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Abstract

A continuous rotating beam that undergoes flexure about two principal axes is mod-
elled. The beam is characterized by gyroscopic type nonlinearities. The beam is
of significant importance for applications such as large space structures, helicopter
rotor blades, robot ananipulators and long-span structures. Hamilton’s principle is
used in deriving the Partial Differential Equations of motion (PDEs). An Ordi-
nary Differential Equation (ODEs) solver based on the conventional Runge-Kutta
method and a Differential Algebraic Equation (DAEs) solver based on Average Ac-
celeration Formulation (AAF) have both been applied to simulate the system and
the results are compared. Spectral analysis is carried out using FFT.

In the second part of this work, vibration suppression strategy based on In-
ternal Resonance (IR) state is developed. By setting up different IR ratios, the
modal coupling is greatly strengthened. Establishing IR state involves tuning the
stiffness of the nonlinear beam by applying piezo-electric actuators to the system.
A conceptual controller design is also presented. After the IR state is established,
damping (velocity feedback) is introduced into the system and the vibration is thus

successfully suppressed through two IR based PD controllers.

v
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Chapter 1

Introduction

1.1 Overview

In this thesis we study the dynamic behaviour of a nonlinear flexural-flexural-
inextensional rotating beam in both time and spectral domains. The beam is a
continuously distributed gyroscopic type system of significant importance for ap-
plications such as large space rotating structures and helicopter rotor blades. The
emphasis of this work is on modelling, simulation and vibration suppression. Equa-
tions of motion and boundary conditions for the system are derived in a unified and
mathematically consistent manner. It is assumed here that the material is Hookean.
Nonlinearities in the system are of geometric and kinematic tvpe. Geometric non-
linearities are due to large deformation of the beam and kinematic nonlinearities
are due to the rotation. One of the distinguishing characteristics of this thesis is
that both dimensional and nondimensional cases are taken into account in deriving

the equations of motion, simulating the system and suppressing the vibrations.
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CHAPTER 1. INTRODUCTION 2

Vibration suppression strategy used in this work is based on strengthening the
modal coupling in the system. Several recent studies [1-7] have shown that modal
coupling in dynamic systems can be effectively used as an energy-based control
strategy for vibration suppression. The coupling in the system is the basic reason for
the energy transfer between the modal amplitudes (i.e. amplitudes that correspond
to the natural frequencies of the system). The coupling becomes much stronger
when a state of Internal Resonance (IR) is established. The vibration suppression
strategy used in this work is to maximize the effect of linear and nonlinear coupling
through IR and then by introducing damping into the system, vibration suppression
is accomplished. Internal resonance occurs when the natural frequencies of the sys-
tem become cominensurable (linearly dependant, i.e. ayw; +agws +asws+...a;w; = 0,
where ¢ = 1...n, a; are positive or negative integers and w; are system natural fre-
quencies). One of the important attributes of IR is that when IR exists in the
system, energy laid up initially in some particular modes will be continuously and
rapidly exchanged among other resonant modes involved in that specific Internal
Resonance. Consequently, when all the modes in the system are coupled stronglv
enough, damping applied via an actuator in one particular mode can directly sup-
press vibrations in that mode and indirectly suppress vibrations in other coupled
modes. The distinct advantage and feature of this vibration suppression technique
is that by applying damping in one mode, we can successfully suppress vibration in
all other resonant modes. In order to establish Internal Resonance, the eigenvalues
of the system are computed and analyzed to determine the tuning parameter for

the controller.
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CHAPTER 1. INTRODUCTION 3

Hamilton’s principle [8, 9] is used in deriving the equations of motion. It involves
extremizing the time integral of the difference between kinetic and potential energy
of the system.

The equations of motion obtained using Hamilton’s principle are nonlinear par-
tial differential equations which are discretized first and thus reduced to ordinary
differential equations for the development of their solutions. By applying Galerkin
[8, 9] approach, the resulting partial differential equations are reduced to a set of
ordinary differential equations. Here the selection of proper basis function is im-
portant in developing a solution to the equations of motion. Finite Element shape
functions are initially chosen for our formulation. However, the numerical simula-
tions of the beam could not be successfully carried out because of the difficulty and
complexity of the formulations. Hence the eigenfunctions for cantilever beam are
used as basis functions.

The equations of motion obtained after applying Galerkin method are solved
using two methods, a conventional Ordinary Differential Equation (ODEs) solver
based on Runge-Kutta Method and a Differential Algebraic Equation (DAE) solver
based on the Average Acceleration Formulation (AAF) method originally proposed
by Siddiqui et al. [10]. Another DAE solver SUNDIAL-IDA was tried but was not
successful due to convergence problems.

The simulation results are analyzed in tinie domain as well as in spectral domain
using the Fast Fourier Transform (FFT) approach.

The symbolic computational software package Maple is used to perform most of

the derivations presented in this thesis. Nunierical simulations were performed using
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CHAPTER 1. INTRODUCTION 4

software developed in C. Obtaining numerical solution is computationally intensive
and requires significant computing power. A supercomputer Silicon Graphics Origin
2000 was used for this purpose. Matlab was also used in some matrix related
computation, programming and plotting.

This thesis is motivated by the work presented by Siddiqui and Golnaraghi in
[1, 2], where a gyroscopic two-degree of freedom discrete system was modelled and

simulated.

1.2 Background Material

The system shown in Figure 1.1 is a two-dimensional rotating Euler-Bernoulli beam
which undergoes ﬂexuré about two principal axes and meanwhile rotating with a
constant angular velocity 2. The system is a nonlinear continuously distributed
gyroscopic system. Gyroscopic forces arise due to the coupling of the vibratory
modes with the angular velocity €2. The system model is quite complex and deriving

the equations and subsequent simplification is an intensive task.

z
A

Figure 1.1: Flexural-Flexural Beam.
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CHAPTER 1. INTRODUCTION 3

1.2.1 Flexural-Flexural-Inextensional Euler-Bernoulli Beam

Euler-Bernoulli beam is characterized by its plane cross sections before deforma-
tion remaining plane after deformation and normal to its neutral reference line.
Also, generally shear force effects are neglected. To make the Euler-Bernoulli beam
account for geometrically nonlinear behavior due to large displacements, the com-
monly used infinitesimal strains assumption is dropped and replaced by Green’s

strain tensor [8].

1.2.2 Gyroscopic System

Linearized gyroscopic systems are characterized by skew-symmetric coupling matrix
arising due to gvroscopic forces. Such systems are described by the following type

of differential equations:

MX+GX+KX =0 (1.1)

where M is the mass matrix and I\ is the stiffness matrix. Both matrices are gen-
erally svimetric. The skew-symmetric matrix G represents the gyroscopic terms
in the model, X is the displacement vector, X is the velocity vector and X is the

acceleration vector.

1.3 Literature Survey

During the last several decades. the study of nonlinear beam behaviour that rep-

resents the fundamental characteristics of many important engineering structures
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CHAPTER 1. INTRODUCTION » 6

has been extensively conducted and thus yielding many theories and strategies on
modelling, simulation and vibration control. The previous work laid down theo-
retical foundations for a variety of applications such as space structures, helicopter
rotor blades (see [11]), and robot manipulators (see [12]).

Since the Euler-Bernoulli beamn theory was established in the eighteenth century,
it has mostly been used for modelling small oscillation motion. However, in recent
vears a number of papers have been published which extended the application of
Euler-Bernoulli beam model to large deformation analysis. Bishopp and Drucker
[13] studied large deflection motion of cantilever beams in 1945. Srinivasan [14]
investigated large amplitude free oscillations of beams and plates in 1965. Bathe
and Bolourchi [15] showed large displacement analysis of three dimensional beam
structures in 1979. Other recent publications include Crespo da Silva [16, 17, 18]
and Crespo da Silva and Glynn [19, 20]. Crespo da Silva and Glynn [19] formulated
a set of mathematically consistent governing equations of motion describing the
nonplanar, nonlinear dymamics of an inextensional beam. Later Crespo da Silva
[18] further expanded this model and derived the nonlinear differential equations
of motion and boundary conditions for an extensional Euler-Bernoulli beam able
to experience flexure along two principal directions and torsion. In 1991 Crespo da
Silva [16] formulated a set of governing differential equations for a gyroscopic Euler-
Bernoulli beam that undergoes flexural-flexural-torsional-extensional (3D) motions
while rotating with an angular velocity.

It is always a very difficult and challenging task to develop solutions to the

Partial Differential Equations (PDEs) that govern continuous nonlinear systems
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CHAPTER 1. INTRODUCTION 7

undergoing large deformation. Many different approaches have been undertaken
in this respect, among which the Finite Element Method is particularly worth of
mention. Over the years, it has been extensively used for the accurate solution of
complex engineering problems. Pestel [21] illustrated Hermitian polynomial appli-
cation as finite element basis functions. Mei [22, 23| proposed a displacement based
finite element method to determine the nonlinear frequency of beams [22] and plates
[23] for large amplitude free vibrations. Bathe, Ramm and Wilson [24] presented
finite element formulations for large deformation dynamic analysis. Both the total
Lagrangian formulation and the updated lagrangian formulation were considered
for problems with large displacements, large strains, and material nonlinearities.
The nonlinear terms in [24] were carried out with linearization and the dynamic
problens have been solved with only limited success. Some of the solution tech-
niques using finite element method applicable to nonlinear problems are presented
in [25]. Rao and Raju [26] applied finite element formulation to the large am-
plitude free vibrations of beams and orthotropic circular plates. In [10], Siddiqui
et al. proposed a numerical technique for solving differential equations arising in
finite element problems. The technique is based on a different formulation of the
conventionally used average acceleration method. Some other publications in this
area are by Becker et al. [27], Beltzer [28]. Cardona and Geradin [29], Dawe [30].
Dupuis [31], Dhatt and Touzot [32], and Rao [33].

The conventional way of controlling nonlinear systems is by the application of
any linear controllers, such as PID, to the linearized model and by the examination

of the stability of the nonlinear model using Lyapunov stability theory. One can also
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CHAPTER 1. INTRODUCTION 8

design nonlinear controllers directly for the nonlinear systems. The latter choice is
rather complicated and the issue of designing nonlinear controllers is still of interest
to researchers. To apply linear controllers to the nonlinear systems directly and
effectively with satisfactory stability, Internal Resonance (IR) control technique is
an ideal option. This technique involves harmonizing the linear natural frequencies
of the nonlinear system. One of the first authors to investigate in this realm is
Sethna [34]. Thereafter several other authors, Stupnicka [35], Van Dooren [36],
Haddow et al. [37], and Mook et al. [38] investigated resonant response of a system
under harmonic excitation forces. Nore recently, Golnaraghi [39, 40] discussed
vibration control techniques for flexible structures using nonlinear coupling and IR.
Siddiqui and Golnaraghi [2, 3] investigated modal coupling and stability problems
for flexible gyroscopic systems. In [1] Siddiqui also applied the IR control strategy

to a two-degree of freedom discrete gyroscopic system.

