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Abstract 

Increasing concerns over environmental issues and conventional resource depletion have 

heightened our motivation to use clean and alternative fuels. Biodiesel is simply derived from 

biomass proposed as an alternative fuel for diesel engines, which contributes to a reduction in 

carbon monoxide (CO), smoke intensity, and unburned hydrocarbon (HC). However, biodiesel has 

inferior cold flow properties and emits higher nitrogen oxides (NOx) compared to conventional 

diesel. The present work aims at improving cold flow properties of biodiesel using the fractionation 

method combined with additives, and investigates their effects on a diesel engine’s regulated 

emissions and performance. In addition, emulsion fuels were found to reduce both NOx emission 

and smoke intensity. Experiments using urea, mixture of recovered urea and crystal, and crystal 

fractionation were conducted; the additives include ethanol, methanol, and diethyl ether (DEE).  

Results using two modern diesel engines (a light-duty and a heavy-duty) were investigated using 

various fuels. The heavy-duty engine was fueled with different fuel types and eight emulsion fuels 

at two idling conditions (1200 rpm and 1500 rpm). The light-duty engine was fueled with biodiesel 

blends, fractionated biodiesel blends, emulsified diesel-biodiesel, emulsified diesel-biodiesel 

ammonium hydroxides blends, and emulsified biodiesel at three different engine operating 

conditions. The conclusion was that a mixture of recovered urea and crystal fractionation provided 

higher production efficiency and acceptable cloud point. A significant reduction in NOx emission 

was obtained from emulsified fuels compared with their bases, and emulsion biodiesel with 2.5% 

water revealed results that were comparable to diesel in terms of NOx and CO emissions at all 

engine operating conditions.  
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Chapter 1: Overview 

1.1 Introduction 

The skyrocketing growth in the world’s population over last century has heightened the 

demand for conventional fuel resources. Currently, the worldwide consumption of conventional 

petroleum products (oil and liquid fuels) is approximately 96 million barrels per day [1], [2]. 

Canada consumed about 1.8 million barrels per day of refined petroleum products in 2015 [3]. In 

that same year, the net sales of diesel and gasoline fuels were 17.989 and 44.58 million liters per 

year, respectively [4]. Generally, diesel is used as a fuel for compression ignition (CI) engines, 

while gasoline is used as a fuel for spark ignition (SI) engines. The dependency on diesel and 

gasoline contribute to the pollution of the environment since the main emissions exhausted from 

the engines that function on those fuels are carbon monoxide (CO), nitrogen oxides (NOx), 

unburned hydrocarbon (HC), and particulate matters (PM). Further, increasing the demand on 

conventional fuel, which has an end-date, will result in it no longer being a viable option in the 

future.  

Generally, diesel engines have advantages of high-energy conversion and economic power 

source over gasoline engines, especially for the same power output. Therefore, a diesel engine 

emits lower CO and HC [5]. Additionally, there is low maintenance required for diesel engines 

since they have no ignition or carburetor systems.  Further, a diesel engine has more flexibility 

over fuel choice [6]. Thanks to these advantages, diesel engine use is wide-spread in many 

applications such as transportation, agricultural machines, and mining equipment. Although a 

diesel engine has lower emission compared to a gasoline engine, public and regulatory agencies in 

both developed and developing countries put more pressure on diesel engine emission control.     

Extensive research has been conducted on emission reduction in diesel engines. Such 

potential technologies include reducing in-cylinder temperature and after-treatment of engine 

exhaust gases. Reducing in-cylinder temperature using exhaust gas recirculation (EGR) is an 

effective way to reduce NOx emissions, which works by recirculating a portion of the exhaust 

gases back to the engine cylinder, thus reducing the amount of oxygen that is available for 

combustion in the cylinder [7]. After-treatment systems include [8]: a diesel oxidation catalyst 

(DOC), designed to reduce CO and HC emissions; a diesel particulate filter (DPF), designed to 

remove PM or soot emission; and NOx storage catalysts (NSC) and selective catalytic reduction 
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(SCR), both designed to decrease NOx emission. Despite the fact that these technologies have a 

significant impact on reducing diesel engine emissions, after-treatment systems are relatively 

expensive, and result in increased fuel consumption and operating costs [9].  

Numerous studies have been conducted investigating the effects of engine variables and 

fuel properties on diesel engine emissions. Firstly, engine variables such as injection pressure, 

injection timing, and compression ratio (CR) have an influential impact on diesel engine emissions. 

In general, the advanced injection timing, high injection pressure, and high CR usually result in 

reducing CO, HC and PM emissions, while NOx emissions show the opposite result [10]–[13]. 

The reason may be due to the advanced injection timing which increases ignition delay time, while 

the increased injection pressure results in burning more fuel and increases the CR.  Hence, higher 

combustion temperature attributes to an increase in NOx and a reduction in CO, HC, and PM 

emissions. 

Secondly, fuel properties such as its cetane number (CN), latent heat of vaporization, 

oxygen content, and kinetic viscosity, play a major role in emission characteristics of a diesel 

engine. The CN of fuel affects the ignition delay time and the premixed combustion phase, which 

increase by reducing the CN, and decrease by raising the CN in the fuel.  Therefore, fuels with a 

high CN cause a reduction of NOx emission, whereas it contains high CO, HC and smoke 

emissions, especially at low and medium loads [14], [15]. Fuel latent heat of vaporization is the 

amount of heat that is required to convert fuel into gas; hence, fuel with high latent heat of 

vaporization contributes to less NOx emission and higher CO emission [16]. The oxygen content 

of fuel has a significant effect on diesel engine emission which is, in general, fuel with high oxygen 

content, attributing to high combustion temperature, and thus higher NOx and lower CO, HC, and 

PM emissions [17]. Viscosity also plays an important role in lubricating the fuel injection system.  

Therefore, fuel with higher viscosity than diesel fuel resulted in a decrease in the injection rate in 

power fuel atomization, and in vaporization by the injectors, consequently leading to incomplete 

combustion which resulted in soot emission and increased particles [18], [19]. 

Biodiesel is simply derived from biomass proposed as an alternative fuel in the market, and 

is defined as the mono alkyl esters of long chain fatty acids derived from renewable lipid 

feedstocks, such as vegetable oil and animal fats [20]. Biodiesel, as a renewable fuel for diesel, 

offers the potential of decreasing dependence on petroleum fuels. The global shift to biodiesel 
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currently encompasses many different countries.  The world’s biodiesel consumption increased 

significantly over the last decade. In 2012, the biodiesel consumption in 64 countries averaged 420 

thousand barrels per day; 54% of which was consumed in five countries, namely USA, Germany, 

Brazil, France and Spain.  These countries averaged approximately 60, 48.9, 48.2, 43 and 27.4 

thousand barrels per day, respectively [21]. Canada’s consumption of biodiesel for the same year 

averaged 5 thousand barrels per day, and the consumption is expected to reach 9 thousand barrels 

per day by 2022 [22].  Biodiesel as an alternative fuel has many advantages over diesel fuel, but it 

also has a few potential downsides.  

1.2 Biodiesel Advantages 

1.2.1 Reduced Foreign Petroleum Oil Dependency 

Biodiesel is a renewable and domestic energy source that can decrease the dependency on 

foreign petroleum oil since petroleum oil is not renewable, and vegetable oil could be produced 

worldwide. For example, USA spent approximately $250 billion on foreign petroleum oil, 

consuming about 20 million barrels per day in 2007 [23]. Therefore, investing some of that money 

into biodiesel production would displace a considerable amount of foreign petroleum diesel. 

1.2.2 Simplicity 

Biodiesel can be used as a fuel in diesel engines with little modification to the engine’s fuel 

system, and many countries have already made extensive conversions to this fuel. Additionally, a 

biodiesel blend of B20 (80% diesel and 20% biodiesel) or lower can be used without any 

modification to the engine.  

1.2.3 Lubricity 

Protecting an engine’s moving parts from wearing out prematurely to maintain adequate 

performance requires lubricants in the fuels [24]. Biodiesel has been proven to be good for diesel 

engines, as it provides improved healthy lubrication compared to fossil diesel due to its excellent 

solvent properties. 

1.2.4 Less Emission 

Much work has been done investigating the biodiesel impact on exhaust emissions. Since 

biodiesel is found to reduce HC, CO, and PM [16], [17], [25], it is therefore attributed to meeting 

the national emission standard for atmospheric carbon reduction.  
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1.2.5 Higher Cetane 

The CN measures the combustion quality of fuel during the compression ignition phase. 

Biodiesel was found to meet ASTM D6751 specification with a CN higher than 47, which is higher 

than conventional diesel which averages a CN of 43 [26]–[28]. A higher CN of biodiesel 

contributes to quieter engine operation and easier engine start-up [16]. 

1.3 Potential Downsides of Biodiesel 

1.3.1 Lower Energy Content 

The energy content of fuel is a key element in fuel economy, as well as in an engine’s 

ability to produce power. Typically, No. 2 diesel fuel (known as summer diesel) has higher energy 

content than No.1 diesel (known as winter diesel) [23]. Typically, biodiesel has lower energy 

content than conventional diesel. For instance, canola biodiesel with a higher heating value of 

40,296 kJ/kg is lower than No. 2 diesel with a higher heating value of approximately 45,000 kJ/kg, 

by about 10% [25]. 

1.3.2 Inferior Cold Flow Properties  

Cloud point (CP), pour point (PP) and cold filter plugging point (CFPP) represent the cold 

flow proprieties (CFPs) of biodiesel. Typical to ASTM D2500, CP refers to the biodiesel 

temperature below biowax, which forms a cloudy appearance [29]. The PP of biodiesel is the 

temperature at which the liquid loses its flow characteristics (the PP standard test method is ASTM 

D7346-15) [30]. The CFPP is the lowest temperature at which fuel will still flow through a specific 

filter, usually lower than cloud point. Generally, biodiesel has inferior cold flow properties 

compared to conventional diesel, which is the main reason it is unusable with high percentages in 

colder climates such as Canada. In Canada, the biodiesel is mainly blended with a diesel, and its 

consumption varies from province to province due to their climate conditions. For example, the 

higher consumption of biodiesel in 2014 was in  British Columbia, with approximately 4028 

thousand cubic meter of diesel, that blended with 102 thousand cubic meter of biodiesel (about 

2.4% biodiesel) [31].  

1.3.3 High NOx Emission 

Although biodiesel emits lower CO, HC, and PM, biodiesel contributes to producing 

slightly higher NOx emissions compared to conventional diesel due to its high oxygen content, 

which contributes to a higher combustion temperature [16]. NOx emission has a negative effect 
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on the atmosphere because it forms smog and ozone. Additionally, dissolving NOx in atmospheric 

moisture produces acid rain.   

1.4 Thesis Scope 

In this study, attempts will be made for improving CFPs of biodiesel to be useable in cold 

climate regions.  In addition, controlled diesel engine emission experiments will be carried out, 

with the main focus on NOx and smoke opacity emissions. 
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Chapter 2: Literature Review 

2.1 Introduction 

This chapter covers a summary of previous studies on biodiesel as a fuel for compression 

ignition (CI) engines. Firstly, a number of studies investigating CFPs will be briefly reviewed, 

followed by a selection of literature on emulsion fuels and their effect on diesel engine 

performance and emission. Finally, the thesis objectives will conclude the chapter.  

Several studies have been conducted on improving biodiesel’s CFPs. Some research focused 

on modifying biodiesel’s fatty acid profile, while others investigated the effect of biodiesel 

additives and blends on biodiesel CFPs. Much work has been done on the use of biodiesel as a fuel 

for diesel engines, and a number of studies analyzed the effects of biodiesel on diesel engine 

performance and emission. According to many investigations, biodiesel has a proven substantial 

reduction in CO, HC, and PM emissions, whereas it emits slightly higher NOx emission. Various 

experiments have been conducted investigating the effect of emulsion fuel on diesel engine 

performance and emission, whereby emulsion fuel was reported to improve the combustion quality 

and engine thermal efficiency. Additionally, some studies showed that emulsion fuel is an effective 

way to reduce NOx and PM emissions.   

2.2 Review on Improving Cold Flow Properties of Biodiesel (CFPs) 

Biodiesel can be made from any oil feedstock that meets ASTM D6751 standards. 

However, biodiesel made from various crop oils contain different properties such as CN, viscosity, 

density, heating value, and cold flow properties due to dissimilarities in the fatty acid composition 

of each crop. The fatty acid composition depends on the geographical condition in which the plant 

grows, as well as the type and quality of the source [32]. Therefore, ASTM D6751 does not specify 

the biodiesel CP, but the CP must be reported to the customer. Generally, the fatty acids of 

biodiesel are divided into two categories (saturated fatty acids and unsaturated fatty acids); 

unsaturated fatty acids are divided into monounsaturated and polyunsaturated fatty acids. Table 

2.2 outlines the fatty acid composition collected from different studies of several biodiesel types 

derived from various vegetable oils with their melting points (MP), as well as the cloud point of 

each biodiesel. It is clear from the table that each type of fatty acid has a different MP (see table 

2.1), and that the percentage of biodiesel differs from one type to another. Therefore, biodiesel 
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with a higher percentage of unsaturated fatty acids shows a lower CP due to the lower MPs of 

unsaturated fatty acids. 

Table 2.1 Melting Point of biodiesels fatty acids compositions 

Fatty Acid 
Type 

Saturated Monounsaturated Polyunsaturated Ref. 

Fatty Acid 

Composition 

Myristic 

C14:0 

Palmitic 

C16:0 

Stearic 

C18:0 

Oleic 

C18:1 

Linoleic 

C18:2 

Linolenic 

C18:3 

MP  

(⁰C) 

19 30 39 -19.5 -35 -52 [33], [34] 

 

Table 2.2 Fatty acid compositions (wt.% of different biodiesel and biodiesels CP 

Type of 

Biodiesel 

CP  

(⁰C) 

 

 

Saturated Fatty Acids 

(wt.%) 

Monounsatu

rated 

(wt.%) 

Polyunsaturated 

(wt.%) 

Ref. 

Myristic 

C14:0 

Palmitic 

C16:0 

Stearic 

C18:0 

Oleic 

C18:1 

Linoleic 

C18:2 

Linolenic 

C18:3 

Canola -2.6 0.1 3.9 3.1 60.2 21.1 11.1 [16], [35] 

Sunflower -1 0.1 6.6 3.1 36.2 52.9 0.6 [33], [34] 

Rapeseed -1 0.1 4.6 1.5 63.9 20.4 7.0 [36], [37] 

Soybean 9 0.3 10.9 3.2 24 54.5 6.8 [36], [38] 

Olive 0 0 11 3.6 75.3 9.5 0.6 [35], [36] 

Palm 16 0 9.8 6.2 72.2 11.8 - [39], [40] 

 

Much work has been done to improve the CFPs of biodiesel. Some of the existing 

approaches of improving the biodiesel’s CFPs was achieved by simply modifying its fatty acids 

profile. Other techniques were followed by blending biodiesel with fuels that have low CFPs, and 

some additives were proposed to improve CFPs of biodiesel. A brief review of the technologies 

that are used will be discussed in the following subtitles.  
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2.2.1 Modification of Fatty Acids Profile 

The modification of fatty acids composition of biodiesel can be done mainly through chemical, 

physical and genetic methods. The chemical method is used in the food industry by converting the 

unsaturated fatty acids of oil into saturated fatty acids, which results in lower the CFPs of biodiesel 

[41]. On the other hand, genetic and physical methods improve the CFPs of biodiesel. 

a) Genetic Engineering Method: 

In this method, the genes of plant oils are modified to obtain desirable oil properties. The 

combination of certain genes may result in higher oil saturation level, while other genes may 

provide a high unsaturation level in the oil. Liu et al. [42] developed cottonseed oil with an 

improved oleic acid level (C18:1), which increased from 13% to 78%. Buhr et al. [43] reduced the 

palmitic acid level from 9% to 2.6% and increased the oleic acid from 57.7% to 89.4% by 

developing transgenic soybean oil. A similar composition of fatty acids reduced the oil’s CP from 

10⁰C to -1⁰C [44]. 

b) Physical Method: 

The physical method of fatty acids profile modification can be accomplished using different 

techniques: winterisation and fractionation. Winterisation is a process whereby biodiesel is cooled, 

resulting in the formation of crystals.  Those crystals are then filtered to obtain a high level of 

unsaturated fatty acids [45]. Nainwal et al. [46] achieved a 3⁰C reduction in biodiesel’s CP through 

a four-stage winterisation process. Pérez et al. [47] increased the unsaturated level of peanut 

biodiesel from 84.45% to 88.21% using three-stage winterisation, obtaining a CP reduction of  

approximately 12⁰C. Winterisation is generally the simplest, the least expensive, and an effective 

way to improve biodiesel`s CFPs. However, it has low separation efficiency, low yield, and 

requires a long time for each stage preparation (i.e., 16 hours of single-stage preparation) [48]. 

