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ABSTRACT

McCormick, D J. 2004. Pre- And Post-Forest Management Investigations Of Factors 
Affecting Sediment Movement In Riparian Areas In Northwestern Ontario. 190 
pp. Supervisor: Dr. R.W. Mackereth, Committee Member: Dr. W.L. Meyer.

Key Words: riparian, reserve, buffer strip, erosion, sediment transport, forest 
management, impacts, aquatic effects

The principal objectives of this study were to measure the impacts of timber harvesting 
on sediment transport rates (mineral and organic) associated with two clearcut areas in 
northwestern Ontario and to evaluate the sediment controlling effectiveness of 30 m 
wide riparian reserves that were prescribed in accordance with Ontario’s Timber 
Management Guidelines For The Protection Of Fish Habitat Guidelines (OMNR, 1988). 
A goal of this study was to provide a practical means for assessing potential changes to 
sediment transport rates resulting from impacts of forest management activities in 
Ontario. Prior to road building and full tree logging with feller bunchers and grapple 
skidders, a sediment sampler was installed in each of 16 sub-catchments. Samplers were 
situated at a distance of either 0, 10, 20, or 30 m, measured into the reserve areas from 
the boundaries of planned clearcuts. Mineral and organic sediment collected in the 
samplers were monitored for one year (late spring to late fall) before, and two years (late 
spring to late fall) after impacts, and data were standardized with the amount of 
precipitation that fell during the respective sampling year. Indices of change were 
calculated to quantify differences in mineral and organic collection rates for each 
sampler in the first or second post-impact year compared to those in the pre-impact year. 
Field and GIS data (including: sampler position in the reserve, sub-catchment area, 
distance from road, presence of surface runoff, occurrence of trees thrown by wind, 
crown closure, thickness of soil organic layers (LFH), terrain slope, and a topographic 
index (TI) derived from GIS data describing upstream contributing area and slope) were 
collected in an attempt to quantify the capacity of the reserve areas to impede (or 
encourage) sediment collection in each sampler. The results clearly demonstrate that 
sediment movement in riparian reserve areas does not increase universally following 
forest management. Sediment attenuation through the reserve areas was variable, 
indicating that factors in addition to the width of a filter strip can function to control the 
distance to which eroded sediment is transported. Catchment area was not related to the 
rates that sediment was collected in samplers. Sediment collection rates were higher in 
samplers located closer to the road; however, the results can not be used to support 
categorically the accepted model whereby areas closer to roads are subject to higher 
erosion rates than areas further away from roads. The occurrence of surface runoff and 
windthrow, especially when combined, were predominant factors that contributed to 
increased sediment collection rates in samplers. The amount of crown closure and the 
thickness of LFH layers influenced rates of erosion, but the magnitudes of their 
influences were marginal compared to those of flow and windthrow. Steeper slopes did 
not consistently generate higher sediment transport rates, but the evaluation of the
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effects of slope on sediment transport rates was limited by the narrow range of slope 
conditions that were evaluated by this study.

The results of this study indicate that slope dependent riparian reserves specified by 
Ontario’s current timber management guidelines are sufficient to protect fish habitat 
from sediment transported fi'om clearcut areas (in locations where shorelands are similar 
to those investigated by this study). However, the results clearly demonstrate that 
sediment movement in riparian reserve areas does not increase universally following 
forest management. Post-impact sediment transport rates were greater in areas where 
surface runoff flowed compared to areas where surface runoff did not flow. This study 
used digital elevation models (DEMs) and a GIS to map pre-impact and post-impact 
flow accumulations, and these data illustrated how roads can effectively re-route the 
natural flow paths of surface runoff. Within the study area, topographic convergences 
were reliably located by the application of a spatially explicit TI, and the same index 
was effective at identifying areas that may be subject to increased risk of erosion 
following forest management. The generation and evaluation of flow accumulation and 
TI raster data may provide useful information for evaluating potential impacts of 
activities that are proposed during forest management planning efforts.
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3.66 1999/97 mineral index of change (MIOC) values and 155
index of change (IOC) values for topographic index
(TI) for each sampler.

3.67 1999/97 organic index of change (OIOC) values and 155
index of change (IOC) values for topographic index
(TI) for each sampler.
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1.0 INTRODUCTION

Land use can cause rates of erosion to become accelerated above what would occur 

naturally (Waters 1995; Walling 1999), and sediment is believed to be the principal 

non-point pollutant from forestry (Swift 1988). Forest management activities, for 

example, can contribute to cause an increase in the volume of sediment that is 

deposited within river systems (Meehan 1991). Miller (1984) reported that the 

average rate of erosion from three small watersheds during the first year after 

clearcutting, site preparation, and burning was 282 kg/ha, while the average rate from 

three control watersheds was 36 kg/ha.

Forest management involves a variety of activities including: clearcutting, skidding, 

yarding, site preparation for replanting, and road construction and maintenance. 

Sediment generation from each of these forestry practices has been extensively 

researched (Waters 1995). On a relative scale, sediment generation appears to be 

moderate from clearcutting, although this practice appears to generate more sediment 

than both selective and patch cutting (Waters 1995). Comparatively, sediment 

generation is moderately high from skid trails, minimal from yarding, and moderate 

from site preparation (Waters 1995). Logging roads are by far the source of most 

sediment generated from forestry related activities, especially when they are built
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close to streams (Megahan and Kidd 1972). Conditions that accelerate erosion due to 

land use disturbance are intensified on steeper slopes (Waters 1995; Meehan 1991).

Most research projects investigating forestry land use relationships with fish resources 

have been conducted on streams in the mountainous regions of the northwestern 

United States, western Canada, and the southern Appalachians (Waters 1995), and 

most of the studies that investigated the biological effects of erosion have focused on 

salmonid streams. In contrast with the forest industry, research conducted by the 

agriculture industry is driven primarily by concem for crop productivity losses rather 

than pollution by sediment transported to streams (Waters 1995). In Canada, during 

the period 1985 -  1998, forest harvesting impact studies on stream sedimentation and 

morphology, and on the sustainability of fish habitat, were more prevalent than work 

associated with agricultural impacts (Ashmore et al. 2000).

The effects of sediment entering aquatic systems can combine to exert stress on fish, 

and these can cause populations to be reduced or changed (Ritchie 1972). Among 

effects of sediment were: 1) reduced light penetration through the water column 

which can inhibit photosynthesis and cause a decline in primary production, 

ultimately limiting the system's productive capacity; 2) reduced dissolved oxygen 

concentration due to the decomposition of organic matter that is transported with the 

sediment; 3) reduced survival of fish eggs and alevin; 4) reduced shellfish abundance 

and species richness; 5) reduced insect faima that live on the bottom of streams and 

bottom-growing plants; 6) reduced ability of fish to forage caused by increased
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turbidity (however, this may also help young fish avoid predation); 7) reduced depth 

and duration of stream flow; 8) reduced abundance of suitable habitat for fish; 9) 

reduced amount of shelter in trout streams; 10) change in water temperature; and 11) 

change in water quality (Ritchie 1972). These general results are supported by more 

recent reviews investigating the relationships among forest practices, sediment, and 

salmonid reproduction (Meehan 1991; Waters 1995).

In Canada, the Federal Fisheries Act makes it illegal for any person to perform work 

that results in the harmful alteration, disruption or destruction of fish habitat, and 

states that no person shall deposit or permit the deposit of a deleterious substance of 

any type in water frequented by fish or allow such a substance to enter any such water 

(Fisheries Act 1985). Erosion rate increases resulting from forestry land uses will not 

harm aquatic habitat unless eroded material reaches the aquatic system (Ketcheson 

and Megahan 1996). Soil erosion is usually localised; however, depending at what 

scale soil losses are reported, they may be less than natural rates of renewal and still 

cause damage to local resources (Carling et al. 2001). If sustainable land 

management strategies are a goal, an emphasis should be placed on both the 

significance of impacts and the development of practical solutions to problems rather 

than reporting overall magnitude (Carling et al. 2001). To minimize land use impacts 

and afford protection to aquatic systems, many management agencies have 

implemented legislation and/or guidelines that prescribe best management practices 

for operations that will occur within their jurisdictions (Blinn and Kilgore 2001; 

Yoimg 2000).
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The Ontario Ministry of Natural Resources (OMNR) has developed the Timber 

Management Guidelines for the Protection of Fish Habitat (hereafter Fish Habitat 

Guidelines) to protect fish habitat from forest management impacts (OMNR 1988). 

The guidelines direct forest managers to designate 'Areas of Concern' (AOCs) around 

lakes and streams, and to reduce the risk of impacting fish habitat, forest management 

operations are limited or even restricted in these areas. One of the primary concerns 

is that sediment generated by forest management activities will move into aquatic 

systems and it is generally assumed that the intact shoreline forest will function as a 

sediment sink (Dillaha and Inamdar 1997).

Ontario's Fish Habitat Guidelines prescribe AOCs, commonly referred to as 'buffers', 

that increase in width from 30 to 90 m as shoreline slope increases from 0 to 60 

percent (OMNR 1988, (Appendix I)). The widths are based on recommendations 

from a study that examined the association between sediment movement from forest 

roads and slope of the forest floor in New Hampshire's Hubbard Brook Experimental 

Forest (Trimble and Sartz 1957). To date, there has been little research to evaluate 

the transferability of these recommendations to other forest types, specifically the 

Boreal forest. In addition, there are many factors other than slope, such as soil type 

and local hydro logic characteristics, which may influence sediment movement.

Significant economic pressures fuel the debate between forest companies that want 

access to wood volume and government agencies that establish guidelines to protect
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forest resources. An analysis of the effect of buffer width on loggable land and 

commercial value of timber in southem Australia revealed that prescribing 90 metre 

buffers around streams can remove 50 percent of the land area from harvesting, and 

that more valuable forest imits tend to be spatially distributed closer to streams (Bren 

1997). In fact, that study demonstrated that 50 percent of the commercial value of 

timber volume was located within 85 metres of streams (Bren 1997). Forest 

companies further their argument by pointing out that natural disturbance patterns do 

not preserve residual mature forest along lakes and rivers, and suggest that 

prescribing buffer zones around these features interrupts natural successional 

pathways and compromises the health and integrity of shoreline forests (Buttle 2002). 

Additionally, riparian vegetation and landforms along the valley floor function to 

create a diverse set of habitats within both floodplains and active channels, and these 

in turn determine the abundance and quality of nutritional resources available in 

stream ecosystems (Gregory et al. 1991; Vanotte et al. 1980; Frissell et al. 1986).

Initially, when surface runoff begins to move across the land surface, it is widespread 

and in a thin sheet. This type of runoff is known as sheetwash or sheet flow (Briggs 

and Smithson 1985). Obstacles such as stones and depressions can concentrate sheet 

flow and cause turbulence and localized erosion. This process causes micro-channels 

(or rills) to develop, and as the volume of water and turbulence increase, the erosive 

capacity of the water increases, causing the rills to get larger (Smithson and Briggs 

1985). When the sediment transport capacity of flowing water is insufficient to move 

particles, deposition can occur (Chang 2003). The impact of raindrops hitting
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exposed soil can break up soil aggregates, and the splash that results after the impact 

of raindrops can detach and displace soil particles (Chang 2003). The concept of soil 

detachment by raindrop impact and the dissipation of kinetic energy potential in 

raindrops is a critical component of erosion and conservation (Singer and Blackard 

1978). Erosion by water involves detachment, transport, and deposition of soil 

particles (Chang 2003). When quantifying the total amount of material eroded from 

an area, it is the influence of the effects caused by these three types of erosion in 

combination of that is of greatest significance (Toy 1977).

The path water takes to reach a stream is controlled by climate, geology, topography, 

soils, vegetation and land use (Freeze and Cherry 1979). For example, the infiltration 

capacity of a soil influences the amount of water available for surface runoff (Briggs 

and Smithson 1985), and the infiltration capacity of a soil is highly correlated with the 

structural stability of that soil (Brady 1984). Of all soil characteristics, infiltration 

capacity and structural stability have the greatest influence upon erosion (Brady 

1984). Where infiltration capacity is high, little overland flow occurs, and where 

infiltration capacity is low, more water will run off as overland flow in rills, gullies, 

and streams (Briggs and Smithson 1985). In addition, soil texture, organic content, 

the amoimt and properties of the clay content, the soil depth, and the presence of 

impervious layers also affect infiltration capacity (Brady 1984). Ground cover, which 

includes live vegetation and forest litter, can have a high absorptive capacity (Naslas 

et al. 1994), and the amount of ground cover has been shown to be the single most 

important factor influencing erosion rates (Clayton and Megahan 1997). The climate.
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topography, soils, and vegetation in Northwestern Ontario (NWO) are distinct 

compared those in areas where most forestry related erosion studies have occurred, 

and little research has been conducted to investigate the impact of forestry practices 

on erosion rates, fish habitat, or fisheries resources in NWO.

Significant effort has gone into the development of sediment transport models, 

especially within agricultural settings where soils tend to be deep and homogeneous, 

and many of these models have grovm in complexity along with the power of 

computing technology. However, models such as the Modified Soil Loss Equation 

(MSLE), do not work well where surface conditions are not homogenous, and this 

limits or restricts their application in some areas (Elliot et al. 1999). Many 

management agencies are not able to apply sediment transport models at an 

operational level because of the level of complexity built into them. For example, the 

Water Erosion Prediction Program (WEPP) requires more than 400 input variables, 

and although application templates have been developed to apply the model in general 

land use scenarios (agriculture, range, forest), users face significant challenges while 

trying to determine and adjust critical values for specific sites (Elliot et al. 1999). 

Challenges can also be encoimtered by users who attempt to apply less complex 

models. For example, the type and depth of surficial geology can affect the 

infiltration rate of precipitation that falls on the land surface. Infiltration rates in turn 

affect surface run-off and sediment transport. In Ontario, the retreat of the 

Wisconsinin glaciers left a complex distribution of surficial geology deposits across 

the Province (Zoltai 1965). Currently, the best surficial geology maps available for
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Ontario are at scales of 1:1,000,000 (digital) and 1:100,000 (hardcopy). These maps 

were created primarily from stereoscopic interpretation of airphotos at scales that 

ranged from 1:38 000 to 1:70 000 (Gartner et al. 1981). Given the complex 

distribution of surficial geology deposits across Ontario, it would be difficult to 

prescribe effective and efficient buffer strip widths based on the results of a sediment 

transport model generated from data at either of these scales. Hurdles that need to be 

overcome before many erosional models can be applied include both the labour and 

costs to collect data at a scale more appropriate to fulfill model input requirements, to 

convert new and existing hard copy data into compatible digital formats, and to 

validate models after data input requirements were fulfilled.

Many jurisdictions are recognizing the benefits of applying Geographic Information 

System (GIS) procedures to manage their natural resources (Wilson and Gallant 

2000). As time and money permit, many agencies are developing GIS data sets for 

their landbase, including hydrologically correct rasterized digital elevation models 

(DEMs) (Wilson and Gallant 2000). DEMs can be used to generate secondary grid 

data sets that model the flow direction and flow accumulation for each cell within the 

extent of the DEM (Wilson and Gallant 2000). These data can be used to automate 

the delineation of watershed boundaries, that in turn can be used to quantify the 

catchment characteristics from other data layers (Wilson and Gallant 2000).

Rasterized derivatives of a DEM can be used as data inputs for applying various 

hydrologic models across a landscape (Wilson and Gallant 2000). For example, a 

topographic index (TI) developed by Beven and Kirkby (1979) provides a measure
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that describes the relative likelihood of saturation of the overburden at a given 

location by subsurface flow from further upslope and the occurrence of subsurface 

flow exfiltration (Buttle 2002). In short, this model predicts the relative potential for 

groundwater discharge along the land-water interface (Buttle 2002). Beven and 

Kirkby's TI is derived by equation (1).

I I  = In (a/Tan ft) (1)

Where:

a = upstream contributing area per unit contour length (m ) 

ft = slope (in degrees)

The upstream contributing area per unit contour length is equal to the resolution of 

the grid squares (or length of the grid cells) when applying a single flow path 

algorithm such as the D8 (Beven et al. 1991). A different procedure is applied to 

calculate the upstream contributing area per unit contour length if a distributed, multi­

flow direction algorithm is used (Quinn et al. 1995). Application of this model 

assumes that the top of the water table follows the surface topography. This 

assumption was shown to be invalid in areas of the Canadian Shield with glacial till 

overburden (Hinton et al. 1993); however, the TI may yet have relevant application in 

areas where soils are not uniform.

In Canada, an extensive network of sediment monitoring stations was established 

during the 1960s and 1970s, from which an understanding of basin-scale sediment
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fluxes was derived (Ashmore et a l 2000). Two approaches, one analysing sediment 

load data and the other evaluating the characteristics of sediment particles, have been 

used to show that in the glaciated landscape of Canada, riparian sources contribute the 

dominant fraction of sediment carried by rivers and that upland sources contribute 

little sediment (Ashmore and Day 1988; Church et a l 1989; Ashmore 1993). 

Compared to the results of erosion plot and catchment experiments, sediment yield 

data of rivers provide evidence that is less clear at identifying land use impacts. The 

high variability that can exist in sediment yield data from rivers can be affected by the 

buffering capacity of many river basins, whereby mobilised sediment is stored within 

the system on lower slopes, in small tributary streams, and in riparian areas, and may 

never reach the river outlet. Investigations of land use impacts using sediment yields 

should consider the complete sediment budget of a catchment rather than sediment 

output at the outlet alone (Walling 1999).

It could be argued that data from sediment monitoring networks, especially those 

from large rivers, facilitate only the reporting of the magnitude of erosion problems. 

With such data it would be difficult to isolate local erosion issues and test 

experimental hypotheses within an adaptive management framework, especially 

within relatively short periods of time. Stream bank erosion often erodes floodplains, 

which are composed of sediment previously deposited by natural processes and 

anthropogenic activities (Waters 1995). Results from erosion plot experiments and 

experimental catchment studies conducted around the world have provided clear 

evidence of the sensitivity of erosion rates to land use change (Walling 1999). Data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 1

generated from research of terrestrial erosion at the hillslope scale could be much 

more useful for both identifying local erosional issues and for testing hypotheses 

during the development of solutions to local problems.

1.1 RESEARCH OBJECTIVES / HYPOTHESES

Physical process models designed to predict down slope sediment movement may 

offer utilities for designing buffers to control sediment movement; however, many of 

these types of models are still in the developmental stage (Megahan and Ketcheson 

1996). Work that expands on the development of empirical models could satisfy a 

current need for assessing erosion risks until the development of process based 

models is complete, or for future applications when data intensive process models 

may not be practical (Megahan and Ketcheson 1996).

In addition to slope and reserve width, this study examined factors that affect 

sediment production that are easily measured in the field or with a GIS, using 

available data. An ultimate goal of this study is to provide a practical means for 

assessing possible changes to sediment transport rates from forest management in 

Ontario, a goal not unlike that of Megahan and Ketcheson (1996).

The overall objectives of this study were to measure the impact of forest management 

activities on sediment transport rates (mineral and organic) associated with two 

clearcut areas in NWO, and to evaluate the sediment controlling effectiveness of 30 m
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wide riparian reserves that were prescribed in accordance with Ontario’s Fish Habitat

Guidelines.

Specific objectives of this study included:

1. Determine the variability in sediment attenuation (mineral and organic) as 

it is distributed both longitudinally along and laterally through two riparian 

reserve areas adjacent to clearcut areas. This was accomplished by 

monitoring the attenuation of sediments eroded out of sub-catchments that 

drained through two 30 m wide riparian reserves that had sediment traps 

installed at clearcut / reserve boundaries (0 metres), or 10, 20, or 30 m into 

the reserves.

2. Evaluate the condition of specific characteristics of riparian areas (in 

addition to slope) and determine how each affects the capacity of reserve 

areas to impede (or encourage) sediment movement. The suite of 

characteristics considered was selected after reviewing the scientific 

literature to identify critical factors that affect soil erosion that can be 

quickly and easily measured using either field techniques or a GIS. The 

collection of variables considered included: 1) catchment area; 2) distance 

from road; 3) presence/absence of surficial runoff; 4) amount of crown 

closure; and 5) thickness of the organic horizons covering mineral soil.

3. Evaluate the efficacy of using a topographic index (TI) value, derived 

using a GIS, firom data describing upstream contributing area and slope to 

identify areas within the study area that have a high relative potential for
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the generation of overland flow relative to other locations within the study

area.

In addition to these stated objectives, this study made opportunistic use of 

unanticipated, naturally occurring events (windthrowing of trees within reserve areas 

adjacent to clearcuts) to quantify the impact of this phenomenon on sediment 

transport rates through reserve areas.

1.2 LITERATURE REVIEW

The following section is a literature review of factors that affect fluvial erosion rates. 

Processes of the hydrologic cycle provide the energy required for fluvial erosion. The 

material that follows explains the influence of several factors that affect erosion. The 

collection of factors has been limited to include those that are easily measured either 

through field techniques or using a GIS with data commonly available to natural 

resource management agencies.

Hvdrologic Cvcle

The circulation of water through the atmosphere, land, and waterbodies within Earth's 

ecosystem is described by the hydrologic cycle. The main components of this cycle 

are precipitation, runoff, and evapotranspiration (Chang 2003). The hydrologic cycle 

outlined in Figure 1.1 traces the movement of water through a forested ecosystem and 

illustrates how water links the atmosphere, soil, plant community, and streams within
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this system. While moving through the hydrologic cycle, water has the capacity to carry 

materials and energy between the atmospheric and terrestrial components of the forested 

ecosystem and streams. The transport capacity of water can cause the erosion of soil 

particles and the leaching of soil nutrients, fertilizers, and pesticides to forest streams 

(Brown 1983).

Forests affect both water quality and quantity. Forest vegetation can intercept 

precipitation thereby reducing the amount of moisture that reaches the forest floor. 

Transpiration processes of forest plants move large volumes of water from the soil to the 

atmosphere. Root systems, soil organic matter, and forest litter increase soil infiltration 

rates and moisture holding capacities. These processes may reduce the volume of water 

available for surface runoff, extend the duration of runoff, and/or lower water yield from 

forested watersheds compared to those that are non-forested; hence, the hydrologic 

effects of forest vegetation function to limit the transport capacity of runoff (Chang 

2003). Along with these hydrologic controls, forested catchments have: a) canopies that 

shield and shade, b) roots that bind soil, and c) floors covered by forest litter material 

that has filtering-like functionality. These features can allow streams draining forested 

catchments to have a lower concentration of sediment, lower dissolved elements, cooler 

temperatures, and higher dissolved oxygen concentrations (Chang 2003).

Field and GIS data attributes were selected from among a suite of variables identified 

during a review of the scientific literature covering research and modelling of sediment 

transport generated by overland flow (Trimble and Sartz 1957; Toy 1977; Hadley 1977;
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Belt et al. 1992; Elliot et al. 1999; Costantini et al. 1999; Wischmeier 1977; Bryan 1977; 

Brady 1984; Clayton and Megahan 1997; Phillips 1989; Beven and Kirkby 1979; Moore 

et al. 1988). Ultimately, these variables were selected for their influence on erosion rates 

and the relative ease at which they can be surveyed in the field or derived from GIS data 

that were readily available and distributed in Ontario. Variables rejected were: 1) time 

consuming and/or difficult to collect in the field, 2) difficult to quantify because they 

required expensive or specialized field equipment, 3) not mapped, or 4) mapped, but at a 

scale that was inappropriate for application in this study.

