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Chapter 1

I n t r o d u c t io n

When a system is performing the same task repeatedly it is, from an engineering 

perspective, advantageous to use the knowledge from the previous iterations of the 

same task in order to reduce the error on successive trials.

In control systems, the aim is to force the system output to follow a desired 

trajectory as closely as possible. Specific norms and measures of optimality are used 

to determine how close the output is to the desired trajectory. Although control 

theory provides many different possible solutions for such problem, it is not always 

possible to achieve a desired set of performance requirements. This may be due to 

the presence of unmodeled dynamics or parametric uncertainties exhibited during 

the system operation, or due to the lack of suitable design techniques for particular 

class of systems. Iterative learning control (ILC) is a relatively new addition to these 

techniques that, for a particular class of problems, can be used to overcome some of 

the difficulties associated with performance design of control systems.

The iterative learning control problem considers that the control task is to perform 

a specific tracking command many times. Between each command application, the 

system is returned to the same initial condition. The development of ILC originates

1
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from the area of robotics where this sort of repetitive motions shows up in many ap­

plications. The formulation used consists of a feedback controller, and a learning law 

which adjusts the command to the system from one iteration to the next, in order 

to minimize the tracking error. ILC differs from most existing control methods in 

the sense that, it exploits every possibility to incorporate past control information, 

such as tracking errors and control input signals, into the construction of the present 

control action. There are two phases in ILC: initially memory components are used 

to store past control information, then the stored information is fused in a certain 

manner so as to ensure that the system meets control specifications such as conver­

gence and robustness. It is worth to note that the control specifications may not be 

easily satisfied by other control methods as they require more prior knowledge of the 

process in the stages of controller design. ILC requires much less information of the 

system parameters to yield desired dynamic behaviour. ILC has received considerable 

attention from researchers owing to its simplicity and effectiveness.

1.1 Motivation and Objectives

ILC approach is motivated by the observation that, if the controller used is fixed and 

the system’s initial operating conditions are the same for each trial, then any error at 

the output will be repeated for each trial. These errors, if stored during the system 

operation, can be used to modify the succeeding inputs. The refinements are applied 

to the input until the desired performance criteria are attained. Implementation of 

two new approaches to ILC are undertaken as part of the thesis work.

The objective of the thesis work is to test the practical feasibility of the ILC 

schemes discussed in [26], [27] and [28]. The control strategies are implemented on a 

2-DOF planar manipulator prototype.

2
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1.2 Literature Review

Historically the term learning control appears in the context of adaptive control and 

cybernetics. One of the earliest articles appeared in 1970, and some works on learning 

and adaptation was done during the first half of 1970’s. But in all these works, 

the learning control referred to an online controller tuning method. The learning 

controller in its present form i.e., offline scheme, was proposed by Uchiyama in his 

article published in 1978. The idea wasn’t noticed by the community until after a 

couple of years, since the paper was published in Japanese and it took a few more years 

to become an active area of research. During this time works [1], [6] were published 

which discussed about a method that could iteratively compensate for model errors 

and disturbances. Some of the ILC algorithms already proposed in the literature 

includes [2], [11], [16], [17]. A survey on ILC literature upto 1991 could be found in 

[19].

Although the resetting condition is one of the requirement in many existing ILC 

algorithms, works have been done in proving the convergence for non-zero initial 

errors, as discussed in [5], [14], [20].

Different approaches are followed in ILC for ensuring the convergence of the track­

ing error, including robust and adaptive ILC methods. The ILC scheme proposed by 

[1] is an open loop configuration, purely feedforward action depending on the output 

at the previous operation. This cannot be used in real systems because of the lack of 

robustness with respect to non repeating disturbances along iterations. In addition to 

this, the tracking error may increase to a large value before it eventually converges. 

Thus, in real systems a feedback scheme is employed along with iterative learning 

control for enhancing system robustness and performance. The closed loop stability 

and disturbance rejection are guaranteed by the feedback controller while the itera­

tive learning controller provides improved tracking performance over iterations. With

3
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the presence of plant uncertainty, the iterative control problem could be transformed 

into a robust control problem [18]. This provides one with the robust control design 

procedures for the solution of iterative learning control problem [25], [26], [27].

Employing a PD or PID controller is a commonly used approach in robotic ap­

plications, mainly due to simplicity of its implementation. As long as the evaluation 

of the instantaneous gravity forces is possible, global asymptotic stabilization of the 

manipulator is possible using a PD controller with gravity compensation [23], [24], 

But since this condition cannot be always guaranteed in practical situations, the PD 

controller leads to a steady state error. This steady state error can be reduced using 

high gain feedback. However, the high proportional and derivative gain may result in 

actuator saturation and may excite high frequency modes. Using the PID controllers 

local asymptotic stability was proven, but under some relatively complex conditions. 

The introduction of the passivity property for manipulators, allowed the design of 

globally asymptotically stabilizing PID controllers without gravity compensation [2]. 

Considering the fact that the robot parameters appear linearly in the Lagrange equa­

tion, it has been shown in [22] that a PD controller with an additional adaptive term 

is able to globally asymptotically stabilize rigid robot manipulators.

Since robot manipulators are used in repetitive operations one could take advan­

tage of this fact for improving the performance in succeeding operations. The ILC 

techniques are used in order to enhance the tracking performance of such applications 

where this sort of repetitive motion shows up. In this regard one could mention, to 

name a few, the works of [2 , 17, 24] for the existing ILC schemes for robot manipu­

lators. Most of these ILC schemes are based on the contraction-mapping theory and 

requires some prior knowledge of the system dynamics [19].

Recently another type of ILC algorithms were developed based on Lyapunov and 

Lyapunov-like energy functions. In [9], a standard Lyapunov design is used for the 

solution of ILC problems. The idea consists of using a standard adaptive design and

4
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setting the initial parameter estimates with the final parameter values of the previous 

iteration. In the nonlinear ILC scheme proposed by [29], for the position tracking 

problem of uncertain manipulators, the convergence of the iterative process is proven 

using a Lyapunov-like energy function. But all these control laws require a certain a 

priori knowledge of the system parameters.

The adaptive ILC schemes proposed in [28] do not require any a priori knowledge 

of system parameters and the proof of convergence is based on a Lyapunov-like energy 

function. The control algorithm involves the use of an iteratively updated term 

designed to take care of the unknown parameters and disturbances, together with 

a PD controller. In contrast to classical ILC schemes where one needs the same 

number of iterative variables as the number of control inputs, here we require only 

two iterative variables for controller implementation.

1.3 ILC problem Formulation

The basic idea of ILC is shown in figure 1.1. Let, at kth trial, uk(t) be the input 

and yk(t) be the output. Based on the error (ek(t) =  yd(t) — yk(t), where y<i(t) is 

the desired output) that is observed through the trial, the ILC algorithm computes 

a modified input signal, uk+1(t), to be stored in memory until the next trial. This 

input is designed such that it will produce a smaller error than the previous input. 

Given a system described by y =  /,(« ), and desired output response yd(t), the ILC 

problem is to find an optimal input u*(t) that satisfies

min ||yd(t) -  /,(« (*))|| =  ||yd(t) -  /,(«*(*)) || (1.1)u(t)

In this context, ILC is an iterative technique for finding u*(t) over the finite time 

interval [0,T]. The ILC approach is to generate a sequence of inputs uk(t) such that

5
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K+l

Process

Iterative
Learning
Controller

Figure 1.1: Concept of iterative learning control 

the sequence converges to u*(t) such that

lim Uk(t) =  u*(t) (1.2)fc—>00

in the interval [0,T]. Based on the above mentioned properties and methodology on 

ILC, the following remarks could be made :

1. In a successful ILC algorithm the succeeding input will be computed so that the 

performance error will be reduced on the next trial. This is usually measured 

in terms of some norm, and the error should converge, with the condition that 

the convergence property must not depend on the desired response.