The second physical method of modifying the fatty acids profile is fractionation. Normally, 

there are two different methods of fractionation: solvent fractionation and urea fractionation. 

Solvent fractionation tackles winterisation’s disadvantages of long preparation time and low 

production efficiency. Through this method, solvents such as methanol, acetone, chloroform, 

hexane, or isopropanol are blended with biodiesel to reduce its viscosity. The solvent fractionation 

process is characterized by short crystallization time and ease of filterability, leading to high 

separation efficiency and improved yield [49]. Urea fractionation was simply applied to alkyl ester, 
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mixing methanol or ethanol with urea. Through this method, the biodiesel (the mixture of solvent 

[methanol or ethanol] with urea) is separated into two or more portions [50], [51]. The urea 

fractionation method significantly improved the biodiesel’s CFPs, and was reported to have the  

ability to lower the biodiesel’s CP temperature to -30⁰C [48]. 

2.2.2 Additives  

Additives are usually used for improving the biodiesel properties to reduce regulated 

emissions and to improve the fuel’s flow properties. Although the flow improvers do not change 

the biodiesel’s CP, they inhibit the growth of wax crystals, which in turn improves the CFPP [52], 

[53]. The additives used to improve biodiesel cold flow are usually known as wax crystallization 

modifiers.  Roy et al. [17] obtained CP reduction of 5.3⁰C by adding 1% of wintron synergy to 

canola biodiesel. Using diethyl ether (DEE) as an additive of 15 vol. % to biodiesel, Roy et al. [16] 

improved the CFPs by approximately 3⁰C.  

2.2.3 Biodiesel Blending  

Biodiesel can be blended and used in different concentrations with petroleum diesel or 

kerosene (which have significant CFPs) with the required fuel properties. Blends of 5% biodiesel 

with winter diesel have a small influence on CFPs [40]. Ghanei [54] studied the effects of blending 

castor biodiesel with canola biodiesel, whereby significant improvements were obtained of the 

blends’ CFPs with increased castor biodiesel amount. Zhao et al [55] blended biodiesel with 

conventional diesel, and reported that the CFPP and PP linearly decreased by increasing the diesel 

concentration in the blends.  

2.3 Emulsion Fuel 

Emulsion fuel is a mixture of polar liquid (water) and nonpolar liquid (fuel) that is blended 

with emulsifiers [56], [57].  It typically consists of two surfactants which have the ability to 

minimize surface tension between immiscible liquids [58]. Polar liquids contain somewhat of a 

modified charge at the extremities of the molecules, which dissolve if placed in a polar solvent. 

Nonpolar liquids contain the same charge at each end of their molecules, but dissolve only in 

nonpolar solvents. Surfactants are substances that normally contain an imbalanced concentration 

of polar and nonpolar molecules. “Hydrophilic” surfactants have an affinity to polar liquid, 

whereas a “lipophilic” surfactant tends to gravitate toward nonpolar liquids. All surfactants have 

a numerical value referred to as HLB (hydrophilic-lipophilic balance), which ranges between 0 
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and 20 [32]. HLB is the weight of the hydrophilic percentage in a surfactant. It is lipophilic when 

its HLB is lower than 9, and hydrophilic when it has an HLB value of 12 or higher [59]. The 

emulsion consists of a 2-phase emulsion (water-in-oil [W/O], or oil-in-water [O/W]) [60], and of 

a 3-phase emulsion (water-in-oil-in-water [W/O/W], or oil-in-water-in-oil [O/W/O]) [61].  

Researchers Lin et al. [62] discovered two advantages of 2-phase emulsion over 3-phase emulsion, 

namely higher heating value and lower mean droplet size. Normally, emulsion fuel is made using 

one of the following methods:  ultrasonic emulsion [63], conductive emulsion [64], or external 

force [65].  An ultrasonic vibrator and a homogenizer mixer were used by Lin and Chin [62] to 

produce diesel emulsion.  They reported that the use of a vibrator made the emulsion more stable 

over a 7-day period.  

2.4 Diesel Engine Performance and Emissions 

The biodiesel properties such as oxygen content, CN, viscosity, fatty acids composition, 

and heating value play a major role on diesel engine performance and emission. Table 2.2 shows 

heating value (HHV), density, viscosity, and CN of diesel and several types of biodiesels.  

Table 2.3 Prosperities of diesel and various biodiesels 

Fuel Type H.V 
(kJ/kg) 

Density 
(kg/m3) 

Viscosity at 
40 ⁰C (cSt) 

CN Ref. 

Diesel 45,573 830 1.86 46-50 [66]–[68] 

Canola 

Biodiesel 

40,296 881 4.2 53.7 [66], [69] 

Sunflower 

Biodiesel 

41,260 883 4.57 51.1 [70] 

Rapeseed 

Biodiesel 

41,550 857 4.6 48 [71] 

Soybean 

Biodiesel 

37,530 885 4-4.2 51 [72] 

Olive 

Biodiesel 

41,350 877.9 4.512 50 [71] 

Palm 

Biodiesel 

41,240 880 4.43 49 [40] 
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  Engine performance is commonly measured by its brake specific fuel consumption (BSFC) 

and brake thermal efficiency (BTE). The BSFC is the ratio between mass fuel consumption and 

brake power, while the BTE for a particular fuel is inversely proportional to thermal efficiency. 

Generally, the BSFC of an engine powered by any type of fuel decreases with an increase in engine 

load due to increased brake power, while the BTE increases with an increase in the engine load 

[73], [74]. Additionally, higher energy content in fuel reduces the BSFC [72]. Saleh [75] conducted 

an experimental investigation using biodiesel with EGR, and reported a BSFC reduction of 9.8%, 

as well as an increase in BTE of up to approximately 1% obtained from biodiesel compared to 

conventional diesel. How et al. [76]  reported that a blend of bioethanol with coconut methyl ester 

resulted in higher BSFC compared to diesel, which they determined as a result of its lower heating 

value and higher viscosity than diesel. Aydin and Bayindir [77] conducted an experimental study 

on a diesel engine operating with a blend of cottonseed biodiesel and diesel fuel, and found that 

the engine power and torque decreased with the increase in biodiesel content in the blend.  This 

occurred due to the lower heating value and higher viscosity of cottonseed biodiesel compared to 

conventional diesel.  

There are upsides to using emulsions made from biodiesel-diesel blends in diesel engines 

(i.e., improved engine performance and fewer emissions). The percentage of water content in 

emulsified fuel affects both its viscosity and heating value.  A diesel fuel emulsion was prepared 

by Ithnin et al. [78] using four percentages of water.  The surfactants used were Span 80 (Sorbitan 

Monoleate) and Tween 80 (Polyoxyethylene Sorbitan Monoleate). Through their experiment, they 

determined that the diesel emulsion’s viscosity increased, as did the water content in the emulsion.   

On the other hand, research done by Qi et al. [79] exposed a reduction in the heating value of the 

emulsified fuel and an increase in the ignition delay of diesel engines when they increased the 

emulsion fuel’s water content.   They also concluded that an engine’s BTE and BSFC increased 

when using an emulsion fuel.  Testing on engine performance was also conducted by Yang et al, 

whereby they investigated a diesel engine that was operated using emulsion fuel along with various 

nano-organic additives.  These test results revealed higher BTE compared to neat diesel. Ogunkoya 

et al. [80] used three different types of emulsion fuel to analyze their engine’s performance when 

fueled by diesel.  The results proved that having three emulsion fuel types reduced engine 

efficiency and output; however there was small boost in BSFC and BTE over that of their base 

fuels.  When investigators Baskar and Senthil Kumar [81] tested the performance of a diesel engine 
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powered by emulsified diesel and injected oxygen into the engine’s air intake system, they 

discovered that the BTE was higher at all engine loads compared to the results obtain when using  

conventional diesel. 

In terms of engine emission, biodiesel and biodiesel blends emit lower HC, CO, and PM, 

whereas NOx emission is higher compared to that of conventional diesel [16], [17], [25]. 

Generally, biodiesel has a higher CN compared to neat diesel, and increases by increasing its 

saturation level, which contributes to shorter ignition delays [82], [83]. However, a lower 

unsaturation level in biodiesel provides higher density and lower viscosity than biodiesel with a 

high saturation level [84]. Therefore, higher levels of unsaturated fatty acids in biodiesel attributes 

to higher NOx emission formation [85]. The HC and CO emissions are affected by the fatty acids 

chain length, which increases with a longer chain length due to a slightly lower oxygen content in 

those fatty acids [86]. Attempts have been made to reduce the combustion temperature. For 

example, the introduction of water into the combustion chamber, whether through direct injection 

as a steam-into-intake air system or as fuel emulsion of a diesel engine, is an effective technique 

to increase thermal efficiency and to reduce combustion temperature and engine emission [87], 

[88]. 

An effective method of reducing the flame peak temperature of diesel engine combustion 

is to use emulsion fuel.  This is because better combustion quality results from mixing air and fuel, 

which is enhanced by the micro-explosion of emulsion fuel and water evaporation during the 

combustion process. . In addition, the reduced formation of NOx occurred to having a lower peak 

flame temperature.  The investigation project run by Senthil et al. [89] experimented with diesel 

engine emission and performance.  This involved applying fuel with a blended emulsion content 

(20% biodiesel and diesel), along with various percentages of added water.  They reported a lower 

BTE when using the emulsion fuel over B20 and diesel, as well as lower levels of NOx, HC and 

smoke opacity.   When Scarpete [90] studied the reduction of emissions on a diesel engine powered 

by emulsified diesel, he found that  NOx and PM emission were substantially lower when the 

diesel engine was fueled by emulsion fuel. Hasannuddin et al. [91] used Span 80 (1%) and two 

different water content levels to make emulsified diesel in order to investigate emissions on a 

diesel engine.  During this experiment they noticed fewer PM and NOx emissions, with an increase 

in CO emission at low load compared to diesel fuel. 
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2.5 Thesis Objective 

Most of the previous studies carried out in improving the biodiesels’ CFPs involved the 

modification of biodiesel fatty acids composition and their saturation levels, as well as 

investigating the effect of biodiesel blends and additives on diesel CFPs. A number of studies were 

carried out investigating the impact of biodiesel fatty acids profile, additives, and blends on diesel 

engine performance and regulated emissions. Several studies were also carried out investigating 

the effect of emulsion diesel and emulsion B20 on diesel engine emission and performance at 

limited operating conditions. To date, both winterisation and fractionated biodiesel represent lower 

production efficiency. Additionally, no significant correlation has been made between the 

biodiesel and water increment in an emulsion and its comparability with diesel in terms of engine 

emission and performance. In the present work, improving the production efficiency of improved 

biodiesel CFPs are investigated using a novel method of fractionation biodiesel. Moreover, DEE 

and ethanol additives to biodiesel are suggested to improve its CFPs and to control the regulated 

emission. Furthermore, a two-phase emulsion of diesel, biodiesel-diesel blends up to 40 (in 

increments of 10) using three different levels of water concentration (5%, 10%, and 15%) with 

Span 80 and Tween 80 are explored, with a focus on emulsion characteristics, engine performance, 

and engine emission at various engine operating conditions. Finally, emulsion of diesel-biodiesel 

blends up to B30 with two different ammonium hydroxide (NH3) concentrations (2.5% and 5%), 

with 10% water concentration in emulsion, are used as fuel for a diesel engine and examined in 

terms of engine emission and performance. 
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Chapter 3: Methodology 

3.1 Introduction 

 This chapter will include a list of all materials used, as well as an explanation of the 

preparation of biodiesel and emulsion fuel, urea fractionation, and crystal fractionation.  We will 

also describe the engines that were tested, the measurement apertures, and the engine testing 

procedure.  

Firstly, canola oil will be used to produce biodiesel via the transesterification method. 

Secondly, fractionated biodiesel using urea fractionation will be prepared, and the by-product will 

be collected and used in producing biodiesel via the crystal fractionation method. Thereafter, the 

emulsion preparation method will be explained, followed by a description of the engine that was 

tested, the apparatus used, and a brief summary of the engine testing procedure.   

3.2 Biodiesel Production 

Running diesel engines with 100% vegetable oil or animal fats as a fuel resulted in several 

operational issues, such as incomplete combustion, engine deposits, and an increase in lubricant 

viscosity due to the high viscosity of those oils.  Therefore, attempts were made to reduce the oil 

viscosity using four different approaches: pyrolysis, dilution, micro-emulsification, and 

transesterification [92], [93]. Transesterification is simply a chemical reaction of oil and alcohol 

with the help of a catalyst, which accelerates the reaction to produce biodiesel [94]. Among the 

mentioned methods of reducing oil viscosity, transesterification has advantages of effortlessness 

and comparatively low cost [25]. To produce one batch of biodiesel via transesterification method, 

the following materials are required: 3gm of sodium hydroxide (catalyst), 200ml of methanol 

(alcohol), 1000ml of canola oil, and a blender. The biodiesel production procedure has been 

described in the following steps: 

 Dissolve 3.5gm of sodium hydroxide in 200ml of methanol. 

 Heat 1000ml of biodiesel up to 65°C. 

 Place oil with methanol and catalyst in a blender. 

 Activate the blender for approximately 45 minutes. 



15 
 

 Pour the solution into a 2-liter bottle, and let it stand for one day.  (After 24 hours, 

glycerine is formed and settles at the bottom of the bottle, as seen in Figure 3.1). 

 
Figure 3.1 Glycerine formation with dark color 

 Separate the glycerine and wash the remaining biodiesel by adding 50% water to obtain 

a 2-to-1 biodiesel-to-water mixture (e.g., 100ml biodiesel and 50ml water).  After 24 

hours, repeat this process with the remaining biodiesel. 

 Heat the final product (biodiesel) to 70°C to ensure that there is no remaining methanol in 

the biodiesel. 

The volumetric collection efficiency of biodiesel was calculated to be approximately 80%, and 
its quality under ASTM6751 can be found in Table 3.1.   

Table 3.1 Properties of canola biodiesel. 

Test Name Test Method ASTM limit Results 
    
Free Glycerin (mass%) ASTM D6584 Max. 0.02 0 
    
Total Glycerin (mass%) ASTM D6584 Max. 0.24 0.112 
    
Flash Point, Closed Cup (⁰C) ASTM D93 Min. 130 169 
    
Water & Sediment (vol.%) ASTM D2709 Max. 0.050 0 
    
TAN (mg KOH/g) ASTM D664 Max. 0.5 0.14 
    
Sim. Dist., 50% Recovery (⁰C) ASTM D2887 N/A 359.8 
    
Cetane Index ASTM D976 (2 variables 

formula) 
N/A 50 

    
Copper Corrosion, 3h @ 50⁰C 
(rating) 

ASTM D130 Max. 3a 1a 
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3.3 Fractionation  

3.3.1 Urea Fractionation Process 

Generally, urea fractionation is applied to biodiesel using solvents such as methanol and 

ethanol in order to improve its CFPs. Through this method, the saturated fatty acids get extracted 

by the urea inclusion compound that is formed by adding guest molecules (biodiesel) to the urea 

and solvent mixture [48]. The materials used in this study include pure urea (44gm), methanol 

(150ml), and canola biodiesel (50ml). The preparation procedure is as follows: 

1. Mix the urea with FAME and methanol or ethanol.  

2. Heat mixture to form a heterogeneous solution. 

3. Cool the mixture to between 15ºC and 30ºC.  

4. Separate the solid crystals from the liquid using a Buchner funnel aspirator (refer to 

Figure 3.2) 

 

Figure 3.2 Solid crystals 

5. Collect the solid crystals. 

6. Heat the mixture until two distinct layers are formed (two-liquid phase), as shown in 

Figure 3.3. 
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Figure 3.3 Two-liquid phase 

7. Cool the mixture to between 15ºC and 30ºC. 

8. Separate the solids (recovered urea) from the liquid using a Buchner funnel aspirator (see 

Figure 3.4a). 