1.4 Thesis Outline

In this thesis, Chapter 1 is the general synopsis and provides a brief introduction to
the following chapters. Chapter 2 presents detailed process of modelling for both
dimensional and nondimensional systems. As mentioned in the previous sections,
the equations of motion are derived by applving Hamilton'’s principle. The resulting
equations of motion have polynomial nonlinearities. Unlike the approach used in
[17, 20]. this technique does not require using Taylor series expansion to reduce
trigonometric nonlinearities to polynomial nonlinearities.

In Chapter 3, by applying Galerkin method, the obtained partial differential
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CHAPTER 1. INTRODUCTION . 9

equations are first reduced to symmetric form by multiplying them with a weight-
ing function p(z) and integrating by parts twice. Then by substituting the bound-
ary conditions, the symmetric equations are further reduced to nonlinear ordinary
differential equations, which completes the process of spatial discretization.

In Chapter 4 the vibration suppression strategies using Internal Resonance (IR)
method are presented. IR control strategy requires tuning the stiffness of the control
mode, which is accomplished through position (tip deflection) feedback. Once IR
is established, the vibration in the system can be significantly suppressed by intro-
ducing damping (velocity feedback) into system. This is demonstrated in Chapter
5 via numerical simulations.

The systems are simulated, in Chapter 5, through two numerical approaches:
Adaptive Step-Size Runge-Kutta method and Average Acceleration Formulation

| method. The distinct effectiveness of the proposed vibration suppression strategies
is strongly supported by numerical simulation results. Finally, the dynamics of the
svstems are analyzed in detail in both time and spectral domains.

In Chapter 6 we draw some conclusions and outline some future works.
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Chapter 2

Modelling

In this chapter, the equations of motion of a flexural-flexural-inextensional rotating
beam are developed for both dimensional and nondimensional cases using an energy
approach. The equations of motion for the beam obtained in this chapter are
valid for arbitrarily large motions. The approach taken in deriving the equations
of motion is similar to that proposed by Crespo da Silva and Glynn [19] for 3D
motions of inextensional beams. However the technique used for reducing the PDE
to ODE is different in that it does not require using Taylor series expansion as
used in [19]. The use of Taylor series expansion limits the analysis to motion about

equilibrium position.

2.1 System Model

The system model is a simplified dielicopter rotor blade from the NASA Army

Aeroelastic Rotor Experimental System (ARES) [41]. The rotor consists of four

10
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CHAPTER 2. MODELLING ’ 11

blades. The blades have rectangular cross section and free of built-in twist. The
blades undergo flapwise and chordwise elastic deformations when rotating about
the rotor hub. Therefore each blade can be modelled as a rotating Euler-Bernoulli
beam undergoing the same flexural motions. The beam model was shown earlier in

Figure 1.1 and is repeated in Figure 2.1 for convenience.

z
A

Figure 2.1: Flexural-Flexural Beam.

The rotating beam model is an Euler-Bernoulli beam undergoing flexure about
two principal axes and rotating with a constant angular velocity (€2). The beam
parameters are length (), area of cross section (A), mass density (p), Hapwise
area moment of inertia (I.). chordwise area moment of inertia (I,), and modulus
of elasticity (E). The beam is assumed to be straight when in its undeformed
configuration. The beam material is assumed to be isotropic. The beam is modelled

using the deformation angle sequence shown in Figure 2.2.
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Figure 2.2: Deformation angle sequence
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CHAPTER 2. MODELLING 13

In Figure 2.2, {z,%0,%0} is a fixed frame, {z1,41,21} is a rotating frame with
angular velocity €, {z2,y2, 22} is rotated by an angle 8, about z; relative to the
frame {x,y1, 21} and {x3, ys, 23} is rotated by an angle 6, about y, relative to the
frame {x9, Yo, 22}.

Figure 2.2 shows the longitudinal axis of the beam before and after deforma-
tion. In the figure, the reference coordinate frame {xy,yy, 2} is rotating with a
constant angular velocity Q relative to a fixed inertial frame {z¢.yo, 20} . The com-
ponents along x,y, z axes of the elastic deformation at point AM™* are denoted by
(u(z,t), v(x, t), w(z,t)), where t denotes time. The cantilever beam is assumed not
to subject the external axial force and therefore to be inextensional. Consequently,
the axial stiffness is not taken into account when deriving the governing differential
equations later, which prevents the introduction of an extra one degree of freedom
motion to the system axially. The inextensionality constraint is derived using the
differential deformations shown in Figure 2.3.

By letting primes denote partial differentiation with respect to x, the relation- .
ships between the elastic deformation (u(z,t),v(z,t),w(x,t)) and the orientation

angles , and 6, can be derived as follows using Figure 2.3:

v’
1+’

tanf, =

ca (2.1)

by =~ T

(1 +,u/)2 + I“,Z +‘LU,2 :1

the last equation in (2.1) is the constraint equation that would be used in the
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CHAPTER 2. MODELLING 14

-dw
[
)
dv
0z
dx+du

Figure 2.3: Deflection of differential element.

derivation of the equations of motion.

The transformation matrices between the various frames are obtained as:

[ cos(f,) —sin(4,) 0 ]
Tio=| sin(g,) cos(d,) O (2.2)

0 0 1

cos(f,) 0O sin(6,)

Ty = 0 1 0 (2.3)

| —sin(6y) 0 cos(6y) |

cos (0,) cos () —sin(f,) cos(8,)sin (,)

Tis=| sin(f,) cos@,) cos(d,) sin(6,)sin(8,) (2.4)

—sin (6,) 0 cos (6y)
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CHAPTER 2. MODELLING : 15

where T is the transformation matrix of frame {xo, yo, 20} relative to {x1,y1,21},
Tos is the transformation matrix of {3, ys, z3} relative to {@2,y2, 22}, T13 is the
transformation matrix of frame {x3,ys, z3} relative to {1, 1, 21}. The transforma-

tion matrices are used in deriving the displacement field in Section 2.3.1.

2.2 System Parameters

The following physical parameters are chosen for the Euler-Bernoulli beam. They
are selected to give approximately the same first natural frequency at zero angular

velocity as the NASA Army Aeroelastic Rotor Experimental System (ARES) [41]:

Mass density: p = 7810 kg/m?
Modulus of elasticity: E =207 GPa
Cross section area (Rectangle): A = 0.0022 m?

Flapwise area moment of inertia: I, = 2.2 x 107¢ m*

Chordwise area moment of inertia: I, = 7.5 X 1078 m*
Angular velocity: =0~ 50 rad/s

Length of the blade: [ = 1.397 m

2.3 Development of the Equations of Motion

Since Hamilton’s principle involves extremizing the time integral of the difference
between kinetic energy and potentifl energy (i.e. the Lagrangian £) of the system,

all the energy terms that contribute to the Lagrangian need to be developed first
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CHAPTER 2. MODELLING 16

in order to derive the equations of motion.

2.3.1 Displacement Field

The displacement field is modelled using three dependant variables u(z.t), v(x, 1)
and w(x, t) as shown in Figure 2.1, where u(x, t) measures the foreshortening of the
beam in the horizontal direction, v(x,t) measures the horizontal deflection of the
reference axis, and w(z,t) measures the deflection of the reference axis in the zz
plane. Considering displacements due to rotation 8, and 8., of a point located at
a distance y along the y axis and a distance z along the z axis gives the following

displacement field:

uy = u(x,t)—ysin(0.) + zsin(f,) cos(h,)
uy = v(z,t) —y(1 - cos(b,)) + zsin(f,) sin(0,)

u. = wla,t)—z(1—cos(d,)) (2.5)

where u,, u, and u. represent the displacement of the centroid M shown in Figure

2.2 in the undeformed z, y and z directions respectively.

2.3.2 Velocity Field

The velocity field V with components V. V, and V; is given by:

V =0 x u+ (V) (2.6)
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CHAPTER 2. MODELLING 17

where € is angular velocity vector with € as z component, u is the displacement
field of the centroid M in the undeformed z,y and 2z directions respectively and
(V),q is the velocity field measured relative to the rotating frame (z,,yy, 2)).

By differentiating the displacement field with respect to time, the following

relative velocity field is obtained:

(Vi)rere = u—ycos (Gz) 0:,¢ + 2 cos (0y) cos (0,) 6, — zsin (0,)sin (4,) 6, ,
(Vi)ra = vi¢—ysin(0,)0, ,+ zcos(8y)sin(6,) 8, + zsin(,) cos (6,) 6. ,

(Vi)ree = w, — zsin(8,) 0y, (2.7)

In (2.7). the (.) implies differentiation with the notationu,, = %%, v, = %. Wy =

u 90, N . ,
%{’ b,.¢ = % and 0, s = %ot—“. Besides, (Vy)ret. (V})rer and (V,),e; are components of
(V). along x1, y1, 21 directions respectively. Consequently, the absolute velocity

field is given by:

Ve = = (v—y (1 - cos(6.)) + zsin(6,) sin (6.)) + .
—ycos(f,) 0, + zcos(0,) (0,.+) cos(0,)
—zsin (6,)sin(6,) 0, ;
Vy, = Q(u—ysin(6,) + zsin (6,) cos (6,))
v —ysin (0;) 0. + zcos (6,) (6,,¢) sin (6,)
zsin (8,) cos (6.) 8.

Vi = wy—zsin(6,)¥,; (2.8)
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CHAPTER 2. MODELLING A 18

where V;,V, and V, represent the absolute velocity components along the unde-

formed z, y and z directions respectively.