Catchment Area

The total amount of sediment flowing out of a drainage basin (total eroded less 

deposition) is referred to as sediment yield. It is measured at a particular point for a 

specified period of time and is often expressed as a ratio of mass per unit area per unit 

time. Generally, sediment yield decreases as drainage basin area increases (Toy 1977; 

Hadley 1977) because downstream reaches tend to have gentler hillslope gradients and 

higher sediment storage capacity compared to upstream reaches (Walling and Webb

1983). However, for drainages greater than 1 000 sq km, the same trend may not exist 

because of the arrangement of source and sink areas (Ashmore and Day 1988).

Distance From Road

Roads are areas of high risk for increased sediment transport compared to other areas 

(Belt et al. 1992; Elliot et al. 1999; Costantini et a/. 1999, Trimble and Sartz 1957). At a 

local scale, roads can affect the hydrologic response of soils by changing soil properties.
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which in turn can alter catchment scale sediment budgets (Luce and Black 2001). Reid 

and Dunne (1984) reported the results of a survey that quantified sediment production 

from roads that were surfaced with gravel or paving. In that study, sediment yields from 

gravel roads with heavy traffic produced 100 times more sediment compared to paved 

roads. Heavily used roads produced 130 times more sediment compared to an 

abandoned road. In a study conducted in northern Ontario, it was shown that road 

related erosion and deposition most often occurs within the road right-of-way, and that 

sediment movement extending beyond the right-of-way was the result of high runoff 

(Mattice 1977). Several researchers have suggested that roads should be located away 

firom rivers and streams to allow sediment carrying runoff to be dissipated before it 

reaches channels (Trimble and Sartz 1957; Haupt 1959).

In their review of riparian buffer strip design. Belt et al. (1992) cautioned that 

channelized flow can transport material for thousands of feet. The capaeity for 

channelized flow to transport material is limited by the frequency and amount of flow 

(Belt et al. 1992). When roads disrupt the natural pathways of flowing water, road 

cross-drain culverts can be installed to provide routes for water to flow down a hillslope. 

Poorly designed cross-drain systems can create particularly high risk areas for the 

transport of sediment by channelized flow (Belt et al. 1992). Ketcheson and Megahan 

(1996) reported that erosion from road fill slopes was diffuse and short travelled, and 

resulted in elongated deposits oriented laterally along their bases. Among 335 road 

erosional sites in southwestem Idaho that were evaluated over a four year period, mean 

sediment travel distance and the range in travel distance among sites with culverts were
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greater than those for other road erosional sites (Ketcheson and Megahan 1996). Also, 

sediment travel distance from culverts significantly increased during the second year of 

the study while this was not the case for other areas (Ketcheson and Megahan 1996).

Flow

Fluvial erosion is the entrainment and transport of material by water in the liquid phase, 

including that induced by raindrop splash, or through overland sheet, rill, and distinctly 

channelized flow. Concern for fluvial erosion dominates that for any other form of 

erosion and the combination of all of these types of fluvial erosion is of greatest 

significance (Toy 1977). Raindrops that fall on bare mineral soil can shatter aggregates, 

and raindrop splash can transport individual soil particles short distances. When the 

intensity of rainfall exceeds the capacity for infiltration, ponding will occur and 

Hortonian overland flow may begin (Freeze and Cherry 1979; Wischmeier 1977). When 

soil becomes saturated from the infiltration of rainfall and sub-surface water flow, 

additional precipitation can not infiltrate the soil and saturation overland flow can result 

(Briggs and Smithson 1985). Overland flow can move detached particles further than 

splash alone (Wischmeier 1977). Also, when soil becomes saturated, infiltration 

capacity is zero and shallow overland flow can develop to carry detached particles 

(Bryan 1977). Saturation overland flow is most prevalent at the base of slopes or 

bottom-lands where slopes are low, the soil is commonly wet, and runoff is received 

from further upslope (Briggs and Smithson 1985). Where shallow overland flow is 

concentrated, transport capacity is greater and rills can develop. This can build to a
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situation where attached soil particles can be sheared loose by flowing water and by 

slumping of undercut sidewalls and small headcuts (Wischmeier 1977).

Toy (1977) explained how vegetation can inhibit erosion in a variety of ways. If present, 

foliage can intercept the kinetic energy in falling raindrops and protect soil aggregates 

from being dislodged. Plants transpire, and in the simplest sense this dehydrates the soil 

and reduces antecedent moisture conditions. When antecedent moisture conditions are 

not lowered by transpiration, surface runoff may be more likely to occur because less 

rain would be required to generate saturation overland flow. When mobilised by high 

flow, debris from buffer strips can load stream channels and deflect flow into banks, 

causing erosion (Steinblums et al. 1984).

Mature vegetation and grasses in riparian strips can filter sediment carried in overland 

flow before it is transported to streams. This filtering is possible when runoff is in the 

form of sheet flow, which allows sediment to be deposited and prevents channelized 

erosion of accumulated sediments (Naiman and Decamps 1997). A review of riparian' 

buffer strip design by Belt et al. (1992) reported that non-channelized transport distances 

have a positive relationship with slope and that the number of obstructions within the 

filter strip can decrease transport distance. This review went further to say that reserves 

that are 61 - 91 m wide are generally effective at controlling sediment that is transported 

in non-channelized flow. The authors caution that channelized flow can transport 

material for hundreds of metres and is limited by the frequency and amount of flow.

Road cross-drains were noted as being areas particularly prone to this type of risk.
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Headcutting processes can facilitate the advance of ephemeral gullies in an uphill 

direction. Most often, this requires an active seepage face with saturated soil conditions, 

concentrated surface flow, or both. Whether seepage or surface runoff generate the 

formation of ephemeral gullies, surface flow concentrations can facilitate the transport of 

soil and increase the volumetric dimensions of channels (Moore et al. 1988). Some 

experts believe that the prevention of sediment entering streams is dependent on the 

protection of ephemeral elements of stream systems (Clinnick 1985).

Windthrow

Riparian reserves are established to mitigate the effects of forest management land uses 

on aquatic systems. The occurrence of windthrown trees in reserves could reduce the 

ability of these areas to control the transport of sediment from harvested areas to 

streams. When hydrologic pathways link reserve areas affected by windthrow to lotic or 

lentic systems, it is possible that areas affected by windthrow will function as a source of 

sediment to aquatic systems. Wind is the primary cause of buffer strip failure 

(Steinblums et al. 1984). A number of research projects have been done to evaluate the 

effects of wind exposure on the amount of windthrow after logging (Hairston-Strang and 

Adams 1998; Heifetz et al. 1986; Ruel et al. 2001; Tang et al. 1997; Gordon 1973; 

Steinblums et al. 1984; Stephenson 1988). It appears that most research on windthrow 

was done in relation to the recruitment of large woody debris to aquatic systems, or 

wood fibre production. However, when standing trees are fallen (thrown) by wind, their 

overturned root mats can expose mineral soil to the erosive processes of raindrop splash 

and flowing water and these processes may also impact aquatic habitat.
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Alexander (1964) reported that more trees blow down on lower slopes than on middle 

and upper slopes. Several researchers reported that poor drainage conditions increase the 

chance of wood volume losses from windthrow (Alexander 1964; Steinblum et al.

1984). Slow drainage conditions are encountered along stream bottoms and stream 

overflow areas, and at higher elevations in the bottoms of draws and on flats at the base 

of slopes (Alexander 1964). Work in northwestem Ontario by Stephenson (1988) did 

not find a significant relationship between wood volume losses from windthrow and 

wetter soils. However, the distribution of sites in Stephenson’s study, with only one very 

wet, three wet, seven fresh, and no dry sites, was not well suited to detect such a 

relationship. The risk of windthrow is higher in areas with wetter soils, and these areas 

are often located along streams and at the bottoms of draws (Alexander 1988), and 

compared to other locations across a landscape, these areas are at greater risk of fluvial 

erosion because this is where shallow sheet flow and channelized flow paths are focused.

Factors other than soil drainage conditions can affect risk of windthrow. These include: 

1) distance from the buffer strip to uncut timber in the direction of damaging winds; 2) 

distance and elevation difference between a buffer strip and the nearest ridge in the 

direction of damaging winds; 3) azimuthal orientation of stream flow; 4) elevation of the 

buffer strip; 5) stability rating of the buffer (visually estimated, based on indicators such 

as stream bank cutting, jackstrawed trees, debris dams, swampy areas, and landslides); 

and 6) original timber volumes. Trees along edges are more prone to windthrow than 

those away from edges (Gordon 1973; Gratkowski 1956). Buffer width did not affect 

windthrow risk (Steinblums et al. 1984), but some species are more prone to windthrow
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(Steinblums et al. 1984; Ruel et al. 2001; Stephenson 1988). Topography can be a 

dominating factor affecting windthrow (Ruel et al. 2001; Tang et al. 1997). In his study, 

Stephenson (1988) found that windthrow risk was related to only one variable, a soil 

stability categorical index he estimated in the field. With that system, Stephenson 

classified a buffer as stable, moderately stable, or unstable based on the condition of tree 

root systems.

A significant challenge to land managers is created by the apparent complexity inherent 

among the suite of factors that affect windthrow risk in buffer strips. However, the risk 

of windthrow (and erosion) may be reduced by considering these factors singly as some 

may be more easily managed than others. For example, Stephenson (1988) suggested 

that with a single-tree selection method, large trees presenting high windfall risk could 

be harvested to eliminate that risk, and the risk of windthrow may be reduced by 

designing clearcut areas with low perimeter to area ratios to minimize the amount of 

edge (Gordon 1973; Stephenson 1988).

Crown Closure And Thickness of Organic Horizons Covering Mineral Soils 

Vegetation cover functions to retard soil erosion (Toy 1977). Forests and grass offer the 

best natural protection against erosion (Brady 1984). Dense understory vegetation and a 

thick litter layer are largely responsible for the effectiveness of a buffer (Borg et al.

1988). When raindrops are intercepted by vegetation, the kinetic energy of the raindrops 

is expended on the vegetation rather than on the soil surface, and this reduces the 

potential for erosion (Toy 1977). Canopy and mulch cover both intercept rainfall;
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however, mulch also functions to reduce runoff velocity. When falling raindrops 

intercept canopy cover, kinetic energy is dissipated; however, if intercepted precipitation 

drips off vegetation, fall velocity can be regained. This process causes canopy cover to 

be less effective at mitigating the impacts of raindrop splash compared to mulch. The 

combined benefits of mulch over canopy cover make mulch more effective at controlling 

erosion than an equivalent amount of canopy cover (Wischmeier 1977). Of all the 

factors that control erosion rates, ground cover has the greatest influence (Clayton and 

Megahan 1997). Ground cover is the crucial component of a buffer strip that allows it to 

function as a bio-mechanical filter of shallow overland flow (Norris 1993). Ground 

cover type affects sediment loss in runoff under simulated rainfall (Singer and Blackard 

1978). Forest floor material can function as ground cover and can influence surface 

runoff, percolation, and evaporation from the soil (Rowe 1955; Grace 2002). Overall, 

the forest floor material would likely control erosion more like mulch than canopy cover 

because it is distributed over the surface of the ground. In a simulated rainfall study, 

Naslas et al. (1994) found that the absorptive capacity of litter and the water repellency 

of duff (decomposing organic matter) influenced the infiltration and runoff properties of 

their erosion plots; less sediment was discharged fi-om plots that had litter and duff 

compared to plots that had litter and duff removed. Furthermore, stems of plants can 

obstruct linear pathways of flow and force meandering courses. This increases fiiction 

and reduces both velocity and erosive capacity (Toy 1977).

In a simulated rainfall experiment in NWO, France et al. (1998) showed that soil erosion 

was dependent on the differing amount and composition of litterfall. Results suggest
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that average litter production in NWO riparian areas (at the western edge of the Great 

Lakes / St Lawrence mixed forest region) is substantially lower than averages recorded 

for all other forests at the same latitude, other temperate coniferous forests, and other 

Great Lakes/St. Lawrence coniferous-mixed forests, but were more comparable to more 

northern boreal forests and other Great Lakes/St. Lawrence riparian zones. Data from 

France et al. (1998) supported the global trend whereby litter production in areas 

adjacent to water bodies is lower than that in upland forests. France et al. (1998) 

speculated that since litter production in NWO riparian areas is lower than once 

assumed, the soil entrapment capability of these areas may also be lower than once 

thought, and they postulated that if  this is true, the sediment filtering effectiveness of 

buffer widths, such as those prescribed by Trimble and Sartz (1957) would be less than 

expected and adequate protection to aquatic systems may be absent.

Slone

Much work has been done that illustrates the positive relationship between slope and 

sediment yield and/or transport distance (Trimble and Sartz 1957; Naslas et al. 1994; 

Phillips 1989). Phillips (1989) found that slope gradient was the most critical factor 

affecting the effectiveness of water quality buffer zones at controlling pollutants in a 

solid phase (buffer width was most important for dissolved sediments). The influence of 

topography on erosion rates is affected primarily by slope angle and slope length. As the 

angle of slope increases there is a greater force of acceleration in a down slope direction. 

With steeper slopes, water is more likely to flow across a surface and it is less likely to 

infiltrate the soil. Longer slope lengths can impede or enhance erosion rates, depending
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on rainfall intensity. Longer slopes provide a greater opportnnity for infiltration during 

low intensity storms, but during high intensity storms there can be a progressive increase 

in runoff and erosion as flow runs dovm slope (Toy 1977). Short slopes will produce 

runoff with small volumes and slow velocities. Long slopes will produce runoff with 

larger volumes and higher velocities that are often chaimelized. For these reasons, 

sediment transported by runoff from longer slopes can be more difficult to control with a 

buffer (Norris 1993).

Moore et al. (1988) suggested that the length slope topographic approach to modeling 

erosion, as applied with the Universal Soil Loss Equation (USLE), should be avoided 

when trying to model erosion associated with ephemeral gullies. This recommendation 

was based on field observations reported in that publication and the demonstration in 

Moore and Burch (1986) showing that the length slope factor applied in the USLE is 

proportional to a topographic variable, Ap. The Ap variable was derived by considering 

the sheet flow process. Sheet flow is the predominant erosion mechanism in agricultural 

fields (Brown 1983). The Ap variable is calculated by applying equation (2).

Ap= (Ad))°-^S'-  ̂ (2)

Where;

A/b = upslope contributing area per unit contour length (units m^/m)

S = slope (units are m/m)
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The upslope contributing area per unit contour length integrates the effects of 

contributing area and catchment convergence and divergence, and is an indirect measure 

of surface and subsurface runoff at a location in a catchment (Moore et al. 1988). Most 

forested watersheds have highly dissected topography and the rough surface precludes 

sheet flow so water quickly runs into rills or channels (Brown 1983). Moore et al.

(1988) attempted to use Ap to locate ephemeral gullies, but they had little success. They 

suggested that alternative approaches were needed to model erosion associated with 

ephemeral gullies.

Topographic Index (TI)

The topographic index (TI) developed by Beven and Kirkby (1979) is a function of 

upstream contributing area and local terrain slope. TI values represent the relative 

likelihood of saturation of the overburden at a given location by subsurface flow from 

further upslope and the occurrence of subsurface flow exfiltration (Buttle 2002). The TI 

predicts the relative potential for groundwater discharge along the land-water interface 

(Buttle 2002).

Researchers studying erosion associated with agricultural land uses have postulated that 

if ephemeral gully erosion could easily be prediced, then areas where conservation 

practices were needed would also be identified (Watson et al. 1986). This could also be 

true of areas where forestry is the principal land use. The development of ephemeral 

gullies is defined by topographic features of the landscape (Thome et al. 1986). In a 

field study, Anderson and Burt (1978) demonstrated that areas of topographic
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convergence are locations where surface saturation is facilitated, and where groundwater 

flow converges. They also demonstrated that areas with convergent topography 

produced greater stream discharge per unit catchment area compared to areas with 

divergent topography or straight slopes. Beven and Kirkby (1979) suggested that 

topography affects surface runoff, subsurface flow, and consequently the location of 

zones of surface saturation and the distribution of soil water content across a catchment. 

Their TI relates the topographic structure of a catchment and the distribution of soil 

water and the potential for saturation across a catchment.

Moore et al. (1988) calculated a TI to model the distribution of surface soil water and the 

location of ephemeral gullies by applying equation (3)

ln(As) = ln((A b)/S) (3)

Where;

Ab = upslope contnbuting area per unit contour length (units = m / m)

S = slope (units m / m)

Prosser and Dietrich (1995) reported a difference in the relationship between upstream 

contributing area per unit contour width and Tan(slope) among channelized and 

convergent flow elements. It could be interpreted that this also demonstrates differences 

in erosion potential associated with these types of features. There are a range of 

topographic indices that calculate an erosion hazard rating from a combination of 

upstream contributing area and slope. These are based on arguments of erosion
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controlled by shear stress and unit stream power; however, most of the available data on 

these are for degraded grasslands and tilled cropland with few examples from forested 

environments (Prosser and Abemethy 1999). Secondary attributes (e.g., TI) computed 

from two or more primary attributes (e.g., upslope area, slope) are important because 

they offer an opportunity to describe pattern as a function of process (Wilson and Gallant 

2000). By applying the In(As) index, Moore et al. (1988) were able to predict the 

distribution of ephemeral gullies within an Australian catchment.

The distribution of water within a catchment and the development of ephemeral gullies 

can be affected by factors other than those accounted for in the TI. These factors can be 

spatially variable and can include soil hydraulic properties and vegetation (Moore et al. 

1988). Overburden on the Precambrian Shield can vary in thickness (Hinton et al.

1993), and the overburden strongly affects runoff processes on the Precambrian Shield 

(Buttle et al. 2000). More complex indices that include additional variables such as 

climate and surficial geology may improve prediction efficiencies of these models, 

especially when working at regional scales (Wilson and Gallant 2000).

Upstream contributing area is affected by the flow direction algorithm that is used; 

hence, careful consideration must be given when deriving TIs from DEMs (Quinn et al. 

1991). Where topography is divergent, application of a single flow path algorithm can 

cause local inaccuracies in calculated flow accumulations, and in such areas it would be 

better to apply a multiple flow direction algorithm that distributes flow out of a cell 

among several adjacent cells. The inaccuracy associated with use of a single flow
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direction algorithm is most prevalent when working with grids that have resolutions of 

50 metres or more, and as finer resolution grids are used the inaccuracy assjmiptotically 

becomes less (Quinn et al. 1991).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

2.0 METHODS

2.1 SITE LOCATION

Two adjacent blocks of land scheduled for clearcut harvesting were identified 

approximately 30 kilometres north of Thunder Bay in the Mackenzie River Watershed 

(Figure 2.1). The 19.7 ha North Block is situated along the bottom end of the north 

branch of the West Walkinshaw River. The 44.7 ha South Block is situated along the 

bottom end of the south branch of the West Walkinshaw River. As the North and South 

Blocks were adjacent to streams, AOCs were prescribed in the forest management plan 

between each of the blocks and adjacent reaches of the West Walkinshaw. The AOCs 

were designated in the plan to be left undisturbed to function as buffer strips.

2.2 DESCRIPTION OF STUDY AREA

2.2.1 Natural Historv

The north and south branches of the West Walkinshaw join to flow eastward between 

the North and South Blocks, and eventually join the Mackenzie River to flow into Lake 

Superior. Immediately upstream of the point where they join, the North and South 

Branches respectively drain 11.63 and 13.35 square kilometers.
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Figure 2.1. North and South cutblocks and their locations along the north and south 
branches of the West Walkinshaw River. GIS data are displayed over an 
IKONOS image (May of 2001) collected after trees on the North and South 
Blocks were harvested.
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The study area is within the Port Arthur Hills physiographic unit, in the James Region of 

the Precambrian Shield (Bostock 1970). Granitic Archaean bedrock is predominant in 

this area, and it often breaks the surface. A complex glacial history that includes several 

ice margin advance/retreat cycles left morainal, glaciofluvial, glaciolacustrine, and 

aeolian deposits scattered across the region in which the study area lies. Across the 

region, the glacial events have produced a scattering of deeper glacial deposits, including 

morainic ridges, eskers, and drumlinoid features (Mollard and Mollard 1981). The study 

area is within a complex landform unit that is dominated by a till and sand veneer of 

ground moraine that covers a bedrock plain; however, in some areas the bedrock plain is 

exposed (Mollard and Mollard 1981). In this area the patchy groimd moraine can vary in 

thickness both locally and regionally (Zoltai 1965). The moderate surface relief is 

largely dictated by the topography of the bedrock (Mollard and Mollard 1981). Surface 

water features with self sustaining brook trout populations are scattered throughout the 

area where groundwater inputs maintain tolerable thermal conditions for this species 

(Picard 1995).

The Terrestrial and Wetland Ecosite Classification for Northwestern Ontario (T&WC) is 

an ecological classification system that is used to describe ecosites in NWO (Racey et al.

1996). Ecosites range in size from 10 -  100 ha, so the T&WC was an appropriate 

system to classify the North and South Blocks. The Forest Ecosystem Classification for 

Northwestern Ontario (EEC) is used to describe ecoelements in NWO (Sims et al. 1997). 

Ecoelements range in size from 0.01 -  10 ha (Racey et al. 1996), so the EEC was used
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to classify the soils and vegetation in the vicinity of each sampler.

Table 2.1 reports the FEC classifications for soils in the vicinity of each sampler. The 

sampler sites were located within topographic draws that ran through the riparian reserve 

areas where runoff from the hillslopes above would converge. Soils in the majority of 

pits in the North Block reserve had imperfect or very poor drainage, and subsurface flow 

was encountered in seven of them (Table 2.1). An Ah layer was observed in all of the 

north reserve pits, and mottling was common among them. Evidence of eluviation was 

absent in all of the pits in the North Block reserve. Soils in two pits in the South Block 

reserve had poor drainage, while drainage in the remaining six South Block pits ranged 

from well to very rapid (Table 2.1). Sub-surface flow was encountered in only two of 

the pits in the South Block reserve. Five of the eight pits in the South Block reserve had 

an Ae layer but no Ah. The remaining three southern reserve pits had an Ah layer but no 

Ae. Soils were classified as Brunisols (Canadian Agricultural Services Coordinating 

Committee 1998). Some gleying was evident, but not enough to classify the soils as 

Gleysols.

Table 2.2 reports the T&WC ecosite classification for the North and South Blocks, and 

FEC ecoelement classifications for the vegetation community in the vicinity of each 

sampler. The North Block was within a spruce-pine/ledum/feathermoss ecosite with 

moist, sandy-coarse loamy soil (Racey et al. 1996) (Table 2.2). The composition of the 

stand on the North Block was 90 % black spruce {Picea mariana Lamb.) and 10 % jack 

pine (Pinus banksiana (Mill.) B.S.P.) (OMNR 1997a). The average age of the overstory
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Table 2.1. Forest ecosystem classification for soils in the vicinity of each sampler (Sims 
etal. 1997).