9. Collect the recovered urea (refer to Figure 3.4b). 

 

Figure 3.4 a) Buchner funnel aspirator; b) Recovered urea 

10. Heat the remaining liquid (biodiesel) up to 150°C to decompose the urea. 

Although this method resulted in a significant reduction in the biodiesel’s CP, which reached about 

-30⁰C, it also caused lower production efficiency (approximately 33% for canola biodiesel).  We 

can therefore predict that the composition of fatty acids in the fractionated biodiesel, as was 

revealed in table 2.2 were Linoleic (C18:2) and Linolenic (C18:3). 
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3.3.2 Crystal Fractionation Process 
In this study, the by-product (solid crystals and recovered urea) of urea fractionation is used to 

produce fractionated biodiesel. The preparation steps are exactly the same as the urea fractionation steps, 

while the material compositions differentiate.  This method is referred to as crystal fractionation, and the 

materials composition is listed in Table 3.2. 

Table 3.2 Material composition of crystal fractionation. 

Solid crystals 

(gm) 

Recovered 

urea (gm) 

Methanol 

(ml) 

Biodiesel 

(ml) 

22.5 22.5 150 50 

22.5 22.5 0 50 

50 - 150 75 

50 - 150 100 

50 - 150 125 

50 - 150 150 

66 - 150 200 

88 - 150 50 

  

3.4 Emulsion Fuel Preparation Process 

Emulsified fuel was prepared using the external force method. In total, 16 emulsion diesel, 

biodiesel, and diesel-biodiesel blends were prepared. The materials used were Span 80, Tween 80, 

canola biodiesel, distilled water, and a blender. The preparation process is explained in the 

following steps:  

1. Blend Span 80 and Tween 80 in portions that produce HLB of 8.25, using the following 

formula [59]: 

 𝑇𝑤𝑒𝑒𝑛 80 % =
100 (𝑋 − 𝐻𝐿𝐵𝑆𝑝𝑎𝑛 80)

𝐻𝐿𝐵𝑇𝑤𝑒𝑒𝑛 80 − 𝐻𝐿𝐵𝑆𝑃𝑎𝑛 80
                                                 (1) 

𝑆𝑝𝑎𝑛 80 % = 100 − 𝑇𝑤𝑒𝑒𝑛 80 %                                                                   (2) 

Where,  

X= required HLB value (8.25), 

𝐻𝐿𝐵𝑇𝑤𝑒𝑒𝑛 80 is given for Tween 80 to be 15 [95], 
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𝐻𝐿𝐵𝑆𝑃𝑎𝑛 80 is given for Span 80 to be 4.3 [96]. 

2. Pour the fuel into the blender; turn on the blender. 

3. Add the distilled water in the blender (different water levels of 5%, 10%, and 15% of the 

total emulsion volume) were investigated. 

4. Add the Span 80 and Tween 80 mixture in the blender (2% of the total volume).  

5. Run the blender for 15 minutes. 

The results were milky emulsified fuels. The fuels used were diesel and biodiesel-diesel blends, 

namely B0, B10, B20, B30, and B40, with three different levels of water concentration (5%, 10% 

and 15%). Kerosene and a kerosene-biodiesel blend were emulsified in a similar way (using diesel 

and diesel-biodiesel blends with 10% and 15% water), namely EK100 and EK70. Additionally, 

B100 was emulsified with 2.5% water in the emulsion, and the emulsifier’s HLB was 11. B0, B10, 

B20 and B30 were emulsified with 10% water, while adding two different concentrations of 

ammonium hydroxide to the water. The fuel series and properties can be seen in Table 3.3. 

Table 3.3 Emulsion fuel proprieties. 

Fuels Fuel composition 
 

H.V 
(kJ/kg) 

Density 
(kg/𝑚3) 

Viscosity 
(cSt @ 
40°C) 

B0 Diesel 44,775 832 1.92 
EB0W5% Emulsion of diesel with 5% water 42,534 861 2.68 
EB0W10% Emulsion of diesel with 10% water 40,296 869 2.80 
EB0W15% Emulsion of diesel with 15% water 38,058 878 3.05 
B10 10% biodiesel in biodiesel-diesel blend 44,331 837 2.18 
EB10W5% Emulsion of B10 with 5% water 42,086 866 2.76 
EB10W10% Emulsion of B10 with 10% water 39,849 874 2.87 
EB10W15% Emulsion of B10 with 15% water 37,615 883 3.19 
B20 20% biodiesel in biodiesel-diesel blend 43,878 842 2.40 
EB20W5% Emulsion of B20 with 5% water 41,638 871 3.09 
EB20W10% Emulsion of B20 with 10% water 39,397 879 3.15 
EB20W15% Emulsion of B20 with 15% water 37,159 887 3.56 
B30 30% biodiesel in biodiesel-diesel blend 43,437 846 2.60 
EB30W5% Emulsion of B30 with 5% water 41,193 875 3.20 
EB30W10% Emulsion of B30 with 10% water 38,954 884 3.65 
EB30W15% Emulsion of B30 with 15% water 36,715 892 4.31 
B40 40% biodiesel in biodiesel-diesel blend 42,988 851 2.91 
EB40W5% Emulsion of B40 with 5% water 40,739 861 4.01 
EB40W10% Emulsion of B40 with 10% water 38,504 869 4.35 
EB40W15% Emulsion of B40 with 15% water 36,264 878 4.66 
B100 100% biodiesel 40,286 886 4.32 
K100 Kerosene 46,250 790 1.02 
EK100W10 Emulsion of kerosene with 10% water 41,732 821 2.01 
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EK100W15 Emulsion of kerosene with 15% water 39,814 835 2.78 
K70 30% biodiesel in biodiesel-kerosene blend 44,292 799 1.52 
EK70W10% Emulsion of K30 with 10% water 39,809 837 2.47 
EK70W15% Emulsion of K30 with 15% water 37,761 851 3.16 
EB100W2.5% Emulsion of B100 with 2.5% water 39,279 889 5.63 
EB0W10A2.5 Emulsion of diesel with 10% water and 

2.5% NH4OH 
39,759 870 2.79 

EB0W10A5 Emulsion of diesel with 10% water and 
2.5% NH4OH 

39,211 871 2.93 

EB10W10A2.5 Emulsion of B10 with 10% water and 
2.5% NH4OH 

39,323 874 2.89 

EB10W10A5 Emulsion of B10 with 10% water and 5% 
NH4OH 

38,797 875 3.01 

EB20W10A2.5 Emulsion of B10 with 10% water and 
2.5% NH4OH 

38,883 879 3.21 

EB20W10A5 Emulsion of B10 with 10% water and 5% 
NH4OH 

38,378 881 3.42 

EB30WA2.5 Emulsion of B10 with 10% water and 
2.5% NH4OH 

38,470 883 3.56 

EB30WA5 Emulsion of B10 with 10% water and 5% 
NH4OH 

37,997 885 3.62 

 

3.5 Droplet-Size Distributions of Emulsion Fuel 

 The Malvern Mastersizer Hydro 2000 was used for measuring the droplet-size distribution 

of the emulsion fuel particle. This device works on the software called v.5.54, and has an 

attachment called wet cell 2000S, which operates using a laser light [97].  Refractive index is the 

main concern in this process, and it is taken for biodiesel-diesel blend as 1.4565 [98].  Droplets of 

the emulsion fuel sample were added to distilled water until the obscuration level reached 10%-

15%, after which time the measurements were taken.  

3.6 Fuel Additives 

Methanol, ethanol and DEE (in quantities of 10% and 15%) were added to the biodiesel 

and fractionated biodiesel, as well as to their blends with diesel. The fuel properties with the 

additives are outlined in Table 3.4. 

Table 3.4 Blend properties of fuels and fuel additives. 

Fuels Fuel composition 
 

H.V 
(kJ/kg) 

Density 
(kg/𝑚3) 

Viscosity 
(cSt @ 40°C) 

B20 20% biodiesel in biodiesel-
diesel blend 

44509 842 2.40 

B40 40% biodiesel in biodiesel-
diesel blend 

43462 
 

851 2.91 
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B60 60% biodiesel in biodiesel-
diesel blend 

42464 864 3.37 

B80 80% biodiesel in biodiesel-
diesel blend 

41343 875 3.96 

B100 100% biodiesel 40,286 886 4.32 
DEE Diethyl ether 36,892 710 0.23 
E Ethanol 29,700 801 0.8 
M Methanol 23,000 792 0.45 
n-Heptane  Normal-heptane  46,720 679.5 0.386 
B100 DEE5% 5% DEE in B100 40,126 873 3.85 
B100DEE10% 10% DEE in B100 39895 861 3.01 
B100E5% 5% ethanol in B100 39866 883 4.15 
B100E10% 10% ethanol in B100 38997 879 3.91 
B100M5% 5% methanol in B100 39432 880 3.97 
B100M10% 10% methanol in B100 38564 876 3.21 
FB20 20% fractionated biodiesel 

in biodiesel-diesel blend 
44612 845 2.37 

FB40 40% fractionated biodiesel 
in biodiesel-diesel blend 

43587 855 3.31 

FB60 60% fractionated biodiesel 
in biodiesel-diesel blend 

42638 867 3.26 

FB80 80% fractionated biodiesel 
in biodiesel-diesel blend 

41497 879 3.84 

FB100 100% fractionated biodiesel  40441 899 4.23 
FB100DEE5% 5% DEE in FB100 40256 875 3.69 
FB100DEE10% 10% DEE in FB100 40007 864 2.98 
FB100E5% 5% ethanol in FB100 40098 884 3.99 
FB100E10% 10% ethanol in FB100 39204 879 3.82 
FB100M5% 5% methanol in FB100 39571 883 3.79 
FB100M10% 10% methanol in FB100 38779 880 3.11 

 

3.7 Engines under Study  

In this study, two compression ignition diesel engines were tested (a heavy-duty and a 

light-duty). 

3.7.1 Heavy-Duty Diesel Engine 

The heavy-duty engine is a Cummins Tier 4 Final QSB4.5 inline 4-cylinder, turbocharged, 

water-cooled diesel engine. This type of engine is commonly used in agricultural and mining 

equipment, and is displayed in Figure 3.5. 
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Figure 3.5 Heavy-duty diesel engine 

The engine is designed with a high pressure common rail injection system, and a diesel particulate 

filter. A dual tank fuel system was installed for ease of switching between various test fuels. The 

engine specifications can be found in Table 3.5.   

Table 3.5 Heavy-duty engine specifications. 

Engine Make and Model Cummins QSB 4.5 T4I 

Engine Type Inline 4-Cylinder 

Number of Cylinders Four 

Bore * Stroke 102mm * 138mm 

Swept Volume 4.5 l 

Compressions Ratio 17.3:1 

Rated Power 97KW @ 2300 RPM 

 

3.7.2 Light-Duty Diesel Engine  

The light-duty diesel engine (Figure 3.6) is an air-cooled, 2-cylinder, 4-stroke (HATZ 

2G40) diesel engine with a direct fuel injection system. This engine is mainly used in passenger 

vehicles and in other small applications. A graduated cylinder was used as a fuel tank to measure 

fuel consumption. Figure 3.7 depicts the engine’s schematic diagram; its specifications are 

outlined in Table 3.6.   
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Figure 3.6 Light-duty diesel engine 

 

 

Figure 3.7 Schematic diagram of the light-duty diesel engine setup 

 

Table 3.6 Light-duty diesel engine specifications 

Engine make and model Hatz 2G40 

Engine type 4-stroke, Air-cooled 

Number of cylinders Two 

Bore × Stroke 92 mm × 75 mm 

Swept volume 997 cc 

Compressions ratio 20.5:1 

Fuel injection timing 8˚BTDC (≤2250 rpm); 10˚BTDC (≥2300 rpm) 

Fuel injection pressure 26 MPa 

Continuous max. rated power 13.7 kW @ 3000 rpm 
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3.8 Measurement Apparatus 

3.8.1 Emissions Measurement 

For emission testing, several devices were used including a Nova 7466 PK, which measures 

six different exhaust gases (NO, NO2, CO, CO2, HC and O2.), and a DWYER 1205A analyzer for 

measuring CO emissions. Finally, a Smart 1500 opacity meter was used to measure the amount of 

smoke produced. This device has a software that can be installed on a PC that uses Windows 

software. The specifications of emission measurement devices are described in Table 3.7. 

Table 3.7 Specifications of emission measurement devices 

Method of Detection  Species Measured 
Unit Range  Resolution Accuracy 

NovaGas 7466 PK            

Infrared Detector CO % 0-10% 0.01% ±1% 

Infrared Detector CO2 % 0-20% 0.10% ±1% 
Electro Chemical NO ppm 0-5000 ppm 1 ppm ±1% 
Electro Chemical NO2 ppm 0-800 ppm 1 ppm ±1% 
Electro Chemical O2 % 0-25%  0.10% ±1% 
Infrared Detector HC ppm x 10 0-20000 ppm 10 ppm ±1% 

Dwyer 1205A           

Electro Chemical CO ppm 0-2000 1 ppm ±5% 

ExTech EA10 Temp 0.1 ⁰C (-)200⁰C to 
1360⁰C 0.1⁰C ±0.3% 

Smart 1500 Opacity % 0-100% 0.1% ±2% 
 Soot 

Density mg/m³ 0-10 mg/m³ 0.00001 ±2% 

 

3.9 Performance Measurement 

A dyno-meter is installed on the engine. It has a capacity of 15 to 800, torque of between 

2 lb/ft and over 5000 lb/ft, and rpm ranging from 1000 to over 10000. Water-brake load valves 

control the engine load.  It is equipped with a software option called DYNO-MAX, which can be 

installed on a Windows-run PC.  Its features include a real-time trace graph display, adjustable 

voice/color limit warnings, push-button controls, and user-configurable analog and digital gauge 

ranges. Publication-quality color graphs and detailed reports are available for printing. The engine 

load can be controlled either manually or automatically using the computer. Several parameters 

can be obtained from the software including engine rpm, exhaust gas temperature, ambient 

temperature, engine load, engine torque, and operation time. Moreover, the software automatically 
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records up to 1000 readings per second. The following formulas are used for calculating the engine 

BSFC and BTE: 

𝐵𝑆𝐹𝐶 =  
𝑚̇𝑓

𝐵𝑝
 , (

𝑔

𝑘𝑊ℎ
)                                             (3) 

𝐵𝑇𝐸 =  
3600

𝐵𝑆𝐹𝐶 ∗ 𝐻𝐻𝑉
 , (%)                                   (4) 

Where, 

𝑚̇𝑓= fuel consumption (g/h), 

𝐵𝑝= brake power (kW). 

3.10 Engine Test Procedure  

3.10.1 Heavy-Duty Engine  

This engine was tested at two idling conditions: 1200rpm and 1500rpm, with no engine load. 

The engine was tested for 30 minutes, starting from a cold start for each test. CO, CO2, NOx, HC, 

and exhaust temperature readings were taken at 0, 2, 4, 6, 8, 10, 15, 20, 25 and 30-minute intervals, 

respectively. The engine was tested outdoors, with an ambient temperature ranging from 5⁰C to 

25⁰C. The fuels tested in this engine were diesel, kerosene, biodiesel, n-Heptane, EB0W10%, 

EB0W15%, EB30W10%, EB30W15%, EK100W10%, EK100W15%, EK70W10%, and 

EK70W15%. 

3.11 Light-Duty Engine 

The light-duty diesel engine was tested at three different loads (low: 20%, medium: 50%, and 

high: 100%) at three different speeds (1000rpm, 2100rpm, and 3000rpm). The engine was warmed 

up for approximately 10 minutes. The test duration for all engine operating conditions/fuels was 

about 45 minutes. More than 60 fuels were tested in this engine; all are described in Table 3.3 and 

Table 3.4. The engine was tested indoors, at a consistent ambient temperature of 25⁰C.  
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Chapter 4: Results and Discussion 

4.1 Introduction  

In this chapter, we examine the results obtained throughout the study. Firstly, the cloud 

point of the fractionated biodiesel will be discussed. Secondly, the emulsion fuel characteristics 

will be reviewed. The effect of fractionated biodiesel, fractionated biodiesel-diesel blends, 

fractionated biodiesel with additives, and emulsified fuels on a diesel engine’s performance and 

emission under various operating conditions will be described. We will then provide an overview 

of the benefits and cost analysis of using emulsion fuel. Finally, emission of the heavy-duty diesel 

engine powered by various fuels at two idling conditions will be investigated. 

4.2 Fractionated Biodiesel Cloud Point 

Ten fuel samples were sent to Intertek Laboratory in Hamilton, Ontario to determine cold 

flow properties using ASTM D5773 standards, the results of which are listed in Table 4.1. The 

urea fractionation exhibited the lowest cloud point among all fractionated biodiesel investigated; 

it was lower than normal biodiesel by 28.4⁰C. 