2.3.3 Strains

Since the rotating Euler-Bernoulli beam undergoes large deformation, the nonlinear
termns in the strain displacement relationships cannot be discarded. Therefore the
Green’s finite strain tensor formula [8] below is used to derive nonlinear displace-
ment relationships:

€ij — (ui,z‘j + Uj, 24 + uk,ziuk,wj> (29)

[N

where the index notation is used with 4,7,k = 1, 2, 3 corresponding to x,v, z

coordinates, respectively. The first index i in €;; represents the plane on which

the strains act and the second index j is the specific strain acting directions. The

repeated index A implies summation over 1,2 and 3. The (,) implies differentiation
Bu;

(le. Usay = anj)' From (2.9) it follows that the strains on the x plane in the x, y

and z directions are given by:

1 2, 1 2 L 2
€rx = Ugx + 5 (u;z:,x) + '2_ (Uy.‘r) + 5 (uz,r)
1
€y = 3 (Ug,y + Uy o+ Ug, 2Us y + Uy 2Uy y + Uz U )
1
€ = 3 (Ug, s + Uz o + Uz 2y, z + Uy 3Uy 2 + Us pUs, 5) (2.10)

For the displacement field (2.5) it follows that all the other strains in (2.9) are

zero. By using the displacement field (2.5) and the strain-displacement relationship
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CHAPTER 2. MODELLING 19

(2.10), the following strains are obtained:

€ry = -;-y2 (02.0)° + (= (8..2) zcos (8,) 8,z — cos (6,) 0,..)y +
(5 Guo)® = 5 (6o (cos 60" + 5 0, D) 46,
€ry = %zsin (8y) 0,2
€rz = —% sin (6,) y0.. » ' (2.11)

The inextensionality constraint equation (2.1) is incorporated into the Lagrangian
through the Lagrange multipliers A(z,t). The corresponding term that would ap-

pear in the Lagrangian is given by:
1 [
C = 5/ Az, t) (L +u)’ + (ve) + (wy)? — 1) dr (2.12)
0

2.3.4 Strain Energy of the Beam

The strain energy function is given by [8]:

l
U= -;—/((M+2G) e +4G (e, +€,)) da (2.13)
0

where M and G are the Lamé constants and given by the following equations:

E
¢ = 21+ )
_ Ev
M = o050 (2.14)
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CHAPTER 2. MODELLING 20

In (2.14), E denotes Young’s modulus and v represents Poisson ratio. Using

the strain equations (2.11) and (2.13), the strain energy is obtained as:

1 ['[1 3
V=3 / {— I, M (8,0)" ~ 2 I, My (8,.2)° (6:,2) cos (8,)
0

2. 2

+% I, My (cos (8,))° (8.,.)° — % I, M ycos (8,) (6:..)° % LI,M (6..)"
7 LD M (0n)? (80)* + 2L 1, G (6:,2)? (c05(6,)° (8,.0)

% LI, M (8,.0)? (cos (8,)) (6,.0)° % LI, M (9...)" (cos (8,))°

b LM (02 (008 (8, + 1 M 2 (08 (6,))° (6..0)2 6,

+% LA z(8,.) (ez,x)ﬂ de (2.15)

where

I, = // 22 dydz
A

I, = // y? dy dz (2.16)
A

The y? and 22 terms in (2.11) lead to the fourth moment of area which is very

bh%

3 .
small (compare the second moment % with the fourth moment %

for rectangular

beais) and thus dropped from (2.15).
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2.3.5 Kinetic Energy of the Beam

For evaluating kinetic energy of the beam, the following formula is applied:
1
T:ipA///(ﬁH@%Vf)dv (2.17)
%

where V;, V,, and V, are absolute velocity components given in (2.8) and V rep-
resents volume. Substituting (2.8) in (2.17) and simplifying gives the following

expression for kinetic energy of the beamn:

7l / [1 oIy (020 = 3 p1y (6. (cos (6,)

2 Jo 12
1 1
—p I, (0..4) (cos (0,))° + p 1,0, , + 5Pl 02 4 5P L (8,.0)°
1 1 (
~3 p I, Q% (cos (6,))" + 5 pL (6:0)% — pI,Q%cos (8,)

1
+p Q0. +pl, Q> — pI.Q cos (6.) 0.t 4+ pAQuu, + 5pA§22u2
1 1 1 1
+§ pA(w) + 5 pA (1',t)2 + 3 p AQ%? + 3 pA(u,)

—p AQuu 4| dz (2.18)
2.3.6 Lagrangian

The Lagrangian from various energy terius ((2.15)-(2.18)) can be expressed as:

L = T-V
= T(u, U, U g, U,y wgtveregp Gz,tv ey,t) - U(eyaey,xa tgz,ac)

—C(MU 2,V 2 W ) (2.19)
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CHAPTER 2. MODELLING 22

where T is the kinetic energy of the beam, V' is the potential energy of the beam,
U is the strain energy of the beam and C represents the inextensibility constraint

multiplied by the Lagrange multiplier A.

2.3.7 Equations of Motion

In this section, the equations of motion are obtained using Hamilton’s principle as
discussed earlier, which is accomplished by taking the first variation of the time

integral of the Lagrangian [8]:
t2
st / Ldt =0 (2.20)
t

Taking variations with respect to u, v, w and A according to (2.19) and (2.20), the

following equations of motion are obtained:

u variation:

“(or oT d (d [0 sin 6, d (0T sind.
/0 {51; Cdt (811) dr (?17 (59—;> cos 6 ) T dz (8@ cos%)
-l——d—- <§TT cosd, sind, ) ;id; (% (%) cos 0, sin 9y>
—di (-d— cosf, sin ), ) Ed; (% (%UZ) cos 0, sin9y>
A CE AR ) P
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v variation:
/l or d (0T +i d (9T cosf.\ d (9T cosb,
o LOv dt \ o dr \ dt \ 96, /) cosé, dx \ 06, cosb,
d (0T d oT \ . .
- <50— sinf, sinf ) In E) sinf, Sm9y>
+7: (i (5)
d

dx
i sin @, sin 9y>
dx
d
dzx

sinf, sin#f )

dr \ 0
cosf,\ 3 i 8_
00, ) cosb, dz \ O
— | = | —} cosb,
T \ dt a0,

d

d
d (oU d (d [oU d (0C '
— <%; 0056y> + o (Zl.; (57;) cosHy> — (57;;)} dr =0

z =20 (2.22)

(%
(i (5

w variation

A variation

/ {gi} dz = 0 (2.24)

In (2.21)-(2.24) the upper limit [ of the integral represents the length of the beam.
The nondimensional equations of motion have exactly the same form as (2.21)-(2.24)
except that the integral limits are from 0 to 1 instead of from 0 to [. Substituting the
energy terms (2.15), (2.18) into (2.21)-(2.24), the following dimensional equations

of motion are obtained:
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u variation:

I
/ {Ap(—ZQv,t ~QPu+tuy)—E [E (14+wu,)+
0
(

sin (6,) cos (0,) I, by, 2z __;_ sin (6) ((cos (Hy))c(():y(e—y)lz) —I,—L)0, .
-% (I, — I.) (sin (6,))2 cos (6,) cos (6,) (6...)°

+sin (8,) sin (0.) (I, — I.) 9%,[92,1]’

} dr = 0 (2.25)

r

v variation:

! A
/ {Ap(ZQu,t—QQv—i-’v,u) —E |:E‘l',z+
Jo

1 cos (6.) ((cos @) (L, - L) -1, - L)0:,

sin (0, ) sin (6,) I 0y, zz T3 cos (6,)

_% (I, — L) (sin (8,))? cos (8,) sin (8.) (6..,)°
—sin (8,) cos (6,) (I, — L) ey,,e:,x].r} dx = 0 (2.26)

w variation:

I
/ [A pw.y — E (% (cos (8,))*sin (6,) (6,.2)° (I, — I,)
0
A
+cos (8,) (8,..2) I, + —E—u,1> } de = 0 (2.27)
A variation
1
= /0 [+ w2 (0,0) + ()2 = 1] da = 0 (2.28)
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The nondimensional form of these equations is presented in the Appendix A (See
'equations (A.2)-(A.5)).

As can be seen in (2.25)-(2.28), both trigonometric and polynomial nonlinear-
ities appear in the resulting equations of motion. It is important to note that in
the derivation of both dimensional and nondimensional equations and their corre-

sponding boundary conditions the variations in 8, and ¢, are replaced by:

sinf, ., cosf,

. = - ) = o'
96 cos 0, v cos b, ‘
80, = —cosb,dw’ — cosb,sinb, du’ —sinb, sinb, 5o’ (2.29)

The trigononietric relationships between 6,, 6., u, v and w are used in deriving

(2.29). The detailed derivation for (2.29) is shown in A.2.

2.3.8 Natural and Essential Boundary Conditions

The equations of motion (2.25)- (2.28) must also satisfy the natural boundary
conditions obtained when the variation operator ¢ is applied. The natural boundary

conditions in dimensional form at the free end of the beam are given by:

A
5 (1+u,)+sin(8,)cos(8,) I, 0y 2

1 sin (6;) ((cos @) (~L+1L)-1I,- L) 6 ox

2 cos () (2.30)
——;— (=1, + I,) (sin ((9y))‘2 cos (6y) cos (6,) (6?;‘30)2

'}
+sin (Hy) sin (9::) (_[2 + Iy) (ey,z) 0211]x=l =0
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-g— vz +sin (8y)sin (6,) I, 6y 2«

+1 cos (6,) ((cos (,)) (=L + I,) — I, — L) 8 =
2 cos (6,) (2.31)

5 (=L 1) (5in (6,))° cos (8,) s (6.) (6. )"

—sin (0y) cos (0,) (=1 + 1) (0y,2) 0:,2) .., = 0

" (cos (6,)*sin (6,) (6:,)° (=1, + L) + o5 (6,) (6,,z0)
2
\ (2.32)
2w =0
+E U/,I] xr=l
2 (8y,2) I, sin(8,) cos (6,) + 0, ,sin (6,) cos (0,) (I, — I,)
0, .sin(6,) (I, + I, . (2:33)
cos (6,) L:, B
(2 (0y,2) 1y sin (8,)sin (0,) + 6., cos (8;) cos (8,) (I, — )
6. -cos(6.) (I, + L) 0 (2.34)
B cos (6,) L_, N
[(8y,x) I, cos (()y)]r:l =0 (2.35)
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At z = 0, the fixed end of the beam, the following essential boundary conditions

are enforeced:

u(2,1) Ja=0=10
Uz (T,1) |z=0= 0.
v (z,t) [a=0 =0
Vo (2,1) la=0=0
w (2, 8) a=0 = 0
W,z (€,1) |e=0=0

A1) lomo =0 (2.36)

In nondimensional form the boundary conditions are same as in dimensional case
except that now we don’t have £ and all the other dimensional parameters are

replaced by nondimensional parameters.