Sampler Soil 
Drainage Class

Soil
Moisture Regime Soil Type

NR-00 Imperfect Moist Moist / Coarse Loamy 
(S8)

NR-10 Imperfect Very Moist
Moist / Coarse Loamy 

(S8)

NR-20 Very Poor Very Moist Moist / Sandy (S7)

NR-30 Imperfect Moist Moist / Fine Loamy -  
Clayey (SI0)

NM-00 Rapid Fresh Dry / Coarse Sandy (SI)

NM-10 Imperfect Very Moist Moist / Sandy (S7)

NM-20 Poor Moist Moist / Coarse Loamy 
(S8)

NM-30 Very Rapid Moderately Fresh Dry / Coarse Sandy (SI)

SR-00 Well Dry Dry / Coarse Loamy

SR-10 Moderately Well Moderately Moist Moist / Coarse Loamy

SR-20 Well Dry Fresh / Fine Sandy

SR-30 Poor Very Moist Moist / Coarse Loamy

SM-00 Poor Very Moist Moist / Fine Loamy - 
Clayey

SM-10 Rapid Fresh Dry / Coarse Loamy

SM-20 Very Rapid Moderately Fresh Dry / Coarse Sandy

SM-30 Well Moderately Fresh Dry / Coarse Sandy
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Table 2.2. Forest ecosite classification (Racey et al. 1996) for the North and South Blocks and forest ecosystem classification (FEC) 
(Sims et al. 1997) for vegetation in the vicinity o f each sampler.

Sampler Ecosite FEC Vegetation Type

I Spruce-Pine/Ledum/Feathermoss:
^ NR-00 moist, sandy-coarse loamy soil Black Spruce Mixedwood / Herh Rich (V I9)

(ES22)

NR-10 Black Spruce Mixedwood / Herb Rich (V19)

NR-20 Black Spruce Mixedwood / Herh Rich (V19)

-  NR 30 Trembling Aspen - Black Spruce - Jack Pine / Low Shrub
(VIO)

2. Black Spruce / Jack Pine / Tall Shrub / Feather MossNM-00 (V31)

NM-10 Black Spruce / Speckled Alder / Sphagnum (V35)

NM-20 Black Spruce Mixedwood / Herb Rich (VI9)

^ NM 30 Black Spruce / Labrador Tea / Feather Moss (Sphagnum)
(V34)

KJ\



CD■D—iO
o .co
CD
Q.

■D
CD

C/)W
o'o
o

Table 2.2. (Continued)

OO■D
cq'
o
o
CD

"nc
CD—i
CD■D—iO
o .c
a
oo
■D—io

CD
Q.

Sampler Ecosite FEC Vegetation Type

SR-00
Hardwood-Fir-Spruce Mixedwood: 

fresh, sandy-coarse loamy soil 
(ESI 9)

Black Spruce Mixedwood / Feathermoss (V31)

SR-10 Black Spruce / Feathermoss (V33)

SR-20 White Spruce / Balsam Fir / Feather Moss (V25)

SR-30 Jack Pine Mixedwood / Shrub Rich (VI7)

SM-00 Black Spruce / Feathermoss (V33)

SM-10 Black Spruce / Feathermoss (V33)

SM-20 Trembling Aspen - Black Spruce - Jack Pine / Low Shrub
(VIO)

SM-30 Black Spruce Mixedwood / Herb Rich (VI9)
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trees was approximately 100 years, average height was 12.2 m, and stocking was 50 % 

(OMNR 1997a). Generally, the soils and plant community growing within the reserve 

area along the north branch of the West Walkinshaw River was typical of a herb rich 

Black Spruce Mixedwood vegetation type (Sims et al. 1997) (Table 2.2). However, the 

wettest areas within the reserve were more typical of black spruce/labrador 

teayfeathermoss or black spruce/speckled alder/sphagnum vegetation types. Typical 

ground cover for a herb rich Black Spruce Mixedwood ecoelement is 49 % moss, 33 % 

broad leaf litter, and 12 % conifer litter; however, spruce/labrador tea/feathermoss can 

have 80 % or more moss ground cover (Sims et al. 1997). At most of the sampler 

locations, the LFH layer covering the soil ranged between 0.5 and 2 cm thickness; 

however, in the wetter areas it was up to 16 cm thick.

The extent of the South Block covered several forest stands; however, the study area was 

confined to the northern most of these. This stand was situated within a hardwood-fir- 

spruce mixedwood ecosite with sandy to coarse loamy soil (Racey et al. 1996) (Table

2.2). The composition of the forest stand was 50 % white birch {Betula papyrifera 

Marsh.), 30 % black spruce {Picea mariana Lamb.), and 20 % jack pine {Finns 

banksiana (Mill.) B.S.P.) (OMNR 1997b). The average age of the overstory trees was 

approximately 70 years, average height was 12.2 m, and stocking was 100 % (OMNR 

1997b). The riparian vegetation community and soil at the South Block reserve were 

more heterogeneous compared to those of the North Block (Table 2.2).
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The wettest portion of the southern reserve was typical of a black spruce/feathermoss 

ecoelement (Sims et al. 1997) (Table 2.2). Typical ground cover for this ecoelement is 

90 % moss (Sims et al. 1997). The thickness of the LFH layer covering the soil within 

this area ranged between 5 and 12 cm.

Shrub rich jack pine mixedwood and black spruce mixedwood/feather moss ecoelements 

were scattered along the upstream portion of the reserve (Sims et al. 1997) (Table 2.2). 

Typical ground cover in jack pine mixedwood areas is 36 % broad leaf litter, 32 % 

conifer litter, and 27 % moss, but in areas dominated by black spruce, moss cover is 

approximately 80 % while conifer litter ground cover is approximately 5 % (Sims et al.

1997). The LFH layer in these areas was approximately 4 cm thick.

Along the downstream section of the southern reserve, trembling aspen-black spruce- 

jack pine/low shrub forest ecoelements were more prevalent (Sims et al. 1997) (Table

2.2). Typical ground cover in these areas was 73 % broad leaf litter, 1 % moss, 10 % 

conifer litter, and 6 % wood (Sims et al. 1997). Generally, the LFH layer in this area 

was approximately 4 cm thick.

Common shrubs that were encountered in the North and South Blocks included 

twinflower {Linnaea borealis), dwarf raspberry {Ruhus pubescens), prickly wild rose 

{Rosa acicularis), serviceberry {Amelanchier), low sweet blueberry {Vaccinium 

angustifolium), velvet-leaf blueberry, (V. myrrilloides), bush honeysuckle (Diervilla
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lonicera), creeping snowberry {Gaultheria hispiduld), and labrador tea (Ledum 

groenlandicum). Speckled alder (Alnus rugosa) was present in the wettest areas.

Bunchberry {Comus canadensis), Canada mayflower (Maiamthemum canadense), blue 

bead lily {Clintonia borealis), starflower {Trientale boreale), wild sarsaparilla (Aralia 

nudicaulis), goldthread (Coptis trifolia), large leaf aster {Aster macrophyllus) and rose 

twisted-stalk (Streptopus roseus) were among the common herbs.

Mosses were represented by Schreber's moss {Pleurozium schreberi), wavy-leaved moss 

{Dicranum polysetum), plume moss {Ptilium crista-castrensis), and stair-step moss 

{Hylocomium splendens).

2.2.2 Forest Management Activities

Before harvesting activities commenced, the boundaries of 30 metre wide AOCs were 

flagged between the high water mark along the streams and all areas prescribed for 

clearcutting. These AOCs would be left imdisturbed to function as buffer strips to 

protect stream habitat from impacts generated by forest management related activities 

that would occur within the blocks. The width of the reserves was defined by the 

Timber Management Guidelines for the Protection of Fish Habitat (OMNR 1988), based 

on the slope of the terrain, as outlined in Appendix I.
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An existing road, which ended close to where the raingauge was installed, was upgraded 

and extended into the North Block during August and September of 1997 (Figure 2.1).

A temporary bridge was installed approximately 160 metres downstream of the 

confluence of the north and south branches of the West Walkinshaw River to provide a 

means for vehicular traffic to cross the river channel. During late November and 

December of 1997, merchantable timber growing on the North and South Blocks was cut 

using the full tree harvesting method. Feller bunchers were used to cut trees and place 

them in bunches. Grapple skidders transported bunches to roadside landings where the 

trees were then chipped. Slash was left in piles beside the landings and logging trucks 

hauled the chips to the mill. No site preparation or planting was done during the period 

of the study.

2.3 SEDIMENT SAMPLERS

2.3.1 Design

The design for the samplers used in this study was adapted from that presented by 

Bathke (1987), in which the sampler was described as a “semiportable multislot divisor 

for erosion and runoff measurements”. Bathke's sampler was designed to quantify 

erosion from experimental erosion plots that were 4.88 m wide by 15 m long, in 

agricultural fields (Bathke 1987). The main components of the sampler included an 

entrance flume, sedimentation tank, divisor box with divisor plate, and an aliquot tank, 

which were all made from sheet metal. The primary difference between the samplers 

used for this study and those of Bathke's was that pressure treated plywood was used in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

place of much of the sheet metal specified by Bathke. This change was made primarily 

to keep material costs at a minimum; however, the use of plywood also reduced the 

amount of welding that was required to fabricate the samplers. As welding is a task that 

requires specialized equipment and skills, a reduction in the need for it was considered 

an additional benefit of the material change. Rust resistant stainless steel screws were 

used as fasteners and all seams were sealed with aquarium grade silicone sealant to make 

them watertight. To further waterproof the samplers, 0.15 mm thick polyethylene 

sheeting was used to wrap the samplers before they were buried.

A complete sampler was made up of several components, including: a flume, main box, 

sedimentation tank, litter screens, divisor box with 21-slot divisor plate, levelling rods, 

and aliquot tank, and outflow trough (Figure 2.2). The following sections describe the 

design characteristics of each of these components.

2.3.1.1 Main Box

The main boxes were built out of 1.91 cm thick pressure treated plywood that was 

supported by a dimensional lumber frame. Application of either an interior or exterior 

framing system were considered to support the plywood walls of the main box against 

the pressure of backfilled earth after the sampler was set into the ground. It was decided 

that an interior system would provide the best support; however, this system caused 

sampler cleanouts to be more difficult as twice the number of inside comers resulted 

with this configuration. The samplers were approximately 48 cm wide, 64 cm long, and 

51 cm tall (exterior dimensions). When the depth of water collected inside the main box
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Figure 2.2 Schematic view of complete sampler installation, including flume with wing 
extensions and poly lining; sampler with divisor box support and levelling 
rods, and outflow diversion trough; and aliquot tank. The flume is situated to 
receive flow moving down the hillslope and the outlet of the outflow trough 
is placed at an elevation to allow runoff collected in the sampler to discharge 
through it.
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reached 33.3 cm, the bottom edge of the slots in the divisor plate were breached and 

water would start to flow out of the sampler. At that depth, approximately 81 litres of 

water and sediment would have been collected.

2.3.1.2 Settling Box

A smaller box, constructed of 1.27 cm thick pressure treated plywood was constructed to 

set inside the main box immediately below the entrance flume (Figure 2.3). This 

component would function as a sedimentation tank for bedload sediment carried into the 

sampler (Bathke 1987). As this box would not be subjected to pressure from backfilled 

earth, an exterior framing system was used to facilitate easier cleaning. Bathke (1987) 

explained that the suspended portion of the sediment load transported into the sampler 

would be kept in suspension by turbulence in the sedimentation tank. These smaller 

particles would be carried to the larger volume contained by the main box where reduced 

turbulence would allow these particles to settle out of the flow.

2.3.1.3 Divisor Box And Divisor Plate

The divisor box assembly, complete with 21-slot divisor plate, was attached to the 

downstream end of the main box (Figures 2.3 and 2.4). The divisor box functioned to 

separate a 1/21 aliquot of the total volume of runoff collected by the sampler, and an 

extension trough attached to the divisor plate directed the aliquot into a collection tank 

(Figure 2.2). This design feature facilitated the calculation of the total volume of runoff 

that flowed through the sampler and provided a sub-sample of runoff for dissolved and 

suspended sediment sampling. The remaining portion of the total flow (20/21) was
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Figure 2.3 Overhead schematic view of sampler assembly with downstream end on left.
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Figure 2.4 Schematic view of sampler, downstream end. Visible are: the main box, 
divisor plate, leveling rods, and cement pads.
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directed away from the sampler assembly by a length of 10.16 cm aluminum eavestrough 

that was attached to the front of the divisor box, beneath the divisor plate, and it was not 

collected (Figure 2.2).

Accurate ffactioning of the total volume of runoff that flowed though the sampler 

required that an equal volume of discharge flow through all slots in the divisor plate, and 

this required precise fabrication of the divisor plate. The divisor plate was manufactured 

from a 73.63 cm by 19.68 cm piece of 18 gauge sheet aluminum. The 21 slots were all 

precisely cut to be 10.16 cm tall and 1.27 cm wide, with a spacing of 1.91 cm (Figure 

2.5). The slots were positioned on the plate so the bottom edge of each intersected a 

straight line. Finally, after the sampler was setup in the field, stainless steel rods 

threaded through a length of 2.54 cm angle iron attached to the bottom edge of the 

divisor box were adjusted to set the bottom edges of the slots level to a bubble in a 

torpedo level (Figure 2.4). Concrete pads placed beneath the rods provided a firm base 

for support (Figure 2.4).

To maintain the aliquot as a 1/21 fraction of the total volume of water that flowed 

through the sampler, it was critical that an equal volume of discharge flowed through 

each of the 21 slots. A set of three galvanized metal screens (0.635 cm, 0.953 cm, and 

1.270 cm mesh sizes) supported by 1.91 cm thick pressure treated plywood frames were 

set inside the main box to filter organic material from water that flowed through the 

sampler and keep the divisor plate slots clear of debris. The size of mesh used was not 

critical; these sizes were chosen because they were locally available for purchase. The
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screens were set such that the coarsest was closest to the flume, the finest was closest to 

the divisor box, and the intermediate screen was set between these (Figure 2.3).

The divisor box assembly was wider than the main box, and this caused concern that the 

middle slots in the divisor plate, which were in line with the flume entrance-way into the 

main box, might be subject to faster and deeper discharge than slots situated toward the 

ends of the plate. This could have caused a degree of imprecision in the ratio of total 

discharge volume collected in the aliquot tank. To alleviate this problem, a length of one 

cm^ dimensional lumber was fastened to the floor of the divisor box, across its full 

width. This structure functioned as a micro-barrier head dam that distributed the flow of 

water across the width of the divisor box and maintained an equal volume of discharge 

through all 21 slots in the divisor plate.

2.3.1.4 Entrance Flume

The design of the sampler incorporated an entrance flume that was lined with 0.15 mm 

thick polyethylene sheeting to funnel surface runoff that flowed through a topographic 

draw into the sampler. A flume substructure, constructed from galvanized metal, was 

fastened to the entrance of the main box with stainless steel screws and served several 

functions: 1) it supported the poly lining at the entrance to the main box and prevented 

water from ponding in front of the sampler; 2) it directed the flow of water into the 

sedimentation tank that was set inside the main box. Flume wing extensions fashioned 

from 3.81 cm x 13.97 cm x 2.44 m dimensional lumber were used to extend the reach of
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the metal flume, and they functioned to direct the complete volume of surface runoff that 

flowed across the width of a draw into the sampler.

2.3.2 Installation

Samplers were designed to collect sediment transported by surface runoff; hence, they 

were installed in locations where surface runoff was most likely to occur (Figure 2.6). A 

DTM point surveying of the study area did not commence until after the trees were 

harvested; therefore, the 5 m resolution DEM and derivatives of it were not available 

sources of information during the sampler site selection process. Hence, suitable 

installation sites, which included flow accumulation pathways in areas of topographic 

convergence, were identified by field inspection. Topographic divides and knoll tops 

were avoided as it was unlikely that surface runoff would be generated on these features. 

A sampler installation site was identified along each of 16 different flow accumulation 

paths at a distance of either 0, 10, 20, or 30 metres into the reserve areas (measured from 

the boundary with the clearcut). Each flow accumulation path was in a different sub­

catchment. Finally, over a period of approximately six weeks during May and June of 

1997, eight samplers (two at each of the four distances into the reserves) were installed 

within each of the two reserve areas (Figure 2.7).

Figure 2.2 is an illustration of an installed sampler, and the following text describes the 

process of installing a complete sediment sampling unit.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CD■D—iO
o .co
CD
Q.

■D
CD

C/)(/)

OO■D
c q '

O’
CD—i
CD■D—iO
o .c
a
o
■D—iO

CD
Q .

■D
CD

(/)(/)

Figure 2.6. Samplers were installed 0,10, 20, or 30 metres deep into the reserve. Precise locations were chosen by carefully examining 
the terrain to determine where overland flow would most likely occur given the right precipitation and soil moisture 
conditions. These locations included; A) intermittent channels and B) draws, as indicated above by red dots.
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2.3.2.1 Main Box Installation

At each sampler site, a roughly cube-shaped hole of sufficient volume and depth was 

excavated to accommodate a sampler buried to the bottom edge of the flume entrance­

way into the main box. Excavated soil was placed into nylon bags commonly used to 

contain livestock feed. The pit was oriented to allow the sampler to be placed with the 

longest axis parallel with the direction of surface water movement. The bottom of each 

pit was smoothed and graded so the sampler would be stable and tilted slightly downhill 

to ensure water would flow out the divisor plate and not back up in the flume. Care was 

taken to level the sampler laterally to help ensure water would flow through each slot in 

the divisor plate at an equal depth and volume. Small cement pads were placed beneath 

each level adjusting rod to provide solid bases against which the level of the divisor plate 

could be adjusted (Figures 2.2 and 2.4).

2.5.2.2 Entrance Flume Installation

The area immediately uphill of the main box was grubbed and smoothed to prevent 

water from ponding on the flume lining. To ensure a sturdy connection to the sampler, 

the metal flume sub-structure was attached to the sampler with stainless steel screws. 

Stainless steel screws were also used to fasten the flume wing extensions to both the 

metal sub-structure and wooden posts that were driven into the ground uphill of the 

metal sub-structure. Figure 2.8 illustrates the procedure used to install a polyethylene 

liner between the wings of the flume. A shallow trench was dug into the ground 

between the uphill ends of the wing extensions and one end of a sheet of 0.15 mm 

polyethylene sheeting was placed into it. The remaining length of the polyethylene sheet
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Figure 2.8 Schematic illustrating how the leading edge of the poly flume liners was
installed to prevent the disturbance or exposure of soil above the entrance of 
the flume.
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was rolled up and temporarily placed above the trench while the trench was backfilled 

and packed. Finally, the polyethylene was unrolled and pulled back to cover the area 

between the flume wings. Use of this procedure to install the polyethylene sheeting 

prevented the disturbance of ground cover vegetation and litter, and limited the exposure 

of soil above the flume opening. The sheet was then smoothed and the bottom edge was 

trimmed to set above the sedimentation tank inside the main box. The bags containing 

the soil excavated to install the main box were placed on top of the polyethylene 

sheeting to hold it firmly against the exterior edges of the flume wings (Figure 2.2).

2.3.2.3 Aliquot Tank Installation

Downhill of each sampler, a hole was excavated to accept either a full 225 L drum 

buried horizontally, or half of a 225 L drum (cut perpendicular to the longest axis) buried 

vertically, with the open end up. Full, rather than half barrels were used to contain the 

greater volumes of water that were expected at locations where surface runoff was 

observed (NR-10, NR-20, and NM-10). The bottom of each hole was graded flat and 

level to optimize the holding capacity of the drums. In locations where full barrels were 

used, the barrels were oriented with the longest axis parallel with the direction of flow 

through the samplers. Both full and half barrels were placed so the extension troughs on 

the divisor plates hung over them (Figure 2.2). An opening (approximately 40 cm x 25 

cm) was cut into the top of each full barrel to provide an entrance-way for the aliquot 

sample.
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2.4 DATA COLLECTION

2.4.1 Precipitation

In the spring of each year (1997,1998, and 1999) a raingauge was installed 

approximately 300 m south of the stream crossing between the North and South Blocks 

to measure the amount of precipitation that fell between sampler cleanouts (Figure 2.1). 

The distance between samplers and the raingauge ranged from 234 to 354 meters for 

South Block samplers and 390 to 567 m' for North Block samplers. The raingauge was 

retrieved in the Fall of each year before it could be damaged from freezing; winter 

precipitation was not measured. Every two weeks, or each time a sampler was cleaned, 

the amount of precipitation collected in the raingauge was recorded and the collected 

precipitation was poured out. Where gaps in the precipitation dataset occurred after the 

raingauge was retrieved due to freezing temperatures. Environment Canada data 

collected at the Thunder Bay International Airport were used. The amoimt of rain 

collected in the raingauge between sampler cleanouts was summed to determine the 

amount of precipitation available to generate runoff for each sampler service period.

2.4.2 Sampler Site Description Variables

A set of local scale variables were collected to characterize conditions in the vicinity of 

each sampler (Table 2.3).
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Table 2.3. The eight independent variables evaluated for their effects on mineral and organic sediment collection in samplers. Included 
are: the measurement scale of the variable; the units at which the variable was measured and reported; the variable type: (1 
= Considered likely to change whether by natural processes or as a result of harvesting related activities, 2 = Considered 
unlikely to change by natural processes or as a result of harvesting related activities, 3 = Variables indicating the presence 
or absence of a condition or circumstance that may affect sediment collection rates, and 4 = Variable condition created as a 
result of forest management); and whether an Index of Change (IOC) value was calculated to quantify change in the 
condition of the variable in 1998 and/or 1999 compared to 1997.
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Variable Data Type Units Variable Type IOC Calculated Description

Reserve Width Ratio m No

Sub-catchment
Area

Distance To Road

Ratio

Ratio

ha

m

Yes

No

Distance from the entrance flume of 
each sampler to the edge of the 
undisturbed riparian reserve boundary at 
the edge of the clearcut (0, 10, 20, or 30 
m).

Area contributing runoff to each sampler 
based on surface topography as 
described by the DEM.

Shortest distance between the entrance 
flume of each sampler and the road.
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Flow Nominal Binary No

Windthrow Nominal Binary No

Based on the observation of surface 
runoff flowing into a sampler during the 
period of this study:
0 = no runoff observed
1 = runoff observed

Based on the occurrence, during the 
period of the study, of a windthrown tree 
within a distance of approximately five 
metres upstream of a sampler flume:
0 = no windthrow occurred
1 = windthrow occurred
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Variable Data Type Units Variable Type IOC Calculated Description

Crown Closure Ratio Percent Yes

LFH Thickness

Slope

Ratio

Ratio

cm

Percent

No

No

The average of four crown closure 
readings (one each facing north, east, 
south, and west) measured late in the 
summer of each year with a concave 
spherical crown densiometer that was 
placed and levelled on the lid of each 
sampler.

Thickness of all organic layers (LFH) 
covering mineral soil, measured at the 
the pit excavated to install each sampler.

Slope of the terrain over a distance of 
approximately 10 metres immediately 
above the entrance flume of each 
sampler measured with a handheld 
clinometer.
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Table 2.3 (Continued)

Variable Data Type Units Variable Type IOC Calculated Description

TI Ratio Relative 1 Yes Topographic index (TI) value o f the grid
cell coincident with each sampler. The 
TI value describes the relative 
probability of subsurface flow 
exfiltration. Generated from the primary 
DEM attributes catchment area and 
slope using equation (1).
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2.4.3 Feature Mapping And Production Of Digital Elevation Models

The following sections describe the field and office procedures that were used to survey 

and map features and elevations, and produce digital elevation models (DEMs) for the 

North and South Blocks.

2.4.3.1 Clearcut Boundarv Mapping

In 1998, after the North and South Blocks had been clearcut, vertices of the cutblock 

boundaries were located using a Trimble Pathfinder Plus global positioning system 

(GPS). Each vertex was mapped by differentially correcting and averaging at least 25 

GPS locations that were collected for each vertex, and OMNR base station data from 

Lakehead University and Trimble Pathfinder Office software were used to do this. 

Utilities available in the Pathfinder Office software were used to project the GPS data 

into the 1983 North American Datum (Nad83), Universal Transverse Mercator (UTM) 

projection, and Zone 16 UTM coordinate space, with metres as the units of distance 

measure. Boundary vertices were used to generate polygons that defined the area of each 

clearcut block.