2. It is assumed that the initial conditions, during each trial, are always the same.

3. It is also assumed that the trial length,ie . time span of operation is fixed.

6
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1.3.1 D  type ILC

The simplest and earliest of ILC algorithms [1] is the derivative type given by,

u k+i{t)  =  Uk(t)  + Tek(t) (1-3)

where F is the gain factor. For a SISO LTI system A, B, C, D  with CB  ^  0, if

|Jl — CBT\\ < 1 , and if some initial conditions are met, then on successive iterations

lhnfc—ooyj^f) =  y d{t)  in the sense of A-norm defined by

l|x(t)|lA=  sup {e"At(jx(t)||}
0 <t<T

1.3.2 P D  control law

Consider the following control law [20],

uk+i(t) =  uk(t) +  T(ek(t) -  Rek(t)) (1.4)

with
x(t) =  Ax(t) +  Bu(t) 

y{t) =  Cx(t)
(1.5)

\ \ I - Y C B \ \ < Pm< l  (1.6)

and suppose that (1.6) holds and the update law (1.4) is applied to (1.5). If the initial 

condition at each iteration remains the same, i.e. Xfe(0) =  x0, k — 0 ,1,2.. then

lim yk{t) =  yd{t) +  emCxQt—*oo

7
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1.3.3 PID  law

It is shown in [20] that when the ILC algorithm (1.7) is applied to system (1.5), the 

output trajectory converges to the form in (1.8).

nk+i(i) — uk(t) +  T(ek(t) +  Qoek(t) +  Qi f  ek(T)dr)
Jo

(1.7)

Here,

Urn yk(t) =  yd(t) +  CReAR%  

k —► oo

A r  =

-Q i
Cr = I  0

I
Co =

—Qo

(1.8)

C(xo -  x<j(0))

Prom equation (1.8) it is clear that by introducing an integral term one can control 

the output trajectory in numerous ways.

1.4 ILC with Non-zero Initial Error

One restriction of ILC is that the initial condition at each iteration should be equal 

to the initial condition of the desired trajectory. The works on non-zero initial state 

error for error convergence has been done in [14]. Consider the linear time invariant 

system
x(t) =  Ax{t) +  Bu(t) 

y{t) =  Cx(t)

where x € BJ1, u € iT , y € R rn denote state, input and output respectively. A, B and 

C  are matrices with appropriate dimensions and CB  is assumed to be non-singular.

8
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Let the desired trajectory xd be continously differentiable on [0,T] and it is assumed 

that

xd(0) s  0

Then the control considered by [1], for the system (1.9), is described as

where,

Ufc+i (t) =  uk +  T8yk(t)

xk(t) =  Axk(t) +  Buk(t) 

yk(t) =  Cxk(t)

Vd(t) =  Cxd(t)

(1.10)

and

$Vk{t) =  Vd(t) -  Vk(t) 

The ILC structure is described in figure 1.2.

From 
m em ory

r
y  U k+1(t)

Figure 1.2: A simple D-type iterative learning control
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And if conditions

||/r -  TCB\\ < Pm<  1 (1.11)

2/fc(0) =  V d(0 ) =  0 k =  0 ,1 ,2 .. (1.12)

are satisfied, then using the control law (1.10), the error between yk(t) and yd(t) 

approaches zero as k —»■ oo.

It can be shown that if (1.11) is satisfied and the initial state error is bounded, 

that is, ||*fc(0) — «d(0)|| < 6x0) then the error between yk(t) and yd{t) is bounded as 

k —» oo and this bound depends continously on the bound of the initial state error. 

Therefore as the bound on initial state error bxQ tends to zero, the bound on the 

output error also tends to zero. This shows that the learning law (1.10) is stable 

against any initial state error, if the error is bounded, even if the condition (1.12) 

does not hold. If the learning law (1.10) is applied to the system (1.9) under the

assumption that X k {0) =  x q , k =  0 , 1, 2 .., and if the condition (1 .11) is satisfied, then

lim yk(t) =  yd(t) +  Cx0
k—*oo

1.5 Overview of Thesis

The mathematical modeling, derivation of inverse kinematics, and dynamical equa­

tions are discussed in Chapter 2 .

Chapter 3 gives a brief discussion on the experimental setup. The mechanical 

system, electronic circuitry and the data acquisition setup will be covered in this 

section.

Chapter 4 deals system identification, the experimental setup for identification 

procedure and system validations and model reduction.

Chapter 5 discusses the robust iterative learning control, the theory of robust 

control, p-synthesis and experimental results.

10
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Adaptive ILC is discussed in Chapter 6 , with simulation and experimental results. 

In the final chapter we present the conclusions and some directions for future study.

11
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Chapter 2

M o d e l l in g  a n d  D y n a m ic s

2.1 M athem atical M odel

r a  la

MOTOR
VA

m m

Figure 2 .1: Circuit diagram for armature controlled DC motor

From [23] the schematic diagram of a DC motor is given in Figure 2.1. 

VA =  armature voltage 

La =  armature inductance 

Ra =  armature resistance 

Vf, =  back emf

12
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bm =  viscous-friction coefficient 

Im =  rotor inertia 

ia =  armature current 

8m =  rotor position 

6 =  load position 

rm — generated torque 

r =  torque after gear system 

=  gear ratio from motor shaft to load

The differential equation for the armature current is

and Kb is the back emf constant. The torque developed by the motor is given by

VA — Vb — +  Ra â, (2 .1)

where

Vb =  K b6m, (2 .2)

Tm  — K miA, (2.3)

T  —

V

(2.4)

(2.5)

Prom the equation of motion, we have

rm — +  bm8m 4----(10 +  W),n (2 .6)

which leads to r  =  (I +  r f lm)6 +  (b +  rfbm)0. Prom the above expressions, we have

(2.7)

13
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and based on the fact that the electrical time constant is much smaller compared to 

the mechanical time constant, the expression for VA can be approximated to

This leads to a transfer function of the form

6(s)  1
VA(s) s i a K x + K t )  ’

where K\ -  ^ ( / m +  ^ )7? and i f 2 =  [A& +  +  %)}v-

(2 .8)

(2.9)

2.2 Denavit-Hartenberg (D-H) Representation

V

C l -----

.1  1.

Figure 2.2: 2-DOF planar manipulator

The D-H representation (refer to Appendix B) is used for deriving forward kine­

matics of the manipulator under study (Figure 2.2). The resulting link table and the 

kinematic equations are shown,

14
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DH Parameters for Robot

Link Of di Oti Oi

1 Qi 0 0

2 a2 0 0 92*

Cl “ Si 0 axcx C2 - 8 2 0 a2c2

Sl Ci 0 O lS l S2 02 0 a 2s 2
r= a 2 =

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

To2 — A1A2 and Tq1 =  Ai

T r?  =

where,

C12 —S12 0 diCi +  a2Ci2

S12 C12 0 aiSi +  d2si2

0 0 1 0

0 0 0 1

Cl A cosgi, s2 A
sing2

C2
A COS q2, Cl2

A cos(gi +  92)

Si
A singi, S12

A sin(gi +  q2)

2.3 Inverse Kinematics

In the inverse kinematics problem, the solution for the joint parameters from the given 

position and orientation of the end effector, (x, y) and <j> respectively are obtained.

15
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Figure 2.3: Two link revolute planar manipulator

Considering the x-y plane we have,

x =  I1C1 +  Z2c0 (2.10)

and

V =  ks i  +  h s<j>

where cos <j> and sin <f> are denoted by ctf> and s<j> respectively.

lengths of linkl and link2 .

From the above equations, c\ — and Sl =  itxk*#.

=> qi =  arctan(cx, si) q2 =  <p~q%

2.4 Dynamical Equations

For describing the dynamics of rigid robot manipulators, one could use some analytical 

methods in mechanics, namely Euler-Lagrange and Newton-Euler method. While the 

former describes the mechanical system based on derivation of the Lagrangian, which 

is the difference of the kinetic and potential energy, the latter uses the balance of 

forces and torques for the dynamic model derivation.

16
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And k  and Z2 are the
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Considering the 2-DOF robot manipulator shown in Figure 2.3, with the following 

notations : 

h : length of link 1 

12 : length of link 2

mi : mass of link 1 

m2 : mass of link 2

lCl : distance to the centre of mass of the link 1 

lC2 : distance to the centre of mass of the link 2 

Ji : moment of inertia of link 1 

I2 : moment of inertia of link 2

Icj COS 

2/i =  lClsmqi

x 2 =  la  cos qx -f iC2 cos(ga +  q2)

y2 = ld S ia q 1 +  lC2 sin(gi + g2) (2.12)

2.4.1 Euler-Lagrange m ethod

In this method, a set of diffrential equations are derived under holonomic constraints, 

when the constraint forces satisfy the principle of virtual work. The derivation in­

volves the computation of Langrangian given by the difference of the kinetic and 

potential energies. The potential energy, V of the system is given by,

V =  m2gd, (2.13)

17
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with d being the vertical distance between the two links.

