail 2,147,483,648 (0x0000000080000000)

char b8d4up[64] Base 8 Delta 4 Upper Pass 2,147,483,647 (0x000000007FFFFFFF)

char b4d1lf[64] Base 4 Delta 1 Lower Fail -129 (0xFFFFFF7F)

char b4d1lp[64] Base 4 Delta 1 Lower Pass -128 (0xFFFFFF80)

char b4d1uf[64] Base 4 Delta 1 Upper Fail 128 (0x00000080)

char b4d1up[64] Base 4 Delta 1 Upper Pass 127 (0x0000007F)

char b4d2lf[64] Base 4 Delta 2 Lower Fail -32,769 (0xFFFF7FFF)

char b4d2lp[64] Base 4 Delta 2 Lower Pass -32,768 (0xFFFF8000)

char b4d2uf[64] Base 4 Delta 2 Upper Fail 32,768 (0x00008000)

char b4d2up[64] Base 4 Delta 2 Upper Pass 32,767 (0x00007FFF)

char b2d1lf[64] Base 2 Delta 1 Lower Fail -129 (0xFF7F)

char b2d1lp[64] Base 2 Delta 1 Lower Pass -128 (0xFF80)

char b2d1uf[64] Base 2 Delta 1 Upper Fail 128 (0x0080)

char b2d1up[64] Base 2 Delta 1 Upper Pass 127 (0x007F)

Running our benchmark through our compression model in SimpleScalar, we get the following result,

which matches the expected behaviour of the compressor hardware.

sim_num_byte_reads 187 # total number of byte reads
sim_num_zero_blocks 1 # total number of zero block reads
sim_num_repeats_blocks 1 # total number of repeats block reads
sim_num_del81_blocks 2 # total number of base 8 delta 1 reads
sim_num_del41_blocks 2 # total number of base 4 delta 1 reads
sim_num_del82_blocks 4 # total number of base 8 delta 2 reads
sim_num_del21_blocks 2 # total number of base 2 delta 1 reads
sim_num_del42_blocks 4 # total number of base 4 delta 2 reads
sim_num_del84_blocks 4 # total number of base 8 delta 4 reads
sim_num_uncompr_blocks 167 # total number of uncompressed reads

Figure 4.3 – Compression Model Verification Results

44

4.1.3.2 Compression with Prefetching Model

To implement the compression and prefetching model, we implement two key behaviours to the simulator:

(1) Read the prefetch table during fetch of a load instruction and, if we hit the table and return a

prediction address, add the address to the decompression buffer along with a ready time equal to

the current cycle plus all delays that block that data. Specifically affecting the decompression

buffer are the prefetch table access time, the L1 data cache access time, and the decompression

latency.

 (2) Read decompression buffer before accessing L1 data cache to confirm if the correct address

was there. Before running the cache_access() function for L1 data cache, we check if we have a

correct PC and address in the decompression buffer. If we do, then our prefetch function will have

correctly predicted the load address. If the PC and address are not correct in the decompression

buffer, then we experience the full decompression latency and update our prefetch table

information.

4.1.3.3 Stage Delays

Baseline SimpleScalar and Wattch implement single cycle pipeline stages. This is not a realistic model for

many processors. Therefore, we implement a mechanism to include options for additional delays in each

stage. The delays used in this work are based on [25]. To implement this, a new queue is added to store

instructions delayed in the pipeline. This queue is monitored at the end of each stage and submits operations

each cycle as they are ready.

4.1.3.4 VCD Output

A critical part of the power analysis in this work is to compare the power consumption of the new hardware

to that of the processor and the cache. For this, we use Cadence Genus. To achieve an accurate dynamic

power model in Cadence Genus, we need to set the actual input characteristics of the cache. To do this, we

generate what is called a Value Change Dump (VCD) stimulus for the hardware for each of the simulation

points run in the simulator. The header information of the compressor VCD file is shown in Figure 4.4.

45

$date
2017-05-31 19:06:21 EDT
$end

$version
VCD version 0.1
$end

$timescale
1 ps
$end

$scope
module compressor
$end

$var
wire 512 ! x
$end

$upscope $end
$enddefinitions $end

#0

$dumpvars
b0 !
$end

Figure 4.4 – Compressor VCD Header

Then, following the header, for each instance of compression (each L1 data cache miss or write hit), a

timestamped update is written into the VCD file. The timestamp is calculated using the frequency option

for the CPU and the number of cycles:

(4.4)

The timestamp is written to the VCD file followed by the value of the compressor input as a 512-character

ASCII string. Figure 4.5 shows an example of this.

cyclesim
f

t
GHz

psVCD _
1000

, 

46

#34632
b000
001010000000000000000000000000001000
000000000000000000000010001000001000
00010100011000001000
001000000000000000
00100000001001010100000000000000
000000000000000000000000000000000 !

Figure 4.5 – Compressor VCD ASCII Value

For the decompressor, a carry bit is initialized to zero and the encoding bits are updated every time. The

decompressor header must declare different variables as shown in Figure 4.6. An example of a timestamped

update to the decompressor VCD file is shown in Figure 4.7.

$var wire 512 ! x $end
$var wire 1 # carry $end
$var wire 4 $ encoding $end

Figure 4.6 – Decompressor VCD Header Variables

#864801
b000
00
00
00000101000010101000010100000101100001010000110010000101000011101000010100001010
10000101000011101000010010001101100001001001001000000100110000100000010011000001
00000100110011110000010011001011100001000101100000000100011010000000010001101110
000000111000000000000000010011101 !
b0111 $

Figure 4.7 – Decompressor VCD ASCII Value

4.1.3.5 SimPoint Implementation

Baseline SimpleScalar and Wattch allow for fast forwarding through a benchmark and running a certain

block of instructions. This is implemented through the runtime options -fastfwd and -max:inst. The first

is implemented as a signed integer and the second as an unsigned integer. This means, the deepest interval

that can be run for any program is from instruction 2,147,483,648 to 6,442,450,942. Looking back at the

results of our SimPoint analysis in Table 4.4, we see that our largest simpoint is 8395 for benchmark

172.mgrid. This means we are required to execute from instruction 839,500,000,001 to 839,600,000,000.

47

To accommodate this, we implement two new options at runtime -interval and -simpoint. The first is

simply a renaming of -max:inst. The second, simpoint, is the multiple of interval that fastfwd should be

set to. By declaring fastfwd as a 64-bit unsigned integer, we can accommodate all of our simpoints.

4.1.3.6 Technology Scaling

Out-of-the-box Wattch is based on 180nm technology parameters provided in an early technical report for

CACTI. In power.h, Wattch is set up to allow for configuration and scalability of the CMOS feature size,

as well as the CPU frequency used for calculations. To accommodate our chosen frequency of 3 GHz and

the 90nm CMOS used to create the hardware for this thesis, the following updates were made to power.h:

Macro TECH_POINT10 contains scaling definitions to bring the 180nm parameters down to a 100nm

equivalent. Scaling exists for wire capacitance, wire resistance, feature length, feature area, voltage,

threshold voltage, sense voltage, and overall power scaling.

Macro FUDGEFACTOR is used to scale results, further beyond that of the chosen tech point, from the CACTI

function calculate_time that is built into Wattch. FUDGEFACTOR is given by dividing the defined technology

size by the desired value:

(4.5)

Macro Mhz is used to define the frequency used throughout the power calculations.

1111.1

90

100







nm

nm

TECH

TECH
RFUDGEFACTO

DESIRED

DEFINED

48

4.1.4 Environment

Across the 18 benchmarks used, with a maximum SimPoint cluster size of 10, there are 122 total simulation

points to be executed per configuration. With 12 configurations, there are 1464 instances of the simulator

to be executed per simulation batch.

Benchmarking is performed on Lakehead University’s 240 core Linux Cluster, Wesley [26]. Jobs are

queued to the cluster using Torque. The output of the batch on Wesley are 1464 simulation result reports

and 2928 Value Change Dump (VCD) files.

These 4392 files are moved from Wesley to Lakehead University’s CMC server. Executed via scripting in

Tcl, the hardware is synthesized and mapped for the compressor in Cadence Genus, then the compressor

VCD file for each simulation point is input into Genus and the associated report file is appended with the

dynamic power analysis results. This process is then repeated for the decompressor.

4.2 Synthesis and Static Power Analysis

In this section, the synthesis of this design using Cadence Genus is discussed as well as timing and power

results and the selection of the 90nm Cadence Generic PDK. Place and route is presented for this design

using Cadence Innovus.

Initial Analysis and PDK Selection

To evaluate the speed and power consumption of the hardware, the Verilog design files are synthesized

using Cadence Genus Synthesis Solution.

Two process design kits were considered for this thesis, Cadence Generic 90nm PDK and FreePDK 45nm.

Although power consumption is the focus of this work, the selection of the PDK was based on the delay

for the decompressor, which lies on the critical execution path. Table 4.12 shows the results of this initial

analysis.

49

Table 4.12 – Initial Static Power Analysis of Decompressor by PDK

Library Delay (ps) Static Power (nW)

Cadence 90nm Generic PDK v3.3 (fast.lib) 655 900,979.421

Cadence 90nm Generic PDK v3.3 (typical.lib) 1026 408,689.271

Cadence 90nm Generic PDK v3.3 (slow.lib) 2463 408,202.239

Cadence 90nm Generic PDK v3.3 (ss.0v75.lib) 3339 225,913.359

Cadence 90nm Generic PDK v3.3 (ss.0v67.lib) 4086 162,813.881

FreePDK 45nm v1.4 (gscl45nm.lib) 971 425,171.716

As can be seen from the results, the fast library from the Cadence 90nm GPDK is the fastest. At 655ps,

even with any overhead that has not been accounted for, it is reasonable to assume that this hardware can

provide decompression within 4 cycles at 3GHz. This assumption carries into the simulator discussed in

the following section of this report.

Static Power

Static Power Analysis in Cadence Genus is straightforward. The Liberty Timing File (.lib) from the Process

Design Kit (PDK) defines a parameter, cell_leakage_power, which is static power on a per-cell basis.

After synthesizing the design, we can run the gates report to determine how many instances of each cell is

used in the synthesized design.

Gate Instances Area Library
--
AND2X1 631 2865.623 fast

...

XNOR2X1 139 1157.300 fast
--
total 16366 67124.920

Figure 4.8 – Genus Gates Report for Compressor (Condensed)

From this, we can validate Genus’ static power calculation. Table 4.13 shows this validation for the

compressor, Table 4.14 for the decompressor.

50

Table 4.13 – Compressor Static Power Determination
gate cell_leakage_power instances total static power (nW)

AND2X1 44.6239 631 28157.6809

AND4X1 42.646 138 5885.148

AND4XL 40.714 2 81.428

AO21X1 84.9143 72 6113.8296

AO22X1 71.7681 75 5382.6075

AOI211XL 44.7636 81 3625.8516

AOI21XL 35.0591 553 19387.6823

AOI221XL 43.561 65 2831.465

AOI22XL 34.6297 160 5540.752

AOI2BB1XL 56.1234 57 3199.0338

AOI31XL 34.8351 80 2786.808

AOI32XL 34.4304 19 654.1776

AOI33XL 33.8609 75 2539.5675

CLKINVX1 29.4952 1148 33860.4896

CLKXOR2X1 128.734 167 21498.578

INVXL 20.9723 1496 31374.5608

MX2X1 86.8591 5 434.2955

MXI2XL 55.5867 408 22679.3736

NAND2BXL 59.9008 207 12399.4656

NAND2XL 20.9738 3363 70534.8894

NAND3BXL 58.5736 51 2987.2536

NAND3XL 21.0253 83 1745.0999

NAND4BXL 57.8584 173 10009.5032

NAND4XL 21.0281 162 3406.5522

NOR2BXL 35.5704 353 12556.3512

NOR2XL 35.3175 1349 47643.3075

NOR3BXL 45.2739 13 588.5607

NOR3XL 45.0716 193 8698.8188

NOR4BXL 51.7506 253 13092.9018

NOR4XL 51.5363 105 5411.3115

OA21X1 57.6361 150 8645.415

OAI211XL 20.8698 191 3986.1318

OAI21XL 20.8533 3030 63185.499

OAI221XL 20.7042 4 82.8168

OAI22XL 34.8023 11 382.8253

OAI2BB1XL 29.114 486 14149.404

OAI31XL 22.019 14 308.266

OR2X1 85.4618 653 55806.5554

OR2XL 76.9368 54 4154.5872

OR3X1 113.269 7 792.883

OR4X1 140.922 16 2254.752

OR4XL 132.377 74 9795.898

XNOR2X1 142.706 139 19836.134

Total Compressor Static Power 568488.51 nW

51

Table 4.14 – Decompressor Static Power Determination
gate cell_leakage_power instances total static power (nW)

ADDHXL 156.633 8 1253.064

AND2X1 44.6239 731 32620.0709

AND4X1 42.646 94 4008.724

AO21X1 84.9143 294 24964.8042

AO22X1 71.7681 97 6961.5057

AOI211XL 44.7636 305 13652.898

AOI21XL 35.0591 932 32675.0812

AOI221XL 43.561 85 3702.685

AOI222XL 42.6974 8 341.5792

AOI22XL 34.6297 129 4467.2313

AOI2BB1XL 56.1234 63 3535.7742

AOI31XL 34.8351 74 2577.7974

AOI32XL 34.4304 98 3374.1792

CLKINVX1 29.4952 2393 70582.0136

CLKXOR2X1 128.734 118 15190.612

INVXL 20.9723 175 3670.1525

MXI2XL 55.5867 1812 100723.1004

NAND2BX1 72.5604 74 5369.4696

NAND2BXL 59.9008 561 33604.3488

NAND2XL 20.9738 4576 95976.1088

NAND3BX1 70.7386 74 5234.6564

NAND3BXL 58.5736 193 11304.7048

NAND3XL 21.0253 387 8136.7911

NAND4BBXL 113.985 17 1937.745

NAND4BXL 57.8584 97 5612.2648

NAND4XL 21.0281 140 2943.934

NOR2BX1 49.8456 193 9620.2008

NOR2BXL 35.5704 474 16860.3696

NOR2XL 35.3175 1849 65302.0575

NOR3BXL 45.2739 55 2490.0645

NOR3XL 45.0716 225 10141.11

NOR4BXL 51.7506 296 15318.1776

NOR4XL 51.5363 191 9843.4333

OA21X1 57.6361 280 16138.108

OAI211XL 20.8698 573 11958.3954

OAI21XL 20.8533 4210 87792.393

OAI221XL 20.7042 148 3064.2216

OAI22XL 34.8023 15 522.0345

OAI2BB1XL 29.114 929 27046.906

OR2X1 85.4618 819 69993.2142

OR4X1 140.922 88 12401.136

TLATXL 188.149 8 1505.192

XNOR2X1 142.706 62 8847.772

XNOR2XL 126.045 88 11091.96

XOR2XL 127.375 209 26621.375

Total Decompressor Static Power 900979.42 nW

52

We can then compare these calculated values to Genus’ results for the simulation runs in SimpleScalar,

described in detail later in this report. Using 164.gzip as an example, we can observe the output behaviour

of Cadence Genus with regards to static power consumption of the compressor hardware. The results are

shown in Table 4.15.

