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Chapter 1

INTRODUCTION

When a system is performing the same task repeatedly it is, from an engineering
perspective, advantageous to use the knowledge from the previous iterations of the
same task in order to reduce the error on successive trials.

In control systems, the aim is to force the system output to follow a desired
trajectory as closely as possible. Specific norms and measures of optimality are used
to determine how close the output is to the desired trajectory. Although control
theory provides many different possible solutions for such problem, it is not always
possible to achieve a desired set of performance requirements. This may be due to
the presence of unmodeled dynamics or parametric uncertainties exhibited during
the system operation, or due to the lack of suitable design techniques for particular
class of systems. Iterative learning control (ILC) is a relatively new addition to these
techniques that, for a particular class of problems, can be used to overcome some of
the difficulties associated with performance design of control systems.

The iterative learning control problem considers that the control task is to perform
a specific tracking command many times. Between each command application, the

system is returned to the same initial condition. The development of ILC originates
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from the area of robotics where this sort of repetitive motions shows up in many ap-
plications. The formulation used consists of a feedback controller, and a learning law
which adjusts the command to the system from one iteration to the next, in order
to minimize the tracking error. ILC differs from most existing control methods in
the sense that, it exploits every p‘ossibility to incorporate past control information,
such as tracking errors and control input signals, into the construction of the present
control action. There are two phases in ILC: initially memory components are used
to store past control information, then the stored information is fused in a certain
manner so as to ensure that the system meets control specifications such as conver-
gence and robustness. It is worth to note that the control specifications may not be
easily satisfied by other control methods as they require more prior knowledge of the
process in the stages of controller design. ILC requires much less information of the
system parameters to yield desired dynamic behaviour. ILC has received considerable

attention from researchers owing to its simplicity and effectiveness.

1.1 Motivation and Objectives

ILC approach is motivated by the observation that, if the controller used is fixed and
the system’s initial operating conditions are the same for each trial, then any error at
the output will be repeated for each trial. These errors, if stored during the system
operation, can be used to modify the succeeding inputs. The refinements are applied
to the input until the desired performance criteria are attained. Implementation of
two new approaches to ILC are undertaken as part of the thesis work.

The objective of the thesis work is to test the practical feasibility of the ILC
schemes discussed in 26}, [27] and [28]. The control strategies are implemented on a

2-DOF planar manipulator prototype.
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1.2 Li_terature Review

Historically the term learning control appears in the context of adaptive control and
cybernetics. One of the earliest articles appeared in 1970, and some works on learning
and adaptation was done during the first half of 1970’s. But in all these works,
the learning control referred to an online controller tuning method. The learning
controller in its present form i.e., offline scheme, was proposed by Uchiyama in his
article published in 1978. The idea wasn’t noticed by the community until after a
couple of years, since the paper was published in Japanese and it took a few more years
to become an active area of research. During this time works [1], [6] were published
which discussed about a method that could iteratively compensate for model errors
and disturbances. Some of the ILC algorithms already proposed in the literature
includes [2], [11], [16], [17]. A survey on ILC literature upto 1991 could be found in
[19].

Although the resetting condition is one of the requirement in many existing ILC
algorithms, works have been done in proving the convergence for non-zero initial
errors, as discussed in [5], [14], [20].

Different approaches are followed in ILC for ensuring the convergence of the track-
ing error, including robust and adaptive ILC methods. The ILC scheme proposed by
[1] is an open loop configuration, purely feedforward action depending on the output
at the previous operation. This cannot be used in real systems because of the lack of
robustness with respect to non repeating disturbances along iterations. In addition to
this, the tracking error may increase to a large value before it eventually converges.
Thus, in real systems a feedback scheme is employed along with iterative learning
control for enhancing system robustness and performance. The closed loop stability
and disturbance rejection are guaranteed by the feedback controller while the itera-

tive learning controller provides improved tracking performance over iterations. With
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the presence_of plant uncertainty, the iterative control problem could be transformed
into a robust control problem [18]. This provides one with the robust control design
procedures for the solution of iterative learning control problem [25], [26], [27].

Employing a PD or PID controller is a commonly used approach in robotic ap-
plications, mainly due to simplicity of its bimplementation. As long as the evaluation
of the instantaneous gravity forces is possible, global asymptotic stabilization of the
manipulator is possible using a PD controller with gravity compensation [23], [24].
But since this condition cannot be always guaranteed in practical situations, the PD
controller leads to a steady state error. This steady state error can be reduced using
high gain feedback. However, the high proportional and derivative gain may result in
actuator saturation and may excite high frequency modes. Using the PID controllers
local asymptotic stability was proven, but under some relatively complex conditions.
The introduction of the passivity property for manipulators, allowed the design of
globally asymptotically stabilizing PID controllers without gravity compensation [2].
Considering the fact that the robot parameters appear linearly in the Lagrange equa-
tion, it has been shown in [22] that a PD controller with an additional adaptive term
is able to globally asymptotically stabilize rigid robot manipulators.

Since robot manipulators are used in repetitive operations one could take advan-
tage of this fact for improving the performance in succeeding operations. The ILC
techniques are used in order to enhance the tracking performance of such applications
where this sort of repetitive motion shows up. In this regard one could mention, to
name a few, the works of [2, 17, 24] for the existing ILC schemes for robot manipu-
lators. Most of these ILC schemes are based on the contraction-mapping theory and
requires some prior knowledge of the system dynamics [19].

Recently another type of ILC algorithms were developed based on Lyapunov and
Lyapunov-like energy functions. In [9], a standard Lyapunov design is used for the

solution of ILC problems. The idea consists of using a standard adaptive design and

4
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setting the initial parameter estimates with the final parameter values of the previous
iteration. In the nonlinear ILC scheme proposed by [29], for the position tracking
problem of uncertain manipulators, the convergence of the iterative process is proven
using a Lyapunov-like energy function. But all these control laws require a certain a
priori knowledge of the system pa.rameteis.

The adaptive ILC schemes proposed in [28] do not require any a priori knowledge
of system parameters and the proof of convergence is based on a Lyapunov-like energy
function. The control algorithm involves the use of an iteratively updated term
designed to take care of the unknown parameters and disturbances, together with
a PD controller. In contrast to classical ILC schemes where one needs the same
number of iterative variables as the number of control inputs, here we require only

two iterative variables for controller implementation.

1.3 ILC problem Formulation

The basic idea of ILC is shown in figure 1.1. Let, at k** trial, u;(¢) be the input
and yx(t) be the output. Based on the error (ey(t) = ya(t) — y(t), where y4(t) is
the desired output) that is observed through the trial, the ILC algorithm computes
a modified input signal, uk4;(t), to be stored in memory until the next trial. This
input is designed such that it will produce a smaller error than the previous input.
Given a system described by y = f,(u), and desired output response y,(t), the ILC
problem is to find an optimal input u*(¢) that satisfies

min [lya(t) = fo(u(@)ll = lva(®) — fo(u* I (1.1)

In this context, ILC is an iterative technique for finding u*(¢) over the finite time
interval [0,T]. The ILC approach is to generate a sequence of inputs u(t) such that
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Figure 1.1: Concept of iterative learning control

the sequence converges to u*(¢) such that
lim ug(t) = u*(¢) (1.2)
k—o0

in the interval [0,T]. Based on the above mentioned properties and methodology on

ILC, the following remarks could be made :

1. In asuccessful ILC algorithm the succeeding input will be computed so that the
performance error will be reduced on the next trial. This is usually measured
in terms of some norm, and the error should converge, with the condition that

the convergence property must not depend on the desired response.
2. It is assumed that the initial conditions, during each trial, are always the same.