And expression for Kinetic energy, K is,

-  + » ) 2

+2m2/i/C29i(9i +  92) cos q% +  - / i 9i +  -(91  +  92)2

Tl dt \ d q i )  dqj.
d_ ( d L \  _

T2 dt V&fe/

The dynamic equations are given by,

d_ f d V  
dt

a L 
dq2

where Lagrangian, L is given by

L =  K - V

=  \m iq \ l \  +  ^rn^ljqj +  ira2/22(91 +  q2f  -  m2gd

+m,2lilc2<ii(.<ii +  92) cos §2 +  - / i 9i +  - / 2(9i +  92)2

and

~0^ r  =  TO.2^91 +  +  m 2/c2(9i +  92) +  I i 9i

+ 022/1/02(291 +  92) cos g2 +  2̂(91 +  92)

^  ( 9 ^ )  ~  m '2^ 1 "*■ m i^ci9i  +  m2̂ l2(qi +  92) +  i i 9i  +  / 2(9i  +  92)

+m 2/i/C2(2g'i +  92) cos92 -  m 2h l C2(2qi +  92)92 sin 92 
<9L  n dL
d q ^ =  ~dq2 =  ~  m2 l C2<ll̂ qi +  92' sm q*
OL
—  =  m2/^(9i +  92) +  2̂(91 +  92) +  m2/i/C29i COS92

dt ~  m2^ 9: +  92  ̂+  +  92)
+m 2/i/C29i cos 92 -  m2/i/C29i92 sin 92
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(2.17)

(2-18)

(2-19)

(2 .20)

(2-21)

(2 .22)
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•2x

Link 1 Link 2

Figure 2.4: Force and moments on links

From equations (2.12) - (2.22), the dynamic model could be derived as,

T\ =  (mi^ci +  77x2/1 +  + 1\ +  h )q i  +  (m21%2 +  12)92

+ 77x2/1^ ( 29! +  92) cos92 -  m2hlC2{2qi +  92)92sin92 (2.23)

72 =  / 2(9i +  92) +  m2ll2(91 +  92) +  m2lC2hqi sin 92

+m2fC2Zi9iCOS92 (2.24)

2.4.2 Newton-Euler m ethod

This method is based on the balance of forces and torques using free-body diagrams 

as shown in Figure 2.4.

Based on the linear motion, of link 2, we have

f 2x =  77x2X2 ,

/ay =  m2y2- (2.25)

19
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Balance of torques for link 2 leads to,

T2 +  ica/hy cos(gi +  g2) -  lcJ 2x sin(qi +  g2) =  I2(qx +  g2). (2.26)

Prom (2.12), (2.25) and (2.26),

T2 =  i2(gi +  fe) +  m24 (3 i +  g2) +  m2lC2hqf sin q2 +  m 2lC2l1q1 cos q2 (2.27)

Prom the linear motion of link 1, we have

fly =  m xy x +  f 2y,

f u  -  mxx 1 +  / 2x. (2.28)

Balance of torques for link 1, leads to

h q i  =  - k j i y cosqx -  (h  -  lCl) f 2ycos31 -  r2 + (2.29)

+ l c j i x  sin qi +  (Zi -  lCl) f 2x sin qx. (2.30)

Prom (2.12), (2.28) and (2.30),

ri =  (milci +  m2 î +  "i2 ĉ2 +  A +  -̂2)31 +  (wi2ig2 +  I2)q2

+m2lxlC2 (2g‘i +  32) cos g2 -  (2qx +  g2)g2 sin g2. (2.31)

Now, combining (2.31) and (2.27), and rearranging the expression into a matrix 

form, we obtain
" m ■ - - -

m u mx 2 3i CX1 Ci2 3i n
+

_ m2i m 22
.  *  . . 021 C22 .  ®  . T2
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with,

m n  = + m 2l\ +  m 2ll2 +  2m2h lC2 cos qa + I i+  I2

mn = m2i = m4l2-k-m2lxlC2msq2 + h  

m22 =  m2 lc2 +  I2 

cn =  m2 lilC2q2 sin q2

cX2 =  - m 2 lilC2(qi +  q2 )smq2 (2.33)

C21 = Tn2l i l02q\ sin C22 = 0

The dynamical equation of the robot manipulator is given by,

M(qk)qk + C(qk, qk)qk + G(qk) = rfe (2.34)

where, M(qk) is inertia matrix, C(qk,qk)qk is a vector resulting from coriolis and

centrifugal forces. G(qk) is a vector resulting from gravitational forces. rk is the

control input vector containing torques and forces to be applied at each joint.

2.5 Sum m ary

•  The derivation of the mathematical model of the system, helps us to have an 

idea on the order and of the system transfer function. And in this case, from 

(2.9) it is evident that the system has an integrator.

• The derivation of the inverse kinematic expressions provides one with the desired 

joint variables.

•  In this chapter the dynamical equation of the manipulator was derived using 

both the Euler-Langrange and Newton-Euler methods. The knowledge of the 

system dynamical equation helps one in the design and implementaion of the 

control strategies.

21
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Chapter 3

E x p e r i m e n t a l  S e t u p

The experimental setup consists of the mechanical assembly, the electronic circuitry, 

and the data acquisition system.

3.1 M echanical Assembly

The mechanical setup for the 2-DOF manipulator consists of two links made of alu­

minum connected through gear trains. The dimensions of the links being 74cmx 5cm 

x5cm and 47.5cmx5cmx5cm. The joints are actuated by two DC motors, Pittman 

GM9434 H187, via gear trains with optical encoders providing motor position mea­

surements. The motor has a built-in gearbox with a transmission ratio of 1:5.9 and 

with a no load speed of 6151rpm. The mechanical assembly has a further gear ratio of 

30:86. Counter weights are added to the links to reduce gravity effects on the system. 

The motors are driven by the associated circuitry.

22
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3.2 Circuitry

To drive the motors, which act as the actuators for the two links, the necessary current 

is provided by the electronic circuitry. The overall circuitry shown in Figure A.l 

consists of motor power supply module, bridge module, power supply module for the 

various chips, current control module and signal separation module.

3.2.1 M otor Power Supply M odule

The schematic of the motor power supply module is shown in Figure A.7. The module 

provides power to the 2N6059 amplification circuit in bridge module, for the control 

of the current magnitude and direction.

3.2.2 Current Control M odule

This circuit shown in Figure A.3, is used for controlling the magnitude of the motor 

current. The circuit is based on a proportional-integral (PI) controller. The output 

of the current control module is given by

_ ( t  1̂2 X (  R\qR j R w , \  . .
V R u ) {  R*R5 6 RqRsCi Jo e )  ( }

3.2.3 Bridge M odule

The bridge circuit is constituted of four MOSFETs IRF540, as shown in Figure A.5. 

The MOSFETs Qi, Q2 , Qs and Q4 are used for switching the motor current directions. 

The current directions are determined by the MOSFET pairs Qi, Q3 and Q2, Qa 

which moves the motor in clockwise and counter-clockwise directions. The desired 

current is obtained by applying the output of the current control module to the base 

of the 2N6059 transistor, the value of which could be measured as the voltage across 

the resistor Rq. T o reduce high voltage buildup during the MOSFET switching,

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



between the drain and source MOSFETs resistors, capacitors and diodes are used. 

The resistors R$, R&, R7 and R$ used at the gates of each MOSFETs, are used to 

reduce the noise from the outputs of opto-isolation circuitry.

3.2.4 Opto-Isolation M odule

This module provides an isolation between the power supplies and generates two 180- 

• degree out of phase signals for the switching of MOSFET pairs. The schematic of this 

circuit is shown in Figure A.6 . The module consists of DS0026CN clock driver chip, 

HP261A opto-isolation chip and associated circuitry. The output of phase signals 

guarantees that the MOSFET pairs Qi, Q3 and Q2 , Qa in the bridge module do not 

turn on and off at the same instant. This ensures the control on motor direction. The 

module has three opto-isolators for generating MOSFET driving signals. DS0026CN 

is a high speed two phase MOS clock driver containing the necessary interface circuit, 

with peak current of ±1.5A. The use of high speed opto-isolator and MOSFET drivers 

enables the circuit to operate at higher frequencies during data acquisition.

3.2.5 Signal-Separation M odule

The schematic of this circuit is shown in Figure A .4. This module separates the 

command signal from data acquisition (DAQ) board into magnitude and direction 

signals. The direction output is a signal waveform with values of zero and

where V+ is the output of Op-amp LM1458.
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3.2.6 Power supply M odule

It is used to provide ±12V and 5V supply voltages to the various integrated circuits, 

like opto-isolators, Op-amps, etc the power supply module as shown in Figure A.7 is 

incorporated. It is a full wave rectifier with required voltage regulators.

