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ABSTRACT 

The phenomenon ot c;.]iBH::::.:U.' tH r. j Ie y investi-
gated in connection with the study of memory consolidation. Local-
ized electrical stimulation of the brain has been useful in examin-
ing the degree of involvement of different areas of the brain in 
the production of retrograde amnesia. One of the areas that has 
been implicated as playing an important role in the consolidation 
process is the hippocampus. However, it is unclear whether the 
hippocampus plays a general or a specific role in consolidation, 
since the majority of the studies examining the effects of hippo-
campal stimulation used the passive-avoidance paradigm. Therefore, 
the present study examined the generality of the role of this 
structure in consolidation by using a one-trial appetitive learning 
task which involves a different motivational system and different 
responses than the passive-avoidance task. Experiment 1 established 
the effectiveness of the one-trial appetitive training procedure 
in producing learning in the subjects receiving it by comparing the 
performance of two groups of rats on the task. It was found that 
rats receiving appetitive training showed superior learning as 
compared to rats receiving no training. 

In Experiment 2, bilateral hippocampal stimulation of 115 va 
was administered to subjects for 10 seconds. It was shown that this 
current was sufficient to consistently produce seizure activities 
in the hippocampus. 

The third experiment compared the performance between subjects 
receiving bilateral hippocampal stimulation 15 seconds after train-
ing and subjects receiving appetitive training but no stimulation. 
No significant differences in performance were observed between 
the two groups. 

Experiment 4 used two training-stimulation intervals.of 0 second 
and 10 seconds after training. Rats receiving stimulation at either 

http:intervals.of
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interval did not differ from a trained but an unstimulated control 
group, nor did they differ from each other in posttraining performance. 
It seemed that posttrial hippocampal failed to impair 
memory for the appetitive learning experience. 

In Experiment 5, a more severe type of amnesic treatment --ECS-~ 
was used. Rats receiving EeS after training showed a highly signi-
ficant degree of memory impairment as compared to a no-EGS control 
group. This showed the effectiveness of ECS in producing amnesia 
as well as the amenability of this type of learning to external 
interference. 

The role of the hippocampus in consolidation was discussed 
in connection with the present results and the findings of other 
studies that examined the effects of hippocampal stimulation on 
consolidation. 
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The mechanism whereby information is stored in the central 

nervous system has evoked much theorization and experimentation 

(Konorski, 1961; John,1967, 1971; Young, 1951; Hebb, 1959, 1961; 

Eccles, 1961, 1964). One central concept in this area of investi-

gation is the consolidation of memory. The formulation of the theory 

concerning the nature of the process responsible for the permanent 

retention of information was first prompted by MUller and Pilzecker's 

(1900) observation that recall for a recently learned word list was 

significantly impaired by the interpolation of the learning of an-

other list. Their results suggested that the formation of permanent 

memory involved a mechanism,which is time-dependent in that its 

susceptibility to external interference is a function of the time 

interval between learning and interference. It was suggested that 

after an experience, memory is maintained in the form of reverbera-

tory circuits which become transformed ("fixed" or "consolidated") 

into permanent memory traces (Hebb, 1949) and it is during this period 

of time, while memory persists in this labile form, that it is sus-

ceptible to external disruption (Glickman, 1961). 

Indirect evidence for a consolidation process also comes from 

clinical and experimental observations of a phenomenon known as 

retrograde amnesia. Retrograde amnesia refers to an apparent loss 

of memory for events immediately or shortly preceding a trauma to the 

brain. Clinically, retrograde amnesia has been observed in patients 

sustaining head injuries. These individuals exhibited loss of memory 

1  
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for events that occurred during a period varying from a few seconds-

to 30 minutes or more preceding the injury (Russell &Nathan, 1946). 

In a controlled clinical study, Gronholm and Lagergren (1960) foUnd 

retrograde amnesia in patients sustaining electroconvulsive shock 

(EGS) treatment. In their study; groups of patients (tota1=230) 

were given a simple learning task 5 seconds, 15 seconds, and 60 se-

conds respectively before undergoing EGS. It was found upon later 

testing that these patients exhibited a differential degree of retro-

grade amnesia as a function of the 1earning-EGS interval, the shorter 

intervals being associated with more amnesia. These investigators 

interpreted their data in terms of the consolidation of memory traces 

occuring over time after learning. 

One of the early experimental studies of retTograde amnesia 

under more controlled conditions was by Duncan (1949) using EGS as 

the amnesic agent. In this experiment, rats were trained to avoid 

an electrically charged grid. The treatment groups received EGS at 

different time intervals after training while controls were trained 

in the same way without posttrial EeS treatment. Retention deficits 

were observed in subjects with a learning-EeS inteTVa1 of 20 seconds, 

with progressively less impairment exhibited by treatment groups 

with longer learning-EGS intervals (40 sec., 1 min., 4 min., and 5 

, min.) and groups wi th 1earning-EGS intervals of 1 hour or longer 

(4 hrs. and 14 hrs.) did not differ significantly from the control s. 

The important observation in this as well as other studies 

(Hudspeth, McGaugh &Thompson 1964; Chorover &Schiller, 1965, 1966; 
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McGaugh, 1966; Quartermain, Paolino &Miller, 1965) is the time-

dependent nature of the retrograde amnesic effect, which can be 

graphically represented as the retrograde amnesia -temporal gradient. 

The shape of the amnesia gradient has been interpreted as re-

flecting the time course of the underlying memory consolidation process 

(Glickman, 1961; McGaugh, 1966). Basically, the effect of post-

learning EGS on memory was presumed to be a disruption of the process 

of trace formation and consolidation in the brain. If patterned 

firing in certain neural structures were involved in the early 

stages of learning and memory, the passage of a strong current through 

the brain would disrupt these activities and result in a partial 

or complete retardation of storage for the learned experience. The 

time interval between the occurrence of learning and the application 

of the amnesic treatment would therefore be an important variable in 

determining the shape of the gradient by varying the time during 

which consolidation can progress. It is now recognized that the 

retrograde amnesia gradient is highly variable, depending on the 

nature of the amnesic treatment. The current view is that this curve 

represents the susceptibili ty of memory processes to modification 

by external disruption (McGaugh &Dawson, 1971; McGaugh &Herz, 1972; 

Mall & Albert, 1973; McGaugh & Gold, 1974; Gold, Zornetzer, & McGaugh, 

1974). 

Retrograde amnesia can be produced by a variety of treatments 

including EeS, intracranial electrical stimulation, various convul-
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sive or depressant drugs, hypothermia, and brain lesions. By vir-

tue of the ease and convenience with which it can be administered, 

ECS has been the most commonly used .amnesic ag12:nt. H:Jw€v£r, ECS 

has one definite disadvantage -- the current tends to have a gener-

alized effect on much or all of the brain, and it is not possible 

to identify which brain areas are primarily involved in memory 

consolidation. In spite of the fact that the localization of memory 

functions in the brain is a controversial and an unresolved problem 

(John, 1967, 1971), there are numerous studies indicating that cer-

tain areas of the brain may be important for memory consolidation. 

These areas and structures include the caudate nucleus, the 

mesencephalic reticular formation (MRF) and, particularly the limbic 

structures of the amygdala (AMG) and the hippocampus (HPC). 

The Caudate Nucleus 

Retrograde anmesic effects of posttrial bilateral stimulation of 

the caudate nucleus was demonstrated by Wyers, Peeke, Williston 

and Herz (1968) using a passive-avoidance task with rats. Four 

delay intervals (0.1, 1.0, 5.0 and 30.0 sec.) of stimulation were 

used but a temporal gradient was not evident. In a later study, Wyers 

and Deadwyler (1971) observed rats in a passive-avoidance learning 

situation, using three delay intervals (30; 120, and 300 sec.) com-

bined with three current levels (300, 600, and 900 ~a) of stimulation 

to the caudate nucleus. They were able to show amnesia for the task 

as well as a temporal gradient of effect. Peeke and Herz (1971) 
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examined the differential effects of single and multiple stimulation 

of the caudate-putamen complex in a food-motivated complex maze 

situation. They found that while both treatments have r~troactive 

impairment effects on memory, multiple stimulation was more effective 

than single stimulation at a more difficult criterion of learn-

ing. Gold and King (1972) stimulated rats in the caudate nucleus 

at a current level of 1.5 ma (60Hz, 1 sec duration) and found 

retrograde amnesic effects for a passive-avoidance (step-through, 

inhibitory) task. They also observed a temporal gradient with am-

nesia produced by stimulation administered 5 seconds and 15 minutes 

after learning but not 60 minutes after. Using sub-seizure (350 ~a, 

0.5 msec single pulse) stimulation of the caudate-putamen complex 

Haycock, Deadwyler, Sideroff and McGaugh (1973) produced amnesia in the 

rat, when the stimulation was administered 15 seconds after training. 

The Mesencephalic Reticular Formation 

In an early study, Glickman (1958) showed that posttrial sti-

mulation of the MRF resulted in amnesia for a single-trial passive-

avoidance task. The current intensity was 1.Z5 v. delivered in 

a series of three ZO-seGond stimulation with 20 seconds between 

each stimulation. Later studies using different stimulation par-

ameters, however, found facilitative effects of MRF stimulation on 

learning. Bloch, Deweer, and Hennevin (1970) used a single post-

trial MRF stimulation and obtained positive facilitative· effects 

on the retention of a one-trial discrimination task. More data on 
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the facilitation of learning by MRF stimulation were provided by 

Bloch (1970). MRF stimulation (110-220 lla) inunediately following 

a single learning trial for 25 consecutive days of avoidance train-

ing similarly enhanced performance in rats (Denti, McGaugh, Land-

field, and Shinkman, (1970). Kesner and Conner (1973) provided 

interesting data showing that low level (20-45 ~a) bilateral stim-

ulation of the MRF resulted in amnesia when subjects were tested 

for retention 10 minutes after avoidance training but no amnesia 

when tested 24 hours after. This observation established the pos-

sibility that the MRF may be involved in the short-term retention 

of information and not long-term memory. An al ternative interpre-

tation is that the stimulation might have proactive interfering 

effects on performance which dissipated by 24 hours. 

The Amygdala 

Early studies found that the disruption of amygdaloid activities 

during learning impaired the acquisition of an avoidance response. 