2.4.5.2 Digital Terrain Model Point And Feature Surveving

A total of 505 digital terrain model (DTM) points in the North Block and 555 DTM 

points within the South Block were surveyed using a Sokkia total station and staff 

mounted reflective prism. The extents of the areas surveyed were limited to portions of 

the landscape that could directly contribute surface runoff (as defined by topographic
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divides) to sections of stream along which samplers were installed. The location of all 

samplers and flumes was surveyed, as were points along the road, points within the 

riparian reserves, points within the cuts, and points within the undisturbed forest 

surrounding the cuts. The location and spacing of points were determined in the field 

and these were guided by the objectives of accurately defining the paths of surface runoff 

and the bovmdaries of sub-catchments contributing surface runoff to the samplers. Point 

coordinates and elevations were recorded to the nearest centimeter. Although all DTM 

point data were collected post-impact, as they were surveyed each point was coded to 

describe whether or not the recorded elevation represented a disturbed or undisturbed 

elevation. Points surveyed where mineral soil was exposed, including locations on the 

road surface, in roadside ditches, within the road right-of-way, or on landings were 

coded as “disturbed”. All points surveyed where mineral soil was not exposed were 

coded as “undisturbed”.

2.4.3.3 DEM Generation. Sub-Catchment Delineation. And Feature Manning

Arclnfo Geographic Information System (GIS) software (version 7.2, Environmental 

Systems Research Institute) was used to import DTM point data and feature locations 

into a GIS database. The ANUDEM algorithm (Hutchinson 1988), available through 

ArcGrid with the TOPOGRIDTOOL command, was used to generate a pre-disturbance 

and a post-disturbance DEM for each cutblock area. Each DEM was created at a five 

metre resolution. DTM points coded "undisturbed" were used to generate the pre­

disturbance DEMs and those coded “undisturbed” or “disturbed” were used to generate 

the post-disturbance DEMs. DTM points from the OMNR's Natural Resources Values
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Information System (NRVIS) data set were used to supply point elevations for areas 

within DEM extents that were outside the extents of the areas surveyed with the total 

station.

All DEMs were filled using the FILL command in ArcGrid, then a D8 flow direction 

grid (Jenson and Domingue 1988) and a flow accumulation grid were generated from 

each filled DEM using the FLOWDIRECTION and FLOWACCUMULATION 

commands available through ArcGrid. Flow accumulation paths were viewed by 

displaying all cells with accumulation > 25 cells (equivalent to > 0.0625 ha contributing 

area). Using sampler locations as pour points, pre-disturbance and post-disturbance sub­

catchments were delineated using the appropriate grid data sets and the ArcGrid 

WATERSHED command. The results of the raster watershed delineations were used to 

determine pre-disturbance and post-disturbance sub-catchment areas for each sampler by 

multiplying the number of cells in the sub-catchments by the area of a grid cell (25 sq 

m). The shortest distance between each sampler and the road was measured from the 

GIS database using Arc View.

A secondary topographic attribute, Beven and Kirkby's (1979) topographic index (TI) 

was derived by applying equation (1) with the primary topographic attributes, sub­

catchment area and slope that were derived from each of the filled DEMs. Sub­

catchment areas were derived from the flow accumulation grid described previously.

The flow accumulation algorithm assigns zero values to headwater cells located along 

sub-catchment boundaries and to cells that represent peaks within a catchment. To
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calculate TI, these zero values had to be eliminated, so ArcGrid was used to add the 

value "one" to each cell in the grid. As a single flow direction algoritlm (the D8) was 

used to model the direction of flow out of each cell, the upstream contributing area per 

unit contour length for each cell was derived by multiplying the number of cells 

contributing flow to a cell (as defined in the grid with one added to the flow 

acciunulation count) by the grid resolution (Quinn et al. 1991), which for this study was 

equal to five. The SLOPE command (with the degrees option) available in ArcGrid was 

used to derive a grid of slope (in degrees) for each cell in the filled DEM. Once the 

requisite secondary grids were generated, TI grids were derived (by applying equation 

(1).

2.5 SEDIMENT COLLECTION AND PROCESSING

2.5.1 Sampler Cleanout

The volume of runoff water collected in a sampler was measured (with maximum 

capacity = 89 L) and eliminated by bailing it out of the sampler and pouring it through a 

stack of brass sieves that sat over a 25 L pail. The sieve stack included 3.35 mm, 1.70 

mm, 850 jum, 425 /xm, and 212 /xm sieves, which was a collection similar to that used to 

evaluate the effects of sediment on salmonid spawning redds (Chapman 1988). To 

sample the fraction of particles that were less than 212 /xm, a 500 ml grab sample was 

collected through the complete depth of each full 25 L bucket, after the volume was 

stirred to put particles in suspension. When the volume of bailed water was sufficient to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64

fill only a fraction of the 25 L bucket, the grab sample volume was reduced to an 

approximately equal fraction of 500 ml. Grab samples collected fi'om successive 25 L 

pails bailed from a sampler were combined, and a single composite 500 ml grab sample 

was collected fi'om that volume.

The inside surfaces of the sampler were brushed and rinsed with laboratory wash bottles 

filled with water that bad been passed through the sieves. Mineral and organic material 

were then collected from the bottom of the sampler and added to the sieve stack.

Finally, 20 L of filtrate that bad passed through the sieve stack were poured through the 

sieves to rinse the material through and sort it by size. The material that bad been 

collected on each sieve was then rinsed into separate 500 ml sample jars labeled with the 

appropriate sampler identification code, sieve screen size, and date. Excess water in the 

sample jars was decanted through the 212 /xm sieve.

When the volume of the mineral and organic material was more than approximately 2 L, 

it was taken back to the lab in 25 L pails for sieving after most of the water was 

eliminated by pouring it through the 212 /xm sieve that was set over a 25 L pail, and grab 

samples were collected by following the procedures described above. At the lab, these 

samples were sorted through the sieves using a hose and tap water. After sieving, these 

samples were rinsed into labeled 500 ml sample jars. Excess water in the sample jars 

was decanted through the 212 jam sieve. Grab samples were collected from the rinse 

water used at the lab as per the procedure used in the field, described above. This 

method provided a means of measuring the total volume of rinse water that was used.
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This volume was needed to calculate the total mass of < 212 jum sediment from the mass 

determined by processing the grab sample.

2.5.2 Sample Processing

Two sets of procedures were used to process sediment samples for determining mineral 

and organic contents by weight. Procedure (A) was applied to all material with a particle 

size ^212  jam. This sediment was filtered by one of the screens included in the sieve 

stack used to eliminate the liquid portion of the runoff collected by the samplers. 

Procedure (B) was applied to all material with a particle size <212 jxm. This sediment 

passed through all screen sizes included in the sieve stack used to eliminate the liquid 

portion of the runoff collected by the samplers.

The following two sections describe procedures (A) and (B), and Figure 2.9 graphically 

summarizes the two procedures through a flow chart.

2.5.2.1 Procedure (A): Particles >212 urn

Water remaining in the sample jars was eliminated by vacuum filtering the contents of 

each jar through oven dried and pre-weighed 18.5 cm diameter, fast flowing, coarse 

porosity (25 /xm) qualitative filters placed in Biichner-type funnels. Sieved size fractions 

were kept separate by using a different filter for the contents of each sample jar. All 

filtrate was discarded. Filters were placed on labelled foil trays that supported the filters
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Sam ple and  filter 
re- w eighed

U

Sam ple shaken, then  100 m l 
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C rucib le and sam ple oven- dried 
fo r 48  hours at 100 ®C

F or each sam pler, sedim ent w as processed by 
cleanout and particle size class. D ata for m ineral 
content w as m aintained by partie le  size class. 
O rganic contents derived from  the tw o procedures 
(A and B) w ere sum m ed by cleanout. M ineral and 
organic sam pling season to tals fo r each sam pler 
w ere derived by  sum m ing cleanout totals.
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C rucib le  and  sam ple 
w eighed
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Sam ple and filters placed 
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S am ple and  filter m uffled Sam ple rem ains, an d  crucible
for 3 .5  hours at 600 “C +/- 50 ®C cooled  in  dessicator, then re-w eighed

Figure 2.9 Sample collection and lab processing steps to determine mineral and organic content for sediment collected using procedure 
"A": sediment collected on sieves (3.35 pm, 1.70, 0.850 pm, 0.425 pm, and 0.212 pm sieves), and procedure "B": sediment 
<212 pm.
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while they were oven dried at 100 °C for at least 48 hours. Filters and samples were

-3weighed to the nearest gram x 10 after oven drying. An oven dried total sample 

weight (mineral and organic) was determined for each size fraction, for each sampler by 

subtracting the weights of the oven dried filters.

The samples and filters were then placed in prepared crucibles (pre-muffled and pre­

weighed to the nearest gram x 10'^) and were then muffled at 600° C (+/- 50° C) for 3.5 

hours. After the crucibles and remaining fractions of the samples were allowed to cool

_3
in a dessicator, they were again weighed to the nearest gram x 10 .

The weight of mineral matter for each particle size fraction was determined for each 

sampler by subtracting the weight of the oven dried filters and prepared crucibles from 

the combined weight of the muffled samples, filters, and prepared crucibles together.

The weight of the organic portion of all material collected on each sieve was calculated 

by subtracting the weight determined for the mineral matter from the oven dried total 

sample weights. No effort was made to report size distributions of organic material 

because it was subject to structural breakdown during the various steps involved with 

collecting and processing the samples. Total mineral and total organic weights for each 

sampler cleanout were determined by summing the mineral or organic weights calculated 

for each sieve used to process all material collected during a sampler cleanout event.
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The mass of all mineral and all organic material collected in a sampling season was 

determined by summing cleanout totals collected over each sampling season. Totals for 

the 1997 season included the material from all cleanouts as all of that material was 

transported by runoff from precipitation. To maintain legitimate comparisons between 

data collected over the three years, totals for 1998 and 1999 excluded material collected 

during the first cleanouts as much of that material could have been transported by runoff 

from snowmelt rather than from runoff generated by precipitation that fell as rain.

A seasonal collection rate (g-mm‘  ̂precipitation) was calculated for the collection of 

each material, mineral and organic, for each sampler. This was accomplished by 

dividing the seasonal total mass of material collected in a sampler (mineral or organic) 

by the total amount of effective precipitation the sampler was subject to during the 

sampling season.

2.5.2.2 Procedure (S'): Particles <212 um

After being shaken to put particles in suspension, 100 ml of the < 212 pm sample was 

pipetted through the full depth of each grab sample jar. The pipetted volume was placed 

into a prepared 150 ml crucible (previously oven dried, placed in a muffle furnace at 

550° C for 15 minutes, and weighed to the nearest milligram). The sample and crucible 

were put into a drying oven set at 100° C for at least 48 hours, after which time they 

were removed and weighed again. The sample and crucible were then placed into a 

muffle furnace set at 600° C (+/- 50° C) for 15 minutes. After cooling, the crucible and 

contents were again weighed to the nearest milligram.
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The oven dried total weight of the < 212 nm  sample was determined by subtracting the 

weight of the prepared crucible from the combined weight of the prepared crucible and 

sample after they were oven dried. The weight of the mineral portion of the sample was 

determined by subtracting the weight of the prepared crucible from the combined weight 

of the crucible and sample after they were muffled together. The weight of the organic 

portion of the sample was determined by subtracting the weight determined for the 

mineral material from the oven dried total weight.

Equation (3) was used to calculate the total mass of mineral and organic sediment <212 

jtim that were collected by a sampler during a collection period from the mass of mineral 

or organic matter determined for the 100 ml pipetted sample.

Total Mass <212/im = V / 10 * M (3)

Where:

V = Volume (in litres) bailed from sampler

M = Mass of mineral or organic sediment determined for 100 ml sample

2.6 DATA ANALYSES

Data were analysed by comparing descriptive statistics for mineral and organic 

collection rates for samplers based on groups defined by the variables described 

previously. Indices of change were calculated to quantify changes in mineral and 

organic collection rates and changes that were observed in the measured condition of the
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variables that were examined for their influence on sediment collection rates. Plots of 

the data were evaluated to determine: 1) the impact of forest management on mineral and 

organic sediment collection rates and 2) the influence of the factors on mineral and 

organic collection rates.

Sediment collection rate data for samplers were not normally distributed, and variances 

in sediment collection rates among groups of samplers (as defined by the variables 

described previously) were not equal. These conditions rendered data analysis with 

parametric techniques inappropriate as the assumptions (data normally distributed and 

with homogeneity of variance) were not met (Zar 1974). Furthermore, analysis using 

either parametric or non-parametric techniques would have been complicated by the 

repeated measuring of sediment collected in the samplers and the fact that it was not 

possible to replicate any of the samples (Zar 1974).

2.6.1 Index Of Change Analyses - Sediment Transport Rates

Pre- and post-harvest sediment collection rates for each sampler were compared by 

calculating indices of change from mineral and organic collection rates determined for 

each year, 1997,1998, and 1999. Four indices were calculated for each sampler that 

remained in service for each of the three years: 1) 1998/97 Mineral Index of Change 

(98/97 MIOC) compared the mineral collection rate observed in 1998 against that 

observed in 1997, 2) 1998/97 Organic Index of Change (98/97 OIOC) compared the 

organic collection rate observed in 1998 against that observed in 1997, 3) 1999/97
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Mineral Index of Change (99/97 MIOC) compared the mineral collection rate observed 

in 1999 against that observed in 1997,4) 1999/97 Organic Index of Change (99/97 

OIOC) compared the organic collection rate observed in 1999 against that observed in 

1997. The 99/97 index of change (IOC) values could not be calculated for samplers that 

were not in service during the 1999 sampling season.

The IOC values were calculated by applying equation (4).

IOC = In (r2/r0 (4)

Where;

ri = rate (g-mm'^ precip) in 1997

r2 = rate (g-mm'^ precip) in 1998 or 1999

Positive IOC values indicate a rate increase in 1998 or 1999 over 1997 while negative 

values indicate a rate decrease in 1998 or 1999 compared to 1997.

2.6.2 Index Of Change Analvses - Other Variables

Index of change values were calculated to compare 1997 (pre-disturbance) and 1998 

(first post-harvest year) or 1999 (second post-harvest year) values for several local and 

catchment scale attributes that were measured on a ratio scale (Table 2.3). Equation (5) 

was applied to calculate these indices of change.
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I0C = l n ( t 2 / t i ) ........................................ (5)

Where:

ti = value of attribute as measured in 1997

t2 = value of attribute as measured in 1998 
(first year post-barvest) or 1999 (second 
year post-barvest)

Application of equation (5) resulted with a positive IOC value when the post-barvest 

measure of an attribute was greater than the pre-barvest measure. A negative IOC value 

resulted when the post-barvest value of an attribute was less than the pre-barvest 

measmre of the attribute.

Only those data collected on a ratio scale were suited for this analysis. During the period 

of this study LFH thickness and topographic gradient were measured at each sampler 

only once as the conditions of these attributes were not expected to change during the 

period of the study. Index of change values were not calculated for the "sampler 

distance from road" and "sampler position within reserve" variables as these conditions 

could not be measured in the pre-disturbance situation.

An IOC value was calculated to quantify bow the size of the sub-catchment above each 

sampler was affected by the construction of the road and landings. The IOC values were 

also calculated to quantify differences in crown closure measured in 1998 or 1999 

against that measured in 1997.
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The local and catchment scale IOC values were plotted as independent variables against 

IOC values for mineral and organic collection rates to investigate how changes in the 

conditions of these attributes mitigated or encouraged sediment transport into the 

samplers.
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3.0 RESULTS

Sampling period duration and the number of sampling events (cleanouts) are presented 

in Table 3.1. Sampling occurred as regularly as possible given the constraints of weather 

and labour. In 1997 the total number of days sampled ranged from 83 to 127 days. 

Sampler NM-30 was taken out of service for a period of time in 1997 after sustaining 

flume damage from a windthrown tree. When sampler NM-30 was excluded, the 

sampling period duration in 1997 ranged from 119 to 127 days. In 1998 the sampling 

period duration ranged from 188 to 197 days, and in 1999 the sampling period duration 

ranged from 88 to 91 days.

3.2 PRECIPITATION

All raingauge readings for the spring through fall sampling period for the years 1997, 

1998, and 1999 are plotted in Figures 3.1, 3.2, and 3.3, respectively. The amount of 

rainfall affecting sediment movement, totaled by sampling season for each sampler, is 

presented in Table 3.2. Thirty year normal precipitation data from the Thunder Bay 

Airport were plotted with precipitation data collected at the clearcut to determine if the 

pattern and amount of precipitation that fell on the study area was similar to 30 year 

normal data from the Thunder Bay Airport.
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Table 3.1. Start and end dates of each sampling season for each of the samplers, and duration of each sampling season for each
sampler. The first cleanings in 1997 removed debris collected in samplers following installation. The first cleanings in 
1998 and 1999 removed sediment transported by spring runoff.

Sampler First 
Clean '97

Last 
Clean '97

# Days 
'97

First 
Clean '98

Last 
Clean '98

# Days 
'98

First 
Clean '99

Last 
Clean '99

# Days 
'99

NM-00 04Jul 31 Oct 119 20 May 26 Nov 190 11 Jun 07 Sep 88
NM-10 04Jul 06 Nov 125 20 May 27 Nov 191 11 Jun 07 Sep 88
NM-20 04Jul 06 Nov 125 20 May 27 Nov 191 11 Jun 07 Sep 88
NM-30 04Jul 25 Sep 83 20 May 26 Nov 190 11 Jun 07 Sep 88
NR-00 04 Jul 31 Oct 119 19 May 23 Nov 188 10 Jun 07 Sep 89
NR-10 04 Jul 31 Oct 119 19 May 24 Nov 189 10 Jun 07 Sep 89
NR-20 04 Jul 31 Oct 119 19 May 23 Nov 188 10 Jun 07 Sep 89
NR-30 04 Jul 31 Oct 119 19 May 23 Nov 188 10 Jun 07 Sep 89
SM-00 03 Jul 07 Nov 127 12 May 18 Nov 190 09 Jun 08 Sep 91
SM-10 03 Jul 07 Nov 127 12 May 18 Nov 190 09 Jun 08 Sep 91
SM-20 03 Jul 07 Nov 127 12 May 18 Nov 190 09 Jun 08 Sep 91
SM-30 03 Jul 07 Nov 127 12 May 18 Nov 190 09 Jun 08 Sep 91
SR-00 03 Jul 05 Nov 125 12 May 17 Nov 189 09 Jun 08 Sep 91
SR-10 03 Jul 06 Nov 126 12 May 25 Nov 197 09 Jun 08 Sep 91
SR-20 03 Jul 05 Nov 125 12 May 25 Nov 197 09 Jun 08 Sep 91
SR-30 03 Jul 06 Nov 126 12 May 17 Nov 189 09 Jun 08 Sep 91
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Figure 3.1 Cumulative total precipitation (mm) collected during the 1997 sampling season at the study site and Thunder Bay Airport,
and normal (30 year) monthly precipitation for the Thunder Bay Airport. (Environment Canada 1997)
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Figure 3.2. Cumulative total precipitation (mm) collected during the 1998 sampling season at the study site and Thunder Bay Airport,
and normal (30 year) monthly precipitation for the Thunder Bay Airport (Environment Canada 1998).
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Figure 3.3. Cumulative total precipitation (mm) collected during the 1999 sampling season at the study site and Thunder Bay Airport,
and normal (30 year) monthly precipitation for the Thunder Bay Airport (Environment Canada 1999).
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Table 3.2 Total amount of precipitation (mm) affecting each sampler, by year.

Sampler 1997 1998 1999

NM-00 203.2 578.1 n/a

NM-10 240.4 578.1 n/a

NM-20 241.7 578.1 228.1

NM-30 85.2 578.1 n/a

NR-00 203.2 578.1 232.6

NR-10 203.2 578.1 n/a

NR-20 203.2 578.1 232.6

NR-30 203.2 578.1 232.6

SM-00 229.2 581.5 288.2

SM-10 229.2 581.5 n/a

SM-20 229.2 581.5 288.2

SM-30 229.2 581.5 n/a

SR-00 229 581.5 288.2

SR-10 229 587.3 288.2

SR-20 229 587.3 288.2

SR-30 229 581.5 288.2
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The amount of precipitation that fell at the clearcut during the summer of 1997 was 

lower than the 30 year normal amount for the Thunder Bay Airport; however, rain events 

late in the fall brought the total amount of precipitation for the spring through fall period 

close to but slightly below the area normal (Table 3.2 and Figure 3.1). During most of 

the 1998 spring through fall sampling period the clearcut raingauge collected 

precipitation in a pattern and amount that closely matched data for the Thunder Bay 

Airport. Late October storm events produced precipitation in amounts sufficient to drive 

the 1998 sampling season total approximately 100 mm above normal amounts for the 

Thunder Bay Airport (Table 3.2 and Figure 3.2). The plot of the 1999 precipitation data 

closely matched the pattern and total amount presented by the 30 year normal data for 

the Thunder Bay Airport (Table 3.2 and Figure 3.3).

The amount of precipitation available to affect runoff potential varied not only among 

years, but also among samplers for any year (Table 3.2). In 1997 the total amount of 

effective precipitation among samplers ranged from 85.2 to 241.7 mm with sampler NM- 

30 subjected to the lowest amount of effective precipitation because flume damage from 

a windthrown tree caused it to be removed from service for a period of time. After 

excluding NM-30, the amount of effective precipitation ranged from 203.2 to 241.7 mm. 

The amount of effective precipitation among samplers in 1998 ranged from 578.1 to 

587.3 mm. The amount of effective precipitation among samplers in 1999 ranged from

228.1 to 288.2 mm.
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3.2 TRANSPORTED SEDIMENT

3.2.1 Rainfall Induced Sediment Transport

Summary statistics for mineral and organic sediment collection rates for all samplers for 

the years 1997, 1998, and 1999 are reported in Table 3.3. Mineral and organic sediment 

collection rates for each sampler are reported in Appendix n. Mineral and organic 

collection rates for each sampler are plotted by year in Figures 3.4 (1997), 3.5 (1998), 

and 3.6 (1999). The 1997 median mineral rate was almost 1.6 times greater than the

1998 median and more than 2 times greater than the 1999 median. Organic rate medians 

calculated for 1997 and 1998 were near identical; however, the 1999 rate was almost 75 

percent lower than these. The range among samplers in the rate that organic matter was 

collected exceeded that for mineral matter for each of the years 1997 and 1998 (n=16), 

and 1999 (n=10) (Table 3.3), and each sampler always collected organic matter at a 

higher rate than mineral material (Figures 3.4, 3.5, 3.6, and Appendix II). In 1997 the 

range for organic collection was more than four times greater than the range for mineral 

collection. In 1998 the range for organic collection was only 1.6 times greater than the 

range for mineral collection. The 1998 mineral collection rate calculated for sampler 

NR-10 far exceeded that calculated for any other sampler, and the rate for this sampler 

reduced the difference between the ranges for mineral and organic collection rates that 

year (Table 3.3, Figure 3.5, and Appendix II). Organic collection rates calculated from

1999 data had a range that was more than 6.5 times that for mineral matter that same 

year.
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Table 3.3 Summary statistics for mineral and organic sediment collection rates (g-mm'^ 
precip) for all samplers, in 1997 (pre-impact), and 1998 and 1999 (first and 
second years post-impact).