3.3 Data Acquisition Module

For the experimental setup dSPACE data acquisition board DS1102 is used with 

Matlab/simulink and a friendly graphical user interfaced (GUI) realtime workshop, 

Controldesk. Through the associated circuitry, the motor current serving as the 

system input is controlled through the DS1102 data acquisition board. DS1102 is a 

single board system, specifically designed for real-time control implementation. The 

DAQ board is based on Texas Instruments TMS320C31 third generation floating 

point digital signal processor, which builds the main processing unit. The DSP has 

been supplemented by a set of on-board peripherals frequently used in digital control 

systems. Analog to digital converters (ADC) and digital to analog converters (DAC), 

DSP micro controller based digital I/O subsystem and incremental sensor interfaces 

are included. The DAQ board has four ADC’s, two 16-bit ADC’s working at 250KHz 

sampling rate and two 12-bit ADC’s working at 800KHz sampling rate. All ADC’s 

have single ended bipolar inputs with ±10V input span. The board also includes four 

12-bit DAC’s working in ±10V range.

The voltage command signal from the analog output channel serves as the con­

troller output. This signal is separated, by the signal separator module, into the 

magnitude and direction signal. These signals are used to control the magnitude and 

direction of the motor current.
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Chapter 4

S y s t e m  I d e n t i f i c a t i o n

System identification deals with the construction of mathematical models from ob­

served data of the physical system. It hence becomes an integral part in the control 

of physical systems. The system identification problem can be divided into a number 

of subproblems:

1. experiment design,

2 . data collection,

3. model structure selection,

4. model estimation, and

5. model validation.

For system identification two approaches are used : closed loop identification and 

open loop identification.

1. Open Loop Identification: The system model from the input to the output is 

identified in open loop configuration.

26
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2. Closed Loop Identification: The system model from the setpoint to the output 

(indirect approach) is identified, from the captured data. The system transfer 

function is obtained from the closed loop transfer function and the knowledge 

of the controller transfer function. Another approach followed in closed loop 

identification is the direct approach, where the model between the control input 

and the output of the closed loop system is identified.

4.1 Closed Loop Identification

During the closed loop identification the output is fed back by means of some feed­

back mechanism as shown in Figure 4.1. Here plant models are identified using data 

collected from closed loop experiments and the underlying processes are fully or par­

tially under feedback control. It is sometimes necessary to perform identification 

experiments in a closed loop. The reason maybe that the plant is unstable or that 

it has to be controlled for production, economic or safety reasons. The closed loop

T(s)

rui
u

PD ------------«►2DOF
y
""$i>

Figure 4.1: A closed loop system 

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



identification is often a feasible approach offering a number of practical advantages

[131

1. validation of the designed controller and onsite re-tuning,

2 . obtaining better models for controller design,

3. controller maintenance,

4. iterative identification in closed loop and controller re-design and

5. controller order reduction.

Closed loop identification could be done using the direct method or by the indirect 

method [7].

1. Direct method : The system output (y) and the input to the system (u) are 

used for determining the transfer function of the plant (Figure 4.1). Then

C l . \  -  y(s) 
a(s)  =  £?W

will provide the transfer function with Y (s) and U(s) being the Laplace trans­

forms of y(t) and u(t) respectively.

2. Indirect method: Here, the system output (y ) and the setpoint (r) are used along 

with the controller transfer function to obtain the system transfer function.

(4a)

where, T(s) is the identified closed loop transfer function, C(s) is the controller 

transfer function.
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In this report the indirect closed loop identification method is used for the system 

identification because the system was not stable in open loop. The closed loop system 

is realized with a PD control, and the signals of relevance are collected. The collected 

signals are analyzed, and the ARX closed loop model is obtained using MATLAB 

[15]. Then the system transfer function is identified as per (4.1).

Host computer with D S1102

Encoder
outputs

D /AD atafile

Driver
Circuits

PD +  
Filter

Figure 4.2: System setup for closed loop identification

4.2 Closed Loop Experiment

The system setup for the closed loop experiment is as shown in Figure 4.2. In this 

experiment the magnitude of excitation signal is chosen as the required maximum 

angular position. A PD controller of the form (4.2) was chosen as the controller.

CM  =  Kv +  (4.2)
/c

where Kp Is the proportional gain, Kd is the derivative gain and fc is the cut off 

frequency (in rad/sec) of the lowpass filter. For link 1, Kp, Kd and f c were chosen as
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0.5, 0.1 and 20 rad/sec respectively. And for link 2, the parameters Kp, Kd and f c 

were chosen to be 1.5, 0.1 and 30 rad/sec respectively.

20
< s® c)

Figure 4.3: Input excitation signals (a) Square wave (b) Varying square waveform

For the closed loop identification procedure, two types of excitation signals (Figure 

4.3) were used:

1. Square waveform: The position input for the manipulator is varied according 

to a square waveform of 0.25 Hz frequency and amplitude of 15 degrees.

2. Varying square waveform: The amplitude of input waveform is maintained a 

constant at 15 degrees and pulse width is altered. The width is selected such 

that the angular position has settled at the reference before the next setpoint 

change occurs.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.3 Model Validation

The identified models axe validated to find the linear model closest to the system. In 

this thesis, we used the set-point following validation technique. In this validation 

method, comparison of the simulation outputs and measurement outputs is made 

under the same PD controller and position reference. The identified closed loop 

transfer functions are tabulated as in Tables 4.1 and 4.2. The percentage of the 

output variations that is reproduced by the model is calculated based on (4.3), to 

find the model of the best fit [15].

Fit = l -
V X - Y b

x 100. (4.3)

where Y  is the measured output, Y  is the simulated output and Y  is the mean of 

the measured output. As per (4.3), 100% corresponds to a model of the best fit,

i.e, when the measured output Y  is equal to the simulated output Y. The identified 

linear models obtained using the two excitation signals, i. e. square wave and varying 

square waveform, are tabulated in Table 4.1 and 4.2.

Based on the best fitting characteristics given by (4.3), the model with the best 

fit is chosen from all of the obtained linear models i.e, 8 th order closed loop transfer 

function for link 1 and 3rd order closed loop transfer function for link 2. The open 

loop system transfer functions are then obtained as per (4.1). The output responses 

of the chosen linear models and the measured output for link 1 and link 2 are as 

shown in Figures 4.4 and 4.5.

The identified open loop transfer functions for link 1 is given by,

a ^ = W >  (4-4)
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Table 4.1: Closed loop identification results for Link 1

Results for experiments on Link 1

Excitation signal System order Fit

3 79.4717

4 83.3664

6 87.0752

square wave 7 89.5196

8 95.4855

10 94.0327

11 93.8297

3 79.1397

4 81.3961

5 82.7970

varying square wave 9 90.4462

10 90.6485

14 90.9095

15 90.8775

where

iVi(s) =  -3.308s8 +  1837s7 -  7.343 x 105s6 +  8.876 x 108s5 +  4.4811 x 1010s4

+5.422 x 1013s3 +  2.144 x 1015s2 +  6.067 x 1016s +  7.865 x 1017

D i(s) =  s9 +  455.1s8 +  7.633 x 105s7 +  1.962 x 108s6 +  1.439 x 10u s5 +  1.331

1013s4 +  5.62 x 1015s3 +  6.037 x 1016s2 +  1.543 x 1017s +  7.82 x 1015
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Table 4.2: Closed loop identification results for Link 2

Results for experiments on Link 2

Excitation signal System order Fit

3 95.8855

4 95.0112

5 94.9981

square wave 6 95.7260

7 95.6995

9 95.4980

11 95.7556

3 93.6329

4 93.9735

5 93.8157

varying square wave 7 93.8224

9 94.0188

10 94.0114

15 94.4486

and for link 2
r  M  _  N * ( s )

-  D M
where,

N 2(s ) =  0.125s4 +  670.3s3 +  2.85 x 104s2 +  4.994 x 107s +  1.491 x 109 

D 2(s) =  s 5 +  478.6s4 +  6.871 x 105s3 +  4.305 x 107s2 

+3.789 x 108s + 2.724 x 108
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  Expi output
 Model Output

15

10

?
i  -

- 1 0

-15

22 24 26 28 32 34 36 38 40

Figure 4.4: Outputs of the experimental system and the identified model for linkl

4.3.1 M odel Reduction

It is often desirable to approximate the state-space representation of a system with 

lower order state-space representation. This is for the reason that an identified model 

is often over parameterized, to capture the system dynamics. The need for an over 

parameterization is due to the non-linearity and the measurement noise. This pro­

cedure, referred to as model reduction, is carried out on the identified higher or­

der transfer functions for the ease of controller implementation. Among the widely 

used model reduction methods one can mention the balanced truncation, balanced 

residualization, singular perturbation approximation and the optimal Hankel norm 

approximation [10], [21]. Truncation methods though simple, may result in unstable 

and non-minimal phase systems even if the original system is stable and minimal. In 

addition to this drawback, truncation methods result in low frequency steady state

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.5: System and model outputs for link 2

error, while it offers zero error at infinite frequency.