Table 4.15 – 164.gzip Compressor Static Power Values by Simulation Point

Simulation Point Weight 𝑃𝑆𝑡𝑎𝑡𝑖𝑐 (nW)

6 0.296296 568488.514

14 0.111111 568488.514

15 0.185185 568488.514

23 0.407407 568488.514

Notice from the results that that static power analysis is not affected when changing the input, which is an

expected behaviour. Therefore, the following values are considered constant and valid and will be used

throughout the remainder of this thesis:

Table 4.16 – Static Power for Compressor and Decompressor

Device 𝑃𝑆𝑡𝑎𝑡𝑖𝑐 (nW)

Compressor 568488.514

Decompressor 900979.421

4.3 Dynamic Power Analysis

Dynamic power consists of three components: switching power, short-circuit power, and glitching power

[27]. Genus groups these components into net power and internal power. Dynamic power is generally

calculated as the following [27, 16]:

(4.6)

Net Power

Net power is the power consumption in a gate when charging the output load voltage from low to high.

Therefore, Genus calculates net power as the following:

2

DDD fCVP 

53

(4.7)

where 𝑓𝑡𝑜𝑔𝑔𝑙𝑒 is the toggle rate calculated by Genus and 𝐶𝐿 is the sum of load capacitances connected to

the net.

Internal Power

Internal power is the product of frequency and "arc" energy for each input/output arc. Genus calculates

internal power as the following:

(4.8)

where ∝𝐴→𝑌 is the arc activity calculated by Genus between input A and output Y and 𝐸𝐴→𝑌 is the energy

of the arc determined by Genus, based on the Liberty Timing File (.lib) for the chosen PDK.

Because dynamic power depends on the input stimulus to the compressor and decompressor modules, the

most accurate way of modelling the dynamic power of these units is to use actual cache lines from the

chosen benchmarks. Each time the compressor and decompressor must be accessed in the simulator, data

is written to a file in Value Change Dump (VCD) format. This data is then input into Cadence Genus.

Table 4.17 through Table 4.20 provide an overview of the dynamic power results for the compressed

configuration. The weighed dynamic power calculation for the compressor, using 164.gzip as an example,

is shown in Table 4.17.

Table 4.17 – 164.gzip Compressor Dynamic Power Values by Simulation Point

Simulation Point Weight 𝑃𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 (nW) 𝑃𝑁𝑒𝑡 (nW) 𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 (nW)

6 0.296296 2,502,382.963 1,509,486.713 4,011,869.676

14 0.111111 2,376,079.125 1,425,466.881 3,801,546.007

15 0.185185 1,958,550.388 1,191,461.730 3,150,012.118

23 0.407407 2,642,784.746 1,573,089.284 4,215,874.030

 (4.9)

     

     
nW

PDynamic

101.006,912,3

030.4215874407407.0118.3150012185185.0

007.3801546111111.0676.4011869296296.0







25.0 DDLtoggleNet VCfP 

YnYnYBYBYAYAInternal EEEP    ...

54

The dynamic power results for the compressor, for each benchmark, are shown in Table 4.18.

Table 4.18 – Compressor Dynamic Power Results from Cadence Genus

Benchmark 𝑃𝑆𝑡𝑎𝑡𝑖𝑐 (nW) 𝑃𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 (nW) 𝑃𝑁𝑒𝑡 (nW) 𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 (nW)

164.gzip 568488.514 2444837.749 1467168.352 3912006.101

168.wupwise 568488.514 4733924.790 2825887.865 7559812.655

171.swim 568488.514 3406421.546 2142197.331 5548618.877

172.mgrid 568488.514 1503686.844 880473.875 2384160.718

173.applu 568488.514 2842913.555 1755334.081 4598247.636

175.vpr 568488.514 2687651.314 1589116.052 4276767.367

176.gcc 568488.514 1157472.704 654253.529 1811726.233

177.mesa 568488.514 2551430.640 1473686.003 4025116.642

179.art 568488.514 4479839.925 2742657.118 7222497.044

181.mcf 568488.514 3014341.404 1781392.370 4795733.774

183.equake 568488.514 2723545.966 1692572.412 4416118.377

188.ammp 568488.514 4531733.291 2794457.831 7326191.122

197.parser 568488.514 2125239.397 1209725.263 3334964.660

253.perlbmk 568488.514 2276058.199 1311922.307 3587980.505

255.vortex 568488.514 4255223.279 2478268.604 6733491.883

256.bzip2 568488.514 2000817.191 1158199.131 3159016.322

300.twolf 568488.514 1742468.002 979882.525 2722350.527

301.apsi 568488.514 4034095.505 2489728.965 6523824.469

The weighed dynamic power calculation for the decompressor, using 164.gzip as an example, is shown

below.

Table 4.19 – 164.gzip Decompressor Power Values by Simulation Point

Simulation Point Weight 𝑃𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 (nW) 𝑃𝑁𝑒𝑡 (nW) 𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 (nW)

6 0.296296 512,909.725 328,296.277 841,206.002

14 0.111111 391,509.553 247,945.915 639,455.468

15 0.185185 265,728.129 137,641.278 403,369.407

23 0.407407 530,895.121 341,427.060 872,322.180

55

(4.10)

The dynamic power results for the decompressor, for each benchmark, are shown in Table 4.20.

Table 4.20 – Decompressor Power Results from Cadence Genus

Benchmark 𝑃𝑆𝑡𝑎𝑡𝑖𝑐 (nW) 𝑃𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 (nW) 𝑃𝑁𝑒𝑡 (nW) 𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 (nW)

164.gzip 900979.421 460973.370 289411.266 750384.636

168.wupwise 900979.421 60397.361 33253.897 93651.257

171.swim 900979.421 1209495.482 749667.496 1959162.977

172.mgrid 900979.421 125365.641 55615.549 180981.190

173.applu 900979.421 16764.489 6941.406 23705.895

175.vpr 900979.421 202578.101 98126.196 300704.297

176.gcc 900979.421 484593.456 302914.825 787508.281

177.mesa 900979.421 567175.771 364661.884 931837.654

179.art 900979.421 241533.166 109215.950 350749.116

181.mcf 900979.421 217916.366 106922.446 324838.811

183.equake 900979.421 2549559.613 1590259.751 4139819.364

188.ammp 900979.421 238724.030 120220.861 358944.890

197.parser 900979.421 312999.100 152302.691 465301.791

253.perlbmk 900979.421 987344.724 635322.774 1622667.498

255.vortex 900979.421 369097.837 224798.216 593896.054

256.bzip2 900979.421 492697.294 304721.316 797418.610

300.twolf 900979.421 426706.339 274554.711 701261.051

301.apsi 900979.421 251257.052 129447.883 380704.935

     

     
nW

PDynamic

636.384,750

180.872322407407.0407.403369185185.0

468.639455111111.0002.841206296296.0







56

4.4 Place and Route in Cadence Innovus

To confirm that the complexity of the hardware is not beyond implementation, Cadence Innovus is used to

automatically place and route the design to chip. Figure 4.9 shows the final routing of the compressor in a

1mm by 1mm die.

Figure 4.9 – Compressor Routing in Innovus

57

Chapter 5

Results

In this chapter, we look at the results of performance simulation. We start by reviewing the performance

of the compression architecture, followed by the performance of the prefetch tables. Finally, we look at the

overall performance of the new combined architecture.

5.1 Compression

As part of the compressibility check discussed in Chapter 4, we output in SimpleScalar a count of cache

lines that are compressed by each of the schemes. Figure 5.1 shows the percentage of L1 data cache lines

compressed by each compression scheme.

Figure 5.1 – Percentage of L1 Data Cache Lines Compressed by Each Scheme

58

As can be seen from the data, and as a verification of the results presented in [4], there is significant

opportunity to apply Base-Delta-Immediate compression in L1 data cache. The best compression is

achieved through zeros compression (64 bytes down to 8 bytes), so from Figure 5.1 we would expect a high

compression ratio from 176.gcc because more than 40% of the cache lines are compressible using zeros

compression. We also see that each of the compression schemes are well represented within the

benchmarks. 300.twolf, for example, implements a nice balance of each of the Base-Delta-Immediate

schemes.

Compression Ratio

We want to know what kind of impact this compression would have on the amount of data we are able to

store in the cache. To do this, we can look at the compression ratio of each of the benchmarks. The

compression ratio achieved by running each of the benchmarks through the simluator is shown in Figure

5.2. To calculate compression ratio, we compare the compressed size of the data with the uncompressed

size:

(5.1)

Figure 5.2 – Compression Ratio of L1 Data Cache

compressed

eduncompress

size

size
rationcompressio 

59

As expected from the compression rates shown previsouly in Figure 5.1, 176.gcc achieves the best

compression mostly due to the 40% zeros compression. This is because zeros compression has the highest

compression ratio among the schemes at a rate of 64/8. If we consider only this 40% zeros compression,

and no other compressed cache lines, we would see the following compression ratio:

(5.2)

176.gcc does not achieve much more than this, with a ratio of 1.62. A compression ratio of 1.62 means that,

on average, a 64-byte cache line is taking up 40 bytes of space. This is significant because it means, on

average, each cache index holding 128 bytes now has room for 3 cache lines instead of 2.

Slowdown

We know, due to the decompression latency, that we will suffer a performance deterioration when we

implement Base-Delta-Immediate compression – especially in L1 cache. To determine the slowdown, we

compare the IPC of the compressed scheme versus the baseline scheme for each of the runs. The calculation

for speedup and slowdown are shown below.

 (5.3)

Figure 5.3 shows the IPC of each of the benchmarks for the baseline configuration. Figure 5.4 shows the

compressed scheme. The resultant speedup is shown in Figure 5.5.

speedup

IPC

IPC

baseline

compressed





1slowdown

speedup

54.1
)64(6.)8(4.

64

size

size
rationcompressio

compressed

eduncompress





60

Figure 5.3 – IPC of Baseline Scheme

Figure 5.4 – IPC of Compressed Scheme

61

Figure 5.5 – Speedup of Compressed Scheme vs Baseline

What is siginificant here is that 183.equake has the most slowdown due to compression, yet 176.gcc has

the highest compression ratio. This would likely be due to 183.equake experiencing more compressed

cache hits and therefore experiencing more of the impact of the decompression latency.

62

Static Power

The primary intent of implementing compression in L1 data cache is to reduce the size and therefore the

power consumption of the cache. The amount of power savings here is important because this savings

should outweigh any penalties introduced in the prefetching architecture or in the slowdown of

performance.

Figure 5.6 shows the static energy consumption of the L1 data cache for the baseline scheme. Figure 5.7

shows the static energy for the compressed scheme, including the compression and decompression

hardware energy. Figure 5.8 shows the ratio of compressed to baseline to highlight the reduction.

Figure 5.6 – L1 Data Cache Static Energy (Baseline Scheme)

63

Figure 5.7 – L1 Data Cache Static Energy (Compressed Scheme)

Figure 5.8 – L1 Data Cache Static Energy Ratio – Compressed vs Baseline

We see a significant static energy reduction in the cache itself due to its decrease in size. Looking at the

static power from the CACTI model in Table 4.5, we would expect to see a reduction equal to:

64

(5.4)

However, 0.64 is not achieved due to the CPU slowdown caused by introducing compression and the power

overhead of the compression and decompression hardware. In fact, you can correlate the balance of static

power to the percent slowdown of the CPU due to compression. Comparing Figure 5.8 with the slowdown

in Figure 5.5, you see that they complement eachother in this regard.

Dynamic Power

Because we change the cache performance as discussed above, the switching characteristics will change.

In addition, the overall reduction in cache area will impact the configuration of the cache and therefore the

energy required to read and write the cache.

Figure 5.9 shows the dynamic energy consumption of the L1 data cache for the baseline scheme. Figure

5.10 shows the dynamic energy for the compressed scheme, including the energy consumed in the

compressor and decompressor. Figure 5.11 ashows the ratio of compressed to baseline to highlight the

reduction.