Goddard (1964) used posttrial low level (3·13 ~a) continuous sti-

mulation of the amygdala for 5 minutes in a passive-avoidance learn-

ing situation and effected impairment of the acquisition of a 

conditioned emotional response (CER). Pellegrino (1965) found that 

continuous low intensity (20 l-Ia) stimulation of the amygdala, 

especially its basolateral portion, impaired the acquisition of a 

passive-avoidance response. Stimulation was delivered unilaterally 

to the amygdala in both of the above studies. 

rr 
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Data on the effects of amygdaloid stimulation applied after 

training are not as clear as those on the effects of stimulation 

applied during training. McIntyre (1970) showed that bilateral, 

kindled convulsions elicited through unilateral amygdaloid stimulation. 

in rats were highly effective in impairing the acquisition of a 

passive-avoidance response. It was also shown in the same study, 

however, that unkindled, unilateral amygdaloid stimulation with 

low level current (50 va) applied after training trials did not 

result in retention deficits for the same task. This result seems 

to be in discord with that of Goddard's (1964) study which demons-

trated the retrograde amnesic effects of low level unilateral amyg-

daloid stimulation applied also immediately after training and last-

ing for 5 minutes. On the other hand, it should be noted that 

stimulation parameters were different between the two studies, 

which may account for the conflicting results. McIntyre (1970) 

used a higher current level of 50 ~a with a brief duration of 15 

seconds whereas Goddard used a lower level but for a much longer 

duration of 5 minutes. Also, in the Goddard study, subjects were 

liberally stimulated for threshold gauging before testing as well 

as for a large number of trials (blocks of 20) during testing, thus 

the possibility of kindling effects exists. In McIntyre's study, 

subjects receiving posttrial stimulation had never been stimulated 

prior to the application of treatment. Lidsky, Levine, Kreinich 

and Schwartzbaum (1970) also found that low level (20-30 ~a) post-
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trial amygdaloid stimulation for brief (30 sec.) as well as pro-

longed (5 min. as in Goddard, 1964) durations, and intermediate 

level (40-60 }.1a) stimulation for brief intervals failed tQ produce 

retrograde effects on avoidance learning. Retrograde impairment 

was produced only when high level stimulation (100-200 va) was used 

with accompanying behavioural seizure and afterdischarges (ADs). 

It is not clear which factors contributed to the discrepant results, 

though the use of bilateral stimulation and the apparent proactive 

effects lasting up to 24 hours in the subjects receiving seizure 

level stimulation (Lidsky et ala J 1970) may playa role. However, 

recent studies all showed that low level (25-50 ~a, for 10 sec.) 

sub-seizure, bilateral stimulation of the amygdala is effective in 

affecting posttraining memory processes. Such stimulation produced 

amnesia for an active-avoidance task (Handwerker, Gold, and McGaugh, 

1~75) when administered 1 minute after, and for a passive-avoidance 

task when administered 1 hour after training (Gold, Marci, and Mc-

Gaugh, 1973b). Also" Gold, Hankins" Edwards, Chester, and McGaugh 

(1975) showed that low intensity amygdaloid stimulation has amnesic 

effects for a passive-avoidance task under the condition of high 

intensity (2 rna, 2 sec.) footshock in training" but facilitative 

effects under the condition of low intensity footshock (0.5 rna, 

0.5 sec.). 

Two studies by Kesner (Kesner &Doty, 1968; McDonough &Kesner, 

1971) using cats as subjects in a one-trial passive-avoidance 
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situation, examined the effects of amygdaloid and hippocampal sti-

mllation. Using seizure (ADs) threshold posttrial unilateral 

stimulation of the amygdala or the dorsal hippocampus, these inves-

tigators demonstrated amnesia for the aversive experience in the 

subjects. On the basis of a more detailed analysis of the data, 

Kesner and Doty held that the amygdala played a more important 

role in consolidation than the hippocampus, since amygdaloid stimu-

lation consistently produced amnesia whereas stimulation at other 

sites including the ventral hippocampus (and the dorsal hippocampus 

in several cases) failed to do so. In the McDonough and Kesner 

(1970) study, however, it was found that brlef (5 sec.) low intensity 

bilateral stimulation of either the amygdala (at 0.07-0.7 ma) or 

the hippocampus at (0.04-0.5 rna) each produced amnesia for the 

aversive experience in the passive-avoidance task. 
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The Hippocampus 

One of the earlier works that observed possible relationships 

between the hippocampus and memory functions was a ~lini..::al study 

by Penfield and Milner (1958). They derived their data from obser-

vations of patients sustaining lesions of the hippocampus and the 

hippocampal gyrus who showed difficulty in storing new information, 

as well as retrograde amnesia which sometimes extended preoperative-

Iy for a period of several months. This prompted increased interest 

in the effects of hippocampal lesions on learning in more controlled 

situations using animals as subjects. Kimble (1963) observed rats 

with bilateral hippocampal, lesions in a passive-avoidance si tuation 

and found that these subjects showed significantly impaired per-

formance of the avoidance response. Similar findings were provided 

by Kimble, Kirby, and Stein (1966) showing that bilaterally hip-

pocampectomized rats were impaired in the performance of a previously 

learned passive-avoidance response. Hostetter and Thomas (1967) 

presented data showing that hippocampal lesions in rats did not 

interfere with post-operative learning of a passive-avoidance 1'e5-

ponse. Such lesions, however, attentuated the amnesic effects of 

ECS on the task. The authors offered the interpretation that the 

hippocampai structures were involved with memory consolidation pro-

cesses. 

On the basis of the ahove data, it is reasonable to expect 

that posttrial temporary disruption of hippocampal activity by , 

=n 
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electrical stimulation will disrupt the consolidation process. Lid-

sky and Slotnick (1970) studied the effects of posttrial stimulation 

of the dorsal hippocampus as well as ECS on ieal an.1 mEmory 

in mice in a one-trial passive-avoidance situation. They used low 

level (3 v.) stimulation which produced mild behavioural orienting 

responses but no convulsions. Hippocampal stimulation and EGS were 

both administered an average of 40 seconds after trainingo Hippocamp-

al stimulation was delivered bilaterally and for a duration of 6 

seconds. Their results clearly showed that both hippocampal sti-

mulation and ECS produced a retention deficit for the aversive expe-

rience of footshock received during training. It should be noted 

that the amount of amnesia produced by hippocampal stinrulation was 

comparable to that produced by ECS. No correlation was found be-

tween the placement of electrodes and the degree of amnesia produced. 

Another study (Barcik, 1970) also showed the amnesic effects of post-

trial hippocampal stimulation to be comparable to that of EGS. 

Afterdischarge-eliciting bilateral stimulation was delivered to the 

dorsal hippocampus shortly after training. The lO-second" 3_0~3.6 v. 

stimulation resulted in a significant amount of retention deficit 

which was comparable to that resulting from EeS. 

Brunner, Rossi, Stultz, and Roth (1970) reported the effective-

ness of posttrial low level unilateral stimulation of the dorsal 

hippocampus in the production of retention deficit in a one-trial 
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passive-avoidance task for rats. The subconvulsive stimulation  

used was a 1.S-second train of current at 25-50 rna delivered imme-

. diately following the conditioned stJ.lnulus ot iOu·...5.il.:..::k a.. td an identi· 

cal train 10 seconds later. Vardaris and Schwartz (1971) also reported 

that unilateral stimulation of the hippocampus given within 3 seconds 

after passive-avoidance training interfered with the retention of 

an aversive experience. The current intensity was 120% above indi-

vidually determined thresholds to ensure the elicitation of after-

discharge activities without gross motor convulsions. On the basis 

of the observation that the stimulated subjects showed some residue 

of memory for the aversive experience, these authors concluded that 

the stimulation only produced a relative retention deficit rather 

than total amnesia. 

Shinkman and Kaufman (1969) obtained impairment of CER acqui-

sition, using bilateral hippocampal stimulation given daily follow-

ing each CER trial, for 7 days. In a subsequent study,. Shinkman 

and Kaufman (1970) found that low level (2-12 v.) bilateral stimulation 

of the dorsal hippocampus did not affect the acquisition of CER. 

The current level was predeteremined to produce behavioural orienting 

responses and was delivered in three IS-second bursts each separated 

by S seconds. Three training-stimulation intervals from 0 second 

to S minutes were used to detect any temporal effect but there were 

no significant differences among the groups which all showed reten-

tion for the aversive experience. However, when higher level sti-

mulation (7-21 v.), sufficient to produce hippocampal afterdischarges 
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was used, retention deficits were observed. Their data showed that 

seizure threshold hippocampal stimulation given immediately after 

each training trial significantly CbR ;'lCqU.A.Sl L-LUn wileTeas 

delayed stimulation given 30 seconds or longer (5 min.) after 

were ineffective. Thus an "all-or-none" time-dependent effect of 

posttrial hippocampal stimulation on rentention was observed, though 

a temporal gradient of effect was not demonstrated. To examine the 

possibility of a temporal gradient of amnesic effect was the pur-

pose of another of Shinkman and Kaufman I s studies (1972b). At first, 

they used low level posttrial stimulation (50-187 lla, )(=147 lla; 

duration=30 sec.) which failed to interfere significantly wi th CER 

learning, even when given immediately after training. Consequently, 

stimulation at the higher level of 200 }..I a for a duration of 10 seconds 

was used. Six training-stimulation intervals were adopted to examine 

the temporal gradient effect, these being 0 sec., 10 sec., 20 sec., 

30 sec., 40 sec., and 120 sec. after the receipt of footshock in CER 

training. Their results showed a clear temporal gradient effect, 

demonstrating an inverse function between retroactive effects of 

~ippocampal stimulation and training-stimulation time intervals. 

Retention deficit was found to be complete when stimulation was 

administered immediately after footshock, partial 10-40 seconds 

after, and absent 120 seconds after. Afterdischarges were consis-

tently observed in subjects receiving either the threshold (50-187 

pa) or the 200 ~a stimulation, with the latter group showing occa-

http:lCqU.A.Sl
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sional mild behavioural seizure without convulsions. No correlation 

between electrode locations and amnesic effects was observed. This 

study is the first to demonstrate systematically a clear temporal 

gradient of the effect of posttrial hippocampal stimulation in rats, 

though other studies have shown a less clear-cut and less robust 

gradient in cats (McDonough &Kesner, 1971), or a longer gradient 

in mice (Lidsky &Slotnick, 1971). McDonough and Kesner (1971) 

used low level stimulation (0.04-0.5 rna) and found two out of four 

subjects receiving stimulation 30 minutes after training showed 

amnesia and one out of two subjects stimulated 60 minutes after 

showed amnesia. Lidsky and Slotnick (1971) used an intermediate 

level stimulation (100 ~a) and found amnesia in subjects receiving 

stimulation up to 2.5 hours after training. 