Table 4.1 Cloud point and production efficiency of fractionated biodiesel prepared using 
different methods. 

Material compositions CP 
(⁰C) 

Production efficiency 
(vol.%) 

Biodiesel -2.6 80 

44 gm of urea + 150ml methanol + 50ml biodiesel -31 33 

Recovered urea and crystal fractionation 

Solid crystals 
(gm) 

Recovered urea 
(gm) 

Methanol 
(ml) 

Biodiesel 
(ml) 

CP 
(⁰C) 

PP 
(⁰C) 

Production efficiency 
(vol.%) 

22.5 22.5 150 50 -18 -24 100 

22.5 22.5 0 50 -9 - 87 

50 - 150 75 -13.8 - 90 

50 - 150 100 -11.1 - 92 

50 - 150 125 -7.9 - 91 

50 - 150 150 -9 - 95 

66 - 150 200 -8.5 - 90 

88 - 150 50 -14.8 - 95 
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However, urea fractionation exhibited inferior production efficiency compared to all other 

fractionated biodiesels.  This is due to the ability of urea and methanol solution to extract the fatty acids, 

which had lower CFPs with solid crystals throughout the preparation process. From the fatty acids 

composition of biodiesel shown in table 2.2, the oleic fatty acid (monounsaturated fatty acid) content in 

canola biodiesel is approximately 60.2 wt.%, and this type of fatty acid has a melting point of -19.5⁰C. The 

saturated fatty acid content in canola biodiesel is approximately 7.1 wt.%, which has CFPs higher than 

10⁰C. The remaining fatty acids content in biodiesel are polyunsaturated fatty acids with weight percentage 

of 32.2, which have a melting point lower than -35⁰C. From the previous analysis of canola biodiesel, it is 

clear that the fatty acid composition of canola biodiesel produced through the urea fractionation method are 

polyunsaturated fatty acids. Biodiesel with a higher content of polyunsaturated fatty acids revealed worse 

oxidative stability [99]. Oxidative stability of biodiesel is an important factor to determine 

biodiesel’s self-life. High unsaturation fatty acid chains are responsible for their interaction with 

oxygen when exposed to air. It has been reported that the degree of unsaturation, location, and 

number of fatty acids that have a double-bond affect the biodiesel rate of auto-oxidation [52], 

[100]. 
Using the by-products of urea fractionation (solid crystals and solid crystals recovered urea 

mixture) for fractionated biodiesel resulted in significant improvements in production efficiency. Using 

22.5mg of solid crystals and 22.5gm of recovered urea, with 150ml of methanol for fractionated biodiesel 

(50ml canola), resulted in overall higher production efficiency, which reached 100 vol.%, CP of -18⁰C, and 

-24⁰C PP, as seen in Table 4.1. The higher production efficiency could be due to the fact that some of 

unsaturated fatty acids extracted by urea fractionation with the by-products were recovered when the solid 

crystals and recovered urea were used for fractionated biodiesel. Different compositions of crystal 

fractionation material used had different CPs and production efficiency.  The most interesting results from 

using solid crystals and recovered urea without adding methanol was a CP of -9⁰C, and 87 vol.% production 

efficiency. Generally, the solid crystal and recovered urea produced biodiesel with acceptable CFPs to be 

used in the coldest countries such as Canada. For example, the Thunder Bay, Ontario weather report for 

2015 [101] outlines the lowest temperature reached in each month, as listed in figure 4.1.  The lowest 

temperatures in the city of Thunder Bay over the 12-month period were in February with -35⁰C, and in 

January with -30⁰C. In the remaining months, the minimum temperature reached was -17⁰C. Therefore, 

fractionated biodiesel using 22.5gm of solid crystals, 22.5gm of recovered urea with methanol, and 150ml 

and 50ml of biodiesel respectively, could be used in diesel engines from March to December, while it could 

be used in January and February if blended with winter diesel or kerosene. Further, recovered urea and 
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Figure 4.2 Graphs and microscopic photos for emulsion fuels particle size distribution   [ref.102] 

 

Figure 4.3 Mean particle size of emulsion diesel-blends with three water levels   [ref.102] 
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4.3.2 Emulsion Fuel Viscosity 

The relationship between water content in emulsion fuel and viscosity marginally increased 

with the additional water content in all emulsion fuels investigated (refer to Figure 4.4). The 

various distribution sizes of the particles and surface contact in the emulsion influenced 

enlargement of the particles’ surface contact [83]. 

 

Figure 4.4 Viscosity of different fuels vs water concentration   [ref.102] 

4.3.3 Emulsion Stability 

At the point when separation could no longer be detected, the emulsion was considered to 

have stabilized  [103].  Our research investigated the stability at room temperature (measured in 

days), during which we concluded that emulsions containing 5% water demonstrated better 

stability compared to emulsions containing 10% and 15% water. Emulsion diesel had the longest 

period of stability among all emulsion fuels investigated. Emulsion fuel with lower particle size 

distribution showed improved stability. Figure 4.5 outlines the stability statistics for EB0W5, 

EB0W10, and EB0W15, which were 87, 81, and 74 days respectively. 
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Figure 4.5 Emulsion fuel stability 

4.4 Light Duty Diesel Engine Performance 
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series were used with fractionated biodiesel. The fuels blend were named B0, FB20, FB40, FB60, 

FB80, FB100, FB100M5, FB100M10, FB100E5, FB100E10, FB100DEE5, and FB100DEE10. 

a) Brake-Specific Fuel Consumption (BSFC)  

The variation of BSFC for all tested fuel with engine load and speed is shown in Figure 4.6. 

As can be observed, the BSFC of all fuels at low speed and low load is higher than that at medium 

and high loads.  It also decreases with the engine load set at a faster speed, which signifies higher 

burning efficiency. Due to lower heat content in biodiesel compared to conventional diesel, the 

BSFC value increased with a higher biodiesel content in the blend; the increase for B100 was 

found to be higher by 11.98%, 10.353%, and 11.537% at low load, and speeds of 1000 rpm, 2100 

rpm, and 3000 rpm, respectively. Similarly, the methanol and ethanol additives resulted in 

decreased heat content of the biodiesel, which led to an increase in the BSFC by increasing the 

amount of additive in the biodiesel. Generally, B100M10 had higher BSFC among all fuels that 

were tested at all engine operating conditions, while B100E10 produced slightly higher BSFC than 

B100. At low speed and low load operating conditions, the BSFC of B100 was 272.838 (g/kWh), 

while it was 277.011 (g/kWh) and 276.941(g/kWh), respectively for B100M10 and B100E10 at 

the same operating conditions. Although DEE resulted in decreased biodiesel heating value, the 

BSFC of B100DEE10 was found to be lower than B100 at all engine operating conditions. The 

higher CN of DEE could be a reason of this reduction, which resulted in lowering the ignition 

delay period and earlier charge combustion near the TDC [104]. The BSFC reduction of 

B100DEE10 at engine conditions of high load and high speed was approximately 0.7% compared 

to that obtained from B100. 

The fractionated biodiesel series tested depicted a similar BSFC trend to the normal biodiesel 

series (see figure 4.7). However, fractionated biodiesel blends provided slightly lower BSFC than 

normal biodiesel blends, due to the fact that fractionated biodiesel had slightly lower viscosity but 

higher heat content and density [77], [105], [106] (see table 3.1).  For instance, the BSFC of FB100 

was higher than B100 by 0.824%, 1.278% and 1.252% respectively at the following engine 

operating conditions: speed (1000 rpm) and three different loads (low, medium, and high).  
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Figure 4.6 BSFC of different biodiesel-diesel blends at various engine loads at a) 1000 rpm, b) 2100 rpm and c) 3000 rpm 
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Figure 4.7 BSFC of different fractionated biodiesel blends at various engine loads at a) 1000 rpm, b) 2100 rpm and c) 3000 rpm 

 

  



35 
 

b) Brake Thermal Efficiency (BTE) 

BTE indicates the combustion’s ability to accept the experimental fuel, and how efficiently the 

fuel is converted into mechanical output.  Figure 4.8 depicts the BTE of different biodiesel-diesel 

blends from B0 to B100 in increments of 20, with variations in engine speed and load. The 

biodiesel has low heat content compared to diesel, but the BTE was found to increase with an 

increase in biodiesel content in the blend because the oxygen content in biodiesel provides higher 

burning efficiency. From the figure, we concluded that BTE rises with an increase in engine load 

and speed. The BTE of B100 compared to B0 increased by 2.98%, 2.66%, and 2.64% at engine 

operating conditions of medium load and three different speeds (1000 rpm, 2100 rpm, and 3000 

rpm, respectively). The BTE was also found to increase with an increase in DEE content in the 

biodiesel due to the fact that the oxygen presence in the DEE, as well as its volatility, helped to 

improve the fuel-air mixing prior to combustion.  This in turn attributed to the improvement of 

combustion efficiency, and to fully burn the fuel [107]. The B100DEE10 at engine operating 

conditions of medium load and speed of 2100 rpm provided higher BTE by 0.38% and 3.029% 

compared to B100 and B0, respectively. B100E10 and B100M10 presented higher BTE compared 

to both B100 and B0 at all engine operating conditions, which may be due to the fact that both 

methanol and ethanol have lower CN, resulting in longer ignition delay. Because longer ignition 

delay leads to lengthier air and fuel mixing time, more fuel is combusted in the premixed phase, 

resulting in higher maximum heat release rate; hence a higher BTE. B100E10 and B100M10 

provided an average of BTE 2.62% and 3.03%, respectively, higher than B100 and B0, at operating 

conditions of high load and speed of 2100 rpm. 

The fractionated fuel blends series revealed a similar trend to that of the normal biodiesel blend 

series, however the fractionated biodiesel blend series provided higher BTE compared to the 

normal biodiesel blend series, as shown in figure 4.9. The reason is that fractionated biodiesel has 

slightly higher heat content and density, while its viscosity was slightly lower than normal 

biodiesel. The BTE of FB100 increase was higher than that of B100 by about 0.03%, 0.11% and 

0.13% at engine operating conditions of 3000 rpm speed and low, medium and high loads 

respectively. At the same operating condition, FB100 provided higher BTE than B0 by 

approximately 1.41%, 1.6% and 1.45%, respectively.   
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Figure 4.8 BTE of different biodiesel-diesel blends at various engine loads at a) 1000 rpm, b) 2100 rpm and c) 3000 rpm 
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Figure 4.9 BTE of different fractionated biodiesel blends at various engine loads at a) 1000 rpm, b) 2100 rpm and c) 3000 rpm 
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4.4.2 Emulsion Fuel 

The following combinations of emulsified fuels were used:  biodiesel-diesel blends, biodiesel, 

and biodiesel-diesel ammonium hydroxide blends. The biodiesel-diesel blends from 0 to 40 (in 

increments of 10) were emulsified using three percentages of water (5%, 10% and 15%). The 

biodiesel was emulsified using 2.5% water. The biodiesel-diesel blends from 10 to 30 (in 

increments of 10) were emulsified using 10% water, with ammonium hydroxide concentrations of 

5% and 10% (refer to Table 3.3 for the list of emulsion fuel series).  We applied engine speeds of 

low: 1000 rpm; medium: 2100 rpm (for maximum torque); and high: 3000 rpm (for maximum 

power). At each speed, we operated at three engine loads: (low: 20%; medium: 50%; and high: 

80%). Since all fuels investigated demonstrated parallel trends of engine performance with load 

variation at each engine speed, the results of B0, B20, B40, B30W10A2.5, B30W10A5 and B100 

operated at 2100 rpm are the main focus in the attached figures. The complete list of results is 

outlined in appendix C and D tables.   

a) Brake-Specific Fuel Consumption  

Figure 4.7 illustrates BSFC of different fuels and their emulsions at various engine loads at a 

speed of 2100 rpm. At low load, the BSFCs of B0, B20 and B40 fuels were 230.9, 232.7, and 234.5 

g/kWh, respectively. All emulsion fuels consisting of 15% water had higher BSFC than those with 

5% and 10% water, with their base fuels at constant operating conditions. This is due to the lower 

heat of emulsion fuels that contained more water. As is evident in the figure, the BSFC for all fuel 

types decreased with the increase in engine load, which signifies higher burning efficiency.  

Figure 4.8depicts BSFC of B30 and its emulsion with 10% water and two ammonium 

hydroxide levels (2.5% and 10%). The BSFC of the emulsion fuel increased with higher 

ammonium hydroxide in the emulsion, which was lower at low load than at higher loads, which 

might be due to the lower heating value of ammonium hydroxide. The BSFC of B30W10A5 was 

higher by 5.81% and 2.37% than B30W0A0 and B30W10A0, respectively, at high load, while at 

low load the BSFC of B30W10A5 was higher by 5.134% and 0.85% than B30W0A0 and 

B30W10A0. 
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Figure 4.10 BSFC of different fuel blends with three different water levels in emulsion at various engine loads at 2100 rpm speed   
[ref.102] 

 
Figure 4.7 BSFC of B30 with three different ammonium hydroxide levels in emulsion with water content of 10% at various 

engine loads at 2100 rpm speed 
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loads compared to B0. B100W2.5 represented BSFC of 5.6%, 7.38% and 8% higher than B0 at 

low load, medium load, and high load, respectively. At the same operating conditions, the BSFC 

of B100W2.5 was higher than B100 by 0.95%, 1.411% and 2.35%, respectively. Generally, the 
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higher the biodiesel content in the emulsion, the higher the BSFC, because these fuels are cooler 

than than fuels with base and lower biodiesel content. 

 
Figure 4.8 BSFC of B0, B100 and B100W2.5 at various engine loads and 2100 rpm speed. 

b) Brake Thermal Efficiency 
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Figure 4.9 BTE of different fuels and their emulsions at various engine loads and 2100 rpm speed   [ref.102] 

 

 
Figure 4.14 BTE of B30 with three different ammonium hydroxide levels in emulsion with water content of 10% at various engine 

loads and 2100 rpm speed. 
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BTE compared to their bases or emulsion with lower biodiesel and water content. However, B40 

with 15% water had higher BTE than B100W2.5 at all engine operating conditions, which might 

be attributed to the fact that micro-explosion of emulsion fuel and water evaporation during 

combustion enhances air-fuel mixing process, hence leading to improved combustion efficiency.  

 
Figure 4.15 BTE of B0, B100 and B100W2.5 at various engine loads and 2100 rpm speed 
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investigated to understand their effect on engine performance, were also used to test the engine’s 

NOx, smoke, CO, and HC emissions. 
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a) NOx Emission: 

Figure 4.16 illustrates NOx emission of biodiesel-diesel blends and additives at various engine 

loads. It is clear that NOx emission increased with an increase in engine load due to the additional 

fuel supply, resulting in higher combustion temperature, attributing to extra NOx formation. 

However, the NOx emission decreased slightly with an increase in engine speed. The shorter 

ignition delay was due to an increase in both volumetric efficiency and inlet air motion, which 

enhanced air-fuel mixing at a higher speed; this could be a reason for NOx emission reduction. In 

addition, for each engine cycle, the reaction time decreased with an increase in engine speed, 

resulting in a decrease in the residence time of fuel-air mixture within the cylinder at a high 

temperature; hence lower NOx emission [109], [110]. NOx emissions increased with an increase 

in biodiesel content in the emulsion due to its higher oxygen content. B100 emitted more NOx by 

9.64%, 12.68%, and 12.55% than that of B0 at low, medium and high engine loads, respectively. 

The DDE contains very high CN (125), therefore increasing its amount in the fuel led to an increase 

in the fuel’s CN, thus resulting in a lower ignition delay period and lower NOx emission. The fuel 

with higher DEE content provided a noticeable reduction in NOx emission. The NOx reduction of 

B100DEE10 averaged approximately 9.9% at all engine loads, while the NOx reduction of 

B100DEE5 averaged only 1.7% at the same operating conditions compared to B100. Ethanol and 

methanol both have lower CN (5-6), as well as a high oxygen content (34.3% for ethanol, and 50% 

for methanol) [111]. However, the result of biodiesel with ethanol and methanol content was lower 

NOx emission, due to the fact that both methanol and ethanol have high latent heat of vaporization, 

which reached 846 kJ/kg and 1100 kJ/kg, respectively[16].  Latent heat of vaporization is the 

energy required to change the state from liquid to vapor at a constant temperature. The high latent 

heat of vaporization is mainly responsible for the reduction of a cylinder’s peak flame temperature 

and NOx emission. The B100E10 presented lower NOx emission by about 0.64% than that of 

B100 at high engine load. Similarly, B100M10 provided lower NOx emission than B100 by 5.5% 

at high load.  B100DEE10 showed slightly lower NOx emission compared to both B100M10 and 

B100E10 at all operating conditions.  