2.3.9 Initial Conditions

In this thesis it is assumed that the system is not subjected to external forces and
therefore only a free vibration problem is considered with the initial values being
prescribed and the time evolution being investigated. The following initial values

are assumed:
. . ) Ou{z,t) .
u(x,0) = uo(r) - li=o=10

v(x,0) = & () 8v,(9f’t) li=o=0 (2.37)

w(z,0) = wo(x) 81"5?’” li=o=10
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where ugp(z), vo(x) and wo(z) is the initial deflection curve of the beam, and all the
initial velocities are assumed to be zero.

It is essential to select the initial values such that the boundary conditions in
Section 2.3.8 are satisfied. In this work the following equations are used as the

initial longitudinal and transverse deflections for dimensional case:

vo(z) = %9 (cosh(kyx) — cos(kyz)

cos(kil) +cosh(kil) , . . o
~ Sin(bi]) T emh(D) (sinh(kiz) — sin(ki2))) (2.38)

wo(a:) = % (cosh(kyz) — cos(kix)
B cos(kyl) 4 cosh(kl)

)
sin(kl) + sinh(k[)

(sinh(kyz) — sin(ki2))) (2.39)

where v9 and wy are prescribed tip deflections. Equations (2.38) and (2.39) are the
scaled first mode shape of a simple cantilever beam (k; = 1.34223627). The first
mode shape is chosen because all the other higher order modes are quite small and
thus negligible. Taking the second and third derivatives of (2.38) and (2.39) it can
be easily verified that the initial deflections described in (2.38) and (2.39) satisfy
all the boundary conditions in Section 2.3.8. The nondimensional initial deflection
equations are same as the dimensional ones expect that the parameter ! in (2.38)
and (2.39) does not appear.

The initial value for the axial variable u is obtained from the constraint equation

Ou : o\ 2 ouw\
o +\/1 - (2) - () (2.40)

where the positive square root is selected. The value of u is obtained using numerical

(2.1) as:
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integration. Further, the initial values of A are assumed to be zero because the above
initial deformation field already satisfies the algebraic constraint. Figures 2.4 and
2.5 show graphical depictions of the initial values for u,v,and w and their higher
order derivatives for dimensional and nondimensional cases respectively. The figures
also reveal that all the boundary conditions corresponding to u, v, and w given in

Section 2.3.8 are satisfied.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. MODELLING 30

-0.02

T

u”

< -0.04

-0.06

~0.08 i i L L ! L
0

025 T T T T T T

o 0.2 0.4 06 L 08 1 1.2 1.4

Figure 2.4: Initial values (a) (-)u, (- -)u’, (...)u", (b) (-)v, (- )/, (..)2", () (-)w.
(- ', (.ow”, (d) (Hu"™, (- -9, (g)w". u, v and w are in m, v/, v’ and w' are in

rad, v’, v" and w" are in 1/m, ", v" and «” are in 1/m?.(dimensional case)
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Figure 2.5: Initial values (a) (—)u,i(— Quls (Lo, (b) (e, (-, L (©) (e,
(- ), (o’ (d) (), (- )", (.)w™. (nondimensional case)
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In this Chapter, equations of motion were developed for arbitrarily large dimen-
sional and nondimensional oscillation models. In the following chapters strategies
will be discussed to discretize, solve, and simulate the obtained governing equations

and a vibration suppression strategy can be therefore developed.
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Chapter 3

Spatial Discretization

The equations of motion obtained are nonlinear partial differential equations. The
focus of this chapter is on reducing the obtained equations to ordinary differen-
tial equations using Galerkin method. The reduction of PDEs in space and time
to ODEs in space coordinates alone is referred to as semi-discretization process.
The resulting ODEs are expressed in terms of time dependent coefficient functions
and spatial basis functions. It is important to choose the right type and suffi-
cient number of basis functions in the discretization process so that the solution of
the semi-discretized ordinary differential equations converges to the solution of the
original partial differential equations. To this end, basis functions are chosen such
that the resulting approximation satisfies the continuity requirements and boundary
conditions of the partial differential equations. Since the highest spatial derivative
of the beam is of fourth order, it implies that the solution must have continuous
fourth derivative, which is very diﬁﬁcult to achieve. To reduce the continuity re-

quirement, integration by parts is employed when applying the Galerkin method.

33
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This approach not only reduces the continuity requirement but also incorporates
the natural boundary conditions in the process.
In this work, the eigenfunctions corresponding to the cantilever beam are used

as basis functions.

3.1 Symmetric Formulation

Following the Galerkin’s approach [8, 9] the equations of motion in Section 2.3.7
are first multiplied by a weighting function p(r) and then integrated by parts twice.
The integration by parts renders the equations symmetrically. The natural bound-
ary conditions in Section 2.3.8 are combined into the equations of motion during
the integration by parts process. Applying the relationship between the angles
g,. 6. and the elastic deformations u. v, w (see equation (2.1)) yields the following

svinmetric equations of motion in dimensional form:
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u variation:

l 1
U 44 — Q'Ut-—QQU E U, zx [y— 2 \°z Y
/0 {pAp(, 2Qu )+ ((, ) Y ETRD (L +1,)
('U,x) ((1 + Ur,m) U,z — (IU :c) U wz - 1 1 ([ 3Iy) (Ivvz)
(w,2)
2
((1’1"’11,,1:)'13,135_ (lv,m)u,xx pzw+E < Iy 1+U ;I;xz)
1 ,
- 5 (L + 1) (1 +ua) () toe = (14, 2)Vza)”
2(1- (ws)?) (
1
+(,2) (¥ 22) (W,2) W, 0) — (’U,z>2 (U,22) (W,2) W 22) = 22
3 (2 ) 9 (1 . (’Z,U’x) )
(I. -3 Iy) ((U:c) (0 z2) (W, 2) (W 22) (L + 0 2) — ('U,I)Q (U, 22) (W, 2) w»m)
1

T B B O ) ()t = (L4 ) )

A
+E_ (1 +ux)) p,z} dr =10
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v variation:

!
/ {pAp (’U,tt +2Qu, — QQ’U) +FE ((’U,m) I, + L+ 1)
0

2(1 - (w,)?)’ (
__ v
2(1- (w,x)Q)
I, (v.2) (w,x;c)2
1-— ('w’,c)2

(T4 uz) (L4+uz)Vze — (V) U ze) + (I, - 31,)

(IT4+u) (1 + U o) Uz — (C,2) U 22)) P2z + E <‘“
1 . ) U _ a 2

_2 (1 B (wwx)g)g (Iz + [y) ((L,I) (((1,x> , X (1 + u,z) L,zz)

+ (1 +ue) (U2a) (W2) Wee) — (14 U,x)2 (¥, 22) (W) w,zm) +

1 2
Iz - -[y , T 1 , XL w,ac ,xx T , T /U,x
2(1_(w’m)2)2( 3I,) (1 + 1) (V) (wo)w (1+uz) (v2)

1

U gz ) (W, 2) W gy) + —————37 I _Iz UV VU xx

() (2 0,02) + o (B = 1) (2 (62
A
— (1 + )0 2e) + T 'U,m> pa.tydr=0 (3.2)
w variation:
l >‘ Iy (u',fr) (,LU,IL‘LL‘)Q
o ppr,tt'*"EIy (uy,zx)p,x;z:_i_E Ew,x— 1—11)’23:

2 1 —w?,

_—]; ([z — y) (w,l‘) ((’l'yx> U zg — (1 + u,z) ’U,rx)2> P z:\ dr =0 (33)

A variation

1

!
-3 /0 (L uz)®+ (ve)’ + (we)® = 1] de =0 (3.4)

Likewise, the nondimensional symgietric form of equations of motion are obtained

which are given in the Appendix A.3 (See equations (A.18)-(A.21)).
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In (3.1)-(3.4), the dependent variables u(z,t), v(z,t), w(z,t) and p(z) have the

same highest order of derivative, which implies that the formulation is symmetric.

3.2 Spatial Discretization

To apply Galerkin method, the following approximations are assumed:

u(z,t) = Zai(t)éi(rv)
o(ot) = }iﬁxtm(w)
w(z,t) = i“/z'(t)cm(w)
at) = iw)@m
plz) = ipm(x) (3.5)

The summation in (3.5) is carried out over ¢ from 1 to co. The continuity require-
ments for u, v, w and p have already been rendered the same in preceding section.
Therefore the same basis functions ¢; can be chosen for u,v,w and p. Also the
number of basis functions for u,v,w and p are assumed to be the same. The un-
known parameters p; in (3.5) are arbitrary and substituting (3.5) into the equations
of motion (3.1)-(3.4) and setting p; (the i" value of p) to one and all other p; (j # i
and the maxima of 7 is the same as i) to zero gives the i*" semi-discretized equa-
tions [27]. Consequently the following dimensional semi-discretized equations are

obtained:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. SPATIAL DISCRETIZATION 38

u equation:

[ (B8 (6 160 (o} + 1 00} + Aneanl {16} - 20 {4}
—O g} + () 5 6 D and + (603 19 6L (=L (3,3}
~El, {5} + Ap {01} 165 ¢i ¢1) {3 {6 ) + 62 {F 7w}
+30° (o k) + (8031864 01 LE (T, = ) {ay 5.0
~B (U, L) {8 Beank — 3EL, {39} + (6} 16 )

{=3FL {o; 5 3} — El, {oj v v} +2EL {3; o 31}

=3 {¢i} lo5 &) {N v}l de = 0 (3.6)
v equation:

[ [t 1+ aviso {3} +20 (0} - 9 (33}
{0} 105 Bl 0 B + 1) 19 (=2 B (I, — L) {oy B}
FE (I, = L) {3 oat} + Ap {61} Ly 4 01) {=3 {5 e}
69 {dij e w} + 302 {3 n}} + {01} 1) 6L 1) {~EL {3, 3 31}
—EI (3w} — E (I, — L) {3 v}} + {67} |65 8 1]
{=E(L, — L) {ejax 31} + E (L, — L) {oy Bk cu}

*%E(3 L+ L) {7 31}}] dr =0 (3.7)
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w equation:

!
/0 (EL 160 6! () + Ap(on ] (5} + {60} L& 4] ()
CAp (65} 16 64 8 L ven) + (810, 6L 01 {% E(, - L)
{v; B 3} — EL, {v v n}}
_EL {61} 16, 64 81) {2 71} do = 0 (3.9)

A equation

/Ol [[asi 8] {05} + {6:} 16, 64 ) {% () + 1 18,8

vy Ly )| do =0 Y

where |- - | denote a row matrix, {---} denote a column matrix and [-- -] denote
a square matrix. Thus, the obtained equations (3.6)-(3.9) are ordinary differential
équations with both quadratic and cubic nonlinearities that can be directly used for
numerical simulations in the following chapters. Also it can be seen from (3.6)-(3.9)
that the number of equations of motion is decided by the number of basis functions
¢; used for the approximation. The basis functions are discussed in next section.
Following the same approach used for dimensional model, the nondimensional
semi-discretized equations are obtained which are given in Appendix A.3 (See equa-

tions (A.22)-(A.25)).
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3.3 Eigenfunction of a Cantilever Beam

As mentioned earlier, the eigenfunctions of a simple cantilever beam are chosen
as basis functions in the Galerkin method. The basis functions have the desirable
property of orthogonality so as to facilitate solving the initial value problem by
producing diagonal matrices.