Figure 5.9 – L1 Data Cache Dynamic Energy (Baseline Scheme)

64.0
22089.10286.25

29114.36143.13







baseline

compressed

P

P

65

Figure 5.10 – L1 Data Cache Dynamic Energy (Compressed Scheme)

Figure 5.11 – L1 Data Cache Dynamic Energy Ratio – Compressed vs Baseline

We cannot compare the dynamic behaviour as we did with static and the slowdown. However, we do know

that the compressed data size impacts the dynamic energy consumption of the cache. Therefore, we can

determine how much of this energy reduction is due to the reduced data size by looking at the compression

66

ratio. For example, 176.gcc has a compression ratio of 1.62. This represents an average data size reduction

of:

(5.5)

The remaining energy reduction or gains in the CPU are due to the change in energy per access as well as

the overall change in performance of the CPU.

5.2 Prefetching

We first look at the overall performance of all of the prefetching configurations used. To evaluate the

performance of the prefetch tables, we consider two key elements. First, we look at what the hit percentage

is for the table during the instruction fetch stage in the processor. That is, what percentage of load

instructions successfully acquire a prediction address from the prefetch table based on the program counter

only. Second, we look at how accurate those predictions are. By reviewing the state of decompressed lines

in the decompression buffer when they are evicted, we can better understand how the prefetch tables are

affecting the performance of the new architecture. In addition, this metric sheds some light on where

improvements can be made to this architecture, as we will see in the data to follow.

Hit Percentage

A 128-Set and 1K-Set table were simulated for each of the prefetch table types (Last Outcome, Stride,

Hybrid S/LO, Two-Level, and Hybrid 2L/S). To understand this selection, consider the static energy

savings of compression presented in Figure 5.8. On average, we see a savings ratio of 0.27, which represents

0.79mJ in static energy, or 7.12mW in static power across the executed benchmarks. Reviewing the CACTI

results in Table 4.7, the only 2K-Set table that keeps its static power within this range is the Last Outcome

table. Therefore, we did not exceed 1K table sizes as we did not want to consume our static power savings

entirely within the prefetch table.

For each of the 10 configurations, Figure 5.12 shows the percentage of load instructions that successfully

receive a prediction address from the 128-Set prefetch tables. Figure 5.13 shows the percentage of

instructions that hit the 1K prefetch tables.

62.0
62.1

1
reductiondataavg

67

Figure 5.12 – Hit Percentage of Load Instructions by Prefetch Table (128 Set)

Figure 5.13 – Hit Percentage of Load Instructions by Prefetch Table (1K Set)

68

Figure 5.13 shows that the 1K-Set variation of each table out performs the 128-Set variant of the table. This

is due to the reduction of conflict misses in the table. We also notice that overall, the prefetch table hit

percentage is quite low, averaging 10% to 15% for 128-Set and 16% to 24% for 1K-Set.

Prediction Accuracy

When a prediction is made, data is decompressed from the cache and then entered into the decompression

buffer. There are five possible results for entries in this buffer. If the buffer is not large enough, entries are

evicted before they can be used. Used entries can be correct or incorrect. In addition, entries may be tossed

out due to cache replacement or branch misprediction. Figure 5.14 show the results for the 10 prefetch

configurations.

69

Figure 5.14 – Prediction Accuracy of 10 Prefetch Table Configurations

70

Some major factors stand out here. First, we notice that Stride prefetching is easily the most accurate.

Second, we see that Last Outcome results in a large number of incorrect predictions. While these

mispredictions do not directly impact the performance of the CPU, they do require an additional cache

access which consumes unnecessary energy.

In addition, we notice that benchmarks 172.mgrid and 179.art are dumping many of the decompressed

results from the decompression buffer before ever using them. This means that the normal number of load

instructions between the instruction fetch stage and the mem stage is larger than our 1K buffer design which

has 16 entries.

Static Power

The static energy consumption of all of the combined prefetch tables is shown in Figure 5.15 for 128-Set,

Figure 5.16 for 1K-Set. This data includes the prefetch table, decompression buffer, and pattern history

table in the case of two-level prefetching.

Figure 5.15 – Static Energy by Prefetch Table (128 Set)

71

Figure 5.16 – Static Energy by Prefetch Table (1K Set)

Dynamic Power

The dynamic energy consumption of all of the combined prefetch tables is shown in Figure 5.17 for 128-

Set, Figure 5.18 for 1K-Set. This data includes the prefetch table, decompression buffer, and pattern history

table in the case of two-level prefetching.

72

Figure 5.17 – Dynamic Energy by Prefetch Table (128 Set)

Figure 5.18 – Dynamic Energy by Prefetch Table (1K Set)

73

5.3 Compression and Prefetching

In this section, we look at the overall results of combining prefetching with cache compression and compare

those results with the compression-only configuration.

Cache Energy vs. Performance

Figure 5.19 shows the slowdown versus the power consumed in L1 data cache. This figure identifies two

important table configurations: Stride (128) and Hybrid Stride / Last Outcome (1K).

• Stride (128) provides the best speedup-to-dl1 energy relationship.

• Hybrid Stride / Last Outcome (1K) provides the best overall speedup, which we will see is the

most important in the data to come.

Figure 5.19 – L1 Data Cache Energy vs Performance

74

CPU Power vs. Performance

Figure 5.20 shows the overall energy savings in the CPU versus slowdown compared with the baseline

configuration. Stride (128) and Hybrid Stride / Last Outcome (128) stand out here as well because they

actually consume less energy than the compressed architecture alone. This is because the performance

benefit of the prefetching actually results in a reduction in power.

Figure 5.20 – CPU Energy vs. Performance

Speedup due to Prefetching

It is clear from the previous figure that performance plays an important role in the overall energy

consumption of the CPU. In Figure 5.21, we compare the speedup of the different prefetching methods for

each of the benchmarks for 128-Set tables, in Figure 5.22 for 1K-Set tables.

75

Figure 5.21 – Speedup Due to Prefetching (128 Set, vs. Compressed Only)

Figure 5.22 – Speedup Due to Prefetching (1K Set, vs. Compressed Only)

76

Energy-Delay Product

To determine which prefetching method stands out as the best, we need to consider both the overall

performance of the CPU as well as the energy consumption. To do this, we use the product of the two

metrics as follows:

 (5.6)

Where E is the total energy consumed by the CPU (in Joules) and t is the runtime of the program (in

seconds). Figure 5.23 shows the energy-delay product, using values normalized to the baseline scheme, for

each of the prefetch table configurations.

Figure 5.23 – Energy-Delay Product (CPU)

Figure 5.23 shows that all evaluated prefetch tables in combination with Base-Delta-Immediate (B∆I)

compression outperform compression alone in L1 data cache. Based on the energy-delay product, the 1K

Stride/Last Outcome table has the best overall performance for the SPEC CPU 2000 benchmarks used.

EtEDP

77

Chapter 6

Summary and Future Work

As hardware designers shift their priority to power-efficient architectures, compression research provides

an opportunity to explore ways to handle smaller data in a processor. As we handle smaller data, dynamic

energy reduces because we reduce the number of transistors that are being switched. As long as we can

maintain the performance of the processor within reasonable slowdown constraints, we should be able to

achieve better energy-delay configurations as we continue to research compression and prefetching

architectures.

6.1 Contributions

Our work evaluates the potential for implementing compression in L1 data cache as a means of improving

power efficiency. The proposed architecture combines prefetching with compression to move the

decompression latency off the critical execution path. From the data provided by this work, we see that

most prefetching tables implemented in this architecture provide an improvement over compression in L1

data cache alone. That is, the energy-delay product is improved by implementing prefetching versus no

prefetching. In addition to having some residual slowdown which is impacting the energy-delay product,

the slowdown itself causes an increase in static power that further amplifies the energy-delay product.

Also, as part of this research, we have developed a new branch of SimpleScalar specifically geared towards

compression and prefetching. Even without further modification, this tool can be used in combination with

CACTI to evaluate a wider range of cache configurations or prefetch table configurations. We have

successfully implemented an interface between the tool and Cadence Genus for dynamic power analysis in

the form of the Value Change Dump (VCD) output.

78

Lastly, we have successfully developed 64-byte compressor and decompressor units in 90nm CMOS that

fall within acceptable power and timing constraints. This hardware is designed to work specifically with

Base-Delta compression.

6.2 Future Work

Moving forward, there are opportunities to improve the configuration of prefetching tables within the

proposed architecture. As can been seen from Figure 5.12 in the previous section, our prefetch tables suffer

from a very low hit rate. In this data, a hit is considered when the table successfully makes a prediction

(i.e. transient stride state counts as a miss). Even looking at 1K Last Outcome prefetching, which makes a

prediction as long as the PC is indexed in the table, our average hit rate is less than 25%. Future work

should look at improving the hit rate of the prefetch tables by experimenting with different table

configurations, including deeper tables.

The decompression hardware produced during this work allows for the ability to decompress (in full or in

part) multiple compressed cache lines during the Instruction Decode and Execution stages of processing.

There is also opportunity to make predictions when the load instruction PC misses the prefetch table. The

only penalties for making an incorrect prediction are an extra cache access and experiencing the full

decompression latency. So, there may be opportunity to exchange some power savings for an improved

energy-delay product.

In our branch of SimpleScalar, we have a number of areas to be worked on in the future. First and foremost,

we need to address the gap caused by different versions of CACTI cache models being used. Wattch uses

a cache model from an early release of CACTI. This creates a disconnect between the CPU power model

and the compressed cache and prefetching table models developed in CACTI 6.5 for this thesis. There is

an opportunity to revise the parts of Wattch used in our simulator to match the latest release of CACTI. In

addition, rather than allowing for static and dynamic power input to the simulator, it would be ideal to

instead input the cache configuration and use the CACTI functions directly in our simulator to extract the

timing and power models automatically.

The Value Change Dump (VCD) output of the simulator is a nice feature when we want a detailed dynamic

power model for specific hardware we have designed and synthesized to a PDK. Currently, the VCD output

is quite large and requires compression separately from our simulator. Ideally, our simulator would

79

implement the zlib compression library in C and output the compressed VCD file for processing in Genus.

This is ideal because Genus is already capable of reading in compressed VCD files.

Finally, in our compression and decompression hardware, more research could be done to determine faster

and smaller designs that are compatible with this architecture. As mentioned previously, we implement the

hierarchical carry-lookahead adder as a compromise between speed and resource utilization. In the case of

the decompressor, certainly we must prioritize the speed of the hardware. However, for the compressor,

we have taken the assumption that, because compression does not take place on the critical path of CPU

execution, compressor delay is not necessarily a priority. Therefore, we may be able to develop a resource-

optimized compressor to improve our power consumption.

This work has demonstrated that we can combine cache compression with prefetching to improve the

performance of the CPU over implementing compression alone in L1 data caches. Future work in this area

may identify better prefetching tables or more efficient decompression hardware that improves the

feasibility of implementing compression in high-level caches.

80

Bibliography

[1] "10 Key Marketing Trends for 2017," IBM Watson Marketing.

[2] "The Cloud Begins with Coal," Digital Power Group, 2013.

[3] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur and H.-S. P. Wong, "Device Scaling

Limits of Si MOSFETs and Their Application Dependencies," Proceedings of the IEEE, vol. 89, no.

3, 2001.

[4] G. Pekhimenko, V. Seshadri, O. Mutlu, T. C. Mowry, P. B. Gibbons and M. A. Kozuch, "Base-Delta-

Immediate Compression: A Practical Data Compression Mechanism for On-Chip Caches," Carnegie

Mellon University , 2012.

[5] D. Brooks, V. Tiwari and M. Martonosi, "Wattch: A Framework for Architectural-Level Power

Analysis and Optimizations," in Proceedings of the 27th International Symposium on Computer

Architecture, Vancouver, BC, 2000.

[6] A. R. Alameldeen and D. A. Wood, "Adaptive Cache Compression for High-Performance

Processors," in 31st Annual International Symposium on Computer Architecture, 2004.

[7] A. R. Alameldeen and D. A. Wood, "Frequent pattern compression: A significance-based

compression scheme for L2 caches," Computer Sciences Department, University of Wisconsin-

Madison, 2004.

[8] D. Burger and T. M. Austin, "The SimpleScalar Tool Set, Version 2.0," University of Wisconsin-

Madison Computer Sciences Department Technical Report #1342, 1997.

[9] J. L. Hennessy and D. A. Patterson, "Computer Architecture: A Quantitative Approach," 5th ed.,

Waltham, MA, Morgan Kaufmann, 2012, pp. 71-144.

[10] X. Chen, L. Yang, R. P. Dick, L. Shang and H. Lekatsas, "C-Pack: A High-Performance

Microprocessor Cache Compression Algorithm," IEEE Transactions on VLSI Systems, vol. 18, no. 8,

2010.

[11] J. Dusser, T. Piquet and A. Seznec, "Zero-content augmented caches," in Proceedings of the 23rd

international conference on Supercomputing (ICS '09), New York, 2009.

[12] J. Yang, Y. Zhang and R. Gupta, "Frequent value compression in data caches," in Proceedings of the

33rd annual ACM/IEEE international symposium on Microarchitecture (MICRO 33), New York,

NY, 2000.

81

[13] E. Atoofian, "Many-Thread Aware Compression in GPGPUs," in 2016 Intl IEEE Conferences on

Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and

Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress,

Toulouse, 2016.

[14] K. Wang and M. Franklin, "Highly accurate data value prediction using hybrid predictors," in

Proceedings of the 30th annual ACM/IEEE international symposium on Microarchitecture (MICRO

30), Washington, DC, 1997.

[15] K. J. Nesbit and J. E. Smith, "Data Cache Prefetching Using a Global History Buffer," IEE

Proceedings Software, 2004.