3. It is also assumed that the trial length,i.e. time span of operation is fixed.
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1.3.1 D type ILC

The simplest and earliest of ILC algorithms [1] is the derivative type given by,
Uk41 (t) = uk(t) + I‘ék(t) (1.3)

where I' is the gain factor. For a SISO LTI system A, B,C,D with CB # 0, if
Il — CBT|| < 1, and if some initial conditions are met, then on successive iterations

Hmp o0 Y (t) = ya(t) in the sense of A\-norm defined by

= (®)llx = e {ellz)}

1.3.2 PD control law

Consider the following control law [20],

Ur41(2) = ur(t) + T'(éx(t) — Rex(t)) (1.4)
with
#(t) = Az(t)+ Bu(t) (15)
y(&) = Cz(t)
II -TCB|| < pm <1 (1.6)

and suppose that (1.6) holds and the update law (1.4) is applied to (1.5). If the initial

condition at each iteration remains the same, i.e. z;(0) = 2,k = 0,1,2.. then

tl—i{g ye(t) = ya(t) + e®Cry
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1.3.3 PID law

It is shown in [20] that when the ILC algorithm (1.7) is applied to system (1.5), the

output trajectory converges to the form in (1.8).

e (t) = 1)+ Ea() + Qo)+ s | " ex(r)dr) L)

lim yk(t) = yd(t) + CReARtfo

(1.8)
k— o0
Here,
[ 0 I
Agr =
| —@1 —Qo
Cr = | I 0]
¢ o )
= To~— I
0 - _0, 0~ g

From equation (1.8) it is clear that by introducing an integral term one can control

the output trajectory in numerous ways.

1.4 ILC with Non-zero Initial Error

One restriction of ILC is that the initial condition at each iteration should be equal
to the initial condition of the desired trajectory. The works on non-zero initial state
error for error convergence has been done in [14]. Consider the linear time invariant

system
i) = Az(®) + Bu(t)

y(t) = Caz(t)
where z € R"*, v € R, y € R™ denote state, input and output respectively. A, B and

(1.9)

C are matrices with appropriate dimensions and CB is assumed to be non-singular.

8
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Let the desired trajectory z, be continously differentiable on [0,T] and it is assumed
that
.’17,_1(0) =0

Then the control considered by [1], for the system (1.9), is described as

g1 (t) = up + Ty (t) (1.10)
where,
Zx(t) = Azi(t) + Bug(t)
w(t) = Cz(t)
Ya(t) = Cuxq(t)
and

Syk(t) = walt) — ye(t)

The ILC structure is described in figure 1.2.

From
memory

U®

Y® Y ®

3 System

T

Figure 1.2: A simple D-type iterative learning control

Upn®
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And if conditions
I —TCB| < pm < 1 (1.11)
w(0) =940)=0 £=0,1,2. (1.12)

are satisfied, then using the control law (1.‘10), the error between yi(t) and yqu(t)
approaches zero as k — oo.

It can be shown that if (1.11) is satisfied and the initial state error is bounded,
that is, ||zx(0) — 24(0)|| < by, then the error between yi(t) and y4(t) is bounded as
k — oo and this bound depends continously on the bound of the initial state error.
Therefore as the bound on initial state error b,y tends to zero, the bound on the
output error also tends to zero. This shows that the learning law (1.10) is stable
against any initial state error, if the error is bounded, even if the condition (1.12)
does not hold. If the learning law (1.10) is applied to the system (1.9) under the
assumption that z;(0) = 24,k =0, 1, 2.., and if the condition (1.11) is satisfied, then

Jim yi(t) = ya(t) + Cao

1.5 Overview of Thesis

The mathematical modeling, derivation of inverse kinematics, and dynamical equa-
tions are discussed in Chapter 2.

Chapter 3 gives a brief discussion on the experimental setup. The mechanical
system, electronic circuitry and the data acquisition setup will be covered in this
section.

Chapter 4 deals system identification, the experimental setup for identification
procedure and system validations and model reduction.

Chapter 5 discusses the robust iterative learning control, the theory of robust

control, u-synthesis and experimental results.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Adaptive ILC is discussed in Chapter 6, with simulation and experimental results.

In the final chapter we present the conclusions and some directions for future study.

11
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Chapter 2

MODELLING AND DYNAMICS

2.1 Mathematical Model

RA LA

AAA o V¥ o W

= ~
7 A,

MOTOR A
YA | =

6

m

Figure 2.1: Circuit diagram for armature controlled DC motor

From (23] the schematic diagram of a DC motor is given in Figure 2.1.
V4 = armature voltage

L4 = armature inductance
R, = armature resistance

Vi = back emf

12
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by, = viscous-friction coefficient
In = rotor inertia

14 = armature current

8., = rotor position

8 = load position

Tm = generated torque

T = torque after gear system

1 = gear ratio from motor shaft to load

The differential equation for the armature current is

Va—-W = L% + Ryia, (2.1)
where
Vs = Ky, (2.2)

and Kj is the back emf constant. The torque developed by the motor is given by

Tm = KmiA7 (2.3)
T = NTyn, (2.4)

. 1.
6= =By, 2.5
” (2.5)

From the equation of motion, we have
T = I + by + %(Ié + bd), (2.6)
which leads to 7 = (I + 72I,)f + (b + 7%y )0. From the above expressions, we have

R . Ladrm
Va= A0+ Ky + =220 (2.7)

K Ky, dt’

13
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and based on the fact that the electrical time constant is much smaller compared to

the mechanical time constant, the expression for V4 can be approximated to
_ RA I e RA b -
Vo= 7 (I + nz)ne + Ky + X (b + 7 Ynb. (2.8)

This leads to a transfer function of the fofm

6(s) 1
VA(S) - S (-S'K1 +K2) ’

(2.9)

where K1 = £4(Im+ Z)nand Ky = [Kp+ £4(bm + ;7'-’5)]77

2.2 Denavit-Hartenberg (D-H) Representation

A
e b
[Sny
v
A
[y
[
\

TR
1
!

-

1cl

A
[—y
(2]
&2
i
i
v

Figure 2.2: 2-DOF planar manipulator

The D-H representation (refer to Appendix B) is used for deriving forward kine-
matics of the manipulator under study (Figure 2.2). The resulting link table and the

kinematic equations are shown,

14
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DH Parameters for Robot
Link | a; | d; | ;| 6
1 ja;{0]0 | aq
2 (12} 0 0 Q2*
C; =81 0 a1 €y —8g 0 Q9Co
s1 ¢ 0 ais sa ¢ 0 ass
A = 1 Q 181 A, = 2 C2 289
0 0 1 O 0 0 1 0
0 0 0 1 0o 0 0 1 |
To> = AjA, and Ty'l= A
T e
iz —812 0 aic + azcr
2 s12 ci2 0 a181 +agsio
Tg =
0 0 1 0
0 0 O 1
where, )
A .
€ = Cosqy, Ss = sing
e 2 cosg, cz 2 cos(qy + o)
A . A
51 = sing, s12 = sin(g + ¢2)

2.3 Inverse Kinematics

In the inverse kinematics problem, the solution for the joint parameters from the given

position and orientation of the end effector, (z,y) and ¢ respectively are obtained.

15
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Figure 2.3: Two link revolute planar manipulator

Considering the x-y plane we have,
x =ljc; + lacg (2.10)
and
y=lis1 +ls¢ (2.11)

where cos ¢ and sin ¢ are denoted by c¢ and s¢ respectively. And Iy and I, are the
lengths of linkl and link2.

From the above equations, ¢; = ’”“{f“ and 51 = y;ffi?

= ¢ =arctan(c;,s1) G =¢—q

2.4 Dynamical Equations

For describing the dynamics of rigid robot manipulators, one could use some analytical
methods in mechanics, namely Euler-Lagrange and Newton-Euler method. While the
former describes the mechanical system based on derivation of the Lagrangian, which
is the difference of the kinetic and potential energy, the latter uses the balance of

forces and torques for the dynamic model derivation.

16
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Considering the 2-DOF robot manipulator shown in Figure 2.3, with the following
notations : |
I :length of link 1
I :length of link 2
m; : mass of link 1
my : mass of link 2
l,, :distance to the centre of mass of the link 1
l., :distance to the centre of mass of the link 2
I; : moment of inertia of link 1

I, : moment of inertia of link 2

1 = l,cosq
= l,sing
Tz = lc cosqy + le cos(gr + ga)

y2 = lgsing + 1, sin(g + g2) (2.12)

2.4.1 Euler-Lagrange method

In this method, a set of diffrential equations are derived under holonomic constraints,
when the constraint forces satisfy the principle of virtual work. The derivation in-
volves the computation of Langrangian given by the difference of the kinetic and

potential energies. The potential energy, V of the system is given by,

V = magd, (2.13)

17
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with d being the vertical distance between the two links.