Year Material Median Range Maximum Minimum

1997 Mineral 0.0014 0.0054 0.0060 0.0006

1997 Organic 0.0056 0.0239 0.0265 0.0026

1998 Mineral 0.0009 0.7650 0.7652 0.0002

1998 Organic 0.0050 1.2606 1.2625 0.0019

1999 Mineral 0.0006 0.0021 0.0024 0.0003

1999 Organic 0.0014 0.0143 0.0152 0.0009
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Figure 3.4 Pre-impact (1997) organic and mineral sediment collection rates 
(log(l+g-mm'^ precip)) for each sampler.
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Figure 3.5 First year post-impact (1998) organic and mineral sediment collection rates 
(log(l+g-mm'' precip)) for each sampler (NR-10 excluded).
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3.2.2 Post Impact Differences In Sediment Collection Rates

Descriptive statistics (number, median, range, maximum and minimum) for 1998/97 

MIOC and OIOC and 1999/97 MIOC and OIOC values were calculated based on three 

different grouping structures: 1) All samplers remaining in service in the post-impact 

year, 2) All samplers with higher post-impact collection rates (positive IOC values), and 

3) All samplers with lower post-impact collection rates (negative IOC values) (Table 

3.4). Mineral and organic IOC values comparing sediment transport rates for each 

sampler in 1998 with those in 1997 are plotted in Figure 3.7. Mineral and organic IOC 

values comparing sediment transport rates for each sampler in 1999 with those in 1997 

are plotted in Figure 3.8. The MIOC and OIOC values (1998/97 and 1999/97) for each 

sampler are reported in Appendix HI.

Compared to 1997, five of 16 samplers collected mineral material at a higher rate in 

1998, and the remaining 11 samplers collected mineral material at lower rates in 1998 

compared to 1997. Seven samplers collected organic material at a higher rate in 1998 

compared to 1997 while the remaining nine samplers collected organic material at lower 

rates in 1998 compared to 1997. In 1999, the second post-harvest year, only 10 samplers 

remained in service. During that year a pair of samplers collected mineral material at 

higher rates than were observed in 1997. The remaining eight samplers collected 

mineral material at lower rates in 1999 compared to 1997. Two samplers collected 

organic matter at higher rates in 1999 compared to 1997. The remaining eight samplers 

collected organic material at lower rates in 1999 compared to 1997.
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Table 3.4 Descriptive statistics for mineral and organic indices of change (MIOC and 
OIOC, respectively) values. Statistics are reported by comparison grouping 
(1998/97 or 1999/97) and material type (mineral or organic) with samplers 
grouped in three different ways: 1) All samplers remaining in service in the 
post-impact year, 2) All samplers with higher post-impact collection rates 
(positive IOC values), 3) All samplers with lower post-impact collection rates 
(negative IOC values).

Group Statistic 98/97 MIOC 98/97 OIOC 99/97 MIOC 99/97 OIOC

All N 16 16 10 10

Median -0.7537 -0.0808 -0.8989 -1.0778

Range 6.7267 6.4992 2.5272 2.9949

Maximum 4.8425 5.1125 0.6476 0.8734

Minimum -1.8842 -1.3867 -1.8795 -2.1214

Positive N 5 7 2 2

Median 0.1766 0.5150 0.34286 0.7285

Range 4.7371 4.7925 0.6096 0.2900

Maximum 4.8425 5.1125 0.6476 0.8734

Minimum 0.1055 0.3199 0.0381 0.5835

Negative N 11 9 8 8

Median -0.8669 -0.3391 -1.0032 -1.1870

Range 1.5947 1.3515 1.3192 1.8211

Maximum -0.2894 -0.0352 -0.5603 -0.3003

Minimum -1.8842 -1.3867 -1.8795 -2.1214
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Figure 3.7 1998/97 Index of change (IOC) values for mineral and organic sediment 
collection rates for each sampler.
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Figure 3.8 1999/97 Index of change (IOC) values for mineral and organic sediment 
collection rates for each sampler.
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A post-harvest increase in the rate a sampler collected one material (mineral or organic) 

did not always coincide with an increase for the other, as is clearly demonstrated by 

membership differences between the two groups described above (Figures 3.7, 3.8, and 

Appendix II).

In general, there was only marginal change in the post- compared with pre-impact 

mineral or organic collection rates for each sampler; however, rate changes from 1997 to 

1998 for NR-10 and NR-20 were exceptions to this (Figure 3.7 and Appendix II).

Mineral and organic collection rates for all samplers generally were lower during the 

post harvest years; however, 1997 to 1998 rate differences for samplers NR-10 and NR- 

20 were prominent exceptions to this condition (Appendix 2 and Figure 3.7). The 98/97 

MIOC value for sampler NR-10 was 4.8425 and far exceeded that of any other sampler. 

The 98/97 MIOC value for NR-20 was the second highest and was one quarter of that for 

NR-10. The 98/97 OIOC value for sampler NR-10 was 5.1125 and far exceeded that of 

any other sampler. The 98/97 OIOC value for NR-20 was the second highest and was 

one third of that for NR-10. The organic collection rate increase for sampler NM-IO in 

1998 compared to 1997 was also prominent; however, it was about one quarter of that 

posted by NR-10 (Appendix 2 and Figure 3.7).

3.2.3 Reserve Width Effects On Sediment Collection Rates

Mineral and organic collection rates for each sampler position in the reserve (0, 10, 20 or 

30 m) for 1997, 1998, and 1999 data are presented in Figures 3.9, 3.10, and 3.11.
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Figure 3.9 Mineral and organic sediment collection rates (log(l+g-mm'^ precip)) in
1997, by sampler position in the reserve (0,10, 20, or 30 m). Boxplots show 
the median, 25 and 75 percentiles, and maximum and minimum values.
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Figure 3.10 Mineral and organic sediment collection rates (log(l+g-mm'‘ precip)) in
1998, by sampler position in the reserve (0, 10, 20, or 30 m) (data for NR- 
10 excluded). Boxplots show the median, 25*'’ and 75“’ percentiles, and 
maximum and minimum values.
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The 1997 data are supplied for comparison with post-harvest data and to report patterns 

in sediment collection rates that were observed through the stream side forest areas 

before forest management impacts had occurred. Descriptive statistics for mineral and 

organic sediment collection rates by sampler position in the reserve for each year are 

presented in Appendix IV.

In 1997, the median and range in mineral collection rates were similar among sampler 

positions in the reserve (Figure 3.9). The median rates of organic collection were similar 

among the four sampler positions in the reserves, but the range among samplers at a 

specific position in the reserve tended to decrease as distance into the reserves increased 

(Figure 3.9).

In 1998, the median mineral collection rates for samplers at all positions in the reserves 

were similar. However, the ranges in mineral collection rates were 637 and 6 times 

greater in the 10 and 20 m positions respectively, compared to the 0 and 30 m positions 

(Figure 3.10). The 1998 median organic collection rates for all positions within the 

reserves were similar, but samplers at 10 m positions had a range more than 104, 72, and 

30 times greater than the magnitude of range among samplers located respectively at 30, 

20, and 0 m positions (Figure 3.10).

In 1999, only one sampler in a 10 m position was in service, but the ranges in mineral 

collection rates among samplers located at the 0, 20, and 30 m positions were similar 

(Figure 3.11). However, at 0.001 g-mm"' precip, samplers located 30 m into the reserves
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had the highest median mineral collection rate, and there tended to be a positive 

relationship between both the range and median mineral collection values and distance 

into the reserve. In 1999, the ranges in the organic collection rates were similar for 

samplers installed at the 0 and 30 m positions, and the median collection rates were 10 

and 4.3 times higher, respectively, than the median rate for samplers at the 20 m 

positions.

To further evaluate the influence of forest management on sediment movement in the 

reserve, descriptive statistics (number, median, range, maximum and minimum) for 

1998/97 MIOC and OIOC and 1999/97 MIOC and OIOC values were calculated for each 

sampler position in the reserve (m into reserve measured from the reserve/cutover 

boundary) (Table 3.5). The 1998/97 MIOC and OIOC values for each sampler are 

plotted with sampler position in the reserve in Figures 3.12 and 3.13. Most of the 

samplers collected mineral and organic matter at lower rates in 1998; however, samplers 

NR-10 and NR-20 were notable exceptions. The magnitude of reduction observed in 

sediment collection rates in 1998 compared to 1997 does not appear to be related to 

sampler position in the reserve. The 1999/97 MIOC and OIOC values for each sampler 

are plotted with sampler position in the reserve in Figures 3.14 and 3.15. Again, most of 

the samplers collected mineral and organic matter at lower rates in 1999. Sampler NR- 

10 was not in service during 1999, but mineral and organic collection in sampler NR-20 

were less that year compared to 1997. The level of reduction observed in 1999 

compared to 1997 collection rates did not appear to be related to sampler position in the 

reserve.
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Table 3.5 Descriptive statistics for 1998/97 mineral and organic indices of change 
(MIOC and OIOC, respectively) and 1999/97 MIOC and OIOC values by 
sampler position in the reserve.

1998/97 1999/97

Position Statistic MIOC OIOC MIOC OIOC

0 N 4 4 3 3

Median -1.0390 0.1611 -1.0737 -0.5537

Range 1.3884 1.8163 0.2481 2.6801

Maximum 0.1082 0.4296 -0.9328 0.5835

Minimum -1.2802 -1.3867 -1.1810 -2.0967

10 N 4 4 1 1

Median -0.7415 0.5823 -0.86184 -1.1651

Range 5.8002 5.9513 0.0000 0.0000

Maximum 4.8425 5.1125 -0.8618 -1.1651

Minimum -0.9577 -0.8389 -0.8618 -1.1651

20 N 4 4 4 4

Median -0.3123 -0.2328 -0.7127 -1.0996

Range 3.1230 2.8675 1.9176 1.8211

Maximum 1.2388 1.5562 0.0381 -0.3003

Minimum -1.8842 -1.3113 -1.8795 -2.1214

30 N 4 4 2 2

Median -0.5781 0.0075 -0.3246 -0.3231

Range 1.0850 1.6812 1.9445 2.3931

Maximum 0.1766 0.5150 0.6476 0.8734

Minimum -0.9085 -1.1662 -1.2969 -1.5197

Total N 16 16 10 10

Median -0.7537 -0.0808 -0.8989 -1.0777

Range 6.7267 6.4992 2.5272 2.9949

Maximum 4.8425 5.1125 0.6476 0.8734

Minimum -1.8842 -1.3867 -1.8795 -2.1214
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Figure 3.12 1998/97 mineral index of change (MlOC)values and sampler position 
within the reserve (0, 10, 20, or 30 m) for each sampler.
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Figure 3.13 1998/97 organic index of change (OIOC) values and sampler position 
within the reserve (0, 10, 20, or 30 m) for each sampler.
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Figure 3.14 1999/97 mineral index of change (MIOC) values and sampler position 
within the reserve (0, 10, 20, or 30 m) for each sampler.
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Figure 3.15 1999/97 organic index of change (OIOC) values and sampler position 
within the reserve (0, 10, 20, or 30 m) for each sampler.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

3.2.4 Sub-Catchment Area Effects On Sediment Collection Rates

Pre- and post-impact flow accumulation paths and sub-catchment boundaries for North 

Block samplers are illustrated in Figure 3.16. Pre- and post-impact flow accumulation 

paths and sub-catchment boundaries for South Block samplers are illustrated in Figure 

3.17. Comparison of pre- and post-impact flow accumulation paths reveals how design 

elements of roads, including the raised running surface, ditches, and placement of 

culverts, effectively dammed and re-routed surface run off (Figures 3.16 and 3.17). Six 

of the eight North Block sub-catchments delineated using the pre-disturbance DEM were 

dissected by the road (Figure 3.16), but none of the South Block sub-catchments were 

crossed by the road (Figure 3.17). A set of IOC values were calculated to quantify the 

effects of forest management on sub-catchment area (Table 3.6). The size of three of the 

sixteen sub-catchments increased, six decreased, and seven did not change (Table 3.6). 

The sub-catchment area IOC values ranged from -2.1263 (NR-20) to 3.6659 (NR-00) 

and represent considerable alteration (increase or decrease) to the sub-catchment area 

uphill of some samplers (Table 3.6). Most of the sub-catchment areas in the South 

Block did not change, but of those that did, the change was marginal compared to that 

which occurred in the North Block (Table 3.6).

Descriptive statistics for pre- and post-impact sub-catchment areas for all samplers in 

service each year are reported in Table 3.7. The range for sub-catchment area was 

marginally reduced by the impacts of forest management (Table 3.7). However, surface 

flow re-routing caused by forest management caused the median sub-catchment area for
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Table 3.6 Pre- and post-impact sub-catchment areas (ha), and index of change for 
sub-catchment area for each sampler.

Sampler Pre-Cut Area Post-Cut Area Index of Change

NR-00 0.0275 1.0750 3.6659

NR-10 0.2325 0.1750 -0.2841

NR-20 1.2575 0.1500 -2.1262

NR-30 0.2925 0.2375 -0.2083

NM-OO 0.0350 0.0275 -0.2412

NM-10 4.2625 4.0575 -0.0493

NM-20 0.0275 0.1950 1.9588

NM-30 0.0100 0.0100 0.0000

SR-00 0.0375 0.0375 0.0000

SR-10 0.0175 0.0125 -0.3365

SR-20 0.0625 0.0625 0.0000

SR-30 0.5450 0.5475 0.0046

SM-00 0.3275 0.3275 0.0000

SM-10 0.0175 0.0175 0.0000

SM-20 0.0300 0.0300 0.0000

SM-30 0.0600 0.0600 0.0000
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Table 3.7 Descriptive statistics for the sub-catchment areas (ha) of all samplers in 
service for each of the sampling years, 1997,1998, and 1999.

Statistic 1997 1998 1999

n 16 16 10

Median 0.0488 0.1063 0.1725

Range 4.2525 4.0475 1.0625

Maximum 4.2625 4.0575 1.0750

Minimum 0.0100 0.0100 0.0125
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all samplers to increase by a factor of approximately two (Table 3.7 and Figures 3.16 and 

3.17).

Mineral collection rates and sub-catchment area for each sampler are plotted for the 

years 1997 through 1999 in Figure 3.18, and organic collection rates and sub-catchment 

area are plotted for the years 1997 through 1999 in Figure 3.19. A consistent 

relationship between mineral or organic collection rate and sub-catchment area is not 

presented in any of the plots.

To investigate the influence of sub-catchment area on sediment collection rates, the 

1998/97 MIOC and OIOC values for each sampler were plotted with IOC values for sub­

catchment area (Figures 3.20 and 3.21). Summaries of 1998/97 MIOC and OIOC values 

for samplers with: a) no change in sub-catchment area after forest management, b) sub­

catchment areas that became smaller after forest management, and c) sub-catchment 

areas that became larger after forest management are presented in Table 3.8. Among the 

samplers that had higher mineral collection rates in 1998 compared to 1997, three had a 

post-impact reduction and two had a post-impact increase in sub-catchment area. The 

median 1998/97 MIOC among the group with smaller sub-catchment areas was more 

than 8.75 times greater than the group with larger sub-catchments. Among the samplers 

that had higher organic collection rates in 1998 compared to 1997, five had post-impact 

reductions and one had a post-impact increase in sub-catchment area. The median 

1998/97 OIOC among the group with smaller sub-catchments was more than three times 

greater than the sampler with a larger sub-catchment.
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Figure 3.18 Mineral eolleetion rates (log(l+ g-mm'^ precip)) plotted against sub-
eatchment area (ha) for each sampler (1998 NR-10 data excluded) for the 
years 1997,1998, and 1999.
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Figure 3.19 Organic collection rates (log(l+ g-mm'^ precip)) plotted against sub-
catehment area (ha) for each sampler (1998 NR-10 data excluded) for the 
years 1997, 1998, and 1999.
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Figure 3.21 1998/97 organic index of change (OIOC) values and index of change (IOC) 
values for sub-catchment area for each sampler.
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Table 3.8 Descriptive statistics for 1998/97 mineral and organic indices of change 
(MIOC and OIOC, respectively) values for samplers (n=16) with: a) no 
change in sub-catchment area after forest management impacts, b) sub­
catchment areas that became smaller after forest management impacts, and c) 
sub-catchment that became larger after forest management impacts.

Material Collection IOC 
>0 or <0 Area IOC = 0 Area IOC < 0 Area IOC > 0

Mineral >0 Quad = n/a Quad = 4 Quad = 1
N = 0 N = 3 N = 2
Sampler(s) = n/a Sampler(s) = NR-10, Sampler(s) = NM-
Median = n/a NR-20, NR-00 20, SR-30
Range = n/a Median = 1.2388 Median = 0.1410
Max - n/a Range = 4.7343 Range = 0.0711
Min - n/a Max= 4.8425 

Min = 0.1082
Max= 0.1766 
Min = 0.1055

Mineral <0 Quad = n/a Quad = 3 Quad = 2
N = 7 N = 3 N= 1
Sampler(s) = NM-30, Sampler(s) =NR-30, Sampler(s) = NR-
SR-00, SR-20, SM-00, NM-10, SR-10 00
SM-10, SM-20, SM- Median = -0.7058 Median = -1.2137
30 Range = 0.4878 Range = 0
Median = -0.9085 Max= -0.2894 Max=-1.2137
Range = 1.1540 Min = -0.7772 Min = -1.2137
Max= -0.7301
Min = -1.8842

Organic >0 Quad = n/a Quad = 4 Quad = 1
N= 1 N = 5 N= 1
Sampler(s) =SM-30 Sampler(s) =NR-10, Sampler(s) = NR-
Median = 0.51499 NR-20, NR-30, NM- 00
Range = 0 OO, NM-10 Median = 0.4296
Max= 0.5150 Median = 1.3167 Range = 0
Min = 0.5150 Range = 4.7925 

Max= 5.1125 
Min = 0.3199

Max= 0.4296 
Min = 0.4296

Organic <0 Quad = n/a Quad = 3 Quad = 2
N = 6 N= 1 N = 2
Sampler(s) = NM-30, Sampler(s) =SR-10 Sampler(s) =NM-
SR-00, SR-20, SM-00, Median = -0.8389 20, SR-30
SM-10, SM-20 Range = 0 Median = -0.2157
Median = -0.7527 Max=-0.8389 Range = 0.1783
Range =1.3515 Min = -0.8389 Max=-0.1265
Max= -0.0352 Min = -0.3049
Min = -1.3867
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To investigate the influence of sub-catchment area on sediment collection rates, the 

1999/97 MIOC and OIOC values for each sampler were plotted with IOC values for sub­

catchment area (Figures 3.22 and 3.23). Summaries of 1999/97 MIOC and OIOC values 

for samplers with: a) no change in sub-catchment area after forest management, b) sub­

catchment areas that became smaller after forest management, and c) sub-catchment 

areas that became larger after forest management are presented in Table 3.9. Two 

samplers had higher mineral collection rates in 1999 compared to 1997, and both of 

these samplers had smaller sub-catchment areas after the impacts of forest management. 

Only one sampler had a higher organic collection rate in 1999 compared to 1997, and it 

had a smaller post-impact sub-catchment.

Overall, the examinations of Figures 3.20 through 3.23 revealed no consistent 

relationships between the IOC values for sub-catchment area and either MIOC or OIOC 

values for any of the sampling year comparisons. The greatest mineral and organic 

collection rate increases observed in 1998 were associated with sampler NR-10, but this 

sampler had a marginal reduction in sub-catchment area (Figures 3.20 and 3.21). 

Samplers NR-00 and NM-20 were the only samplers with considerable sub-catchment 

area increases after road building and harvesting; however, both samplers had mineral 

and organic collection rates in 1998 and 1999 that were similar to or lower than in 1997 

(Figures 3.20-3.23). Sampler NR-20 had the greatest reduction in sub-catchment area, 

but it had the second highest rate of increases in both mineral and organic collection 

rates during 1998 and 1999 over 1997 (Figures 3.20-3.23).
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Figure 3.22 1999/97 mineral index of change (MIOC) values and index of change (IOC) 
values for sub-catchment area for each sampler.
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Figure 3.23 1999/97 organic index of change (OIOC) values and index of change (IOC) 
values for sub-catchment area for each sampler.
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Table 3.9 Descriptive statistics for 1999/97 mineral and organic indices of change 
(MIOC and OIOC, respectively) values for samplers (n=16) with: a) no 
change in sub-catchment area after forest management impacts, b) sub­
catchment areas that became smaller after forest management impacts, and c) 
sub-catchment that became larger after forest management impacts.

Material Collection IOC 
>0 or <0 Area IOC = 0 Area IOC < 0 Area IOC > 0

Mineral >0 Quad = n/a Quad = 4 Quad = 1
N = 0 N = 2 N=0
Sampler(s) = n/a Sampler(s) = NR-20, Sampler(s) = n/a
Median = n/a NR-30 Median = n/a
Range = n/a Median = 0.3429 Range = n/a
Max = n/a Range = 0.6096 Max = n/a
Min = n/a Max= 0.6476 

Min = 0.0381
Min = n/a

Mineral <0 Quad = n/a Quad = 3 Quad = 2
N = 4 N= 1 N = 3
Sampler(s) = SR-00, Sampler(s) = SR-10 Sampler(s) = NR-00,
SR-20, SM-00. SM- Median = -0.8618 NM-20, SR-30
20 Range = 0 Median = -1.1810
Median = -1.0032 Max= -0.8618 Range = 0.4319
Range = 1.3192 Min = -0.8618 Max= -0.8650
Max= -0.5603 Min = -1.2969
Min = -1.8795

Organic >0 Quad = n/a Quad = 4 Quad = 1
N= 1 N= 1 N = 0
Sampler(s) = SM-00 Sampler(s) = NR-30 Sampler(s) = n/a
Median = 0.5835 Median = 0.8734 Median = n/a
Range = 0 Range - 0 Range = n/a
Max= 0.5835 Max= 0.8734 Max = n/a
Min = 0.5835 Min = 0.8734 Min = n/a

Organic <0 Quad = n/a Quad = 3 Quad = 2
N = 3 N = 2 N = 3
Sampler(s) = SR-00, Sampler(s) = NR-20, Sampler(s) = NR-00,
SR-20, SM-20 SR-10 NM-20, SR-30
Median = -2.0967 Median = -0.7327 Median = -0.9904
Range = 0.9125 Range = 0.8648 Range = 0.9658
Max=-1.2089 Max= -0.3003 Max= -0.5539
Min = -2.1214 Min = -1.1651 Min = -1.5197
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3.2.5 Distance From Road Effects On Sediment Collection Rates

The shortest straight line distance between each sampler and the road is reported in 

Table 3.10. Among all sixteen samplers, this distance had a range of 275.45 m, with a 

maximum of 306.80 and minimum of 31.35 m. The range in distance from the road for 

the ten samplers that remained in service in 1999 was 258.49 m with a maximum of 

306.80 and minimum of 48.31 m.

Mineral collection rates for the years 1997, 1998 and 1999 are plotted with sampler 

distance from the road in Figure 3.24, and organic collection rates are plotted against 

sampler distance from the road in Figure 3.25. The 1998 collection rates for sampler 

NR-10 were much higher than those for any other sampler during the period of the study; 

hence, excluding these data created plots at scales that better presented relationships 

between distance from road and the sediment collection rates associated with the 

majority of samplers. The road was not constructed until late in the 1997 sampling 

season; hence data for that year are plotted only for comparison with post-impact data. 

For each of the years 1998 and 1999, negative curvilinear relationships between both 

mineral and organic collection rates and sampler distance from the road are apparent. 