[16] S. Brown and Z. Vranesic, "Fundamentals of Digital Logic," 2nd ed., New York, NY, McGraw Hill,

2008.

[17] "ISE WebPACK Design Software," [Online]. Available: https://www.xilinx.com/products/design-

tools/ise-design-suite/ise-webpack.html.

[18] G. Hamerly, E. Perelman, J. Lau and B. Calder, "SimPoint 3.0: Faster and More Flexible Program

Analysis," Journal of Instruction Level Parallelism, 2005.

[19] N. Muralimanohar, R. Balasubramonian and N. P. Jouppi, "CACTI 6.0: A Tool to Understand Large

Caches," Hewlett-Packard Laboratories, 2009.

[20] J. MacQueen, "Some Methods for Classification and Analysis of Multivariable Observations," in

Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967.

[21] "SimPoint," [Online]. Available: http://cseweb.ucsd.edu/~calder/simpoint/index.htm.

[22] G. Hamerly, E. Perelman and B. Calder, "How to use SimPoint to pick simulation points," ACM

SIGMETRICS Performance Evaluation Review, vol. 31, no. 4, pp. 25-30, 2004.

[23] "HP Labs : CACTI," [Online]. Available: http://www.hpl.hp.com/research/cacti/.

[24] "SimpleScalar LLC," [Online]. Available: http://www.simplescalar.com/.

[25] A. Moshovos, "Checkpointing alternatives for high performance, power-aware processors," in

Proceedings of the 2003 international symposium on Low power electronics and design (ISLPED

'03), New York, NY, 2003.

[26] "Lakehead University High Performance Computing Centre (LUHPCC)," [Online]. Available:

http://hpc.lakeheadu.ca/.

[27] M. W. Allam, "New Methodologies for Low-Power High-Performance Digital VLSI Design,"

Waterloo, ON, 2000.

82

[28] S. Thoziyoor, N. Muralimanohar, J. H. Ahn and N. P. Jouppi, "CACTI 5.1," Hewlett-Packard

Laboratories, 2008.

[29] "Wattch Download," [Online]. Available: http://www.eecs.harvard.edu/~dbrooks/wattch-form.html.

[30] M. Hosseini, "A Survey of Data Compression Algorithms and their Applications," 2012.

[31] S. Mittal, "A Survey of Recent Prefetching Techniques for Processor Caches," ACM Computing

Surveys, vol. 49, no. 2, 2016.

[32] J. A. Butts and G. S. Sohi, "A Static Power Model for Architects," in Proceedings of the 33rd annual

ACM/IEEE international symposium on Microarchitecture, 2000.

[33] B. R. Rau and J. A. Fisher, "Instruction-Level Parallel Processing: History, Overview, and

Perspective," The Journal of Supercomputing, vol. 7, no. 1, 1993.

83

Appendix A

Verilog Source

module compressor(
 input wire [511:0] x,
 output wire [127:0] b8d1,
 output wire [191:0] b8d2,
 output wire [319:0] b8d4,
 output wire [159:0] b4d1,
 output wire [287:0] b4d2,
 output wire [271:0] b2d1,
 output wire [63:0] repeats,
 output wire [7:0] zeros,
 output wire b8d1_valid,
 output wire b8d2_valid,
 output wire b8d4_valid,
 output wire b4d1_valid,
 output wire b4d2_valid,
 output wire b2d1_valid,
 output wire repeats_valid,
 output wire zeros_valid

);

wire [63:0] eightbyte0;
wire [63:0] eightbyte1;
wire [63:0] eightbyte2;
wire [63:0] eightbyte3;
wire [63:0] eightbyte4;
wire [63:0] eightbyte5;
wire [63:0] eightbyte6;
wire [63:0] eightbyte7;
wire [7:0] eightoverflow;
wire [7:0] eightd1_valid;
wire [7:0] eightd2_valid;
wire [7:0] eightd4_valid;

bdi inst00(

 .x(x[63:0]),
 .y(x[63:0]),
 .s(eightbyte0[63:0]),
 .overflow(eightoverflow[0]),
 .d1_valid(eightd1_valid[0]),
 .d2_valid(eightd2_valid[0]),
 .d4_valid(eightd4_valid[0])

);

bdi inst01(
 .x(x[63:0]),
 .y(x[127:64]),
 .s(eightbyte1[63:0]),
 .overflow(eightoverflow[1]),
 .d1_valid(eightd1_valid[1]),
 .d2_valid(eightd2_valid[1]),
 .d4_valid(eightd4_valid[1])

);

84

bdi inst02(
 .x(x[63:0]),
 .y(x[191:128]),
 .s(eightbyte2[63:0]),
 .overflow(eightoverflow[2]),
 .d1_valid(eightd1_valid[2]),
 .d2_valid(eightd2_valid[2]),
 .d4_valid(eightd4_valid[2])

);

bdi inst03(
 .x(x[63:0]),
 .y(x[255:192]),
 .s(eightbyte3[63:0]),
 .overflow(eightoverflow[3]),
 .d1_valid(eightd1_valid[3]),
 .d2_valid(eightd2_valid[3]),
 .d4_valid(eightd4_valid[3])

);

bdi inst04(
 .x(x[63:0]),
 .y(x[319:256]),
 .s(eightbyte4[63:0]),
 .overflow(eightoverflow[4]),
 .d1_valid(eightd1_valid[4]),
 .d2_valid(eightd2_valid[4]),
 .d4_valid(eightd4_valid[4])

);

bdi inst05(
 .x(x[63:0]),
 .y(x[383:320]),
 .s(eightbyte5[63:0]),
 .overflow(eightoverflow[5]),
 .d1_valid(eightd1_valid[5]),
 .d2_valid(eightd2_valid[5]),
 .d4_valid(eightd4_valid[5])

);

bdi inst06(
 .x(x[63:0]),
 .y(x[447:384]),
 .s(eightbyte6[63:0]),
 .overflow(eightoverflow[6]),
 .d1_valid(eightd1_valid[6]),
 .d2_valid(eightd2_valid[6]),
 .d4_valid(eightd4_valid[6])

);

bdi inst07(
 .x(x[63:0]),
 .y(x[511:448]),
 .s(eightbyte7[63:0]),
 .overflow(eightoverflow[7]),
 .d1_valid(eightd1_valid[7]),
 .d2_valid(eightd2_valid[7]),
 .d4_valid(eightd4_valid[7])

);

assign b8d1_valid = (&eightd1_valid) & (&(~eightoverflow));
assign b8d2_valid = (&eightd2_valid) & (&(~eightoverflow));
assign b8d4_valid = (&eightd4_valid) & (&(~eightoverflow));

assign b8d1[63:0] = x[63:0];
assign b8d1[71:64] = eightbyte0[7:0];
assign b8d1[79:72] = eightbyte1[7:0];
assign b8d1[87:80] = eightbyte2[7:0];
assign b8d1[95:88] = eightbyte3[7:0];

85

assign b8d1[103:96] = eightbyte4[7:0];
assign b8d1[111:104] = eightbyte5[7:0];
assign b8d1[119:112] = eightbyte6[7:0];
assign b8d1[127:120] = eightbyte7[7:0];

assign b8d2[63:0] = x[63:0];
assign b8d2[79:64] = eightbyte0[15:0];
assign b8d2[95:80] = eightbyte1[15:0];
assign b8d2[111:96] = eightbyte2[15:0];
assign b8d2[127:112] = eightbyte3[15:0];
assign b8d2[143:128] = eightbyte4[15:0];
assign b8d2[159:144] = eightbyte5[15:0];
assign b8d2[175:160] = eightbyte6[15:0];
assign b8d2[191:176] = eightbyte7[15:0];

assign b8d4[63:0] = x[63:0];
assign b8d4[95:64] = eightbyte0[31:0];
assign b8d4[127:96] = eightbyte1[31:0];
assign b8d4[159:128] = eightbyte2[31:0];
assign b8d4[191:160] = eightbyte3[31:0];
assign b8d4[223:192] = eightbyte4[31:0];
assign b8d4[255:224] = eightbyte5[31:0];
assign b8d4[287:256] = eightbyte6[31:0];
assign b8d4[319:288] = eightbyte7[31:0];

wire [31:0] fourbyte0;
wire [31:0] fourbyte1;
wire [31:0] fourbyte2;
wire [31:0] fourbyte3;
wire [31:0] fourbyte4;
wire [31:0] fourbyte5;
wire [31:0] fourbyte6;
wire [31:0] fourbyte7;
wire [31:0] fourbyte8;
wire [31:0] fourbyte9;
wire [31:0] fourbyte10;
wire [31:0] fourbyte11;
wire [31:0] fourbyte12;
wire [31:0] fourbyte13;
wire [31:0] fourbyte14;
wire [31:0] fourbyte15;

wire [15:0] fouroverflow;
wire [15:0] fourd1_valid;
wire [15:0] fourd2_valid;
wire [15:0] fourd4_valid;

bdi32 inst10(
 .x(x[31:0]),
 .y(x[31:0]),
 .s(fourbyte0[31:0]),
 .overflow(fouroverflow[0]),
 .d1_valid(fourd1_valid[0]),
 .d2_valid(fourd2_valid[0]),
 .d4_valid(fourd4_valid[0])
);

bdi32 inst11(
 .x(x[31:0]),
 .y(x[63:32]),
 .s(fourbyte1[31:0]),
 .overflow(fouroverflow[1]),
 .d1_valid(fourd1_valid[1]),
 .d2_valid(fourd2_valid[1]),
 .d4_valid(fourd4_valid[1])
);

86

bdi32 inst12(
 .x(x[31:0]),
 .y(x[95:64]),
 .s(fourbyte2[31:0]),
 .overflow(fouroverflow[2]),
 .d1_valid(fourd1_valid[2]),
 .d2_valid(fourd2_valid[2]),
 .d4_valid(fourd4_valid[2])
);

bdi32 inst13(
 .x(x[31:0]),
 .y(x[127:96]),
 .s(fourbyte3[31:0]),
 .overflow(fouroverflow[3]),
 .d1_valid(fourd1_valid[3]),
 .d2_valid(fourd2_valid[3]),
 .d4_valid(fourd4_valid[3])
);

bdi32 inst14(
 .x(x[31:0]),
 .y(x[159:128]),
 .s(fourbyte4[31:0]),
 .overflow(fouroverflow[4]),
 .d1_valid(fourd1_valid[4]),
 .d2_valid(fourd2_valid[4]),
 .d4_valid(fourd4_valid[4])
);

bdi32 inst15(
 .x(x[31:0]),
 .y(x[191:160]),
 .s(fourbyte5[31:0]),
 .overflow(fouroverflow[5]),
 .d1_valid(fourd1_valid[5]),
 .d2_valid(fourd2_valid[5]),
 .d4_valid(fourd4_valid[5])
);

bdi32 inst16(
 .x(x[31:0]),
 .y(x[223:192]),
 .s(fourbyte6[31:0]),
 .overflow(fouroverflow[6]),
 .d1_valid(fourd1_valid[6]),
 .d2_valid(fourd2_valid[6]),
 .d4_valid(fourd4_valid[6])
);

bdi32 inst17(
 .x(x[31:0]),
 .y(x[255:224]),
 .s(fourbyte7[31:0]),
 .overflow(fouroverflow[7]),
 .d1_valid(fourd1_valid[7]),
 .d2_valid(fourd2_valid[7]),
 .d4_valid(fourd4_valid[7])
);

bdi32 inst18(
 .x(x[31:0]),
 .y(x[287:256]),
 .s(fourbyte8[31:0]),
 .overflow(fouroverflow[8]),
 .d1_valid(fourd1_valid[8]),
 .d2_valid(fourd2_valid[8]),
 .d4_valid(fourd4_valid[8])
);

87

bdi32 inst19(
 .x(x[31:0]),
 .y(x[319:288]),
 .s(fourbyte9[31:0]),
 .overflow(fouroverflow[9]),
 .d1_valid(fourd1_valid[9]),
 .d2_valid(fourd2_valid[9]),
 .d4_valid(fourd4_valid[9])
);

bdi32 inst110(
 .x(x[31:0]),
 .y(x[351:320]),
 .s(fourbyte10[31:0]),
 .overflow(fouroverflow[10]),
 .d1_valid(fourd1_valid[10]),
 .d2_valid(fourd2_valid[10]),
 .d4_valid(fourd4_valid[10])
);

bdi32 inst111(
 .x(x[31:0]),
 .y(x[383:352]),
 .s(fourbyte11[31:0]),
 .overflow(fouroverflow[11]),
 .d1_valid(fourd1_valid[11]),
 .d2_valid(fourd2_valid[11]),
 .d4_valid(fourd4_valid[11])
);

bdi32 inst112(
 .x(x[31:0]),
 .y(x[415:384]),
 .s(fourbyte12[31:0]),
 .overflow(fouroverflow[12]),
 .d1_valid(fourd1_valid[12]),
 .d2_valid(fourd2_valid[12]),
 .d4_valid(fourd4_valid[12])
);

bdi32 inst113(
 .x(x[31:0]),
 .y(x[447:416]),
 .s(fourbyte13[31:0]),
 .overflow(fouroverflow[13]),
 .d1_valid(fourd1_valid[13]),
 .d2_valid(fourd2_valid[13]),
 .d4_valid(fourd4_valid[13])
);

bdi32 inst114(
 .x(x[31:0]),
 .y(x[479:448]),
 .s(fourbyte14[31:0]),
 .overflow(fouroverflow[14]),
 .d1_valid(fourd1_valid[14]),
 .d2_valid(fourd2_valid[14]),
 .d4_valid(fourd4_valid[14])
);

bdi32 inst115(
 .x(x[31:0]),
 .y(x[511:480]),
 .s(fourbyte15[31:0]),
 .overflow(fouroverflow[15]),
 .d1_valid(fourd1_valid[15]),
 .d2_valid(fourd2_valid[15]),
 .d4_valid(fourd4_valid[15])
);