With respect to DEE addition to fractionated biodiesel, the fractionated biodiesel fuel series 

had a similar NOx emission trend as the biodiesel fuel series (see figure 4.17). However, all 

fractionated biodiesel blends provided higher NOx emission than biodiesel blends at all engine 

operating conditions, which could be due to higher density of fractionated biodiesel than biodiesel, 
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and therefore more kilograms of fuel were burned in the cylinder for the same volume. 

Additionally, as previously discovered, biodiesel with a higher level of unsaturated fatty acids 

contains lower CN than biodiesel with a higher level of saturated fatty acids [112]. FB100 had 

higher NOx emission by approximately 6.1% than B100 at high load. With the same content of 

additives, 10% of DEE in FB100 revealed a noticeable reduction when compared to 10% methanol 

and ethanol at all engine operating conditions than those of normal biodiesel. The reason is that 

DEE improves the fractionated biodiesel’s CN, while the methanol and methanol further decreased 

it.   

 
Figure 4.10 NOx emission of biodiesel-diesel blends at various engine loads and 2100 rpm speed 

 

 
Figure 4.11 NOx emission of fractionated biodiesel-diesel blends at various engine loads and 2100 rpm speed 
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b)   Smoke Opacity: 

Smoke opacity increased when increasing the biodiesel content in the fuel blends due to the 

higher viscosity of the fuels; it also increased with an increase in engine load (see figure 4.18). 

This may have increased the injection pressure, causing over-penetration of the fuel, which could 

have resulted in wall-quenching. The biodiesel additives contained lower smoke opacity due to the 

fact that additives reduce fuel viscosity and enhance combustion quality. The smoke opacity of B0 

at low load condition was 2.7%, while it was 8.3% for B100 at the same load. B100DEE10 reduced 

the smoke by 22.77% at high load condition compared to B100.  Smoke opacity in both B100E10 

and B100M10 decreased by an average of approximately 26.5% at high load condition compared 

to that obtained from B100.  

Fractionated biodiesel blends, with a variation in engine loads, represented a trend similar to 

biodiesel blends, as outlined in figure 4.19. Nevertheless, we discovered that smoke opacity values 

were significantly lower for fractionated biodiesel blends than that of biodiesel blends at all engine 

operating conditions.  Smoke is comprised mainly of carbon soot particles and volatile organic 

compounds, the latter of which was found to reduce with an increase in unsaturated fatty acids 

level in biodiesel, therefore leading to reduced smoke opacity [19]. When comparing FB100 to 

B100 in terms of smoke opacity at high load engine conditions, FB100 exhibited a 25.8% 

reduction. For all fuel series at the same load conditions, the average reduction was approximately 

19.75% compared to the biodiesel blends fuel series.   

  
Figure 4.12 Smoke opacity of biodiesel blends at various engine loads and 2100 rpm speed. 
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Figure 4.13 Smoke opacity of fractionated biodiesel blends at various engine loads and 2100 rpm speed 

c) CO Emission  
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such as engine speed, engine load, and fuel type. Increased engine load and speed results in 
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both engine load and speed,  leading to oxygenated CO forming CO2 emissions [20].  Refer to 

figure 4.20, which reveals the CO emission of biodiesel with a variation in engine loads. It was 
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reduction is attributed to the higher oxygen content, which leads to more complete combustion. 

CO emission of B100 was lower than B0 by approximately 26% at load medium engine load. 
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a higher percentage of DEE content in the biodiesel. The reason is that DEE has a very high CN, 
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CO emission by 19.6% and 10.87%, respectively, than that of B100 at high load condition, 

however they emitted lower CO than B0 at all engine operating conditions. The CO reduction of 

B100M10 and B100E10 were 10.87% lower than B0 at high load operating conditions. 

 Fractionated biodiesel showed slightly lower CO emission than normal biodiesel, which 

could be attributed to its lower CN and high oxygen content. All fractionated biodiesel-diesel 

blends, as well as the biodiesel’s alcohol additives, had a similar trend as that obtained from normal 

biodiesel blends and additives (as seen in figure 4.21).  However, the DEE additives in the 

biodiesel exposed an opposite trend to normal biodiesel, whereby its CO emission increased 

slightly over that of FB100. This might be because fractionated biodiesel has a low CN, and the 

DEE improves the CN of the blend; however it might not reach a CN high enough to provide 

improved combustion quality. The CO of FB100 decreased by 11.38% compared to that obtained 

from B100 at low load conditions. With FB100DEE10, we discovered a slight increase in CO 

emissions compared to FB100, i.e., 15 ppm higher at high load engine operating condition.  

 
Figure 4.14 CO emission of biodiesel-diesel blends at various engine loads and 2100 rpm speed 
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Figure 4.15 Fractionated biodiesel blends at various engine loads and 2100 rpm speed. 

 

d) HC Emission 

Low temperature bulk quenching of oxidation reactions, locally over-lean or over-rich mixture, 

liquid wall films for excessive spray impingement, and incomplete fuel combustion are the main 

causes of HC emission [113]. The HC emission was found to decrease with an increase engine 

load and speed, due to an increase in the combustion temperature, as shown in figure 4.22. The 

oxygen content in biodiesel enhances combustion quality, thus producing lower HC emission. 

Therefore, HC emission is reduced by increasing the biodiesel content in the blend. B100 exposed 

the highest HC reduction among all biodiesel-diesel blends with 7.5 ppm. Generally, the biodiesel 

additives led to a slight reduction in HC emission when compared to B100, and the reduction was 

significant when compared to B0. This reduction was obtained because of the effect of the 

additives on reducing fuel density (see table 3.1). The lowest HC reduction among all fuels 

investigated was obtained from B100E10 at all engine operating conditions. B100E10 at a high 

engine load revealed a HC reduction in excess of 70% compared to B0, and approximately 50% 

lower emission than B100.  
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Fractionated biodiesel blends revealed a similar trend of HC emission as that obtained from 

biodiesel, but they had slightly higher HC emissions than (see figure 4.23). The higher density, as 

well as the lower viscosity and CN, could be reason for this HC increase (see table 3.1). HC 

emission of FB100 increased by 16.67% at a high engine load compared to B100. 

 

Figure 4.16 HC emission of biodiesel-diesel blends at various engine loads and 2100 rpm speed 

 

 
Figure 4.17 HC emission of fractionated biodiesel-diesel blends at various engine loads and 2100 rpm speed 
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4.5.2 Emulsion Fuel 

In this section, B0, B20, B40, B30W10A2.5, B30W10A5 and B100 constitute the main focus 

of the presented figures.  The complete list of results will be presented in the various tables.  

a) NOx Emission 
NOx emission rose at an increased load at a constant engine speed for all fuels investigated 

(refer to figure 4.24).  This is because the higher combustion temperature that resulted from the 

added fuel supply contributed to extra NOx formation. Figure 4.24 shows a considerable reduction 

in NOx emission with the use of emulsion fuel, as well as water concentration of 15%, presented 

lower NOx emission compared to 5% and 10% water concentration. The NOx reduction 

percentages for emulsions fuel with 15% of B0, B20, and B40 at low load were found to be 34%, 

32.7% and 33.74% compared with their bases. The heat energy absorption by the water introduced 

in the emulsion led to a reduction in peak flame temperature, hence fewer NOx emissions. 

 
Figure 4.18 NOx emission of biodiesel-diesel blends and their emulsions at various engine loads and 2100 rpm speed   [ref.102] 
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engine condition compared to medium load, however this was not the case for the other types of 

fuel. The reason is that ammonium hydroxide contains a substantial amount of nitrogen, and 

operating the engine at high load resulted in a higher combustion temperature, therefore leading to 

more NOx formation.  At high load condition, B30W10A5 provided NOx emission that were 

24.7% higher than that obtained at medium load, while the increase for B30W10A0 at same engine 

conditions was 16.2%. However, B30W10A5 is still showing lower NOx emission than B30W0A0 

at high load engine conditions, with a reduction of 0.8% less than B30W0A0.  At low and medium 

engine loads, the emulsion’s ammonium hydroxide level slightly increase when compared to 

B30W10A0.  

 
Figure 4.19  NOx emission of B30 with three different ammonium hydroxide levels in emulsion with water content of 10% at 

various engine loads and 2100 rpm speed. 

Figure 4.26 shows a variation in NOx emissions, with load, from biodiesel and emulsion 

of biodiesel with 2.5% water content, compared to conventional diesel. It was found that 

B100W2.5 had comparable NOx emissions as B0, and was definitely lower than B100 due to the 

reduction of peak flame temperature caused by the water content in the emulsion at all engine 

operating conditions. At high load, the difference in NOx emission between B100W2.5 and B0 

was 9 ppm (B100W2.5 was higher). The NOx emission reduction for B100W2.5 at medium load 
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Figure 4.20 NOx emission of B0, B100 and B100W2.5 at various engine loads and 2100 rpm speed 

 

b) Smoke Opacity 

Figure 4.27 outlines the smoke opacity emission of diesel, DB10, DB20, DB30, and DB40, as 

well as their emulsion with 3 different concentrations of water (5%, 10% and 15%) at various 

engine load conditions. It is clear that smoke intensity in the exhaust gas is higher for those with a 

higher content of biodiesel in diesel-biodiesel blends, which is perhaps due to higher viscosity.  

This may increase injection pressure, resulting in over-penetration of the fuel, which could cause 

quenching. Micro-explosion of emulsion fuel due to improved fuel mixing, better fuel atomization, 

and vaporization by the injectors contributed to a reduction in smoke intensity, which could explain 

the smoke reduction with the increased levels of water concentration.  Smoke opacity reduction at 

15% water concentration for all emulsion fuels averaged approximately 25% compared to their 

fuel bases at the same engine load. 

Similarly, B100W2.5 revealed smoke reduction at all engine operating conditions when 

compared to B100 (refer to figure 4.28). This reduction was found to be 6.5% less than B100 at 

high load. Nevertheless, B100W2.5 had higher NOX emissions than B0 at all engine operating 

conditions, and was found to be 66% higher at medium engine load. 
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Figure 4.21 Smoke opacity of diesel and diesel-biodiesel blends with their emulsions at various engine loads and 2100 rpm speed   

[ref.102] 

 

 
Figure 4.22 Smoke opacity of biodiesel and biodiesel emulsion at various engine loads and 2100 rpm speed 

 

The ammonium hydroxide increase in the emulsion resulted in a higher smoke intensity 

reduction, as revealed in figure 4.29. B30W10A5 at low load, had 11.2%, 15% and 33.8% smoke 
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Figure 4.23 Smoke opacity of B30 with three different ammonium hydroxide levels in emulsion with water content of 10% at 

various engine loads and 2100 rpm speed 

 

c) CO Emission 

CO is formed mainly during the combustion of air-fuel mixture, whereas insufficient oxygen 

oxidizes the fuel to form CO2. In addition, CO can be formed as a result of incomplete propagation 

of flame through mixture and fuel pyrolysis with partial oxidation. Therefore, the diesel-biodiesel 

blends led to reduced CO emission compared to pure diesel at all engine conditions investigated, 

as shown in figure 4.30, whereas B100 showed lower CO emission (see figure 4.31). It is clear 

from the figures that load increase led to an adequate turbulence and increment of the EGT, which 

resulted in more CO reacting with the air to form CO2 emission. This can explain the CO reduction 

with the increase in CO2 emission at higher loads for all fuel types. Fuel emulsion contributes to 

increased CO emission, and increases with a higher percentage of water. This rise could be due to 

the lower combustion temperature introduced by the water in the emulsions. However, the increase 

in the biodiesel amount in the emulsion reduces the CO emission compared to the emulsion fuel 

that contains less biodiesel. Figure 4.30 demonstrates that B40W5 has lower CO emission 

compared to all emulsion diesel-biodiesel investigated with the same amount of water. Emulsion 

B100W2.5 revealed a CO emission result very similar to pure diesel at all engine conditions (see 

results in figure 4.31). However B100W2.5 provided higher CO emission than B100, i.e., 27.38% 

higher than B100 at high load. 
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Figure 4.24 CO emission of diesel and diesel-biodiesel blends with their emulsions at various engine loads and 2100 rpm speed   

[ref.102] 

 

 
Figure 4.25 CO emission of biodiesel and biodiesel emulsion at various engine loads and 2100 rpm speed 
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compared to B30W0A0 and B0 at all engine operating conditions. B30W0A0 had 33.5% fewer 

emissions than B30W10A5 at a high load engine condition. 

 
Figure 4.26 CO emission of B30 with three different ammonium hydroxide levels in emulsion with water content of 10% at 

various engine loads and 2100 rpm speed 

d) HC Emission 

Unstable engine speed, the change in fuel injection, and excessive volumes of nozzle cavity 

are some reasons for HC emission[114]. Figure 4.33 depicts the HC emission of diesel, and 

biodiesel-diesel blends with their emulsions. It is clear that HC emissions reduce with an increase 

in engine load. This might be due to the lean air-fuel mixing at low load, and the possibility that 

the flame speeds may be too low to complete the combustion. Biodiesel had higher combustion 

efficiency due to its high oxygen content (12%), leading to reduced hydrocarbon emission. B40 

showed in excess of 50% HC emission reduction than B0 at all engine operating conditions. 

Although emulsion fuels reduce the combustion temperature, they show a very slight increase in 

HC emission. The reason is that atomization can occur twice inside the engine cylinder, whereas 

in diesel fuel, atomization can happen only once. In other words, atomization first occurs through 

the injector nozzle, and occurs the second time by evaporating the water, which leads to minute 

fuel species that are smaller than normal fuels.  

Similarly, B100W2.5 provided slightly higher HC emission than B100, whereas a significant 

reduction was obtained when compared to B0 at all engine operating conditions. The HC reduction 

of B100W2.5 was approximately 64.7% lower than B0.  
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Figure 4.27 HC emission of diesel and diesel-biodiesel blends with their emulsions at various engine loads and 2100 rpm speed   

[ref.102] 

 
Figure 4.28 HC emission of biodiesel and biodiesel emulsion at various engine loads and 2100 rpm speed. 

 

Figure 4.35 shows HC emission of B30 and its emulsion with water and ammonium 

hydroxide and a variation in engine loads. There was a very slight increase in HC emission, which 
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Figure 4.29 HC emission of B30 with three different ammonium hydroxide levels in emulsion with water content of 10% at 

various engine loads and 2100 rpm speed. 

 

4.6 Heavy Duty Diesel Engine Emissions 
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compared to that obtained from B0. Increased biodiesel in the emulsion increased the averaged 

NOx. EB30W15 had incremental NOx increase of 7.6% compared to EB0W15. 

 
Figure 4.30 NOx emission of different fuel at 1500 rpm engine speed 

4.6.2 CO Emission 

Figure 4.37 shows CO emission of various fuels and emulsion fuels at speed of 1500 rpm. 

B100 and n-Heptane had lower average CO emission among all fuels investigated, while the results 

for B0 and K100 were comparable.  All base fuels provided fewer average CO emissions compared 

to their emulsions. The reason is that fuel emulsions provide lower combustion temperature 

because of their water content, and therefore the temperature is not sufficient to form CO2 in order 

to achieve complete combustion. A significant increase in CO emission was obtained from 

EK100W15, which reached 41.9% compared to K100, and 73.8% compared to B100. This 

significant increase is due to the fact that the engine is equipped with a cold EGR system, which 

leads to a larger reduction in combustion temperature.  
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Figure 4.31 CO emission of various fuels at 1500rpm engine speed 

4.6.3 HC Emission  

Figure 4.38 depicts HC of various fuels and emulsion fuels at an engine speed 1500 rpm. 

B0 had the highest HC emission compared to n-Heptane, B100, K100, B30, and K30. 

Consequently, emulsion diesel had the highest average HC emission among all fuels investigated; 

the increase was significantly higher than B0, which reached 31.9%.  The reason for this increase 

is because a heavy-duty engine is equipped with a cold EGR system, which is the second main 

component responsible for decreasing both combustion temperature and oxygen content inside the 

combustion chamber.   
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Figure 4.32 HC emission of various fuel at 1500 engine speed 

 

4.7 Emulsion Fuel Cost Analysis  

The emulsion fuel consists mainly of diesel, emulsifiers and water. In this study, the emulsion 

fuels were prepared using a blender (Osterizer type - 700 Watts). For each batch (600ml) of 

emulsion fuel, the blender was operated for 15 minutes. 