The balanced singular perturbation approximation (BSPA) method offers im­

proved low frequency model reduction characteristics [10]. This is a slight varia­

tion from existing balanced trunction algorithm, and offers exact matching at zero 

frequency thus leading to perfect steady state performance.

Due to the better approximation at low and medium frequencies the balanced 

singular perturbation approximation was used in our case.

Considering a linear, time-invariant system G(s) with the realization

x(t) =  Ax{t) +  Bu(t),

y(t) =  Cx(t) +  Du(t) (4.6)

and partitioning the state vector x into components to be retained and those to be
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discarded:

x(t) =
Xi (t)

x2(t)
(4.7)

The r-vector xx(t) contains the components to be retained, while (n — r)-vector x2(t) 

contains the components to be discarded. Partitioning the matrices A, B and C 

conformably with x, we obtain

An A
A =

A2x A
1 

a

B =

C =
Cl C2

£1 0
£  =

0 S 2

12

22

(4.8)

where £ x =  diag(ai,a2, ...,ak) and £ 2 =  diag(ak+i,ak+2, ...,an) with ak > ak+x, 

where the ordered Hankel singular values of G(s) are denoted by o*.

The rth order BSPA is given by Sr(A, B, C, D) =  (An, Bi, Cx, D), where

An = An — Ai2Aj21A2i,

B i  =  B 1 — A 1 2 A 2 2 B 2 ,  

Ci — C\ — C2A2I  A2i , 

D =  D — C2A2 2 B 2 . (4.9)

The BSPA model reduction technique preserves the stability, controllability and 

observability grammians. The identified open loop transfer functions given by (4.4) 

and (4.5), are reduced to the third order transfer functions using the BSPA model
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reduction technique. The transfer functions obtained after model reduction are given

by:

£?i(s)

G2(s)

0.007543s3 +  0.3964s2 +  10.48s +  149.3 
s3 +  11.26s2 +  29.28s +  1.484

8.728 x 10- 4s3 -  5.83 x 10"3s2 +  74.27s +  2260 
s3 +  64.89s2 +  574s +  412.9

(4.10)

(4.11)

kterrtstodsthordsr

10*

Figure 4.6: Magnitude plots of identi­

fied and (BSPA) reduced system trans­

fer functions of link 1

>100

-250

Figure 4.7: Phase plots of identi­

fied and (BSPA) reduced system trans­

fer functions of link 1

The frequency response plots for the reduced models and the identified transfer 

functions are as shown in Figures 4.6-4.9.

Numerous data for each type of exciting signals were used for the identification. 

Based on the identification results, the following observations were made:

1. The use of the square waveform as excitation signal gave better results than the 

varying square waveform, since controlling the pulse width in varying square 

waveform was too critical.
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Figure 4.8: Magnitude plots o f identi- Figure 4.9: Phase plots of identi­

fied and (BSPA) reduced system trans- fied and (BSPA) reduced system trans­

fer functions of link 2 fer functions of link 2

2. For the varying square waveform the frequency of the signal variation is critical 

for the determination of accurate models.

3. Even though the identified discrete domain closed loop transfer functions were 

minimum phase, the conversion to continous domain introduced unstable zeros.

4. The identified models are of higher order than the mathematical model, due to 

the accommodated nonlinearities of the physical system. The identified models 

must be over parameterized to capture the system dynamics.

4.4 Sum m ary

Based on the experimental results, the following conclusions could be drawn:

•  The system under consideration has nonlinearities and a linear approximation 

of the transfer function was obtained from the identification process.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•  Both the identified transfer functions have a pole close to the imaginary axis, 

which could be justified as per the derived mathematical model in (2.9).

• Although more effective and accurate system identification methods can be 

used, the indirect closed-loop identification technique was used assuming that 

the designed robust controller would take care of the lost precision in the iden­

tified system.

• The identified transfer function is of higher order, since it accounts for the non- 

linearities of the physical system. Model reduction techniques are carried out 

for the ease of controller design.

• The identified transfer functions (4.4), (4.5) are non-minimum phase, though 

the identified discrete domain system has no unstable zeros. This happens due 

the discrete to continuous domain conversion techniques.
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Chapter 5

R o b u s t  I L C  d e s i g n  v i a  /^-s y n t h e s i s

In [25], [27] a relation between iterative learning control problem and robust control 

problem is established. Thus, a design of a robust controller will in turn guarantee 

a solution for the iterative learning control problem. This allows the designer to 

use tools available in robust control, like loop shaping, model matching, and p- 

synthesis, for ILC design. The existence of a robust controller enables one to benefit 

from its performance in the first iteration when learning controller is not effective.

The design of robust controllers can cover parametric uncertainties (affecting low 

and medium frequencies) and unstructured model uncertainties (often located in the 

high frequency range). The p—synthesis problem consists of finding the controller 

that minimizes a given p condition. A method to synthesize a p—optimal controller 

is the DK-iteration. This method combines Hoo synthesis and p—analysis, and often 

yields good results. The starting point is the upper bound on the p in terms of the 

scaled singular value,

p(7V) < mina(DND~l)

The aim is to find the controller that minimizes the peak value over frequency of this
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upper bound, namely

by alternating between minimizing ||£W(/i!').D-:l||00 with respect to either K or D 

(while holding the other fixed). To start the iterations, one selects an initial stable 

rational transfer matrix D(s) with appropriate structure. The identity matrix is 

often a good initial choice for the D provided the system has reasonably scaled for 

performance. The D-K iteration then proceeds as follows:

1. K-step: Synthesize an Hx  controller for the scaled problem nun \\DN(K)D~ 1 

with fixed D(s).

2. D-step: Find D(ju) to minimize at each frequency a{DND~l {ju))) with fixed 

N.

3. Fit the magnitude of each element of D{jui) to a stable and minimum phase 

transfer function D(s) and go back to step 1. The iteration may continue until 

satisfactory performance is achieved ||DlV(i(r)D_1||0o <  1 or until the Hx  norm 

no longer decreases.

5.1 Robust Controller

Considering the structure as shown in Figure 5.1 where A (s) 6  TVHx with 

IIAWIloo < J and /? > 0 .

If the generalized plant M  G C(?i+®)x0,i+P2) is a matrix partitioned as follows:

Mn Mu

M 2i M22

Then, the lower linear fractional transformation (LFT) with respect to A could be 

defined as

Ti(M, A) =  M n  +  M12A (I -  M 22A ) ~ 1M 2i,

M  =
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M(s)

A(S)

Figure 5.1: M-delta structure

where A €  CqiXpi and is well posed if ( I  — M22A)-1 exists. And the upper LFT with 

respect to A is defined as

A) =  M22 +  M21A(J — M u  A) 1Mi 2,

with the well posedness being guaranteed by the existence of (I — Mu A)-1.

The robust ILC scheme, proposed in [27], is as shown in the Figure 5.2, with the 

iterative rule

Vfc+l(*) = W1(8)(Vk{8) +  Uk(s))

with Vi(s) =  0. The system could be described in the multiplicative uncertain form 

as

G =  (1 +  AW2)Gn,

with Gn being the nominal system, W2 a known stable transfer function and A 

is an unknown stable transfer function satisfying [|A||oo < 1. It is considered that

Vd(0) =  Vk(0) =  0. The aim is to design a controller satisfying the robust performance 

condition

IHWiS'I +  IŴ TlHoo < 1, (5.1)
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with S =  j~jJjQn is the sensitivity function, and T  =  1 — S  the complimentary 

sensitivity function. Then the tracking error uniformly converges to

e°°(f ) =  =  -C"‘ ( l  -  I f ,  -V7t ” .‘l +  AW 2) r “)  (5 '2)

which implies the error convergence to zero when Wx(s) =  1.

* » '(Q- .