There are several studies examining the amnesic effects of 

hippocampal stimulation along with those produced by amygdaloid sti-

mulation (Kesner &Doty, 1968; McDonough &Kesner, 1971; Lidsky 

&Slotnick, 1971; Bresnahan &Routtenberg, 1972). Kesner and Doty 

(1968) held that the amygdala played a more critical role in mnemonic 

processes than the hippocampus, since they found that stimulation 

of the ventral hippocampus, fornix or septum which induced ADs in the 

dorsal hippocampus all· failed to produce amnesia, and likewise in 

five cases stimulation of the dorsal hippocampus was ineffective. 

On the contrary, stimulation of the amygdala was consistently effective 

s  
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in amnesia production. They suggested that when stimulation of 

the dorsal hippocampus was successful in producing amnesia, it was 

due to propagation of ADs to the amygdala. Stimulation was deli-

vered unilaterally 4 seconds posttrial. The current used was of 

threshold intensity (1.0-2.0 ma) eliciting AD activities but not 

overt convulsions. 

The following information from other studies, however, severely 

:li~t~ generalization about differential disruptive actions of hip-

pocampa1 vs. amygdaloid stimulation. (1) A study by Lidsky and 

Slotnick (1971) found that while bilateral amygdaloid-stimulation 

resulted in a clear deficit in retention, the degree of amnesia 

was significantly less than that produced by stimulation of the 

hippocampus or ECS, the latter two conditions being equally effective 

in amnesia production. The authors pointed out that it was signifi-

cant that bilateral hippocampal stimulation was equally as effective 

as EGS in amnesia production, since they may have a common basis 

of action, namely hippocampal seizure activities. In contrast to 

the view of Kesner and Doty (1968), they suggested further that the 

amnesic effects of amygdaloid stimulation may be the result of induced 

hippocampal activities. Furthermore, it was found in Lidsky et ale 

(1970) that subthreshold (20-30 }.la, 5 11 a below individually determined 

thresholds) amygdaloid stimulation for 30 secDpds or 5 minutes after 

<training failed to produce any retention deficits. An intermediate 

current at self-stimulating level (50-80 pal, administered in 10 
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intermittent bursts of 0.5 second each~ still failed to have any dis-

ruptive effect. It was only when a high level current of 100-290 ~a 

delivered immediately after training was used that a retrograde amnesic 

effect was observed. Stimulation at this level was shown to produce 

motor seizure as well as massive amygdaloid ADs followed by postictal 

depression which was propagated to the neocortex to produce cortical 

depression. It seems, then, that seizures initiated in the amyg-

dala by such high level stimulation would have also involved the 

hippocampus. (2) Using cats, McDonough and Kesner (1971) showed 

that brief(S sec9nds) low level, bilateral stimulation of either 

the amygdala or the hippocampus was consistenly effective in pro-

ducing amnesia for a passive-avoidance task and there were no signi-

ficant differences between the amount of amnesia in the two con-

ditionso No ADs were elicited as a result of the low level intensity 

used in this study. It is unlikely, therefore, that when ADs were 

absent in the hippocampus, there should be any propagation of dis-

ruptive activities to the amygdala, the latter condition being presumed 

by Kesner and Doty (1968) to be important in runnesia production. 

In view of these results, the investigators (McDonough &Kesner) 

suggested that neither structure was the site for long-term storage 

of information, while both may be part of a critical system. (3) 

Zornetzer and McGaugh (1970) produced amnesia (in a magnitUde com-

parable to that produced by EGS) by stimulating the frontal cortex 

in amygdalectomized rats. This finding suggests that the amygdala 
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is not critical in the disruption of consolidation proce$ses. 

(4) Kesner and Doty (1968) used cats in their study, and differences, 

anatomical or otherwise, exist between the amygdala and the hippocampils 

of the cat and those of the rat (Fonberg, 1967). Most data in this 

area of research are obtained from studies using the rodent (rats or 

mice) as subjects. 

On the other hand, support for Kesner and Doty's position comes 

from the data provided by Bresnahan and Routtenberg (1972). They 

showed that sub-seizure (5 pa) unilateral stimulation of the hippo-

campus did not result in memory disruption, whereas similar stimu-

lation of the amygdala did. Again, ~ paradigmatic differences 

.preclude 	direct comparisons between these two studies, especially 

with regard to the fact that continuous rather than posttrial stimu-

lation was used in Bresnahan and Routtenberg's experiment. 
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Zornetzer, Chronister and Ross (1973) found in their study on the 

effects of hippocampal stimulation in mice that there is a strong 

relationship between electrode location and amnesia production for 

a passive-avoidance response. Employing a current level 25% below 

individually determined AD thresholds (20-175 pa, X=70 ~a for 1 sec.) 

they showed that such treatment resulted in a significant degree of 

amnesia only when both electrodes were located in the dentate region 

of the dorsal hippocampus, stimulation with electrodes in other 

areas of the hippocampus or surrounding tissue being ineffective. 

It was further shown that suprathreshold stimulation (25% above 

seizure threshold: 12.5-l37~a, X=49 ~a) produced a greater degree of 

amnesia than was produced by subthreshold stimulation, with bila-

terally symmetrical location of electrode tips in the dentate regions 

of both hippocampi as a pre-condition. The authors recognized that 

in the case of asymmetrical electrode placement the stimulation may 

spread bilaterally to interfere with normal neural activities in 

the contralateral hippocampus, but suggested that such action is 

ineffective in disrupting consolidation, whereas bilateral inter-

ference of neural functioning as a resul t of "initiation-in" a 

structure, as opposed to "propagation-to", is effective in this re-

spect. However, the data were not discussed in consideration with 

the existing evidence on the effectiveness of unilateral stimulation 

in amnesia production, notably the findings of Lidsky and Slotnick 

(1971) and others (Kesner &Doty, 1968; Bresnahan &Routtenberg, 
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1968). Furthermore, several investigators also have observed, on 

the basis of histological analysis, that there seems to be no sys-

tematic relationship between electrode placement within the hip-

pocampus and the magnitude of amnesia produced (Shinkman and Kauf-

man, 1970, 1972b; Lidsky &Slotnick; 1970). Of special relevance 

are the findings of Sideroff, Bueno, Hirsh, Weyland and McGaugh 

(1974) that sub-seizure (175-200 ~a, 0.25 msec., 1 pps for 5 sec.) 

unilateral or bilateral stimulation of the dorsal hippocampus at 

CAl, CA3, or the dentate area is equally effective in producing 

amnesia for a passive-avoidance task. Both unilateral and bilateral 

stimulation produced amnesia when administered 10 seconds or 3 hours 

but not 6 hours after training. Nevertheless, the data of Wyers 

et al. (1968) on posttrial hippocampal stimulation, though somewhat 

incomplete, seem to offer some support for Zornetzer et al.ts 

conclusion. It was shown that subseizure bilateral stimulation of 

the dentate regions of the ventral hippocampus of rats produced 

a significant degree of retention deficit for a passive.;.avoidance 

task, while two subjects receiving stimulation of the dorsal hip-

pocampus did not exhibit anmesia. It is difficult,in view of the 

variability in experimental paradigms and stimulation parameters, 

as well as species differences in experimental subjects, to pre-

cisely account for the discrepancies between the results of these 

studies. 
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In contrast to the importance of precise localization within the 

hippocampus as proposed by Zornetzer et al. (1973), Shinkman and 

Kaufman (1972a) provided evidence which seems to suggest that large, 

rather then restricted areas within the hippocampus have to be 

involved in order for consistent disruptive effects of the stimulation 

to occur. Th~y showed that while localized posttrial hippocampal 

stimulation in the dorsal region was effective in amnesia production, 

large intra-group variability was observed. However, when two pairs 

of electrodes(an anterior pair located bilaterally in the dorsal 

hippocampus, and a posterior pair in the ventral hippocampus) 

spanning a large region of the hippocampus were used, such varia-

bility was reduced to a minimum. Data showed that with threshold 

stimulation (150-260 ~a, X=190 ~a, for 30 sec.) which produced ADs 

as well as behavioural responses, none of the subjects showed clear 

retention. The use of subthreshold (45-70 ~a, X=60 ~a, for 90 sec.) 

stimulation which produced neither ADs or behavioural effects, was 

also successful in producing amnesia in six of seven subjects. 

Again, discrepant data were observed in a later study by the same 

investigators (Shinkman &Kaufman, 1972b). Using identical experi-

mental paradigms, they found that stimulation of the hippocampus 

with two pairs of electrodes as in their previous study, but at 

a high level of current (50-187 ~a, X=147 ~a, for 30 sec.) failed 

to produce amnesia, even when administered immediately after learn-

ing." Such stimulation was intense enough to produce both orienting 
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responses and brief periods of ADs in the subjects. They found that 

the degree of amnesia in different subjects, though non-significant, 

was related to the intensity of the individually determined current. 

Subsequently in a second experiment, a higher level stimulation of 

200 pa for 10 seconds was used uniformly for all subjects and was 

found to be effective in causing retention deficits. These results 

seem to be inconsistent with their earlier data showing the effect-

tiveness of low level stimulation in producing amnesia. The ex-

perimental paradigm was identical in both studies and the only 

difference which may be important was that in the earlier study 

(1972a), the effective lower level current (X=60 pa) was on for 

a longer duration of 90 seconds than the higher level stimulation 

(X=60 pa) of30 seconds dur.ation in the latter study. 

A recent study by Kesner and Conner' (1973) attempted to examine 

whether consolidation involved two processes (short-term and long-

term memory) subserved by different neural systems. It was shown 

that subseizure (15-32 pa for 5 sec.)· stimulation of the hippocampus 

delivered bilaterally 4 seccnds after training produced amnesia 

for an aversive experience in rats. Such amnesic effects were de-

tected only when the subjects were tested after a long delay o'f 24 

hours (as in most studies in this area;'of investigation). When the 

subjects were tested after a short delay of 64 seconds after stimula-

tion, no amnesia could be recorded. On the other hand, MRF stimu-
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lation produced amnesia at the 64-second retest but not at the 

24-hour retest. Assuming that short-term memory is being measured 

at the 64-second treatment-test interval and long-term memory at the 

24-hour interval, these authors suggested that the MRF is involved 

in short-term and not long-term memory while the hippocampus is 

involved in long-term and not short-term memory_ However, it is 

possible that the amnesia found at 64 seconds was simply a proactive 

disturbance produced by MRF stimulation. 

Hippocampal stimulation has also produced facilitative effects 

in several cases (Stein &Chorover, 1968; Landfield, Tusa, &McGaugh, 

1973; Erickson &Patel, 1969). Stein and Chorover (1968) used 

stimulation of the hippocampus in the rat (5.5-10.5 ~a) immediately 

after an appetitive maze task and found that learning was enhanced. 