The cantilever beam eigenfunctions for the dimensional parameters used are as
follows [8]:

cos(k;l) + cosh(k;l)

¢; = cosh(k;z) — cos(k;x) — Sl £ smb(kD)

(sinh(k;x) —sin(k;x))  (3.10)

where [ denotes the length of the beam. For the first four modes, k; have the

following values:

ky =1.3422 Ky = 3.3601 k3 = 5.6226 ky = 7.8708

The four mode shapes are shown in Figure 3.1. The mass and stiffness matrices in
(3.6)-(3.9) are obtained through integration of products of basis functions and their
second derivatives over the length of the beam. All the integrations in (3.6)-(3.9)

are carried out analytically using the symbolic manipulation program Maple. The
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following mass and stiffness matrices are thus obtained for the dimensional model:

1.397 0
! 0 1.397
[A[i]‘] = |:/ (bzdsjd.l,] =
0 0 0
0 0
— l -
Ky / ol dz}
L./ 0
4.5343 0 0
0 178.0807 0
0 0 1396.1815
0 0 0

0

1.397

0

0

1.397

0

5361.3869 |

J

(3.11)

(3.12)

The mass and stiffness matrices for the nondimensional parameters are similarly

obtained. The basis functions and the matrices are given in the Appendix A 4.
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Figure 3.1: Dimensional mode shapes, (-) ¢1, (-.) bo, (...) b3, (--) Py

Other terms in (3.6)-(3.9) are nonlinear and will require online assembly which
is explained later in Chapter 5.
In the next Chapter, a vibration suppression strategy based on Internal Reso-

nance state will be discussed and various types of IR ratio will be obtained.
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Chapter 4

Vibration Suppression

The vibration suppression strategy used in this work is based on enhancing the
modal coupling in the rotating Euler-Bernoulli beam using Internal Resonance (IR).
The rotation of the beam coupled with the three vibratory modes results in gyro-
scopic coupling in the system. Internal resonance occurs when the three natural
frequencies become commensurable, that is ayw; + aws £ azws = 0, where a, are
integral constants and w, are the three linear natural frequencies of the system [42].
The commensurable relationships of frequencies can lead to strong modal coupling
and the gyroscopic beam may exhibit an amplitude modulated motion.

The coupling in the system is the basic reason for energy transfer between
the modal amplitudes. When IR exists in the systen), energy laid up initially in
some particular modes will be continuously and rapidly exchanged among other
resonant modes involved in that specific Internal Resonance. Different IR ratio can
be chosen according to the type of coupling in the system. Gyroscopic system can

exhibit both linear and nonlinear coupling. When the system has linear coupling.

43
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it is possible to obtain 1:1 IR (any two frequencies in 1:1 ratio) through tuning its
natural frequencies. When the system also has quadratic and cubic nonlinearities,
1:2 and 1:3 Internal Resonance ratios can be established. As mentioned in Chapter
1, tuning natural frequencies in this thesis implies tip displacement feedback control
that is acquired by applying two P controllers to the gyroscopic system in any
two out of the three directions u, v and w. For obtaining natural frequencies the
nonlinear equations of motion are linearized about the equilibrium position using
Taylor series expansion. To suppress vibration in the system, damping is introduced
into the system through velocity feedback using two D controllers. Consequently,
energv will be steadily exchanged and reduced. The implementation of IR control

strategy is discussed in detail towards the end of this chapter.

4.1 Control Efforts

As discussed in Chapter 1, vibration suppression strategy used in this work is
based on strengthening the modal coupling in the systemn through establishing
Internal Resonance between the modes. To establish IR, the natural frequencies
of the beam need to be calculated first. Also three P controller terms with gains
K,.. K. and R}, are applied in u, v and w directions, respectively, to serve as
displacement feedback for tuning the natural frequencies. The tuning efforts are
added to the first mode shapes of the beam resulting in addition of the term A,
for u direction, I}, 3; for v direction and R, 7y, for w direction. Here only first
mode displacement feedback is considered because a low-pass filter can be used

to remove those higher order modes physically. The position feedback controller
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gains K., A, and Kp,, appear as components of stiffness matrix of the nonlinear

gyroscopic beam equations.

4.2 Linearized Equations of Motion

In this section, the nonlinear equations of motion are linearized about equilibrium

position to obtain natural frequencies of the system using Taylor series expansion.

4.2.1 Equilibrium Position

Equilibrium position is the position where both velocity and acceleration of the
system are zero. Setting velocities and accelerations to zero in the first mode form

of (3.6)-(3.9) gives the following equations for equilibrium value:

(73115.9302 — 24.0033 Q2 + 3.7194 \) o — 3219357.2730 5°
—55827.0047v% + 2.0 A = 0

(2144733.9540 — 24.0033 Q2 + 3.7194 A + 1581765.1340 ) 8 = 0
(73115.9302 + 3.7194 \) vy =0

2.0 + 1.8597 o 4 1.8597 3% + 1.8597~% = 0 (4.1)

It can be seen from (4.1) that equilibrium positions are generally dependent on
angular velocity Q. The zero equilibrium position (¢« =0, 3=0,v =0, A = 0) is
the only equilibrium value that is independent of €2. In this work, zero equilibrium

position is selected to carry out the Taylor series expansion and obtain the linearized
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equations and the characteristic values of the gyroscopic system. Therefore the

following approximate equations of motion are obtained in the neighborhood of

zero equilibriuin point where a, 5 and v represent motion about the equilibrium

position:
Ap [, préda 0 0 ]
I .
0 Ap [y p1¢ndz 0 3
! 0 0 Ap [y ernde | L7 ]
+ 1 204p [y ¢rérde 0 R
v
! 0 0 0] L7]
El, fol P Pdx — QP Ap fol dr1prdr + Ky,
+ 0
I 0
0 0
EL [, {¢\dz — Q*Ap [, ¢161dx + K, 0
0 El, [y $1¢idz + Ky,
.

o 0

31=10

v 0
(4.2)
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In (4.2) the integral upper limit [ is the length of the beam. Similarly, the nondi-
mensional form of approximate equations of motion in the neighborhood of zero

equilibrium point can be obtained which are shown in Appendix A.5 (See equa-

tions (A.29)).

4.2.2 Characteristic Equation

Based on the approximate equations of motions obtained in the previous section,
the natural frequencies of the given system can be obtained. The following solutions

are assumed for (4.2):

a = aet
3 = age!
v o= aze’™t (4.3)

where a1, as. a3 and w are in general complex. Substituting (4.3) into (4.2) yields

the following system of linear algebraic equations:

cy— cw? —jcw 0 a, 0
jesw  Cy — Cw? 0 as (=14 0 (4.4)
0 0 cs — cyw? as 0
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For dimensional model, ¢; to c5 are as follows:

¢ = 24.0033

cg = T73115.9302 + 4.5343 K, — 24.0033 O
c3 = 48.00652

cy = 2144733.9540 + 4.5343 K, — 24.0033 Q?

cs = 73115.9302 + 4.5343 K, (4.5)

where Q) represents angular velocity of the beam. Equations similar to (4.4) are
obtained for the nondimensional model and the corresponding ¢ values are given in
Appendix A.30 (See (A.30)).

Finding the determinant of the characteristic matrix in (4.4) yields the same
characteristic equation for dimensional and nondimensional models, which is given

by:

3 6 2 2 2 4
cow +(—02 Ci"—citey — ¢ c5—03201)w

+ (CQ C; Cq + coCyC5+ Cy Cy Cs + 03265) w2 — CaCy C5 = 0 (46)

Equation (4.6) is a sixth order polynomial with six roots but the roots occur in
coniplex conjugate pairs. The three positive roots wy, wo, and ws are the linear nat-
ural frequencies of the system. Since the system is a gyroscopic and coupled system
when the angular velocity €2 # 0, the three linear natural frequencies will appear
in the responses of u, v as well as w simultaneously. However, the first equation

in (4.2) will disappear when {2 = 0 because the foreshortening effect in u appears
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only when gyroscopic effect is present and system is nonlinearly modelled. Also the
linearized system will become uncoupled and v and w will become independent of
each other when 2 = 0. At this time, the two natural frequencies wy; and wy are
related to directions v and w, respectively. The expressions of the three natural fre-
quencies for coupled system are the same for both dimensional and nondimensional

models and given by:

s C1CQ+Clc4+C32+\/(6102+CIC4+632)2—4C12CQC4
“1 N 2612
2 0102+6104+032—\/(70162'*—0164'*—032)2—46120264
wa N 2 612
W = 2 (4.7)
C1

Equations (4.5), (A.30) and (4.7) show that the natural frequencies w; and wy are
both dependent on tuning parameters K, and K,,, the third natural frequency ws
is only dependent on tuning parameter K. Therefore, by tuning K,,, A, and
K, any desired IR ratio can be established. It is important to note that the term
K, is added to the u equation in (4.2) to serve two purposes: First, to account for
the effect the P controller with gain K, applied in the w direction would have in
the u direction when modelled properly. Secondly, to establish 1:2 IR, independent
tuning is required in the w direction. This is achieved by another P controller
applied in the u direction. To account for the first effect, the value of K, is chosen
to be same as Iy}, for 1:1 IR case where only one P controller in the w direction is

needed. The reason for choosing Km to be same as A, is due to the fact that the

term I, v behaves in exactly the manner as a stiffness term EI, fol ¢ ¢|dr and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. VIBRATION SUPPRESSION 50

the effect of ET,¢{ ¢ is same in the u direction as it is in the w direction.

4.2.3 Variation of Natural Frequencies

In this section 1:1 IR and 1:2 IR ratios are set up for the gyroscopic system by
tuning different P controllers. From (4.5) and (4.7) one can see that the natural
frequencies of the model are dependent on Ay, Kp,, Ky, and angular velocity 2.