Memory

Figure 5.2: Robust ILC scheme

5.2 Uncertainties

System uncertainties can be classified as repeatable or non-repeatable from a learn­

ing control point of view. Repeatable uncertainties are those which are invariant 

over iterations and may be structured or unstructured. Similarly, non-repeatable 

uncertainties are those which are variant over iterations and may be structured or 

unstructured. Learning control schemes cannot handle non-repeatable uncertainties.
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5.3 Design Steps

As shown in [26], the Youla parameterization

=  X (s) + N2(s)Q(s) 
^  } Y(s) — Ni(s)Q(s)' (5.3)

is used, where ||^ j. is the coprime factorization of Gn(s), with Q(s), Ni(s) and N2 (s) 

being stable rational transfer functions. The stable rational functions X  (s) and Y  (s) 

are solutions of the Bezout identity

Ni(s)X(s) +  N2(s)Y(s) = 1,

For a given nominal system Gn(s), the transfer functions Ni(s), N2 (s), X(s), and 

Y(s), can be obtained using the following procedure [8], [30]:

• S t e p  1 . Obtain a state space realization Aq, Bg, Cq, Dq of G„(s), i.e.,

Gn(s) =  Dg +  Cg (sI -  Ag)~1Bg =
' A q Bg

Gg Dg

•  STEP 2. Obtain F  such that Aq +  BqF  is stable. Transfer functions N\{s) and 

N2(s) are given by

AMs) 4 ---
--

1

+ ba Bg

Cg +  DgF Dg
, AMs) =

Aq  +  BqF Bg

f 1

STEP 3. Obtain H such that Aq +  HCq is stable. Transfer functions X(s) and 

Y(s) are given by

X ( s ) ±

+

1 ___ H
, Y (a )±

Ag 4- HCq - B a -  HDg

F 0 F 1
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In the case of stable systems, the above expressions could be taken as, Nx =  Gn, N2 =  

1 ,X  =  0, Y  =  1 which would lead to internal model parameterization, C(s) =  

i-g%)Q(F) > wWoh is a particular case of Youla parameterization. The robust per­

formance condition (5.1) is equivalent to the following condition [8j:

WXS
<  1 and IIWaTlloo <  1 .1 +  A W2T

and since the sensitivity and complimentary sensitivity functions with the Youla Pa­

rameterization are given by S  =  N2(Y  — NiQ) and T =  1 — S  =  Nx(X  +  N2Q),  then 

the condition

W1N2(Y  -  NiQ)
<  1 and ||W2Ni{X  +  <  1 (5.4)1 +  AW2 Ni(X  +  N2Q)

if satisfied will guarantee the boundedness of the tracking error in the ILC scheme 

in Figure 5.2, for all fc € N, and its uniform convergence to the value given in (5.2) 

when k —<■ 0 0 .

Considering the generalized matrix given by

Mi =
- W 2N i  (X +  N 2Q )  W2 Ni (X  +  N 2Q )  

- W xN2{Y -  N i Q )  WiN2( Y - N i Q )

with the following upper LFT:

T ( M  M WlN^ Y  ~
1 ’ j 1 +  A W2N x {X +  N 2Q ) 1

(5.5)

(5.6)

which is well posed if || W2Nx (X +  A(j(5) || < 1. Thus as per [26] and [27], and control 

scheme as in Figure 5.2 with C parameterized as in (5.3), then the existence of Q 

satisfying

sup/iA(Mi(?u>)) < 1 (5.7)

will guarantee error convergence to (5.2).
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For a given W\, W2, X, Y  and G„, the function Q(s) satisfying (5.7) could be 

calculated using /i—synthesis. To this end, the matrix Mq is introduced such that

M t = H M Q,Q).

- W 2NxX W2NxX w 2n 2

—WXN2Y WxN2Y - w xn 2

N\ Nx 0

Realization of Q(s) using pt—synthesis could be done by the D-K iteration proce­

dure by minimizing

\\D^1(Mq ,Q )D -1\\00 (5.9)

by iteratively solving for D and Q.

The existance of Q satisfying (5.7) implies that jlWj.JVipC +  .Â QMloo < 1 and 

A)||oo < 1 , which guarantees the convergence of the iterative scheme and 

the robust performance of the feedback system at the first iteration.

5.4 Choice of the Weighting Functions

The knowledge of the weighting functions is required for the design of a robust con­

troller for the identified transfer function. The weighting functions Wi and W2 axe 

selected based on certain criteria [21]. The fact that Wi close to 1 ensures zero er­

ror convergence, determines choice of this weighting function. And W2 is selected 

from a rough approximation of the relative uncertainty at the steady state, and the 

approximate frequency at which the relative uncertainty reaches 100%.

where 1/r  is the approximate frequency at which the relative uncertainty reaches 

100%, r0 is the relative uncertainty at steady state and r^ is the magnitude of the
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Figure 5.3: Magnitude plots of de- Figure 5.4: Phase plots of designed

signed and (BSPA) reduced controller and (BSPA) reduced controller transfer

transfer functions functions

weight at high frequency, typicaUy a value greater than 2. In this experimental setup 

r was selected as 0.01, as 2 and r0 as 0.5.

5.5 Simulation Results

For the design of controller, parameterization was chosen as in (5.3), with Ni =  Gn, 

N% =  1, X  =  0 and Y  — 1. Using the p-synthesis toolbox in MATLAB, the robust 

controller is designed using the known weighting function and the identified nominal 

system [3]. During the experiment model reduction techniques were carried out on 

the obtained transfer functions. Since better approximations were obtained for low 

and medium frequency ranges, the singular perturbation approximation method was 

preferred.

The transfer function obtained after model reduction is given by:

, , _  0.0008728s3 -  0.00583s2 + 74.27s +  2260 
~  s3 +  64.89s2 +  574s +  412.9
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I
1

F igu re  5.5: RMS norm of tracking er­

ror versus iteration number (simulated 

for W i(s) =  o ^ + l )

Figure 5.6: Sup-norm of tracking error 

versus iteration number (simulated for

and with (5.8) and Ni =  G„, N2 =  1, X  =  0, Y  =  1 and

W1(s) =, , 0.01s -t- 0.5
=  0005S+T 0.09s+ 1

and the /i—synthesis method [3],we obtain, after model reduction, the following con­

troller

0.2422s4 +  18620s3 +  6.15 x 106s2 +  4.155 x 108s +  3.102 x 108 
^  “  s4 +  239.7s3 +  101700s2 H-1.809 x 107s +  6.029 x 108

leading to |||W/x<S'| +  IWaTUI =  0.6312 as shown in Figure 5.18.

The RMS norm given by

||Cfc||rma —
7 1= 1

where k is iteration number, T  is the sampling period and N  is the number of samples, 

was calculated on error signal at each iteration.

The reference trajectory was taken asyd — 100sin(0.1571i), t  € [0,20s] with yd(0) =  

yk(0) =  0 satisfied on all iterations.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



120
Trial 1

100

80

09

40 -

20

10
Time (sec)

14 16 18 20

Figure 5.7: Trajectories of outputs (simulated for Wi(s) =  oosS+l)

The designed higher order controller is reduced using BSPA technique, the fre­

quency response of the original and reduced controller transfer functions are as shown 

in Figures 5.3 and 5.4.

The learning controller was realized in SIMULINK environment with A =  0.5 

and the results axe as shown in Figures 5.5 to 5.13 and the results agrees with (5.2). 

The choice of Wi =  1 gives an error convergence to zero, and a value of W\ =  01^  

gives convergence to a higher non-zero value. A higher value of W\ guarantees better 

performance at the first iteration but not a satisfactory convergence property.

5.6 Experimental Results

The experimental setup consists of a single link planar manipulator and the associated 

electronic circuits and was implemented in SIMULINK/dSpace environment with a 

sampling period of 0.004 sec. For the experimental implementation of robust learning
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Figure 5.8: RMS norm of tracking er- Figure 5.9: Sup-norm of tracking error

ror versus iteration number (simulated versus iteration number (simulated for

for Wi=l) W i= l)

controller (Figure 5.14), a first order low pass filter of 10 rad/sec cut-off frequency 

was used. The addition of filter leads to |||WiS'| -I- IŴ TIĤ , =  1.0781 which does 

not satisfy the performance criteria for a frequency range of about 14 rad/sec to 22 

rad/sec (shown in Figure 5.19), but it satisfies the robust performance condition at 

the operating frequencies i.e. lower frequencies.

The experimental results for the implemented learning controller are shown in 

Figures 5.15, 5.16 and 5.17.

5.7 Sum m ary

•  The designed robust iterative learning controller offers good performance and 

error convergence.

• In this learning procedure, apart from the identified system model, the choice 

of weighting functions are critical. The choice of Wfys) =  1 guarantees error
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Figure 5.10: Trajectories of outputs (simulated for M/i= l)

convergence to zero but the closed loop performance for the first iteration may 

not be satisfactory.

• The main practical drawback of this technique is the increased design complexity 

and resulting higher order controllers. Hence the model reduction is necessary 

in this procedure.