And expression for Kinetic energy, K is,

K = %mlvfl + -;-mgv,; + %Iqu + -;—Iz(q'l + G2)?
= %mlq'?lﬁ, + %mzllq‘% + %mzliz (@ + 62)°
+2malile; 1 (G1 + g2) cosge + %Ildf + %(q'l + ¢2)? (2.14)
The dynamic equations are given by,
no= = (gg—l) - % (2.15)
T, = % (g_q%) - gq% (2.16)

where Lagrangian, L is given by

L = K-V

— 1 -2l2 1 l2 +2 1 l2 . . \2 d

= §m1q1 . —2-m2 197 + -2—m2 cz(fh + 42) - Mag

.. ) 1., 1_ . .
+malile,di(d + go) cos gz + ‘Q‘IIQ% + ‘2'-’2(41 + g2)? (2.17)
and

oL .. .. o
% malidy + muly g + mely, (4 + &) + gy

+malile, (261 + ¢2) cos gz + Io(G1 + g2) (2.18)

d (0L . . . . .
- (—) = moligs + mall Gy + mall, (G + G2) + Ly + L(Gy + do)

dt \ 84y
+malile, (241 + d2) cos go — malile, (261 + g2)dosings  (2.19)
oL oL
— = 0 — = —malil.G:1(dg + go)sin 2.20
£ o 2t16c, 43 (Q1 42) g2 ( )
oL . .. ..
% malZ,(d1 + 62) + Io(dy + d2) + malile, g1 cosga (2:21)
d [ OL . .
7 (6—q2—> = mzlzz(fh + o) + (G + G2)
+miglile, Gy cos go — malyle,gigo Sings (2.22)
18
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Link1 Link2

Figure 2.4: Force and moments on links
From equations (2.12) - (2.22), the dynamic model could be derived as,

= (mld +mold + mold + It + L)1 + (Mol + L)ga
+m2l1lc2 (2q1 -+ Q2) Cosgg — mzllch (2q1 + q.2)q.2 sin qa (223)
1 = L(§ + G) +mall, (G1 + G2) + male,l163 sin g

+m2lc2 llc'jl COS g2 (224)

2.4.2 Newton-Euler method

This method is based on the balance of forces and torques using free-body diagrams
as shown in Figure 2.4.

Based on the linear motion, of link 2, we have

f2a:
fay = majie. (2.25)

il

Mo,
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Balance of torques for link 2 leads to,
T2 + lep fay cos(qy + @) — le, for 8in(gy + g2) = L(G1 + Ga).
From (2.12), (2.25) and (2.26),
7o = LG + §2) + malZ, (G + G2) + Male,l1 6 sin g + male, L1 cos g
From the linear motion of link 1, we have

Jiy = muGi + fay,

fiz = myZy + foz.

Balance of torques for link 1, leads to

I = —l fiycosq — (ly — ;) foycosqy — 7o+ 1
+le, fizsing, + (L — Ie,) fac singy.
From (2.12), (2.28) and (2.30),

o= (Ml +mel} + mall, + I + L)Gi + (mel, + I)do

+malyle, (241 + §2) cos g2 — malyl, (261 + ¢2)d2 sin gs.

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

Now, combining (2.31) and (2.27), and rearranging the expression into a matrix

form, we obtain

My

€12 G _ T1
M c22 G2 Ty

Mg ) e
- +
Mgz 02 Ca1
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with,
my; = mllfl + mglf -+ mgli + 2m2llch cosge+ 11+ Is

My = Mgy = mall, +mahl,cosq+ I

Moy = mgl';’2 + I
en = —malilc,gasings
iz = —malile,(d + do)sing, (2.33)
ca1 = mall,gising, ez = 0

The dynamical equation of the robot manipulator is given by,

M ()i + C(k; 4x)dic + G(gr) = ™ (2.34)

where, M(gy) is inertia matrix, C(gx,qx)gr is a vector resulting from coriolis and
centrifugal forces. G(gx) is a vector resulting from gravitational forces. 7 is the

control input vector containing torques and forces to be applied at each joint.

2.5 Summary

e The derivation of the mathematical model of the system, helps us to have an
idea on the order and of the system transfer function. And in this case, from

(2.9) it is evident that the system has an integrator.

o The derivation of the inverse kinematic expressions provides one with the desired

joint variables.

e In this chapter the dynamical equation of the manipulator was derived using
both the Euler-Langrange and Newton-Euler methods. The knowledge of the
system dynamical equation helps one in the design and implementaion of the

control strategies.
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Chapter 3

EXPERIMENTAL SETUP

The experimental setup consists of the mechanical assembly, the electronic circuitry,

and the data acquisition system.

3.1 Mechanical Assembly

The mechanical setup for the 2-DOF manipulator consists of two links made of alu-
minum connected through gear trains. The dimensions of the links being 74cmx5cm
x5cm and 47.5cmx5cmx5cm. The joints are actuated by two DC motors, Pittman
GM9434 H187, via gear trains with optical encoders providing motor position mea-
surements. The motor has a built-in gearbox with a transmission ratio of 1:5.9 and
with a no load speed of 6151rpm. The mechanical assembly has a further gear ratio of
30:86. Counter weights are added to the links to reduce gravity effects on the system.

The motors are driven by the associated circuitry.

22
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3.2 Circuitry

To drive the motors, which act as the actuators for the two links, the necessary current
is provided by the electronic circuitry. The overall circuitry shown in Figure A.1
consists of motor power supply module, bridge module, power supply module for the

various chips, current control module and signal separation module.

3.2.1 Motor Power Supply Module

The schematic of the motor power supply module is shown in Figure A.7. The module
provides power to the 2N6059 amplification circuit in bridge module, for the control

of the current magnitude and direction.

3.2.2 Current Control Module

This circuit shown in Figure A.3, is used for controlling the magnitude of the motor
current. The circuit is based on a proportional-integral (PI) controller. The output

of the current control module is given by
Ru) (RmR'( Ry / ' >
U= {14+—= e+ edt 3.1
( Ri) \RsRs RoResC1 Jo (3.1

3.2.3 Bridge Module

The bridge circuit is constituted of four MOSFETs IRF540, as shown in Figure A.5.
The MOSFETSs @1, @2, @3 and @4 are used for switching the motor current directions.
The current directions are determined by the MOSFET pairs @, @3 and @3, Q4
which moves the motor in clockwise and counter-clockwise directions. The desired
current is obtained by applying the output of the current control module to the base
of the 2N6059 transistor, the value of which could be measured as the voltage across
the resistor Ry. To reduce high voltage buildup during the MOSFET switching,
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between the drain and source MOSFETSs resistors, capacitors and diodes are used.
The resistors Rs, Hg, Ry and Rg used at the gates of each MOSFETS, are used to

reduce the noise from the outputs of opto-isolation circuitry.

3.2.4 Opto-Isolation Module

This module provides an isolation between the power supplies and generates two 180-

degree out of phase signals for the switching of MOSFET pairs. The schematic of this
circuit is shown in Figure A.6. The module consists of DS0026CN clock driver chip,
HP261A opto-isolation chip and associated circuitry. The output of phase signals
guarantees that the MOSFET pairs @y, @3 and @2, @4 in the bridge module do not
turn on and off at the same instant. This ensures the control on motor direction. The
module has three opto-isolators for generating MOSFET driving signals. DS0026CN
is a high speed two phase MOS clock driver containing the necessary interface circuit,
with peak current of £:1.5A. The use of high speed opto-isolator and MOSFET drivers

enables the circuit to operate at higher frequencies during data acquisition.

3.2.5 Signal-Separation Module

The schematic of this circuit is shown in Figure A.4. This module separates the
command signal from data acquisition (DAQ) board intc magnitude and direction
signals. The direction output is a signal waveform with values of zero and

Ry
Rz + R, V+

de'r =

where V. is the output of Op-amp LM1458.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2.6 Power supply Module

It is used to provide £12V and 5V supply voltages to the various integrated circuits,
like opto-isolators, Op-amps, etc the power supply module as shown in Figure A.7 is

incorporated. It is a full wave rectifier with required voltage regulators.