Landfield et ale (1973) showed that bilateral stimulation of the 

ventral hippocampus 5 seconds after training facilitated learning 

of an avoidance response as well as an inhibitory avoidance response. 

Such facilitative effect was time-dependent, strongly suggesting 

that the stimulation acts on posttraining processes. Using low 

intensity (30 ~a for 3 sec.) posttrial stimulation, Erickson and Patel found 

significant enhancement of discriminative avoidance learning. These 

results suggest that the hippocampus may be involved in learning 

and memory and that the facilitation o'f learning was due to the 

"arousal" effect of the stimulation (Erickson & Patel, 1969, p. 405) 

on pas t-training memory storage process" (Landfield et al., 1973, 

p.490). 

--------------------~---



23 

Task Differences 

The basic paradigm of a passive-avoidance task ordinarily 

involves a situation wherein a subject is first allowed to naturally 

(as in step-through or step-down tasks) or through training (as 

in bar-pressing tasks), approach a particular stimulus or make cer-

tain operant responses to it, and then later trained through punish-

ment to withhold the same responses, thus resulting in a conflict 

situation. Such a situation may introduce processes (e.g. inhibitory 

mechanisms) adding to the complexity of the experimental variable 

under study. On the other hand, an appetitive learning task is 

comparatively simpler. An appetitive app~oach response is based 

on appetitive reinforcement such as food or water for deprived sub-

jects. In requires the subject to actively approach a desired 

stimulus rather than to withhold or inhibit a response as in a passive-

avoidance situation. 

One of the early experiments making use of the single-trial 

appetitive learning task was undertaken by Tenen (1965). In this 

experiment, water-deprived rats were trained in a chamber with a 

niche in one of the walls wherein the spout of a water bottle could 

be inserted for drinking by the subject. Experimental groups of 

subjects included rats which were trained in an appetitive task 

. (where water could be obtained from the niche) and given ECS at the 

end of training. Control subjects were not given appetitive train-

ing, or were trained without posttrial ECS. Retention was measured 

in terms of the number of niche-exploration during the testing session 
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between groups. Upon testing, it was found that subjects that 

had previously found water at the niche increased their frequency 

of niche-exploration. Rats receiving appetitive training but also 

posttrial ECS explored the niche significantly less frequently 

than non-ECS controls. Having ruled out the aversive and the 

proactive effects of ECS as major contributing factors to retention 

deficits, the author interpreted the data to be evidence for the 

retrograde a11ll1esic effect of ECS. 

Herz (1969) found that ECS administered within 20 seconds 

after water-reinforcement produced an almost total attenuation of the 

retention of this experience. Animals administered ECS up to 30 

minutes after learning showed partial attenuation, strongly suggesting 

a graded interference effect. Comparison of results for the two ex-

periments in this study, using aversive and appetitive motivation 

respectively, demonstrated that when the reinforcement was adminis-

tered in very similar experimental conditions, the degree of amnesia 

produced is a function of the type of motivation, among other variables. 

Graded amnesic effects of ECS on appetitive learning were also observed 

in Pinel (1969), though only subjects receiving ECS 10 seconds and 

1 minute after learning showed significant degrees of amnesia. 

The effects of localized stimulation of the hippocampus has also 

been investigated in an appetitive learning situation. Stein and 

Chorover (1968) studied rats in a maze-learning situation, using food 

as reinforcement. Their data showed that when AD-inducing posttrial 
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hippocampal stimulation was administered in a spaced-trial condition, 

performance in the maze was enhanced. When stimulation was used 

under a massed-trial condition, however, disruption of learning was 

observed. Due to the short interval (6 hrs.) between stimulation and 

testing and the massed stimulation condition, this disruption may 

have been caused by proactive effects of the stimulation. Gilman 

(1970) used an appetitive task to study the disruptive effects of 

hippocampal stimulation. Bilateral stimulation of the hippocampus 

was shown to result in an impairment in acquisition of an alternation 

task in a maze situation. However, continuous rather than posttrial 

stimulation was used in his experiment, thus precluding conclusions 

about retrograde effects of the stimulation. A recent experiment by 

Zornetzer and Chronister (1973) studied the effects of posttrial ven-

tral hippocampal stimulation in mice in an aversive as well as an 

appetitive situation. Using single pulse stimulation at 500 ~a for 

a duration of 0.05 second delivered bi laterally wi thin 15 sec'onds 

after training, they 'found retention deficits for the appetitive ex-

perience in the maze, but no impairment of a passive-avoidance task. 

The'authors suggested that this may be due to the differential thres-

holds (susceptibility) of the ventral hippocampus to disruption in 

the aversive as compared to the appetitive situation. , However, in 

an earlier study, Zornetzer et al. (1973) using an identical step-

through task, found that stimulation of the dentate dorsal hippocam-

pus was effective in producing amnesia for aversive learning. These 
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conflicting results may be due to the different current parameters 

(20-175 ~a and 12.5-137 ~a for sub-seizure and supra-seizure stimu-

lation respectively) and the different sites of stimulation (ventral 

hippocampus) in Zornetzer et al. (1970). 
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Rationale and Method of the Present Study 

In summary, the hippocampus appears to be an important struc-

ture involved directly, or indirectly as part of a larger system 

including the amygdala, caudate nucleus and the mesencephalic re-

ticular formation, in the consolidation of memory_ It seems clear 

that learning and memory in a passive-avoidance situation are generally 

susceptible to the amnesic effects of posttrial hippocampus sti-

mulation, whereas less data is available on the effectiveness of 

such treatment in an appetitive situation. In view of this, the 

present study was undertaken to investigate the generality of the 

role of the hippocampus in memory function, using posttrial stimu-

lation in a one-trial appetitive situation. 

The first experiment sought to establish the efficacy of the 

one-trial appetitive learning procedure in producing learning in 

the subjects. The second experiment was conducted to confirm that 

the current selected to'be used for hippocampal stimulation in 

subsequent experiments was sufficient to consistently initiate 

afterdischarges in the hippocampus. The third experiment compared 

the performance of subjects receiving bilateral hippocampal stimu-

lation 15 seconds after training to those receiving only training 

but not stimulation. Since no amnesia was observed, a,fourth ex-

periment was conducted to investigate whether stimulation adminis-

tered concurrently with or at a short interval after training would 

result in amnesia. Again, no clear-cut amnesia was recorded. The 

n  
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last experiment, therefore, was included to examine if amnesia would 

be produced by the application of EGS, since it is a more severe 

type of treatment presumed to affect more extensive areas of the 

brain than localized stimulation would. 
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EXPERIMENT 1 

In order to evaluate whether an amnesic treatment disrupts 

memory consolidation, it is first necessary to show that learning 

has actually occurred as the result of training. Thus this experi-

ment was conducted to examine the effectiveness of the one-trial 

appetitive training procedure in producing learning. 

Method 

Subjects 

Subjects were 20 male hooded rats obtained from Canadian Breed-

ing Farm and Laboratories, LaPrairie, Quebec. They weighed 275-

340 grams at the beginning of the experiment. Each subject was 

housed separately in an individual cage, with ad lib supply of 

Purina rat chow and tap water except when it was on the restrictive 

drinking schedule. 

Apparatus 

All behavioural observations and testing were carried out in a 

lidless plywood box with a mesh-wire floor. This box measured 

(4Sx45x4S) cm. and was painted black. One of the walls contained 

a small niche (8x5x9 cm)3.5 cm. above the floor, into which the 

spout of a water bottle could be inserted from outside when desired. 

This adjunction was equipped with electric photo-cells which acti-

vated a counter whenever the subject poked its head into the niche, 

--------------~~.-
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so that the number of niche-explorations (head-pokes) by the subject 

could be automatically recorded. Latency for the first head-poke 

was also recorded by a timer started manually when the subject was 

first put into the box and which was connected to the electric photo-

cells so that it would stop upon the subject's first poke as a result 

of the disturbance of the light beam across the niche. 

Procedure 

Two groups of unoperated subjects were used in this experi-

ment: one trained group and one untrained group, including 10 sub-

jects each. 

Before the. start of behavioural observations, all subjects 

were habituated for three days to a restrictive drinking schedule 

of 23-hour deprivation and I-hour supply of water each day. During 

this period, each subject was handled each day for 5 minutes as 

a gentling procedure. 

\ The experiment consisted of 5 daily sessions. Days 1, 2, and 

3 were habituation days in which the subjects were familiarized with 

the apparatus, and the basal rate of activities on the two measures 

were recorded. On Day 4, the subjects were randomly divided into 

treatment and control groups. On this day, appetitive training was 

administered. Behavioural testing occurred on Day 5, approximately 

24 hours after training. 

On Days 1, 2, and 3 each subject was placed in the apparatus 

in the middle of the mesh-wire floor, its head facing the wall 

T 
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opposite the niche. The subject was allowed to stay in the box 

and explore for a period of 10 minutes during which the latency 

for the first-head poke and the frequency of niche-exploration 

(total number of head-pokes) were recorded for the session. At the 

end of this 10-minute period, the subject was taken out of the box 

and conveyed back to home-cage where it was given free access to 

water for a period of 45 minutes to 1 hour. 

Appetitive training was given on Day 4. A water spout (same 

kind as those used in home-cages) out of which the subject could 

easily drink was inserted into the niche from outside the box for 

subjects receiving appetitive training and was absent for the controls. 

At the start of the session, the subject was placed in the apparatus, 

its head facing the wall opposite the niche. For subjects receiv-

ing appetitive training, upon the first poke into the niche, a per-

iod of 15 seconds was allowed to elapse during which the subject might 

or might not have drunk from the water spout. It was assumed that 

by inserting its head inside the niche, the subject would have at 

least discovered the presence of the familiar water-spout which 

had been associated with water because the same kind of'spout was 

also used in home-cage. The mere discovery of the water-spout 

inside the niche, without actually having drunk from it; has been 

found to resul t in significant learning (Albert and Mah, 1973). 

This procedure constituted appetitive training. At the end (Jf this 

15 seconds of training, the subj ec~s were taken out of the appa-
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ratus and conveyed back to h.ome-cage. 

The untrained controls were not given appetitive training on Day 

4 but were left for IS seconds after the first poke into the 

niche without the spout in it before being taken out of the appa-

ratus. 

Retention testing was undertaken on Day 5. Procedures were 

identical to those of Days 1, 2, and 3, where subjects were put in 

the box for a period of 10 minutes without the presence of the water 

spout in the niche. The 2 behavioural measures of latency and 

frequency were recorded for the session. 