The adaptive ILC schemes discussed later in the report, enables one to come 

around many of the above mentioned drawbacks. f
i
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F igu re  5.11: RMS norm of tracking 

error versus iteration number (simulated 

for Wi(a) =

Figure 5.12: Sup-norm of tracking er­

ror versus iteration number (simulated

for^iW  = o3fer)

160
-  Trial 1

Reference140

120
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Figure 5.13: Trajectories of outputs (simulated for Wi(s) =  0-y+1)
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Figure 5.14: Experimental setup for ILC implementation

10 15
Stera&onn

Figure 5.15: RMS norm of tracking 

error versus iteration number (filter of 

10 rad/sec)

Figure 5.16: Sup-norm of tracking er­

ror versus iteration number (filter of 10 

rad/sec)
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Figure 5.17: Trajectories of outputs

Figure 5.18: |Wi S |+ |W 271 versus fre- Figure 5.19: |Wi 5 |+ |W 2T | versus fre­

quency (with designed controller) quency (with controller and filter)
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Chapter 6

A d a p t i v e  ILC f o r  R o b o t  

M a n ip u l a t o r s

The experimental results of adaptive ILC schemes proposed in [28] are discussed in 

this section. The control algorithm involves the use of an iteratively updated term 

designed to take care of the unknown parameters and disturbances, together with 

a PD controller. In contrast to classical ILC schemes where one needs the same 

number of iterative variables as the number of control inputs, here we require only 

two iterative variables for controller implementation.

6.1 Adaptive Scheme

Using the Lagrangian formulation, the equations of motion of a n degrees of freedom 

rigid manipulator may be expressed by

M{qk)qk +  C(qk, qk)qk +  G(qk) =  rk{t) +  dk{t) (6.1)

where t £ R  denotes time, k € N  denotes the iteration number. The signals qk 6  

R'1, qk € R n, qk € are joint position, joint velocity and joint acceleration vectors
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respectively at the iteration k. M(qk) € JRnxra is inertia matrix, C(qk, %)qk € FT is a 

vector resulting from Coriolis and centrifugal forces. G(qu) 6 Rn is a vector resulting 

from gravitational forces, r* € .R” is the control input vector containing torques and 

forces to be applied at each joint, dk € i?" are the vectors containing the unmodeled 

dynamics and other unknown external disturbances.

Robot

Figure 6.1: Adaptive ILC scheme

The ILC scheme used in this thesis is based on the following assumptions:

A —I The reference trajectory, its first and second time-derivative, qd(t), qd(t) and 

qd(t), and the disturbance d&(f) are bounded V£ € [0, T) and Vk € N.

A —2 The resetting condition is satisfied, i.e., qd(0)—g&(0) =  <7d(0)—g*(0) =  0,Vk 6 N.

and the following properties, characteristic to all robot manipulators, are taken 

into consideration:

i) M{qk) € Rnxn is symmetric, bounded and positive definite.
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ii) The matrix M (ft)—2C(ft, ft) is skew symmetric, hence xT(M(qk)—2C(qk, qk))x =  

0, Vx €  i?".

Hi) ||C (ft,ft)|| < fec||ftII and ||G (ft)|| <  feg,Vt € [0,T] and Vfc G N, where fcc and 

kg are unknown positive parameters.

The adaptive ILC scheme is as explained.

6.1.1 Adaptive ILC Scheme

Considering the system given by (6.1), satisfying the properties i,ii,iii, and the control 

law [28]

Tfc(t) =  K Pqk{t) +  K Dqk(t) +  r}{qk)6 k{t) (6.2)

with

h it)  -  h - i  (<) +  rr/T( |fc)4 (t), (6.3)

where 0-i(t) — 0. The matrices Kp  € Rnxn, K d  € Rrixn and F G R2 * 2 are symmetric 

positive definite. The function J]{qk) =  [ft sgn(qk)}. If the assumptions (A1-A2) are 

satisfied, then qk(t), qk(t) and rk(t) are bounded for all t € [0,T] and all fe € N  and 

lim ft(t) =  lim 4(<) =  0, Vt € [0, T],
« —■*00 R—+QQ

To prove the boundedness and the convergence to zero of the tracking error, we 

use the following composite energy function:

Wk(iik(t), ft(<), h {t)) -  Vk(ft(t), ft(t)) +  ^ J  (r)r_14 (r)d r (6.4)

with 0fe(t) =  0(f) — 0fc(t), where 0(f) =  [a 5\T G R2 and 0fc(f) is the estimated value 

of 0(f). The unknown parameters a  and 5 are obtained according to

4k (M(qk)qd +  C(qk, qk)qd +  G(qk) -  dk) <  ||&||(/3 +  kg +  fcc||4d|| ||ft||)

<  ll& ll(£  +  kg +  kc\\qdf  +  kc\\qd\\ ||ft||) (6.5)
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where kc, kg and \\M(qk)qd—dk\\ < /? are defined as per the properties of manipulator 

i), ii) and m)mentioned previously. And from the boundedness of qd, we have,

Ql(M(qk)qd +  C(qk, qk)qd +  G(qk) -  dk) <  q£(afc +  8 sgn(^k))

< klntik ) 0  (6.6)

where a  =  kcSupte[0,T\ M  and 8  =  /3 +  kg +  kcSupte[Q,T] ||gd(t)j|2 

This theorem is proved by showing that

AW, = Wfe-  Wfe_i

is a bounded non-increasing sequence.

The difference is given by

AW, =  1 4 -  14-1 +  \  -  e l ^ T - ' e ^ d r  (6.7)

%

where 6 k =  6 k — 0 k- i

I f £ .
AW, < -14-1 ~ 2 J0 $ M qk’ 9*)r<£T(9fc> <ft) + 2KD)qkdr < 0 (6.8)

which proves that Wk is a non-increasing sequence. Hence, Wk is bounded if Wo is

bounded.

The boundedness of Wk guarantees the boundedness of qk(t), qk(t) and 

Jo ^k{TW~1^k{T)dr. The boundedness of W o is proved as follows :

Wo <  io (HQo, qo, $o)do -  K d 4o) +  l ^ T - %  (6.9)

since 0-i(t) =  0, we have, 8 0 (t) =  T<f>T(qo,q0 ,qo)qo(t). Then,

Wo < - ^ K D^  +  { e l  +  \ e l ) Y - %  (6.10)

< - $ K Diio -  + eTT~xdo (6.11)
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Using Young’s inequality,

for K >  0.

W0 < -piUgolli ~  P2P 0II2 +  (6.12)AK

which implies that,

-  4 C P i  <6'13>

where p\ \nin(KD), p% — 1) ~  fc^nax(T *) with

0 < K, < 2>̂ *"j(r-̂ ) • The fact that 6  is bounded implies the boundedness of W0 in
[0,T].

Now, it could be shown that,

k
w k < W o-'^T V j-!  (6.14)

i=i

-  Wo~ 2 ^ 2  qJ-iK p $3-i (6-15)
3=1 j - 1

which implies

1 , 1 * ^

2 z 2  € - ik p%-i -  2 J 2  < W o -W k < Wo.
j = 1 j - i

Hence q^t) and are bounded

V t € [0, T], V k e N  and

Ihnfc-oo qk(t) =  limfc_00 &(t) =  0, V t € [0, T]
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Figure 6.2: Experimental setup for adaptive ILC

6.2 Experimental Results

The adaptive ILC scheme discussed in (6.1.1) was applied to the 2-DOF planar ma­

nipulator. The experimental setup is as shown in Figure 6.2. In the experiment, 

low pass filters of cut off frequency 6 rad/sec and 4 rad/sec were used with the nu­

meric differentiator for linkl and link2 respectively. The proportional gain Kp, the 

derivative gain Kjy and the learning gain F were chosen as

0.02 0 0.0002 0 0.0025 0
K P = , K D = r  =

0 0.005 0 0.0001 0 0.0025

The experiment was realised using SIMULINK/ dSpace at a sampling period of 4msec. 

A circular trajectory, centered at (0.5m, 0) with a radius of 0.3m, was chosen as a
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reference for our experiment. That is,

x{t) =  0.5 +  r cos <jjt y(t) =  r sin ut,

where u  =  2tt/T  and r being the radius of the circle, w the angular velocity and T  the 

period of trial. In our experiment a; =  0.3142 rad/sec and T — 20 sec were chosen. 

The setpoint to the actuators is obtained from inverse kinematics of the chosen ref­

erence trajectory and the resetting condition, y<j(0) =  y*.(0) =  0 is satisfied on all 

iterations. The Figures 6.3, 6.4, 6.7 show the error convergence and output trajecto­

ries, with Figures 6.5 and 6.6 showing the joint positions of each of the two joints.