3.3 Data Acquisition Module

For the experimental setup dSPACE data acquisition board DS1102 is used with
Matlab/simulink and a friendly graphical user interfaced (GUI) realtime workshop,
Controldesk. Through the associated circuitry, the motor current serving as the
system input is controlled through the DS1102 data acquisition board. DS1102 is a
single board system, specifically designed for real-time control implementation. The
DAQ board is based on Texas Instruments TMS320C31 third generation floating
point digital signal processor, which builds the main processing unit. The DSP has
been supplemented by a set of on-board peripherals frequently used in digital control
systems. Analog to digital converters (ADC) and digital to analog converters (DAC),
DSP micro controller based digital 1/O subsystem and incremental sensor interfaces
are included. The DAQ board has four ADC’s, two 16-bit ADC’s working at 250KHz
sampling rate and two 12-bit ADC’s working at 800KHz sampling rate. All ADC’s
have single ended bipolar inputs with £10V input span. The board also includes four
12-bit DAC’s working in 10V range.

The voltage command signal from the analog ocutput channel serves as the con-
troller output. This signal is separated, by the signal separator module, into the
magnitude and direction signal. These signals are used to control the magnitude and

direction of the motor current.
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Chapter 4

SYSTEM IDENTIFICATION

System identification deals with the construction of mathematical models from ob-
served data of the physical system. It hence becomes an integral part in the control
of physical systems. The system identification problem can be divided into a number

of subproblems:
1. experiment design,
2. data collection,
3. model structure selection,
4. model estimation, and
5. model validation.

For system identification two approaches are used : closed loop identification and

open loop identification.

1. Open Loop Identification: The system model from the input to the output is
identified in open loop configuration.
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2. C’losed Loop Identification: The system model from the setpoint to the output
(indirect approach) is identified, from the captured data. The system transfer
function is obtained from the closed loop transfer function and the knowledge
of the controller transfer function. Another approach followed in closed loop
identification is the direct a,pproach,iwhere the model between the control input

and the output of the closed loop system is identified.

4.1 Closed Loop Identification

During the closed loop identification the output is fed back by means of some feed-
back mechanism as shown in Figure 4.1. Here plant models are identified using data
collected from closed loop experiments and the underlying processes are fully or par-
tially under feedback control. It is sometimes necessary to perform identification
experiments in a closed loop. The reason maybe that the plant is unstable or that

it has to be controlled for production, economic or safety reasons. The closed loop

T(s)

-
=
e

%

—> PD |—* 2 DOF

Figure 4.1: A closed loop system
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identification is often a feasible approach offering a number of practical advantages

[13]

1.

validation of the designed controller and onsite re-tuning,

. obtaining better models for controller design,

controller maintenance,

. iterative identification in closed loop and controller re-design and

. controller order reduction.

Closed loop identification could be done using the direct method or by the indirect
method [7].

1.

Direct method : The system output (y) and the input to the system (u) are
used for determining the transfer function of the plant (Figure 4.1). Then

Y{(s)

&)= 755y

will provide the transfer function with ¥ (s) and U(s) being the Laplace trans-

forms of y(t) and u(t) respectively.

. Indirect method : Here, the system output (y) and the setpoint (r) are used along

with the controller transfer function to obtain the system transfer function.

G(s) = T—I%E"C'% (4.1)

where, T'(s) is the identified closed loop transfer function, C(s) is the controller

transfer function.
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In this report the indirect closed loop identification method is used for the system
identiﬁcatioﬁ because the system was not stable in open loop. The closed loop system
is realized with a PD control, and the signals of relevance are collected. The collected
signals are analyzed, and the ARX closed loop model is obtained using MATLAB
[15]. Then the system transfer function is identified as per (4.1).

Host computer with DS1102

Reference
trajectory

> PD+
l Data file , ® Filter D/A

[

Driver
Circuits

Figure 4.2: System setup for closed loop identification

4.2 Closed Loop Experiment

The system setup for the closed loop experiment is as shown in Figure 4.2. In this
experiment the magnitude of excitation signal is chosen as the required maximum
angular position. A PD controller of the form (4.2) was chosen as the controller.

de

C(s) =Kp+-?1;s—_;7

(4.2)

where K, is the proportional gain, K; is the derivative gain and f, is the cut off

frequency (in rad/sec) of the lowpass filter. For link 1, K, K, and f, were chosen as
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0.5, 0.1 and 20 rad/sec respectively. And for link 2, the parameters K,, Ky a,nd I

were chosen to be 1.5, 0.1 and 30 rad/sec respectively.

20 . . + - 20
i8F 1 ) — r— 15 — — S —
10 1 ter
% st = 5F
: :
Eé o} s of
T B
-0} 4 ~10}
-15p—4 =  d L ~15 b —t
2% 5 10 15 20 205 5 10 15 20
(a) time (sec) (b) time (sec)

Figure 4.3: Input excitation signals (a) Square wave (b) Varying square waveform

For the closed loop identification procedure, two types of excitation signals (Figure

4.3) were used:

1. Square waveform: The position input for the manipulator is varied according

to a square waveform of 0.25 Hz frequency and amplitude of 15 degrees.

2. Varying square waveform: The amplitude of input waveform is maintained a
constant at 15 degrees and pulse width is altered. The width is selected such
that the angular position has settled at the reference before the next setpoint

change occurs.
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4.3 Model Validation

The identified models are validated to find the linear model closest to the system. In
this thesis, we used the set-point following validation technique. In this validation
method, comparison of the simulation outputs and measurement outputs is made
under the same PD controller and position reference. The identified closed loop
transfer functions are tabulated as in Tables 4.1 and 4.2. The percentage of the
output variations that is reproduced by the model is calculated based on (4.3), to
find the model of the best fit [15].

Fit =

¥ =Yl

where Y is the measured output, Y is the simulated output and Y is the mean of
the measured output. As per (4.3), 100% corresponds to a model of the best fit,
i.e, when the measured output Y is equal to the simulated output Y. The identified
linear models obtained using the two excitation signals, i.e. square wave and varying
square waveform, are tabulated in Table 4.1 and 4.2.

Based on the best fitting characteristics given by (4.3), the model with the best
fit is chosen from all of the obtained linear models i.¢, 8" order closed loop transfer
function for link 1 and 3™ order closed loop transfer function for link 2. The open
loop system transfer functions are then obtained as per (4.1). The output responses
of the chosen linear models and the measured output for link 1 and link 2 are as
shown in Figures 4.4 and 4.5.

The identified open loop transfer functions for link 1 is given by,

N]_(S)
D]_(S)

G1 (S) = (44)

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.1: Closed loop identification results for Link 1

Results for experiments on Link 1
Excitation signal | System order Fit

' 3 79.4717

4 83.3664

6 87.0752

square wave 7 89.5196

8 95.4855

10 94.0327

11 93.8297

3 79.1397

4 81.3961

5 82.7970

varying square wave 9 90.4462

10 90.6485

14 90.9095

15 90.8775

where

Ni(s) = —3.3085% + 1837s" — 7.343 x 10°s® + 8.876 x 10%s® + 4.4811 x 100s*

+5.422 x 10'3s% + 2,144 x 10'%s? + 6.067 x 10'®s + 7.865 x 107

Di(s) = &°+455.1s% + 7.633 x 10°s" + 1.962 x 10°%5% 4 1.439 x 10''s% + 1.331 x
10'3s* + 5.62 x 10'%s® + 6.037 x 10'%s% + 1.543 x 10'7s + 7.82 x 105
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Table 4.2: Closed loop identification results for Link 2

Results for experiments on Link 2

Excitation signal | System order Fit

3 95.8855
4 95.0112
5 94.9981
square wave 6 95.7260
7 95.6995
9 95.4980
11 95.7556
3 93.6329
4 93.9735
5 93.8157
varying square wave 7 93.8224
9 94.0188
10 94.0114
15 94.4486

and for link 2 N

2(s
Gy(s) = B;%;%
where,

Na(s) = 0.125s* +670.35° + 2.85 x 10%s® + 4.994 x 10”5 + 1.491 x 10°

Dy(s) = s°+478.65* +6.871 x 10%5° + 4.305 x 107s?