88

assign b4d1_valid = (&fourd1_valid) & (&(~fouroverflow));
assign b4d2_valid = (&fourd2_valid) & (&(~fouroverflow));

assign b4d1[31:0] = x[31:0];
assign b4d1[39:32] = fourbyte0[7:0];
assign b4d1[47:40] = fourbyte1[7:0];
assign b4d1[55:48] = fourbyte2[7:0];
assign b4d1[63:56] = fourbyte3[7:0];
assign b4d1[71:64] = fourbyte4[7:0];
assign b4d1[79:72] = fourbyte5[7:0];
assign b4d1[87:80] = fourbyte6[7:0];
assign b4d1[95:88] = fourbyte7[7:0];
assign b4d1[103:96] = fourbyte8[7:0];
assign b4d1[111:104] = fourbyte9[7:0];
assign b4d1[119:112] = fourbyte10[7:0];
assign b4d1[127:120] = fourbyte11[7:0];
assign b4d1[135:128] = fourbyte12[7:0];
assign b4d1[143:136] = fourbyte13[7:0];
assign b4d1[151:144] = fourbyte14[7:0];
assign b4d1[159:152] = fourbyte15[7:0];

assign b4d2[31:0] = x[31:0];
assign b4d2[47:32] = fourbyte0[15:0];
assign b4d2[63:48] = fourbyte1[15:0];
assign b4d2[79:64] = fourbyte2[15:0];
assign b4d2[95:80] = fourbyte3[15:0];
assign b4d2[111:96] = fourbyte4[15:0];
assign b4d2[127:112] = fourbyte5[15:0];
assign b4d2[143:128] = fourbyte6[15:0];
assign b4d2[159:144] = fourbyte7[15:0];
assign b4d2[175:160] = fourbyte8[15:0];
assign b4d2[191:176] = fourbyte9[15:0];
assign b4d2[207:192] = fourbyte10[15:0];
assign b4d2[223:208] = fourbyte11[15:0];
assign b4d2[239:224] = fourbyte12[15:0];
assign b4d2[255:240] = fourbyte13[15:0];
assign b4d2[271:256] = fourbyte14[15:0];
assign b4d2[287:272] = fourbyte15[15:0];

wire [15:0] twobyte0;
wire [15:0] twobyte1;
wire [15:0] twobyte2;
wire [15:0] twobyte3;
wire [15:0] twobyte4;
wire [15:0] twobyte5;
wire [15:0] twobyte6;
wire [15:0] twobyte7;
wire [15:0] twobyte8;
wire [15:0] twobyte9;
wire [15:0] twobyte10;
wire [15:0] twobyte11;
wire [15:0] twobyte12;
wire [15:0] twobyte13;
wire [15:0] twobyte14;
wire [15:0] twobyte15;
wire [15:0] twobyte16;
wire [15:0] twobyte17;
wire [15:0] twobyte18;
wire [15:0] twobyte19;
wire [15:0] twobyte20;
wire [15:0] twobyte21;
wire [15:0] twobyte22;
wire [15:0] twobyte23;
wire [15:0] twobyte24;
wire [15:0] twobyte25;
wire [15:0] twobyte26;
wire [15:0] twobyte27;

89

wire [15:0] twobyte28;
wire [15:0] twobyte29;
wire [15:0] twobyte30;
wire [15:0] twobyte31;

wire [31:0] twooverflow;
wire [31:0] twod1_valid;
wire [31:0] twod2_valid;
wire [31:0] twod4_valid;

bdi16 inst20(
 .x(x[15:0]),
 .y(x[15:0]),
 .s(twobyte0[15:0]),
 .overflow(twooverflow[0]),
 .d1_valid(twod1_valid[0]),
 .d2_valid(twod2_valid[0]),
 .d4_valid(twod4_valid[0])
);

bdi16 inst21(
 .x(x[15:0]),
 .y(x[31:16]),
 .s(twobyte1[15:0]),
 .overflow(twooverflow[1]),
 .d1_valid(twod1_valid[1]),
 .d2_valid(twod2_valid[1]),
 .d4_valid(twod4_valid[1])
);

bdi16 inst22(
 .x(x[15:0]),
 .y(x[47:32]),
 .s(twobyte2[15:0]),
 .overflow(twooverflow[2]),
 .d1_valid(twod1_valid[2]),
 .d2_valid(twod2_valid[2]),
 .d4_valid(twod4_valid[2])
);

bdi16 inst23(
 .x(x[15:0]),
 .y(x[63:48]),
 .s(twobyte3[15:0]),
 .overflow(twooverflow[3]),
 .d1_valid(twod1_valid[3]),
 .d2_valid(twod2_valid[3]),
 .d4_valid(twod4_valid[3])
);

bdi16 inst24(
 .x(x[15:0]),
 .y(x[79:64]),
 .s(twobyte4[15:0]),
 .overflow(twooverflow[4]),
 .d1_valid(twod1_valid[4]),
 .d2_valid(twod2_valid[4]),
 .d4_valid(twod4_valid[4])
);

bdi16 inst25(
 .x(x[15:0]),
 .y(x[95:80]),
 .s(twobyte5[15:0]),
 .overflow(twooverflow[5]),
 .d1_valid(twod1_valid[5]),
 .d2_valid(twod2_valid[5]),
 .d4_valid(twod4_valid[5])
);

90

bdi16 inst26(
 .x(x[15:0]),
 .y(x[111:96]),
 .s(twobyte6[15:0]),
 .overflow(twooverflow[6]),
 .d1_valid(twod1_valid[6]),
 .d2_valid(twod2_valid[6]),
 .d4_valid(twod4_valid[6])
);

bdi16 inst27(
 .x(x[15:0]),
 .y(x[127:112]),
 .s(twobyte7[15:0]),
 .overflow(twooverflow[7]),
 .d1_valid(twod1_valid[7]),
 .d2_valid(twod2_valid[7]),
 .d4_valid(twod4_valid[7])
);

bdi16 inst28(
 .x(x[15:0]),
 .y(x[143:128]),
 .s(twobyte8[15:0]),
 .overflow(twooverflow[8]),
 .d1_valid(twod1_valid[8]),
 .d2_valid(twod2_valid[8]),
 .d4_valid(twod4_valid[8])
);

bdi16 inst29(
 .x(x[15:0]),
 .y(x[159:144]),
 .s(twobyte9[15:0]),
 .overflow(twooverflow[9]),
 .d1_valid(twod1_valid[9]),
 .d2_valid(twod2_valid[9]),
 .d4_valid(twod4_valid[9])
);

bdi16 inst210(
 .x(x[15:0]),
 .y(x[175:160]),
 .s(twobyte10[15:0]),
 .overflow(twooverflow[10]),
 .d1_valid(twod1_valid[10]),
 .d2_valid(twod2_valid[10]),
 .d4_valid(twod4_valid[10])
);

bdi16 inst211(
 .x(x[15:0]),
 .y(x[191:176]),
 .s(twobyte11[15:0]),
 .overflow(twooverflow[11]),
 .d1_valid(twod1_valid[11]),
 .d2_valid(twod2_valid[11]),
 .d4_valid(twod4_valid[11])
);

bdi16 inst212(
 .x(x[15:0]),
 .y(x[207:192]),
 .s(twobyte12[15:0]),
 .overflow(twooverflow[12]),
 .d1_valid(twod1_valid[12]),
 .d2_valid(twod2_valid[12]),
 .d4_valid(twod4_valid[12])
);

91

bdi16 inst213(
 .x(x[15:0]),
 .y(x[223:208]),
 .s(twobyte13[15:0]),
 .overflow(twooverflow[13]),
 .d1_valid(twod1_valid[13]),
 .d2_valid(twod2_valid[13]),
 .d4_valid(twod4_valid[13])
);

bdi16 inst214(
 .x(x[15:0]),
 .y(x[239:224]),
 .s(twobyte14[15:0]),
 .overflow(twooverflow[14]),
 .d1_valid(twod1_valid[14]),
 .d2_valid(twod2_valid[14]),
 .d4_valid(twod4_valid[14])
);

bdi16 inst215(
 .x(x[15:0]),
 .y(x[255:240]),
 .s(twobyte15[15:0]),
 .overflow(twooverflow[15]),
 .d1_valid(twod1_valid[15]),
 .d2_valid(twod2_valid[15]),
 .d4_valid(twod4_valid[15])
);

bdi16 inst216(
 .x(x[15:0]),
 .y(x[271:256]),
 .s(twobyte16[15:0]),
 .overflow(twooverflow[16]),
 .d1_valid(twod1_valid[16]),
 .d2_valid(twod2_valid[16]),
 .d4_valid(twod4_valid[16])
);

bdi16 inst217(
 .x(x[15:0]),
 .y(x[287:272]),
 .s(twobyte17[15:0]),
 .overflow(twooverflow[17]),
 .d1_valid(twod1_valid[17]),
 .d2_valid(twod2_valid[17]),
 .d4_valid(twod4_valid[17])
);

bdi16 inst218(
 .x(x[15:0]),
 .y(x[303:288]),
 .s(twobyte18[15:0]),
 .overflow(twooverflow[18]),
 .d1_valid(twod1_valid[18]),
 .d2_valid(twod2_valid[18]),
 .d4_valid(twod4_valid[18])
);

bdi16 inst219(
 .x(x[15:0]),
 .y(x[319:304]),
 .s(twobyte19[15:0]),
 .overflow(twooverflow[19]),
 .d1_valid(twod1_valid[19]),
 .d2_valid(twod2_valid[19]),
 .d4_valid(twod4_valid[19])
);

92

bdi16 inst220(
 .x(x[15:0]),
 .y(x[335:320]),
 .s(twobyte20[15:0]),
 .overflow(twooverflow[20]),
 .d1_valid(twod1_valid[20]),
 .d2_valid(twod2_valid[20]),
 .d4_valid(twod4_valid[20])
);

bdi16 inst221(
 .x(x[15:0]),
 .y(x[351:336]),
 .s(twobyte21[15:0]),
 .overflow(twooverflow[21]),
 .d1_valid(twod1_valid[21]),
 .d2_valid(twod2_valid[21]),
 .d4_valid(twod4_valid[21])
);

bdi16 inst222(
 .x(x[15:0]),
 .y(x[367:352]),
 .s(twobyte22[15:0]),
 .overflow(twooverflow[22]),
 .d1_valid(twod1_valid[22]),
 .d2_valid(twod2_valid[22]),
 .d4_valid(twod4_valid[22])
);

bdi16 inst223(
 .x(x[15:0]),
 .y(x[383:368]),
 .s(twobyte23[15:0]),
 .overflow(twooverflow[23]),
 .d1_valid(twod1_valid[23]),
 .d2_valid(twod2_valid[23]),
 .d4_valid(twod4_valid[23])
);

bdi16 inst224(
 .x(x[15:0]),
 .y(x[399:384]),
 .s(twobyte24[15:0]),
 .overflow(twooverflow[24]),
 .d1_valid(twod1_valid[24]),
 .d2_valid(twod2_valid[24]),
 .d4_valid(twod4_valid[24])
);

bdi16 inst225(
 .x(x[15:0]),
 .y(x[415:400]),
 .s(twobyte25[15:0]),
 .overflow(twooverflow[25]),
 .d1_valid(twod1_valid[25]),
 .d2_valid(twod2_valid[25]),
 .d4_valid(twod4_valid[25])
);

bdi16 inst226(
 .x(x[15:0]),
 .y(x[431:416]),
 .s(twobyte26[15:0]),
 .overflow(twooverflow[26]),
 .d1_valid(twod1_valid[26]),
 .d2_valid(twod2_valid[26]),
 .d4_valid(twod4_valid[26])
);

93

bdi16 inst227(
 .x(x[15:0]),
 .y(x[447:432]),
 .s(twobyte27[15:0]),
 .overflow(twooverflow[27]),
 .d1_valid(twod1_valid[27]),
 .d2_valid(twod2_valid[27]),
 .d4_valid(twod4_valid[27])
);

bdi16 inst228(
 .x(x[15:0]),
 .y(x[463:448]),
 .s(twobyte28[15:0]),
 .overflow(twooverflow[28]),
 .d1_valid(twod1_valid[28]),
 .d2_valid(twod2_valid[28]),
 .d4_valid(twod4_valid[28])
);

bdi16 inst229(
 .x(x[15:0]),
 .y(x[479:464]),
 .s(twobyte29[15:0]),
 .overflow(twooverflow[29]),
 .d1_valid(twod1_valid[29]),
 .d2_valid(twod2_valid[29]),
 .d4_valid(twod4_valid[29])
);

bdi16 inst230(
 .x(x[15:0]),
 .y(x[495:480]),
 .s(twobyte30[15:0]),
 .overflow(twooverflow[30]),
 .d1_valid(twod1_valid[30]),
 .d2_valid(twod2_valid[30]),
 .d4_valid(twod4_valid[30])
);

bdi16 inst231(
 .x(x[15:0]),
 .y(x[511:496]),
 .s(twobyte31[15:0]),
 .overflow(twooverflow[31]),
 .d1_valid(twod1_valid[31]),
 .d2_valid(twod2_valid[31]),
 .d4_valid(twod4_valid[31])
);

assign b2d1_valid = (&twod1_valid) & (&(~twooverflow));

assign b2d1[15:0] = x[15:0];
assign b2d1[23:16] = twobyte0[7:0];
assign b2d1[31:24] = twobyte1[7:0];
assign b2d1[39:32] = twobyte2[7:0];
assign b2d1[47:40] = twobyte3[7:0];
assign b2d1[55:48] = twobyte4[7:0];
assign b2d1[63:56] = twobyte5[7:0];
assign b2d1[71:64] = twobyte6[7:0];
assign b2d1[79:72] = twobyte7[7:0];
assign b2d1[87:80] = twobyte8[7:0];
assign b2d1[95:88] = twobyte9[7:0];
assign b2d1[103:96] = twobyte10[7:0];
assign b2d1[111:104] = twobyte11[7:0];
assign b2d1[119:112] = twobyte12[7:0];
assign b2d1[127:120] = twobyte13[7:0];
assign b2d1[135:128] = twobyte14[7:0];
assign b2d1[143:136] = twobyte15[7:0];