4.7.1 Energy Cost Calculations  

To calculate the energy used by the blender for preparing a batch, the following formula 

was used [115]: 

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡 = (𝑝𝑜𝑤𝑒𝑟 𝑖𝑛
𝑤𝑎𝑡𝑡𝑠

1000
) ∗ ℎ𝑜𝑢𝑟𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 ∗ 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑘𝑊ℎ           (5) 

Electricity rates and prices in Ontario, Canada are divided into three categories: 6.5¢ per kWh for 

off-peak load, 9.5¢ per kWh for mid-peak load, and 13.2¢ per kWh for on-peak load [116]. In this 

calculation, the mid-peak load will be applied. Therefore, the total energy cost for preparing 600ml 

of emulsion fuel is $0.0166 CAD.  
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4.7.2 Analyzing Emulsion Diesel Components 

Emulsion diesel with 10% water consumption was calculated to be 315.1883ml/h at low load 

engine condition and speed of 1000 rpm.  For the same engine condition, diesel consumption was 

294.66ml/hr.  The following calculation analyzes the emulsion diesel component costs: 

 Emulsifier content = 0.02* 315.1883= 6.3 ml/hr; 

 Water content = 0.1* 315.1883= 31.52 ml/hr; 

 Diesel content = 315.1883- 31.52 – 6.3 = 277.37 ml/hr; 

The amount of diesel in the emulsion diesel is less than the amount consumed by the engine when 

the diesel was used (277.37 ml/hr ˂ 294.66 ml/hr); 

The emulsifiers consist of Span80 and Tween80. Emulsifiers with 8.25 HLB consist of 36.9% of 

Tween80, and 63.1% of Span 80. Therefore:  

 Span 80 content = 6.3 ml * 0.631= 3.97 ml; 

 Tween 80 content = 6.3 - 3.97= 2.33 ml; 

4.7.3 Emulsion Diesel Components Cost Calculations: 

Span 80 costs $1681 CAD/ton ($1.83 CAD/L), Tween 80 costs $1293.11 CAD/ton ($1.55 

CAD/L) [117], [118]. The density of both Span 80 and Tween 80 are 0.99 kg/L and 1.09 kg/L, 

respectively. Calculating the cost of the emulsifiers: 

 Span 80 cost = 0.00183 (CAD/ml)* 3.97 ml= 0.0073 CAD; 

 Tween 80 cost = 0.00155 (CAD/ml)* 2.33 ml = 0.00361 CAD; 

Note: for the emulsifiers cost, a bulk amount was considered.     

The diesel price at a local gas station $107.9 ¢/L.  The diesel cost used in the emulsion: ($1.079 

CAD/L * 0.27737L) = $0.2993 CAD.  

4.7.4 Comparison between Emulsion Diesel and Conventional Diesel Costs 

The overall cost of emulsion diesel with 10% water content:  $0.2993 CAD + $0.0073 

CAD + $0.00361 CAD + (315.1883 ml/600 ml) * $0.016 CAD = $0.3186 CAD. 
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When the engine operated by diesel fuel under 1000 rpm at low load, the diesel consumption was 

294.66ml/hr. 

 Diesel cost = $0.29466 L * $1.079 CAD/L = $0.3179 CAD. 

The following table shows diesel and emulsion diesel with 5%, 10%, and 15% water content cost 

when the light-duty diesel engine tested under operating conditions of low load and 1000 rpm 

speed. 

Table 4.2 Diesel and emulsion diesel with three different water levels cost at low load and 1000 
rpm speed. 

Fuel type Fuel 

consumption 

(ml/hr) 

Surfactants 

content in 

emulsion 

(ml) 

Diesel 

content in 

emulsion 

(ml) 

Water 

content in 

emulsion 

(ml) 

Total 

cost 

CAD 

Cost 

CAD/L 

B0 294.66 - - - 0.317938 1.079 

EB0W5 303.412 6.06824 282.1732 15.1706 0.323034 1.0647 

EB0W10 315.1883 6.303766 277.3657 31.51883 0.318567 1.01074 

EB0W15 333.144 6.66288 276.5095 49.9716 0.318742 0.957 

 

 

Finally, it can be concluded that diesel and emulsion diesel with three different water levels 

represent approximately similar cost at the same engine operating conditions. 
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Chapter 5: Conclusions and Recommendations  

5.1 Conclusions 

In this study, urea fractionation and recovered urea were applied to improve the canola 

biodiesel’s CFPs. In addition, the biodiesel was fractionated for the first time using crystal, which 

is a by-product of urea fractionation. Furthermore, diesel, biodiesel and diesel-biodiesel blends 

were emulsified with different water levels. Thereafter, emulsion diesel-biodiesel blends, with two 

different quantities of ammonium hydroxide in the emulsion, were produced. An experimental 

investigation was conducted on the light-duty diesel engine to explore the performance and 

emissions of different fuel and emulsion fuel series under various operating conditions. Two idling 

conditions of a heavy-duty diesel engine were also investigated using various fuels. Although the 

emulsion biodiesel-diesel blend with ammonium hydroxide was prepared, this investigation was 

the first to date in terms of engine performance and emission. Finally, the following conclusions 

have been drawn from this study.  

Recovered urea with crystal fractionation provided biodiesel with -18⁰C CP and -24⁰C PP 

with 100% production efficiency. Using recovered urea without methanol for fractionation 

reduced the biodiesel CP from -2.6⁰C to -9⁰C, with 87% production efficiency. Fractionated 

biodiesel using recovered urea with crystal slightly reduced the biodiesel viscosity, while 

decreasing its density. Increased water and biodiesel content in the emulsion provided higher 

viscosity and density than the emulsion bases. Emulsion stability was found to be reduced with the 

increased water and biodiesel content in the emulsion.  

The BSFC of all fuels investigated decreased with an increased engine load and speed. The 

BSFC of biodiesel-diesel blends increased slightly with an increase in biodiesel in the blend. 

Higher percentages of ethanol and methanol in biodiesel showed higher BSFC than B100, while a 

higher percentage of DEE additive in the biodiesel provided a very slight reduction in BSFC. 

Fractionated biodiesel provided a very slight reduction in BSFC compared to B100 at all engine 

operating conditions. With respect to DEE additive, fractionated biodiesel blends and additives 

revealed a slight BSFC increase at all engine operating conditions compared to biodiesel blends 

and additives, but both showed similar trends. The higher content of both the water and biodiesel 

in the emulsion fuels as well as increase the ammonium hydroxide in emulsion showed higher 

BSFC than that which was obtained from the emulsion with less water, biodiesel, and ammonium 

hydroxide at all engine operating conditions.  
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The BTE of all fuels investigated increased when increasing the engine load and speed. 

The BTE of biodiesel-diesel blends increased slightly when increasing the biodiesel content in the 

blends; the additives also improved the BTE. The fractionated biodiesel blends and additives 

showed similar trends to biodiesel blends and additives; however, the BTE value of each 

fractionated biodiesel series gave a slightly higher BTE compared to normal biodiesel fuel series 

at all engine operating conditions. All emulsion fuels had improved the engine BTE, and higher 

amount of biodiesel and water levels in the emulsion resulted in higher BTE. EB40W15 improved 

the BTE by 3.1% and 15.7% than EB0W15 and B0, respectively, at engine conditions of high load 

and speed of 2100 rpm. At the same operating conditions, EB40W15 provided higher BTE than 

EB100W2.5 by 5.32%.  

All fuel series contributed to increased NOx emission with an increase in engine load and 

increase biodiesel content in blend. B100 provided approximately 11% higher NOx than B0 at 

high load, and 2100 rpm engine speed. However, all biodiesel additives showed a slight NOx 

emission reduction compared to B100; the highest reduction (9.3%) was obtained from B100M10 

at engine operating conditions of medium load and 2100 rpm speed. All fractionated biodiesel fuel 

series showed a similar NOx emission trend in the biodiesel fuel series. However, all fractionated 

biodiesel blends provided higher NOx emission than biodiesel blends at all engine operating 

conditions. FB100 at low load and 2100 rpm contributed to higher NOx by 8.9%. Emulsion 

biodiesel diesel blends had a significant NOx emission reduction, the highest of which was 

obtained with the emulsion that obtained at higher level of water compared to their bases and 

conventional diesel. B100W2.5 had comparable results of NOx emission obtained from B0. 

EB30W10A5 showed higher NOx emission than EB30W10 by approximately 15.25% at medium 

engine load and 2100 rpm speed.  

The smoke opacity of all fuel series investigated revealed a similar trend with engine speed 

and load, whereby they increased with an increased engine load. Increase biodiesel content in 

emulsion resulted in an increase in smoke opacity, while the additive represented lower smoke 

opacity than B100 at all engine operating conditions. B100’s smoke opacity increased by 54.8% 

when compared to B0 at an engine speed of 2100 rpm at high load. Increased water content in the 

emulsion has proven to reduce smoke opacity, and EB0W15 showed lower smoke compared to all 

other fuels at all engine operating conditions. Increasing the ammonium hydroxide in the emulsion 
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resulted in smoke opacity reduction; the highest quantity of ammonium hydroxide in the emulsion 

showed a higher reduction.  

The CO emission of all fuel series decreased with an increase in engine speed and load; 

3000 rpm with high engine load revealed the lowest emission. Biodiesel increase in biodiesel-

diesel blends decreased the CO emission at all engine operating conditions. B100, at 2100 rpm 

engine speed at high load, reduced CO emissions by 22.22% more than B0. Increase DEE in the 

biodiesel provided a noticeable reduction (about 9% reduction of B100DEE10) when compared to 

B100 at all engine operating conditions. Alcohol additives contributed to emitting higher CO 

emission than B100, but the CO emission was still lower than B0. The fractionated biodiesel fuel 

series revealed similar CO emission trends as the biodiesel fuel series, with the main difference 

being that the biodiesel fuel series contributed to a very slight CO emission increase at all engine 

operating conditions than FB100.  

Increasing the water content in the emulsion resulted in a significant increase in CO 

emissions when compared to the emulsion’s base fuel. EB100W2.5% showed similar results of 

CO emission to that obtained from B0 at all engine operating conditions. However, EB100W2.5 

provided higher CO emission than B100, and it was 27.4% higher than B100 at high load and a 

speed of 3000 rpm. EB30W10A5 at engine operating conditions of 2100 rpm and high load showed 

a CO emission reduction by 9.8% and 27.5% compared to EB30W10A2.5 and EB30W10A0, 

respectively. The HC emission of all fuel series investigated showed an HC reduction when the 

engine load, speed and biodiesel content were increased. The B100 provided an average HC 

emission reduction over B0 by 75% at engine operating conditions of low load and 2100 rpm 

speed. The fractionated biodiesel fuel series had a similar HC emission trend as that of the biodiesel 

fuel series, but it was slightly higher for fractionated biodiesel series. Increasing the water content 

in the emulsion was found to increase the HC emission at all engine operating conditions. 

EB100W2.5 provided lower HC than B0 by about 66% at engine operating conditions of medium 

load and 2100 rpm speed. Similarly, the HC emission of emulsion ammonium hydroxide fuel 

increased slightly when increasing the percentage of ammonium hydroxide in the emulsion. 

The biodiesel NOx emission of the heavy-duty diesel engine had the highest values at both 

operating conditions investigated, while emulsion diesel with 15% water had the lowest NOx 

emission among all fuel investigated. B100 and n-heptane showed lower CO emissions compared 

to all fuels investigated. A significant CO emission increase was noticed by increasing the water 
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content in the emulsion, and EKW15 at engine speed of 1200 had higher CO emission. Among all 

fuels tested via the heavy-duty diesel engine, B100 had lower HC emission. The emulsion fuels 

had the highest HC emission than all fuel series. EB0W15, at engine speed of 1500 rpm, 

represented HC emission higher than B0 and K100 by 31.83% and 44.35%, respectively. 

The cost analysis of emulsion diesel with three different water content, revealed that the 

consumption of EB0W10 increased by approximately 6.5% over B0 for the same engine operating 

conditions. However, the engine consumed less amount of diesel when the engine tested with 

emulsion diesel. At low load and 1000 rpm engine speed, the engine consumed 5.87% less diesel 

when the engine was running with EB0W10 than B0. Additionally, the cost of emulsion diesel has 

approximately shown similar costs compared to B0. 

5.2 Recommendations  

Although the present study fulfilled the principal objectives of this research, the following 

work is proposed to refine and progress the study findings: 

1. Further investigation into optimization emulsion fuel stability and figuring out emulsifiers 
with acceptable CFPs to be usable for long term even in coldest climatic regions.  

2. With the high production efficiency of fractionated biodiesel obtained from this study, I 
would like to suggest using clod flow improvers such as Wintron Synergy to improve 
fractionated biodiesel’s CFPs further.  

3.  The study has indicated that emulsion fuel with high level water tend to have significantly 
lower NOx emission but higher HC and CO emissions. The effort should include to reduce 
and control CO and HC emissions by using DOC.   

4. A comparison between emulsion fuel and EGR system effects on engine exhaust emission 
will be useful.  
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Appendices 

 Appendix A: Biodiesel diesel blends and biodiesel additives performance and emission tested by light-duty diesel engine. 
 

A.1 Engine performance and emissions of biodiesel diesel blends and biodiesel additives at 1000 rpm 

Load Low load  Medium load  High load  

Fuel BSFC 

(g/kWh) 

BTE 

(%) 

NOx 

(ppm) 

Smoke 

(%) 

CO 

(ppm) 

HC 

(ppm) 

BSFC 

(g/kWh) 

BTE 

(%) 

NOx 

(ppm) 

Smoke 

(%) 

CO 

(ppm) 

HC 

(ppm) 

BSFC 

(g/kWh) 

BTE 

(%) 

NOx 

(ppm) 

Smoke 

(%) 

CO 

(ppm) 

HC 

(ppm) 

B0 240.1 32.9 153 3.2 234 55 227.9 34.7 198 5.0 219 45 224.4 35.2 234 7.9 181 40 

B20 244.9 33.0 155 6.4 230 40 230.9 35.0 205 8.4 209 35 230.0 35.2 242 9.7 179 30 

B40 249.6 33.2 160 8.3 222 35 235.8 35.1 208 9.4 195 30 235.0 35.2 246 11.2 170 20 

B60 256.1 33.1 163 10.8 211 30 241.7 35.1 214 12.0 187 25 241.4 35.1 254 13.1 163 15 

B80 265.0 32.9 165 13.2 206 25 247.3 35.2 221 14.7 171 20 247.6 35.2 260 15.3 157 10 

B100 272.8 32.8 171 16.4 198 15 253.0 35.3 225 18.9 165 10 253.8 35.2 265 18.5 149 5 

B100DEE5 274.7 32.7 168 14.1 163 15 249.0 36.0 222 17.1 151 10 250.6 35.8 253 16.7 128 7 

B100DEE10 275.6 32.7 159 13.6 152 17 246.7 36.6 212 15.9 139 15 248.3 36.3 235 14.9 116 9 

B100E5 275.1 32.8 169 14.8 200 10 252.0 35.8 218 17.3 176 5 254.1 35.5 241 16.3 161 5 

B100E10 277.0 33.3 164 13.0 237 8 252.8 36.5 209 15.3 199 4 255.0 36.2 234 15.1 181 3 

B100M5 275.0 33.2 170 14.5 209 10 251.3 36.3 219 16.9 173 8 253.5 36.0 249 16.4 147 5 

B100M10 276.9 33.7 165 13.2 226 9 252.0 37.0 208.5 15.6 189 4 254.2 36.7 238 14.8 186 4 
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A.2 Engine performance and emissions of biodiesel diesel blends and biodiesel additives at 2100 rpm 

Load Low load  Medium load  High load  

Fuel BSFC 

(g/kWh) 

BTE 

(%) 

NOx 

(ppm) 

Smoke 

(%) 

CO 

(ppm) 

HC 

(ppm) 

BSFC 

(g/kWh) 

BTE 

(%) 

NOx 

(ppm) 

Smoke 

(%) 

CO 

(ppm) 

HC 

(ppm) 

BSFC 

(g/kWh) 

BTE 

(%) 

NOx 

(ppm) 

Smoke 

(%) 

CO 

(ppm) 