Figure 4.1 shows the relationship between the system natural frequencies wy,
ws and the angular velocity €2. The natural frequency ws is not shown because it
is independent of Q. For simplicity sake, the parameter 2 = 50 rad/s is assumed,
which is actually the maximum angular velocity of the Rotor Experimental System
mentioned in Chapter 2. In general the natural frequency of the system may or
may not be naturally exhibiting an IR state. The vibration suppression strategy
aims at establishing an Internal Resonance state by tuning the gains K, and K.

Figure 4.2(a) shows the variation in w; and wy with K. indicating that it is
possible to minimize the gap between the two roots and obtain an approximate
1:1 IR ratio when I, = 4.57e5. Figure 4.2(b) shows the variation in w; and 2w,
with K, illustrating that an exact 1:2 ratio can be obtained when K, = 1.524e5.
Variation in frequencies due to K, is not shown as it only affects wz. By varying

K, ws can be adjusted to any desired value.
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Dimensional Model
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Figure 4.1: Variation in w; and wy with respect to Q. (-) wy, (- -) wa
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(a) IR 1:1

0 ! { L L i
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Kpu
(b) IR 1:2

Figure 4.2: Variation in w; and wy with respect to K, (a) 1:1 IR and (b) 1:2 IR,
() wis (--) wo
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It is also clear from Figure 4.2 that the gains required to tune the system is
quite high. However, it should be realized that is not unusual because of the high
frequencies of the system and the incorporation of the basis function parameter
¢(1). The practical issue of achieving stability and robustness is a challenging task
which is left as future work. The focus of the thesis is only to demonstrate the
vibration suppression technique from a purely dynamics point of view.

Figure 4.3 shows that when K, = 0 the gap between w; and wsy is the smallest
indicating that it is possible to establish both 1:1 IR and 1:2 IR when K, = 0.
Therefore, K, = 0 is chosen for all the numerical simulations in Chapter 5.

IR 1:k
600 T T

500} 4

400} 1
S 300} -
e

200 -

100+ b

Kpv x10°

Figure 4.3: Variation in w; and w, with respect to K, k is IR ratio, (-) w1, (- -)
wo, k =1 for 1:1 IR and k = 2 for 1:2 IR.

The values of the gains to establish 1:1 IR and 1:2 IR are given in Tables 4.1 and

4.2. The values for 1:1 IR correspond to the minimum difference between w;. wy and
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w3. The resonance ratios are established by tuning K, and K. Results are sum-
marized in Table 4.1 for the dimensional case and Table 4.2 for the nondimensional

case.

Dimensional Model, Q2 = 50, K, =0
IR | Ky, Kpw Figure
1:1 | 4.57E+5 | 4.57TE+5 | 4.2(a)
1:2 | 1.524E+5 | 5.183E+5 | 4.2(b)

Table 4.1: Tuning parameters for dimensional model

Nondimensional Model, €2 = 50,
K,, =0

IR | K, Kpw Figure

1:1 | 2.6950 | 2.6950 | A.2(a)

1:2 1 0.9110 | 3.0715 | A.2(b)

Table 4.2: Tuning parameters for nondimensional model

The natural frequencies of the models are shown in the tables (4.3)-(4.4) for

conparison.

Dimensional Model Single Mode Frequency
IR | Kpuy Kpywy =50

1:1 | w1=348.9213, wy=248.9215, w3=298.9214
1:2 | wy=317.7175, wo=158.8187, w3=317.6774

Table 4.3: Beam frequencies obtained using the dimensional single mode equations
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Nondimensional Model Single Mode Frequency
IR | Kpuy Kpw, 2 =50

1:1 | wy=6.8731, wp=4.8731, w3=5.8731

1:2 | w1=6.2564, wy=3.1268, w3=6.2550

\

Table 4.4: Beam frequencies obtained using the nondimensional single mode equa-
tions

4.3 Vibration Suppression

In this work, vibration suppression is implemented through velocity (derivatives)
feedback control by applying K4, and Ky, in directions v and w, respectively. Due
to the contribution from tuning efforts which enhance the energy interaction among
the coupled modes, one may apply only one velocity feedback controller in either
direction v or direction w to suppress vibrations in all the three directions effectively

and rapidly, which reveals the essence of IR control strategy.

4.4 Implementation of IR Control Strategy

In this section, the implementation of IR control strategy is discussed in a concep-
tual manner and should not be construed as a practical control system. For this, the
actuators are assumed to be PZT actuators applied on the top and front planes of
the rotating beam as shown in Figure 4.4. It is known that a piezo-electric element
will distort when subjected to an electric field. This “ Inverse Piezo-electric Effect
” forms the basis for the operation of a piezo-electric actuator. In other words, if
the displacement and velocity that®ire proportional to voltage signal are inputted

to a piezo-electric actuator, it will apply a bending moment as output to the beam
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that are proportional to the displacement, velocity or acceleration of the beam.
Modelling of PZT actuators attached to a beam has been discussed at length in
the literatures, e.g. Oueini et al. [43] and Saguranrum et al. [44]. Oueini et al. [43]
presented a Piezo-electric actuator as a nonlinear vibration absorber for a shaker
based flexible one degree of freedom beam. The absorber in [43] is based on the
saturation phenomenon exhibited by multidegree of freedom systems coupled with
quadratic nonlinearities and possessing autoparametric (internal) resonances. They
also set the controllers’ natural frequencies to one-half the natural frequencies of the
resonant modes and excited the system at a frequency close to its natural frequency.
The nonlinear coupling terms created a unidirectional energy-transfer mechanism
that saturated the response of the excited modes and suppressed their vibrations.
The stiffening effect of the Piezo-electric actuators in [43] was neglected in deriving
the equations of motion. Later Saguranrum et al. [44] went further on this topic
by including the mass and Young’s modulus of the Piezoceramic actuators in the
derivation of governing equations of a uniform, cantilever beam subjected to a
base excitation. They also employed saturation control strategy and fully included
the resulting coupling between uniform, cantilever beam modes in the analytical
model. In their investigation the nonuniformities due to the presence of piezoelectric
actuators in the beam properties were included. The numerical simulation results in
[44] show that the vibration response of a uniform, cantilever beam will be predicted
with greater accuracy when the modal coupling terms that result from the presence
of the Piezo-electric actuators are included in the mathematical model. Some other

publications in this field are by Oueini and Golnaraghi [45] and Pai et al. [46).
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In this thesis, the inertial and structural properties of Piezo-electric actuators
are neglected because the emphasis is on control strategy and the detailed control
techniques and experimental setup are both ignored.

The control logic is shown in Figure 4.5. Block 1 shows the control efforts
applied to the nonlinear system using D feedback control technique based on IR
state. The control signal to the system is issued in the form of force by two piezo-
electric actuators applied on two planes of the beam as shown in Figure 4.4. Then
accelerometer can be used to measure the output acceleration a = [ii, ﬁ,w]T. By
integrating a once the corresponding velocity v = [, ¥, u'J]T can be obtained. Here
velocity feedback (D controllers) is sent to the actuators to suppress vibrations
in all the three directions. Finally, integrating v can give us the displacement
d = [u.v.w]" that can be used as the displacement feedback (P controllers) to
the actuators and as input to Block 2 to compute the response frequencies of the
nonlinear beam.

Block 2 indicates the tuning process for obtaining P gain and establishing IR
state as well. Taking an assumed I\), and angular velocity §2 as inputs, it first
computes the 3 nominal natural frequencies (w1, wa, w3) of the beam around the
equilibrium point [0,0,0]. Meanwhile the computer also takes the displacements
from Block 1 as input signal and computes the real response frequencies of the beam
using FFT, which contains many frequencies. In the vicinity of the three nominal
natural frequencies, the computer will choose the three dominant real response
frequencies w1, wyo, wy3 and compute the difference between w,, and kw,s, where k

is IR ratio (k = 1 for 1:1 IR and k = 2 for 1:2 IR, etc.). By minimizing the difference
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between w,; and kw,o and placing w,3 between w,; and kw,s, the computer can thus
tune A, and use the updated K, as input to compute the new nominal natural
frequencies. At the same time, the K, can serve as the P gain in Block 1 to obtain
new displacement d = [u, v, w]T. Using this new d as input, the computer in Block
2 can compute the new real response frequencies of the beam. The above iteration
process goes on until the difference between w,; and kw,, is minimized and the
IR state is thus established. Then through the process involved in Block 1, the

vibration in u, v and w directions can be effectively and rapidly suppressed.
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PZT Actuator R
Yy on top plane A\
X
— >
Z /
PZT Actuator

on front plane

Figure 4.4: Conceptual view of actuators applied to the beam for setting up IR and
suppress vibrations in u, v and w directions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. VIBRATION SUPPRESSION ' 60

Kdv Block 1
Kd(de <
PZT Nonlinear | 2 f v f d
Actuators > System > > >
X -
Initial Kp

=

K Kpv 1. Computing actural system l:;) l::; 11)3 Computing nominal
PUKkpw. response frequencies o1, ©2, ~<¢———————| natural frequencies

and ©3 using FFT and the ol, 02, and @3
nominal frequencies
2. Minimizing the difference 0
between wl and k.2, place
®3 between o1 and k.2 to
find the proper tuning gains |«g
Kp.

Block 2

Figure 4.5: Control logic, k is the ratio of w; to wy for setting up 1:1 IR and 1:2
IR, a is acceleration vector, v is velocity vector and d is displacement vector.
stands for angular velocity.
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In this chapter, a vibration suppression strategy is discussed and a conceptual
view of how it can be implemented is presented. In the next chapter, the di-
mensional and nondimensional models will be simulated numerically. Supporting
simulation results will also be presented according to the established IR cases in

Chapter 5.
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Chapter 5

Numerical Simulation

In this chapter, dynamics of the system are studied numerically in time domain
and spectral domain and results are presented for the vibration suppression strat-
egy developed in Chapter 4. The semi-discretized equations of motion obtained in
Chapter 3 are Differential Algebraic Equations (DAEs) whose solutions are very
difficult and challenging to obtain. In this chapter, two numerical approaches,
namely, Runge-Kutta method and a new technique referred to as Average Accel-
eration Formulation (AAF), are applied to simulate the gyroscopic system. The

results obtained using the two methods are also compared and analyzed.