However, plots of the 1997 data exhibit similar relationships and the road was not 

constructed until the latter part of the sampling season that year.

To investigate the effects of forest management roads on changes among sediment 

transport rates, sampler distances from the road were plotted with 1998/97 MIOC and
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Table 3.10 Shortest distance (m) between each sampler and the road.

Sampler Distance To Road

NR-00 55.62

NR-10 57.78

NR-20 67.99

NR-30 70.87

NM-00 31.35

NM-10 50.53

NM-20 48.31

NM-30 43.47

SR-00 272.34

SR-10 231.12

SR-20 306.80

SR-30 243.54

SM-00 208.00

SM-10 173.42

SM-20 135.58

SM-30 154.92
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each sampler (1998 NR-10 data excluded) plotted against sampler distance 
from road. The road was not present in 1997; hence, data for that year are 
plotted for comparison only.
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OIOC values, respectively, in Figures 3.26 and 3.27. Generally, 1998/97 MIOC and 

OIOC variance was higher among samplers located closer to the road compared to those 

located further away. Samplers NR-10 and NR-20, which had the highest 1998/97 

MIOC and OIOC values, were the seventh and eighth closest to the road (Figures 3.26 

and 3.27). Sampler NM-10 was the sixth closest to the road and it had the third highest 

1998/97 OIOC value (Figure 3.27).

To investigate the effects of forest management roads on changes among sediment 

transport rates, sampler distances from the road were plotted with 1999/97 MIOC and 

OIOC values, respectively, in Figures 3.28 and 3.29. Generally, 1999/97 MIOC variance 

was higher among samplers located closer to the road compared to those located further 

away (Figure 3.28). Of the samplers remaining in service in 1999, NR-30 and NR-20 

were the only samplers with higher mineral collection rates in 1999 compared to 1997, 

and of the samplers in service they were the second and third closest to the road (Figure 

3.28). Sampler NR-30 also had the highest OIOC value for the 1999/97 comparison 

(Figure 3.29).

3.2.6 Surface Runoff Effects On Sediment Collection Rates

Samplers were classified based on the presence or absence of surface runoff or 

windthrow impact (Table 3.11). Samplers NR-10 and NR-20 were installed 1 - 2 m 

down slope of an area where emerging groundwater flow was frequently observed.

Upon emerging, the water was concentrated into small channels or rills, 2 - 4 cm wide.
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Figure 3.26 1998/97 mineral index of change (MIOC) values plotted against sampler 
distance from road.
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Figure 3.27 1998/97 organic index of change (OIOC) values plotted against sampler 
distance from road.
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Figure 3.28 1999/97 mineral index of change (MIOC) values plotted against sampler 
distance from road.
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Figure 3.29 1999/97 organic index of change (OIOC) values plotted against sampler 
distance from road.
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Table 3.11 Sampler classifications based on: 1) observations of surface runoff entering 
the sampler during the period of the study, and 2) the occurrence of wind 
thrown overstory tree(s) within approximately five m uphill of the flume 
during the period of the study.

Sampler Surface Runoff 
Observed

Date Runoff 
First Noted

Windthrow
Impacted

Date Windthrow 
First Noted

NR-00 No n/a No n/a

NR-10 Yes 14 Jul 97 Yes 07 Sep 99

NR-20 Yes 14 Jul 97 No n/a

NR-30 No n/a No n/a

NM-00 Yes 31 Oct 97 No n/a

NM-10 Yes 18 Jul 97 No n/a

NM-20 No n/a No n/a

NM-30 No n/a Yes 06 Nov 97

SR-00 No n/a No n/a

SR-10 No n/a No n/a

SR-20 No n/a No n/a

SR-30 No n/a No n/a

SM-00 No n/a No n/a

SM-10 No n/a No n/a

SM-20 No n/a Yes 08 Sept 99

SM-30 No n/a No n/a
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that ran less than 2 m before flowing into the flumes connected to the samplers. Runoff 

collected by sampler NM-10 was also channelized, but at 7 cm in width, this channel 

was slightly wider than those flowing into NR-10 and NR-20. The NM-10 channel 

originated more than 100 m up slope of the sampler, and flowed through a swale that 

was left undisturbed except for a single crossing by the road. During one field 

inspection of sampler NM-00, a source of sub-surface flow was observed emerging 

several centimetres above the leading edge of the flume, and that source of water 

contributed shallow sheet flow into NM-00. However, with a measured discharge of 

only 72 ml over a five minute period, the capacity of the flow to transport sediment was 

low compared to the flow observed at NR-10, NR-20,, or NM-10. Runoff was never 

again observed at the NM-00 sampler location.

Mineral and organic collection rates, respectively, for the years 1997, 1998, and 1999 for 

samplers that were or were not affected by surface runoff are presented in Figures 3.30 

and 3.31. Descriptive statistics for mineral and organic sediment collection rates for the 

group of samplers that were or were not affected by surface runoff are presented in 

Appendix V. Each year, mineral and organic median collection rates for samplers 

affected by surface runoff exceeded those for samplers that were not affected (Figures 

3.30 and 3.31). Before harvesting, the flow affected samplers had median mineral and 

organic collection rates that were 2.5 and 1.2 times greater respectively compared to 

samplers not affected by flow (Figures 3.30 and 3.31). Post-impact mineral and organic 

collection rate medians and ranges were consistently higher among samplers that were 

affected by surface runoff. Dining 1998, the first post-impact year, when precipitation
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Figure 3.30 Mineral sediment collection rates (log(l+ g-mm'^ precip)) for all samplers 
(1998 NR-10 data excluded) by year and surface runoff class. Boxplots 
show the median, 25‘̂  and 75* percentiles, maximum and minimum values 
(excluding outliers), and outliers.
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Figure 3.31 Organic sediment collection rates (log(l+ g-mm'* precip)) for all samplers 
(1998 NR-10 data excluded) by year and surface runoff class. Boxplots 
show the median, 25* and 75* percentiles, maximum and minimum values 
(excluding outliers), and outliers.
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rates were above normal, mineral collection medians and ranges, respectively, for the 

group of samplers that were affected by surface runoff were 5.93 and 480.99 times 

greater than those for samplers that were not affected by surface runoff (Figures 3.30 

and 3.31). Also, in 1998 organic collection medians and ranges for the group of 

samplers that were affected by surface runoff were 11.38 and 32.36 times greater, 

respectively, than for those samplers not affected by surface runoff. In 1999 sampler 

NR-20, which was the only runoff affected sampler that remained in service, had mineral 

and organic collection rates that were 2.7 and 2.2 times greater than the group of 

samplers that were not affected by surface runoff (Figures 3.30 and 3.31).

To evaluate the influence of surface runoff on sediment collection rates, the 1998/97 

MIOC and OIOC values for samplers that were or were not affected by surface runoff 

are presented in Figures 3.32 and 3.33, and 1999/97 MIOC and OIOC values for these 

two groups are presented in Figures 3.34 and 3.35. Collection rates among samplers 

affected by surface runoff and those that were not affected changed differently in the 

post- compared to pre-impact years. The 1998/97 rate comparisons revealed that the 

largest post-impact increases in collection rates were among samplers that were affected 

by surface runoff, and the largest post-impact decreases in collection rates were among 

samplers that were not affected by surface runoff (Figures 3.32 and 3.33). While there 

were some exceptions, samplers affected by surface runoff generally had higher mineral 

and organic collection rates in 1998 compared to 1997 (Figures 3.32 and 3.33). The 

1998 mineral and organic collection rate increases for NR-10 were almost four and three 

times greater, respectively, than those for NR-20, despite the fact both samplers were
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Figure 3.32 1998/97 mineral index of change (MIOC) values for samplers affected by 
surface runoff (1) and those not affected by surface runoff (0).
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Figure 3.33 1998/97 organic index of change (OIOC) values for samplers affected by 
surface runoff (1) and those not affected by surface runoff (0).
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Figure 3.34 1999/97 mineral index of change (MIOC) values for samplers affected by 
surface runoff (1) and those not affected by surface runoff (0).
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Figure 3.35 1999/97 organic index of change (OIOC) values for samplers affected by 
surface runoff (1) and those not affected by surface runoff (0).
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affected by runoff (Figures 3.32 and 3.33) (Figures 3.32 and 3.33). In 1999, the 

influence of surface runoff on mineral and organic collection rates was less apparent 

(Figures 3.34 and 3.35).

Flow accumulation paths (> 25 cells) generated from the DEMs for the North and South 

Blocks are illustrated in Figures 3.16 and 3.17, respectively. Among the most prominent 

pre-impact flow accumulation paths that run through the North and South Blocks are 

those that flow into three of the four samplers that were affected by surface runoff (NR- 

20, NR-10, and NM-10). Other prominent pre-impact flow accumulation paths lead to 

samplers NR-30, SR-30, and SM-00, all of which were not classified as samplers that 

received surface runoff. At the 25 cell threshold, a pre-impact flow accumulation path is 

not displayed for sampler NM-00, the fourth sampler classified as having received 

surface runoff, or any of the remaining samplers. Post-impact flow accumulation paths 

are similar to those for the pre-impact condition for all South Block samplers, but the 

road caused the paths of several North Block flow accumulations to change. Flow 

accumulation paths indicate that much of the area that contributed flow to sampler NR- 

20 during the pre-impact situation drained into sampler NR-00 after forest management 

impacts. Sampler NR-00 was never observed to collect surface runoff. Sampler NM-20, 

which also was never observed to collect surface runoff, began receiving flow from what 

was part of the NM-10 sub-catchment prior to forest management impacts.
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3.2.7 Windthrow Effects On Sediment Collection Rates

Samplers were classified based on the presence or absence of windthrow impact (Table 

3.11). Sampler NR-10 was the only sampler affected by both surface runoff and 

windthrown tree(s) (Table 3.11). Mineral and organic collection rates, respectively, for 

the years 1997,1998, and 1999 for samplers that were and samplers that were not 

affected by windthrows are presented in Figures 3.36 and 3.37. Descriptive statistics for 

mineral and organic sediment collection rates for the groups of samplers that were and 

were not affected by windthrown trees are presented in Appendix V 1. Median rates of 

mineral and organic collection for the two groups of samplers declined over the years 

1997 to 1999; however, compared to the affected group, the range in mineral and organic 

rates for the unaffected group changed much less over the period of the study (Figures 

3.36 and 3.37). In 1997 the medians for mineral and organic collection rates in samplers 

affected by windthrows were more than double those for samplers that were not affected 

(Figures 3.36 and 3.37).

To evaluate the influence of windthrow on sediment collection rates, the 1998/97 MIOC 

and OIOC values for samplers that either were or were not affected by windthrown trees 

are presented in Figures 3.38 and 3.39, and 1999/97 MIOC and OIOC values for these 

groups are presented in Figures 3.40 and 3.41. The range for 1998/97 MIOC and OIOC 

values for the affected samplers was more than 2.6 and 2.1 times greater, respectively, 

than the range for the vmaffected group. The size of the range for the affected group was 

driven by values for sampler NR-10, which was the only sampler of the group to have
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Figure 3.36 Mineral sediment collection rates (log(l+ g-mm'^ precip)) for all samplers 
(1998 NR-10 data excluded) by year and windthrow class. Boxplots show 
the median, 25* and 75* percentiles, maximum and minimum values 
(excluding outliers), and outliers.
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Figure 3.37 Organic sediment collection rates (log(l+ g-mm'* precip)) for all samplers 
(1998 NR-10 data excluded) by year and surface runoff class. Boxplots 
show the median, 25* and 75* percentiles, maximum and minimum values 
(excluding outliers), and outliers.
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Figure 3.38 1998/97 mineral index of change (MIOC) values for samplers affected by 
windthrow (1) and those that were not (0).
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Figure 3.39 1998/97 organic index of change (OIOC) values for samplers affected by 
windthrow (1) and those that were not (0).
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Figure 3.40 1999/97 mineral index of change (MIOC) values for samplers affected by 
windthrow (1) and those that were not (0).
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Figure 3.41 1999/97 organic index of change (OIOC) values for samplers affected by 
windthrow (1) and those that were not (0).
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higher rates in 1998 compared to 1997. Sampler NR-20, which had the second greatest 

increase in 1998 compared to 1997, was not affected by windthrow (Figures 3.38 and 

3.39). In 1999, only one windthrow affected sampler remained in service and it had the 

greatest reductions in mineral and organic collection rates in 1999 compared to 1997 

(Figures 3.40 and 3.41).

3.2.8 Crown Closure Effects On Sediment Collection Rates

The average of four crown closure readings measured at each sampler in the summer of 

1997,1998, and 1999 are reported in Table 3.12. In 1997, the median crown closure for 

the sixteen samplers was 75.38 percent, with a range of 66.75, maximum of 91.50 and 

minimum of 24.75. In 1998, the median crown closure for the sixteen samplers was 

66.25 percent, with a range of 55.00, maximum of 89.00 and minimum of 34.00. In 

1999, the median crown closure for the ten samplers remaining in service was 80.00 

percent, with a range of 52.00, maximum of 91.25 and minimum of 39.25.

The mineral and organic collection rates and percentage crovm closure for each sampler 

for the years 1997, 1998 and 1999 are presented in Figures 3.42 and 3.43. The 

distribution of samplers across the range of crown closures studied was uneven, but 

variances for mineral and organic collection rates were generally highest among 

samplers with mid-range crown closure for each of the years 1997,1998, and 1997 

(Figures 3.42 and 3.43).
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Table 3.12 Average of four crown closure readings (%) measured for each sampler
during 1997,1998, and 1999, and index of change values comparing crown 
closures measured in 1998 or 1999 with those measured in 1997.

Sampler 1997 1998 IOC 98/97 1999 IOC 99/97

NR-00 67.00 58.50 -0.1357 62.25 -0.0735

NR-10 70.25 66.00 -0.0624 n/a n/a

NR-20 79.75 70.50 -0.1233 78.75 -0.0126

NR-30 24.75 34.00 0.3175 39.25 0.4611

NM-00 79.00 65.50 -0.1874 n/a n/a

NM-10 72.50 57.75 -0.2275 67.50 n/a

NM-20 78.25 82.50 0.0529 91.25 0.1537

NM-30 85.25 66.50 -0.2484 n/a n/a

SR-00 82.25 86.75 0.0533 86.00 0.0446

SR-10 88.75 89.00 0.0028 90.25 0.0168

SR-20 91.50 86.00 -0.0620 88.75 -0.0305

SR-30 46.50 49.75 0.0676 46.50 0.0000

SM-00 86.75 83.50 -0.0382 81.25 -0.0655

SM-10 71.50 58.50 -0.2007 n/a n/a

SM-20 69.00 66.75 -0.0332 55.75 -0.2132

SM-30 46.25 46.75 0.0108 n/a n/a
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Figure 3.42 Mineral sediment collection rates (log(l+g-mm‘  ̂precip)) for each sampler 
in 1997,1998 and 1999 (1998 NR-10 data excluded) plotted against fall 
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A set of IOC values were calculated to quantify changes in crown closure in 1998 or 

1999 compared to 1997 (Table 3.12). Post-impact regeneration in the clearcut areas was 

not at a level sufficient to contribute to increasing crown closure for any of the samplers; 

therefore, change that occurred to the amount of crown closure at each sampler was a 

result of vegetation dynamics within the reserves. Compared to values in 1997, crown 

closure measured in 1998 was lower for 10 samplers and higher for six. In 1999, when 

only ten samplers remained in service, five samplers had higher and five samplers had 

lower crown closure compared to 1997 (Table 3.12).

To evaluate the influence of a change in crown closure on sediment collection rates, the 

1998/97 MIOC and OIOC values for each sampler were plotted with the 1998/97 IOC 

values for crown closure for the samplers (Figures 3.44 and 3.45). There was not a 

consistent relationship between change in crown closure and change in mineral or 

organic collection rates among data collected in 1998 compared to 1997 (Figures 3.44 

and 3.45). However, samplers NR-10 and NR-20, which had the greatest rate increases 

in 1998 compared to 1997, were among the group of 10 samplers with less crown 

closure in 1998 compared to 1997.

Summaries of 1998/97 MIOC and OIOC values for samplers with: a) no change in 

crown closure after forest management, b) crown closures that became smaller after 

forest management, and c) crown closures that became larger after forest management 

are presented in Table 3.13. Among the five samplers that had higher mineral collection 

rates in 1998 compared to 1997, three had post-impact reductions and two had post-
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Figure 3.44 1998/97 mineral index of change (MIOC) values and 1998/97 index of 
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Table 3.13 Descriptive statistics for 1998/97 mineral and organic indices of change 
(MIOC and OIOC, respectively) values for samplers (n=16) with: a) no 
change in crown closure (1998 compared to 1997), b) decreased crown 
closure (1998 compared to 1997), and c) increased crown closure (1998 
compared to 1997).

Material Collection IOC 
>0 or <0 CC IOC = 0 CC IOC < 0 CC IOC > 0

Mineral >0

Mineral <0

Organic >0

Organic <0

Quad = n/a Quad = 4 Quad = 1
N = 0 N = 3 N = 2
Sampler(s) = n/a Sampler(s) = NR-10, Sampler(s) = NM-20,
Median = n/a NR-20, NM-00 SR-30
Range = n/a Median = 1.2388 Median = 0.1410
Max = n/a Range = 4.7343 Range = 0.0711
Min = n/a Max= 4.8425 Max= 0.1766

Min = 0.1082 Min = 0.1055

Quad - n/a Quad = 3 Quad = 2
N = 0 N = 7 N = 4
Sampler(s) = n/a Sampler(s) = NR-00, Sampler(s) = NR-30,
Median = n/a NM-10, NM-30, SR- SR-00, SR-10, SM-
Range = n/a 20, SM-00, SM-10, 30
Max = n/a SM-20 Median = -0.8208
Min = n/a Median = -0.9577 Range = 0.6190

Range = 1.1784 Max= -0.2894
Max= -0.7058 
Min = -1.8842

Min = -0.9085

Quad = n/a Quad = 4 Quad = 1
N = 0 N = 5 N = 2
Sampler(s) = n/a Sampler(s) = NR-00, Sampler(s) = NR-30,
Median = n/a NR-10, NR-20, NM- SM-30
Range = n/a 00, NM-10 Median = 0.4175
Max - n/a Median =1.3167 Range = 0.1951
Min = n/a Range = 4.7551 Max= 0.5150

Max= 5.1125 
Min = 0.3574

Min = 0.3199

Quad = n/a Quad = 3 Quad = 2
N = 0 N = 5 N = 4
Sampler(s) = n/a Sampler(s) = NM-30, Sampler(s) = NM-20,
Median = n/a SR-20, SM-00, SM- SR-00, SR-10, SR-30
Range = n/a 10, SM-20 Median = -0.5719
Max = n/a Median = -0.3391 Range = 1.2602
Min = n/a Range = 1.2761 Max= -0.1265

Max=-0.0351 
Min = -1.3113

Min = -1.3867
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impact increases in crown closure. The median 1998/97 MIOC among the group with 

less crown closure was more than 8.75 times greater than the group with smaller sub­

catchments. Among the seven samplers that had higher organic collection rates in 1998 

compared to 1997, five had post-impact reductions and two had post-impact increases in 

crown closure. The median 1998/97 OIOC among the group with more crown closure 

was more than three times greater than the samplers with less crown closure.

To evaluate the influence of change in crown closure on sediment collection rates, the 

1999/97 MIOC and OIOC values were plotted with 1999/97 IOC values for crown 

closure (Figures 3.46 and 3.47). The 1999/97 MIOC and OIOC values appear to 

increase with 1999/97 IOC values for crown closure (Figures 3.46 and 3.47), and these 

relationships indicate that increased crown closure was accompanied by increased 

mineral and organic collection rates in 1999 compared to 1997. However, these 

relationships are driven primarily by the extreme values for samplers NR-30 and SM-20. 

When data for NR-30 and SM-20 are excluded, relationships between MIOC or OIOC 

and IOC for crown closure are not apparent.

Summaries of 1999/97 MIOC and OIOC values for samplers with: a) no change in 

crown closure after forest management, b) crown closures that became smaller after 

forest management, and c) crown closures that became larger after forest management 

are presented in Table 3.14. Among the two samplers that had higher mineral collection 

rates in 1999 compared to 1997, one had a 1999 post-impact reduction and one had a 

1999 post-impact increase in crown closure. The sampler with more crown closure in
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Figure 3.46 1999/97 mineral index of change (MIOC) values and 1999/97 index of 
change (IOC) values for crown closure for each sampler.
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Figure 3.47 1999/97 organic index of change (OIOC) values and 1999/97 index of 
change (IOC) values for crown closure for each sampler.
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Table 3.14 Descriptive statistics for 1999/97 mineral and organic indices of change 
(MIOC and OIOC, respectively) values for samplers (n=10) with; a) no 
change in crown closure (1999 compared to 1997), b) decreased crown 
closure (1999 compared to 1997), and c) increased crown closure (1999 
compared to 1997).

Material Collection IOC 
>0 or <0 CC IOC = 0 CC IOC < 0 CC IOC > 0

Mineral >0 Quad = n/a Quad = 4 Quad = 1
N = 0 N= I N= 1
Sampler(s) = n/a Sampler(s) = NR-20 Sampler(s) = NR-30
Median = n/a Median = 0.0381 Median = 0.6476
Range = n/a Range = 0 Range = 0
Max - n/a Max= 0.0381 Max= 0.6476
Min = n/a Min = 0.0381 Min = 0.6476

Mineral <0 Quad = n/a Quad = 3 Quad = 2
N= 1 N = 4 N = 3
Sampler(s) = SR-30 Sampler(s) = NR-00, Sampler(s) = NM-20,
Median = -1.2969 SR-20, SM-00, SM- SR-00, SR-10
Range = 0 20 Median = -0.8650
Max=-1.2969 Median = -1.0569 Range = 0.2118
Min = -1.2969 Range = 1.3192 

Max= -0.5603 
Min = -1.8795

Max=-0.8618 
Min = -1.0737

Organic >0 Quad = n/a Quad = 4 Quad = 1
N = 0 N= 1 N= 1
Sampler(s) = n/a Sampler(s) = SM-00 Sampler(s) = NR-30
Median = n/a Median = 0.5835 Median = 0.8734
Range = n/a Range = 0 Range = 0
Max = n/a Max= 0.5835 Max= 0.8734
Min = n/a Min = 0.5835 Min = 0.8734

Organic <0 Quad = n/a Quad = 3 Quad = 2
N = 1 N = 4 N = 3
Sampler(s) = n/a Sampler(s) = NR-00, Sampler(s) = NM-20,
Median = -1.5197 NR-20, SR-20, SM- SR-00, SR-10
Range = 0 00 Median = -1.1651
Max=-1.5197 Median = -0.8814 Range = 1.1063
Min = -1.5197 Range = 1.8211 

Max= -0.3003 
Min = -2.1214

Max= -0.9904 
Min = -2.0967
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1999 compared to 1997 had a 1999/97 MIOC value that was 17 times greater than the 

sampler with less crown closure. Among the two samplers that had higher organic 

collection rates in 1998 compared to 1997, one had a 1999 post-impact reduction and 

one had a 1999 post-impact increase in crown closure. The 1998/97 OIOC for the 

sampler with more crown closure was almost 1.5 times greater than the sampler with less 

crown closure.

3.2.9 LFH Thickness Effects On Sediment Collection Rates

The thickness of the LFH layer at each sampler is reported in Table 3.15. In 1997 and 

1998 when all 16 samplers were in service, the median LFH thickness was 5.0 cm, and 

the range was 15.5 cm, with a maximum of 16.0 and minimum of 0.5 cm. In 1999 when 

only ten samplers were in service, the median LFH thickness was 4.5 cm, and the range 

was 15.0 cm with a maximum of 16.0 and minimum of 1.0 cm.