HC 

(ppm) 

B0 230.9 34.2 150 2.7 191 50 220.9 36.8 179 4.4 169 40 213.1 37.9 202 5.6 153 35 

B20 235.0 34.4 154 4.3 187 35 225.5 37.1 183 5.5 165 30 217.3 38.0 207 6.3 149 25 

B40 239.7 34.6 157 5.6 177 30 234.1 37.1 186 6.9 157 25 222.2 38.1 211 7.87 145 20 

B60 246.7 34.5 161 6.9 163 25 238.9 37.2 193 7.9 149 20 228.1 38.1 217 8.9 138 20 

B80 252.1 34.7 164 7.2 154 20 245.1 37.3 197 9.2 137 15 234.1 38.2 225 10.7 129 10 

B100 257.6 34.8 166 8.3 143 13 251.0 37.8 205 10.4 125 10 239.3 38.2 231 12.4 123 8 

B100DEE5 258.0 35.3 160 8.1 142 13 251.7 37.8 200 9.9 117 8 240.7 38.3 227 11.3 119 5 

B100DEE10 256.7 35.3 148 6.8 129 12 251.3 37.9 184 8.1 121 8 240.8 38.5 210 10.1 113 5 

B100E5 254.6 35.3 154 7.9 146 8 250.0 37.8 200 9.1 131 5 243.6 38.4 229 11.1 134 3 

B100E10 258.4 35.9 147 6.2 157 7 255.9 37.9 187 7.9 152 4 245.0 38.9 215 9.8 148 3 

B100M5 258.5 35.4 162 8 147 10 253.8 37.8 202 9 128 8 243.8 38.5 226 11 120 5 

B100M10 260.2 35.7 155 6.5 154 8 254.1 38.0 186 8.5 147 5 245.2 39.3 219 9.8 138 4 
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A.3 Engine performance and emissions of biodiesel diesel blends and biodiesel additives at 3000 rpm 

Load Low load  Medium load  High load  

Fuel BSFC 

(g/kWh) 

BTE 

(%) 

NOx 

(ppm) 

Smoke 

(%) 

CO 

(ppm) 

HC 

(ppm) 

BSFC 

(g/kWh) 

BTE 

(%) 

NOx 

(ppm) 

Smoke 

(%) 

CO 

(ppm) 

HC 

(ppm) 

BSFC 

(g/kWh) 

BTE 

(%) 

NOx 

(ppm) 

Smoke 

(%) 

CO 

(ppm) 

HC 

(ppm) 

B0 225.0 35.1 142 2.1 180 45 216.7 36.8 168 2.9 157 35 202.7 39.0 189 4.1 143 30 

B20 229.6 35.2 149 2.98 173 35 220.5 37.0 171 3.78 152 25 206.8 39.1 191 5.2 139 20 

B40 236.0 35.2 155 3.89 169 30 225.5 37.0 174 4.51 149 25 211.6 39.1 196 5.9 134 18 

B60 242.3 35.3 163 4.56 163 25 231.1 37.1 180 5.24 144 20 216.7 39.2 201 6.4 127 15 

B80 247.8 35.3 172 5.63 156 20 236.2 37.2 185 6.5 137 15 221.4 39.3 209 7.89 119 8 

B100 254.3 35.6 181 6.9 145 10 241.3 37.2 192 7.9 131 7.5 226.1 39.4 214 8.9 111 5 

B100DEE5 255.8 35.6 179 5.3 146 15 243.8 37.3 187 6 126 10 227.0 39.5 206 6.3 105 8 

B100DEE10 253.5 35.7 160 4.1 136 17.5 240.1 37.5 166 4.7 127 15 224.6 39.7 181 5.3 102 13 

B100E5 256.0 35.8 170 3.2 147 10 246.2 37.2 178 3.9 137 7.5 229.2 39.6 202 4.8 116 3 

B100E10 262.6 35.8 158 3 159 7.5 246.2 38.0 164 3.4 146 5 234.6 39.8 188 4.2 129 3 

B100M5 259.6 35.7 174 3.9 148 10 245.8 37.6 181 4.1 137 7.5 233.2 39.6 203 5.1 113 5 

B100M10 261.3 35.9 169 3.3 155 7 246.9 38.3 179 3.6 141 5 237.9 39.8 198 4.4 131 3 
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Appendix B: Fractionated biodiesel diesel blends and biodiesel additives performance and emission tested by light-duty diesel engine. 
 

B.1 Engine performance and emissions of fractionated biodiesel diesel blends and fractionated biodiesel additives at 1000 rpm 

Load Low load  Medium load  High load  

Fuel BSFC 

(g/kWh) 

BTE 

(%) 

NOx 

(ppm) 

Smoke 

(%) 

CO 

(ppm) 

HC 

(ppm) 

BSFC 

(g/kWh) 

BTE 

(%) 

NOx 

(ppm) 

Smoke 

(%) 

CO 

(ppm) 

HC 

(ppm) 

BSFC 

(g/kWh) 

BTE 

(%) 

NOx 

(ppm) 

Smoke 

(%) 

CO 

(ppm) 

HC 

(ppm) 

B0 238.5 33.1 153 3.2 234 55 227.0 35.2 198 5.0 219 45 220.8 36.3 234 6.9 181 40 

FB20 243.2 33.2 161 5.0 225 50 230.0 35.5 208 6.1 205 40 225.3 36.6 250 7.3 175 35 

FB40 247.8 33.3 169 6.4 216 40 234.7 35.6 219 7.2 189 35 226.3 36.7 265 8.4 161 25 

FB60 254.1 33.3 176 8.4 207 35 240.6 35.5 227 9.5 177 30 232.7 36.6 272 10.1 151 20 

FB80 262.9 33.5 184 10.2 199 30 246.1 35.6 239 11.5 161 25 237.8 36.8 283 12.3 146 20 

FB100 270.6 33.6 197 12.8 188 25 251.7 35.8 247 13.9 154 20 239.7 36.9 295 15.1 139 10 

FB100DE5 270.4 33.5 181 12.0 191 26 247.8 36.5 239 13.3 157 20 240.8 37.6 289 14.4 144 15 

FB100DEE10 268.3 33.6 172 11.1 195 30 245.6 37.0 219 12.1 165 25 237.6 38.2 261 13.2 151 16 

FB100E5 272.8 33.7 186 12.1 193 15 250.8 36.2 233 13.6 168 10 243.8 37.3 281 14.8 157 4 

FB100E10 274.7 33.9 170 11.2 201 18 251.5 36.9 221 11.9 181 13 244.5 38.0 264 13.0 169 5 

FB10M5 272.7 33.8 191 12.2 189 20 250.0 36.8 236 13.7 161 15 243.0 37.9 283 14.6 153 5 

FB10M10 274.6 34.2 173 11.0 195 18 250.7 37.4 225 11.8 179 16 243.7 38.5 262 12.9 164 7 
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B.2 Engine performance and emissions of fractionated biodiesel diesel blends and fractionated biodiesel additives at 2100 rpm 

Load Low load  Medium load  High load  

Fuel BSFC 

(g/kWh) 

BTE 

(%) 

NOx 

(ppm) 

Smoke 

(%) 

CO 

(ppm) 

HC 

(ppm) 

BSFC 

(g/kWh) 

BTE 

(%) 

NOx 

(ppm) 

Smoke 

(%) 

CO 

(ppm) 

HC 

(ppm) 

BSFC 

(g/kWh) 

BTE 

(%) 

NOx 

(ppm) 

Smoke 

(%) 

CO 

(ppm) 

HC 

(ppm) 

B0 230.4 34.2 150 2.7 191 50 220.6 36.9 179 4.4 169 40 212.9 38.9 202 5.6 153 35 

FB20 234.5 34.4 158 3.6 185 40 225.1 37.1 189 4.9 160 35 217.0 38.9 211 6.2 148 30 

FB40 239.2 34.5 170 4.5 172 30 233.7 37.3 197 5.6 148 30 222.0 38.9 218 7.1 139 25 

FB60 245.1 34.4 179 4.9 158 25 239.5 37.5 207 6 139 22.5 227.9 39.0 227 7.8 131 20 

FB80 250.5 34.6 187 5.2 148 20 245.7 37.6 218 6.2 126 20 233.9 39.1 236 8.6 122 15 

FB100 255.9 34.8 195 5.3 137 15 249.6 37.8 225 7.4 117 12.5 239.0 39.2 246 9.2 112 10 

FB100DE5 253.7 35.2 189 5.1 143 15 249.2 37.9 218 7.1 128 12.5 240.4 39.2 234 8.4 121 10 

FB100DEE10 252.1 35.4 171 4.7 146 12.5 247.9 38.0 203 6.5 131 12.5 238.6 39.4 218 7.5 127 10 

FB100E5 256.9 34.9 182 4.9 150 12.5 251.5 37.9 219 7.3 134 10 243.3 39.3 238 8.2 126 7 

FB100E10 256.7 35.8 167 4.6 158 12 252.4 38.0 211 6.2 149 7.5 243.6 39.7 226 7.6 141 5 

FB10M5 256.8 35.4 182 5 146 14 252.4 37.9 220 7 129 10 243.4 39.4 239 8.3 123 7.5 

FB10M10 258.5 35.9 165 4.5 160 12.5 252.7 38.1 206 6.4 143 7.5 243.9 40.0 228 7.5 135 6 
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B.3 Engine performance and emissions of fractionated biodiesel diesel blends and fractionated biodiesel additives at 3000 rpm 

Load Low load  Medium load  High load  

Fuel BSFC 

(g/kWh) 

BTE 

(%) 

NOx 

(ppm) 

Smoke 

(%) 

CO 

(ppm) 

HC 

(ppm) 

BSFC 

(g/kWh) 

BTE 

(%) 

NOx 

(ppm) 

Smoke 

(%) 

CO 

(ppm) 

HC 

(ppm) 

BSFC 

(g/kWh) 

BTE 

(%) 

NOx 

(ppm) 

Smoke 

(%) 

CO 

(ppm) 

HC 

(ppm) 

B0 224.7 35.1 142 2.1 180 40 216.5 36.8 168 2.9 157 35 202.6 39.0 189 3.7 143 30 

FB20 229.3 35.2 151 2.5 169 35 220.3 36.8 176 3.4 149 30 206.6 39.3 198 4.1 136 25 

FB40 235.6 35.3 162 2.9 164 30 225.3 37.0 189 3.9 146 25 211.5 39.3 205 4.7 131 20 

FB60 241.9 35.4 172 3.4 157 25 230.8 37.2 197 4.3 140 20 216.6 39.4 214 5.2 122 15 

FB80 247.4 35.5 183 3.8 143 20 235.9 37.3 205 4.8 131 15 221.2 39.5 222 5.9 113 10 

FB100 253.9 35.6 198 4.6 129 10 241.0 37.3 216 5.6 121 8 226.0 39.5 231 6.5 104 6 

FB100DE5 252.3 35.6 185 3.9 132 15 241.5 37.3 205 4.8 126 12 225.8 39.7 226 5.9 111 11 

FB100DEE10 251.1 35.7 175 3.6 141 18 238.8 37.5 196 5.1 136 16 223.4 39.8 219 6.1 119 14 

FB100E5 258.5 35.7 177 3.8 142 10 245.9 37.5 206 4.6 136 8 233.0 39.8 221 5.2 116 5 

FB100E10 262.1 35.9 159 3.4 151 8 245.9 37.8 191 4.0 140 5 234.4 39.9 211 5.0 121 3 

FB10M5 259.1 35.6 180 3.7 139 10 245.5 37.7 211 4.9 135 8 236.0 39.8 224 5.7 118 6 

FB10M10 260.9 36.0 167 3.3 150 9 246.6 38.0 196 4.2 143 7 237.7 40.0 215 5.3 126 3 
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Appendix C: diesel, biodiesel, Biodiesel diesel blends and their emulsion performance and emission tested by light-duty diesel 
engine. 

C.1 Engine performance and emissions of different fuels and their emulsions at 1000 rpm [102] 
Load Low load  Medium load  High load  

Fuel Water 
(%) 

BSFC 
(g/kWh) 

BTE 
(%) 

NOx 
(ppm) 

Smoke 
(%) 

CO 
(ppm) 

HC 
(ppm) 

BSFC 
(g/kWh) 

BTE 
(%) 

NOx 
(ppm) 

Smoke 
(%) 

CO 
(ppm) 

HC 
(ppm) 

BSFC 
(g/kWh) 

BTE 
(%) 

NOx 
(ppm) 

Smoke 
(%) 

CO 
(ppm) 

HC 
(ppm) 

   
  B

0
 

0 240.3 33.5 152 3.8 216 45 230.0 35.0 195 5.1 201 40 226.1 35.6 238 6.3 170 33 

5 242.0 35.0 137 3.4 361 46 231.7 36.5 162 4.6 273 43 227.8 37.2 219 5.7 273 36 

10 243.7 36.7 118 3.2 443 48 233.4 38.3 136 4.3 329 42 229.5 38.9 198 5.4 329 36 

15 245.4 38.5 111 3.1 557 48 235.1 40.2 128 4.0 437 42 231.2 40.9 172 5.2 437 36 

   
 B

1
0

 

0 241.3 33.7 154 4.51 203 35 231.0 35.2 198 6.0 191 29 227.1 35.8 241 7.3 164 33 

5 243.1 35.2 138 4.01 346 37 232.8 36.7 175 5.3 279 31 228.9 37.4 229 6.1 267 34 

10 244.9 36.9 117 3.92 413 37 234.6 38.5 160 5.2 351 32 230.7 39.2 210 5.8 329 35 

15 246.7 38.8 98 3.67 519 37 236.3 40.5 140 5.0 462 32 232.5 41.2 193 5.3 453 35 

   
B

2
0

 

0 242.1 33.9 157 5.76 198 30 231.8 35.4 206 7.1 187 25 227.9 36.0 251 9.9 163 27 

5 243.9 35.4 139 4.91 316 31 233.6 37.0 178 6.7 268 25 229.7 37.6 230 7.7 259 27 

10 245.7 37.2 119 4.62 391 32 235.4 38.8 159 6.3 343 25 231.5 39.5 203 6.9 322 29 

15 247.5 39.1 105 4.49 512 32 237.2 40.8 139 6.0 444 25 233.3 41.5 194 6.4 446 29 

   
 B

3
0

 

0 242.8 34.1 160 6.85 182 26 232.5 35.6 206 8.3 185 20 228.6 36.3 254 10.4 159 25 

5 244.6 35.7 138 6.23 308 26 234.3 37.3 186 7.5 251 21 230.4 37.9 233 9.0 249 26 

10 240.3 33.5 152 3.8 216 45 230.0 35.0 195 5.1 201 40 232.2 39.8 203 8.2 319 27 

15 242.0 35.0 137 3.4 361 46 231.7 36.5 162 4.6 273 43 233.9 41.9 192 7.5 411 27 

   
B

4
0

 

0 243.7 36.7 118 3.2 443 48 233.4 38.3 136 4.3 329 42 229.7 36.5 255 11.4 157 18 

5 245.4 38.5 111 3.1 557 48 235.1 40.2 128 4.0 437 42 231.5 38.2 232 9.9 217 21 

10 241.3 33.7 154 4.51 203 35 231.0 35.2 198 6.0 191 29 233.3 40.1 207 8.9 299 21 

15 243.1 35.2 138 4.01 346 37 232.8 36.7 175 5.3 279 31 235.1 42.2 188 8.0 379 21 

  B
1

0
0

 

0 259.5 34.4 175 16.4 165 15 241.0 37.1 225 18.9 165 13 245.7 36.4 265 18.5 149 12 

2.5 261.1 35.1 159 15.9 210 17 244.5 37.5 208 18.4 199 15 247.4 37.1 248 17.2 172 13.2 

 

 

 

 



VIII 
 

 

 

C.2 Engine performance and emissions of different fuels and their emulsions at 2100 rpm [102] 
Load Low load  Medium load  High load  

Fuel Water 
(%) 

BSFC 
(g/kWh) 

BTE 
(%) 

NOx 
(ppm) 

Smoke 
(%) 

CO 
(ppm) 

HC 
(ppm) 

BSFC 
(g/kWh) 

BTE 
(%) 

NOx 
(ppm) 

Smoke 
(%) 

CO 
(ppm) 

HC 
(ppm) 

BSFC 
(g/kWh) 

BTE 
(%) 

NOx 
(ppm) 

Smoke 
(%) 

CO 
(ppm) 

HC 
(ppm) 