5.1 Solution Techniques

In this section, the solution techniques based on Runge-Kutta method and Average

Acceleration Formulation (AAF) afe discussed in detail.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. NUMERICAL SIMULATION 63

5.1.1 Runge-Kutta Method

First, an automatic ODEs solver, Adaptive Stepsize Runge-Kutta Method, is ap-
plied to solve the DAEs (3.6)-(3.9) for the dimensional model and (A.22)-(A.25)
for the nondimensional model. Gear [47] gives an overview of the automatic ODE
solvers dealing with such equations. As the equations to be solved are DAEs and
not ODEs the approach used here is to differentiate the algebraic equation in the
DAE system and then apply the ODE solver to obtain approximate solutions. A
DAE solver SUNDIAL-IDA was tried but was not successful in obtaining the so-
lution due to convergence problems. In Section 5.1.2, the AAF method mentioned
earlier is developed to solve the equations. For the purpose of analysis, solutions
for both single mode shape system and four mode shape system are developed and
brought into comparison.

The underlying idea about adaptive stepsize control is to achieve some predeter-
mined accuracy in the solution with minimum computational efforts. The Adaptive
Stepsize Runge-Kutta Method is a commonly used numerical technique for solving
initial value problems [48]. During the process, a solution is generated and im-
proved over each time step by combining results from several Euler-style steps, and
then using the information obtained to match a Taylor series expansion up to some
higher order (see [48, 49]). The step size is adjusted according to an estimate of
the truncation error. Simulation results using Runge-Kutta method are presented

in Section 5.6.
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5.1.2 Average Acceleration Formulation

The average acceleration formulation is a technique for solving equations of motion
which arise in continuous dynamics problems where discretization of PDEs to ODEs
through Rayleigh-Ritz or Galerkin method is involved. It was originally presented
in [10] to solve multibody dynamics problems. The technique involves reducing
system of ODE to an iterative problem involving Algebraic Equations (AE). The
method is similar to the average acceleration method commonly used in solving
equations arising in finite element problems. The difference in the formulation lies
in the fact that the final equations are in terms of accelerations and not in terms of
displacements as in the conventional average acceleration method. This is possible
by using Taylor series in a direct way instead of the usual approach of deriving finite
difference formula. The advantage of using this approach is that time step terms
At appear in the numerator instead of denominator. Therefore, it gives better
numerical stability. Additional details of the techniques can be found in [10]. Here

only the application of the method to the problem at hand is shown.

5.1.3 Average Acceleration Method

Application of average acceleration method requires making the following finite
difference approximations for displacements and velocities obtained using Taylor

series expansion:

WA = 0t AT
2

At
WAt =t AL+ iit——{)— (5.1)

<
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where u represents the time dependent variables «;, 3;, v and \;, At is a small
increment in time and the superscripts specify the time at which the term is eval-

uated. In addition, the following average acceleration assumption is also made:

st AL -t
.. +

where “ = ” means replacement. Substituting (5.2) in (5.1) yields the following

equations [10]:

,&/t-}—At — 'I:Lt +0,17‘,'Lt 4 a2ut+At
= clu(ut,it) + aqxuif A
ut+At — 'U/t +a/3'l:l,t —l—av4ilt +a5ut+At
= cQuut, i) + asiit TA (5.3)
where the parameters a; stand for:
ay = %ﬁ a9 = % as —= At
(5.4)
g = A8 o ar
4+ = Ty 5 — T4

and clu and c2u represent the terms that will be evaluated at time ¢ and are given

by:

clu = U+ ayiit

c2u = u' + asu’ + ayiit (5.5)
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By applying (5.3) the DAEs (3.6)-(3.9) obtained in Chapter 3 are reduced to a set
of nonlinear algebraic equations involving acceleration at t + At and displacement,

velocity and acceleration at time .

5.1.4 Discretized Equations-Acceleration Formulation

By substituting (5.3) into (3.6)-(3.9), the following discretized equations are ob-

tained:
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u equation:

[ 1B 1603 6] sty + e} + 6061 )
+Ap[d; ¢5] {{dj} -2Q {{a23j + Clﬁj}} — Q*asd; + 02%‘}}
+ {00} Loy O] {N {asdin + c2ou}} + {0} 1] 0]
{*Efz {{asﬁ;’j +c23;} {as i + CZﬁk}} — B, {{as%; + c2v;}
{ask + 23} + Ap{di} [95 ¢ o) {3 {4 {asi + 2}
{as¥ + c2v}} + 69 {{61253’ + 13} {as + 2} {as¥i + cQA/z}}
+39% {{asd; + 20, } {as¥i + 2w} {ass + c2n}}}
{01y 166,811 { B (1, — 1) {{asty + 205} {asF + 25}
{os+ 23} } = E (L, = L) {{as5; + 23} o5 + c2}
{aséy + 2a}} — 3EL, {{as¥; + c2v;} {as¥ + 2y}
{ascy + 200} }} + {0} | ¢} &) {=3 EL {{asd; + 20}
{asih + 28} {ash + 02,31}} — EI, {{asé; + 20}
(a5 + 2yt {as¥ + 2w }} + 2 EL {{aséj +c23;}
{asi + 20} asdy + 23} } } = 3 {6} Ly o o)

{asir + 2y} {as% + 2y} } de = 0 (5.6)
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v equation:

[ [t HasB, + 2y + anlo ) {3}
+29 {{aacty + claghy - 02 {{as + 23} } | +{¢1} L1 64 )
{5 fasis + 23,3} + {81} 16} 9 {=2 B (L, - L) {{aséi; + 20}
{as+ 2} + B (I, — 1) {{as5; + 29} {asés + 2o} } }
+Ap (i} 10 64 61) {=3 {5 {osu + 2} (s + 2} |
—6Q {{aad; + clay} {asHi + 2w} {asT + 2} }
#3907 {{ash) + <23, } {asin + 2} {as¥ + 2} | |
{0} 15 ohot) { —BL {{asd; + 23} {asS + c23)
(s + 23} | — BL, {{as; + 23} {ash + 2}
o+ c2u}} — B (1, — L) { {as¥; + 2y} ol + 2}
(o + c2u}}} + {01} 16 61 67 ) {~E (1, — L)
{{aséi; + 20} {aséin + 2o} {as5 + 23} ) + E (L, - L)
{{asti; + c20,} {asfl + €200} {astis + 2} } = 3 EGL + 1)

{{ag)*'/j + 27} {asHk + 2} {a531 + 0231}}}] dr =0 (5.7)
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w equation:

/0 | [EL (67 ¢ {as¥; + c2v;} + Apld: &3] {45} + {i} L &l
{\ {asie + c2u}} — Ap{di} L & &1) {F; {asTn + 27}
{owi + 2} + (003 80t ef) {5 £ - 1) Loy + e21)
(a5 + 23} {asd + 02;31}} — EI, {{as¥; + c2v;}
{as% + 2w} {ash + c2u}t} — EI, {¢} 9] 6 41

{{as%; + c2v;} {ask + 2w} {as% + 2v}}] de = 0 (5.8)
A equation

!
/ [[¢Z ¢;]{a’5dj + CQaj}
0
o 149 {% {{asd; + 20} {asdx + 2ok }}
% {{“551‘ +c23;} {as 3 + czgk}}

+‘;‘ {{as¥; + 2y} {as% + cQw}}H dr = 0 (5.9)
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In the above equations, clay, 20, ¢l,3;, c23;, clv;, c2v; are defined as:

C].Oéj

c2a;

cl 3]'

C2,3j

C].’)/j

C2"/j

. t -t
Q; +a1aj

t

t ot .
a; + asoy; + as0;

. t .
/3]‘ + al,ﬁ’;

3t + (133; + a45'§

%'+ ]

r'\/].t + asf;/;j + al4;\'/; (5.10)

Following the same approach, the nondimensional form of discretized equations are

obtained which are given in Appendix A.7 (See equations (A.31)-(A.34)).

5.2 Solution of Nonlinear Algebraic Equations

The conventional way of solving systems of nonlinear algebraic equations is New-

ton’s method or its variants which require computing the system Jacobian. When

the system of equations is large, numerical stability and computational effort be-

comes a major issue and the method fails. In this work an automatic DAE solver

package SUNDIAL-IDA, which is based on Newton’s method, was first tried without

success. To solve the resulting nondinear algebraic equations of motion (5.6)-(5.9)

an iterative scheme is adopted and employed which was originally presented in [10].
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The technique involves direct iteration of the nonlinear algebraic equations of mo-
tion without the need to find the Jacobian explicitly. To apply this approach the

obtained nonlinear algebraic equations are reorganized in the following way [10]:
[A]A {ul i + {N}EFE = {0} (5.11)

where u; (elements of {u}) represents the accelerations. The matrix [A] is computed
using the values of u; at the n'” iteration step, then by solving the linear system
(5.11) improved estimates of u; are obtained. In this method the approach used for
formulating the linear system (5.11) from the original nonlinear algebraic equations
is the key to successful convergence of the iterative scheme. It involves extracting
the linear variables u; not only from the linear terms in the discretized algebraic
equations, but also from bilinear and multilinear terms (terms linear in any w;).
The linear terms in u; are written in the [A]{u} form in (5.11) and the remaining
nonlinear terms and constants are written in the {N} matrix (see [10]). Bilinear
(or multilinear) terms are accounted for twice (or as many times as the number
of linear variables) in the matrix [A] and all the additional terms introduced by
Bilinear (or multilinear) terms in A are subtracted in the { N} matrix to keep the
equations the same.

To illustrate the iterative scheme formulation, the nonlinear terms in the alge-
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braic equations in Section 5.1.4 are rewritten as follows to fit the form (5.11):

O\ (asciy + c20) =

Xi i@ P (asciy + c20) + 550,00k M — Pidjdlas ;b (5.12)

G di(asdiy + c205)(asbu + 20p) =
dj2a5¢;¢}, 2 (1= djx)asu + c20)

+ 40 D (St i, — (1 — Oji)as cn + c2050200) (5.13)

¢! 80 (asd; + €23;) (as Ok + c23) =
Fias (881 + & D500 (1 — 6j)as Bk + c23)

+¢§/¢>}¢Z(5J‘ka52»§j5}c — (1= 6;)a52 3,6 + 23;¢23) (5.14)

¢! (asdy + c2a5) (as B + c23) =
&ja5¢§'¢}¢§:(a53j + €23;) + 3ja5¢§/¢}'¢2(a5d]~ + 2a)

+ & (—as>c; 0y + 2a;c23) (5.15)

In the above formulation the terms with bold type face &;, éj, 4; and )\J should be
kept in the u matrix with the remaining ternis being kept in the column matrix N.
The Lagrange multipliers A; are treated as accelerations because its time derivatives
do not exist in the equations of magion. It should be noted that in the formulation

(5.12)-(5.15) index summation notation and the Kronecker delta are both used to
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select or eliminate nonlinear terms from the products of type o004 and oojakoy.
All the other terms in 5.1.4 are expanded in a similar way.
The complete algorithm to obtain numerical solutions based on the iterative

scheme formulation can be found in [10].