+3.789 x 10%s + 2.724 x 108
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Figure 4.4: Outputs of the experimental system and the identified model for link1

4.3.1 Model Reduction

1t is often desirable to approximate the state-space representation of a system with
lower order state-space representation. This is for the reason that an identified model
is often over parameterized, to capture the system dynamics. The need for an over
parameterization is due to the non-linearity and the measurement noise. This pro-
cedure, referred to as model reduction, is carried out on the identified higher or-
der transfer functions for the ease of controller implementation. Among the widely
used model] reduction methods one can mention the balanced truncation, balanced
residualization, singular perturbation approximation and the optimal Hankel norm
approximation [10], [21]. Truncation methods though simple, may result in unstable
and non-minimal phase systems even if the original system is stable and minimal. In

addition to this drawback, truncation methods result in low frequency steady state
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Figure 4.5: System and model outputs for link 2

error, while it offers zero error at infinite frequency.

The balanced singular perturbation approximation (BSPA) method offers im-
proved low frequency model reduction characteristics [10]. This is a slight varia-
tion from existing balanced trunction algorithm, and offers exact matching at zero
frequency thus leading to perfect steady state performance.

Due to the better approximation at low and medium frequencies the balanced
singular perturbation approximation was used in our case.

Considering a linear, time-invariant system G(s) with the realization

#(t) = Az(t)+ Bu(t),
y(t) = Cz(t) + Du(t) (4.6)

and partitioning the state vector z into components to be retained and those to be
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discarded:

y=|al® | 47
z(t) [-’Bz(t) 4.7)

The r-vector x;(t) contains the components to be retained, while (n — r)-vector zs(t)
contains the components to be discarded. Partitioning the matrices A, B and C

conformably with z, we obtain

A, A
A — 11 12
Ag1 Agp
[ B
B = !
Bs
¢ = 01 Cz]
B
T = ! (4.8)
0 %,

where I, = diag(01,02,...,0%) and T3 = diag(ori1, Oz, .., On) With op > 0pp1,
where the ordered Hankel singular values of G(s) are denoted by ;.
The 7t order BSPA is given by S,(4, B, C, D) = (A1, By, €y, D), where

Ay = An— ApAsAx,

B, = By — ApAzBs,

Ci = Ci—CAz Ay,

D = D-C,A3B,. (4.9)

The BSPA model reduction technique preserves the stability, controllability and
observability grammians. The identified open loop transfer functions given by (4.4)
and (4.5), are reduced to the third order transfer functions using the BSPA model
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reduction technique. The transfer functions obtained after model reduction are given

Figure 4.6: Magnitude plots of identi-
fied and (BSPA) reduced system trans-
fer functions of link 1

Figure 4.7: Phase plots of identi-
fied and (BSPA) reduced system trans-
fer functions of link 1

by:
0.007543s3 4 0.396452 + 10.48s + 149.3
G = .
1(s) 5% + 11.268 + 29.28s + 1.484 (4.10)
8.728 x 10~%s® — 5.83 x 107352 + 74.27s + 2260
Gals) = 5 . (4.11)
s3 + 64.89s2 + 574s + 412.9
NN CEsEs o P
\\ ~\\ I‘/; H
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The frequency response plots for the reduced models and the identified transfer
functions are as shown in Figures 4.6-4.9.
Numerous data for each type of exciting signals were used for the identification.

Based on the identification results, the following observations were made:

1. The use of the square waveform as excitation signal gave better results than the
varying square waveform, since controlling the pulse width in varying square

waveform was too critical.
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Figure 4.8: Magnitude plots of identi- Figure 4.9: Phase plots of identi-
fied and (BSPA) reduced system trans- fied and (BSPA) reduced system trans-
fer functions of link 2 fer functions of link 2

2. For the varying square waveform the frequency of the signal variation is critical

for the determination of accurate models.

3. Even though the identified discrete domain closed loop transfer functions were

minimum phase, the conversion to continous domain introduced unstable zeros.

4. The identified models are of higher order than the mathematical model, due to
the accommodated nonlinearities of the physical system. The identified models

must be over parameterized to capture the system dynamics.

4.4 Summary
Based on the experimental results, the following conclusions could be drawn:

e The system under consideration has nonlinearities and a linear approximation

of the transfer function was obtained from the identification process.
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e Both the identified transfer functions have a pole close to the imaginary axis,

which could be justified as per the derived mathematical model in (2.9).

o Although more effective and accurate system identification methods can be
used, the indirect closed-loop identification technique was used assuming that
the designed robust controller would take care of the lost precision in the iden-

tified system.

e The identified transfer function is of higher order, since it accounts for the non-
linearities of the physical system. Model reduction techniques are carried out

for the ease of controller design.

e The identified transfer functions (4.4), (4.5) are non-minimum phase, though
the identified discrete domain system has no unstable zeros. This happens due

the discrete to continuous domain conversion techniques.
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Chapter 5

RoBUST ILC DESIGN VIA u-SYNTHESIS

In [25}, [27] a relation between iterative learning control problem and robust control
problem is established. Thus, a design of a robust controller will in turn guarantee
a solution for the iterative learning control problem. This allows the designer to
use tools available in robust control, like loop shaping, model matching, H,, and pu-
synthesis, for ILC design. The existence of a robust controller enables one to benefit
from its performance in the first iteration when learning controller is not effective.

The design of robust controllers can cover parametric uncertainties (affecting low
and medium frequencies) and unstructured model uncertainties (often located in the
high frequency range). The py—synthesis problem consists of finding the controller
that minimizes a given u condition. A method to synthesize a u—optimal controller
is the DK-iteration. This method combines H, synthesis and p—analysis, and often
yields good results. The starting point is the upper bound on the g in terms of the
scaled singular value,

#(N) < ming(DND™)

The aim is to find the controller that minimizes the peak value over frequency of this
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upper bound, namely

min(ggin || DN (K)D™ )
by alternating between minimizing ||[DN(K)D™}|o, with respect to either K or D
(while holding the other fixed). To start the iterations, one selects an initial stable
rational transfer matrix D(s) with appropriate structure. The identity matrix is
often a good initial choice for the D provided the system has reasonably scaled for

performance. The D-K iteration then proceeds as follows:

1. K-step: Synthesize an H, controller for the scaled problem mkin |IDN(K)D™ o
with fixed D(s).

2. D-step: Find D(jw) to minimize at each frequency 6(DND~}(jw)) with fixed
N.

3. Fit the magnitude of each element of D(jw) to a stable and minimum phase
transfer function D(s) and go back to step 1. The iteration may continue until
satisfactory performance is achieved [|[DN(K)D™!|lo < 1 or until the H,, norm

no longer decreases.

5.1 Robust Controller

Considering the structure as shown in Figure 5.1 where A(s) € RH, with
|A(s)[leo < % and 8> 0.
If the generalized plant M € C@+®)x(m+P2) j5 5 matrix partitioned as follows:
. [ My My }
My Mg
Then, the lower linear fractional transformation (LFT) with respect to A could be
defined as
Fi(M,A) = My + My A(I — My A) ™ My,
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A(s)

. M(s)

Figure 5.1: M-delta structure

where A € C%*P and is well posed if (I — MpyA)~! exists. And the upper LFT with
respect to A is defined as

Fu(M,A) = Mag + My A(I — M11A) 7 My,

with the well posedness being guaranteed by the existence of (I — My; A)~L,
The robust ILC scheme, proposed in [27), is as shown in the Figure 5.2, with the

iterative rule

Vier1(8) = Wi(s)(Vi(s) + Uk(s))

with Vi(s) = 0. The system could be described in the multiplicative uncertain form

as
G= (1 + AWg)Gn,

with G, being the nominal system, W, a known stable transfer function and A
is an unknown stable transfer function satisfying [|Alleo < 1. It is considered that
ya(0) = y(0) = 0. The aim is to design a controller satisfying the robust performance

condition
IIW1S] + [WaT o < 1, (5.1)
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with § = rréa,: is the sensitivity function, and T = 1 — S the complimentary

sensitivity function. Then the tracking error uniformly converges to

1 _ p—1 1- Wl
eoolt) = Jim ex(t) = £ (1 W, T CC (11 AW,) @ (5-2)

which implies the error convergence to zero when W;(s) = 1.