Two experimental measures (dependent variables) were used as 

operational indicators of memory for the training experience on Day 

4: (1) the number of niche-explorations (head-pokes into the niche) 

during the lO-minute stay in the apparatus, and (2) latency for the 

first-poke, which was the length of time taken for the subject to make 

the first poke after being placed inside the experimental box. 

The rationale behind this is that if a thirsty subject had found 

water from the water spout inside the niche on training day, it would 

show its memory for that experience on testing day by going to the 

niche and poking into it within a shorter time after being placed 

inside the box (shorter latency for first head-poke) and by poking 

inside the niche more frequently (increased frequency of niche-

exploration) during the 10-minute stay inside the box on the testing 

day_ 
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Results 

One subject in the control group did not make the poking res-

ponse on training day and data from this subject was discarded. 

The results from this experiment therefore included data of 10 sub-

jects in the trained group and 9 subjects in the untrained group. 

The mean scores of the latency and frequency measures were 

calculated for the habituation and testing days; as shown in Table 

1. 

Comparisons by the Mann-Whitney U-test between groups for test-

ing day behaviour revealed a significant difference (U=18, p<O.05) 

on the frequency measure (total no. of pokes) but non-significant 

difference on the latency measure (latency for 1st poke). Within 

group comparisons by the Wilcoxon Test across days (Day 5 over Day 

3) showed that the trained group had an increased frequency (T=O, 

P<O.005) and a lowered latency (T=7, p<0.025) of response. The 

untrained controls showed no significant differences between Day 

3 and Day 5. (Statistical procedures for this as well as subse-

quent experiments followed Siegel, 1956; all critical values are 

for one-tailed tests.) 
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TABLE 1 

Performance Data of Experiment 1, Means (& ranges) 

A) Latency (in sec.) 

Days 

1 2 3 5 

Trained 32.4(5-101) 81.1(6-209) 145.9(5-600) 37.3(2-102) 

Untrained 99.4(27-600) 115.5(10-600) 75.5(3-364) 109.5(3-600) 

B) Frequency (total no. of response) 

Days 

1 2 3 5 

Trained 10.2(3-21) 4.1(1-12) 3.9(0-7) 10.6(1-19) 

Untrained 9.0(0-20) 5.5(0-13) 3.7(2-8) 3.9(0-11) 

- 
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Discussion 

These data show.that the appetitive training procedure was 

effective in producing learning in subjects that found water in 

the niche on training day. These subjects poked in the niche sig-

nificantly more times on testing day than subjects that did not 

receive appetitive training. The trained subjects also showed re-

tention of the appetitive experience by making their first pokes· 

within a shorter period of time and made more head-pokes upon post-

training testing as compared to their own behaviour on pretraining 

day, whereas subjects receiving no appetitive training $howed no 

learning in this respect. 

Since the between group comparison on the latency measure was 

non-significant, while the between group comparison on the frequency 

measure was significant (within group comparison on both frequency 

and latency showed significant differences), the latter measure 

(frequency) see~ to be a more reliable indicator of learning. 

Latency values tend to show a high degree of variability among sub-

jects. An early study by Tenen (1965) using the one-trial appetitive 

task in a condition similar to the present experiment also found 

that a comparison between groups on the frequency of niche-exploration 

was the more reliable measure of learning than latency. In the 

passive-avoidance situation, it was also observed that the frequency 

of response was the more sensitive measure of amnesia. In a study 

by Shinkman and Kaufman (1972a), the difference in response latency 
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between hippocampal-stimulated and control subjects showed the same 

trend as the frequency measure, but the former did not reach statis-

tical significance as the frequency measure did. 
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EXPERIMENT 2 

This experiment was conducted to assure that the current level 

to be adopted for hippocampal stimulation in subsequent experiments 

would be of such an intensity and duration as to consistently pro-

duce seizure activities in the hippocampal structure. Such information 

is necessary in order to infer that the normal neural activities 

and thus functioning of the hippocampus are disrupted. 

Method 

Subjects 

Eleven naive, male hooded rats obtained from Canadian Breeding 

Farm and Laboratories, LaPraire, Quebec, served as subjects for 

this experiment. 

Apparatus 

Hippocampal stimulation was generated from a 60 Hertz" 115 volt 

source in series with a 470,000 ohm resistance. The current was 

of approximately 230 microamps intensity and 10 seconds duration, 

and was divided between the two bilateral electrodes, yielding ap-

proxim:ately 115 lla to each electrode. 

Recordings were made on an AC channel of a Beckman Type RS 

dynograph with a time constant of 0.03, a chart speed of 5mm/sec. 

and a sensitivity of 100 pv/cm. 
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Surgery 

Stainless steel wires (diameter=0.25 mm) were twisted to make 

bipolar electrodes for stimulation. The electrodes were insulated 

except 0.5 mm at the stimulating tips and .also were neatly soldered 

onto stainless steel pins. They were tested for insulation and 

short-circuit before use. Coordinates for the bilateral implantation 

were: 3.2 mm posterior to bregma, 2.5 mm lateral to midline, and 

2.7 mrn below the surface of the dura. The interauralline was 5 mm 

below the level of the upper incisor bar. Each operated animal 

was anaesthetized with sodium pentobarbital (Diabutal, 60 mg/kg), 

mounted on to a stereotaxic surgical instrument and had its skull 

exposed. The electrodes were implanted through holes in the skull 

made by a dental drill. They were secured in position by a thin 

layer of dental acrylic which covered the entire exposed area in-

cluding three supportive screws anchored in the skull. The elec-

trode leads protruded approximately one half of an inch perpendicu-

larly above the surface of the acrylic mass. Immediately after the 

operation each animal was administered 0.1 ml streptomycin-penicillin 

(Crystamycin) intramuscularly. All animals were given a week to 

recover from the surgery before the commencement of behavioural 

observation. 

Procedure 

On the basis of pilot data, the stimulating current was set 

at 230 ~a. Each subject was only adminis"tered hippocampal stimu-

m 

http:diameter=0.25
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lation once for a duration of 10 seconds. During the passage of 

current, the polygraph leads were shorted to ground and, immediately 

after current offset, were switched back to the animal. Each sub-

ject was taken back to home-cage innnediately after recordiT}.gs were 

made. 

The animals were later sacrificed, intracranially perfused with 

saline and then 10% formalin and had their brains removed. Each 

brain was fixed in 10% formalin for at least 48 hours before being 

sectioned at 40-~ through the electrode tracks by a freezing mi-

crotome. Every 5th section was mounted on a glass slide for the 

examination of the location of the electrode tips within the brain. 

This was accomplished with the use o.f a projection microscope (manu-

factured by Bausch &Lomb) and verification of electrode sites was 

based on stereotaxic coordinates from the atlas of Pellegrino and 

Cushman (1967). 

The criterion for a correct placement was that both the left 

electrode and the right electrode were inside the corresponding 

hippocampus. The histological verification was carried out according 

to a "bl ind" procedure. 

Results 

The results of this experiment are summarized in Table 2. Of 

the 11 subjects that received hippocampal stimulation, all except 

one showed primary afterdischarge activities lasting on the average 

http:recordiT}.gs
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12 seconds, as well as postictal depression. Recordings were 

usually lost for about two to three seconds immediately after sti-

mulation was turned off due to polygraph blocking. Primary seizure 

activities were of a frequency of approximately 4 cycles per second, 

ranging from 3 to 5 cycles per second. The peak to peak amplitude 

averaged 280 ~v, ranging from 100 to 450 ~v. Ten out of the eleven 

subjects showed postictal depression lasting approximately 3 minutes. 

Seven subjects showed secondary seizure which appeared approximately 

60 seconds following stimulation, with a frequency of 2 to 4 cycles 

per second and an average amplitude of 150 pv peak to peak. 

Recordings of primary afterdischarges in one subject were not 

obtained due to the fact that the polygraph was blocked for an un-

usually long period of time after the stimulation. However, post-

ictal depression and secondary seizure activities were recorded 

in this same subject. It is reasonable to assume that primary 

afterdischarges may also have been present in this animal. 
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TABLE 2 

Primary Afterdischares (PAD) and Secondary Afterdischarge  

(SAD) Parameters for Subjects receiving  

Hippocampal Stimulation  

PAD i PAD PAD SAD Postica1 
duration amplitude frequen:cy (yes/no) Depression

Ss (in sec.) (in lJv) (spikes/sec.) (yes/no) 

1 6 200 4 yes yes 

2 0* - - yes yes 

3 22 125 4 no yes 

4 13 100 4-5 yes yes 

5 10 300 6 no yes 

6 8 325 4-5 yes yes 

7 12 300. 4 yes no 

8 13 300-400 4 yes yes 

9 15 350 4 yes yes 

! 10 9 300 3 no yes 

1 
11 14 450 4 no yes 

. *Polygraph blocked for 6 seconds; no seizure seen after this time. 

7 
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Discussion 

On the basis of these results it is reasonable to assume that 

bilateral stimulation at the intensity of 115 ~a will reliably pro-

duce seizure activities in the hippocampus, particularly primary 

ADs and postictal depression. The initiation of 'these aBnormal 

activities in the hippocampus seems to indicate a ~isruption of the 

normal functioning of t~is neural structure (Doty, 1969), forming 

the basis for the possible disruptive effects o~ the stimulation 

on consolidation processes if they occurred in the nippocampus. 
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EXPERIMENT 3 

This experiment was designed to examine the effects of post-

trial hippocampal stimulation on memory for the appetitive ~xperience. 

The design essentially consisted of training subj ects in an appe'-

titive task and then applying stinrulation to the hippocampus after 

the learning experience. If such posttraining stimulation had a dis-

ruptive effect on the consolidation process, this effect would be 

demonstrated as a retention deficit in later testing. 

Method 

Procedure 

Two groups of subjects (naive, male hooded rats obtained ,from 

the Same source as previous experiments) were included in this 

experiment, a trained-stimulated group (n=8) and a trained-non-

stimulated group (n=8) serving as controls. All 'subjects in both 

groups were operated upon and implanted with bilateral stimulating 

electrodes. 

The apparatus, equipment and current parameters were the same 

as in previous experiments. Procedures for implantation of elec-

trodesand histological examination were the same as those in Ex-

periment 2. 

Both groups of subjects were treated according to identical 

procedures on Days 1, 2, 3, and 5, as described in Experiment 1. 
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Procedural differences occurred on the training day (Day 4) . 