5.3 Numerical Algorithms

Dynamics of the system is studied using results obtained from different models.
Time response and power spectrum are compared and analyzed. To study the
system dynamics four algorithms are used: (1) Adaptive Runge-Kutta method for
time response using approximate ODE system [48], (2) AAF algorithm for time
response using actual DAE system [10], (3) Power Spectrum algorithm [48], (4)
Polynomial Interpolation algorithm [48). The Polynomial Interpolation algorithm
is used for obtaining evenly spaced data from the unevenly spaced data obtained
from the adaptive Runge-Kutta solver. The step size of obtained data files using
AAF is constant and hence can be directly used to analyze the power spectrum.
To obtain the power spectrum the Discrete Fourier Transform (DFT) of the time
series is computed. Hann window function is applied to the time series to reduce
leakage in the first place and secondly, Fast Fourier Transform (FFT) algorithm
is applied to implement the DFT. To reduce the variance, the data points are
segnented and overlapped and the resulting FFTs are averaged. Then the power
spectral density (PSD) is carried out by taking the mean squared amplitude of the
transformed FFTs. All the power spectrums in this chapter are obtained in the

Sallle 1lanner.
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5.4 Excitation in Different Directions

The first set of simulation compares the effect of exciting the system by giving
initial values in different directions. The four mode dimensional model (3.6)-(3.9)
is used for all the simulations in this section. For initial values, (2.38) is used for v
direction and (2.39) is used for w direction.

Figure 5.1 indicates the effect of exciting the system in the w direction. It can be
seen clearly from the figure that exciting in w direction results in strong vibrations
in all the other directions. The transfer of energy from w to the other directions
occurs due to IR coupling as indicated by the characteristic beating motion.

Figure 5.1 also shows that the response in the u direction is less than or equal to
zero (u(l,t) < 0). This phenomenon is due to the inextensionality constraint. From
the algebraic constraints (3.9) and (A.25) in Chapter 3, the following constraint

equation is applied:

{
[l otay + 5 1016 60 (o} + (31
0 | (5.16)

+{’71}2}] de =0

from (5.16) it can easily be seen that a; < 0, which implies that the u tip deflection
u(l, t) < 0 because u(l, t) = ¢;(l)a,(t) and here ¢, (1) = 2.

Figure 5.2 shows the effect of exciting the system in the v direction alone. This
figure shows coupling between u and v directions. However the coupling with the
w direction is very weak. The cougling between u and v directions is not due to

IR but is due to the fact that when an initial value is given in the v direction or
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w direction it automatically results in an initial value for v direction due to the

constraint (2.1). Therefore for all simulations in this thesis the system is excited in

the w direction alone.
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Figure 5.1: Four mode shape dimensional system response obtained by exciting in
w direction only, AAF Method is applied. @ = 50, w;y = 0.2, 1:2 IR, (a), (b) and
(c) are time responses in u, v, and w directions respectively.
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Figure 5.2: Four mode shape dimensional system response obtained by exciting in
v direction only, AAF Method is abplied. 2 = 50, vy = 0.2, (a), (b) and (c) are
time responses in u, v, and w directions respectively.
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5.5 Non-Resonant Response Using AAF Method

To illustrate the advantage of IR based control strategy, the Non-Resonant re-
sponses of four mode shape dimensional model is obtained using AAF method.
Since the modelling of dimensional system is accomplished according to the real
parameters of NASA Army Aeroelastic Rotor Experimental System (ARES) [41]
which is inherently in the state of modal coupling. the system needs to be detuned
through K,,, Kp, or K, such that its three eigenvalues are far apart from each
other. Consequently K,, = le + 5 and K}, = —1.6124e4 are chosen for this pur-
pose which results in a detuned system. The corresponding simulation result is
shown in Figure 5.3. Comparing Figure 5.3 with Figure 5.1 clearly illustrates the
difference between non-resonant and resonant responses. Under IR conditions the
system is strongly coupled and the motion undergoes amplitude modulation. For
the non-resonant response shown in Figure 5.3 the motion in v and v directions is

similar to the linear oscillators without coupling between them.
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Figure 5.3: Four mode shape dimensional system response away from internal res-
onance, AAF Method is applied. (¥= 50, wy = 0.2, K, = 0, Ky, = le + 5, K, =
—1.6124e4. (a), (b) and (c) are time responses in u, v, and w directions respectively.
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5.6 Comparison of Runge-Kutta Method and AAF

Method

In this section, time and spectral responses are compared using Runge-Kutta solver
and AAF method. The first set of simulations are for dimensional case. The figures

and parameters are tabulated in Table 5.1.

Dimensional Model 1:2 IR,

2 =50, wy = 0.2, Kp, = 1.524¢5, K, = 0,
Ky = 5.183€d

Single Mode Shape | Four Mode Shape
Runge-Kutta | AAF | Runge-Kutta | AAF
5.4 5.5 5.6 5.7

Table 5.1: Comparison between Runge-Kutta and AAF method for dimensional
model

In general there are minor differences in the amplitudes obtained using the two
methods as can be seen by comparing Figure 5.4 and 5.5. This is due to the fact that
the model for Runge-Kutta method is approximate as discussed in Section 5.1.1.
The amplitudes for the four mode shape models however match well as shown in
Figures 5.6 and 5.7. The power spectrums show all the main peaks. It can be
seen by comparing the power spectrums that the main response frequencies match
well. With regard to the power spectruis it should be noted that in the case of
Runge-Kutta method, polynomial interpolation is used to generate evenly spaced

data as mentioned earlier in Section 5.3.
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Figure 5.4: Single mode shape dimensional system response, 1:2 IR by tuning K,
and R}, Runge-Kutta Method is applied. (a), (b) and (c) are time responses in
u, v. and w directions respectively® (d). (e) and (f) are power spectrums in u, v,
and w directions respectively
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Figure 5.5: Single mode shape dimensional system response, 1:2 IR by tuning K.,
and Np,. AAF Method is applied. (a). (b) and (c) are time responses in u, v,
and w directions respectively, (d), fe) and (f) are power spectrums in u, v, and w

directions respectively
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Figure 5.6: Four mode shape dimensional system response, 1:2 IR by tuning A,
and K, Runge-Kutta Method is applied. (a), (b) and (c) are time responses in
u, v, and w directions respectively® (d), (e) and (f) are power spectrums in u, v,
and w directions respectively
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Figure 5.7: Four mode shape dimensional system response, 1:2 IR by tuning A,
and Kp,, AAF Method is applied. (a), (b) and (c) are time responses in u, v,
and w directions respectively, (d), ¥e) and (f) are power spectrums in v, v, and w
directions respectively.
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The results obtained using the two methods show remarkable differences when
the time range is increased. The nondimensional model is used to illustrate these
differences. The figures and parameters for this set of simulation are tabulated in

Table 5.2.

Nondimensional Model 1:2 IR,

2 =50, wy = 0.1432, K, = 0.9110, K, = 0,
Ky = 3.0715

Single Mode Shape | Four Mode Shape
Runge-Kutta | AAF | Runge-Kutta | AAF
5.8 5.9 5.10 5.11

Table 5.2: Difference between Runge-Kutta and AAF for nondimensional model

Comparing the time responses in Figure 5.8 with Figure 5.9 and Figure 5.10
with Figure 5.11 shows that the Runge-Kutta method is diverging. This is clearly
due to numerical instability.

The spectral response is not shown for the Runge-Kutta case as the results are

diverging.
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Figure 5.8: Single mode shape nondimensional system response, 1:2 IR by tuning
K, and K, Runge-Kutta Method is applied. (a), (b) and (c) are time responses
in u, v, and w directions respectively.
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Figure 5.9: Single mode shape nondimensional system response, 1:2 IR by tuning
K, and Kp,, AAF Method is applied. (a), (b) and (c) are time responses in u, v,
and w directions respectively, (d), ze) and (f) are power spectrums in u, v, and w
directions respectively
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Figure 5.10: Four mode shape nondimensional system response, 1:2 IR by tuning
K, and Ky, Runge-Kutta Method is applied. (a), (b) and (c) are time responses
in u, v, and w directions respectively.
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Figure 5.11: Four mode shape nondimensional system response, 1:2 IR by tuning
Ky, and K, AAF Method is applied. (a), (b) and (c) are time responses in u, v,
and w directions respectively, (d), (e) and (f) are power spectrums in u, v, and w
directions respectively.
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In addition to providing good numerical stability, the AAF method employs
the actual DAE system and hence the results are more accurate. Further, the AAF
algorithm produces evenly spaced data with desired accuracy when compared to the
variable step sizes in the adaptive step size Runge-Kutta algorithm. The advantage
of having evenly spaced data is that spectral analysis can be implemented directly

without any interpolation which necessarily introduces errors.

5.7 Comparison of Single Mode Shape Model and
Four Mode Shape Model

For the comparison of the single mode model and four mode model systems the
simulations that have already been presented will be used. The figures used for this

comparison are tabulated in Table 5.3.

AAF Method 1:2 IR, Q = 50

Dimensional Model Nondimensional Model
Single Mode | Four Mode | Single Mode | Four Mode
5.5 5.7 5.9 5.11

Table 5.3: Comparison between single mode shape and four mode shape models

By comparing the time response for the single mode shape and four mode shape
models it can be seen that there are small differences in the amplitudes. In par-
ticular the amplitudes for the single mode shape are slightly larger than the four
mode shape models. This is expect®d because in the four mode shape model there

is interaction between higher frequencies which is not present in the single mode

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. NUMERICAL SIMULATION 91

shape model. The interaction between the higher frequencies results in some en-
ergy transfer from the lower frequencies to the higher frequencies, which explains
the smaller amplitudes of the lower frequencies. The frequency interaction can be
seen from the presence of peaks at higher frequencies in the four mode shape model
response shown in Figures 5.7 and 5.11. The higher frequencies do not appear in
the single mode shape system response as shown in Figures 5.5 and 5.9. This phe-
nomenon is also observed in the 1:1 IR case. The simulation set for 1:1 IR case is

tabulated in Table 5.4.

AAF Method 1:1 IR, Q = 50

Dimensional Model Nondimensional Model
Single Mode | Four Mode | Single Mode | Four Mode
5.12 5.13 5.14 5.15

Table 5.4: Comparison between single mode shape and four mode shape models
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