Memory

Figure 5.2: Robust ILC scheme

5.2 TUncertainties

System uncertainties can be classified as repeatable or non-repeatable from a learn-
ing control point of view. Repeatable uncertainties are those which are invariant
over iterations and may be structured or unstructured. Similarly, non-repeatable
uncertainties are those which are variant over iterations and may be structured or

unstructured. Learning control schemes cannot handle non-repeatable uncertainties.
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5.3 Design Steps

As shown in [26], the Youla parameterization

_ X(8) + Na(5)Q(s)
" Y(9) - MEQ)’

is used, where %’;—% is the coprime factorization of G(s), with Q(s), Ni(s) and N,(s)

Cl(s)

(5.3)

being stable rational transfer functions. The stable rational functions X (s) and Y (s)

are solutions of the Bezout identity
Ni(s)X (s) + Na(s)Y (s) =1,

For a given nominal system Gy(s), the transfer functions Ny(s), Nz(s), X(s), and
Y (s), can be obtained using the following procedure (8], [30]:

e STEP 1. Obtain a state space realization Ag, Bg, Cg, Dg of Gn(s), i.e.,

Aqz | B
G’n(s) = Dqg -+ CG(SI — Ag)’lBG 2 ¢ ¢
Cq | De

e STEP 2. Obtain F such that Ag + BgF is stable. Transfer functions N;(s) and
Ny(s) are given by

Ny & | Act BeF B | 2 Ac+BoF | Bg
1 = ’ 2 =
Ce+ DaF | Dg Foo|t

e STEP 3. Obtain H such that Ag + HCg is stable. Transfer functions X (s) and
Y(s) are given by

X(S).e: l:AG""HCGIH} ’ Y(s)é [AG+HCG]—BG_HDG:|
Foolo Fo| 1
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In the case of stable systems, the above expressions could be taken as, Ny = G,,, Ny =
1,X = 0,Y = 1 which would lead to internal model parameterization, C(s) =
YT;?%)Q%’ which is a particular case of Youla parameterization. The robust per-
formance condition (5.1) is equivalent to the following condition [8]:

wis
14+ AWLT

<1 and ||WeT|eo < 1.

o0

and since the sensitivity and complimentary sensitivity functions with the Youla Pa-
rameterization are given by S = No(Y — NiQ) and T =1 — § = N;(X + No@), then
the condition

WiNy (Y — N,Q)
T AW, N, (X + N20)

‘ <1 and “WgNl(X + NgQ”oo <1 (54)

if satisfied will guarantee the boundedness of the tracking error in the ILC scheme
in Figure 5.2, for all k¥ € N, and its uniform convergence to the value given in (5.2)
when k£ — oo.

Considering the generalized matrix given by

M —WaNi(X + N2Q) WaNi(X + NoQ) (5.5)
1= )
—WiN(Y — NiQ) WiNy(Y — NiQ)
with the following upper LFT:
Fu(My, A) = DNl ~ ThQ) (556)

14+ AWeNi(X + NoQ)'

which is well posed if |[WoN1(X + No@)|| < 1. Thus as per [26] and [27], and control
scheme as in Figure 5.2 with C parameterized as in (5.3), then the existence of Q
satisfying

sup pa(Mi(jw)) < 1 (5.7)

will guarantee error convergence to (5.2).
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For a given Wi, W,, X, Y and G, the function Q(s) satisfying (5.7) could be
calculated using p—synthesis. To this end, the matrix Mg is introduced such that
M. 1= -E(MQ’ Q)

—WaNi X WaNuX | Wil
Mo= | -WiN,Y WiN,Y | -W N, (5.8)
-N, N | 0

Realization of Q(s) using p—synthesis could be done by the D-K iteration proce-
dure by minimizing

IDFi(Mq, Q)D ™| (5.9)

by iteratively solving for D and Q.
The existance of Q satisfying (5.7) implies that |[WoN1(X + NoQ)|lee < 1 and
| Fu(Miy,A)]leo < 1, which guarantees the convergence of the iterative scheme and

the robust performance of the feedback system at the first iteration.

5.4 Choice of the Weighting Functions

The knowledge of the weighting functions is required for the design of a robust con-
troller for the identified transfer function. The weighting functions W; and W, are
selected based on certain criteria [21]. The fact that W; close to 1 ensures zero er-
ror convergence, defermines choice of this weighting function. And W, is selected
from a rough approximation of the relative uncertainty at the steady state, and the

approximate frequency at which the relative uncertainty reaches 100%.

TS+ Tp

P e+

(5.10)

where 1/7 is the approximate frequency at which the relative uncertainty reaches

100%, 7o is the relative uncertainty at steady state and o, is the magnitude of the
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weight at high frequency, typically a value greater than 2. In this experimental setup

T was selected as 0.01, o, as 2 and ry as 0.5.

5.5 Simulation Results

For the design of controller, parameterization was chosen as in (5.3), with N; = G,
No=1,X =0and Y = 1. Using the y-synthesis toolbox in MATLAB, the robust

controller is designed using the known weighting function and the identified nominal

system [3]. During the experiment model reduction techniques were carried out on

the obtained transfer functions. Since better approximations were obtained for low

and medium frequency ranges, the singular perturbation approximation method was

preferred.

The transfer function obtained after model reduction is given by:

_0.00087285° — 0.00583s + 74.27s + 2260

Gn(s) =

47
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Figure 5.5: RMS norm of tracking er-
ror versus iteration number (simulated

for Wi(s) = ﬁﬁ)

8

Figure 5.6: Sup-norm of tracking error

versus iteration number (simulated for

Wi(s) = 5o0571)

and with (5.8) and Ny = G, No=1, X =0,Y =1 and

0.01s + 0.5 1
= 00055+ 1 Wi(s) = 5o9s 71

and the p—synthesis method [3],we obtain, after model reduction, the following con-

Wz(s)

troller

O(s) = 0.24225* 4 18620s° 4 6.15 x 10%s% + 4.155 x 10%s + 3.102 x 10°
- 5% 4 239.7s3 4+ 10170052 + 1.809 x 107s + 6.029 x 108

leading to |||W1S| + |WoT||| = 0.6312 as shown in Figure 5.18.
The RMS norm given by

llexllrms =

where k is iteration number, T is the sampling period and N is the number of samples,

was calculated on error signal at each iteration.
The reference trajectory was taken as yg = 100sin(0.1571¢), ¢ € [0,20s] with y4(0) =
yx(0) = 0 satisfied on all iterations.
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Figure 5.7: Trajectories of outputs (simulated for Wi(s) = g5sz7)

The designed higher order controller is reduced using BSPA technique, the fre-
quency response of the original and reduced controller transfer functions are as shown
in Figures 5.3 and 5.4.

The learning controller was realized in SIMULINK environment with A = 0.5
and the results are as shown in Figures 5.5 to 5.13 and the results agrees with (5.2).
The choice of W) = 1 gives an error convergence to zero, and a value of Wy = m—‘:—ﬁ

gives convergence to a higher non-zero value. A higher value of W; guarantees better

performance at the first iteration but not a satisfactory convergence property.

5.6 Experimental Results

The experimental setup consists of a single link planar manipulator and the associated
electronic circuits and was implemented in SIMULINK /dSpace environment with a

sampling period of 0.004 sec. For the experimental implementation of robust learning

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



g

g &
e
g .
o

L

)

&l Fo
: ]
| guor
15}
200
10
10
s
o 5 10 ) 20 F3 o s 1 15 20
Ytoration menber Haration number
Figure 5.8: RMS norm of tracking er- Figure 5.9: Sup-norm of tracking error
ror versus iteration number (simulated versus iteration number (simulated for
for W1 =1) W1=1)

controller (Figure 5.14), a first order low pass filter of 10 rad/sec cut-off frequency
was used. The addition of filter leads to |||W1S| + |WeT||.c = 1.0781 which does
not satisfy the performance criteria for a frequency range of about 14 rad/sec to 22
rad/sec (shown in Figure 5.19), but it satisfies the robust performance condition at
the operating frequencies i.e. lower frequencies.

The experimental results for the implemented learning controller are shown in

Figures 5.15, 5.16 and 5.17.

5.7 Summary

e The designed robust iterative learning controller offers good performance and

error convergence.

e In this learning procedure, apart from the identified system model, the choice

of weighting functions are critical. The choice of Wj(s) = 1 guarantees error
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convergence to zero but the closed loop performance for the first iteration may

not be satisfactory.

e The main practical drawback of this technique is the increased design complexity
and resulting higher order controllers. Hence the model reduction is necessary

in this procedure.