On this day, just before it was lowered into the apparatus, each 

subject had the cable from the stimulation equipment attached to 

its electrode leads. The cables remained attached to the subject 

during its stay in the apparatus and were detached before they were 

returned to home-cage. Also, subjects in both groups were given 

appetitive training. That is, each subject was put into the appa-

ratus and, upon its first poke into the niche, was given 15 seconds 

to drink or otherwise explore the niche with the water spout in it. 

At the end of this learning period, each subject was taken out of 

the apparatus and put into a carrying box. At this point, each 

subject belonging to the stimulated group received bilateral hippo-

campal stimulation of 115 II a of constant current for a duration of 

10 seconds and was then returned to its home-cage. The unstimulated 

subjects stayed in the carrying box for the same period of 10 seconds 

but were given no stimulation before returning to home-cage. 

The two dependent variables used here were the same as those 

in Experiment 1, namely, the frequency and the latency of responses. 

Results 

The data from one subject in the trained-stimulated group were 

discarded because this subject's electrode became detached during 

the session on the training day thus precluding the delivery'of 
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hippocampal stimulation to it. Thus the results of this experiment 

consisted of data from only 7 subjects in the trained-stimulated 

group and 8 subjects in the trained-non-stimulated group. (See 

Appendix A for electrode placements) 

Table 3 contains the mean scores for the frequency of niche-

exploration and latency for the first pokes into the niche. 

Mann-Whitney comparisons of testing day behaviour between the 

stimulated and the non-stimulated groups showed no significant 

differences in terms of either latency for first poke or the fre-

quency of niche-exploration. Within group comparisons between Days 

3 and 5 for the stimulated subjects showed no significant differences 

on the latency measure while the frequency of niche-exploration 

had significantly increased on testing day (Wilcoxon Test: T=3, 

p<O.05). For the non-stimulated controls this comparison yielded 

significant differences on both measures (T=O, p<O.605 for frequency; 

T=O, p<O.005 for latency). 
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TABLE 3 

Peformance Data of Experiment 3, Means (& ranges) 

A) Latency (in sec.) 

Days 

1 2 3 5  

Stimulated 74.0(10-152) 64.4(3-202) 70.1(29-116) 29.0(2-168) 

N-stimu1ated 53.1(14-130) 107.5(29-271) 27.4(9-50) 4.4(2-8) 

B) Frequency (total no. of response) 

" Days 

1 2 3 ..c:' 

Stimulated 10.1(3-17) 8.3(2-14) 4.7(1-9) 14.1 (5-19)  

N-Stimu1ated 9.1 (5-13) 4.9(2-7) 6.8(2-11) 14.5(8-19)  
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Discussion 

These data show that testing performance between the stimulated 

and non-stimulated subjects did not differ significantly. That is, 

the stimulated subjects did not show a significant amount of re-

tention deficit or retrograde amnesia when compared to subjects that 

had received no stimulation to the hippocampus. The within group 

data also show no retention deficits for subjects in either group. 

On the contrary, with the exception of the latency measure for the 

stimulated group, the data show significant retention for the ap-

petitive experience in both stimulated and non-stimulated groups. 

Thus hippocampal stimulation treatment failed to demonstrate dis-

ruptive effects on retention in the present learning situation. 
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EXPERIMENT 4 

In Experiment 3, the training-stimulation interval was 15 se-

conds after the start of learning, a period long enough for memory 

to at least partially consolidate as reflected in the progressive 

decrease in the effectiveness of amnesic treatments to disrupt memory 

over time (e.g., Chorover &Schiller, 1965). In this experiment, 

therefore, shorter training-stimulation intervals were examined. 

By decreasing the time lapse between the occurrence of learning and 

stimulation to 10 seconds, it was intended that the disruptive ef-

fects of hippocampal stimulation upon. consolidation, if any, would 

be more clearly observed. In addition, the effects of stimulation 

upon learning was also examined by adopting a O-second training-

stimulation interval, wherein stimulation was administered imme-

diately upon and simultaneously with the occurrence of training. 

If the stimulation did have a disruptive effect on the learning 

processes in the appetitive situation, this disruption would result 

in performance deficits in posttreatment behaviour. 

Method 

Procedure 

Subjects were 33 naive, male hooded rats obtained from the same 

source as previous experiments. They were divided into a stimulated-

immediate group (n=14), a stimulated-delayed group (n=12), and a 
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group of implanted controls Cn=7). 

Apparatus, equipment, implantation, histology and other pro-

cedures were the same as previous experiments. 

Trials of habituation and testing were also the same as the 

previous experiments, while training and stimulation conditions 

necessitated variation on Day 4 procedures between groups. The 

stimulated-immediate group consisted of 14 subjects that received 

hippocampal stimulation immediately upon the first head-poke into 

the niche, the treatment being administered inside the apparatus for 

a duration of 10 seconds. For the stimulated-delayed group, 10 seconds 

were allowed to elapse upon the first poke before stimulation was 

administered for 10 seconds. The current intensity was 115 pa, same 

as in Experiment 3. The implanted controls were also given 10 seconds 

of appetitive training, and 10 seconds of waiting period during which 

no stimulation was administered before being taken back to home-

cage. 

Results 

As the result of histological evaluation, 3 subjects from each 

of the stimulated groups were discarded due to incorrect placement 

of electrode tips. The results presented here included 11 subjects 

from the stimulated-immediate group, 9 subjects from the stimulated-

delayed group and 7 subjects from the control group. 

Mean scores for the latency and frequency measures for the 
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groups are presented in Table 4. 

Mann-Whitney comparisons between the 3 groups (stimulated-

immediate &controls; stimulated-immd &stimulated-delayed; stimu-

lated-delayed &controls) yielded no significant differences on either 

measures. For within group comparisons'none of the 3 groups showed 

any differences across days on the latency measure. For the fre-

quency measure, the stimulated-immediate subjects showed signifi-

cant retention (Wilcoxon T=4.5, p<O.Ol). While the stimulated-

delayed subjects also showed an increase on the frequency measure, 

this increased only approached significance (T=10, p<O.l). 

Significantly increased retention was observed in the control subjects 

on testing day as compared to Day 3 (T=l; p<O.05). 
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TABLE 4 

Performance Data of Experiment 4, Means (& ranges) 

A) Lantency (in sec.) 

Days 

1 2 3 5 

Stimu1ated-Immd. 78.6(16-195) 47.2(5-220) 89.2(6-544) 41.6(2-302)  

Stimulated-Del. 44.9(12-96) 95.2(15-495) 53.1(1-185) 122.7(3-600)  

Non-Stimulated 52.1(11-125) 96.3(4-600) 98.0(3-259) 76.6(4-485) 

B) Frequency (total no. of response) 

Days 

1 . 2 3 5 

Stimu1ated-Il1llOO. 6.8(2-9} 4.6(1-10) 4.0(1-9) 11.4(1-50) 

Stimulated-Del. 8.6(3-14) 5.8(2-11) 6.4(1-15) 9.7(0-22) 

Non-Stimulated 11.0(3-21) 4.9(0-10) 4.0(2-7) 18.3(2-13) 
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Discussion 

These results indicate that hippocampal stimulation did not 

have any significant disruptive effect on memory for the appetitive 

experience. Both the stimulated-immediate subjects and the non-

stimulated controls showed significant retention on testing day in 

terms of the frequency but not the latency of responses. The 

stimulated-delayed group, on the other hand, showed no significantly 

increased retention as compared to their own performance on pre-

training. However, since six of the nine subjects did show an 

increase in their frequency of responses and such an increase ap-

proached significance, it is not likely that the statistically 

non-significant difference between Day 5 and Day 3 is actually 

indicative of the disruptive interference of hippocampal stimulation. 

Furthermore, these subjects did not show any retention deficits when 

their performance on testing day was compared to that of the stimulated-

immediate and that of the control groups; that is, these subjects 

performed as well as the other groups. There were no significant 

differences on either frequency or latency between the three groups 

on testing day_ It seems that the stimulation was not effective 

in producing significant disruption of learning and memory when 

applied concurrently with, or 10 seconds after training in the 

appetitive task. 
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EXPERIMENT 5 

In Experiments 3 and 4, hippocampal stimulation administered 

concurrently with, 10 or 15 seconds after appetitive training failed 

to disrupt retention for the learning task. In the present exper-

iment a more seVere type of amnesic treatment --ECS-- was employed. 

The amount of amnesia has been found to increase with an increase 

in the severity of the amnesic treatment, whether by increasing 

the intensity (Miller, 1968; Haycock &McGaugh, 1968; Ray &Barrett, 

1969; Kral, 1972), the duration (Alpern &McGaugh, 1968), or the 

number (Mah, Albert &Jamieson, 1972; Jamieson, 1972) of ECS. The 

same phenomenon also occurred with localized stimulation of the 

cortex (Zornetzer &McGaugh, 1972) and the caudate nucleus (Peeke 

&Herz, 1971). These findings could be interpreted as indicating 

that an increase in the severity of the amnesic treatment would 

produce more severe disruption on neural activities in the brain, 

since increased electroshock intensity has been correlated with in-

creases in the duration and frequency of seizure discharges (Zor-

netzer &McGaugh, 1970, 1972). High intensity ECS invariably pro-

duces clonic-tonic convulsions in the subject and appears to result 

in disruption of a higher magnitude and more general involvement 

of the brain. If ECS applied on training day did result in retention 

deficits on testing day, then it is plausible that the disruptive 

effect of ECS is due to the involvement of areas of the brain other 

than or in addition to the hippocampus. In other words, if the 
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one-trial appetitive learning task in the present study was amenable 

to disruption by ECS but not by hippocampal stimulation, then the 

data could be interpreted to support the view that the failure of 

hippocampal stimulation to produce amnesia lies in the differences 

in the amnesic treatment used; that is, the effectiveness of the 

two types of stimUlation (hippocampus vs ECS) is disrupting the con-

solidation process in this particular situation. 

Method 

Subjects 

Sixteen naive, male hooded rats served as subjects in this 

experiment. These animals were obtained from the same source as 

those in previous experiments. 

Apparatus 

Behavioural testing was undertaken in the same apparatus used 

in previous experiments. 

ECS was administered through a 740 volt transformer in series 

with a 44,000 ohm resistance and a Hunter timer. The current produced 

was approximately 16 ma and lasted 0.5 second. 