94

assign b2d1[151:144] = twobyte16[7:0];
assign b2d1[159:152] = twobyte17[7:0];
assign b2d1[167:160] = twobyte18[7:0];
assign b2d1[175:168] = twobyte19[7:0];
assign b2d1[183:176] = twobyte20[7:0];
assign b2d1[191:184] = twobyte21[7:0];
assign b2d1[199:192] = twobyte22[7:0];
assign b2d1[207:200] = twobyte23[7:0];
assign b2d1[215:208] = twobyte24[7:0];
assign b2d1[223:216] = twobyte25[7:0];
assign b2d1[231:224] = twobyte26[7:0];
assign b2d1[239:232] = twobyte27[7:0];
assign b2d1[247:240] = twobyte28[7:0];
assign b2d1[255:248] = twobyte29[7:0];
assign b2d1[263:256] = twobyte30[7:0];
assign b2d1[271:264] = twobyte31[7:0];

assign repeats[63:0] = x[63:0];
assign repeats_valid = & ((x[63:0] ^~ x[127:64]) & (x[63:0] ^~ x[191:128]) & (x[63:0] ^~
x[255:192]) & (x[63:0] ^~ x[319:256]) & (x[63:0] ^~ x[383:320]) & (x[63:0] ^~ x[447:384]) &
(x[63:0] ^~ x[511:448]));

assign zeros = 0;
assign zeros_valid = &(~x);

endmodule

module bdi(
 input wire [63:0] x,
 input wire [63:0] y,
 output wire [63:0] s,
 output wire overflow,
 output wire d1_valid,
 output wire d2_valid,
 output wire d4_valid

);

 wire c8, c16, c24, c32, c40, c48, c56;
 wire i00, i01, i02, i03, i04, i05, i06, i07, i08, i09;
 wire i10, i11, i12, i13, i14, i15, i16, i17, i18, i19;
 wire i20, i21, i22, i23, i24, i25, i26, i27, i28, i29;
 wire i30, i31, i32, i33, i34;
 wire g[7:0];
 wire p[7:0];
 wire [63:0] xnot;

 //subtractor
 assign xnot = ~x;
 assign c0 = 1;

 wire c64;

 and prim00 (i00, p[0], c0);
 or prim01 (c8, g[0], i00);

 and prim02 (i01, p[1], g[0]);
 and prim03 (i02, p[1], p[0], c0);
 or prim04 (c16, g[1], i01, i02);

 and prim05 (i03, p[2], g[1]);
 and prim06 (i04, p[2], p[1], g[0]);
 and prim07 (i05, p[2], p[1], p[0], c0);
 or prim08 (c24, g[2], i03, i04, i05);

 and prim09 (i06, p[3], g[2]);
 and prim10 (i07, p[3], p[2], g[1]);
 and prim11 (i08, p[3], p[2], p[1], g[0]);
 and prim12 (i09, p[3], p[2], p[1], p[0], c0);
 or prim13 (c32, g[3], i06, i07, i08, i09);

95

 and prim14 (i10, p[4], g[3]);
 and prim15 (i11, p[4], p[3], g[2]);
 and prim16 (i12, p[4], p[3], p[2], g[1]);
 and prim17 (i13, p[4], p[3], p[2], p[1], g[0]);
 and prim18 (i14, p[4], p[3], p[2], p[1], p[0], c0);
 or prim19 (c40, g[4], i10, i11, i12, i13, i14);

 and prim20 (i15, p[5], g[4]);
 and prim21 (i16, p[5], p[4], g[3]);
 and prim22 (i17, p[5], p[4], p[3], g[2]);
 and prim23 (i18, p[5], p[4], p[3], p[2], g[1]);
 and prim24 (i19, p[5], p[4], p[3], p[2], p[1], g[0]);
 and prim25 (i20, p[5], p[4], p[3], p[2], p[1], p[0], c0);
 or prim26 (c48, g[5], i15, i16, i17, i18, i19, i20);

 and prim27 (i21, p[6], g[5]);
 and prim28 (i22, p[6], p[5], g[4]);
 and prim29 (i23, p[6], p[5], p[4], g[3]);
 and prim30 (i24, p[6], p[5], p[4], p[3], g[2]);
 and prim31 (i25, p[6], p[5], p[4], p[3], p[2], g[1]);
 and prim32 (i26, p[6], p[5], p[4], p[3], p[2], p[1], g[0]);
 and prim33 (i27, p[6], p[5], p[4], p[3], p[2], p[1], p[0], c0);
 or prim34 (c56, g[6], i21, i22, i23, i24, i25, i26, i27);

 and prim35 (i28, p[7], g[6]);
 and prim36 (i29, p[7], p[6], g[5]);
 and prim37 (i30, p[7], p[6], p[5], g[4]);
 and prim38 (i31, p[7], p[6], p[5], p[4], g[3]);
 and prim39 (i32, p[7], p[6], p[5], p[4], p[3], g[2]);
 and prim40 (i33, p[7], p[6], p[5], p[4], p[3], p[2], g[1]);
 and prim41 (i34, p[7], p[6], p[5], p[4], p[3], p[2], p[1], g[0]);
 and prim42 (i35, p[7], p[6], p[5], p[4], p[3], p[2], p[1], p[0], c0);
 or prim43 (c64, g[7], i28, i29, i30, i31, i32, i33, i34, i35);

 xor prim44 (overflow, c64, xnot[63], y[63], s[63]);
 assign d1_valid = (&(s[63:7])) | (&(~s[63:7]));
 assign d2_valid = (&(s[63:15])) | (&(~s[63:15]));
 assign d4_valid = (&(s[63:31])) | (&(~s[63:31]));

 hadder8 block0(
 .c0(c0),
 .x(xnot[7:0]),
 .y(y[7:0]),
 .s(s[7:0]),
 .G(g[0]),
 .P(p[0])
);

 hadder8 block1(
 .c0(c8),
 .x(xnot[15:8]),
 .y(y[15:8]),
 .s(s[15:8]),
 .G(g[1]),
 .P(p[1])
);

 hadder8 block2(
 .c0(c16),
 .x(xnot[23:16]),
 .y(y[23:16]),
 .s(s[23:16]),
 .G(g[2]),
 .P(p[2])
);

96

 hadder8 block3(
 .c0(c24),
 .x(xnot[31:24]),
 .y(y[31:24]),
 .s(s[31:24]),
 .G(g[3]),
 .P(p[3])
);

 hadder8 block4(
 .c0(c32),
 .x(xnot[39:32]),
 .y(y[39:32]),
 .s(s[39:32]),
 .G(g[4]),
 .P(p[4])
);

 hadder8 block5(
 .c0(c40),
 .x(xnot[47:40]),
 .y(y[47:40]),
 .s(s[47:40]),
 .G(g[5]),
 .P(p[5])
);

 hadder8 block6(
 .c0(c48),
 .x(xnot[55:48]),
 .y(y[55:48]),
 .s(s[55:48]),
 .G(g[6]),
 .P(p[6])
);

 hadder8 block7(
 .c0(c56),
 .x(xnot[63:56]),
 .y(y[63:56]),
 .s(s[63:56]),
 .G(g[7]),
 .P(p[7])
);

endmodule

module bdi32(
 input wire [31:0] x,
 input wire [31:0] y,
 output wire [31:0] s,
 output wire overflow,
 output wire d1_valid,
 output wire d2_valid,
 output wire d4_valid

);

 wire c8, c16, c24, c32;
 wire i00, i01, i02, i03, i04, i05, i06, i07, i08, i09;
 wire g[3:0];
 wire p[3:0];
 wire [31:0] xnot;

 //subtractor
 assign xnot = ~x;
 assign c0 = 1;

 and prim00 (i00, p[0], c0);
 or prim01 (c8, g[0], i00);

97

 and prim02 (i01, p[1], g[0]);
 and prim03 (i02, p[1], p[0], c0);
 or prim04 (c16, g[1], i01, i02);

 and prim05 (i03, p[2], g[1]);
 and prim06 (i04, p[2], p[1], g[0]);
 and prim07 (i05, p[2], p[1], p[0], c0);
 or prim08 (c24, g[2], i03, i04, i05);

 and prim09 (i06, p[3], g[2]);
 and prim10 (i07, p[3], p[2], g[1]);
 and prim11 (i08, p[3], p[2], p[1], g[0]);
 and prim12 (i09, p[3], p[2], p[1], p[0], c0);
 or prim13 (c32, g[3], i06, i07, i08, i09);

xor prim44 (overflow, c32, xnot[31], y[31], s[31]);

 assign d1_valid = (&(s[31:7])) | (&(~s[31:7]));
 assign d2_valid = (&(s[31:15])) | (&(~s[31:15]));
 assign d4_valid = 0;

 hadder8 block0(
 .c0(c0),
 .x(xnot[7:0]),
 .y(y[7:0]),
 .s(s[7:0]),
 .G(g[0]),
 .P(p[0])
);

 hadder8 block1(
 .c0(c8),
 .x(xnot[15:8]),
 .y(y[15:8]),
 .s(s[15:8]),
 .G(g[1]),
 .P(p[1])
);

 hadder8 block2(
 .c0(c16),
 .x(xnot[23:16]),
 .y(y[23:16]),
 .s(s[23:16]),
 .G(g[2]),
 .P(p[2])
);

 hadder8 block3(
 .c0(c24),
 .x(xnot[31:24]),
 .y(y[31:24]),
 .s(s[31:24]),
 .G(g[3]),
 .P(p[3])
);

endmodule

module bdi16(
 input wire [15:0] x,
 input wire [15:0] y,
 output wire [15:0] s,
 output wire overflow,
 output wire d1_valid,
 output wire d2_valid,
 output wire d4_valid

);

98

 wire c8, c16;
 wire i00, i01, i02;
 wire g[1:0];
 wire p[1:0];
 wire [15:0] xnot;

 //subtractor
 assign xnot = ~x;
 assign c0 = 1;

 and prim00 (i00, p[0], c0);
 or prim01 (c8, g[0], i00);

 and prim02 (i01, p[1], g[0]);
 and prim03 (i02, p[1], p[0], c0);
 or prim04 (c16, g[1], i01, i02);

 xor prim44 (overflow, c16, xnot[15], y[15], s[15]);

 assign d1_valid = (&(s[15:7])) | (&(~s[15:7]));
 assign d2_valid = 0;
 assign d4_valid = 0;

 hadder8 block0(
 .c0(c0),
 .x(xnot[7:0]),
 .y(y[7:0]),
 .s(s[7:0]),
 .G(g[0]),
 .P(p[0])
);

 hadder8 block1(
 .c0(c8),
 .x(xnot[15:8]),
 .y(y[15:8]),
 .s(s[15:8]),
 .G(g[1]),
 .P(p[1])
);

endmodule

module decompressor(
 input wire carry,
 input wire [3:0] encoding,
 input wire [511:0] x,
 output wire [511:0] b8d1,
 output wire [511:0] b8d2,
 output wire [511:0] b8d4,
 output wire [511:0] b4d1,
 output wire [511:0] b4d2,
 output wire [511:0] b2d1,
 output wire [511:0] repeats,
 output wire [511:0] zeros,
 output wire [511:0] uncompressed,
 output wire b8d1_valid,
 output wire b8d2_valid,
 output wire b8d4_valid,
 output wire b4d1_valid,
 output wire b4d2_valid,
 output wire b2d1_valid,
 output wire repeats_valid,
 output wire zeros_valid

);

reg [7:0] valids;

99

 assign zeros_valid = valids[7];
 assign repeats_valid = valids[6];
 assign b8d1_valid = valids[5];
 assign b8d2_valid = valids[4];
 assign b8d4_valid = valids[3];
 assign b4d1_valid = valids[2];
 assign b4d2_valid = valids[1];
 assign b2d1_valid = valids[0];

 //uncomp
 assign uncompressed = x;

 //zeros
 assign zeros = 0;

 //repeats

 assign repeats[63:0] = x[63:0];
 assign repeats[127:64] = x[63:0];
 assign repeats[191:128] = x[63:0];
 assign repeats[255:192] = x[63:0];
 assign repeats[319:256] = x[63:0];
 assign repeats[383:320] = x[63:0];
 assign repeats[447:384] = x[63:0];
 assign repeats[511:448] = x[63:0];