Mineral and organic sediment collection rates and LFH thickness for each sampler, for 

the years 1997,1998, and 1999 are presented in Figures 3.48 and 3.49. In general, there 

appeared to be a negative relationship between mineral and organic collection rates and 

LFH thickness; however, with the thickest LFH and the highest mineral and organic 

collection rates, samplers NR-10 and NR-20 were prominent exceptions to this trend 

(Figures 3.48 and 3.49).
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Table 3.15 LFH thickness (cm) measured at each sampler location in 1997.

Sampler LFH Thickness

NR-00 2.0

NR-10 15.0

NR-20 16.0

NR-30 2.0

NM-00 0.5

NM-10 2.0

NM-20 1.0

NM-30 5.0

SR-00 5.0

SR-10 12.0

SR-20 7.0

SR-30 4.0

SM-00 8.5

SM-10 5.0

SM-20 3.0

SM-30 13.0
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Figure 3.48 Mineral sediment collection rates (log(l+ g-mm‘̂  precip)) for each sampler 
in 1997,1998 and 1999 (1998 NR-10 data excluded) plotted against LFH 
thickness.
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Figure 3.49 Organic sediment collection rates (log(l+ g-mm‘'precip)) for each sampler 
in 1997, 1998 and 1999 (1998 NR-10 data excluded) plotted against LFH 
thickness.
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To evaluate the influence of LFH thickness on sediment collection rates, the 1998/97 

MIOC and OIOC values for each sampler were plotted with LFH thicknesses (Figures 

3.50 and 3.51). With the notable exceptions of samplers NR-10 and NR-20, both MIOC 

and OIOC show a general negative relationship with LFH thickness, suggesting that sub­

catchments with thinner LFH layers were more susceptible to increased erosion during 

the first year following forest management impacts (Figures 3.52 and 3.53). However, 

the two samplers with the thickest LFH layers had the greatest increases in mineral and 

organic collection rates in 1998 compared to 1997.

To evaluate the influence of LFH thickness on sediment collection rates, the 1999/97 

MIOC and OIOC values for each sampler were plotted with LFH thicknesses (Figures 

3.52 and 3.53). With the exception of sampler NR-30, the 1999/97 MIOC values 

increased with LFH thickness (Figure 3.52). This positive relationship was contrary to 

what was expected as it indicates that samplers with thicker LFH layers were less able to 

filter increased erosion during the second year following forest management impacts. A 

relationship between 1999/97 OIOC values and LFH thickness is not apparent (Figure 

3.53).

3.2.10 Terrain Slope Effects On Sediment Collection Rates

Terrain slope uphill of each sampler is reported in Table 3.16. In 1997 and 1998, when 

all sixteen samplers were in service, the median slope was 11.5 percent, and the range 

among samplers was 19 percent with a maximum of 26 and minimum of 7 percent. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



138

Sampler

UO

V  SM-:o

LFH Thickness (cm )

Figure 3.50 1998/97 mineral index of change (MIOC) values and LFH thickness for 
each sampler.

Sampler

V  SM-00

10 12 14 16

LFH Thickness (cm )

Figure 3.51 1998/97 organic index of change (OIOC) values and LFH thickness for each 
sampler.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



139

Sampler

V  SM-20

V  SKVOO

10 12 14

LFH T hickness (cm )

Figure 3.52 1999/97 mineral index of change (MIOC) values and LFH thickness for 
each sampler.
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Figure 3.53 1999/97 organic index of change (OIOC) values and LFH thickness for each 
sampler.
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Table 3.16 Slope (%) measured over a distance of approximately 10 m immediately 
uphill of the entrance flume for each sampler

Sampler Slope

NR-00 8

NR-10 17

NR-20 13

NR-30 18

NM-00 9

NM-10 7

NM-20 8

NM-30 26

SR-00 9

SR-10 9

SR-20 18

SR-30 9

SM-00 14

SM-10 11

SM-20 13

SM-30 12
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1999 when only ten samplers were in service, the median slope was 11.0, and the range 

among samplers was 10 percent with a maximum of 18 and minimum of 8 percent.

Mineral and organic collection rates, respectively, are plotted with terrain slope for each 

sampler, for the years 1997,1998, and 1999 in Figures 3.54 and 3.55. No relationship 

between mineral or organic collection rate and slope is apparent among data for 1997, 

1998, or 1999 (Figures 3.54 and 3.55).

To further evaluate the influence of terrain slope on sediment collection rates, the 

1998/97 and 1999/97 MIOC and OIOC values for each sampler were plotted with terrain 

slopes (Figures 3.56, 3.57, 3.58, and 3.59). No apparent pattem existed between slope 

and 1998/97 or 1999/97 MIOC and OIOC values for each sampler (Figures 3.56, 3.57, 

3.58, and 3.59).

3.2.11 Effects Of Topographic Index On Sediment Collection Rates

The spatial distributions of raw TI values derived from the North and South Block 

DEMs, respectively, are presented in Figures 3.60 and 3.61. With the exception of NM- 

30, SR-10, and SM-10, all samplers were located within a distance of about five m from 

a cell or zone of cells with TI values greater than or equal to eight, both before and after 

forest management had occurred. As samplers were installed in locations within 

topographic convergences, it was expected that these sites would be among the locations 

most likely to generate surface runoff; hence, it was also expected these sites would be
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Figure 3.54 Mineral sediment collection rates (log(l+ g-mm'^ precip)) for each sampler 
in 1997,1998 and 1999 (1998 NR-10 data excluded) plotted against slope.
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Figure 3.55 Organic sediment collection rates (log(l+ g-mm'^ precip)) for each sampler 
in 1997, 1998 and 1999 (1998 NR-10 data excluded) plotted against slope.
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StiiDplcr

V  Sh»'io
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Figure 3.56 1998/97 mineral index of change (MIOC) values and slope for each 
sampler.

Sampler
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Figure 3.57 1998/97 organic index of change (OIOC) values and slope for each sampler.
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Figure 3.58 1999/97 mineral index of change (MIOC) values and slope for each 
sampler.

UOO

Sampler
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Figure 3.59 1999/97 organic index of change (OIOC) values and slope for each sampler.
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among those with high TI values. Minor spatial deviations (+/- approximately 5 m) from 

an intersection between samplers and the highest TI cells reflect scale limitations of a 

five metre DEM.

Pre- and post forest management impact TI values for each sampler are reported in Table 

3.17 and descriptive statistics of those TI values for the years 1997,1998, and 1999 are 

reported in Table 3.18. In 1998, the median and range for TI values among the sixteen 

samplers were slightly higher compared to those in 1997. In 1999 when only ten 

samplers remained in service, the median was higher than in 1998 but the range fell to a 

value that was lower than in 1997 (Table 3.18).

Mineral sediment collection rates and TI values for each sampler are plotted for the years 

1997 through 1999 in Figure 3.62, and organic sediment collection rates and TI values 

area are plotted for the years 1997 through 1999 in Figure 3.63. Post-impact mineral and 

organic collection rates appear to have a positive relationship with TI; however, data for 

a small niunber of the samplers may be driving what may otherwise be a spurious 

relationship (Figures 3.62 and 3.63).

A set of IOC values were calculated to quantify the difference between the pre- and post 

disturbance TI values for each sampler (Table 3.17). Impacts did not affect the TI value 

of any South Cut samplers; however, road building and harvesting effectively caused TI 

values for six North Block samplers to increase while those for two other North Block 

samplers were reduced (Table 3.17).
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Table 3.17 Pre- and post-impact topographic index (TI) values for each sampler.

Sampler Pre-Cut TI Post-Cut TI Index of Change

NR-00 8.5830 12.5834 0.3826

NR-10 9.9210 9.6381 -0.0289

NR-20 12.5737 11.3768 -0.1000

NR-30 10.5118 10.3184 -0.0186

NM-00 8.5486 8.3090 -0.0284

NM-10 14.0780 14.0361 -0.0030

NM-20 8.7858 10.6537 0.19277

NM-30 7.0025 6.7778 -0.0326

SR-00 8.6459 8.6459 0.0000

SR-10 7.3540 7.3540 0.0000

SR-20 8.8958 8.8958 0.0000

SR-30 11.1597 11.1597 0.0000

SM-00 10.8176 10.8176 0.0000

SM-10 7.5635 7.5635 0.0000

SM-20 7.9490 7.9490 0.0000

SM-30 8.5038 8.5038 0.0000
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Table 3.18. Descriptive statistics for the topographic index (TI) values of all samplers in 
service for each of the sampling years, 1997,1998, and 1999.

Statistic 1997 1998 1999

n 16 16 10

Median 8.7159 9.2670 10.4861

Range 7.0755 7.2583 5.2294

Maximum 14.0780 14.0361 12.5834

Minimum 7.0025 6.7778 7.3540
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Figure 3.62 Mineral sediment collection rates (log(l+ g-mm’  ̂precip)) for each sampler 
in 1997,1998 and 1999 (1998 NR-10 data excluded) plotted against 
maximum topographic index (TI) values (in a 3x3 cell array) for each 
sampler.
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Figure 3.63 Organic sediment collection rates (log(l+ g-mm’' precip)) for each sampler 
in 1997, 1998 and 1999 (1998 NR-10 data excluded) plotted against 
maximum topographic index (TI) values (in a 3x3 cell array) for each 
sampler.
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To further evaluate the relationship between TI values and sediment collection rates, the 

1998/97 MIOC and OIOC values for each sampler were plotted with IOC values for TI 

(Figures 3.64 and 3.65). There was no consistent relationship between change in TI 

value and change in mineral or organic collection rates among data collected in 1998 

compared to 1997, based on 1998/97 MIOC and OIOC values and IOC values for TI 

(Figures 3.64 and 3.65). Samplers NR-10 and NR-20, which had the greatest collection 

rate increases in 1998 compared to 1997, were among a group of six samplers with lower 

TI values post-impact compared to pre-impact. Samplers NR-00 and NM-20 had much 

higher TI values post-impact compared to pre-impact; however, 1998 collection rates in 

both samplers were similar to those in 1997.

Summaries of 1998/97 MIOC and OIOC values for samplers with: a) no change in TI 

values after forest management, b) TI values that became smaller after forest 

management, and c) TI values that became larger after forest management are presented 

in Table 3.19. Among the five samplers that had higher mineral collection rates in 1998 

compared to 1997, three had a post-impact reduction and one had a post-impact increase 

in TI. The median 1998/97 MIOC among the group with negative IOC values for TI was 

approximately 11.75 times greater than the group with positive IOC values for TI.

Among the seven samplers that had higher organic collection rates in 1998 compared to 

1997, five had a negative IOC value for TI and one had a positive IOC value for TI. The 

median 1998/97 OIOC value for the group of samplers with negative IOC values for TI
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Figure 3.64 1998/97 mineral index of change (MIOC) values and index of change (IOC) 
for topographic index (TI) for each sampler.

u
O 2.0

TA

Sampler

A ,..>0 

A s,.,o 

A ,,.>0 

A S..00 

7 SM-20 

7 SM-20 

7 sŝ.o
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Figure 3.65 1998/97 index of change (OIOC) values and index of change (IOC) values 
for topographic index (TI) for each sampler.
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Table 3.19 Descriptive statistics for 1998/97 mineral and organic indices of change 
(MIOC and OIOC, respectively) values for samplers (n=16) with: a) no 
change in topographic index (TI) after forest management impacts, b) 
smaller TI values after forest management impacts, and c) larger TI values 
after forest management impacts.

Material Collection IOC 
>0 or <0 TI IOC = 0 TI IOC < 0 TI IOC > 0

Mineral >0 Quad = n/a Quad = 1 Quad = 2
N= 1 N = 3 N= 1
Sampler(s) = SR-30 Sampler(s) = NR-10, Sampler(s) = NM-20
Median = 0.1766 NR-20, NM-00 Median = 0.1055
Range = 0 Median = 1.2388 Range = 0
Max= 0.1766 Range = 4.7343 Max= 0.1055
Min = 0.1766 Max= 4.8425 

Min = 0.1082
Min = 0.1055

Mineral <0 Quad = n/a Quad = 4 Quad = 3
N = 7 N = 3 N= 1
Sampler(s) = SR-00, Sampler(s) = NR-30, Sampler(s) = NR-00
SR-10, SR-20, SM- NM-10, NM-30 Median = -1.2137
00, SM-10, SM-20, Median = -0.7058 Range = 0
SM-30 Range = 0.5774 Max=-1.2137
Median = -0.9085 Max= -0.2894 Min = -1.2137
Range = 1.1540 Min = -0.8669
Max=-0.7301
Min = -1.8842

Organic >0 Quad = n/a Quad = 1 Quad = 2
N =1 N = 5 N= 1
Sampler(s) = SM-30 Sampler(s) = NR-10, Sampler(s) = NR-00
Median = 0.5150 NR-20, NR-30, NM- Median = 0.4296
Range = 0 00 Range = 0
Max=0.5150 Median = 1.3167 Max= 0.4296
Min = 0.5150 Range = 4.7925 

Max=5.1125 
Min = 0.3199

Min = 0.4296

Organic <0 Quad = n/a Quad = 4 Quad = 3
N = 7 N= 1 N= 1
Sampler(s) = SR-00, Sampler(s) = NM-30 Sampler(s) = NM-30
SR-10, SR-20, SR- Median = -1.1662 Median = -0.1265
30, SM-00, SM-10, Range = 0 Range = 0
SM-20 Max=-1.1662 Max=-0.1265
Median = -0.3391 Min = -1.1662 Min = -0.1265
Range = 1.3516 
Max= -0.0352 
Min = -1.3867
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was three times greater than the OIOC value for the sampler with a positive IOC value 

forTI.

To further evaluate the relationship between TI values and sediment collection rates, the 

1999/97 MIOC and OIOC values for each sampler were plotted with IOC values for TI 

(Figures 3.66 and 3.67). There was no consistent relationship between change in TI 

value and change in mineral or organic collection rates among data collected in 1999 

compared to 1997, based on 1999/97 MIOC and OIOC values and IOC values for TI 

(Figures 3.66 and 3.67). Sampler NR-30, which had the greatest collection rate increases 

in 1999 compared to 1997, was among a group of two samplers with lower TI values 

post-impact compared to pre-impact. Samplers NR-00 and NM-20 had dramatically 

higher post-impact TI values; however, 1999 mineral and organic collection rates in both 

samplers were lower than those in 1997 (Figures 3.66 and 3.67).

Table 3.20 reports descriptive statistics (number, median, range, maximum, and 

minimum) for 1999/97 MIOC and OIOC values for samplers with: a) no change in TI 

values after forest management, b) smaller TI values after forest management, and c) 

larger TI values after forest management. Both of the samplers that had higher mineral 

collection in 1999 compared to 1997 had negative IOC values for TI. Among the two 

samplers that had higher organic collection rates in 1999 compared to 1997, only one 

had a negative IOC value for TI.
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Figure 3.66 1999/97 mineral index of change (MIOC) values and index of change (IOC) 
values for topographic index (TI) for each sampler.

CJO

A

\

A Sampler

A A SR.)0

A m 2o

A m ,o
▼

i t
A s>.oo

7  SM-20

Ik
7  SMOO

A NK-30

A NR.20
<

A NK.00

i ------------------ ------------------- ▼  NM-IO

lO C T I

Figure 3.67 1999/97 organic index of change (OIOC) values and index of change (IOC) 
values for topographic index (TI) for each sampler.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



156

Table 3.20 Descriptive statistics for 1999/97 mineral and organic indices of change 
(MIOC and OIOC, respectively) values for samplers (n=16) with: a) no 
change in topographic index (TI) after forest management impacts, b) 
smaller TI values after forest management impacts, and c) larger TI values 
after forest management impacts.

Material Collection IOC 
>0 or <0 TI IOC = 0 TI IOC < 0 TI IOC > 0

Mineral >0 Quad = n/a Quad = 1 Quad = 2
N = 0 N = 2 N = 0
Sampler(s) = n/a Sampler(s) = NR-20, Sampler(s) = n/a
Median = n/a NR-30 Median = n/a
Range = n/a Median = 0.3429 Range = n/a
Max = n/a Range = 0.6096 Max = n/a
Min = n/a Max= 0.6476 

Min = 0.0381
Min = n/a

Mineral <0 Quad = n/a Quad = 4 Quad = 3
N = 6 N = 0 N = 2
Sampler(s) = SR-00, Sampler(s) = n/a Sampler(s) = NR-00,
SR-10, SR-20, SR- Median = n/a NM-20
30, SM-00, SM-20 Range = n/a Median = -1.0230
Median = -1.0032 Max = n/a Range = 0.3160
Range = 1.3192 Min = n/a Max= -0.8650
Max= -0.5603 Min = -1.1810
Min = -1.8795

Organic >0 Quad = n/a Quad = 1 Quad = 2
N= 1 N= 1 N = 0
Sampler(s) = SM-00 Sampler(s) = NR-30 Sampler(s) = n/a
Median = 0.5835 Median = 0.8734 Median = n/a
Range = 0 Range = 0 Range = n/a
Max= 0.5835 Max= 0.8734 Max = n/a
Min = 0.5835 Min = 0.8734 Min = n/a

Organic <0 Quad = n/a
N = 5
Sampler(s) = SR-00, 
SR-10, SR-20, SR- 
30, SM-20 
Median = -1.5197 
Range = 0.9563 
Max=-1.1651 
Min = -2.1214

Quad = 4 
N= 1
Sampler(s) = NR-20 
Median = -0.3003 
Range = 0 
Max= -0.3003 
Min = -0.3003

Quad = 3 
N = 2
Sampler(s) = NR-00, 
NM-20
Median = -0.7721 
Range = 0.4365 
Max= -0.5539 
Min = -0.9904
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4.0 DISCUSSION

The results of this study clearly demonstrate that sediment movement in riparian reserve 

areas does not increase universally following forest management, and it is clear that 

factors in addition to terrain slope influence the rate of both organic and mineral 

sediment movement. In this study, sediment attenuation along lengths of undisturbed 

forested hillslopes situated between clearcut areas and streams was variable, indicating 

that factors in addition to the width of a filter strip can function to control the distance at 

which eroded sediment is transported. Catchment area was not related to the rates that 

sediment was collected in samplers.

Sediment collection rates quantified by this study were higher in samplers located closer 

to the road; however, data from this study can not be used to categorically support the 

accepted model whereby areas closer to roads are subject to higher erosion rates than 

areas further away from roads. This study used GIS to illustrate how roads can 

effectively re-route the natural flow paths of surface runoff, and this could be an 

effective application for forest management planning exercises. The occurrences of 

surface runoff and windthrow, especially when occurring in unison, were predominant 

factors controlling sediment collection rates in samplers. The amount of crown closure 

and the thickness of LFH layers influenced rates of erosion, but the magnitudes of their 

influences were marginal compared to those of flow and windthrow. Steeper slopes did
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not consistently generate higher sediment transport rates, but the evaluation of the effects 

of slope on sediment transport rates was limited by the narrow range of slope conditions 

that was evaluated by this study. Within the study area, topographic convergences were 

reliably located by the application of a spatially explicit TI, and the same index was 

effective at identifying areas that may be subject to increased risk of erosion following 

forest management.

Reports from other studies suggest that rates of erosion will increase following forest 

management related impacts (Waters 1995; Walling 1999; Meehan 1991; Miller 1984; 

Trimble and Sartz 1957); however, this was not a consistent result of this study. Data 

from the four samplers situated at the cutover/reserve boimdaries were best suited to 

assess the impact of forest management on sediment collection rates as those samplers 

were in immediate proximity to these activities with no reserve area separating them 

from these impacts. Changes observed between post- and pre-impact sediment 

collection rates were not consistently higher or lower among these samplers; however, 

the level of change (positive or negative) among these four samplers could be considered 

marginal. In 1998, the first post-impact year, three of the four samplers had lower 

mineral sediment collection rates while one had a higher rate, and rates of organic 

sediment collection were lower in two of the samplers and higher in two. In 1999, the 

second post-impact year, only three of the four samplers situated at the cutover/reserve 

boundary remained in service, and mineral sediment collection rates were lower in all of 

them. Organic sediment collection rates in 1999 were lower in two of the samplers and 

higher in one. The type of change (increase or decrease) in sediment collection rate was
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also not consistent among the 12 samplers installed in the reserves. HoAvever, in 

comparison with the level of change that was observed at the cutover/reserve boundary, 

the changes (especially increases) observed in the reserve were of much greater 

magnitude. It appears therefore, that forest management activities affected the sediment 

collection rates of some, but not all, of the samplers.

The results of this study contradict the assumption that clearcuts are imiversal sources of 

sediment. The application of slope dependent reserve widths to protect aquatic systems 

from impacts of forest management implies that the spatial distribution of sediment 

export from clearcuts is even. The results of this study indicate that factors in addition to 

slope length (or reserve width) including windthrow events, the presence of surface 

runoff, amount of cover over soil provided by vegetation and organic layers, and 

topography affect sediment movement in riparian reserves. Sediment collection rates 

were highly variable within each distance class (0,10, 20, or 30 m into the reserves), and 

a consistent negative relationship between the amount of sediment collected and distance 

into the reserve was not observed. Trimble and Sartz (1957) acknowledged that factors 

in addition to slope distance can affect sediment attenuation along a forested hillslope; 

however, they were unable to measure these factors. An objective of this study was to 

explore the effects of factors, in addition to hillslope length, for their influence on 

erosion rates, and the findings of these explorations are discussed below.

The processes by which eroded sediment is transported across a forest floor are not 

uniform, and are complicated by the heterogenous nature of the forest floor. It is
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believed that the suitability of wetland types for buffering aquatic systems from the 

effects of forest management activities by capturing moving sediment is variable (Racey 

1997). Along some shorelines, the boundary between open water and dry, forested land 

is distinct, while other shorelines may have a non-forested wetland fringe composed of 

alder swale, bog, fen, or marsh vegetation communities (Racey 1997). The range in 

width among these features can be high (Racey 1997). In a study of 40 NWO streams 

with catchment area among them ranging between 1 and 100 km^, riparian zone width 

ranged from 0 to 85 metres (Rankin 2000). In NWO, guidelines prescribe that the width 

of riparian reserve areas be measured from the high water mark of an aquatic system; 

however, there may be some difficulty in determining the high water mark in the field 

(Racey 1997). At low water levels sediment from a harvest area must be transported the 

width of both the reserve area and riparian forest before it reaches an aquatic system. 

However, water levels frequently fluctuate, occasionally inundating some wetlands or 

riparian communities. If sediment has been deposited along the periphery of a wetland 

during low water level, it can be some distance away from an aquatic system, but should 

the wetland become inundated by flooding, the sediment along the periphery can be 

introduced to an aquatic system.

The total amount of sediment flowing out of a drainage basin (total eroded less 

deposition) is referred to as sediment yield. It is measured at a particular point for a 

specified period of time and is often expressed as a ratio of mass/area/time. Generally, 

sediment yield decreases as drainage basin area increases because lower slopes tend to 

be less steep (Toy 1977; Hadley 1977).
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This study showed that sediment yields from larger sub-catchments were not consistently 

lower than sediment yields from smaller sub-catchments because mineral and organic 

sediment collection rates were highly variable among the range of sub-catchment sizes 

that were evaluated.

A gravel surfaced forest access road was extended into the North Block during the latter 

part of 1997. This study found that rates of mineral and organic sediment collection in 

1998 and 1999 were generally higher in samplers that were located closer to the road. 