Surgery 

Each ECS animal was anaethetized with sodium pentobarbital 

(Diabutal, 60 mg/kg) and, immediately after the operation, received 

0.1 ml streptomycin-penicillin(Crystamycin) intramuscularly. ECS 
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electrodes were made from small stainless steel screws 

neatly sOldered onto stainless steel pins. For each animal, two 

ECS electrodes were implanted bilaterally in the skull, piercing 

it to touch the dura each in a position 1-2 trun posterior to bregma 

and 3 ... 4 mm lll.terEll to midline. Two additional. supportive screws 

were irnpl anted ~tnd the entire exposed area of the skull was then 

(,~oVertH.l with den tf:ll aeryl i.e so tha t the electrode leads would be 

protruding npprox1.matoly one half of an inch from the surface. 

Tht, pr()c,~duro is simi lar to tiut t used in ,Jamieson and Al bert (1970). 

Pl'O(,~ t~du"t"~) 
f<tW"1)I'1'."-'"='''~~~"'''~W.l.O:l/.1'!,*''-'-''\~I' 

H()u! ing» fEH~d1ng) rastrlc tlve drl.nking schedul as and gentl ing 

prtH! t'HiurCHi wore, i dont i cal to those found in previous experiments. 

Procedures for habituation and testing were also identical to those 

in previous experiments. 

(m training day (Day 4)) subjects in the ECS group Cn=8) were 

given EGS immedit:ltely upon the first head-poke, stimulation being 

administered inside the apparatus. These subjects were taken out of 

the apparatus a.nd put into a carrying box while still unconscious 

and were conveyed back to home-cage when they began standing on their 

feot. The implanted controls Cn-8) were immediately taken out of 

the apparatus upon the first poke, given no ECS and returned to 

home-cage. 
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Results 

The electrodes of 1 subject became detached during one of the 

habituation sessions and this subject was excluded from the experi-

ment. The results presented here included data from 8 stimulated 

and 7 control subjects. 

The mean scores for habituation and testing day behaviour are 

shown in Table 5. 

The ECS subjects showed significantly longer latency (Mann-

Whitney U=9, p<O.02) and lowered frequency of niche-exploration 

(U=1.5, p<O.OOl) than the controls. Within group comparisons 

across days yielded no significant differences between Day 3" and Day 

5 for the ECS group on either measure. In the control group, while 

no significant differences were observed on the latency measure, 

the frequency of niche-exploration significantly increased on Day 

5 over Day 3 (Wilcoxon T=O": p< 0.01) . 
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TABLE 5 

Performanc(;l Data of Experiment 5, Means (& ranges) 

A) Latency (in sec.) 

Days 

1 2 3 5  

ECS .:S{l3) 43.3(6-213) 31.5(5-92) 125.8(9-493) 

N() .. ECS :;5 d!( 1 7) 35 • 1 (1 0.. 107) 51. 9 ( 5 -138 ) 15. 7 (2 - 36) 

B) Prcquency (total no. of response) 

Days 

1 2 3 5  

Hes 8.3(3 ... 19) 6.8(2-11) 5.4(2-21) 3.4(1-7)  

Nc)-ECS 12.9 -19) 7.4(3-19) 5.9(1-18) 19.3(5-44) 
--------------.-.----------------------------------
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Discussion 

The disruptive effects of ECS on the learning and retention, 

of the appetitive experience was demonstrated. Subjects receiving 

EeS on training day showed a significant retention deficit upon test-

ting as compared to subjects that did not receive ECS. Also, 

analysis of ECS subject's behaviour across days showed that they did 

not show any learning since their posttraining performance did not 

differ from their pretraining performance, even though they had 

received appetitive training. Subjects that received no ECS and only 

appetitive training, however, showed significant retention of that 

experience when tested on Day 5. It should be noted that for subjects 

in the control group the learning period was very short as they were 

taken out of the apparatus immediately upon the first poke into the 

niche. However, they still showed a significant amount of learning 

for the appetitive experince, while the ECS subjects did not. 

Since highly significant differences were observed between ECS-

treated and control subjects in this experiment, and the direction 

of change in behaviour in terms of impaired performance would have 

been the same if ECS had punishing effects, it is necessary to 

consider whether this is a likely hypothesis for the interpretation 

of the data. It has been shown that aversive effects of ECS do 

not result from a single application (Hudspeth, McGaugh &Thompson, 

1964). Moreover, it was shown by Kesner, Gibson and LeClair (1970) 

that the punishing property of ECS is related to the route of ad-
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ministration. 'Rats given multiple EGS through ear-clip or ear-snaps 

showed fear behavior but when EGS was administered transcranially 

(as in the present experiment), no aversive effects were apparent. 
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GENERAL DISCUSSION 

The results of this study showed that posttrial bilateral 

stimulation of the hippocampus failed to produce any retrograde am-

nesic effect for a one-trial appetitive learning task. Moreover, 

this stimulation did not have any disruptive effect even when ap-

plied concurrently with learning. These results appear to indicate 

that the hippocampus is not critically involved in mediating the 

consolidation of the kind of learning task used in this study -- the 

one-trial appetitive task. However, there are several alternative 

possibilities. Before accepting this conclusion it is necessary to 

consider issues of current parameters, the site of stimulation, the time 

of the application of the treatment, and the possible reinforcing 

effects of hippocampal stimulation. Furthermore, the generality of 

the role of the hippocampus in memory functions will also be examined 

in connection with, and on the basis of, data derived from stimu-

lation studies. 

Current Parameters 

The current level for hippocampal stimulation in the present 

study was of an intensity high enough to consistently produce 

postictal seizure activities in the hippocampus, as was demonstrated 

in Experiment 2. The presence of such abnormal activities in the 

hippocampus is generally assumed to be indicative of a disruption 

of normal activities and functioning of this neural structure as 
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the resul t of oxtcrntl11y applied interference through electrical 

stimulat ion. Yet. no d isruptive effects on consolidation in terms 

of performance deficits were observed in the present study. However, 

threshold stImulation of the hippocampus applied either 'posttrial 

or concurrerltly wi th learning has been observed to retarq memory for 

avers iva hHltning in many Cflses (Zornetzer et al. 11973; Vardaris 

& Schwlirtz, 1 1; Shinkmnn & Kaufman .. 1970 1 1972a, 1972b; Barcik, 

1970) . Of .1 interest are the fi.ndings of Arthur (1975) where 

tho tlcqulsit.ic)t1 of 11 <.!onditionod taste aversion was disrupted as a 

rO!1ult ("If hi h,tt;rnl nmygunlo'ld stimulation usi.ng identical current 

study. This shows the effectiveness of 

the prtH£t:tn t ~UTront rU1Ntmeters in the disruption of learning and 

cansol idat lon. Illthough 1n a di ff'erent 5i tuation. Furthermore, it 

has been ft)und t hi.ppoeampal .. evoked ADs were not a necessary con-

cii t'lon amnes production, since disruptive effects were observed, 

whether stlmuliltion was below hippocampal seizure level (Zornet-

zer et 81.:; 1973; Shinkman & Kaufman, 1972a; ~Donough & Kesner, 1971; 

rnetzer & Chronister, .1973; Wyer et aL, 1968,; Haycock et al., 

or belOW behavioural seizure level1973; S ff et I 1974) ~• 

(Kesner & Conner, 1973~ Brunner at al., 1970; Stein '& Chorover, 1968; 

Shinkman a Kaufman, 1912a; Gilman, 1970; Lidsky &Slotnick, 1970; 

Wyers et IlL J 1968). Therefore, if subthreshold stimulation was 



62 

;:c 

effective in producing disruption, suprathreshold stimulation should 

also be likely to do so. 

Site of Stimulation 

Stimulation in the pres:ent study was applied bilaterally to the 

dorsal hippocampus. Although the importance of int~astructural 

specificity of stimulation sites in terms of bilaterally symmetrical 

location of electrode tips in the dentate region of the hippocampus 

(Zornetzer et al., 1973), and the superior effectiveness of stimula-

ting a large amount of hippocampal tissue (Shinkman & Kaufman, 1972a) 

have been suggested, neither condition seems to be necessary for am-

nesia production. Most studies reviewed in the Introduction (with the 

exception of Zornetzer &Chronister, 1973) have shown the effective-

ness of bilateral stimulation to the dorsal hippocampus and they did 

not report any systematic relationship between amnesia production 

and electrode location within the dorsal hippocampus. Stimulation 

of the CAlor CA2 areas of the dorsal hippocampus was found to be equally 

effective as stimulation of the dentate area of the dorsal hippocam-

pus in producing amnesia for a passive-aversive task (Sideroff et 

al., 1974). In fact, it has been shown that unilateral stimulation 

is also effective in producing significant degrees of retention de-

ficits (Lidsky &Slotnick, 1970, 1971; Kesner &Doty, 1968; Bres-

nahan &Routtenberg, 1972; Sideroff et al., 1974). Stimulation 

within the hippocampus (e.g., ventral hippocampus) other than the 
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dorsal area 1ikewi se resulted in disruption of learning and memory 

in Tats and mice (Wyer et al., 1968; Zornetzer &Chronister, 1973). 

It is possible, then. thnt memory consolidation may occur through the 

invo 1vemen t of the ventral hippocnmpus, and this interpretation may 

account for the fai lure the stimulation of the dorsal hippocampus 

in pl'oduc ing amnes i a, ) discrepant findings are observed. 

and Doty (1 produced amnesi.a by stimulating the dorsal 

hi.pp()l,~nmpus of \~:1t,; but led to do so using stimulation of the veh-

trttl hi ppol~nmpu~1 . 1nth! elise) hl)WeVer, the species difference 

l1UllY lH.~,·('unt fnx' tho ct;m lctlng results. 

It in tl passive-avoidance situa.tion using hip-

Y"I\"I'.l~~t"al ~tlmulaticm lUtllOsic effects can be obtai.ned consistently 

as long U~ S minutes tra:ining (Shinkman & Kaufman, 1970), 

flhowed the effectiveness of stimulation admin-though "()~ t t.ud 

after training. In the one-trialwithin 
ituation, the effective training-stimulationtitive learning 

administered within 20 seconds (Tenen, 

HOTl. 1%9; Pincl 19(9) and in one case up to 1 minute (Pinel,
lk 

'Was (lffol~tiv(1 in disrupting consolidation. With hippocampal 

tive intervals were immediately or 15 secondstimulation. the  
&Chorover, 1968; Gilman, 1970; Zornetzer &  a t Ttl inifli 

ter J 1 ) . In view of these findings, the learning-stimu-

interval the present study, the longest of which was 
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15 seconds, should also be appropriate for the stimulation to 

exert its disruptive effects within the period of susceptibility 

of consolidation to disruption by external interference. This 

has not been the case in the present study. One possibility 

is that the mere discovery by-the subject of the presence of 

the familiar water spout in the niche without actually poking into 

it constituted learning before the onset of hippocampal stimulation 

upon or after the first poke. Albert and Mah (1972) found that 

rats reinforced by an empty spout in the niche in a learning situation 

similar to the task used in the present study learned as much as 

rats reinforced by a full water spout. They suggested that the 

drinking spout acted as a strong reinforcer as the result of its 

continuous close association with water. In the present study, 

if subjects had sighted the water spout in the niche and waited 

a period of time before poking into it, consolidation of this exper-

ience would have time to progress before the application of stimu-

lation which was contiguous upon the first poke into the niche 

by the subject. Stimulation applied at this time might be at a 

point where the susceptibility of the consolidation process becomes 

minimal. It is unfortunate that the paradigm of the present study 

did not provide for controlled observation to ascertain whether 

this was actually the case or not. Whereas it is difficult to com-

pletely disregard this as a possible interpretation of the present 

data, it is of low probability for the following reasons. Firstly, 

in Albert and Mah's (1972) study,- the subjects had actually poked 
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into the niche and some also appeared to lick and bite at the spout. 