 //b8d1

 hadd modb8d1b0(
 .c0(carry),
 .x(x[63:0]),
 .y({{56{x[71]}} , x[71:64]}),
 .s(b8d1[63:0])
);

 hadd modb8d1b1(
 .c0(carry),
 .x(x[63:0]),
 .y({{56{x[79]}} , x[79:72]}),
 .s(b8d1[127:64])
);

 hadd modb8d1b2(
 .c0(carry),
 .x(x[63:0]),
 .y({{56{x[87]}} , x[87:80]}),
 .s(b8d1[191:128])
);

 hadd modb8d1b3(
 .c0(carry),
 .x(x[63:0]),
 .y({{56{x[95]}} , x[95:88]}),
 .s(b8d1[255:192])
);

 hadd modb8d1b4(
 .c0(carry),
 .x(x[63:0]),
 .y({{56{x[103]}} , x[103:96]}),
 .s(b8d1[319:256])
);

 hadd modb8d1b5(
 .c0(carry),
 .x(x[63:0]),
 .y({{56{x[111]}} , x[111:104]}),
 .s(b8d1[383:320])
);

100

 hadd modb8d1b6(
 .c0(carry),
 .x(x[63:0]),
 .y({{56{x[119]}} , x[119:112]}),
 .s(b8d1[447:384])
);

 hadd modb8d1b7(
 .c0(carry),
 .x(x[63:0]),
 .y({{56{x[127]}} , x[127:120]}),
 .s(b8d1[511:448])
);
 //b8d2
 hadd modb8d2b0(
 .c0(carry),
 .x(x[63:0]),
 .y({{48{x[79]}} , x[79:64]}),
 .s(b8d2[63:0])
);

 hadd modb8d2b1(
 .c0(carry),
 .x(x[63:0]),
 .y({{48{x[95]}} , x[95:80]}),
 .s(b8d2[127:64])
);

 hadd modb8d2b2(
 .c0(carry),
 .x(x[63:0]),
 .y({{48{x[111]}} , x[111:96]}),
 .s(b8d2[191:128])
);

 hadd modb8d2b3(
 .c0(carry),
 .x(x[63:0]),
 .y({{48{x[127]}} , x[127:112]}),
 .s(b8d2[255:192])
);

 hadd modb8d2b4(
 .c0(carry),
 .x(x[63:0]),
 .y({{48{x[143]}} , x[143:128]}),
 .s(b8d2[319:256])
);

 hadd modb8d2b5(
 .c0(carry),
 .x(x[63:0]),
 .y({{48{x[159]}} , x[159:144]}),
 .s(b8d2[383:320])
);

 hadd modb8d2b6(
 .c0(carry),
 .x(x[63:0]),
 .y({{48{x[175]}} , x[175:160]}),
 .s(b8d2[447:384])
);

 hadd modb8d2b7(
 .c0(carry),
 .x(x[63:0]),
 .y({{48{x[191]}} , x[191:176]}),
 .s(b8d2[511:448])
);

101

 //b8d4

 hadd modb8d4b0(
 .c0(carry),
 .x(x[63:0]),
 .y({{32{x[95]}} , x[95:64]}),
 .s(b8d4[63:0])
);

 hadd modb8d4b1(
 .c0(carry),
 .x(x[63:0]),
 .y({{32{x[127]}} , x[127:96]}),
 .s(b8d4[127:64])
);

 hadd modb8d4b2(
 .c0(carry),
 .x(x[63:0]),
 .y({{32{x[159]}} , x[159:128]}),
 .s(b8d4[191:128])
);

 hadd modb8d4b3(
 .c0(carry),
 .x(x[63:0]),
 .y({{32{x[191]}} , x[191:160]}),
 .s(b8d4[255:192])
);

 hadd modb8d4b4(
 .c0(carry),
 .x(x[63:0]),
 .y({{32{x[223]}} , x[223:192]}),
 .s(b8d4[319:256])
);

 hadd modb8d4b5(
 .c0(carry),
 .x(x[63:0]),
 .y({{32{x[255]}} , x[255:224]}),
 .s(b8d4[383:320])
);

 hadd modb8d4b6(
 .c0(carry),
 .x(x[63:0]),
 .y({{32{x[287]}} , x[287:256]}),
 .s(b8d4[447:384])
);

 hadd modb8d4b7(
 .c0(carry),
 .x(x[63:0]),
 .y({{32{x[319]}} , x[319:288]}),
 .s(b8d4[511:448])
);

 //b4d1

 hadd32 modb4d1b0(
 .c0(carry),
 .x(x[31:0]),
 .y({{24{x[39]}} , x[39:32]}),
 .s(b4d1[31:0])
);

102

 hadd32 modb4d1b1(
 .c0(carry),
 .x(x[31:0]),
 .y({{24{x[47]}} , x[47:40]}),
 .s(b4d1[63:32])
);

 hadd32 modb4d1b2(
 .c0(carry),
 .x(x[31:0]),
 .y({{24{x[55]}} , x[55:48]}),
 .s(b4d1[95:64])
);

 hadd32 modb4d1b3(
 .c0(carry),
 .x(x[31:0]),
 .y({{24{x[63]}} , x[63:56]}),
 .s(b4d1[127:96])
);

 hadd32 modb4d1b4(
 .c0(carry),
 .x(x[31:0]),
 .y({{24{x[71]}} , x[71:64]}),
 .s(b4d1[159:128])
);

 hadd32 modb4d1b5(
 .c0(carry),
 .x(x[31:0]),
 .y({{24{x[79]}} , x[79:72]}),
 .s(b4d1[191:160])
);

 hadd32 modb4d1b6(
 .c0(carry),
 .x(x[31:0]),
 .y({{24{x[87]}} , x[87:80]}),
 .s(b4d1[223:192])
);

 hadd32 modb4d1b7(
 .c0(carry),
 .x(x[31:0]),
 .y({{24{x[95]}} , x[95:88]}),
 .s(b4d1[255:224])
);

 hadd32 modb4d1b8(
 .c0(carry),
 .x(x[31:0]),
 .y({{24{x[103]}} , x[103:96]}),
 .s(b4d1[287:256])
);

 hadd32 modb4d1b9(
 .c0(carry),
 .x(x[31:0]),
 .y({{24{x[111]}} , x[111:104]}),
 .s(b4d1[319:288])
);

 hadd32 modb4d1b10(
 .c0(carry),
 .x(x[31:0]),
 .y({{24{x[119]}} , x[119:112]}),
 .s(b4d1[351:320])
);

103

 hadd32 modb4d1b11(
 .c0(carry),
 .x(x[31:0]),
 .y({{24{x[127]}} , x[127:120]}),
 .s(b4d1[383:352])
);

 hadd32 modb4d1b12(
 .c0(carry),
 .x(x[31:0]),
 .y({{24{x[135]}} , x[135:128]}),
 .s(b4d1[415:384])
);

 hadd32 modb4d1b13(
 .c0(carry),
 .x(x[31:0]),
 .y({{24{x[143]}} , x[143:136]}),
 .s(b4d1[447:416])
);

 hadd32 modb4d1b14(
 .c0(carry),
 .x(x[31:0]),
 .y({{24{x[151]}} , x[151:144]}),
 .s(b4d1[479:448])
);

 hadd32 modb4d1b15(
 .c0(carry),
 .x(x[31:0]),
 .y({{24{x[159]}} , x[159:152]}),
 .s(b4d1[511:480])
);

 //b4d2

 hadd32 modb4d2b0(
 .c0(carry),
 .x(x[31:0]),
 .y({{16{x[47]}} , x[47:32]}),
 .s(b4d2[31:0])
);

 hadd32 modb4d2b1(
 .c0(carry),
 .x(x[31:0]),
 .y({{16{x[63]}} , x[63:48]}),
 .s(b4d2[63:32])
);

 hadd32 modb4d2b2(
 .c0(carry),
 .x(x[31:0]),
 .y({{16{x[79]}} , x[79:64]}),
 .s(b4d2[95:64])
);

 hadd32 modb4d2b3(
 .c0(carry),
 .x(x[31:0]),
 .y({{16{x[95]}} , x[95:80]}),
 .s(b4d2[127:96])
);

104

 hadd32 modb4d2b4(
 .c0(carry),
 .x(x[31:0]),
 .y({{16{x[111]}} , x[111:96]}),
 .s(b4d2[159:128])
);

 hadd32 modb4d2b5(
 .c0(carry),
 .x(x[31:0]),
 .y({{16{x[127]}} , x[127:112]}),
 .s(b4d2[191:160])
);

 hadd32 modb4d2b6(
 .c0(carry),
 .x(x[31:0]),
 .y({{16{x[143]}} , x[143:128]}),
 .s(b4d2[223:192])
);

 hadd32 modb4d2b7(
 .c0(carry),
 .x(x[31:0]),
 .y({{16{x[159]}} , x[159:144]}),
 .s(b4d2[255:224])
);

 hadd32 modb4d2b8(
 .c0(carry),
 .x(x[31:0]),
 .y({{16{x[175]}} , x[175:160]}),
 .s(b4d2[287:256])
);

 hadd32 modb4d2b9(
 .c0(carry),
 .x(x[31:0]),
 .y({{16{x[191]}} , x[191:176]}),
 .s(b4d2[319:288])
);

 hadd32 modb4d2b10(
 .c0(carry),
 .x(x[31:0]),
 .y({{16{x[207]}} , x[207:192]}),
 .s(b4d2[351:320])
);

 hadd32 modb4d2b11(
 .c0(carry),
 .x(x[31:0]),
 .y({{16{x[223]}} , x[223:208]}),
 .s(b4d2[383:352])
);

 hadd32 modb4d2b12(
 .c0(carry),
 .x(x[31:0]),
 .y({{16{x[239]}} , x[239:224]}),
 .s(b4d2[415:384])
);

 hadd32 modb4d2b13(
 .c0(carry),
 .x(x[31:0]),
 .y({{16{x[255]}} , x[255:240]}),
 .s(b4d2[447:416])
);

105

 hadd32 modb4d2b14(
 .c0(carry),
 .x(x[31:0]),
 .y({{16{x[271]}} , x[271:256]}),
 .s(b4d2[479:448])
);

 hadd32 modb4d2b15(
 .c0(carry),
 .x(x[31:0]),
 .y({{16{x[287]}} , x[287:272]}),
 .s(b4d2[511:480])
);

 //b2d1

 hadd16 modb2d1b0(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[23]}} , x[23:16]}),
 .s(b2d1[15:0])
);

 hadd16 modb2d1b1(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[31]}} , x[31:24]}),
 .s(b2d1[31:16])
);

 hadd16 modb2d1b2(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[39]}} , x[39:32]}),
 .s(b2d1[47:32])
);

hadd16 modb2d1b3(
 .c0(carry),
 .x(x[15:0]),

 .y({{8{x[47]}} , x[47:40]}),
 .s(b2d1[63:48])

);

hadd16 modb2d1b4(
 .c0(carry),

.x(x[15:0]),

.y({{8{x[55]}} , x[55:48]}),

.s(b2d1[79:64])
);

hadd16 modb2d1b5(

.c0(carry),

.x(x[15:0]),

.y({{8{x[63]}} , x[63:56]}),

.s(b2d1[95:80])
);

hadd16 modb2d1b6(

.c0(carry),

.x(x[15:0]),

.y({{8{x[71]}} , x[71:64]}),

.s(b2d1[111:96])
);

106

hadd16 modb2d1b7(
.c0(carry),
.x(x[15:0]),

 .y({{8{x[79]}} , x[79:72]}),
 .s(b2d1[127:112])
);

hadd16 modb2d1b8(

 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[87]}} , x[87:80]}),
 .s(b2d1[143:128])
);

hadd16 modb2d1b9(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[95]}} , x[95:88]}),
 .s(b2d1[159:144])
);

hadd16 modb2d1b10(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[103]}} , x[103:96]}),
 .s(b2d1[175:160])
);

hadd16 modb2d1b11(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[111]}} , x[111:104]}),
 .s(b2d1[191:176])
);

hadd16 modb2d1b12(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[119]}} , x[119:112]}),
 .s(b2d1[207:192])
);

hadd16 modb2d1b13(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[127]}} , x[127:120]}),
 .s(b2d1[223:208])
);

hadd16 modb2d1b14(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[135]}} , x[135:128]}),
 .s(b2d1[239:224])
);

hadd16 modb2d1b15(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[143]}} , x[143:136]}),
 .s(b2d1[255:240])
);

hadd16 modb2d1b16(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[151]}} , x[151:144]}),
 .s(b2d1[271:256])
);

107

hadd16 modb2d1b17(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[159]}} , x[159:152]}),
 .s(b2d1[287:272])
);

hadd16 modb2d1b18(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[167]}} , x[167:160]}),
 .s(b2d1[303:288])
);

hadd16 modb2d1b19(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[175]}} , x[175:168]}),
 .s(b2d1[319:304])
);

hadd16 modb2d1b20(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[183]}} , x[183:176]}),
 .s(b2d1[335:320])
);

hadd16 modb2d1b21(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[191]}} , x[191:184]}),
 .s(b2d1[351:336])
);

hadd16 modb2d1b22(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[199]}} , x[199:192]}),
 .s(b2d1[367:352])
);

hadd16 modb2d1b23(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[207]}} , x[207:200]}),
 .s(b2d1[383:368])
);

hadd16 modb2d1b24(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[215]}} , x[215:208]}),
 .s(b2d1[399:384])
);

hadd16 modb2d1b25(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[223]}} , x[223:216]}),
 .s(b2d1[415:400])
);

hadd16 modb2d1b26(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[231]}} , x[231:224]}),
 .s(b2d1[431:416])
);

108

hadd16 modb2d1b27(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[239]}} , x[239:232]}),
 .s(b2d1[447:432])
);

hadd16 modb2d1b28(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[247]}} , x[247:240]}),
 .s(b2d1[463:448])
);

hadd16 modb2d1b29(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[255]}} , x[255:248]}),
 .s(b2d1[479:464])
);

hadd16 modb2d1b30(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[263]}} , x[263:256]}),
 .s(b2d1[495:480])
);

hadd16 modb2d1b31(
 .c0(carry),
 .x(x[15:0]),
 .y({{8{x[271]}} , x[271:264]}),
 .s(b2d1[511:496])
);

always @(*) begin
 case (encoding)
 4'b0000 :
 valids = 8'b10000000;