This result supports those of other studies that identified negative relationships between 

sediment deposition and distances from roads (Trimble and Sartz 1957; Belt et al, 1992; 

Elliot et al. 1999; Costantini et al. 1999; Mattice 1977; Haupt 1959). However, 1997 

collection rates were generally higher in samplers that were closer to the road, yet the 

road did not exist for most of the 1997 sampling season. Comparison of pre- and post­

impact collection rates for individual samplers suggests that the construction of the road 

did not affect sediment collection rates for the majority of the sixteen samplers. 

Compared to samplers in the South Block, the samplers in the North Block were situated 

in closer proximity to the road. All of the samplers in the South Block, and six of the 

samplers in the North Block had lower collection rates in 1998 compared to 1997. Most 

of the samplers that had higher post-impact collection rates were affected only 

marginally.

The results of this study highlight the importance of careful consideration and planning 

when conducting forest management in and around flowing water courses. Furthermore,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



162

this study demonstrated how small unmapped streams can be located with flow 

accumulation grids generated from DEMs. This information could be useful during 

forest management plaiming exercises. Post- compared to pre-impact flow accumulation 

grids produced from the five metre DEMs of the study area revealed how natural flow 

paths were changed by forest management. In their review of riparian buffer strip 

design, Belt et al. (1992) cautioned that channelized flow can transport material for 

hundreds of metres and is limited by the frequency and amoimt of flow, and road cross­

drains were noted as being areas particularly prone to this type of risk. Drainage pattems 

in the Pacific Northwest can be altered by forest roads (Beschta 1998), and this study 

demonstrated that flow paths in NWO can also be altered by roads. Culverts have been 

identified as locations where the risk of erosion can be high (Beschta 1998). Post-impact 

flow accumulation grids illustrated that NR-00 and NM-10 were the only samplers in 

position to receive flow from road crossings equipped with culverts. Both of these 

samplers collected less mineral but more organic sediments in 1998 compared to 1997. 

Of these two samplers, only NR-00 remained in service in 1999, and mineral and organic 

collection rates that year in NR-00 were lower than those in 1997.

To increase the likelihood that samplers would collect material transported by fluvial 

erosion, samplers were placed in areas of topographic convergence; however, during the 

period of this study, surface runoff was observed flowing into only four of the sixteen 

samplers. Samplers categorized as “flowing” were observed to collect surface runoff at 

least once during the period of this study, but these samplers may have collected runoff 

at other times as well. Flowing samplers were exposed to fluvial erosion through
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shallow sheet flow and channelized flow in addition to that by simple raindrop impact 

and splash, and this is reflected by higher sediment collection rates in these samplers. 

Eroded material collected by the twelve “non-flowing” samplers would have been 

limited to that induced by raindrop splash or isolated storm events.

Samplers NR-10 and NR-20 were installed 1 - 2 m down slope of an area where 

emerging groundwater flow was frequently observed. Upon emerging, the water was 

concentrated into small channels or rills, 2 - 4 cm wide, that ran less than 2 m before 

flowing into the flumes connected to the samplers. Seepages and surface run off can 

generate the formation of ephemeral gullies, and these surface flow concentrations can 

transport soil and widen and deepen channels (Moore et al. 1988). This may explain 

why collection rates in NR-10 and NR-20 were higher than rates among the non-flowing 

samplers. The short lengths of the channels above NR-10 and NR-20 would have 

limited the amount of channelized fluvial erosion that occurred above these samplers. 

The channel above sampler NM-10 originated approximately 100 m up hill of that 

sampler. Given the additional channel length, it would have been expected that 

collection rates in NM-10 would have exceeded those of NR-10 and NR-20, but this did 

not occur. Perhaps the undisturbed forest area that was left in the swale that bounded the 

NM-10 channel (Figures 2.1 and 3.16) helped to control the movement of sediment into 

the NM-10 sampler, after forest management activities had occurred.

The small streams that flowed into the samplers were not included in the digital maps 

that are used for forest management planning in NWO, and the small size of the channels
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above the samplers may be the reason for this. This study has demonstrated that forest 

management impacts can result in increased sediment transport rates in these streams. 

Modelling of stream channel networks is critical for evaluating the effects of different 

management scenarios on the routing of eroded sediment (Olson and Orr 1999). Flow 

accumulation grids have been used to demonstrate how forest management activities can 

re-route surface runoff (Prosser and Abemethy 1999). This study demonstrated how 

flow accumulation grids generated through a GIS can be used to provide this 

information. The DEMs generated for this study had a resolution of 5m and were 

generated from DTM points that were surveyed at a high density across the North and 

South Blocks. The generation of DEMs at a resolution as fine as 5 m is likely not 

practical for application at a landscape scale because of the amount of source elevation 

data that is required. In California, mapped drainage networks have been made more 

complete by supplementing stream lines with flow accumulation paths above critical, 

field verified thresholds (Olson and Orr 1999). Provided relevant digital elevation data 

are available (including DTM points, contour lines, or DEM grids), flow accumulation 

grids can be generated for a landscape that is much larger than the North and South 

Blocks evaluated by this study. Further research would be required to evaluate the 

application of using flow accumulation data generated at resolutions coarser than were 

used here.

Results of this study suggest that windthown trees can compromise reserve fimction by 

increasing sediment movement. Prior to installing samplers, no consideration was given 

to the wind firmness of trees that would be left standing within the reserve areas. During
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the study, trees were thrown by wind throughout the length of the reserve areas.

However, only three samplers had a windthrown tree within five meters uphill of the 

flume. The group of samplers that was not affected by windthrown trees had median 

mineral and organic collection rates in 1997 that were much lower than the group of 

samplers that were affected; however, of the three samplers that were affected by 

windthrown trees, only one was affected in 1997 and the other two were affected in 

1999. It is possible that evolving root instability and poor wind fimmess associated with 

trees that would be thrown by wind, functioned to increase soil erodability in the vicinity 

of these trees, and this may have caused higher sediment collection rates in windthrow 

affected samplers, even before the windthrow event occurred.

In 1998, sampler NR-10 was the only windthrow affected sampler that had higher 

mineral and organic collection rates in 1998 compared to 1997, and the magnitudes of 

the rate changes for NR-10 were greater than any other observed during this study. The 

principal factor driving the high collection rates in sampler NR-10 was likely the 

combination of windthrow and surface runoff, as NR-10 was the only sampler affected 

by both of these factors. Sampler SM-20 was the only windthrow affected sampler that 

remained in service in 1999, and mineral and organic collection rates for that sampler 

were similar to the 1999 median collection rates for the group of nine samplers that were 

not affected by windthrow.

When trees are thrown by wind, their roots are often overtumed, exposing soil. Soil 

aggregates exposed by windthrows can then be subjected to erosion by raindrop
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displacement. The effects caused by the three types of fluvial erosion (raindrop splash, 

sheet, and rill) in combination are of greatest significance to the total amount of material 

that is eroded (Toy 1977). Flowing water draining into sampler NR-10 could have 

transported the soil particles displaced by raindrop splash, and additional particles could 

have been sheared loose by flowing water, as described by Wischmeier (1977). 

Reductions in both transpiration potential and interception capacity resulting from 

clearcutting and windthrow events may have increased the frequency, duration, and 

magnitude of saturation overland flow. These conditions and related effects may explain 

the observed differences between sediment collection rates associated with sampler NR- 

10 and to those for NM-30 and SR-20, the other windthrow affected samplers.

Many land management agencies require that riparian reserve areas be left to mitigate the 

effects of land use on aquatic systems; however, several characteristics of riparian 

reserves render these areas at higher risk of windthrow compared to other areas of the 

forest, and these characteristics of riparian reserves include: 1) their soils tend to be wet 

(Steinblums et al. 1984; Stephenson 1988; Alexander 1964); 2) they are associated with 

edge (i.e. with clearcut areas) (Mitchel 2000); 3) they are often associated with 

clearcuts, where vegetation removal can lower fnctional resistance and allow wind 

velocity to increase (Fons 1940; Reifsnyder 1955); and 4) they are commonly associated 

with waterbodies, which have lower fnctional velocities than undisturbed forest cover or 

clearcuts, and this allows wind velocities to increase (Moore 1977). Resource managers 

need to consider and plan for the risk of increased erosion by windthrow. Stephenson 

(1988) suggested that with a single-tree selection method, large trees presenting high
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windthrow risk could be harvested to eliminate that risk. Black spruce is more 

susceptible to being blown down by wind, followed by white spruce, balsam fir, and 

paper birch (Stephenson 1988). To reduce windthrow risk in reserve areas, species that 

are susceptible to windthrow could be targeted during single tree selection logging 

(Stephenson 1988). Furthermore, as trees growing along edges are most susceptible to 

windthrow, limiting the amount of edge by designing cut blocks with low perimeter to 

area ratios should reduce the risk of windthrow (Alexander 1964).

Compared to trees growing in areas with drier soils, those growing in areas with wetter 

soils are more susceptible to windthrow. Hydrologic modeling utilities available through 

a GIS can be applied to identify both flow accumulation paths and areas within a 

landscape where the probability of encountering wet soils is high relative to other areas. 

This study has identified that the risk of erosion increases when windthrows occur in 

conjunction with surface runoff compared to erosion associated with either of these 

phenomenon occurring independently. Hence, conservation efforts to reduce the 

occurrence of windthrow, especially along flow accumulation paths that traverse through 

riparian reserves, could also significantly reduce the risk of erosion following forest 

management. Furthermore, since headwater flow accumulations are linked to those 

draining larger sub-catchment areas, they represent pathways that are small, and perhaps 

ephemeral, through which sediment can be transported from upland areas to larger 

perennial aquatic systems. For this reason, reducing windthrow risk in reserve areas may 

also assist in sparing aquatic habitat from the impacts of forest management.
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Results of this study did not reveal a clear relationship between either mineral or organic 

collection rates in samplers and the amount of crown closure or LFH thickness.

However, when data for samplers classified as being affected by windthrow or flow were 

excluded, a negative relationship between cover (crown closure and LFH thickness) and 

both mineral and organic sediment collection rates were more apparent for each of the 

years, 1997,1998, and 1999. Data for sampler NR-00 were an exception to this, and this 

may be due to the presence of a windthrown tree located above the entrance flume of that 

sampler. NR-00 was not classified as being affected by windthrow, and the windthown 

tree above it was different from those that affected the other samplers: the NR-00 

windthrow was thrown before the study commenced, and the crown-section of the NR- 

00 windthrow rather than the root wad was adjacent to the entrance flume. Nonetheless, 

this tree may have affected collection rates in NR-00.

Samplers that had dramatically higher collection rates in 1998 compared to 1997 also 

had lower amounts of crown closure, but not all samplers that had lower amounts of 

crown closure had higher rates of collection. Sampler NR-30 had the greatest crown 

closure increase in 1999 compared to 1997, but contrary to what one might expect, that 

sampler also had the greatest mineral and organic sediment collection rate increases in 

1999 compared to 1997. Sampler NR-30 was not affected by windthrow or flow.

Local slope and sediment collection data from this study do not follow a positive 

relationship as suggested in the literature (Trimble and Sartz 1957; Phillips 1989; Naslas 

et al. 1994); however, the range in slope and maximum slope conditions evaluated by
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this study were much smaller than those investigated by other researchers. The slopes 

quantified for this study were measured over a distance of only 10 m immediately above 

the entrance flume of each sampler, and the influence of steeper or shallower slopes 

located further up the hillslopes was not accounted for in these analyses. Changes in 

mineral or organic sediment collection rates for 1998 or 1999 compared with those for 

1997 were highly variable and do not appear to be related to local slope.

It is rare that a hillslope is uniform along its complete length, hence the degree (or 

percent) of slope is rarely consistent across a length of hillslope. Where slopes are 

steeper, the velocity of running water that might flow over it is higher, as is the capacity 

for sediment to be transported. Conversely, where slopes are shallower, the velocity of 

running water that might flow over it is lower, as is its capacity to transport sediment. 

These conditions create pattems of erosion and deposition along hillslopes and hint at 

the complexities of erosion (and depositional) processes. Consideration of factors in 

addition to slope (such as occurrence of windthrow events, the characteristics of surface 

runoff, amount of cover over soil provided by vegetation and organic layers over soil, 

and topography) can provide insight to designing effective and efficient buffer strips.

Beven and Kirkby (1979) suggested that topography affects surface runoff, subsurface 

flow, and consequently the location of zones of surface saturation and the distribution of 

soil water content across a catchment. This study demonstrated that Beven and Kirkby’s 

TI can be useful for predicting areas of topographic convergence. The evidence for this 

was the high TI values that were coincident with sampler locations (which were situated
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in areas of topographic convergence). Researchers studying erosion associated with 

agricultural land uses have postulated that if ephemeral gully erosion could easily be 

predicted, then areas where conservation practices were needed would also be identified 

(Watson et al. 1986). Post-impact data showed higher variances in mineral and organic 

collection rates as TI values increased, and this was generally true with or without the 

inclusion of data for samplers affected by flow and/or windthrow. The high variance 

among samplers with higher TI values indicated that the TI can be used to locate areas 

with higher risk for erosion; however, this also indicated that some areas classified as 

having high risk for erosion (based on high TI values) may not actually be subject to 

higher rates of erosion.

Land management agencies in Califomia have used GIS to locate areas where surface 

erosion hazards are high (Olson and Orr 1999). Erosion hazard ratings can be used to 

limit or restrict the types of operations that are allowed to occur within specific areas 

across a landscape (Olson and Orr 1999). The TI evaluated by this study could be used 

to locate areas within a management unit that may be subject to higher or lower rates of 

erosion after forest management impacts. However, these predictions should be field 

validated prior to forest management operations, at which time areas confirmed to be 

sensitive (wet areas, and/or areas with channelized flow) could be flagged and excluded 

from potentially harmflil operations, or identified for careful logging.

The TI may also be useful for locating areas within reserves that may have higher 

relative risk for windthrow occurrence, because trees in wetter areas are at greater risk of
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being thrown by wind compared to trees in drier areas (Steinblums et al. 1984; 

Stephenson 1988; Alexander 1964). Trees identified to have a high risk for windthrow 

could be removed by selection logging (Stephenson 1988), and this could help reduce 

the risk for erosion.

The distribution of water within a catchment and the development of ephemeral channels 

can be affected by factors other than those accounted for in the TI (Moore et al. 1988; 

Hinton et al. 1993). These factors can be spatially variable and can include soil 

hydraulic properties and vegetation (Hinton et al. 1993). More complex indices that 

include additional variables such as climate and surficial geology may the improve 

prediction efficiencies of these models, especially when working at regional scales 

(Wilson and Gallant 2000).

Results of this study demonstrated that a significant portion of the risk for erosion after 

forest management could have been assessed using just three factors: flow accumulation, 

windthrow, and TI. The results of this study identified that the occurrences of surface 

runoff and windthrow (especially when they occur together), can increase sediment 

collection rates in riparian reserves, and areas with higher TI values may be subject to 

increased erosion compared to areas with lower TI values. Distance from roads appeared 

to he correlated with sediment collection rates, but these results were not totally clear. 

The Results of this study revealed how roads can both alter natural drainage pathways 

and affect the size of the contributing areas that drain through sections of riparian 

reserves. Consideration of the effects of forest management by applying the GIS
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methods used in this study may help forest managers evaluate potential impacts of 

various forest management scenarios, but further research into these types of 

applications should be conducted.
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5.0 SUMMARY OF FINDINGS

The results of this study do not support the assumption that clearcut areas are universal 

sources of erodable sediment, and identified that areas exposed to channelized surface 

runoff are associated with higher risk of erosion than areas that are not exposed to 

channelized erosion. Analyses of sediment collection rate data have revealed two 

principal outcomes/results: 1) areas subject to surface runoff had higher sediment 

collection rates compared to areas that were not, and 2) windthrown trees can contribute 

to the acceleration of sediment collection rates, especially when they occur in 

conjunction with surface runoff. This study demonstrated that flow accumulation and 

topographic indices, generated with a GIS, can be used to locate areas that may be 

subject to increased erosion following forest management. The influence of the other 

factors investigated by this study (slope, distance from road, size of the sub-catchment 

area, amount of cover, and TI) appear to be more variable.
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APPENDIX I

General guide for determining the widths of AOCs in Ontario, based on shoreland slope 
(OMNR, 1988).

Slope (%) Slope C) Width of AOC (m)

0 - 1 5 0 - 8 30

1 6 - 3 0 9 - 1 7 50

4 1 - 4 5 1 8 -2 4 70

4 6 - 6 0 2 5 -3 1 90
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APPENDIX n

Mineral and organic sediment collection rates (g-mm'* precip) for each sampler, by year.

1997 1998 1999

Sampler Mineral Organic Mineral Organic Mineral Organic

NR-00 0.0044 0.0265 0.0013 0.0407 0.00134 0.0152

NR-10 0.0060 0.0076 0.7652 1.2625 n/a n/a

NR-20 0.0016 0.0042 0.0054 0.0198 0.00162 0.0031

NR-30 0.0013 0.0046 0.0009 0.0064 0.0024 0.0111

NM-00 0.0013 0.0055 0.0014 0.0078 n/a n/a

NM-10 0.0046 0.0153 0.0023 0.0571 n/a n/a

NM-20 0.0014 0.0039 0.0016 0.0034 0.0006 0.0014

NM-30 0.0017 0.0186 0.0007 0.0058 n/a n/a

SR-00 0.0007 0.0076 0.0003 0.0019 0.0003 0.0009

SR-10 0.0008 0.0045 0.0004 0.0019 0.0003 0.0014

SR-20 0.0010 0.0047 0.0005 0.0034 0.0006 0.0014

SR-30 0.0013 0.0058 0.0015 0.0043 0.0003 0.0013

SM-00 0.0008 0.0026 0.0002 0.0025 0.0003 0.0047

SM-10 0.0006 0.0028 0.0002 0.0024 n/a n/a

SM-20 0.0040 0.0089 0.0006 0.0024 0.0006 0.0011

SM-30 0.0019 0.0098 0.0008 0.0163 n/a n/a
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APPENDIX m

Index of change (IOC) values quantifying changes in the rates (g-mm' precip) that 
mineral or organic sediment were collected in 1998 (first year post-impact) or 1999 
(second year post-impact) compared to rates in 1997 (pre-impact).

Sampler

1998/97 1999/97

Mineral Organic Mineral Organic

NR-00 -1.2137 0.4296 -1.1810 -0.5539

NR-10 4.8425 5.1125 n/a n/a

NR-20 1.2388 1.5562 0.0381 -0.3003

NR-30 -0.2894 0.3199 0.6476 0.8734

NM-00 0.1082 0.3574 n/a n/a

NM-10 -0.7058 1.3167 n/a n/a

NM-20 0.1055 -0.1265 -0.8650 -0.9904

NM-30 -0.8669 -1.1662 n/a n/a

SR-00 -0.8643 -1.3867 -1.0737 -2.0967

SR-10 -0.7772 -0.8389 -0.8618 -1.1651

SR-20 -0.7301 -0.3391 -0.5603 -1.2089

SR-30 0.1766 -0.3049 -1.2969 -1.5197

SM-00 -1.2802 -0.0352 -0.9328 0.5835

SM-10 -0.9577 -0.1522 n/a n/a

SM-20 -1.8842 -1.3113 -1.8795 -2.1214

SM-30 -0.9085 0.5150 n/a n/a
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APPENDIX IV

Descriptive statistics for mineral and organic sediment collection rates (g-mm"' precip), 
by sampler position in the reserve, and year.

1997 1998 1999

Position Statistic Mineral Organic Mineral Organic Mineral Organic

0 N 4 4 4 4 3 3

Median 0.0010 0.0066 0.0008 0.0052 0.0003 0.0047

Range 0.0036 0.0239 0.0012 0.0388 0.0011 0.0143

Max 0.0044 0.0265 0.0014 0.0407 0.0013 0.0152

Min 0.0007 0.0026 0.0002 0.0019 0.0003 0.0009

10 N 4 4 4 4 1 1

Median 0.0027 0.0060 0.0013 0.0298 0.0003 0.0014

Range 0.0054 0.0125 0.7650 1.2606 0.0000 0.0000

Max 0.0060 0.0153 0.7652 1.2625 0.0003 0.0014

Min 0.0006 0.0028 0.0002 0.0019 0.0003 0.0014

20 N 4 4 4 4 4 4

Median 0.0015 0.0044 0.0011 0.0034 0.0006 0.0014

Range 0.0029 0.0050 0.0049 0.0174 0.0010 0.0020

Max 0.0040 0.0089 0.0054 0.0198 0.0016 0.0031

Min 0.0010 0.0039 0.0005 0.0024 0.0006 0.0011

30 N 4 4 4 4 2 2

Median 0.0015 0.0078 0.0009 0.0061 0.0014 0.0062

Range 0.0007 0.0140 0.0008 0.0121 0.0020 0.0098

Max 0.0019 0.0186 0.0015 0.0163 0.0024 0.0111

Min 0.0013 0.0046 0.0007 0.0043 0.0003 0.0013

Total N 16 16 16 16 10 10

Median 0.0014 0.0056 0.0009 0.0050 0.0006 0.0014

Range 0.0054 0.0239 0.7650 1.2606 0.0021 0.0143

Max 0.0060 0.0265 0.7652 1.2625 0.0024 0.0152

Min 0.0006 0.0026 0.0002 0.0019 0.0003 0.0009
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o  Descriptive statistics for mineral and organic collection rates (g-mm ' precip) by year (1997, 1998, and 1999) for the group of samplers
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that were and the group of samplers that were not observed to be affected by surface run off.

1997 1998 1999

Flow (Y/N) Statistic Mineral Organic Mineral Organic Mineral Organic

No N 12 12 12 12 9 9

Median 0.0012 0.0052 0.0006 0.0034 0.0006 0.0014

Range 0.0038 0.0239 0.0014 0.0388 0.0021 0.0142

Maximum 0.0044 0.0265 0.0016 0.0407 0.0024 0.0152

Minimum 0.0006 0.0026 0.0002 0.0019 0.0003 0.0009

Yes N 4 4 4 4 1 1

Median 0.0031 0.0065 0.0038 0.0384 0.0016 0.0031

Range 0.0048 0.0111 0.7638 1.2547 0.0000 0.0000

Maximum 0.0060 0.0153 0.7652 1.2625 0.0016 0.0031

Minimum 0.0013 0.0042 0.0014 0.0078 0.0016 0.0031
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o Descriptive statistics for mineral and organic collection rates (g-mm‘ precip) by year (1997, 1998, and 1999) for the group of samplers
that were and the group of samplers that were not affected by windthrow.
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1997 1998 1999

Windthrow (Y/N) Statistic Mineral Organic Mineral Organic Mineral Organic

No N 13 13 13 13 9 9

Median 0.0013 0.0047 0.0009 0.0043 0.0006 0.0014

Range 0.0040 0.0239 0.0052 0.0552 0.0021 0.0143

Maximum 0.0046 0.0265 0.0054 0.0571 0.0024 0.0152

Minimum 0.0006 0.0026 0.0002 0.0019 0.0003 0.0009

Yes N 3 3 3 3 1 1

Median 0.0040 0.0089 0.0007 0.0058 0.0006 0.0011

Range 0.0044 0.0110 0.7646 1.2601 0.0000 0.0000

Maximum 0.0060 0.0186 0.7652 1.2625 0.0006 0.0011

Minimum 0.0017 0.0076 0.0006 0.0024 0.0006 0.0011
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