25

20  -

15

1 10
U nki

Unk2

12 16 16 20

iteration number

Figure 6.3: RMS norm of the tracking error versus the iteration number for link 1 

and link 2
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Figure 6.4: Infinity norm of the tracking error versus the iteration number for link 1 

and link 2

6.3 Observations

Following observations are made based on the experiments performed on the planar 

manipulator:

1. The main advantage of this ILC scheme is that no knowledge of system para­

meters is required.

2. The convergence of the iterative process is guaranteed by the positive definite­

ness of Kp, K d  and F.

3. Another important feature of this ILC scheme is the presence of only two iter­

ative parameters. The smaller number of iterative parameters helps in saving 

memory space during real-time implementation.

4. Acceleration measurements are not required for controller implementation.
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Figure 6.5: Joint positions for Figure 6.6: Joint positions for

linkl link2

5. The chattering occuring at higher iterations could be reduced by replacing 

signum function with a saturation block given by :

for x > x 

for x < x 

for \x\ < x

where x is the input and x is the limit of the saturation block.

6. A faster rate of convergence could be achieved by increasing the value of F, but 

this causes chattering due to amplification of noise present with the updating 

term.

7. At very low cut-off frequencies of low-pass filter, the system exhibits oscillatory 

behaviour.
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Figure 6.7: End-effector positions

6.4 Sum m ary

•  The adaptive ILC scheme approach works satisfactorily on the 2-DOF robot 

manipulator, though error convergence is slow. But increasing the F value for 

a faster convergence results in chattering as iteration progresses.

•  The chattering of the system occurs at higher iteration numbers, and this could 

be minimized by reducing the cut-off frequency of the low pass filter.

• Another possible method of reducing the chattering is by using the saturation 

block instead of the signum function.

•  Compared to classical ILC schemes where number of updating terms are equal
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to the number of the control inputs, here we use just two iterative variables, 

irrespective of the degrees of freedom of manipulator.
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C h a p te r  7

C o n c l u sio n s  a n d  F u t u r e  W o r k

7.1 Conclusions

In this thesis the experimental implementation of ILC schemes were discussed and 

advantages in practical applications were studied. The following conclusions could be 

drawn based on this work:

• Expressing ILC problem as a robust control problem provides one with better 

options for controller design.

• In the robust ILC technique, the choice of weighting function Wi close to one 

guarantees the error convergence to a small value.

• The adaptive control strategy discussed provides one with error convergence 

with minimum knowledge on the system parameters. This could be done with 

an additional advantage of lesser memory requirement than existing ILC tech­

niques.

• In the implementation of the adaptive ILC, chattering occurs with increasing 

number of iterations due to noise amplification. This could be minimized to a
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certain extent using a lowpass filter along with the numeric differentiator.

• Apart from the measurement noise, the signum function used in the adaptive 

ILC scheme, can cause chattering in the presence of noise. The use of a satura­

tion block helps to reduce the chattering occuring due to the above mentioned 

reason.

• These learning procedures could provide better results with smaller sampling 

periods. But this depends greatly on the memory capacity of the data acqui­

sition board. In this case one needs to compromise on the sampling period 

and the period of operation. In our case, implementation at smaller sampling 

periods could not be undertaken because of the memory constraint on the DAQ 

board.

7.2 Future Work

Based on the experimental work done, the following recommendations could be pro­

posed for the future work:

• The learning algorithms could be implemented at lower sampling periods for 

obtaining better results.

• Future work could be done to develop an algorithm with only position feedback, 

thereby reducing the chances of noise entry into the system.
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Figure A.l: Overall test circuitry
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Appendix B

D e n a v it -H a r t e n b e r g  

R e p r e s e n t a t io n

Denavit-Hartenberg or D-H convention is a commonly used method for selecting 

frames of reference in robots. In this convention, each homogeneous transformation 

Ai is represented as a product of four basic transformations

Ai Rotgfli TvO/flSẑ di ;jfli Rotxtcci

C0j —sOiCUi sBiSOti Oj C0i

s0 i cBiCoti —cdiSOti diSdi

0 SOti con di

0 0 0 1

where 0*, Oj, on and dn are parameters of link i and joint i. These parameters are 

generally referred by the following names: a* as the ‘length’, at as the ‘twist’, di is 

called the ‘offset’ and 0, is called the ‘angle’. Since the matrix Ai is a function of a 

single variable, the other three parameters are constant for a given link. The varying 

parameter, 0* for a revolute joint and di for a prismatic joint is called the joint vari-
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able.

In this procedure, a homogeneous transformation At is used to express the transfor­

mation of coordinates from one frame to another. In the usual representation, to 

express this transformation, six numbers are required i.e. three for displacement vec­

tor and three for the Euler angles corresponding to the rotation matrix. But in D-H 

representation, only four parameters are required for expressing the transformation. 

This is made possible by the following two features :

•  The axis xt is perpendicular to the axis Zj_i

•  The axis Xi intersects the axis zq.

For deriving the forward kinematics for any manipulator with n joints, using the D-H 

convention, one needs to follow some procedures, namely:

Step 1: Locate and label the joint axes zo,...,z„_i.

Step 2 : Establish the base frame. Set the origin anywhere on the zo-axis. The xq and 

2/o axes are chosen to form a right-hand frame.

For i — 1 , . . .  , n — 1 Steps 3 to 5 are performed.

Step 3 : Locate the origin 0* where the common normal to z* and z*_i intersects z*. If 

Zj intersects Zj_i locate 0* at this intersection. If z* and Zj_i are parallel, 0* is 

located at joint i.

Step 4 : Establish xt along the common normal between z*_i and z,- through 0*, or in 

the direction normal to the Zj_i — z* plane if Zj_i and z* intersect.

Step 5 : Establish 2/» to complete a right-hand frame.

Step 6 : Establish the end-effector frame Onxnynzn. Assuming the ntk joint is revolute, 

choose zn along the direction of z„_x. Establish the origin 0„  conveniently along 

z„. Set xn and yn to form the right-hand frame.
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Step 7 : Create a table of link parameters a,, d,, o:*, 0*.

a* =  distance along from Oj to the intersecion of the x* and 2*_i axis,

dj =  distance along 2j_i from 0 ,_ i to the intersection of the Xi and Zj_i

axes. is variable if joint i is prismatic.

Oi =  the angle between 2 j_ i and zt measured about x , .

&i =  the angle between Xj_\ and Xi measured about 2f_i.

0* is variable if joint i is revolute.

Step 8 : Form the homogeneous transformation matrix Ai using the above parameters.

Step 9 : Form To" =  AiA2. . .An. This gives the position and orientation of the tool 

frame expressed in base coordinates.

B . l  2-DOF P l a n a r  R o b o t  M a n i p u l a t o r

Considering the two-link planar robot manipulator shown in Figure B .l. The joint 

axes zq and z\ are normal to the page. Proceeding as per the steps for DH conventions, 

the base frame 0 0xQyoZQ is established. The origin O0 is chosen at the intersection of 

zq axis with the plane and xq is chosen arbitrarily. Once the base frame is established, 

the frames OiXiyiZi and 02̂ 22/2-̂ 2 are chosen as per the DH conventions. The link 

parameters are then determined to express the homogeneous tranformation matrix 

as per (B .l).
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£ --------

Figure B.l: Two-link planar robot manipulator

DH Parameters for Robot

Link Oj Oti Oi

1 ax 0 0 0i*

2 o2 0 0 02*

Cl -S i 0 OlCi c2 - s 2 0 o2c2

Si Cl 0 OlSi A $2 C2 0 o2s2
A-2 =

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

The transformation matrices Tq1 =  Ax and T02 are given by,
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To1 =  Aj and To2 = A1 A2

C12 ®12 0 a i c i  +  a 2c i2

S12 c 12 0 O1S1 +  &2S12

0 0 1 0

0 0 0 1

where,

Cl
A

COS 6 1 , A
s 2 = s in  02

C2
A

COS 02,
A

Cl2 = c o s ( # i  +  02)

S i
A sin 0 i, A

S12 = sin(0i +  02)

The rotational part of Tq2 gives the orientation of frame O 2X2II2Z2 with respect to the 

base frame and the first three elements of the fourth column of To2 gives co-ordinates 

of end-effector.
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Appendix C

GUI f o r  R e a l - t im e  A p p l ic a t io n

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



~

Figure C.l: Layout schematic for implementation in control desk
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