This seems to have ensured learning whereas in the present study, 
.. 

it was uncertain whether the subjects had actually discovered the 

water spout before poking into the niche. Considering their de-

prived state, it is reasonable to expect t~e subjects to poke into 

the niche it1llt\ediately upon or soon after sighting the spout. In 

such n caso, the time for consolidation before stimulation upon the 

first poke would have been minimized but no amnesia could be recorded 

cvcm 1n stlmulated""immediate group i.n Experiment 4. Secondly, 

if thi kind (If "lncidenttl1" learning and its consolidation did occur" 

it wu~ tHltHllly rH'()htlhl~ to have occurred also in the EeS experi-

mtHtt cnxp. S). HC)WOVOT. the fin.dings of Experiment 5 showing clear 

umnesia in tho !ubjects receiving BeS tend to contradict this hypo-

is. Mo'reover, in a similar learning situation, Pinel (1969) 

clear-cut amnesic effects in spite of the possibility of 

111ncldcntal'* loarning, since a water spout was also used in a 

in hi experiment. 

The Eossible Reinforcina Effects of Hippocampal Stimulation. 

The data of the present study do not lend support to the in-

terpretation that the possible aversive or positively reinforcing 

propert:ies of hippocampal stimulation had affected the behaviour 

the stimulated subjects. 

If hippocampal stimulation used in Experiments 3 and 4 had 
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any aversi.ve effects, the stinlulated subjects would have shown 

them by an increased latency but a decreased frequency of response 

OIl testing day, as compared to the unstimulated controls. No such 

tendencies were observed. Indeed, such aversive effects, if present, 

would have influenced posttraining performance in the same direction 

as any amnesic effects. Furthermore, no behavioural signs of avoid-

~ tendencies or concH tioned emotional response were observed in 

the 	stimulated subjects on testing day_ 

On tlw othor hanu, if hippocampfll stimulation had any positively 

I slll'h effects would have been identified by post-

t rll i ni uy. app roach hehnv i our or enhanced porformance on tosting in 

t ~ nns tl f litH: teas ~  1at<:HH:y and i nc.rOilscd frequency of niche-exploration_ 

rf(lrmanCe were found in the stimulated subjects 

tl!; l'(Hllpa ~  to ~ non··s t illlulntod. controls, indi.cating that at least 

stimu ion is not subtantially postively rein-

As a matttH" of C()ll'rsc, it is also possible that hippocampal 

stimulation has amnesic as ~  as rewarding properties. In such 

a S ~  the two d i effects J by affecting performance in 

oppns i ~ J i roc t ions, WtHlltl balance each other out, thus resulting 

in a minimal c:hange in performance in the stimulated subjects, and 

cUH:;cttuently minimal differences between this group and the nOTI-

t . 1 t 1 \. t Wll'!rHas the 11Ul'tHli.(Jm of the present study has~  : 1 nit! a. e ( ~  ~  Jtl <,:.. '" '- t'> 

not 	allowed fiJr completely ruling out this possibility, there are 

http:aversi.ve
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reasons to believe that this is not the case. (1) Hippocampal 

stimulation was given outside the apparatus in Experiment 3. This 

excluded the possible association of the niche with any rewarding 

consequences of the stimulation. (2) The 10- and 15-se~ond delay 

between the subject's response and the application of the stimulation 

in Experiment 3 and 4 respectively would have minimized the response-

contingent reinforcing effects of the stimulation, if present. 

(3) Erickson and Patel (1969) had tested for the rewarding proper-

ties of hippocampal stimulation in a bar-pressing situation. They 

found that hippocampal subjects (rats) pressed at a consistently 

lower rate than hypothalamic subjects as well as non-stimulated 

controls. Their data also showed that lower level (30 ~a) hippo-

campal·stimulation tended to produce a higher rate of pressing than 

higher level (100 ~a) stimulation. The current intensity for sti-

mulation in the present study was 115 ~a which is of seizure-inducing 

magnitude. Indeed, in studies where moderate rewarding properties 

of hippocampal stimulation were found, low intensity current levels 

were used, as 50 ~a in Ursin, Ursin, and Olds (1966), and about 50-77% 

of 5.3-13 v. (less than 50% of threshold level) in Shinkman . and 

Kaufman (1972a). Also in Shinkman and Kaufman (1972a) no signifi-

cant relationship between rewarding and amnesic effects of stimulation 

was evident. 
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Inferences concerning the Role of the Hippocampus in Consolidation 

The present study used parameters which were found by most in-

vestigators to be effective in amnesia production, particularly 

in the passive-avoidance learning situation, No disruption of 

learning o~ memory was found in the present study using the one-

trial appetitive learning task. However, it has also been shown 

that ECS treatment in the pres:ent study did result in markedly im-

paired retention for the same task. It seems, then, the basis for 

the interpretation of the present results showing the lack of ef-

fectiveness of hippocampal stimulation in amnesia production cannot 

be sought in the above parametric variables, or in the amenability 

of the learning experience to external interfernce. If it could 

reasonably be granted: (1) that the hippocampus was not functioning 

normally due to the stimulation-evoked seizure activities therein 

and, (2) that ECS at motoric-convulsive level successfully blocked 

learning and consolidation for this same task and had done so through 

a general disruptive effect involving most of the neural structures 

. of the brain, then it seems plausible to conclude that the failure 

of hippocampal stimulation to produce any disruptive effects is 

an indication that the hippocampus does not playa critical role in 

the acquisition or consolidation of the one-trial appetitive task. 

The findings of the present study that hippocampal stimulation 

did not disrupt consolidation of an appetitive task is consistent 

with early data of Correll (1957). This study showed that stimulation 
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of the posteroventral hippocampus of cats during learning failed 

to disrupt the development of an appetitively motivated conditioned 

instrumental response. It is recognized that there are many dif-

ferences between the present study and Correll's; nevertheless, the 

two sets of results are in general agreement. 

Where disruption of learning and memory was observed in appet-

itive learning situations (Stein &Chorover, 1968; Gilman, 1970; 

Zornetzer &Chronister, 1973), unambiguous retrograde disruptive 

effects have not been demonstrated, with the exception of the last 

study. Both Stein and Chorover (1968) and Gilman (1970) used large 

numbers of pretraining threshold-gauging trials and massed stimu-

lation training trials with short intertrial intervals. In Gi lman 

(1970) stimulation was almost constantly on before, during and after 

learning. Stein and Chorover (1968) used a short training-test 

interval of 6 hours. In these cases, the possible confounding 

influence of kindling (e.g., Goddard, 1967; Shinkman &Kaufman, 

1972a where seizure threshold was found to have been lowered from 

repeated stimulation) as well an anterograde effects (e.g., Flynn 

&Wasman, 1960, where ADs were found to last up to 90 seconds after 

stimulation; Lidsky et al., 1970) are difficult to dismiss. Zornet-

zer and Chronister (1973) is the only study demonstrating a clear-cut 

disruptive effect of posttrial hippocampal stimulation in a one-

trial appetitive situation. The source of discrepancy between the 

present data and those of Zornetzer and Chronister's cannot be 
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accurately ascertained. A possible explanation may lie in" the 

difference between the two studies in terms of the site of stimulation 

(dorsal vs ventral hippocampus), different species of experimental 

subjects (rats vs mice) and task characteristics (open-fie1dvs 

maze) . 

While the findings of the present study are far from definitive 

concerning the effects of hippocampal stimulation on consolidation, 

they are consistent with a number of studies showing the ineffect-

i vene,Ss of hippocampal stimulation in producing amnesia in aversive 

learning situations (Flynn &Wasman, 1960; Erickson &Patel, 1969; 

Zornetzer &Chronister, 1973; Bresnahan &Routtenberg, 1972; Shink-

man &Kaufman, 1972b). 

In Flynn and Wasman (1960), it was demonstrated that learning 

Occurred as the result of training undertaken during hippocampal 

afterdischarges elicited by stimulation. Cats given conditioned 

active-avoidance trials during hippocampal ADs showed a significantly 

higher rate of response over controls after ADs were discontinued. 

Such retention indicated that learning had already occurred during 

training trials under the condition of ADs. Erickson and Patel 

(1969) showed that at high intensity (200 ~a, for 3 sec.) dorsal 

hippocampal stimulation did not have any disruptive effect on the 

acquisition of a bar-pressing response to avoid footshock. Though 

it was not reported in their study whether the stimulation produced 

seizure or not, it seems likely that at such high intensity, seizure 
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These studies comprise a variety of learning situations (ap-

petitive tasks, active-avoidance, passive- or inhibitory-avoidance, 

CER), current parameters (seizure-producing and sub-seizure currents, 

concurrent and posttrial stimulations, bilateral and unilateral 

stimulations), sites of stimulation (ventral and dorsal hippocampus 

or both simultaneously), and species of experimental subjects (rats, 

mice, cats). There appears to be no commonality underlying these 

studies that will provide a satisfactory explanation for the lack of 

disruptive effects of hippocampal stimulation on learning and memory. 

The study of the interference effects of localized stimulation 

on memory has contributed to the understanding of the underlying 

mechanisms involved in the permanent storage of memory. However, 

it is clear that much information is still lacking, and many in-

consistencies have yet to be resolved. More research is needed 

to clarify the degree of involvement of different neural structures 

in various learning situations, and to increase our knowledge 

of the relatio~ship between electrophysiological events in these 

structures in the brain and the interference effects of stimulation. 
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APPENDIX A 

Reproductions of Representative Secetion to illustrate 

Placement of Electrodes in Subjects receiving 

Bilateral Hippocampal Stimulation 
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