 4'b0001 :
 valids = 8'b01000000;

 4'b0010 :
 valids = 8'b00100000;

 4'b0011 :
 valids = 8'b00010000;

 4'b0100 :
 valids = 8'b00001000;

 4'b0101 :
 valids = 8'b00000100;

 4'b0110 :
 valids = 8'b00000010;

 4'b0111 :
 valids = 8'b00000001;

 4'b1111 :
 valids = 8'b00000000;

 endcase
 end

endmodule

109

module hadd(
 input wire c0,
 input wire [63:0] x,
 input wire [63:0] y,
 output wire [63:0] s,
 output wire c64

);

 wire c8, c16, c24, c32, c40, c48, c56;
 wire i00, i01, i02, i03, i04, i05, i06, i07, i08, i09;
 wire i10, i11, i12, i13, i14, i15, i16, i17, i18, i19;
 wire i20, i21, i22, i23, i24, i25, i26, i27, i28, i29;
 wire i30, i31, i32, i33, i34;
 wire g[7:0];
 wire p[7:0];

 //assign c0 = 0;

 and prim00 (i00, p[0], c0);
 or prim01 (c8, g[0], i00);

 and prim02 (i01, p[1], g[0]);
 and prim03 (i02, p[1], p[0], c0);
 or prim04 (c16, g[1], i01, i02);

 and prim05 (i03, p[2], g[1]);
 and prim06 (i04, p[2], p[1], g[0]);
 and prim07 (i05, p[2], p[1], p[0], c0);
 or prim08 (c24, g[2], i03, i04, i05);

 and prim09 (i06, p[3], g[2]);
 and prim10 (i07, p[3], p[2], g[1]);
 and prim11 (i08, p[3], p[2], p[1], g[0]);
 and prim12 (i09, p[3], p[2], p[1], p[0], c0);
 or prim13 (c32, g[3], i06, i07, i08, i09);

 and prim14 (i10, p[4], g[3]);
 and prim15 (i11, p[4], p[3], g[2]);
 and prim16 (i12, p[4], p[3], p[2], g[1]);
 and prim17 (i13, p[4], p[3], p[2], p[1], g[0]);
 and prim18 (i14, p[4], p[3], p[2], p[1], p[0], c0);
 or prim19 (c40, g[4], i10, i11, i12, i13, i14);

 and prim20 (i15, p[5], g[4]);
 and prim21 (i16, p[5], p[4], g[3]);
 and prim22 (i17, p[5], p[4], p[3], g[2]);
 and prim23 (i18, p[5], p[4], p[3], p[2], g[1]);
 and prim24 (i19, p[5], p[4], p[3], p[2], p[1], g[0]);
 and prim25 (i20, p[5], p[4], p[3], p[2], p[1], p[0], c0);
 or prim26 (c48, g[5], i15, i16, i17, i18, i19, i20);

 and prim27 (i21, p[6], g[5]);
 and prim28 (i22, p[6], p[5], g[4]);
 and prim29 (i23, p[6], p[5], p[4], g[3]);
 and prim30 (i24, p[6], p[5], p[4], p[3], g[2]);
 and prim31 (i25, p[6], p[5], p[4], p[3], p[2], g[1]);
 and prim32 (i26, p[6], p[5], p[4], p[3], p[2], p[1], g[0]);
 and prim33 (i27, p[6], p[5], p[4], p[3], p[2], p[1], p[0], c0);
 or prim34 (c56, g[6], i21, i22, i23, i24, i25, i26, i27);

 and prim35 (i28, p[7], g[6]);
 and prim36 (i29, p[7], p[6], g[5]);
 and prim37 (i30, p[7], p[6], p[5], g[4]);
 and prim38 (i31, p[7], p[6], p[5], p[4], g[3]);
 and prim39 (i32, p[7], p[6], p[5], p[4], p[3], g[2]);
 and prim40 (i33, p[7], p[6], p[5], p[4], p[3], p[2], g[1]);
 and prim41 (i34, p[7], p[6], p[5], p[4], p[3], p[2], p[1], g[0]);
 and prim42 (i35, p[7], p[6], p[5], p[4], p[3], p[2], p[1], p[0], c0);
 or prim43 (c64, g[7], i28, i29, i30, i31, i32, i33, i34, i35);

110

 hadder8 block0(
 .c0(c0),
 .x(x[7:0]),
 .y(y[7:0]),
 .s(s[7:0]),
 .G(g[0]),
 .P(p[0])
);

 hadder8 block1(
 .c0(c8),
 .x(x[15:8]),
 .y(y[15:8]),
 .s(s[15:8]),
 .G(g[1]),
 .P(p[1])
);

 hadder8 block2(
 .c0(c16),
 .x(x[23:16]),
 .y(y[23:16]),
 .s(s[23:16]),
 .G(g[2]),
 .P(p[2])
);

 hadder8 block3(
 .c0(c24),
 .x(x[31:24]),
 .y(y[31:24]),
 .s(s[31:24]),
 .G(g[3]),
 .P(p[3])
);

 hadder8 block4(
 .c0(c32),
 .x(x[39:32]),
 .y(y[39:32]),
 .s(s[39:32]),
 .G(g[4]),
 .P(p[4])
);

 hadder8 block5(
 .c0(c40),
 .x(x[47:40]),
 .y(y[47:40]),
 .s(s[47:40]),
 .G(g[5]),
 .P(p[5])
);

 hadder8 block6(
 .c0(c48),
 .x(x[55:48]),
 .y(y[55:48]),
 .s(s[55:48]),
 .G(g[6]),
 .P(p[6])
);

111

 hadder8 block7(
 .c0(c56),
 .x(x[63:56]),
 .y(y[63:56]),
 .s(s[63:56]),
 .G(g[7]),
 .P(p[7])
);

endmodule

module hadd32(
 input wire c0,
 input wire [31:0] x,
 input wire [31:0] y,
 output wire [31:0] s

);

 wire c8, c16, c24, c32;
 wire i00, i01, i02, i03, i04, i05, i06, i07, i08, i09;
 wire g[3:0];
 wire p[3:0];

 and prim00 (i00, p[0], c0);
 or prim01 (c8, g[0], i00);

 and prim02 (i01, p[1], g[0]);
 and prim03 (i02, p[1], p[0], c0);
 or prim04 (c16, g[1], i01, i02);

 and prim05 (i03, p[2], g[1]);
 and prim06 (i04, p[2], p[1], g[0]);
 and prim07 (i05, p[2], p[1], p[0], c0);
 or prim08 (c24, g[2], i03, i04, i05);

 and prim09 (i06, p[3], g[2]);
 and prim10 (i07, p[3], p[2], g[1]);
 and prim11 (i08, p[3], p[2], p[1], g[0]);
 and prim12 (i09, p[3], p[2], p[1], p[0], c0);
 or prim13 (c32, g[3], i06, i07, i08, i09);

 hadder8 block0(
 .c0(c0),
 .x(x[7:0]),
 .y(y[7:0]),
 .s(s[7:0]),
 .G(g[0]),
 .P(p[0])
);

 hadder8 block1(
 .c0(c8),
 .x(x[15:8]),
 .y(y[15:8]),
 .s(s[15:8]),
 .G(g[1]),
 .P(p[1])
);

 hadder8 block2(
 .c0(c16),
 .x(x[23:16]),
 .y(y[23:16]),
 .s(s[23:16]),
 .G(g[2]),
 .P(p[2])
);

112

 hadder8 block3(
 .c0(c24),
 .x(x[31:24]),
 .y(y[31:24]),
 .s(s[31:24]),
 .G(g[3]),
 .P(p[3])
);

endmodule

module hadd16(
 input c0,
 input wire [15:0] x,
 input wire [15:0] y,
 output wire [15:0] s
);

 wire c8, c16;
 wire i00, i01, i02;
 wire g[1:0];
 wire p[1:0];

 and prim00 (i00, p[0], c0);
 or prim01 (c8, g[0], i00);

 and prim02 (i01, p[1], g[0]);
 and prim03 (i02, p[1], p[0], c0);
 or prim04 (c16, g[1], i01, i02);

 hadder8 block0(
 .c0(c0),
 .x(x[7:0]),
 .y(y[7:0]),
 .s(s[7:0]),
 .G(g[0]),
 .P(p[0])
);

 hadder8 block1(
 .c0(c8),
 .x(x[15:8]),
 .y(y[15:8]),
 .s(s[15:8]),
 .G(g[1]),
 .P(p[1])
);

endmodule

module hadder8(
 input wire c0,
 input wire [7:0] x,
 input wire [7:0] y,
 output wire [7:0] s,
 output wire G,

output wire P
);

 wire [7:0] g, p;
 wire [8:1] c;
 wire i00, i01, i02, i03, i04, i05, i06, i07, i08, i09;
 wire i10, i11, i12, i13, i14, i15, i16, i17, i18, i19;
 wire i20, i21, i22, i23, i24, i25, i26, i27, i28, i29;
 wire i30, i31, i32, i33, i34;

 xor prim00 (s[0], c0, x[0], y[0]);
 and prim01 (g[0], x[0], y[0]);

113

 or prim02 (p[0], x[0], y[0]);

 and prim03 (i00, p[0], c0);
 or prim04 (c[1], g[0], i00);

 xor prim05 (s[1], c[1], x[1], y[1]);
 and prim06 (g[1], x[1], y[1]);
 or prim07 (p[1], x[1], y[1]);

 and prim08 (i01, p[1], g[0]);
 and prim09 (i02, p[1], p[0], c0);
 or prim10 (c[2], g[1], i01, i02);

 xor prim11 (s[2], c[2], x[2], y[2]);
 and prim12 (g[2], x[2], y[2]);
 or prim13 (p[2], x[2], y[2]);

 and prim14 (i03, p[2], g[1]);
 and prim15 (i04, p[2], p[1], g[0]);
 and prim16 (i05, p[2], p[1], p[0], c0);
 or prim17 (c[3], g[2], i03, i04, i05);

 xor prim18 (s[3], c[3], x[3], y[3]);
 and prim19 (g[3], x[3], y[3]);
 or prim20 (p[3], x[3], y[3]);

 and prim21 (i06, p[3], g[2]);
 and prim22 (i07, p[3], p[2], g[1]);
 and prim23 (i08, p[3], p[2], p[1], g[0]);
 and prim24 (i09, p[3], p[2], p[1], p[0], c0);
 or prim25 (c[4], g[3], i06, i07, i08, i09);

 xor prim26 (s[4], c[4], x[4], y[4]);
 and prim27 (g[4], x[4], y[4]);
 or prim28 (p[4], x[4], y[4]);

 and prim29 (i10, p[4], g[3]);
 and prim30 (i11, p[4], p[3], g[2]);
 and prim31 (i12, p[4], p[3], p[2], g[1]);
 and prim32 (i13, p[4], p[3], p[2], p[1], g[0]);
 and prim33 (i14, p[4], p[3], p[2], p[1], p[0], c0);
 or prim34 (c[5], g[4], i10, i11, i12, i13, i14);

 xor prim35 (s[5], c[5], x[5], y[5]);
 and prim36 (g[5], x[5], y[5]);
 or prim37 (p[5], x[5], y[5]);

 and prim38 (i15, p[5], g[4]);
 and prim39 (i16, p[5], p[4], g[3]);
 and prim40 (i17, p[5], p[4], p[3], g[2]);
 and prim41 (i18, p[5], p[4], p[3], p[2], g[1]);
 and prim42 (i19, p[5], p[4], p[3], p[2], p[1], g[0]);
 and prim43 (i20, p[5], p[4], p[3], p[2], p[1], p[0], c0);
 or prim44 (c[6], g[5], i15, i16, i17, i18, i19, i20);

 xor prim45 (s[6], c[6], x[6], y[6]);
 and prim46 (g[6], x[6], y[6]);
 or prim47 (p[6], x[6], y[6]);

 and prim48 (i21, p[6], g[5]);
 and prim49 (i22, p[6], p[5], g[4]);
 and prim50 (i23, p[6], p[5], p[4], g[3]);
 and prim51 (i24, p[6], p[5], p[4], p[3], g[2]);
 and prim52 (i25, p[6], p[5], p[4], p[3], p[2], g[1]);
 and prim53 (i26, p[6], p[5], p[4], p[3], p[2], p[1], g[0]);
 and prim54 (i27, p[6], p[5], p[4], p[3], p[2], p[1], p[0], c0);
 or prim55 (c[7], g[6], i21, i22, i23, i24, i25, i26, i27);

 xor prim56 (s[7], c[7], x[7], y[7]);

114

 and prim57 (g[7], x[7], y[7]);
 or prim58 (p[7], x[7], y[7]);

 and prim59 (i28, p[7], g[6]);
 and prim60 (i29, p[7], p[6], g[5]);
 and prim61 (i30, p[7], p[6], p[5], g[4]);
 and prim62 (i31, p[7], p[6], p[5], p[4], g[3]);
 and prim63 (i32, p[7], p[6], p[5], p[4], p[3], g[2]);
 and prim64 (i33, p[7], p[6], p[5], p[4], p[3], p[2], g[1]);
 and prim65 (i34, p[7], p[6], p[5], p[4], p[3], p[2], p[1], g[0]);

 and prim66 (P, p[7], p[6], p[5], p[4], p[3], p[2], p[1], p[0]);
 or prim67 (G, g[7], i28, i29, i30, i31, i32, i33, i34);

endmodule