The adaptive ILC schemes discussed later in the report, enables one to come

around many of the above mentioned drawbacks.
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Chapter 6

AparTiVE ILC FOR ROBOT

MANIPULATORS

The experimental results of adaptive ILC schemes proposed in [28] are discussed in
this section. The control algorithm involves the use of an iteratively updated term
designed to take care of the unknown parameters and disturbances, together with
a PD controller. In contrast to classical ILC schemes where one needs the same
number of iterative variables as the number of control inputs, here we require only

two iterative variables for controller implementation.

6.1 Adaptive Scheme

Using the Lagrangian formulation, the equations of motion of a n degrees of freedom

rigid manipulator may be expressed by

M(qr)dr + Clar, de)dr + Glax) = 7i(t) + di(t) (6.1)

where t € R denotes time, ¥ € N denotes the iteration number. The signals g, €

R, ¢, € R", g € R™ are joint position, joint velocity and joint acceleration vectors
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respectively at the iteration k. M(qx) € R™*" is inertia matrix, C(gk, k) € R* is a
vector resulting from Coriolis and centrifugal forces. G(gx) € R" is a vector resulting
from gravitational forces. 7, € R" is the control input vector containing torques and
forces to be applied at each joint. di € R™ are the vectors containing the unmodeled
dynamics and other unknown external disturbances.

&;{ Bk -1

A o

Adaptaty ~
P —) £(6,, )

'é} g
»| PD Robot| T

4,

Figure 6.1: Adaptive ILC scheme

The ILC scheme used in this thesis is based on the following assumptions:

A — 1 The reference trajectory, its first and second time-derivative, ga(t), ¢a(t) and

ga(t), and the disturbance dj(t) are bounded V¢ € [0, T] and Vk € N.
A — 2 The resetting condition is satisfied, i.e., g4(0)—gx(0) = ¢4(0)—¢z(0) = 0,Vk € N.

and the following properties, characteristic to all robot manipulators, are taken

into consideration:
i) M(gy) € R™*" is symmetric, bounded and positive definite.
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4) The matrix M (gx)—2C(gx, dx) is skew symmetric, hence z7(M (gr)—2C gk, &) T =
0,vz € R™.

i11) |Clgr, de)ll < kcllgell and |Glge)|| < kg, Vt € [0,T) and Vk € N, where k. and

kg are unknown positive parameters.

The adaptive ILC scheme is as explained.

6.1.1 Adaptive ILC Scheme

Considering the system given by (6.1), satisfying the properties i,ii,iii, and the control
law [28]

Tr(t) = Kpdu(t) + Kpge(t) + n(d)0i(t) (6.2)
with

O (t) = B—1() + T" (Gr)di(t), (6.3)

where f_;(t) = 0. The matrices Kp € R™", Kp € R™" and T € R?*? are symmetric
positive definite. The function 7(gx) = [Gx sgn(d)]. If the assumptions (A1-A2) are
satisfied, then §k(t), gu(t) and 7(t) are bounded for all ¢ € [0,T] and all k € N and
Jlim §(t) = lim Gi(t) =0, ¥t € [0,T].

To prove the boundedness and the convergence to zero of the tracking error, we

use the following composite energy function:
L - = 2 ~ 1 [t 17
Wi(2k(t), Gx(2), 6x(2)) = Valau(2), G (2)) + 5 _/ 0 (1)L 6y (r)dr (6.4)
0

with Gx(t) = 8(t) — 6(t), where 8(t) = [a 8]T € R? and (¢) is the estimated value

of §(t). The unknown parameters o and § are obtained according to

& (M(ge)da + Clge, de)da + Glar) = d) < 1ull (B + kg + kelldall llgall)
1811 (8 + kg + kcllgall® + Kelldall llgsll)  (6.5)

IN
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where k., kg and || M(qgx)da—di|| < B are defined as per the properties of manipulator

i), #1) and 4ii)mentioned previously. And from the boundedness of ¢4, we have,

IA

&t (0gi + Ssgn(di))
< Gin(d)e (6.6)

@ (M (qx)ds + Cgr, dr)da + Glak) — di)

where o = k.Supseior) |4all and 8 = 8 + kg + kSupsepo.r) ||da(?)]?
This theorem is proved by showing that

AWy = Wi — Wiy

is a bounded non-increasing sequence.

The difference is given by
T
AW =V~ Viy + %/ (BT "0, — O_y T 0y)dr (6.7)
0

where 0 = ék - 5k_1

1 t ~ . P . ~ ~
AW £ Vg — 3 / ar (6(gr: Ge, 3e)T O (@s Gy Gic) + 2K p)dedr < 0 (6.8)
0

which proves that W} is a non-increasing sequence. Hence, W}, is bounded if W, is
bounded.

The boundedness of W;, guarantees the boundedness of Gi(t), Gi(t) and
3 67(T)T 8, (r)dr. The boundedness of W, is proved as follows :

: 2 . ANE 2 o1z
Wo < @ (8(go, do, G0)80 — Kpdo) + §9EP 164 (6.9)

since 61 () = 0, we have, fo(t) = I'¢7 (g0, do, do)do(t). Then,

¥ P 2 A 1 15
Wo £ —q KDgo+(eg"+§o§)r 1% (6.10)
<~ Koo - 35T~ + 67Ty (6.11)
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Using Young’s inequality,
07T~ < KT Gol3 + 015
for £ > 0.
Wo < —pulldolls - palldolld + =161, (6.12)

which implies that,

1

1
"o < K0

(6.13)

where p1= A'min(-KD)1 P2 = %’\min(r-l) - }C)‘?naz(r—l) with
0 < K < 3g=0). The fact that 0 is bounded implies the boundedness of Wy in
[0,T].

Now, it could be shown that,

k
We < Wo=3 Vi (6.14)
=1
1< 1n
< Wo-3g Z G 1 Kpdj_y — 3 Z G51M(g;-1)Gj-1, (6.15)
=1 -1

which implies
1 1. .
9 Z 71 Kpgi-1 — 3 Z§f—1M(Qj—1)§j—1 S Wo - W, < W
Jj=1

Hence §,(t) and G, are bounded
Vte[0,T], Vke N and
limk—-»eo Qk(t) = limk—»oo q'k(t) = 0, Vi € [01 T]
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Figure 6.2: Experimental setup for adaptive ILC
6.2 Experimental Results

The adaptive ILC scheme discussed in (6.1.1) was applied to the 2-DOF planar ma-
nipulator. The experimental setup is as shown in Figure 6.2. In the experiment,
low pass filters of cut off frequency 6 rad/sec and 4 rad/sec were used with the nu-
meric differentiator for linkl and link2 respectively. The proportional gain Kp, the

derivative gain Kp and the learning gain I" were chosen as

002 0 0.0002 0 0.0025 0
KP = ’ KD = T'=
0 0.005 0 0.0001 0 0.0025

The experiment was realised using SIMULINK /dSpace at a sampling period of 4msec.

A circular trajectory, centered at (0.5m, 0) with a radius of 0.3m, was chosen as a
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reference for our experiment. That is,
z(t) = 0.5+ rcoswi y(t) = rsinwt,

where w = 27 /T and r being the radius of the circle, w the angular velocity and T' the
period of trial. In our experiment w = 0.3142 rad/sec and T = 20 sec were chosen.

The setpoint to the actuators is obtained from inverse kinematics of the chosen ref-
eren;:e trajectory and the resetting condition, y4(0) = yx(0) = 0 is satisfied on all
iterations. The Figures 6.3, 6.4, 6.7 (show the error convergence and output trajecto-

ries, with Figures 6.5 and 6.6 showing the joint positions of each of the two joints.

25

st Uink 2 TS e 4
O . s
[} 2 4 8 8 1 12 14 18 18 20
iteration number

Figure 6.3: RMS norm of the tracking error versus the iteration number for link 1
and link 2
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Figure 6.4: Infinity norm of the tracking error versus the iteration number for link 1
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6.3 Observations

Following observations are made based on the experiments performed on the planar

manipulator:

1. The main advantage of this ILC scheme is that no knowledge of system para-

meters is required.

2. The convergence of the iterative process is guaranteed by the positive definite-

ness of Kp, Kp and T,

3. Another important feature of this ILC scheme is the presence of only two iter-
ative parameters. The smaller number of iterative parameters helps in saving

memory space during real-time implementation.