   
  B

0 

0 230.9 34.8 150 2.2 191 41 227.9 35.3 181 3.4 161 33 222.1 36.2 222 4.5 159 28 
5 232.6 36.4 132 2.0 326 42 229.6 36.9 159 3.1 286 35 223.8 37.8 209 4.1 257 31 
10 234.3 38.1 116 1.9 383 43 231.3 38.6 139 2.9 332 34 225.5 39.6 196 3.9 292 33 
15 236.0 40.1 99 1.8 475 43 233.0 40.6 122 2.7 449 34 227.2 41.6 160 3.6 409 32 

   
 B

10
 

0 231.9 35.0 151 2.8 185 30 228.9 35.5 184 4.0 161 22 223.1 36.4 228 5.2 141 19 
5 233.7 36.6 134 2.6 297 30 230.7 37.1 163 3.6 227 23 224.9 38.0 209 4.6 206 19 
10 235.5 38.4 110 2.4 343 31 232.5 38.9 154 3.3 292 25 226.7 39.9 178 4.0 270 21 
15 237.3 40.3 103 2.3 436 33 234.3 40.9 129 3.0 397 25 228.5 41.9 165 3.0 378 20 

   
B

20
 

0 232.7 35.3 159 3.4 181 25 229.7 35.7 186 4.7 158 21 223.9 36.6 231 5.6 139 19 
5 234.5 36.9 129 2.9 292 26 231.5 37.3 168 4.2 243 22 225.7 38.3 204 5.0 243 19 
10 236.3 38.7 119 2.7 339 26 233.3 39.2 150 3.9 276 22 227.5 40.2 181 4.3 279 20 
15 238.1 40.7 107 2.4 437 27 235.1 41.2 140 3.5 379 22 229.3 42.3 165 3.6 374 20 

   
 B

30
 

0 233.4 35.5 162 3.9 173 21 230.4 36.0 188 5.1 151 18 224.6 36.9 237 5.9 135 16 
5 235.2 37.2 134 3.4 284 22 232.2 37.6 171 4.6 251 18 226.4 38.6 205 5.4 240 16 
10 237.0 39.0 125 3.1 333 23 234.0 39.5 150 4.0 287 19 228.2 40.5 179 5.0 280 16 
15 238.7 41.1 107 2.9 417 23 235.7 41.6 139 3.8 353 19 229.9 42.6 163 4.4 334 16 

   
B

40
 

0 234.5 35.7 163 4.7 172 15 231.5 36.2 190 5.8 149 12 225.7 37.1 238 6.8 133 10 
5 236.3 37.4 148 4.1 246 15 233.3 37.9 171 5.3 228 13 227.5 38.8 215 6.0 213 11 
10 238.1 39.3 128 3.8 327 15 235.1 39.8 150 4.7 259 13 229.3 40.8 190 5.6 249 12 
15 239.9 41.4 108 3.5 411 17 235.9 41.9 138 4.3 352 14 231.1 43.0 179 5.1 316 12 

  B
10

0 

0 239.1 37.4 174 8.3 143 15 242.3 36.9 205 10.4 125 10 224.0 39.9 256 8 123 12 

2.5 240.5 38.1 161 7.9 199 16 244.6 37.5 185 10 168 12 229.3 40.0 236 9 157 13.2 
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C.3 Engine performance and emissions of different fuels and their emulsions at 3000 rpm [102] 
Load Low load  Medium load  High load  

Fuel Water 
(%) 

BSFC 
(g/kWh) 

BTE 
(%) 

NOx 
(ppm) 

Smoke 
(%) 

CO 
(ppm) 

HC 
(ppm) 

BSFC 
(g/kWh) 

BTE 
(%) 

NOx 
(ppm) 

Smoke 
(%) 

CO 
(ppm) 

HC 
(ppm) 

BSFC 
(g/kWh) 

BTE 
(%) 

NOx 
(ppm) 

Smoke 
(%) 

CO 
(ppm) 

HC 
(ppm) 

   
  B

0 

0 235.0 34.2 142 1.9 183 39 228.7 35.2 169 2.3 157 30 224.1 35.9 179 3.0 148 24 
5 236.7 35.8 121 1.6 262 41 230.4 36.7 133 2.0 221 30 225.8 37.5 144 2.6 208 26 
10 238.4 37.5 105 1.5 305 43 232.1 38.5 118 1.9 281 31 227.5 39.3 135 2.4 229 26 
15 240.1 39.4 93 1.4 407 43 233.8 40.5 118 1.9 341 31 229.2 41.3 141 2.2 296 26 

   
 B

10
 

0 236.0 34.4 146 1.8 179 21 229.7 35.4 178 2.3 152 17 225.1 36.1 188 3.1 136 15 
5 237.8 36.0 119 1.4 245 22 231.5 37.0 139 2.1 203 17 226.9 37.7 155 2.7 188 16 
10 239.6 37.7 107 1.4 297 22 233.3 38.7 125 2.0 239 18 228.7 39.5 136 2.5 217 17 
15 241.4 39.7 91 1.2 375 23 235.0 40.7 113 1.6 307 18 230.5 41.5 125 2.3 276 17 

   
B

20
 

0 236.8 34.6 151 2.0 176 21 230.5 35.6 181 3.9 147 18 225.9 36.3 185 4.7 131 15 
5 238.6 36.2 121 1.7 237 22 232.3 37.2 157 3.2 200 20 227.7 38.0 169 4.1 182 18 
10 240.4 38.0 107 1.5 292 22 234.1 39.0 134 2.8 235 20 229.5 39.8 142 3.4 212 18 
15 242.2 40.0 90 1.3 356 22 235.9 41.1 114 2.3 279 21 231.3 41.9 129 2.9 241 18 

   
 B

30
 

0 237.5 34.9 152 2.4 172 18 231.2 35.8 182 4.1 143 12 226.6 36.6 187 5.0 128 14 
5 239.3 36.5 129 2.4 236 19 233.0 37.5 160 4.0 187 15 228.4 38.3 167 4.4 177 15 
10 241.0 38.3 117 2.1 273 17 234.7 39.4 139 3.3 218 16 230.2 40.2 148 3.6 206 16 
15 242.8 40.4 110 1.9 322 18 236.5 41.5 122 4.9 254 17 231.9 42.3 131 3.1 232 16 

   
B

40
 

0 238.6 35.1 152 3.2 172 12 232.3 36.0 184 4.5 142 11 227.7 36.8 194 5.8 129 8 
5 240.4 36.8 129 3.1 236 12 234.1 37.7 161 4.2 182 12 229.5 38.5 171 5.0 175 9 
10 242.2 38.6 117 2.8 273 13 235.9 39.6 140 4.0 216 12 231.3 40.4 152 4.2 204 10 
15 245.0 40.4 110 2.6 322 13 237.7 41.4 126 4.3 239 12 234.1 42.2 139 3.7 227 13 

  B
10

0 

0 244.4 36.6 181 6.9 145 9 233.0 38.3 192 7.3 131 10 225.9 39.6 214 8.9 111 5 

2.5 246.0 37.3 157 6.5 196 10 235.1 39.0 171 6.8 174 11 228.0 40.2 198 8.2 158 8 
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Appendix D: Emulsion biodiesel diesel blends with 10% water content and (2.5% and 5%) ammonium hydroxides performance and 
emission tested by light-duty diesel engine. 
 

D.1 Engine performance and emissions of emulsion fuels with ammonium hydroxide at 1000 rpm 

Load Low load  Medium load  High load  

Fu
el

 AH 
(%) 

BSFC 
(g/kWh) 

BTE 
(%) 

NOx 
(ppm) 

Smoke 
(%) 

CO 
(ppm) 

HC 
(ppm) 

BSFC 
(g/kWh) 

BTE 
(%) 

NOx 
(ppm) 

Smoke 
(%) 

CO 
(ppm) 

HC 
(ppm) 

BSFC 
(g/kWh) 

BTE 
(%) 

NOx 
(ppm) 

Smoke 
(%) 

CO 
(ppm) 

HC 
(ppm) 

  E
B

0W
10

 

0 252.2 35.4 118 3.2 443 47.9 232.2 38.5 136 4.3 329 42.01 236.9 37.7 198 5.42 329 35.9 

5 252.5 35.9 126 2.7 427 48 234.2 38.7 159 4.2 328 42.5 239.3 37.8 218 5.24 308 35 

10 253.0 36.3 131 2.3 412 50 234.7 39.1 165 3.9 299 45 240.0 38.3 229 5 289 36.7 

   
EB

10
W

10
 

0 253.9 35.6 117 3.92 413 37 235.3 38.4 160 5.17 351 31.5 239.9 37.7 210 5.84 329 34.7 

5 254.0 36.0 127 3.12 399 37.5 235.5 38.9 162 4.81 325 32.5 240.5 38.1 220 5.7 284 27 

10 254.3 36.5 132 2.94 380 40 235.9 39.3 170 4.5 306 34 241.2 38.5 231 5.3 279 28.5 

EB
20

W
10

 

0 256.2 35.7 119 4.62 391 31.8 236.5 38.6 159 6.31 343 24.6 241.4 37.8 203 6.91 322 28.5 

5 256.5 36.1 130 4.3 371 32.5 236.8 39.1 167 5.8 319 25 241.8 38.3 238 6.37 294 26 

10 257.1 36.5 135 3.9 360 35 237.4 39.5 174 5.51 302 28 243.0 38.6 243 6.12 270 28 

EB
30

E1
0 

0 257.5 35.9 112 5.86 382 26.8 238.5 38.7 160 6.97 337 21.4 243.8 37.9 203 8.22 319 26.7 

5 257.3 36.4 135 4.9 367 27.5 239.0 39.2 170 6.3 315 22.5 243.6 38.4 238 7.89 289 22.5 

10 257.9 36.7 141 4.7 349 30 241.6 39.2 179 5.7 294 26 244.9 38.7 247 7.13 263 25 
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D.2 Engine performance and emissions of emulsion fuels with ammonium hydroxide at 2100 rpm 

Load Low load  Medium load  High load  

Fu
el

 AH 
(%) 

BSFC 
(g/kWh) 

BTE 
(%) 

NOx 
(ppm) 

Smoke 
(%) 

CO 
(ppm) 

HC 
(ppm) 

BSFC 
(g/kWh) 

BTE 
(%) 

NOx 
(ppm) 

Smoke 
(%) 

CO 
(ppm) 

HC 
(ppm) 

BSFC 
(g/kWh) 

BTE 
(%) 

NOx 
(ppm) 

Smoke 
(%) 

CO 
(ppm) 

HC 
(ppm) 

  E
B

0W
10

 

0 243.1 36.7 116 1.9 383 43 232.8 38.4 139 2.9 332 34 219.3 40.7 196 3.9 292 33 

5 250.5 36.1 128 1.7 357 45 235.7 38.4 153 2.8 300 35 220.3 41.1 214 3.6 251 35 

10 251.7 36.5 132 1.6 341 48 236.1 38.9 164 2.4 284 38 221.1 41.5 220 3.5 229 38 

   
EB

10
W

10
 

0 243.5 37.1 110 2.4 343 31 234.5 38.5 154 3.3 292 25 223.0 40.5 178 4.0 270 21 

5 251.9 36.3 133 2.3 327 38 236.3 38.7 167 3.4 279 33 225.4 40.6 217 3.8 239 28 

10 253.8 36.6 141 2.0 318 40 237.2 39.1 173 3.2 270 35 226.8 40.9 229 3.6 217 29 

EB
20

W
10

 

0 241.1 37.9 119 2.7 339 26 236.3 38.7 150 3.9 276 22 223.5 40.9 181 4.3 279 20 

5 243.6 38.0 134 2.5 305 33 237.7 38.9 168 3.5 259 28 226.8 40.8 223 4.0 233 20 

10 244.8 38.3 144 2.2 291 36 238.9 39.3 175 3.3 241 30 228.5 41.1 235 3.8 205 22 

EB
30

E1
0 

0 244.7 37.8 125 3.1 333 23 237.4 38.9 150 4.0 287 19 223.9 41.3 179 5.0 280 16 

5 245.0 38.2 138 2.9 289 29 239.1 39.1 168 4.0 246 20 228.1 41.0 228 4.8 225 20 

10 246.8 38.4 147 2.6 282 32 240.3 39.4 177 3.8 232 23 229.4 41.3 239 4.2 203 23 
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D.3 Engine performance and emissions of emulsion fuels with ammonium hydroxide at 3000 rpm 

Load Low load  Medium load  High load  

Fu
el

 AH 
(%) 

BSFC 
(g/kWh) 

BTE 
(%) 

NOx 
(ppm) 

Smoke 
(%) 

CO 
(ppm) 

HC 
(ppm) 

BSFC 
(g/kWh) 

BTE 
(%) 

NOx 
(ppm) 

Smoke 
(%) 

CO 
(ppm) 

HC 
(ppm) 

BSFC 
(g/kWh) 

BTE 
(%) 

NOx 
(ppm) 

Smoke 
(%) 

CO 
(ppm) 

HC 
(ppm) 

  E
B

0W
10

 

0 236.5 37.8 105 1.5 305 42.5 230.1 38.8 118 1.9 281 31.4 221.0 40.4 135 2.4 229 26 

5 242.2 37.4 124 1.3 279 42.5 232.0 39.0 130 1.7 259 32.5 223.9 40.4 142 2.2 209 27.5 

10 247.0 37.2 132 1.2 262 45 236.0 38.9 136 1.5 250 35 225.2 40.8 149 2.0 196 29 

   
EB

10
W

10
 

0 238.1 37.9 107 1.4 297 22.3 231.3 39.1 125 2.0 239 17.6 222.7 40.6 136 2.5 217 16.5 

5 243.9 37.5 129 1.3 271 37.5 233.3 39.2 134 1.8 222 27.5 225.8 40.5 143 2.3 195 22.5 

10 248.5 37.3 135 1.2 259 40 237.9 39.0 141 1.6 210 30 229.1 40.5 152 2.1 187 25 

EB
20

W
10

 

0 239.4 38.2 107 1.5 292 22.3 233.1 39.2 134 2.8 235 20.4 224.2 40.8 142 3.4 212 18 

5 245.4 37.7 129 1.3 253 37.5 235.4 39.3 138 2.4 219 22.5 226.5 40.9 149 2.9 189 19 

10 251.8 37.2 138 1.1 241 40 240.8 39.0 147 2.1 203 25 231.7 40.5 156 2.7 177 20 

EB
30

E1
0 

0 241.0 38.3 117 2.1 273 17.3 232.7 39.7 139 3.3 218 16 225.9 40.9 148 3.6 206 15.5 

5 247.1 37.9 131 1.8 244 32.5 237.3 39.4 145 2.9 206 22.5 230.4 40.6 154 3.2 181 17.5 

10 253.6 37.4 139 1.5 229 35 243.6 38.9 153 2.6 197 22.5 234.9 40.3 161 3.0 169 19 
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Appendix E: Heavy-duty diesel engine emission form various fuels and emulsion fuels  
 

E.1 Heavy-duty diesel engine average emission fueled with various fuel at two idling conditions 

Engine speed 1200 (rpm) 1500 (rpm) 

Fuel type NOx (ppm) CO (ppm) HC (ppm) NOx (ppm) CO (ppm) HC (ppm) 

B0 198 304.7 42 203.4 263.2 39 

B100 223 214.2 25 220.7 132.8 20 

K100 235 271.2 43 210.5 286.8 32 

n-heptan 232 176.5 27 218.0 119.6 25 

B30 211 289.3 36 210.6 206.8 31 

K70 237 259.3 37 215.5 242.4 25 

EB0W10 174 570.8 56 148.4 431.2 54 

EB0W15 165 604.7 59 136.1 450.2 58 

EB30W10 179 488.7 43 160.2 409 43 

EB30W15 172 514.3 50 147.3 426.8 50 

EKW10 188 579.2 53 144.6 465.8 53 

EKW15 175 598.8 57 136.9 493.4 54 

EK70W10 200 501.7 46 167.1 440.6 46 

EK70W15 190 512.7 53 147.8 462.6 52 
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Appendix F: Measuring equipment used  
 

 
Figure F.1 Weighing scale          Figure F.2 Viscometer                   Figure F.3 Calorimeter                   Figure F.4 Dynamometer           Figure F.5 Master-sizer 2000  

 
Figure F.6 multi-gas analyzer.            Figure F.7 CO analyzer         Figure F.8 Smoke opacity meter              Figure F.9 Graduated cylinder.      Figure F.10 Thermometer  
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