4. Acceleration measurements are not required for controller implementation.
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5. The chattering occuring at higher iterations could be reduced by replacing

signum function with a saturation block given by :

1 for z2>4%
sat(z) =4 -1 for z<¢%

z for |z|< &

where z is the input and £ is the limit of the saturation block.

6. A faster rate of convergence could be achieved by increasing the value of I, but
this causes chattering due to amplification of noise present with the updating

term.

7. At very low cut-off frequencies of low-pass filter, the system exhibits oscillatory

behaviour.
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Figure 6.7: End-effector positions
6.4 Summary

e The adaptive ILC scheme approach works satisfactorily on the 2-DOF robot
manipulator, though error convergence is slow. But increasing the I' value for

a faster convergence results in chattering as iteration progresses.

e The chattering of the system occurs at higher iteration numbers, and this could

be minimized by reducing the cut-off frequency of the low pass filter.

e Another possible method of reducing the chattering is by using the saturation

block instead of the signum function.

e Compared to classical ILC schemes where number of updating terms are equal
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to the _number of the control inputs, here we use just two iterative variables,

irrespective of the degrees of freedom of manipulator.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this thesis the experimental implementation of ILC schemes were discussed and
advantages in practical applications were studied. The following conclusions could be

drawn based on this work:

e Expressing ILC problem as a robust control problem provides one with better

options for controller design.

e In the robust ILC technique, the choice of weighting function W; close to one

guarantees the error convergence to a small value.

e The adaptive control strategy discussed provides one with error convergence
with minimum knowledge on the system parameters. This could be done with
an additional advantage of lesser memory requirement than existing ILC tech-

niques.

e In the implementation of the adaptive ILC, chattering occurs with increasing

number of iterations due to noise amplification. This could be minimized to a
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certain extent using a lowpass filter along with the numeric differentiator.

e Apart from the measurement noise, the signum function used in the adaptive
ILC scheme, can cause chattering in the presence of noise. The use of a satura-
tion block helps to reduce the chattering occuring due to the above mentioned

reason.

e These learning procedures could provide better results with smaller sampling
periods. But this depends greatly on the memory capacity of the data acqui-
sition board. In this case one needs to compromise on the sampling period
and the period of operation. In our case, implementation at smaller sampling
periods could not be undertaken because of the memory constraint on the DAQ
board.

7.2 Future Work

Based on the experimental work done, the following recommendations could be pro-

posed for the future work:

e The learning algorithms could be implemented at lower sampling periods for

obtaining better results.

e Future work could be done to develop an algorithm with only position feedback,

thereby reducing the chances of noise entry into the system.
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Appendix A

CIRCUITRY

Current soniro module Bridge Moduie
ry1 # ¥(motor)
Br:t;_ngmtm — 384 s1Bmotfor{
1] BEmotor? e
1 -1 = 5
‘ do-isctalion Ciraut(s Pousr Supph: Cirault(3)
+5%1) "“‘:’ ::H ~12V[8) N_aCH | —
xt_amton w‘sb"vw ne oSV4)  I1ACE
) oupta onae)
ond (& “Bv4)
Cplo-teotaiion Cirquit (2) Pworll.tp_pi;-mmtﬂ]
sty IR +BYE) mAC
output 81
Hinaier ideie EE
1 outputa, J-—- ®
Pousr Buppiy CIreult (6 ona (s -2 Y33
— ot euv _oplo-icisiion Crast(1) Fover Supply Creuit(1)
— wen 9;:;, +12(3) n_Act
N oSV(2) InACE

Gnd(2)
-1 ¥(2)

Figure A.1: Overall test circuitry
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Appendix B

DENAVIT-HARTENBERG

REPRESENTATION

Denavit-Hartenberg or D-H convention is a commonly used method for selecting
frames of reference in robots. In this convention, each homogeneous transformation
A; is represented as a product of four basic transformations
A; = Rot,e, Trans,q, Transs . Rot;,
c6,; -—.sO,-ca,: sﬁisai aice,-
_ sb; cfico; —chisa; a;sb; (B.1)
0 sa; cay d;

L 0 0 0 1

=

where 8;, a;, 0; and d; are parameters of link 7 and joint i. These parameters are
generally referred by the following names: a; as the ‘length’, o; as the ‘twist’, d; is
called the ‘offset’ and 6; is called the ‘angle’. Since the matrix A; is a function of a
single variable, the other three parameters are constant for a given link. The varying

parameter, 8; for a revolute joint and d; for a prismatic joint is called the joint vari-
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able.

In this procédure, a homogeneous transformation A; is used to express the transfor-
mation of coordinates from one frame to another. In the usual representation, to
express this transformation, six numbers are required i.e. three for displacement vec-
tor and three for the Euler angles corresponding to the rotation matrix. But in D-H
representation, only four parameters are required for expressing the transformation.

This is made possible by the following two features :

e The axis z; is perpendicular to the axis z;_

e The axis z; intersects the axis z.

For deriving the forward kinematics for any manipulator with n joints, using the D-H

convention, one needs to follow some procedures, namely:

Step 1: Locate and label the joint axes zg,...,2p_1.

Step 2 : Establish the base frame. Set the origin anywhere on the 2g-axis. The z; and
Yo axes are chosen to form a right-hand frame.

Fori = 1,...,n—1 Steps 3 to 5 are performed.

Step 3 : Locate the origin O; where the common normal to z; and 2;_; intersects z;. If
2; intersects 2;—; locate O; at this intersection. If z; and z;_; are parallel, O; is

located at joint 4.

Step 4 : Establish z; along the common normal between z;,; and z through O;, or in

the direction normal to the z;.; — z; plane if z;_; and z; intersect.
Step 5 : Establish y; to complete a right-hand frame.

Step 6 : Establish the end-effector frame O, %, yn2,. Assuming the n** joint is revolute,
choose z, along the direction of z,,_;. Establish the origin O, conveniently along

2. Set z, and y, to form the right-hand frame.

(i
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Step 7 : Create a table of link parameters a;, d;, a;, 6;.

a; = distance along z; from O; to the intersecion of the z; and z,_; axis.

d; = distance along z;..; from O;_; to the intersection of the z; and 2;_;
axes. d; is variable if joint ¢ is prismatic.

a; = the angle between z;_; and 2z; measured about z;.

§; = the angle between z;_; and z; measured about z;_;.

8; is variable if joint ¢ is revolute.

Step 8 : Form the homogeneous transformation matrix A; using the above parameters.

Step 9: Form Tp" = A;A;. . .A,. This gives the position and orientation of the tool

frame expressed in base coordinates.

B.1 2-DOF PLANAR ROBOT MANIPULATOR

Considering the two-link planar robot manipulator shown in Figure B.1. The joint
axes zp and z; are normal to the page. Proceeding as per the steps for DH conventions,
the base frame Oyzgyozs is established. The origin Oy is chosen at the intersection of
2p axis with the plane and z; is chosen arbitrarily. Once the base frame is established,
the frames O17;y;2; and Oszoys2, are chosen as per the DH conventions. The link
parameters are then determined to express the homogeneous tranformation matrix

as per (B.1).
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Figure B.1: Two-link planar robot manipulator

DH Parameters for Robot
Link { a; | d; | o o;
1 |a;{ 0] 0] 6*
2 ja| 00| 6°

= oy pe -y

¢ =83 0 a1Cy Co —8g ] [2218))
s1 ¢ 0 as s 0 ags
Ay = 1 1 151 Ay = 2 C2 282
0 0 1 0 0 0 1 O
0 0 0 1 0 0 0 1

The transformation matrices Tp! = A; and T are given by,

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Tol = A1 and T02 = A1A2

r g
ci2 =812 0 a1 +azep
9 s12 €2 0 @181+ a2
Ty =
0 0 1 0
0 0 O 1
where,
A A
ci = coséby, s = sinfy
A A
ca = c08by, ciz2 = cos(f; + 63)
A . A
1 = sinf,, si2 = sin(6; + 6)

The rotational part of Ty? gives the orientation of frame Osz3ys25 with respect to the
base frame and the first three elements of the fourth column of Tj? gives co-ordinates

of end-effector.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix C

GUI FOR REAL-TIME APPLICATION
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Figure C.1: Layout schematic for implementation in control desk
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